WorldWideScience

Sample records for angle x-ray scattering

  1. Small angle X-ray scattering from hydrating tricalcium silicate

    International Nuclear Information System (INIS)

    Vollet, D.

    1983-01-01

    The small-angle X-ray scattering technique was used to study the structural evolution of hydrated tricalcium silicate at room temperature. The changes in specific area of the associated porosity and the evolution of density fluctuations in the solid hydrated phase were deduced from the scattering data. A correlation of these variations with the hydration mechanism is tried. (Author) [pt

  2. Low angle X-ray scattering

    International Nuclear Information System (INIS)

    Torrianni, I.L.

    1983-01-01

    The theoretical and experimental problems appearing in diffraction experiments at very low angles by several kinds of materials are discussed. The importance of synchrotron radiation in such problems is shown. (L.C.) [pt

  3. Small angle x-ray scattering and its applications

    International Nuclear Information System (INIS)

    Buckely, C.E.

    2002-01-01

    Full text: Small angle X-ray scattering is an excellent technique to characterise inhomogeneities in materials in the size range from 1 nm - several hundred nm. Ultra small angle X-ray scattering has extended this size range out to 20 μm. SAXS is due to the electron density difference between the matrix and the inhomogeneity. SAXS and small angle neutron scattering have been successfully used to characterise colloidal particles in solution, colloidal powders, macromolecules, glasses and a wide range of solids such as metals, alloys, and natural and synthetic high polymers. Small angle scattering and complementary techniques, such as transmission and scanning electron microscopy are a powerful combination for the investigation of submicron particles. This talk will introduce the small angle scattering technique and its applications, and will also describe the new Nanostar SAXS instrument in the Department of Applied Physics at Curtin University that has been purchased through a 2001 Australian Research Council research infrastructure and equipment fund (2001 ARC RIEF) grant. Copyright (2002) Australian X-ray Analytical Association Inc

  4. Small angle neutron scattering and small angle X-ray scattering ...

    Indian Academy of Sciences (India)

    Abstract. The morphology of carbon nanofoam samples comprising platinum nanopar- ticles dispersed in the matrix was characterized by small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) techniques. Results show that the structure of pores of carbon matrix exhibits a mass (pore) fractal nature ...

  5. Small angle neutron scattering and small angle X-ray scattering ...

    Indian Academy of Sciences (India)

    Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. *Corresponding author ... ticles dispersed in the matrix was characterized by small angle neutron scattering (SANS) and small angle X-ray ... for scattering from rough pore–mass interfaces, α > 3 and the (surface) fractal dimension Ds = 6 ...

  6. Small angle neutron scattering and small angle X-ray scattering ...

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... Small angle neutron scattering and small angle X-ray scattering studies of platinum-loaded carbon foams. P U Sastry V K Aswal A G Wagh ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November ...

  7. Small angle x-ray scattering from proteins in solution

    International Nuclear Information System (INIS)

    de Souza, C.F.; Torriani, I.L.; Bonafe, C.F.S.; Merrelles, N.C.; Vachette, P.

    1989-01-01

    In this work the authors report experiments performed with giant respiratory proteins from annelids (erythrocruorins), known to have a molecular weight in the order of four million Daltons. Preliminary x-ray scattering data was obtained using a conventional rotating anode source. High resolution small angle scattering curves were obtained with synchrotron radiation from the DCI storage ring at LURE. Data from solutions with several protein concentrations were analyzed in order to determine low resolution dimensional parameters, using Guinier plots from the smeared scattering curves and the inverse transformation method

  8. Complementary uses of small angle X-ray scattering and X-ray crystallography.

    Science.gov (United States)

    Pillon, Monica C; Guarné, Alba

    2017-11-01

    Most proteins function within networks and, therefore, protein interactions are central to protein function. Although stable macromolecular machines have been extensively studied, dynamic protein interactions remain poorly understood. Small-angle X-ray scattering probes the size, shape and dynamics of proteins in solution at low resolution and can be used to study samples in a large range of molecular weights. Therefore, it has emerged as a powerful technique to study the structure and dynamics of biomolecular systems and bridge fragmented information obtained using high-resolution techniques. Here we review how small-angle X-ray scattering can be combined with other structural biology techniques to study protein dynamics. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Large Solid Angle Spectrometer for Inelastic X-ray Scattering

    International Nuclear Information System (INIS)

    Gelebart, F.; Morand, M.; Dermigny, Q.; Giura, P.; Shukla, A.; Rueff, J.-P.

    2007-01-01

    We have designed a large solid angle spectrometer mostly devoted to inelastic x-ray scattering (IXS) studies of materials under extreme conditions (high pressure / temperature) in the hard x-ray range. The new IXS spectrometer is designed to optimize the photon throughput while preserving an excellent resolving power of ∼10000 in the considered energy range. The spectrometer consists of an array of up to 4 spherically bent 0.5 m radius analyzer crystals and a solid-state detector positioned on the Rowland circle. The four analyzers can cover a solid angle more than one order of magnitude larger than conventional spectrometers. The spectrometer is to be installed on the GALAXIES beamline at SOLEIL in the near future

  10. Low-angle X-ray scattering from spices

    Science.gov (United States)

    Desouky, Omar S.; Ashour, Ahmed H.; Abdullah, Mohamed I.; Elshemey, Wael M.

    2002-07-01

    Low-angle scattering of X-rays is characterized by the presence of one or more peaks in the forward direction of scattering. These peaks are due to the interference of photons coherently scattered from the molecules of the medium. Thus these patterns are closely linked to the molecular structure of the investigated medium. In this work, low-angle X-ray scattering (LAXS) profiles of five spices; pimpinella anisum (anise), coriandrum sativum (coriander), cuminum cyminum (cumin), foenculum vulgare (fennel) and nigella sativa (nigella or black cumin) are presented after extensive measurements. It is found that all spices exhibit one characteristic peak at a scattering angle around 10°. This is equivalent to a value x=0.0565 Å -1, where x=sin( θ⧸2)⧸ λ. The full width at half maximum (FWHM) of this peak is found to be characteristic for each type of the investigated spices. The possibility to detect the irradiation of these spices from their LAXS profiles is also examined after 10, 20, 30 and 40 kGy doses of gamma radiation. Except for anise, coriander and cumin at 40 kGy, there are no detectable deviations from the control samples in the scattering profiles of irradiated samples. These results comply with the recommendations of the FDA (US Food and Drug Administration) which defines 30 kGy as the maximum dose for irradiation of spices. The present technique could be used to detect over-irradiation, which causes damage to the molecular structure of some spices.

  11. Low-angle X-ray scattering from spices

    Energy Technology Data Exchange (ETDEWEB)

    Desouky, O.S. E-mail: omardesouky@yahoo.com; Ashour, Ahmed H.; Abdullah, Mohamed I.; Elshemey, Wael M

    2002-07-01

    Low-angle scattering of X-rays is characterized by the presence of one or more peaks in the forward direction of scattering. These peaks are due to the interference of photons coherently scattered from the molecules of the medium. Thus these patterns are closely linked to the molecular structure of the investigated medium. In this work, low-angle X-ray scattering (LAXS) profiles of five spices; pimpinella anisum (anise), coriandrum sativum (coriander), cuminum cyminum (cumin), foenculum vulgare (fennel) and nigella sativa (nigella or black cumin) are presented after extensive measurements. It is found that all spices exhibit one characteristic peak at a scattering angle around 10 deg. This is equivalent to a value x=0.0565 A{sup -1}, where x=sin({theta}/2)/{lambda}. The full width at half maximum (FWHM) of this peak is found to be characteristic for each type of the investigated spices. The possibility to detect the irradiation of these spices from their LAXS profiles is also examined after 10, 20, 30 and 40 kGy doses of gamma radiation. Except for anise, coriander and cumin at 40 kGy, there are no detectable deviations from the control samples in the scattering profiles of irradiated samples. These results comply with the recommendations of the FDA (US Food and Drug Administration) which defines 30 kGy as the maximum dose for irradiation of spices. The present technique could be used to detect over-irradiation, which causes damage to the molecular structure of some spices.

  12. Low-angle X-ray scattering from spices

    International Nuclear Information System (INIS)

    Desouky, O.S.; Ashour, Ahmed H.; Abdullah, Mohamed I.; Elshemey, Wael M.

    2002-01-01

    Low-angle scattering of X-rays is characterized by the presence of one or more peaks in the forward direction of scattering. These peaks are due to the interference of photons coherently scattered from the molecules of the medium. Thus these patterns are closely linked to the molecular structure of the investigated medium. In this work, low-angle X-ray scattering (LAXS) profiles of five spices; pimpinella anisum (anise), coriandrum sativum (coriander), cuminum cyminum (cumin), foenculum vulgare (fennel) and nigella sativa (nigella or black cumin) are presented after extensive measurements. It is found that all spices exhibit one characteristic peak at a scattering angle around 10 deg. This is equivalent to a value x=0.0565 A -1 , where x=sin(θ/2)/λ. The full width at half maximum (FWHM) of this peak is found to be characteristic for each type of the investigated spices. The possibility to detect the irradiation of these spices from their LAXS profiles is also examined after 10, 20, 30 and 40 kGy doses of gamma radiation. Except for anise, coriander and cumin at 40 kGy, there are no detectable deviations from the control samples in the scattering profiles of irradiated samples. These results comply with the recommendations of the FDA (US Food and Drug Administration) which defines 30 kGy as the maximum dose for irradiation of spices. The present technique could be used to detect over-irradiation, which causes damage to the molecular structure of some spices

  13. Low angle X-ray scattering in biological tissues

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Carla; Braz, Delson; Pinto, Nivia G.V.; Lima, Joao C.; Castro, Carlos R.F.; Filgueiras, R.A.; Mendonca, Leonardo; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mail: delson@lin.ufrj.br; Barroso, Regina C. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica]. E-mail: cely@uerj.br

    2007-07-01

    Low-angle x-ray scatter (LAXS) for tissue characterization is based on the differences which result from the interference of photons coherently scattered from molecules of each sample. Biological samples (bone, blood and blood components) have been studied in recent years in our laboratory using powder diffractometer. The scattering information was obtained using a Shimadzu DRX 6000 diffractometer at the Nuclear Instrumentation Laboratory, Rio de Janeiro, Brazil. Unpolarized monoenergetic K{alpha} radiation from Cu provided 8.04 keV photons. The measurements were made in reflection mode ({theta}-2{theta} geometry), with the sample stationary on a goniometer which rotates the sample and detector about an axis lying in the plane of the top of the sample holder. LAXS profiles from whole blood, plasma and formed elements were measured to investigate the nature of scattering from such lyophilized samples. The statistical analysis shows that the variation found for the characterization parameters is significant for whole blood considering the age. Gender was positively associated with the variation of the second peak position for the profiles obtained for formed elements. The correlation of the measured relative coherent intensity with the mineral content in the bone samples was investigated. These results suggest that the measurement of bone mineral content within trabecular bone can be performed by using quantitative coherent scattering information. (author)

  14. Small angle X-ray scattering on concentrated hemoglobin solutions

    International Nuclear Information System (INIS)

    Zinke, M.; Damaschun, G.; Mueller, J.J.; Ruckpaul, K.

    1978-01-01

    The small-angle X-ray scattering technique was used to determine the intermolecular structure and interaction potentials in oxi-and deoxi-hemoglobin solutions. The pair correlation function obtained by the ZERNICKE-PRINS equation characterizes the intermolecular structure of the hemoglobin molecules. The intermolecular structure is concentration dependent. The hemoglobin molecules have a 'short range order structure' with a range of about 4 molecule diameters at 324 g/l. The potential functions of the hemoglobin-hemoglobin interaction have been determined on the basis of fluid theories. Except for the deoxi-hemoglobin solution having the concentration 370 g/l, the pair interaction consists in a short repulsion and a weak short-range attraction against kT. The potential minimum is between 1.2 - 1.5 nm above the greatest hemoglobin diameter. (author)

  15. X-ray small angle scattering of polymer solutions

    International Nuclear Information System (INIS)

    Koyama, Ryuzo

    1975-01-01

    In recent papers, the calculated results were reported on the angular dependence of the intensity of scattered light or X-ray by chain polymers, on the basis of a stiff chain model. As the results, the curves of S 2 P (theta) corresponding to Kratky plot, for different molecular expansion, showed a plateau, and the height of the plateau was proportional to the inverse of molecular expansion coefficient α 2 . But as seen later, there is some possibility that the assumption made in the calculation overestimated the expansion of small segments which theoretically determines scattering curves at large scattering angles, such as the plateau. Accordingly, modified calculation was carried out by adopting the stiff chain polymer model as the previous case. When the contour length of a chain segment is very long, it can be treated approximately as a Gaussian coil, thus the equation for a chain segment expansion coefficient α (t) was obtained. Then the mean square distance of chain segments of polymer molecules was able to be determined, and the equation for a particle scattering factor P(theta) was obtained. The numerical calculation of P(theta) showed that this modified assumption considerably decreased the effect of molecular expansion on P(theta), and the curves of S 2 P(theta) increased monotonously without showing the plateau. The result of this calculation was compared with the experimental curves of polystyrene-toluene solution, and the agreement better than before was obtained. (Kako, I.)

  16. Small angle X-ray scattering from protein in solution

    International Nuclear Information System (INIS)

    Souza, C.F. de; Torriani, I.L.

    1988-01-01

    In this work we report experiments performed with giant respiratory proteins from annelids. X-ray scattering data were obtained both by the use of conventional rotating anod source and synchotron radiation. Data from solutions with several protein concentrations were analyzed. (A.C.A.S.) [pt

  17. Small angle X-ray scattering studies on the X-ray induced aggregation of malate synthase

    International Nuclear Information System (INIS)

    Zipper, P.; Durchschlag, H.

    1980-01-01

    Malate synthase was investigated by the small-angle X-ray scattering technique in aqueous solution. Measurements extending for several hours revealed a continuous increase of the intensity in the innermost portion of the scattering curve. There is clear evidence that this increase was caused by an X-ray induced aggregation of enzyme particles during the performance of the small-angle X-ray scattering experiment. The monitoring of the aggregation process in situ by means of small-angle X-ray scattering led to a model of the way how the aggregation might proceed. The analysis of the scattering curves of malate synthase taken at various stages of aggregation established the retention of the thickness factor of the native enzyme and the occurrence of one and later on of two cross-section factors. The process of aggregation was also reflected by the increase of extension of the distance distribution function. Measurements of enzymic activity and small-angle X-ray scattering on samples, which had been X-irradiated with a defined dose prior to the measurements, established two different series of efficiency for the protection of the enzyme against aggregation and inactivation. The results showed that there is no direct relation between the extent of aggregation and the loss of enzymic activity. (orig./MG) [de

  18. Magnetic nanoparticles studied by small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cristiano Luis Pinto [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Grupo de Fluidos Complexos; Antonel, Soledad; Negri, Martin [Universidad de Buenos Aires (UBA) (Argentina). Facultad de Ciencias Exactas y Naturales. Dept. de Quimica Inorganica, Analitica y Quimica Fisica

    2011-07-01

    nanoparticles are very interesting because they exhibit magnetic (ferromagnetic) and electrical properties in the same material. Then, the nickel nanoparticles could be used for the development of electroelastic materials. In this case, the electrical conductivity of the material can be strongly dependent on the applied magnetic field, for example the case of nickel metal nanoparticles dispersed in a polymer, resulting in an anisotropic material with combined piezomagnetic and piezoelectric properties. In order to investigate the structural characteristics of cobalt-iron oxides and nickel nanoparticles, powder samples of those magnetic materials were studied by Small-Angle X-Ray Scattering. As will be shown, from the analysis and modeling of the scattering data, structural information could be obtained, enabling a detailed description of the structural properties of the studied samples which could be directly correlated to the magnetic properties. (author)

  19. Magnetic nanoparticles studied by small angle X-ray scattering

    International Nuclear Information System (INIS)

    Oliveira, Cristiano Luis Pinto; Antonel, Soledad; Negri, Martin

    2011-01-01

    because they exhibit magnetic (ferromagnetic) and electrical properties in the same material. Then, the nickel nanoparticles could be used for the development of electroelastic materials. In this case, the electrical conductivity of the material can be strongly dependent on the applied magnetic field, for example the case of nickel metal nanoparticles dispersed in a polymer, resulting in an anisotropic material with combined piezomagnetic and piezoelectric properties. In order to investigate the structural characteristics of cobalt-iron oxides and nickel nanoparticles, powder samples of those magnetic materials were studied by Small-Angle X-Ray Scattering. As will be shown, from the analysis and modeling of the scattering data, structural information could be obtained, enabling a detailed description of the structural properties of the studied samples which could be directly correlated to the magnetic properties. (author)

  20. Small-Angle X-ray Scattering Screening Complements Conventional Biophysical Analysis

    DEFF Research Database (Denmark)

    Tian, Xinsheng; Langkilde, Annette Eva; Thorolfsson, Matthias

    2014-01-01

    introduce small-angle X-ray scattering (SAXS) to characterize antibody solution behavior, which strongly complements conventional biophysical analysis. First, we apply a variety of conventional biophysical techniques for the evaluation of structural, conformational, and colloidal stability and report...

  1. Small-angle X-ray scattering (SAXS) studies of the structure of mesoporous silicas

    Science.gov (United States)

    Zienkiewicz-Strzałka, M.; Skibińska, M.; Pikus, S.

    2017-11-01

    Mesoporous ordered silica nanostructures show strong interaction with X-ray radiation in the range of small-angles. Small-angle X-ray scattering (SAXS) measurements based on the elastically scattered X-rays are important in analysis of condensed matter. In the case of mesoporous silica materials SAXS technique provides information on the distribution of electron density in the mesoporous material, in particular describing their structure and size of the unit cell as well as type of ordered structure and finally their parameters. The characterization of nanopowder materials, nanocomposites and porous materials by Small-Angle X-ray Scattering seems to be valuable and useful. In presented work, the SAXS investigation of structures from the group of mesoporous ordered silicates was performed. This work has an objective to prepare functional materials modified by noble metal ions and nanoparticles and using the small-angle X-ray scattering to illustrate their properties. We report the new procedure for describing mesoporous materials belonging to SBA-15 and MCM-41 family modified by platinum, palladium and silver nanoparticles, based on detailed analysis of characteristic peaks in the small-angle range of X-ray scattering. This procedure allows to obtained the most useful parameters for mesoporous materials characterization and their successfully compare with experimental measurements reducing the time and material consumption with good precision for particles and pores with a size below 10 nm.

  2. Small Angle X-ray Scattering: Going Beyond the Bragg Peaks -24 ...

    Indian Academy of Sciences (India)

    This article gives an introduction to the princi- ples of small angle scattering. Some applications of this technique are also briefly discussed. Introduction. Small angle X-ray scattering (SAXS) is a widely used technique to study large scale inhomogeneities in a med- ium, at length scales much larger than the wavelength.

  3. A preliminary study of breast cancer diagnosis using laboratory based small angle x-ray scattering

    International Nuclear Information System (INIS)

    Round, A R; Wilkinson, S J; Hall, C J; Rogers, K D; Glatter, O; Wess, T; Ellis, I O

    2005-01-01

    Breast tissue collected from tumour samples and normal tissue from bi-lateral mastectomy procedures were examined using small angle x-ray scattering. Previous work has indicated that breast tissue disease diagnosis could be performed using small angle x-ray scattering (SAXS) from a synchrotron radiation source. The technique would be more useful to health services if it could be made to work using a conventional x-ray source. Consistent and reliable differences in x-ray scatter distributions were observed between samples from normal and tumour tissue samples using the laboratory based 'SAXSess' system. Albeit from a small number of samples, a sensitivity of 100% was obtained. This result encourages us to pursue the implementation of SAXS as a laboratory based diagnosis technique

  4. A preliminary study of breast cancer diagnosis using laboratory based small angle x-ray scattering

    Science.gov (United States)

    Round, A. R.; Wilkinson, S. J.; Hall, C. J.; Rogers, K. D.; Glatter, O.; Wess, T.; Ellis, I. O.

    2005-09-01

    Breast tissue collected from tumour samples and normal tissue from bi-lateral mastectomy procedures were examined using small angle x-ray scattering. Previous work has indicated that breast tissue disease diagnosis could be performed using small angle x-ray scattering (SAXS) from a synchrotron radiation source. The technique would be more useful to health services if it could be made to work using a conventional x-ray source. Consistent and reliable differences in x-ray scatter distributions were observed between samples from normal and tumour tissue samples using the laboratory based 'SAXSess' system. Albeit from a small number of samples, a sensitivity of 100% was obtained. This result encourages us to pursue the implementation of SAXS as a laboratory based diagnosis technique.

  5. A preliminary study of breast cancer diagnosis using laboratory based small angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Round, A R [Daresbury Laboratories, Warrington, WA4 4AD (United Kingdom); Wilkinson, S J [Daresbury Laboratories, Warrington, WA4 4AD (United Kingdom); Hall, C J [Daresbury Laboratories, Warrington, WA4 4AD (United Kingdom); Rogers, K D [Department of Materials and Medical Sciences, Cranfield University, Swindon, SN6 8LA (United Kingdom); Glatter, O [Department of Chemistry, University of Graz (Austria); Wess, T [School of Optometry and Vision Sciences, Cardiff University, Cardiff CF10 3NB, Wales (United Kingdom); Ellis, I O [Nottingham City Hospital, Nottingham (United Kingdom)

    2005-09-07

    Breast tissue collected from tumour samples and normal tissue from bi-lateral mastectomy procedures were examined using small angle x-ray scattering. Previous work has indicated that breast tissue disease diagnosis could be performed using small angle x-ray scattering (SAXS) from a synchrotron radiation source. The technique would be more useful to health services if it could be made to work using a conventional x-ray source. Consistent and reliable differences in x-ray scatter distributions were observed between samples from normal and tumour tissue samples using the laboratory based 'SAXSess' system. Albeit from a small number of samples, a sensitivity of 100% was obtained. This result encourages us to pursue the implementation of SAXS as a laboratory based diagnosis technique.

  6. Analysis of slit-distored small-angle X-ray scattering intensities without desmearing

    Energy Technology Data Exchange (ETDEWEB)

    Goodisman, J.; Delaglio, F.; Brumberger, H.

    1986-08-01

    Experimental small-angle X-ray scattering intensities, generated from a primary beam of known intensity profile, are often ''desmeared'' to obtain point-collimated intensities. A much simpler way is shown of using the known beam intensity profile to derive, from the experimental scattering intensity, the quantities required for calculation of surface areas.

  7. Data Analysis Of Small Angle X-Ray Solution Scattering And Its ...

    African Journals Online (AJOL)

    Small Angle X-ray Scattering analysis was used for the study of the protein, Human Tumour Necrosis Factor (TNF) homogeneously dispersed in solution. The experiment consisted in sending a well collimated beam of synchrotron radiation of wavelength, λ through the sample and measuring the variation of the intensity as a ...

  8. Characterization of nano-structure by small-angle X-ray and neutron scattering

    International Nuclear Information System (INIS)

    Ohnuma, Masato

    2017-01-01

    This paper outlines the cases when small-angle X-ray scattering method and small-angle neutron scattering method in transmission arrangement were applied to heterogeneity with low-volume rate (10% or below), such as nano-sized deposits and trace defects. In particular, it explains not only general analysis, but also the possibility of use of the small angle scattering method as a simple inspection method in nanostructure evaluation, as well as correspondence of small-angle scattering method with powder diffraction method in crystal structure evaluation. From the small-angle scattering profiles of a series of sample groups, we can judge which sample has the smallest nanostructure, by only comparing profiles without analysis. The object to be measured is a heterogeneous structure (void, second phase, crack, etc.) having a diameter of about 1 to several hundred nm present in a material. This paper also outlines the usual small-angle scattering analysis method, as well as further analysis using the difference between X-ray and neutron on scattering length contrast. (A.O.)

  9. Ultra-small-angle x-ray scattering by single-crystal Al deformed in situ

    Science.gov (United States)

    Long, Gabrielle; Levine, Lyle

    1997-03-01

    Among the earliest small-angle x-ray scattering and small-angle neutron scattering experiments were attempts to study dislocation structures. These structures have proven to be very difficult to measure because of the intrinsically low contrast of the microstructure, and the requirement that multiple Bragg diffraction be strictly avoided. Thus, many attempts to measure dislocation structures have been compromised by these difficulties. We present results from ultra-small-angle x-ray scattering measurements on single-crystal Al, deformed in situ on beam line X23A3 at the National Synchrotron Light Source. Radiographic images, which are in the O-beam position for diffraction, were taken of the scattering volume. The Al crystal was also rotated to ensure that the scattering data would be accumulated in a region sufficiently distant from accidental Bragg diffractions. Stress-strain data were obtained simultaneously with the x-ray scattering data. We report on the evolution of dislocation structures from 0% strain to 18% strain.

  10. Construction of a two-dimensional ultra-small-angle X-ray scattering apparatus

    International Nuclear Information System (INIS)

    Konishi, T.; Yamahara, E.; Furuta, T.; Ise, N.

    1997-01-01

    A two-dimensional ultra-small-angle X-ray scattering (USAXS) apparatus was constructed using a rotating-anode X-ray generator and a Bonse-Hart camera. In this camera, two sets of two channel-cut single crystals were used to collimate the X-ray beam in both the horizontal and the vertical planes. The measured intensity profile of the direct beam showed a high small-angle resolution in all directions on the detector plane. The full width at half-maximum was 17 '' , indicating that the apparatus can be applied to structural analysis in the range up to 2 μm, even for directionally oriented samples. One- and two-dimensional USAXS profiles from colloidal silica powder agreed well with each other, showing that the desmearing procedure adopted in the previous one-dimensional USAXS experiments were justified. (orig.)

  11. Intercalibration of small-angle X-ray and neutron scattering data

    International Nuclear Information System (INIS)

    Russell, T.P.; Lin, J.S.; Spooner, S.; Wignall, G.D.

    1988-01-01

    Absolute calibration forms a valuable diagnostic tool in small-angle scattering experiments and allows the parameters of a given model to be restricted to the set which reproduces the observed intensity. General methods which are available for absolute scaling of small-angle X-ray scattering (SAXS) data are reviewed along with estimates of the degree of internal consistency which may be achieved between the various standards. In order to minimize the time devoted to calibration in a given experimental program, emphasis is placed on developing a set of precalibrated strongly scattering standards for the SAXS facilities of the National Center for Small-Angle Scattering Research (Oak Ridge). Similar standards have been developed previously for calibration of small-angle neutron scattering (SANS) data. Particular attention is given to standards which can be used for either SAXS or SANS experiments where each sample has been independently calibrated for both types of radiation. These calibrations have been tested via the theoretical relationships between the two cross sections. It has been found that specimens best suited for such intercalibration purposes are a glassy carbon specimen where the scattering arises from voids in a carbon matrix and a perdeuterated polyethylene where the scattering arises from periodic arrangement of the crystalline lamellae. In only these two cases could the identical specimen be used for both the neutron and X-ray scattering experiments. (orig.)

  12. Small angle x-ray and neutron scattering for materials characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, C.E. [Curtin University of Technology, Perth, WA (Australia). Department of Applied Physics

    1999-12-01

    Full text: Small angle X-ray and neutron scattering (SAXS and SANS) are excellent techniques to characterise inhomogeneities in materials in the size range from 10 Angstroms to several thousand Angstroms. Ultra small angle neutron and X-ray scattering (USANS and USAXS) have extended this size range out to 20 {mu}m. SAXS is due to the electron density difference between the matrix and the inhomogeneity, whereas SANS is due to the scattering length density difference. SANS and SAXS have been used successfully to characterise colloidal particles in solution, colloidal powders, glasses and a wide range of solids such as metals, alloys, and natural and synthetic high polymers. Small angle scattering and complementary techniques, such transmission and scanning electron microscopy (TEM and SEM) are a powerful combination for the investigation of submicron particles. This paper will introduce the reader to the small angle scattering techniques and will use the aluminium hydrogen (Al-H) system as an example to demonstrate the applicability of each method. Aluminium foils (99.99% purity) and single crystals (99.999% purity) were charged with hydrogen using a gas plasma method (voltage range of 1.0 - 1.2 keV). The results from the SANS, USANS, TEM, SEM, X-ray diffraction and inelastic neutron scattering experiments showed a wide range of H{sub 2} bubbles on the surface and in the bulk of the Al-H sample (< 10 Angstroms up to several microns in size). The volume of the H{sub 2} bubbles was formed by the diffusion of H-vacancy complexes into the bulk. The volume concentration of vacant sites determined from precision density measurements was within experimental error to that calculated from the SANS and USANS experiments. Copyright (1999) Australian X-ray Analytical Association Inc. 5 refs.

  13. Small angle x-ray and neutron scattering for materials characterisation

    International Nuclear Information System (INIS)

    Buckley, C.E.

    1999-01-01

    Full text: Small angle X-ray and neutron scattering (SAXS and SANS) are excellent techniques to characterise inhomogeneities in materials in the size range from 10 Angstroms to several thousand Angstroms. Ultra small angle neutron and X-ray scattering (USANS and USAXS) have extended this size range out to 20 μm. SAXS is due to the electron density difference between the matrix and the inhomogeneity, whereas SANS is due to the scattering length density difference. SANS and SAXS have been used successfully to characterise colloidal particles in solution, colloidal powders, glasses and a wide range of solids such as metals, alloys, and natural and synthetic high polymers. Small angle scattering and complementary techniques, such transmission and scanning electron microscopy (TEM and SEM) are a powerful combination for the investigation of submicron particles. This paper will introduce the reader to the small angle scattering techniques and will use the aluminium hydrogen (Al-H) system as an example to demonstrate the applicability of each method. Aluminium foils (99.99% purity) and single crystals (99.999% purity) were charged with hydrogen using a gas plasma method (voltage range of 1.0 - 1.2 keV). The results from the SANS, USANS, TEM, SEM, X-ray diffraction and inelastic neutron scattering experiments showed a wide range of H 2 bubbles on the surface and in the bulk of the Al-H sample ( 2 bubbles was formed by the diffusion of H-vacancy complexes into the bulk. The volume concentration of vacant sites determined from precision density measurements was within experimental error to that calculated from the SANS and USANS experiments. Copyright (1999) Australian X-ray Analytical Association Inc

  14. Low-angle polarized neutron and X-ray scattering from magnetic nanolayers and nanostructures

    CERN Document Server

    Paul, Amitesh

    2017-01-01

    This research monograph presents the latest results related to the characterization of low dimensional systems. Low-angle polarized neutron scattering and X-ray scattering at grazing incidence are used as the two main techniques to explore various physical phenomena of these systems. Special focus is put on systems like thin film transition metal and rare-earth layers, oxide heterostructures, hybrid systems, self-assembled nanostructures and self-diffusion.  Readers will gain in-depth knowledge about the usage of specular scattering and off-specular scattering techniques. Investigation of in-plane and out-of-plane structures and magnetism with vector magnetometric information is illustrated comprehensively. The book caters to a wide audience working in the field of nano-dimensional magnetic systems and the neutron and X-ray reflectometry community in particular.

  15. X-ray spectral determination by detection of radiation scattered at different angles

    International Nuclear Information System (INIS)

    Barrea, Raul; Mainardi, R.T.

    1987-01-01

    A precise knowledge of the spectral content of an X-ray beam is of fundamental importance in areas such as X-ray fluorescence analysis by absolute methods, radiodiagnosis, radiotherapy, computed tomography, etc. A simple practical method was developed to determine X-ray spectra emitted by X-ray tubes. It is based on the scattering of the beam on a solid target and detection of this radiation at different angles. This methodology can easily be adapted to the successive attenuation of the beam procedure. Numerical parameter values of a proposed analytical function for the energy spectrum are found measuring the radiation intensity with a suitable detector (ionization chamber or plastic scintillation detector) and equating it with the convolution integral of the proposed spectrum with the incoherent scattering function. This procedure of spectra determination is enclosed in the same group of those generically referred as successive modifications of the irradiation set up used in absolute methods of X-ray fluorescence analysis. (Author) [es

  16. Collimation effects in small-angle X-ray and neutron scattering

    International Nuclear Information System (INIS)

    Schmidt, P.W.

    1988-01-01

    To obtain adequate intensity in small-angle X-ray and neutron scattering measurements, the apertures that define the incident and scattered beams often must be made so large that the measured intensity is an average over an appreciable interval of scattering angles. Allowance must frequently be made for the resulting distortion of the measured scattering curve. A technique previously developed by Hendricks and Schmidt for describing collimation effects is outlined. This method makes use of a function called the ''weighting function'', which specifies the width of the interval over which the intensity is averaged and indicates the emphasis given to scattering angles within this interval. A new calculation of the weighting function for pinhole collimating systems, which employ circularly symmetric apertures instead of long narrow slits, is presented. Several techniques for performing collimation corrections are described, and a review is given of results that several workers have recently obtained in studies of collimation effects in pinhole systems. (orig.)

  17. In situ microfluidic dialysis for biological small-angle X-ray scattering

    DEFF Research Database (Denmark)

    Skou, Magda; Skou, Soren; Jensen, Thomas Glasdam

    2014-01-01

    Owing to the demand for low sample consumption and automated sample changing capabilities at synchrotron small-angle X-ray (solution) scattering (SAXS) beamlines, X-ray microfluidics is receiving continuously increasing attention. Here, a remote-controlled microfluidic device is presented...... for simultaneous SAXS and ultraviolet absorption measurements during protein dialysis, integrated directly on a SAXS beamline. Microfluidic dialysis can be used for monitoring structural changes in response to buffer exchange or, as demonstrated, protein concentration. By collecting X-ray data during...... the concentration procedure, the risk of inducing protein aggregation due to excessive concentration and storage is eliminated, resulting in reduced sample consumption and improved data quality. The proof of concept demonstrates the effect of halted or continuous flow in the microfluidic device. No sample...

  18. Note: Grazing incidence small and wide angle x-ray scattering combined with imaging ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Koerstgens, V.; Meier, R.; Ruderer, M. A.; Guo, S.; Chiang, H.-Y.; Mueller-Buschbaum, P. [Technische Universitaet Muenchen, Physik-Department, Lehrstuhl fuer Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching (Germany); Perlich, J.; Roth, S. V.; Gehrke, R. [HASYLAB, DESY, Notkestr. 85, 22607, Hamburg (Germany)

    2012-07-15

    The combination of grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence wide angle x-ray scattering (GIWAXS) with optical imaging ellipsometry is presented as an upgrade of the available measurement techniques at the wiggler beamline BW4 of the Hamburger Synchrotronstrahlungslabor. The instrument is introduced with the description of the alignment procedure to assure the measurement of imaging ellipsometry and GISAXS/GIWAXS on the same sample spot. To demonstrate the possibilities of the new instrument examples of morphological investigation on films made of poly(3-hexylthiophene) and [6,6]-phenyl-C{sub 61} butyric acid methyl ester as well as textured poly(9,9-dioctylfluorene-alt-benzo-thia-diazole) are shown.

  19. Study of humic acids by small-angle X-ray and neutron scattering

    International Nuclear Information System (INIS)

    Timchenko, A.; Trubetskaya, O.; Kihara, H.

    1999-01-01

    Humic acids are an important component of natural ecological system and represent a polydisperse complex of natural biopolymers with molecular masses from several to hundreds kilodaltons. They are both a source of organic compounds and a protector against anthropogenic pollutions of biosphere. The aim of the report is to underline some possibilities of small-angle X-ray and neutron scattering to study HA and their fractions. (author)

  20. Interpretation and Utility of the Moments of Small-Angle X-Ray Scattering Distributions.

    Science.gov (United States)

    Modregger, Peter; Kagias, Matias; Irvine, Sarah C; Brönnimann, Rolf; Jefimovs, Konstantins; Endrizzi, Marco; Olivo, Alessandro

    2017-06-30

    Small angle x-ray scattering has been proven to be a valuable method for accessing structural information below the spatial resolution limit implied by direct imaging. Here, we theoretically derive the relation that links the subpixel differential phase signal provided by the sample to the moments of scattering distributions accessible by refraction sensitive x-ray imaging techniques. As an important special case we explain the scatter or dark-field contrast in terms of the sample's phase signal. Further, we establish that, for binary phase objects, the nth moment scales with the difference of the refractive index decrement to the power of n. Finally, we experimentally demonstrate the utility of the moments by quantitatively determining the particle sizes of a range of powders with a laboratory-based setup.

  1. A gradient method for anomalous small-angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jemian, P.R. [Argonne National Lab., IL (United States); Weertman, J.R. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Long, G.G. [National Institute of Standards and Technology, Gaithersburg, MD (United States). Ceramics Div.

    1992-09-15

    A new method of general applicability for analyzing data from anomalous dispersion small-angle X-ray scattering (ASAXS) measurements is described. ASAXS is used as a contrast variation method to label the scattering from a single element in a complex material containing several types of scatterers. The contrast variation is achieved through the anomalous dispersion of X-rays. Thus only one sample is required for a complete analysis. To label a scatterer by ASAXS, the atomic scattering factor of an element in the sample is varied by the selection of photon energies near the absorption edge of the element. Careful selection of the photon energies allows the contrast of only the labeled scatterer to change. Data from several small-angle scattering measurements, each conducted at a fixed energy, are combined in a single analysis. The gradient method, used as an extension to a standard SAXS data analysis method, is demonstrated by isolating the volume fraction size distribution of Cr{sub 23}C{sub 6} in 9Cr-1 MoVNb steel.

  2. X-ray crystal structure and small-angle X-ray scattering of sheep liver sorbitol dehydrogenase

    DEFF Research Database (Denmark)

    Yennawar, Hemant; Møller, Magda; Gillilan, Richard

    2011-01-01

    The X-ray crystal structure of sheep liver sorbitol dehydrogenase (slSDH) has been determined using the crystal structure of human sorbitol dehydrogenase (hSDH) as a molecular-replacement model. slSDH crystallized in space group I222 with one monomer in the asymmetric unit. A conserved tetramer...... the substrate-binding pocket together with the acetate designed by nature to fit large polyol substrates. The substrate-binding pocket is seen to be in close proximity to the tetramer interface, which explains the need for the structural integrity of the tetramer for enzyme activity. Small-angle X-ray...

  3. Neutron and x-ray small angle scattering of biological molecules

    International Nuclear Information System (INIS)

    Borso, C.S.; Danyluk, S.S.; Williamson, F.S.; Holmblad, G.L.; DeJong, S.; Pohl, J.

    1981-01-01

    The objectives of this project are to develop instrumentation for small angle x-ray and neutron scattering, and to utilize small angle techniques for study of the structures of the intracellular molecules interacting with the secondary messengers involved in cellular regulation. A unique self-scanning photodiode array has been developed as a linear position sensitive detector for studies of biological structures. A time-of-flight (TOF) small angle neutron instrument was developed and successfully tested at the prototype pulsed neutron facility, ZING-P'. Considerable hardware and software developments were necessary to successfully demonstrate the prototype small angle neutron scattering instrument. A dedicated data acquisition system based on a microprocessor was developed and tested within the short period of approximately 6 months and was interfaced to a biological sample changer and environmental controller. The resolution of the tapered collimation system proved to be adequate

  4. Progresses in the measurement and evaluation of small-angle x-ray scattering data

    International Nuclear Information System (INIS)

    Bergmann, A.

    2000-08-01

    Scattering methods are a widely used technique for determining size and shape of particles in the mesoscopic size range. This work deals on the one hand with the development of instruments in the field of Small Angle x-ray Scattering (SAXS) and on the other hand with methodical contributions concerning the interpretation of small angle scattering data. After a short introduction about Small Angle Scattering (SAS) and its application in chapter one, follows in chapter two a derivation of the theory of Small Angle x-ray scattering. Thereafter indirect transformations (Generalized Indirect Fourier Transformation [GIFT], Indirect Fourier Transformation [IFT]) are discussed and in this connection the optimization of multidimensional hyper surfaces is described. There are different possibilities for optimizing such multidimensional surfaces. The pros and contras of the different optimization methods with respect to the evaluation of small angle scattering data from interacting systems are discussed in detail. Global optimization methods are mainly used, if the hypersurface, which has to be optimized, shows many local minima. The goal of the optimization is it to find the global minimum. It is essential, that the parameters of the hyper surface are independent of each other, as it is the case in the GIFT. If someone deals with problems in only few dimensions or with many boundary conditions, mostly local optimization routines are sufficient. Therefore a number of starting parameters for the optimization is chosen, which can be obtained systematically or randomly. The best solution obtained represents the result of the optimization procedure. Chapter 3 deals with the description of instruments used in the field of Small Angle x-ray Scattering. After a description of the components (x-ray sources, monochromators, detectors) of these instruments, the different beam geometries are discussed. In chapter 4 improvements of SAXS measurements on Kratky slit systems by Goebel

  5. Characterization of porous materials using combined small-angle X-ray and neutron scattering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Naiping; Borkar, Neha; Kohls, Doug; Schaefer, Dale W. (UCIN)

    2014-09-24

    A combination of ultra small angle X-ray scattering (USAXS) and ultra small angle neutron scattering (USANS) is used to characterize porous materials. The analysis methods yield quantitative information, including the mean skeletal chord length, mean pore chord length, skeletal density, and composition. A mixed cellulose ester (MCE) membrane with a manufacturer-labeled pore size of 0.1 {mu}m was used as a model to elucidate the specifics of the method. Four approaches describing four specific scenarios (different known parameters and form of the scattering data) are compared. Pore chords determined using all four approaches are in good agreement with the scanning electron microscopy estimates but are larger than the manufacturer's nominal pore size. Our approach also gives the average chord of the skeletal solid (struts) of the membrane, which is also consistent for all four approaches. Combined data from USAXS and USANS gives the skeletal density and the strut composition.

  6. Characterization of porous materials using combined small-angle X-ray and neutron scattering techniques

    International Nuclear Information System (INIS)

    Hu, Naiping; Borkar, Neha; Kohls, Doug; Schaefer, Dale W.

    2012-01-01

    A combination of ultra small angle X-ray scattering (USAXS) and ultra small angle neutron scattering (USANS) is used to characterize porous materials. The analysis methods yield quantitative information, including the mean skeletal chord length, mean pore chord length, skeletal density, and composition. A mixed cellulose ester (MCE) membrane with a manufacturer-labeled pore size of 0.1 μm was used as a model to elucidate the specifics of the method. Four approaches describing four specific scenarios (different known parameters and form of the scattering data) are compared. Pore chords determined using all four approaches are in good agreement with the scanning electron microscopy estimates but are larger than the manufacturer's nominal pore size. Our approach also gives the average chord of the skeletal solid (struts) of the membrane, which is also consistent for all four approaches. Combined data from USAXS and USANS gives the skeletal density and the strut composition.

  7. Carbon Condensation during High Explosive Detonation with Time Resolved Small Angle X-ray Scattering

    Science.gov (United States)

    Hammons, Joshua; Bagge-Hansen, Michael; Nielsen, Michael; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; Fried, Larry; May, Chadd; Sinclair, Nicholas; Jensen, Brian; Gustavsen, Rick; Dattelbaum, Dana; Watkins, Erik; Firestone, Millicent; Ilavsky, Jan; van Buuren, Tony; Willey, Trevor; Lawrence Livermore National Lab Collaboration; Los Alamos National Laboratory Collaboration; Washington State University/Advanced Photon Source Team

    Carbon condensation during high-energy detonations occurs under extreme conditions and on very short time scales. Understanding and manipulating soot formation, particularly detonation nanodiamond, has attracted the attention of military, academic and industrial research. An in-situ characterization of these nanoscale phases, during detonation, is highly sought after and presents a formidable challenge even with today's instruments. Using the high flux available with synchrotron X-rays, pink beam small angle X-ray scattering is able to observe the carbon phases during detonation. This experimental approach, though powerful, requires careful consideration and support from other techniques, such as post-mortem TEM, EELS and USAXS. We present a comparative survey of carbon condensation from different CHNO high explosives. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.

  8. Studies on polymer thin film structure by X-ray and neutron reflectivity and grazing incidence small angle scattering

    International Nuclear Information System (INIS)

    Ogawa, Hiroki; Kanaya, Toshiji

    2011-01-01

    We have reviewed structure studies of polymer thin films using synchrotron radiation X-ray and neutron reflectivity as well as recently developed grazing incidence small-angle X-ray and neutron scattering, including studies on polymer thin films with embedded ordered nanometer cells, distribution of glass transition temperature Tg in thin polystyrene films, and dewetting process of polymer blend thin films. (author)

  9. Light-Induced Structural Flexibility of Thylakoid Membranes - Investigated using Small-Angle X-ray and Neutron Scattering

    OpenAIRE

    Aagaard, Thomas Helverskov

    2005-01-01

    Using small-angle x-ray and neutron scattering the light-induced structural changes in pea thylakoids have been investigated. It is shown that light-induced shinkage in the thylakoids is connected to photosynthetic electron transduction. Using small-angle x-ray and neutron scattering the light-induced structural changes in pea thylakoids have been investigated. It is shown that light-induced shinkage in the thylakoids is connected to photosynthetic electron transduction.

  10. A Microbeam Small-Angle X-ray Scattering Study on Enamel Crystallites in Subsurface Lesion

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, N; Ohta, N; Matsuo, T [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Tanaka, T; Terada, Y; Kamasaka, H; Kometani, T, E-mail: yagi@spring8.or.j [Ezaki Glico Co. Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502 (Japan)

    2010-10-01

    The early caries lesion in bovine tooth enamel was studied by two different X-ray diffraction systems at the SPring-8 third generation synchrotron radiation facility. Both allowed us simultaneous measurement of the small and large angle regions. The beam size was 6{mu}m at BL40XU and 50{mu}m at BL45XU. The small-angle scattering from voids in the hydroxyapatite crystallites and the wide-angle diffraction from the hydroxyapatite crystals were observed simultaneously. At BL40XU an X-ray image intensifier was used for the small-angle and a CMOS flatpanel detector for the large-angle region. At BL45XU, a large-area CCD detector was used to cover both regions. A linear microbeam scan at BL40XU showed a detailed distribution of voids and crystals and made it possible to examine the structural details in the lesion. The two-dimensional scan at BL45XU showed distribution of voids and crystals in a wider region in the enamel. The simultaneous small- and wide-angle measurement with a microbeam is a powerful tool to elucidate the mechanisms of demineralization and remineralization in the early caries lesion.

  11. ORNL 10-m small-angle X-ray scattering camera

    International Nuclear Information System (INIS)

    Hendricks, R.W.

    1979-12-01

    A new small-angle x-ray scattering camera utilizing a rotating anode x-ray source, crystal monochromatization of the incident beam, pinhole collimation, and a two-dimensional position-sensitive proportional counter was developed. The sample, and the resolution element of the detector are each approximately 1 x 1 mm 2 , the camera was designed so that the focal spot-to-sample and sample-to-detector distances may each be varied in 0.5-m increments up to 5 m to provide a system resolution in the range 0.5 to 4.0 mrad. A large, general-purpose specimen chamber has been provided into which a wide variety of special-purpose specimen holders can be mounted. The detector has an active area of 200 x 200 mm and has up to 200 x 200 resolution elements. The data are recorded in the memory of a minicomputer by a high-speed interface which uses a microprocessor to map the position of an incident photon into an absolute minicomputer memory address. The data recorded in the computer memory can be processed on-line by a variety of programs designed to enhance the user's interaction with the experiment. At the highest angular resolution (0.4 mrad), the flux incident on the specimen is 1.0 x 10 6 photons/s with the x-ray source operating at 45 kV and 100 mA. SAX and its associated programs OVF and MOT are high-priority, pre-queued, nonresident foreground tasks which run under the ModComp II MAX III operating system to provide complete user control of the ORNL 10-m small-angle x-ray scattering camera

  12. ORNL 10-m small-angle X-ray scattering camera

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, R.W.

    1979-12-01

    A new small-angle x-ray scattering camera utilizing a rotating anode x-ray source, crystal monochromatization of the incident beam, pinhole collimation, and a two-dimensional position-sensitive proportional counter was developed. The sample, and the resolution element of the detector are each approximately 1 x 1 mm/sup 2/, the camera was designed so that the focal spot-to-sample and sample-to-detector distances may each be varied in 0.5-m increments up to 5 m to provide a system resolution in the range 0.5 to 4.0 mrad. A large, general-purpose specimen chamber has been provided into which a wide variety of special-purpose specimen holders can be mounted. The detector has an active area of 200 x 200 mm and has up to 200 x 200 resolution elements. The data are recorded in the memory of a minicomputer by a high-speed interface which uses a microprocessor to map the position of an incident photon into an absolute minicomputer memory address. The data recorded in the computer memory can be processed on-line by a variety of programs designed to enhance the user's interaction with the experiment. At the highest angular resolution (0.4 mrad), the flux incident on the specimen is 1.0 x 10/sup 6/ photons/s with the x-ray source operating at 45 kV and 100 mA. SAX and its associated programs OVF and MOT are high-priority, pre-queued, nonresident foreground tasks which run under the ModComp II MAX III operating system to provide complete user control of the ORNL 10-m small-angle x-ray scattering camera.

  13. Characterization of Pt/C catalyst by small angle X-ray scattering

    International Nuclear Information System (INIS)

    Xia Qingzhong; Fan Zhijian; Chen Bo

    2007-12-01

    Pt/C catalyst plays an important role in hydrogen-water isotopic exchange reaction. Small Angle X-ray scattering (SAXS) is applied to investigate the structure of three kinds of Pt nanoparticles which were produced by three processes, Glycol synthesis, Soakage-reducing and Microwave heating. The SAXS analysis of size, shape, surface and the aggregates of primary Pt particles is reported here. Additionally, Transmission Electron Microscope (TEM) measurements also carried out, the results of TEM are in agreement with SAXS conclusions. It is shown that three processes produced different sizes and surface area of Pt aggregations. (authors)

  14. Small angle X-ray and neutron scattering on cadmium sulfide nanoparticles in silicate glass

    Science.gov (United States)

    Kuznetsova, Yu. V.; Rempel, A. A.; Meyer, M.; Pipich, V.; Gerth, S.; Magerl, A.

    2016-08-01

    Small angle X-ray and neutron scattering on Cd and S doped glass annealed at 600 °C shows after the first 12 h nucleation and growth of spherical CdS nanoparticles with a radius of up to 34±4 Å. After the nucleation is completed after 24 h, further growth in this amorphous environment is governed by oriented particle attachment mechanism as found for a liquid medium. Towards 48 h the particle shape has changed into spheroidal with short and long axis of 40±2 Å and 120±2 Å, respectively.

  15. Microstructural Investigations by Small Angle Scattering of Neutrons and X-rays

    Science.gov (United States)

    Fiori, F.; Spinozzi, F.

    Small angle scattering techniques [77, 103, 106, 156, 242, 254] (SANS when using neutron beams or SAXS when using conventional X-ray radiation sources or synchrotron radiation) are experimental methods allowing the determination of structural features, such as size and volume fraction, of matrix inhomogeneities in a huge variety of materials, covering studies from biochemistry and biophysics to applied and industrial research. The order of magnitude of the size of objects that can be detected is in the approximate range 1-103 nm, but with special methods (Ultra-SANS) also objects up to tens of micrometerscan be investigated.

  16. Wide-angle X-ray scattering study of heat-treated PEEK and PEEK composite

    Science.gov (United States)

    Cebe, Peggy; Lowry, Lynn; Chung, Shirley Y.; Yavrouian, Andre; Gupta, Amitava

    1987-01-01

    Samples of poly(etheretherketone) (PEEK) neat resin and APC-2 carbon fiber composite were subjected to various heat treatments, and the effect of quenching and annealing treatments was studied by wide-angle X-ray scattering. It is found that high-temperature treatments may introduce disorder into neat resin and composite PEEK when followed by rapid cooling. The disorder is metastable and can revert to ordered state when the material is heated above its glass transition temperature and then cooled slowly. The disorder may result from residual thermal stresses.

  17. Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models

    DEFF Research Database (Denmark)

    Stovgaard, Kasper; Andreetta, Christian; Ferkinghoff-Borg, Jesper

    2010-01-01

    Background: Genome sequencing projects have expanded the gap between the amount of known protein sequences and structures. The limitations of current high resolution structure determination methods make it unlikely that this gap will disappear in the near future. Small angle X-ray scattering (SAXS......) is an established low resolution method for routinely determining the structure of proteins in solution. The purpose of this study is to develop a method for the efficient calculation of accurate SAXS curves from coarse-grained protein models. Such a method can for example be used to construct a likelihood function...

  18. A double area detector system for simultaneous small and wide-angle X-ray scattering

    CERN Document Server

    Pokric, B; Ryan, A J; Fairclough, P; Dobson, B R; Derbyshire, G E; Helsby, W; Long, G; Moon, K

    2002-01-01

    A novel area detector has been designed for material science SR studies, capable of simultaneously collecting the diffraction data in two angular regimes. The detector for collecting wide-angle X-ray scattering (WAXS) data consists of four taper-coupled CCDs arranged as a 2x2 mosaic with a central aperture about 40 mm in diameter, so permitting the inclusion of a distant on-axis CCD detector for small-angle X-ray scattering (SAXS). The distance of the SAXS detector from the sample can be varied over the range 0.27 m to about 2 m. The overall aperture of WAXS detector is approximately 200x200 mm sup 2 allowing the measurement of the diffraction patterns from 5 deg. to 45 deg. with an average angular resolution of 0.05 deg. The parallax error for large angles is substantially reduced as the individual WAXS CCDs are tilted towards the specimen location. Both WAXS and SAXS diffraction data are simultaneously collected at 30 MB/s data rate, which is equivalent to 6 complete frames per second. Each pixel value is d...

  19. Effect of Cobalt Fillers on Polyurethane Segmentations Investigated by Synchrotron Small Angle X-Ray Scattering

    Directory of Open Access Journals (Sweden)

    Krit Koyvanich

    2013-01-01

    Full Text Available The segmentation between rigid and rubbery chains in polyurethanes (PUs influences polymeric properties and implementations. Several models have successfully been proposed to visualize the configuration between the hard segment (HS and soft segment (SS. For particulate PU composites, the arrangement of HS and SS is more complicated because the fillers tend to disrupt the chain formation and segmentation. In this work, the effect of ferromagnetic cobalt (Co powders (average diameter 2 μm on PU synthesized from a reaction between polyether polyol (soft segment and diphenylmethane-4,4′-diisocyanate (hard segment was studied with varying loadings (0, 20, 40, and 60 wt.%. The 300 μm thick PU/Co samples were tape-casted and then received heat treatment at 80°C for 180 min. From synchrotron small angle X-ray scattering (SAXS, the plot of the X-ray scattering intensity (I against the scattering vector (q exhibited a typical single peak of PU whose intensity was reduced by the increase in the Co loading. Characteristic SAXS peaks in the case of 0-20 wt.% Co agreed well with the scattering by globular hard segment domains according to Zernike-Prins and Percus-Yevick models. The higher Co loadings led to larger deviations from all theoretical models.

  20. Anomalous small-angle x-ray scattering of a femtosecond irradiated germano silicate fibre preform.

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, F.; Fertein, E.; Seifert, S.; Przygodski, C.S.; Bocquet, R.; Douay, M.; Bychkov, E.; Experimental Facilities Division (APS); LPCA, CNRS; PhLAM; Univ. des Sciences et Tech. de Lille

    2005-01-01

    RADIATION is shown to induce significant mesoscopic structure. The scattering intensity for irradiated glasses is close to two orders of magnitude greater than that of unexposed material. Anomalous small-angle X-ray scattering (ASAXS) around the germanium K-edge for the silica and germanium doped silica regions of a fiber preform is used to demonstrate that identical structures are induced in both glass materials, with germanium displaying a capacity to isomorphically replace silicon in the case of the germanium doped silica. Analysis of measured scattering indicates that photo-inscribed features are produced at two distinct scales with typical radii of R {approx} 20 Angstroms and R{sub min} {approx} 200 Angstroms.

  1. The accurate assessment of small-angle X-ray scattering data.

    Science.gov (United States)

    Grant, Thomas D; Luft, Joseph R; Carter, Lester G; Matsui, Tsutomu; Weiss, Thomas M; Martel, Anne; Snell, Edward H

    2015-01-01

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targets for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.

  2. Small-angle X-ray scattering on extracellular oxygen binding proteins and on one phosphorylase

    International Nuclear Information System (INIS)

    Krebs, A.

    1996-02-01

    The extracellular hemoglobins (Hbs) and Chlorocruorins (Chls) of annelids are giant multisubunit proteins of up to ∼ 200 polypeptide chains with molecular masses of about 3.500 kDa. They differ from all other Hbs in having both O 2 -binding chains and 'linker' chains. The latter are required for assembly and structural integrity of the proteins and are deficient in or lack heme. In this work the influence of O 2 binding on the overall structure of Lumbricus terrestris hemoglobin, Eudistylia vancouverii Chlorocruorin and Lumbricus terrestris hemoglobin dodecamer (assembly of 12 polypeptide chains) was investigated using the method of small-angle X-ray scattering. No dramatic effects were observed, although a tendency to smaller values of the radius of gyration, maximal intraparticle distance and volume upon deoxygenation of the samples was observed. Models of the three dimensional structures of the above mentioned proteins and of Macrobdella decora hemoglobin are proposed. Furthermore a detailed model of Lumbricus terrestris hemoglobin is proposed, wherein 12 models of the dodecamer subunit and additional linker chains build up the whole model, thus supporting the 'bracelet-model'. Small-angle X-ray scattering experiments of the α-glucan phosphorylase of Corynebacterium callunae led to a model of its quartenary structure with an axial ratio of about 1:0.95:0.41. (author)

  3. The current status of small-angle x-ray scattering beamline at Diamond Light Source

    International Nuclear Information System (INIS)

    Inoue, Katsuaki; Doutch, James; Terrill, Nick

    2013-01-01

    The small-angle X-ray scattering (SAXS) covers the major disciplines of biology, chemistry and physics delivering structural and dynamic information in nanoscience, mesoscopic architectures, supramolecular structures, and nucleation/growth of crystals. SAXS is also proving to be important in archaeological, environmental, and conservation sciences, and has further indicated its ability to span wide-ranging scientific disciplines. Thus, strong needs for SAXS studies are increasing significantly in a broad range of scientific fields year by year. Based on such a background, the demand for high throughput SAXS experiments is increasing. At the synchrotron facility, Diamond Light Source, one SAXS beamline, Non-crystalline diffraction I22 is now operational and highly automated throughput small-angle X-ray scattering (HATSAXS) beamline B21 is now under construction. I22 is the Undulator beamline and wide varieties of experiments, including time-resolved experiments are attempted. Based on the concept of HATSAXS, the key feature of B21 will focuses on the automation of end-station equipment. A automated sample changer has been purchased for solution SAXS measurements on biomolecules. A robotic-arm-type automated sample changer that is capable of handling several kinds of samples in material science is also being constructed. B21 is expected to successfully provide all users highly automated throughput measurements with the highest possible reliability and accuracy. Construction of this beamline will end in the second half of 2012, and will be open for users in the early summer of 2013 after commissioning. (author)

  4. Study of human blood and hemocomponents irradiated by low angle x ray scattering (LAXS)

    International Nuclear Information System (INIS)

    Pinto, Nivia G. Villela; Barroso, Regina C.; Mota, Carla L.S.; Almeida, Andre P.; Azeredo, Soraia R.; Braz, Delson

    2009-01-01

    Irradiation of blood and blood components is currently practiced in developed and in a few developing countries. The main purpose of this process is the prevention of graft versus host disease in immunodeficient patients. The Food and Drug Administration recommends a dose range of 15 Gy to 25 Gy for these blood components. When x-ray photons are scattered from biological samples, their angular distribution shows one or more peaks in the forward direction of scattering. These peaks are characteristic for the investigated samples. Due to its wide range of biological and medical applications, low-angle x-ray scattering has attracted the attention of many authors. Thus in this present work was studied the possible variations in scattering profiles due to the irradiation when the gender of patients was considered. Fresh blood specimens were obtained from volunteers using vacutainer tubes containing EDTA, at the Dr. Eliel Figueiredo Laboratory, Rio de Janeiro. All the samples were lyophilized for 48 hours in a freeze drier in order to remove the water. The scattering measurements were carried out in e-2e reflection geometry using a powder diffractometer Shimadzu XRD- 6000. The measured characterization parameters for LAXS were associated with epidemiological data (gender). The mean values of the different parameters were compared using the Students's t-test for each characterization parameters. The scattering profiles from plasma and formed elements are characterized by the presence of two peaks in the forward direction of scattering. For epidemiological data (gender) analyzed was not found significant changes in the mostly of characterization parameters (p>0.05). (author)

  5. Study of human blood and hemocomponents irradiated by low angle x ray scattering (LAXS)

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Nivia G. Villela; Barroso, Regina C. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Fisica. Dept. de Fisica Aplicada e Termodinamica], e-mail: nitatag@gmail.com; Mota, Carla L.S.; Almeida, Andre P.; Azeredo, Soraia R.; Braz, Delson [Coordenacao dos Programas de Pos-graduacao em Engenharia (COPPE/UFRJ), RJ (Brazil). Lab. de Instrumentacao Nuclear], e-mail: delson@lin.ufrj.br

    2009-07-01

    Irradiation of blood and blood components is currently practiced in developed and in a few developing countries. The main purpose of this process is the prevention of graft versus host disease in immunodeficient patients. The Food and Drug Administration recommends a dose range of 15 Gy to 25 Gy for these blood components. When x-ray photons are scattered from biological samples, their angular distribution shows one or more peaks in the forward direction of scattering. These peaks are characteristic for the investigated samples. Due to its wide range of biological and medical applications, low-angle x-ray scattering has attracted the attention of many authors. Thus in this present work was studied the possible variations in scattering profiles due to the irradiation when the gender of patients was considered. Fresh blood specimens were obtained from volunteers using vacutainer tubes containing EDTA, at the Dr. Eliel Figueiredo Laboratory, Rio de Janeiro. All the samples were lyophilized for 48 hours in a freeze drier in order to remove the water. The scattering measurements were carried out in e-2e reflection geometry using a powder diffractometer Shimadzu XRD- 6000. The measured characterization parameters for LAXS were associated with epidemiological data (gender). The mean values of the different parameters were compared using the Students's t-test for each characterization parameters. The scattering profiles from plasma and formed elements are characterized by the presence of two peaks in the forward direction of scattering. For epidemiological data (gender) analyzed was not found significant changes in the mostly of characterization parameters (p>0.05). (author)

  6. Recent developments in X-ray and neutron small-angle scattering instrumentation and data analysis

    International Nuclear Information System (INIS)

    Schelten, J.

    1978-01-01

    The developments in instrumentation and data analysis that have occurred in the field of small-angle X-ray and neutron scattering since 1973 are reviewed. For X-rays, the cone camera collimation was invented, synchrotrons and storage rings were demonstrated to be intense sources of X-radiation, and one- and two-dimensional position-sensitive detectors were interfaced to cameras with both point and line collimation. For neutrons, the collimators and detectors on the Juelich and Grenoble machines were improved, new D11-type instruments were built or are under construction at several sites, double-crystal instruments were set up, and various new machines have been proposed. Significant progress in data analysis and evaluation has been made through application of mathematical techniques such as the use of spline functions, error minimization with constraints, and linear programming. Several special experiments, unusual in respect to the anisotropy of the scattering pattern, gravitational effects, moving scatterers, and dynamic fast time slicing, are discussed. (Auth.)

  7. Analysis of heterogeneity of polymer systems from the data of small angle X-ray and neutron scattering

    International Nuclear Information System (INIS)

    Agamalyan, M.M.

    1989-01-01

    The possibility of determination of the chemical composition of supermolecular formations in blocks of polymer systems by comparison of squares of relative contrasts measured experimentally using small-angle X-ray and neutron scattering with theoretically calculated ones is discussed. The efficiency of this technique is related with large difference in the scattering capacity of density heterogeneities of hydrogen-containing media towards X-ray and neutrons. The technique is illustrated with some examples

  8. Traceable size determination of PMMA nanoparticles based on Small Angle X-ray Scattering (SAXS)

    Energy Technology Data Exchange (ETDEWEB)

    Gleber, G; Cibik, L; Mueller, P; Krumrey, M [Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin (Germany); Haas, S; Hoell, A, E-mail: gudrun.gleber@ptb.d [Helmholtz-Zentrum-Berlin fuer Materialien und Energie (HZB), Albert-Einstein-Strasse 15, 12489 Berlin (Germany)

    2010-10-01

    The size and size distribution of PMMA nanoparticles has been investigated with SAXS (small angle X-ray scattering) using monochromatized synchrotron radiation. The uncertainty has contributions from the wavelength or photon energy of the radiation, the scattering angle and the fit procedure for the obtained scattering curves. The wavelength can be traced back to the lattice constant of silicon, and the scattering angle is traceable via geometric measurements of the detector pixel size and the distance between the sample and the detector. SAXS measurements and data evaluations have been performed at different distances and photon energies for two PMMA nanoparticle suspensions with low polydispersity and nominal diameters of 108 nm and 192 nm, respectively, as well as for a mixture of both. The relative variation of the diameters obtained for different experimental conditions was below {+-} 0.3 %. The determined number-weighted mean diameters of (109.0 {+-} 0.7) nm and (188.0 {+-} 1.3) nm, respectively, are close to the nominal values.

  9. Traceable size determination of PMMA nanoparticles based on Small Angle X-ray Scattering (SAXS)

    Science.gov (United States)

    Gleber, G.; Cibik, L.; Haas, S.; Hoell, A.; Müller, P.; Krumrey, M.

    2010-10-01

    The size and size distribution of PMMA nanoparticles has been investigated with SAXS (small angle X-ray scattering) using monochromatized synchrotron radiation. The uncertainty has contributions from the wavelength or photon energy of the radiation, the scattering angle and the fit procedure for the obtained scattering curves. The wavelength can be traced back to the lattice constant of silicon, and the scattering angle is traceable via geometric measurements of the detector pixel size and the distance between the sample and the detector. SAXS measurements and data evaluations have been performed at different distances and photon energies for two PMMA nanoparticle suspensions with low polydispersity and nominal diameters of 108 nm and 192 nm, respectively, as well as for a mixture of both. The relative variation of the diameters obtained for different experimental conditions was below ± 0.3 %. The determined number-weighted mean diameters of (109.0 ± 0.7) nm and (188.0 ± 1.3) nm, respectively, are close to the nominal values.

  10. Traceable size determination of PMMA nanoparticles based on Small Angle X-ray Scattering (SAXS)

    International Nuclear Information System (INIS)

    Gleber, G; Cibik, L; Mueller, P; Krumrey, M; Haas, S; Hoell, A

    2010-01-01

    The size and size distribution of PMMA nanoparticles has been investigated with SAXS (small angle X-ray scattering) using monochromatized synchrotron radiation. The uncertainty has contributions from the wavelength or photon energy of the radiation, the scattering angle and the fit procedure for the obtained scattering curves. The wavelength can be traced back to the lattice constant of silicon, and the scattering angle is traceable via geometric measurements of the detector pixel size and the distance between the sample and the detector. SAXS measurements and data evaluations have been performed at different distances and photon energies for two PMMA nanoparticle suspensions with low polydispersity and nominal diameters of 108 nm and 192 nm, respectively, as well as for a mixture of both. The relative variation of the diameters obtained for different experimental conditions was below ± 0.3 %. The determined number-weighted mean diameters of (109.0 ± 0.7) nm and (188.0 ± 1.3) nm, respectively, are close to the nominal values.

  11. Analysis of low-angle x-ray scattering peaks from lyophilized biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Desouky, Omar S. [Radiation Physics Department, National Center for Radiation Research and Technology, A.E.A., Cairo (Egypt)]. E-mail: omardesouky@yahoo.com; Elshemey, Wael M. [Biophysics Department, Faculty of Science, Cairo University (Egypt); Selim, Nabila S.; Ashour, Ahmed H. [Radiation Physics Department, National Center for Radiation Research and Technology, A.E.A., Cairo (Egypt)

    2001-08-01

    Low-angle x-ray scattering (LAXS) from lyophilized blood and its constituents is characterized by the presence of two peaks in the forward direction of scattering. These peaks are found to be sensitive to the variations in the molecular structure of a given sample. The present work aims to explore the nature of LAXS from a variety of lyophilized biological samples. It also aims to investigate the possibility that a certain biological macromolecule is responsible of the production of LAXS peaks. This is carried out through measurements of LAXS from complex biological samples and their basic constituents. Among the measured samples are haemoglobin (Hb), globin, haem, packed red blood cells, bovine albumin, egg albumin, milk, casein, glutamine, alanine, fat, muscle and DNA. A table containing some characteristic parameters of the LAXS profiles of these samples is also presented. Analysis of measured profiles shows that all lyophilized samples produce at least one relatively broad peak at a scattering angle around 10.35 deg. The full width at half maximum (FWHM) of this peak varies considerably among the measured samples. Except for milk and casein, one additional peak at a scattering angle around 4.65 deg. is observed only in the LAXS profiles of proteins or protein-rich samples. This fact strongly suggests protein to be the biological macromolecule from which this characteristic peak originates. The same idea is further strengthened through discussion of some previous observations. (author)

  12. The modular small-angle X-ray scattering data correction sequence.

    Science.gov (United States)

    Pauw, B R; Smith, A J; Snow, T; Terrill, N J; Thünemann, A F

    2017-12-01

    Data correction is probably the least favourite activity amongst users experimenting with small-angle X-ray scattering: if it is not done sufficiently well, this may become evident only during the data analysis stage, necessitating the repetition of the data corrections from scratch. A recommended comprehensive sequence of elementary data correction steps is presented here to alleviate the difficulties associated with data correction, both in the laboratory and at the synchrotron. When applied in the proposed order to the raw signals, the resulting absolute scattering cross section will provide a high degree of accuracy for a very wide range of samples, with its values accompanied by uncertainty estimates. The method can be applied without modification to any pinhole-collimated instruments with photon-counting direct-detection area detectors.

  13. Quantitative evaluation of statistical errors in small-angle X-ray scattering measurements.

    Science.gov (United States)

    Sedlak, Steffen M; Bruetzel, Linda K; Lipfert, Jan

    2017-04-01

    A new model is proposed for the measurement errors incurred in typical small-angle X-ray scattering (SAXS) experiments, which takes into account the setup geometry and physics of the measurement process. The model accurately captures the experimentally determined errors from a large range of synchrotron and in-house anode-based measurements. Its most general formulation gives for the variance of the buffer-subtracted SAXS intensity σ 2 ( q ) = [ I ( q ) + const.]/( kq ), where I ( q ) is the scattering intensity as a function of the momentum transfer q ; k and const. are fitting parameters that are characteristic of the experimental setup. The model gives a concrete procedure for calculating realistic measurement errors for simulated SAXS profiles. In addition, the results provide guidelines for optimizing SAXS measurements, which are in line with established procedures for SAXS experiments, and enable a quantitative evaluation of measurement errors.

  14. Analysis of mesoporous thin films by X-ray reflectivity, optical reflectivity and grazing incidence small angle X-ray scattering

    International Nuclear Information System (INIS)

    Gibaud, A.; Dourdain, S.; Vignaud, G.

    2006-01-01

    It is well-established that X-ray reflectivity (XR) is an invaluable tool to investigate the structure of thin films. Indeed, this technique provides under correct analysis, the electron density profile of thin films in the direction perpendicular to the substrate. For thin films that exhibit lateral ordering at the nanometer scale, grazing incidence small angle X-ray scattering (GISAXS) ideally complements the XR technique to measure the scattering in off-specular directions. As typical examples, XR and GISAXS data of mesoporous silica thin films and porous materials are presented. The analysis of the XR curve allows to determine the porosity of the film. We also show that the combination of X-ray and visible optical reflection provides information about the index of refraction of thin films. Finally we report how capillary condensation of water can be monitored by XR and GISAXS

  15. Particle-scale structure in frozen colloidal suspensions from small-angle x-ray scattering

    KAUST Repository

    Spannuth, Melissa

    2011-02-01

    During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has concentrated mostly on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small-angle x-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high-density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by standard interparticle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium densification processes. © 2011 American Physical Society.

  16. Morphological and structural characterization of PHBV/organoclay nanocomposites by small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Carli, Larissa N., E-mail: lncarli@ucs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, Porto Alegre, 91501-970, RS (Brazil); Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, Rua Francisco Getulio Vargas, 1130, Caxias do Sul, 95070-560, RS (Brazil); Bianchi, Otavio, E-mail: obianchi@ucs.br [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, Rua Francisco Getulio Vargas, 1130, Caxias do Sul, 95070-560, RS (Brazil); Machado, Giovanna, E-mail: giovannamachado@uol.com.br [Centro de Tecnologias Estrategicas do Nordeste, Av. Prof. Luiz Freire, 01, Cidade Universitaria, Recife, 50740-540, PE (Brazil); Programa de Pos-Graduacao de Materiais, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Recife, 50670-901, PE (Brazil); Crespo, Janaina S., E-mail: jscrespo@ucs.br [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, Rua Francisco Getulio Vargas, 1130, Caxias do Sul, 95070-560, RS (Brazil); Mauler, Raquel S., E-mail: raquel.mauler@ufrgs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, Porto Alegre, 91501-970, RS (Brazil)

    2013-03-01

    In this work, the morphological and structural behaviors of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposites were investigated using small angle X-ray scattering (SAXS), wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). The nanocomposites with 1, 3 and 5 wt.% of organically modified montmorillonite Cloisite Registered-Sign 30B (OMMT) were prepared by melt processing in a twin screw extruder using two different processing conditions (low and high shear intensity). The lamellar long period of the polymer was lower for the nanocomposites, with high polydispersity values. However, the crystalline thickness increased with the clay content and was independent of the processing conditions. This behavior resulted in a high linear crystallinity of the nanocomposites with 3 and 5 wt.% OMMT. The disruption factor ({beta}) was in agreement with the WAXD and TEM findings, indicating a good dispersion of the nanoparticles in the PHBV matrix with 3 wt.% of OMMT during the high shear intensity of melt processing. Highlights: Black-Right-Pointing-Pointer SAXS was used for morphological and crystalline studies of PHBV/OMMT nanocomposites. Black-Right-Pointing-Pointer The crystalline structure was influenced by the presence of clay. Black-Right-Pointing-Pointer The degree of clay dispersion in a polymer matrix was quantified. Black-Right-Pointing-Pointer The morphology comprised exfoliated particles, nanoscale and microscale clusters. Black-Right-Pointing-Pointer The results obtained by SAXS agreed well with TEM and WAXD results.

  17. Preliminary small-angle X-ray scattering and X-ray diffraction studies of the BTB domain of lola protein from Drosophila melanogaster

    Science.gov (United States)

    Boyko, K. M.; Nikolaeva, A. Yu.; Kachalova, G. S.; Bonchuk, A. N.; Dorovatovskii, P. V.; Popov, V. O.

    2017-11-01

    The Drosophila genome has several dozens of transcription factors (TTK group) containing BTB domains assembled into octamers. The LOLA protein belongs to this family. The purification, crystallization, and preliminary X-ray diffraction and small-angle X-ray scattering (SAXS) studies of the BTB domain of this protein are reported. The crystallization conditions were found by the vapor-diffusion technique. A very low diffraction resolution (8.7 Å resolution) of the crystals was insufficient for the determination of the threedimensional structure of the BTB domain. The SAXS study demonstrated that the BTB domain of the LOLA protein exists as an octamer in solution.

  18. Characterization of Nanocellulose Using Small-Angle Neutron, X-ray, and Dynamic Light Scattering Techniques.

    Science.gov (United States)

    Mao, Yimin; Liu, Kai; Zhan, Chengbo; Geng, Lihong; Chu, Benjamin; Hsiao, Benjamin S

    2017-02-16

    Nanocellulose extracted from wood pulps using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation and sulfuric acid hydrolysis methods was characterized by small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and dynamic light scattering (DLS) techniques. The dimensions of this nanocellulose (TEMPO-oxidized cellulose nanofiber (TOCN) and sulfuric acid hydrolyzed cellulose nanocrystal (SACN)) revealed by the different scattering methods were compared with those characterized by transmission electron microscopy (TEM). The SANS and SAXS data were analyzed using a parallelepiped-based form factor. The width and thickness of the nanocellulose cross section were ∼8 and ∼2 nm for TOCN and ∼20 and ∼3 nm for SACN, respectively, where the fitting results from SANS and SAXS profiles were consistent with each other. DLS was carried out under both the V V mode with the polarizer and analyzer parallel to each other and the H V mode having them perpendicular to each other. Using rotational and translational diffusion coefficients obtained under the H V mode yielded a nanocellulose length qualitatively consistent with that observed by TEM, whereas the length derived by the translational diffusion coefficient under the V V mode appeared to be overestimated.

  19. X-ray small-angle scattering of polytetrahydrofuran solution, 3

    International Nuclear Information System (INIS)

    Izumi, Yoshinobu; Fuji, Masayuki; Shinbo, Kazuyuki; Miyake, Yasuhiro

    1975-01-01

    In a previous report, the conformation of polytetrahydrofuran (PTHF) in isopropyl alcohol as a theta solvent and in n-butyl alcohol as an intermediate solvent was examined by the small angle scattering of X-ray. As the result, the experimental scattering curve at theta temperature was explained well with the calculated curve obtained by superposing, while it was impossible to apply the similar method to the analysis of the scattering curve in the intermediate solvent. Recently, as the results of the calculation by Koyama on the angular distribution of light intensity scattered by stiff chain polymers and of the studies by Edwards and de Gennes on the asymptotic behavior of scattering curves in good solvents, the direct comparison of experimental and calculated scattering curves became possible. In this report, the comparison of the scattering curves of PTHF-alcohol systems is described. The systems employed were PTHF-n-propyl alcohol, PTHF-isobutyl alcohol, PTHF-sec-butyl alcohol, and PTHF-tert-butyl alcohol in addition to the previous two systems. The Guinier plots of the cross section factors of the PTHF-alcohol systems showed that the Guinier approximation on cross sections was not satisfied in cases of PTHF-isobutyl alcohol and PTHF-sec-butyl alcohol. The light scattering data at 44.6 0 C, the theta temperature of PTHF-isopropyl alcohol, are given. From the figures comparing experimental and calculated scattering curves, it was shown that there was appreciable solvent effect on the scattering curves of PTHF-alcohol systems. The relation predicted by Edwards and de Gennes was satisfied well in case of the systems in good solvents. (Kako, I.)

  20. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)

    Energy Technology Data Exchange (ETDEWEB)

    Hura, Greg L.; Menon, Angeli L.; Hammel, Michal; Rambo, Robert P.; Poole II, Farris L.; Tsutakawa, Susan E.; Jenney Jr, Francis E.; Classen, Scott; Frankel, Kenneth A.; Hopkins, Robert C.; Yang, Sungjae; Scott, Joseph W.; Dillard, Bret D.; Adams, Michael W. W.; Tainer, John A.

    2009-07-20

    We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.

  1. Anomalous small-angle X-ray scattering from charged soft matter

    Science.gov (United States)

    Sztucki, M.; Di Cola, E.; Narayanan, T.

    2012-06-01

    A review of recent applications of Anomalous Small-Angle X-ray Scattering (ASAXS) to charged soft matter systems is presented. Although the potential of ASAXS was realized in the eighties [1], applications to soft matter systems became feasible in recent years thanks to the technical developments at the synchrotron sources. Examples include both stiff chain and flexible polyelectrolytes, colloidal brush-like polyelectrolytes, DNA, RNA, and polysaccharides where the counterion profile could be determined with high precision and compared with theoretical models. In addition, ASAXS has also been found useful for microstructure characterization in soft materials. Finally, the present capability for ASAXS studies is illustrated by an example involving a surfactant micellar system.

  2. Investigation of nanoscale structures by small-angle X-ray scattering in a radiochromic dosimeter

    DEFF Research Database (Denmark)

    Skyt, Peter Sandegaard; Jensen, Grethe Vestergaard; Wahlstedt, Isak Hannes

    2014-01-01

    This study examines the nanoscale structures in a radiochromic dosimeter that was based on leuco-malachite-green dye and the surfactant sodium dodecyl sulfate (SDS) suspended in a gelatin matrix. Small-angle X-ray scattering was used to investigate the structures of a range of compositions...... of the dosimeter. When omitting gelatin, ellipsoidal micelles of SDS were formed with a core radius near 15 Å, an eccentricity of 1.6, and a head-group shell thickness near 7 Å. Gelatin significantly changed the micelles to a cylindrical shape with around three times lower core radius and four times larger shell...... thickness, which shows that the gelatin is present in the shell and the outer part of the core. Insight into the detailed structure might help to improve the dosimeter performance and increase the dose response to clinically relevant dose levels....

  3. Improving small-angle X-ray scattering data for structural analyses of the RNA world.

    Science.gov (United States)

    Rambo, Robert P; Tainer, John A

    2010-03-01

    Defining the shape, conformation, or assembly state of an RNA in solution often requires multiple investigative tools ranging from nucleotide analog interference mapping to X-ray crystallography. A key addition to this toolbox is small-angle X-ray scattering (SAXS). SAXS provides direct structural information regarding the size, shape, and flexibility of the particle in solution and has proven powerful for analyses of RNA structures with minimal requirements for sample concentration and volumes. In principle, SAXS can provide reliable data on small and large RNA molecules. In practice, SAXS investigations of RNA samples can show inconsistencies that suggest limitations in the SAXS experimental analyses or problems with the samples. Here, we show through investigations on the SAM-I riboswitch, the Group I intron P4-P6 domain, 30S ribosomal subunit from Sulfolobus solfataricus (30S), brome mosaic virus tRNA-like structure (BMV TLS), Thermotoga maritima asd lysine riboswitch, the recombinant tRNA(val), and yeast tRNA(phe) that many problems with SAXS experiments on RNA samples derive from heterogeneity of the folded RNA. Furthermore, we propose and test a general approach to reducing these sample limitations for accurate SAXS analyses of RNA. Together our method and results show that SAXS with synchrotron radiation has great potential to provide accurate RNA shapes, conformations, and assembly states in solution that inform RNA biological functions in fundamental ways.

  4. Quantifying radiation damage in biomolecular small-angle X-ray scattering.

    Science.gov (United States)

    Hopkins, Jesse B; Thorne, Robert E

    2016-06-01

    Small-angle X-ray scattering (SAXS) is an increasingly popular technique that provides low-resolution structural information about biological macromolecules in solution. Many of the practical limitations of the technique, such as minimum required sample volume, and of experimental design, such as sample flow cells, are necessary because the biological samples are sensitive to damage from the X-rays. Radiation damage typically manifests as aggregation of the sample, which makes the collected data unreliable. However, there has been little systematic investigation of the most effective methods to reduce damage rates, and results from previous damage studies are not easily compared with results from other beamlines. Here a methodology is provided for quantifying radiation damage in SAXS to provide consistent results between different experiments, experimenters and beamlines. These methods are demonstrated on radiation damage data collected from lysozyme, glucose isomerase and xylanase, and it is found that no single metric is sufficient to describe radiation damage in SAXS for all samples. The radius of gyration, molecular weight and integrated SAXS profile intensity constitute a minimal set of parameters that capture all types of observed behavior. Radiation sensitivities derived from these parameters show a large protein dependence, varying by up to six orders of magnitude between the different proteins tested. This work should enable consistent reporting of radiation damage effects, allowing more systematic studies of the most effective minimization strategies.

  5. Alzheimer's disease imaging biomarkers using small-angle x-ray scattering

    Science.gov (United States)

    Choi, Mina; Alam, Nadia; Dahal, Eshan; Ghammraoui, Bahaa; Badano, Aldo

    2016-03-01

    There is a need for novel imaging techniques for the earlier detection of Alzheimer's disease (AD). Two hallmarks of AD are amyloid beta (Aβ) plaques and tau tangles that are formed in the brain. Well-characterized x-ray cross sections of Aβ and tau proteins in a variety of structural states could potentially be used as AD biomarkers for small-angle x-ray scattering (SAXS) imaging without the need for injectable probes or contrast agents. First, however, the protein structures must be controlled and measured to determine accurate biomarkers for SAXS imaging. Here we report SAXS measurements of Aβ42 and tau352 in a 50% dimethyl sulfoxide (DMSO) solution in which these proteins are believed to remain monomeric because of the stabilizing interaction of DMSO solution. Our SAXS analysis showed the aggregation of both proteins. In particular, we found that the aggregation of Aβ42 slowly progresses with time in comparison to tau352 that aggregates at a faster rate and reaches a steady-state. Furthermore, the measured signals were compared to the theoretical SAXS profiles of Aβ42 monomer, Aβ42 fibril, and tau352 that were computed from their respective protein data bank structures. We have begun the work to systematically control the structural states of these proteins in vitro using various solvent conditions. Our future work is to utilize the distinct SAXS profiles of various structural states of Aβ and tau to build a library of signals of interest for SAXS imaging in brain tissue.

  6. A triple axis double crystal multiple reflection camera for ultra small angle X-ray scattering

    Science.gov (United States)

    Lambard, Jacques; Lesieur, Pierre; Zemb, Thomas

    1992-06-01

    To extend the domain of small angle X-ray scattering requires multiple reflection crystals to collimate the beam. A double crystal, triple axis X-ray camera using multiple reflection channel cut crystals is described. Procedures for measuring the desmeared scattering cross-section on absolute scale are described as well as the measurement from several typical samples : fibrils of collagen, 0.3 μm diameter silica spheres, 0.16 μm diameter interacting latex spheres, porous lignite coal, liquid crystals in a surfactant-water system, colloidal crystal of 0.32 μm diameter silica spheres. L'extension du domaine de diffusion des rayons-X vers les petits angles demande l'emploi de cristaux à réflexions multiples pour collimater le faisceau. Nous décrivons une caméra à rayons-X à trois axes où les réflexions multiples sont réalisées dans deux cristaux à gorge. Nous donnons ensuite les procédures de déconvolution pour obtenir la section efficace de diffusion en échelle absolue, ainsi que les résultats des mesures effectuées avec plusieurs échantillons typiques : fibres de collagène, sphères de silice de 0,3 μm de diamètre, sphères de latex de 0,16 μm de diamètre en interaction, charbon lignite poreux, cristaux liquides formés dans un système eau-tensioactif, solution colloïdale de sphères de silice de 0,32 μm de diamètre.

  7. Joint small-angle X-ray and neutron scattering data analysis of asymmetric lipid vesicles.

    Science.gov (United States)

    Eicher, Barbara; Heberle, Frederick A; Marquardt, Drew; Rechberger, Gerald N; Katsaras, John; Pabst, Georg

    2017-04-01

    Low- and high-resolution models describing the internal transbilayer structure of asymmetric lipid vesicles have been developed. These models can be used for the joint analysis of small-angle neutron and X-ray scattering data. The models describe the underlying scattering length density/electron density profiles either in terms of slabs or through the so-called scattering density profile, previously applied to symmetric lipid vesicles. Both models yield structural details of asymmetric membranes, such as the individual area per lipid, and the hydrocarbon thickness of the inner and outer bilayer leaflets. The scattering density profile model, however, comes at a cost of increased computational effort but results in greater structural resolution, showing a slightly lower packing of lipids in the outer bilayer leaflet of ∼120 nm diameter palmitoyl-oleoyl phosphatidyl-choline (POPC) vesicles, compared to the inner leaflet. Analysis of asymmetric dipalmitoyl phosphatidylcholine/POPC vesicles did not reveal evidence of transbilayer coupling between the inner and outer leaflets at 323 K, i.e. above the melting transition temperature of the two lipids.

  8. Structural Studies of Bleached Melanin by Synchrotron Small-angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Littrell, Kenneth C.; Gallas, James M.; Zajac, Gerry W.; Thiyagarajan, Pappannan

    2003-01-01

    Small-angle X-ray scattering was used to measure the effects of chemical bleaching on the size and morphology of tyrosine-derived synthetic melanin dispersed in aqueous media. The average size as measured by the radius of gyration of the melanin particles in solution, at neutral to mildly basic pH, decreases from 16.5 to 12.5 angstroms with increased bleaching. The melanin particles exhibit scattering characteristic of sheet-like structures with a thickness of approximately 11 angstroms at all but the highest levels of bleaching. The scattering data are well described by the form factor for scattering from a pancake-like circular cylinder. These data are consistent with the hypothesis that unbleached melanin, at neutral to mildly basic pH, is a planar aggregate of 6- to 10-nm-sized melanin protomolecules, hydrogen bonded through their quinone and phenolic perimeters. The observed decrease in melanin particle size with increased bleaching is interpreted as evidence for deaggregation, most probably the result of oxidative disruption of hydrogen bonds and an increase in the number of charged, carboxylic acid groups, whereby the melanin aggregates disassociate into units composed of decreasing numbers of protomolecules.

  9. Facilitating model reconstruction for single-particle scattering using small-angle X-ray scattering methods.

    Science.gov (United States)

    Ma, Shufen; Liu, Haiguang

    2016-04-01

    X-ray free-electron lasers generate intense femtosecond X-ray pulses, so that high-resolution structure determination becomes feasible from noncrystalline samples, such as single particles or single molecules. At the moment, the orientation of sample particles cannot be precisely controlled, and consequently the unknown orientation needs to be recovered using computational algorithms. This delays the model reconstruction until all the scattering patterns have been re-oriented, which often entails a long elapse of time and until the completion of the experiment. The scattering patterns from single particles or multiple particles can be summed to form a virtual powder diffraction pattern, and the low-resolution region, corresponding to the small-angle X-ray scattering (SAXS) regime, can be analysed using existing SAXS methods. This work presents a pipeline that converts single-particle data sets into SAXS data, from which real-time model reconstruction is achieved using the model retrieval approach implemented in the software package SASTBX [Liu, Hexemer & Zwart (2012). J. Appl. Cryst. 45 , 587-593]. To illustrate the applications, two case studies are presented with real experimental data sets collected at the Linac Coherent Light Source.

  10. Nano-scale morphology of melanosomes revealed by small-angle X-ray scattering.

    Directory of Open Access Journals (Sweden)

    Thomas Gorniak

    Full Text Available Melanosomes are highly specialized organelles that produce and store the pigment melanin, thereby fulfilling essential functions within their host organism. Besides having obvious cosmetic consequences--determining the color of skin, hair and the iris--they contribute to photochemical protection from ultraviolet radiation, as well as to vision (by defining how much light enters the eye. Though melanosomes can be beneficial for health, abnormalities in their structure can lead to adverse effects. Knowledge of their ultrastructure will be crucial to gaining insight into the mechanisms that ultimately lead to melanosome-related diseases. However, due to their small size and electron-dense content, physiologically intact melanosomes are recalcitrant to study by common imaging techniques such as light and transmission electron microscopy. In contrast, X-ray-based methodologies offer both high spatial resolution and powerful penetrating capabilities, and thus are well suited to study the ultrastructure of electron-dense organelles in their natural, hydrated form. Here, we report on the application of small-angle X-ray scattering--a method effective in determining the three-dimensional structures of biomolecules--to whole, hydrated murine melanosomes. The use of complementary information from the scattering signal of a large ensemble of suspended organelles and from single, vitrified specimens revealed a melanosomal sub-structure whose surface and bulk properties differ in two commonly used inbred strains of laboratory mice. Whereas melanosomes in C57BL/6J mice have a well-defined surface and are densely packed with 40-nm units, their counterparts in DBA/2J mice feature a rough surface, are more granular and consist of 60-nm building blocks. The fact that these strains have different coat colors and distinct susceptibilities to pigment-related eye disease suggest that these differences in size and packing are of biological significance.

  11. Structural variations in lignite coal: a small angle X-ray scattering investigation

    Science.gov (United States)

    Sastry, P. U.; Sen, D.; Mazumder, S.; Chandrasekaran, K. S.

    2000-04-01

    The structural morphology of raw and processed lignite coal specimens from Neyveli (Tamil Nadu, India) is characterized over a length scale of 5-100 nm by small angle X-ray scattering (SAXS). The scattering profile from the unprocessed lignite specimen exhibits two distinct power laws indicating different fractal morphologies over different length scales: a pore fractal (dimension Dp˜2.7) for the pore-coal interface below 17 nm and a surface fractal (dimension Ds˜2.3) above 17 nm. As a result of industrial processing at different temperature, pressure and carbonization, significant changes in the structure are noticed as indicated by the scattering profiles. The fractal roughness of the pore-coal interface becomes smooth (average Ds˜2) for a large window of the length scale, whereas a part of the pore fractal transforms to a surface ( Ds˜2.8). The specimen treated at relatively higher temperature exhibits further variation from the fractal geometry with a tendency to form a new non-fractal micropore structure for the length scale ≤8 nm.

  12. Quantitative evaluation of statistical errors in small-angle X-ray scattering measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sedlak, Steffen M.; Bruetzel, Linda K.; Lipfert, Jan (LMU)

    2017-03-29

    A new model is proposed for the measurement errors incurred in typical small-angle X-ray scattering (SAXS) experiments, which takes into account the setup geometry and physics of the measurement process. The model accurately captures the experimentally determined errors from a large range of synchrotron and in-house anode-based measurements. Its most general formulation gives for the variance of the buffer-subtracted SAXS intensity σ2(q) = [I(q) + const.]/(kq), whereI(q) is the scattering intensity as a function of the momentum transferq;kand const. are fitting parameters that are characteristic of the experimental setup. The model gives a concrete procedure for calculating realistic measurement errors for simulated SAXS profiles. In addition, the results provide guidelines for optimizing SAXS measurements, which are in line with established procedures for SAXS experiments, and enable a quantitative evaluation of measurement errors.

  13. Characterization of Physically and Chemically Separated Athabasca Asphaltenes Using Small-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Amundaraín Hurtado, Jesús Leonardo; Chodakowski, Martin; Long, Bingwen; Shaw, John M. (Alberta)

    2012-02-07

    Athabasca asphaltenes were characterized using small-angle X-ray scattering (SAXS). Two methods were used to separate asphaltenes from the Athabasca bitumen: namely, chemical separation by precipitation with n-pentane and physical separation by nanofiltration using a zirconia membrane with a 20 nm average pore size. The permeate and chemically separated samples were diluted in 1-methylnaphtalene and n-dodecane prior to SAXS measurements. The temperature and asphaltene concentration ranges were 50-310 C and 1-10.4 wt %, respectively. Model-independent analysis of SAXS data provided the radius of gyration and the scattering coefficients. Model-dependent fits provided size distributions for asphaltenes assuming that they are dense and spherical. Model-independent analysis for physically and chemically separated asphaltenes showed significant differences in nominal size and structure, and the temperature dependence of structural properties. The results challenge the merits of using chemically separated asphaltene properties as a basis for asphaltene property prediction in hydrocarbon resources. While the residuals for model-dependent fits are small, the results are inconsistent with the structural parameters obtained from model-independent analysis.

  14. Scanning of Adsorption Hysteresis In Situ with Small Angle X-Ray Scattering

    Science.gov (United States)

    Mitropoulos, Athanasios Ch.; Favvas, Evangelos P.; Stefanopoulos, Konstantinos L.; Vansant, Etienne F.

    2016-01-01

    Everett’s theorem-6 of the domain theory was examined by conducting adsorption in situ with small angle x-ray scattering (SAXS) supplemented by the contrast matching technique. The study focuses on the spectrum differences of a point to which the system arrives from different scanning paths. It is noted that according to this theorem at a common point the system has similar macroscopic properties. Furthermore it was examined the memory string of the system. We concluded that opposite to theorem-6: a) at a common point the system can reach in a finite (not an infinite) number of ways, b) a correction for the thickness of the adsorbed film prior to capillary condensation is necessary, and c) the scattering curves although at high-Q values coincide, at low-Q values are different indicating different microscopic states. That is, at a common point the system holds different metastable states sustained by hysteresis effects. These metastable states are the ones which highlight the way of a system back to a return point memory (RPM). Entering the hysteresis loop from different RPMs different histories are implanted to the paths toward the common point. Although in general the memory points refer to relaxation phenomena, they also constitute a characteristic feature of capillary condensation. Analogies of the no-passing rule and the adiabaticity assumption in the frame of adsorption hysteresis are discussed. PMID:27741263

  15. Small-angle X-ray scattering (SAXS) for metrological size determination of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gleber, Gudrun; Krumrey, Michael; Cibik, Levent; Marggraf, Stefanie; Mueller, Peter [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Hoell, Armin [Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany)

    2011-07-01

    To measure the size of nanoparticles, different measurement methods are available but their results are often not compatible. In the framework of an European metrology project we use Small-Angle X-ray Scattering (SAXS) to determine the size and size distribution of nanoparticles in aqueous solution, where the special challange is the traceability of the results. The experiments were performed at the Four-Crystal Monochromator (FCM) beamline in the laboratory of Physikalisch-Technische Bundesanstalt (PTB) at BESSY II using the SAXS setup of the Helmholtz-Zentrum Berlin (HZB). We measured different particles made of PMMA and gold in a diameter range of 200 nm down to about 10 nm. The aspects of traceability can be classified in two parts: the first is the experimental part with the uncertainties of distances, angles, and wavelength, the second is the part of analysis, with the uncertainty of the choice of the model used for fitting the data. In this talk we want to show the degree of uncertainty, which we reached in this work yet.

  16. Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models

    Directory of Open Access Journals (Sweden)

    Stovgaard Kasper

    2010-08-01

    Full Text Available Abstract Background Genome sequencing projects have expanded the gap between the amount of known protein sequences and structures. The limitations of current high resolution structure determination methods make it unlikely that this gap will disappear in the near future. Small angle X-ray scattering (SAXS is an established low resolution method for routinely determining the structure of proteins in solution. The purpose of this study is to develop a method for the efficient calculation of accurate SAXS curves from coarse-grained protein models. Such a method can for example be used to construct a likelihood function, which is paramount for structure determination based on statistical inference. Results We present a method for the efficient calculation of accurate SAXS curves based on the Debye formula and a set of scattering form factors for dummy atom representations of amino acids. Such a method avoids the computationally costly iteration over all atoms. We estimated the form factors using generated data from a set of high quality protein structures. No ad hoc scaling or correction factors are applied in the calculation of the curves. Two coarse-grained representations of protein structure were investigated; two scattering bodies per amino acid led to significantly better results than a single scattering body. Conclusion We show that the obtained point estimates allow the calculation of accurate SAXS curves from coarse-grained protein models. The resulting curves are on par with the current state-of-the-art program CRYSOL, which requires full atomic detail. Our method was also comparable to CRYSOL in recognizing native structures among native-like decoys. As a proof-of-concept, we combined the coarse-grained Debye calculation with a previously described probabilistic model of protein structure, TorusDBN. This resulted in a significant improvement in the decoy recognition performance. In conclusion, the presented method shows great promise for

  17. Small-angle X-ray scattering: a high-throughput technique for investigating archaeological bone preservation

    NARCIS (Netherlands)

    Hiller, J.C.; Collins, M.J.; Chamberlain, A.T.; Wess, T.J.

    2004-01-01

    Diagenetic alteration to archaeological bone can cause significant disruption to both the biogenic mineral structure and the preservation of biomolecular resources such as protein and DNA over archaeological time. We report here the use of a technique, small-angle X-ray scattering, which makes it

  18. Studying nanostructure gradients in injection-molded polypropylene/montmorillonite composites by microbeam small-angle x-ray scattering

    DEFF Research Database (Denmark)

    Stribeck, Norbert; Schneider, Konrad; Zeinolebadi, Ahmad

    2014-01-01

    The core–shell structure in oriented cylindrical rods of polypropylene (PP) and nanoclay composites (NCs) from PP and montmorillonite (MMT) is studied by microbeam small-angle x-ray scattering (SAXS). The structure of neat PP is almost homogeneous across the rod showing regular semicrystalline st...

  19. Studies of protein structure in solution and protein folding using synchrotron small-angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lingling [Stanford Univ., CA (United States)

    1996-04-01

    Synchrotron small angle x-ray scattering (SAXS) has been applied to the structural study of several biological systems, including the nitrogenase complex, the heat shock cognate protein (hsc70), and lysozyme folding. The structural information revealed from the SAXS experiments is complementary to information obtained by other physical and biochemical methods, and adds to our knowledge and understanding of these systems.

  20. Small-Angle X-ray Scattering Data in Combination with RosettaDock Improves the Docking Energy Landscape

    DEFF Research Database (Denmark)

    Sønderby, Pernille; Rinnan, Åsmund; Madsen, Jesper J.

    2017-01-01

    We have performed a benchmark to evaluate the relative success of using small-angle X-ray scattering (SAXS) data as constraints (hereafter termed SAXSconstrain) in the RosettaDock protocol (hereafter termed RosettaDockSAXS). For this purpose, we have chosen 38 protein complex structures, calculat...

  1. Self-assembly of designed coiled coil peptides studied by small-angle X-ray scattering and analytical ultracentrifugation

    DEFF Research Database (Denmark)

    Malik, Leila; Nygaard, Jesper; Christensen, Niels Johan

    2013-01-01

    , they are promising tools for the construction of nanomaterials. Small-angle X-ray scattering (SAXS) has emerged as a new biophysical technique for elucidation of protein topology. Here, we describe a systematic study of the self-assembly of a small ensemble of coiled coil sequences using SAXS and analytical...

  2. Introducing a standard method for experimental determination of the solvent response in laser pump, x-ray probe time-resolved wide-angle x-ray scattering experiments on systems in solution

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Brandt van Driel, Tim; Kehres, Jan

    2013-01-01

    In time-resolved laser pump, X-ray probe wide-angle X-ray scattering experiments on systems in solution the structural response of the system is accompanied by a solvent response. The solvent response is caused by reorganization of the bulk solvent following the laser pump event, and in order...... response-the solvent term-experimentally when applying laser pump, X-ray probe time-resolved wide-angle X-ray scattering. The solvent term describes difference scattering arising from the structural response of the solvent to changes in the hydrodynamic parameters: pressure, temperature and density. We...... is demonstrated to exhibit first order behaviour with respect to the amount of energy deposited in the solution. We introduce a standardized method for recording solvent responses in laser pump, X-ray probe time-resolved X-ray wide-angle scattering experiments by using dye mediated solvent heating. Furthermore...

  3. Monitoring the recrystallisation of amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering.

    Science.gov (United States)

    Palomäki, Emmi; Ahvenainen, Patrik; Ehlers, Henrik; Svedström, Kirsi; Huotari, Simo; Yliruusi, Jouko

    2016-07-11

    In this paper we present a fast model system for monitoring the recrystallization of quench-cooled amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering. The use of these two methods enables comparison between surface and bulk crystallization. Non-ordered mesoporous silica micro-particles were added to the system in order to alter the rate of crystallization of the amorphous xylitol. Raman measurements showed that adding silica to the system increased the rate of surface crystallization, while X-ray measurements showed that the rate of bulk crystallization decreased. Using this model system it is possible to measure fast changes, which occur in minutes or within a few hours. Raman-spectroscopy and wide-angle X-ray scattering were found to be complementary techniques when assessing surface and bulk crystallization of amorphous xylitol. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Investigation of polydisperse, disordered, and fractal systems by small-angle x-ray and neutron scattering

    International Nuclear Information System (INIS)

    Schmidt, P.W.; Tang, Y.; Roell, A.; Steiner, M.; Hoehr, A.; Neumann, H.B.

    1990-01-01

    Small-angle x-ray and neutron scattering are useful methods for investigating the structure of materials on a scale from about 10 to 2000 A. Some experimental procedures and methods of data analysis for small-angle scattering are outlined, and the use of small-angle scattering for studies of polydisperse systems (i.e., systems of particles of different size) of independently scattering particles is reviewed. Some general properties of the small-angle scattering from mass and surface fractals are discussed, and some applications of these concepts in recent experimental studies are presented. Results obtained in calculations of the small-angle scattering from a model of a surface are summarized. (author) 3 figs., 18 refs

  5. Topological investigation of electronic silicon nanoparticulate aggregates using ultra-small-angle X-ray scattering

    Science.gov (United States)

    Jonah, E. O.; Britton, D. T.; Beaucage, P.; Rai, D. K.; Beaucage, G.; Magunje, B.; Ilavsky, J.; Scriba, M. R.; Härting, M.

    2012-11-01

    The network topology of two types of silicon nanoparticles, produced by high energy milling and pyrolysis of silane, in layers deposited from inks on permeable and impermeable substrates has been quantitatively characterized using ultra-small-angle X-ray scattering, supported by scanning electron microscopy observations. The milled particles with a highly polydisperse size distribution form agglomerates, which in turn cluster to form larger aggregates with a very high degree of aggregation. Smaller nanoparticles with less polydisperse size distribution synthesized by thermal catalytic pyrolysis of silane form small open clusters. The Sauter mean diameters of the primary particles of the two types of nanoparticles were obtained from USAXS particle volume to surface ratio, with values of 41 and 21 nm obtained for the high energy milled and pyrolysis samples, respectively. Assuming a log-normal distribution of the particles, the geometric standard deviation of the particles was calculated to be 1.48 for all the samples, using parameters derived from the unified fit to the USAXS data. The flow properties of the inks and substrate combination lead to quantitative changes in the mean particle separation, with slowly curing systems with good capillary flow resulting in denser networks with smaller aggregates and better contact between particles.

  6. Collagen Orientation and Crystallite Size in Human Dentin: A Small Angle X-ray Scattering Study

    Energy Technology Data Exchange (ETDEWEB)

    Pople, John A

    2001-03-29

    The mechanical properties of dentin are largely determined by the intertubular dentin matrix, which is a complex composite of type I collagen fibers and a carbonate-rich apatite mineral phase. The authors perform a small angle x-ray scattering (SAXS) study on fully mineralized human dentin to quantify this fiber/mineral composite architecture from the nanoscopic through continuum length scales. The SAXS results were consistent with nucleation and growth of the apatite phase within periodic gaps in the collagen fibers. These mineralized fibers were perpendicular to the dentinal tubules and parallel with the mineralization growth front. Within the plane of the mineralization front, the mineralized collagen fibers were isotropic near the pulp, but became mildly anisotropic in the mid-dentin. Analysis of the data also indicated that near the pulp the mineral crystallites were approximately needle-like, and progressed to a more plate-like shape near the dentino-enamel junction. The thickness of these crystallites, {approx} 5 nm, did not vary significantly with position in the tooth. These results were considered within the context of dentinogenesis and maturation.

  7. Lysozyme crystal growth, as observed by small angle X-ray scattering, proceeds without crystallization intermediates

    International Nuclear Information System (INIS)

    Finet, S.; Bonnete, F.; Frouin, J.; Provost, K.; Tardieu, A.

    1998-01-01

    A combination of small angle X-ray scattering and gel techniques was used to follow the kinetics of protein crystal growth as a function of time. Hen egg white lysozyme, at different protein concentrations, was used as a model system. A new sample holder was designed, in which supersaturation is induced in the presence of salt by decreasing the temperature. It had been shown previously that a decrease in temperature and/or an increase in crystallizing agent induces an increase in the attractive interactions present in the lysozyme solutions, the lysozyme remaining monomeric. In the present paper we show that similar behaviour is observed in NaCl when agarose gels are used. During crystal growth, special attention was paid to determine whether oligomers were formed as the protein in solution was incorporated in the newly formed crystals. From these first series of experiments, we did not find any indication of oligomer formation between monomer in solution and crystal. The results obtained are in agreement with the hypothesis that lysozyme crystals in NaCl grow by addition of monomeric particles. (orig.)

  8. Automated acquisition and analysis of small angle X-ray scattering data

    International Nuclear Information System (INIS)

    Franke, Daniel; Kikhney, Alexey G.; Svergun, Dmitri I.

    2012-01-01

    Small Angle X-ray Scattering (SAXS) is a powerful tool in the study of biological macromolecules providing information about the shape, conformation, assembly and folding states in solution. Recent advances in robotic fluid handling make it possible to perform automated high throughput experiments including fast screening of solution conditions, measurement of structural responses to ligand binding, changes in temperature or chemical modifications. Here, an approach to full automation of SAXS data acquisition and data analysis is presented, which advances automated experiments to the level of a routine tool suitable for large scale structural studies. The approach links automated sample loading, primary data reduction and further processing, facilitating queuing of multiple samples for subsequent measurement and analysis and providing means of remote experiment control. The system was implemented and comprehensively tested in user operation at the BioSAXS beamlines X33 and P12 of EMBL at the DORIS and PETRA storage rings of DESY, Hamburg, respectively, but is also easily applicable to other SAXS stations due to its modular design.

  9. Structure of Nanoporous Biocarbon for Hydrogen Storage as Determined by Small Angle X-Ray Scattering

    Science.gov (United States)

    Wood, Mikael; Burress, J.; Pobst, J.; Carter, S.; Pfeifer, P.; Wexler, C.; Shah, P.; Suppes, G.

    2008-03-01

    As a member of the Alliance for Collaborative Research in Alternative Fuel Technology (ALL-CRAFT) our research group studies the properties of nanoporous biocarbon, produced from waste corn cob, with the goal of achieving the Department of Energy's gravimetric and volumetric standards for both hydrogen and methane gas storage. Small Angle X-Ray Scattering (SAXS) is a valuable tool in our investigation of the geometry of the pore space in our carbon samples. In this talk, we will compare the experimental SAXS data with theoretical results for various pore geometries to determine which pore models are consistent with experiment. Using data from nitrogen adsorption isotherms, along with SAXS, yields significant structural information about the pore space. This analysis should allow us to fully optimize our production process and to achieve the DOE's target storage capacities. This work supported by: 1. National Science Foundation (PFI-0438469) 2. U.S. Department of Education (P200A040038) 3. U.S. Department of Energy (DE-AC02-06CH11357) 4. University of Missouri (RB-06-040) 5. U.S. Department of Defense (N00164-07-P-1306) 6. U.S. Department of Energy (DE-FG02-07ER46411)

  10. Determination of the thermodynamic state of concentrated hemoglobin solutions by means of small angle X-ray scattering

    International Nuclear Information System (INIS)

    Zinke, M.

    1979-01-01

    Exemplified by hemoglobin, the thermodynamic equilibrium properties of the dissolved macromolecular system could be determined solely from the small angle X-ray scattering of concentrated macromolecular solutions via the intermolecular structure of the dissolved macromolecules and their intermolecular potentials. From the scattering experiment on concentrated Hb solutions the concentration dependence of the following properties of the dissolved Hb system were determined: fluctuation, isothermic compressibility, internal energy, surface tension, and osmotic pressure. (author)

  11. Structural characterization of the human cerebral myelin sheath by small angle x-ray scattering

    International Nuclear Information System (INIS)

    De Felici, M; Felici, R; Ferrero, C; Tartari, A; Gambaccini, M; Finet, S

    2008-01-01

    Myelin is a multi-lamellar membrane surrounding neuronal axons and increasing their conduction velocity. When investigated by small-angle x-ray scattering (SAXS), the lamellar quasi-periodical arrangement of the myelin sheath gives rise to distinct peaks, which allow the determination of its molecular organization and the dimensions of its substructures. In this study we report on the myelin sheath structural determination carried out on a set of human brain tissue samples coming from surgical biopsies of two patients: a man around 60 and a woman nearly 90 years old. The samples were extracted either from white or grey cerebral matter and did not undergo any manipulation or chemical-physical treatment, which could possibly have altered their structure, except dipping them into a formalin solution for their conservation. Analysis of the scattered intensity from white matter of intact human cerebral tissue allowed the evaluation not only of the myelin sheath periodicity but also of its electronic charge density profile. In particular, the thicknesses of the cytoplasm and extracellular regions were established, as well as those of the hydrophilic polar heads and hydrophobic tails of the lipid bilayer. SAXS patterns were measured at several locations on each sample in order to establish the statistical variations of the structural parameters within a single sample and among different samples. This work demonstrates that a detailed structural analysis of the myelin sheath can also be carried out in randomly oriented samples of intact human white matter, which is of importance for studying the aetiology and evolution of the central nervous system pathologies inducing myelin degeneration.

  12. Small-angle scattering of polychromatic X-rays: effects of bandwidth, spectral shape and high harmonics.

    Science.gov (United States)

    Chen, Sen; Luo, Sheng Nian

    2018-03-01

    Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10-100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are explored via Gaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamental harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.

  13. Small-angle scattering of polychromatic X-rays: effects of bandwidth, spectral shape and high harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sen; Luo, Sheng-Nian (Jiaotong); (Peac)

    2018-02-16

    Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10–100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are exploredviaGaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamental harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.

  14. An Assessment of Critical Dimension Small Angle X-ray Scattering Metrology for Advanced Semiconductor Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Settens, Charles M. [State Univ. of New York (SUNY), Albany, NY (United States)

    2015-01-01

    Simultaneous migration of planar transistors to FinFET architectures, the introduction of a plurality of materials to ensure suitable electrical characteristics, and the establishment of reliable multiple patterning lithography schemes to pattern sub-10 nm feature sizes imposes formidable challenges to current in-line dimensional metrologies. Because the shape of a FinFET channel cross-section immediately influences the electrical characteristics, the evaluation of 3D device structures requires measurement of parameters beyond traditional critical dimension (CD), including their sidewall angles, top corner rounding and footing, roughness, recesses and undercuts at single nanometer dimensions; thus, metrologies require sub-nm and approaching atomic level measurement uncertainty. Synchrotron critical dimension small angle X-ray scattering (CD-SAXS) has unique capabilities to non-destructively monitor the cross-section shape of surface structures with single nanometer uncertainty and can perform overlay metrology to sub-nm uncertainty. In this dissertation, we perform a systematic experimental investigation using CD-SAXS metrology on a hierarchy of semiconductor 3D device architectures including, high-aspect-ratio contact holes, H2 annealed Si fins, and a series of grating type samples at multiple points along a FinFET fabrication process increasing in structural intricacy and ending with fully fabricated FinFET. Comparative studies between CD-SAXS metrology and other relevant semiconductor dimensional metrologies, particularly CDSEM, CD-AFM and TEM are used to determine physical limits of CD-SAXS approach for advanced semiconductor samples. CD-SAXS experimental tradeoffs, advice for model-dependent analysis and thoughts on the compatibility with a semiconductor manufacturing environment are discussed.

  15. Small Angle X ray Scattering (SAXS) Instrument Performance and Validation Using Silver Nanoparticles

    Science.gov (United States)

    2016-12-01

    Natick, MA, USA), which were then sealed using “5 Minute” epoxy. The epoxy was allowed to cure overnight. The samples were then placed on the sample...of X-ray and neutron scattering in polymer science. New York (NY): Oxford University Press; 2000. 3. Strobl G. The physics of polymers: concepts for...understanding their structures and behavior. 3rd ed. Berlin Heidelberg (Germany): Springer; 2006. 4. Hamley IW. The physics of block copolymers. 1st

  16. Small-Angle X-ray Scattering (SAXS) Instrument Performance and Validation Using Silver Nanoparticles

    Science.gov (United States)

    2016-12-01

    Natick, MA, USA), which were then sealed using “5 Minute” epoxy. The epoxy was allowed to cure overnight. The samples were then placed on the sample...of X-ray and neutron scattering in polymer science. New York (NY): Oxford University Press; 2000. 3. Strobl G. The physics of polymers: concepts for...understanding their structures and behavior. 3rd ed. Berlin Heidelberg (Germany): Springer; 2006. 4. Hamley IW. The physics of block copolymers. 1st

  17. Small angle X-ray and neutron scattering from solutions of biological macromolecules

    CERN Document Server

    Svergun, Dmitri I; May, Roland P; Timmins, Peter A

    2013-01-01

    In this book, following the presentation of the basics of scattering from isotropic macromolecular solutions, modern instrumentation, experimental practice and advanced analysis techniques are explained. Advantages of X-rays (rapid data collection, small sample volumes) and of neutrons (contrast variation by hydrogen/deuterium exchange) are specifically highlighted. Examples of applications of the technique to different macromolecular systems are considered with specific emphasis on the synergistic use of SAXS/SANS with other structural, biophysical and computational techniques.

  18. Microstructural characterization of dental zinc phosphate cements using combined small angle neutron scattering and microfocus X-ray computed tomography

    Czech Academy of Sciences Publication Activity Database

    Viani, Alberto; Sotiriadis, Konstantinos; Kumpová, Ivana; Mancini, L.; Appavou, M.-S.

    2017-01-01

    Roč. 33, č. 4 (2017), s. 402-417 ISSN 0109-5641 R&D Projects: GA MŠk(CZ) LO1219 Keywords : zinc phosphate cements * small angle neutron scattering * X-ray micro-computed tomography * X-ray powder diffraction * zinc oxide * acid-base cements Subject RIV: JJ - Other Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 4.070, year: 2016 https://www.sciencedirect.com/science/article/pii/S0109564116305127

  19. Microfocus wide-angle X-ray scattering of polymers crystallized in a fast scanning chip calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Drongelen, Martin van [Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Meijer-Vissers, Tamara [Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven (Netherlands); Cavallo, Dario, E-mail: d.cavallo1@tue.nl [Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Portale, Giuseppe [ESRF, Dubble CRG, Netherlands Organization of Scientific Research (NWO), 38043 Grenoble (France); Poel, Geert Vanden [DSM Resolve, Urmonderbaan 22, 6167 RD Geleen (Netherlands); Androsch, René, E-mail: rene.androsch@iw.uni-halle.de [Martin-Luther-University Halle-Wittenberg, Center of Engineering Sciences, 06099 Halle/Saale (Germany)

    2013-07-10

    Graphical abstract: - Highlights: • Micro-focused synchrotron radiation was used for WAXS analysis of FSC samples. • FSC polymer crystallization experiments were completed by in situ X-ray structure analysis. • The supercooling-controlled polymorphism of iPP and PA 6 has been confirmed. - Abstract: Microfocus wide-angle X-ray scattering (WAXS) has been applied for analysis of the polymorphism of isotactic polypropylene and polyamide 6 prepared in a fast scanning chip calorimeter (FSC). Samples with a typical mass of few hundred nanograms, and lateral dimension and thickness of about 100 μm and 20 μm, respectively, were exposed to a defined thermal history in the FSC and subsequently analyzed regarding the X-ray structure at ambient temperature using an intense synchrotron microfocused X-ray beam. The relaxed melt of isotactic polypropylene was cooled at rates of 40 K s{sup −1} and 200 K s{sup −1} which allowed formation of α-crystals or mesophase, respectively. Polyamide 6 was isothermally crystallized at 95 °C and 180 °C which led to formation of γ-mesophase and α-crystals, respectively. This study demonstrated, for the first time, that FSC polymer crystallization experiments could be completed and expanded by subsequent in situ structure analysis by X-ray scattering.

  20. Beyond simple small-angle X-ray scattering: developments in online complementary techniques and sample environments

    Directory of Open Access Journals (Sweden)

    Wim Bras

    2014-11-01

    Full Text Available Small- and wide-angle X-ray scattering (SAXS, WAXS are standard tools in materials research. The simultaneous measurement of SAXS and WAXS data in time-resolved studies has gained popularity due to the complementary information obtained. Furthermore, the combination of these data with non X-ray based techniques, via either simultaneous or independent measurements, has advanced understanding of the driving forces that lead to the structures and morphologies of materials, which in turn give rise to their properties. The simultaneous measurement of different data regimes and types, using either X-rays or neutrons, and the desire to control parameters that initiate and control structural changes have led to greater demands on sample environments. Examples of developments in technique combinations and sample environment design are discussed, together with a brief speculation about promising future developments.

  1. Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering

    Directory of Open Access Journals (Sweden)

    Norbert Kučerka

    2015-09-01

    Full Text Available We review recent developments in the rapidly growing field of membrane biophysics, with a focus on the structural properties of single lipid bilayers determined by different scattering techniques, namely neutron and X-ray scattering. The need for accurate lipid structural properties is emphasized by the sometimes conflicting results found in the literature, even in the case of the most studied lipid bilayers. Increasingly, accurate and detailed structural models require more experimental data, such as those from contrast varied neutron scattering and X-ray scattering experiments that are jointly refined with molecular dynamics simulations. This experimental and computational approach produces robust bilayer structural parameters that enable insights, for example, into the interplay between collective membrane properties and its components (e.g., hydrocarbon chain length and unsaturation, and lipid headgroup composition. From model studies such as these, one is better able to appreciate how a real biological membrane can be tuned by balancing the contributions from the lipid’s different moieties (e.g., acyl chains, headgroups, backbones, etc..

  2. Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering.

    Science.gov (United States)

    Kučerka, Norbert; Heberle, Frederick A; Pan, Jianjun; Katsaras, John

    2015-09-21

    We review recent developments in the rapidly growing field of membrane biophysics, with a focus on the structural properties of single lipid bilayers determined by different scattering techniques, namely neutron and X-ray scattering. The need for accurate lipid structural properties is emphasized by the sometimes conflicting results found in the literature, even in the case of the most studied lipid bilayers. Increasingly, accurate and detailed structural models require more experimental data, such as those from contrast varied neutron scattering and X-ray scattering experiments that are jointly refined with molecular dynamics simulations. This experimental and computational approach produces robust bilayer structural parameters that enable insights, for example, into the interplay between collective membrane properties and its components (e.g., hydrocarbon chain length and unsaturation, and lipid headgroup composition). From model studies such as these, one is better able to appreciate how a real biological membrane can be tuned by balancing the contributions from the lipid's different moieties (e.g., acyl chains, headgroups, backbones, etc.).

  3. Small angle X-ray scattering and transmission electron microscopy study of the Lactobacillus brevis S-layer protein

    Energy Technology Data Exchange (ETDEWEB)

    Jaeaeskelaeinen, Pentti [Department of Biomedical Engineering and Computational Science, PO Box 2200, FI-02015 Aalto University School of Science and Technology (Finland); Engelhardt, Peter [Haartman Institute, Department of Pathology, PO Box 21, FIN-00014 University of Helsinki (Finland); Hynoenen, Ulla; Palva, Airi [Department of Basic Veterinary Sciences, Division of Microbiology, FIN-00014 University of Helsinki (Finland); Torkkeli, Mika; Serimaa, Ritva, E-mail: ritva.serimaa@helsinki.f [Department of Physics, POB 64, 00014 University of Helsinki (Finland)

    2010-10-01

    The structure of self-assembly domain containing recombinant truncation mutants of Lactobacillus brevis surface layer protein SlpA in aqueous solution was studied using small-angle X-ray scattering and transmission electron microscopy. The proteins were found out to interact with each other forming stable globular oligomers of about 10 monomers. The maximum diameter of the oligomers varied between 75 A and 435 A.

  4. Small angle X-ray scattering and transmission electron microscopy study of the Lactobacillus brevis S-layer protein

    Science.gov (United States)

    Jääskeläinen, Pentti; Engelhardt, Peter; Hynönen, Ulla; Torkkeli, Mika; Palva, Airi; Serimaa, Ritva

    2010-10-01

    The structure of self-assembly domain containing recombinant truncation mutants of Lactobacillus brevis surface layer protein SlpA in aqueous solution was studied using small-angle X-ray scattering and transmission electron microscopy. The proteins were found out to interact with each other forming stable globular oligomers of about 10 monomers. The maximum diameter of the oligomers varied between 75 Å and 435 Å.

  5. Nano materials Characterization by Small-angle X-ray Scattering Applied on a Multi-purpose X-ray Diffractometer Platform

    International Nuclear Information System (INIS)

    Bolze, J.

    2011-01-01

    We present the application of the small-angle X-ray scattering (SAXS) technique for the structural characterization of nano materials. This technique has become available in the laboratory on a multipurpose X-ray diffractometer platform and yields information that is complementary to what can be deduced from XRD (or WAXS) data. Among others SAXS is used for the determination of the size distribution, shape, specific surface area, inner structure and aggregation behavior of nanoparticles. It may also be applied to investigate pore size distributions in meso porous materials as well as ordered nano structures. Several application examples dealing with the characterization of photo catalytic nano powders, porous materials, polymer nano composites, colloidal dispersions, surfactants and related samples will be given. Furthermore, the SAXS technique will be compared and contrasted to complementary experimental techniques, such as dynamic light scattering, ultracentrifugation, electron microscopy, BET measurements and mercury intrusion porosimetry. Whereas this presentation focuses on the application examples of the SAXS technique, a more fundamental and practical introduction will be given within the workshop. (author)

  6. Preparing monodisperse macromolecular samples for successful biological small-angle X-ray and neutron-scattering experiments.

    Science.gov (United States)

    Jeffries, Cy M; Graewert, Melissa A; Blanchet, Clément E; Langley, David B; Whitten, Andrew E; Svergun, Dmitri I

    2016-11-01

    Small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume, including the solvent and buffer components, as well as the macromolecules of interest. To obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis, so it is essential that the samples be pure and monodisperse for the duration of the experiment. This protocol outlines the basic physics of SAXS and SANS, and it reveals how the underlying conceptual principles of the techniques ultimately 'translate' into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size-exclusion chromatography (SEC) and light scattering. Also included are procedures that are specific to X-rays (in-line SEC-SAXS) and neutrons, specifically preparing samples for contrast matching or variation experiments and deuterium labeling of proteins.

  7. Energy-angle correlation correction algorithm for monochromatic computed tomography based on Thomson scattering X-ray source

    Science.gov (United States)

    Chi, Zhijun; Du, Yingchao; Huang, Wenhui; Tang, Chuanxiang

    2017-12-01

    The necessity for compact and relatively low cost x-ray sources with monochromaticity, continuous tunability of x-ray energy, high spatial coherence, straightforward polarization control, and high brightness has led to the rapid development of Thomson scattering x-ray sources. To meet the requirement of in-situ monochromatic computed tomography (CT) for large-scale and/or high-attenuation materials based on this type of x-ray source, there is an increasing demand for effective algorithms to correct the energy-angle correlation. In this paper, we take advantage of the parametrization of the x-ray attenuation coefficient to resolve this problem. The linear attenuation coefficient of a material can be decomposed into a linear combination of the energy-dependent photoelectric and Compton cross-sections in the keV energy regime without K-edge discontinuities, and the line integrals of the decomposition coefficients of the above two parts can be determined by performing two spectrally different measurements. After that, the line integral of the linear attenuation coefficient of an imaging object at a certain interested energy can be derived through the above parametrization formula, and monochromatic CT can be reconstructed at this energy using traditional reconstruction methods, e.g., filtered back projection or algebraic reconstruction technique. Not only can monochromatic CT be realized, but also the distributions of the effective atomic number and electron density of the imaging object can be retrieved at the expense of dual-energy CT scan. Simulation results validate our proposal and will be shown in this paper. Our results will further expand the scope of application for Thomson scattering x-ray sources.

  8. Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2.

    Science.gov (United States)

    Filik, J; Ashton, A W; Chang, P C Y; Chater, P A; Day, S J; Drakopoulos, M; Gerring, M W; Hart, M L; Magdysyuk, O V; Michalik, S; Smith, A; Tang, C C; Terrill, N J; Wharmby, M T; Wilhelm, H

    2017-06-01

    A software package for the calibration and processing of powder X-ray diffraction and small-angle X-ray scattering data is presented. It provides a multitude of data processing and visualization tools as well as a command-line scripting interface for on-the-fly processing and the incorporation of complex data treatment tasks. Customizable processing chains permit the execution of many data processing steps to convert a single image or a batch of raw two-dimensional data into meaningful data and one-dimensional diffractograms. The processed data files contain the full data provenance of each process applied to the data. The calibration routines can run automatically even for high energies and also for large detector tilt angles. Some of the functionalities are highlighted by specific use cases.

  9. Anomalous grazing incidence small-angle x-ray scattering studies of Pt nanoparticles formed by cluster deposition

    International Nuclear Information System (INIS)

    Lee, B.; Seifert, S.; Riley, S.J.; Tikhonov, G.Y.; Tomczyk, N.A.; Vajda, S.; Winans, R.E.

    2005-01-01

    The size evolution of platinum nanoparticles formed on a SiO2/Si(111) substrate as a function of the level of surface coverage with deposited clusters has been investigated. The anisotropic shapes of sub-nanometer-size nanoparticles are changed to isotropic on the amorphous substrate as their sizes increased. Using anomalous grazing incidence small-angle x-ray scattering (AGISAXS), the scattering from nanoparticles on the surface of a substrate is well separated from that of surface roughness and fluorescence. We show that AGISAXS is a very effective method to subtract the background and can provide unbiased information about particle sizes of less than 1 nm.

  10. Preparing Monodisperse Macromolecular Samples for Successful Biological Small-Angle X-ray and Neutron Scattering Experiments

    Science.gov (United States)

    Jeffries, Cy M.; Graewert, Melissa A.; Blanchet, Clément E.; Langley, David B.; Whitten, Andrew E.; Svergun, Dmitri I

    2017-01-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume including the solvent and buffer components as well as the macromolecules of interest. In order to obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis so it is essential that the samples are pure and monodisperse for the duration of the experiment. This Protocol outlines the basic physics of SAXS and SANS and reveals how the underlying conceptual principles of the techniques ultimately ‘translate’ into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size exclusion chromatography and light scattering. Also included are procedures specific to X-rays (in-line size exclusion chromatography SAXS) and neutrons, specifically preparing samples for contrast matching/variation experiments and deuterium labeling of proteins. PMID:27711050

  11. Insights into the interactions among Surfactin, betaines, and PAM: surface tension, small-angle neutron scattering, and small-angle X-ray scattering study.

    Science.gov (United States)

    Xiao, Jingwen; Liu, Fang; Garamus, Vasil M; Almásy, László; Handge, Ulrich A; Willumeit, Regine; Mu, Bozhong; Zou, Aihua

    2014-04-01

    The interactions among neutral polymer polyacrylamide (PAM) and the biosurfactant Surfactin and four betaines, N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SDDAB), N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (STDAB), N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SHDAB), and N-dodecyl-N,N-dimethyl-2-ammonio-acetate (C12BE), in phosphate buffer solution (PBS) have been studied by surface tension measurements, small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and rheological experiments. It has been confirmed that the length of alkyl chain is a key parameter of interaction between betaines and PAM. Differences in scattering contrast between X-ray and neutrons for surfactants and PAM molecules provide the opportunity to separately follow the changes of structure of PAM and surfactant aggregates. At concentrations of betaines higher than CMC (critical micelle concentration) and C2 (CMC of surfactant with the presence of polymer), spherical micelles are formed in betaines and betaines/PAM solutions. Transition from spherical to rod-like aggregates (micelles) has been observed in solutions of Surfactin and Surfactin/SDDAB (αSurfactin = 0.67 (molar fraction)) with addition of 0.8 wt % of PAM. The conformation change of PAM molecules only can be observed for Surfactin/SDDAB/PAM system. Viscosity values follow the structural changes suggested from scattering measurements i.e., gradually increases for mixtures PAM → Surfactin/PAM → Surfactin/SDDAB/PAM in PBS.

  12. Study on the structure of Fe sub 2 O sub 3 xerogels by small angle X-ray scattering

    CERN Document Server

    Liu Yi; Zhao Xin; Yang Tong Hua; Zhao Hui; Rong Li Xia; Zhang Jing; Wang Jun; Dong Bao Zhong

    2002-01-01

    Small angle X-ray scattering (SAXS) with synchrotron radiation as X-ray source is used to study the pore structure of Fe sub 2 O sub 3 xerogels prepared by sol-gel procedure and then heat-treated at different temperatures. By analysing the distribution of diameters of the pores, specific surfaces and fractal behaviors in samples, the characters and mechanisms of pores growing are discussed. The results show that the pores in Fe sub 2 O sub 3 xerogels are polydisperse and the structure of the pores is mass fractal. With increase in heat-treatment temperature, the average size of diameters of the pores and the dimension of fractal of Fe sub 2 O sub 3 xerogels are increased, whereas the scale range possessing fractal behavior become narrow

  13. Bacteriophage T7 structure according to the data of small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Rol'bin, Yu.A.; Svergun, D.I.; Fejgin, L.A.; Gashpar, Sh.; Ronto, D.

    1980-01-01

    An attempt is made to obtain complete data on the form, sizes, weight and hydration of the T7 bacteriophage cultivated on E.coli cells and the peculiarities of phage DNA structure using the method of small-angle scattering

  14. Study on microstructures of advanced metallic materials by small-angle X-ray and neutron scattering

    International Nuclear Information System (INIS)

    Ohnuma, Masato; Suzuki, Jun-ichi

    2006-01-01

    The microstructure of metal-nonmetal nano-granular soft magnetic films, precipitation hardened stainless steel and Al-Mg-Si alloys, have been studied by small-angle X-ray/neutron scattering (SAXS/SANS). Quantitative evaluation of average scale of their microstructures in nanometer scale has been accomplished by SAXS and SANS. Using this information, the contribution of the microstructures in nanometer scale has been accomplished by SAXS and SANS. Using this information, the contribution of the microstructures to the magnetic and mechanical properties are discussed in this paper. (author)

  15. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Liu Yifei; Manjubala, Inderchand; Fratzl, Peter; Roschger, Paul; Schell, Hanna; Duda, Georg N

    2010-01-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  16. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yifei; Manjubala, Inderchand; Fratzl, Peter [Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam (Germany); Roschger, Paul [4th Medical Department, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1140 Vienna (Austria); Schell, Hanna; Duda, Georg N, E-mail: fratzl@mpikg.mpg.d [Julius Wolff Institut and Center for Musculoskeletal Surgery, Charite- University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin (Germany)

    2010-10-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  17. Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids.

    Science.gov (United States)

    Nguyen, Hung T; Pabit, Suzette A; Meisburger, Steve P; Pollack, Lois; Case, David A

    2014-12-14

    A new method is introduced to compute X-ray solution scattering profiles from atomic models of macromolecules. The three-dimensional version of the Reference Interaction Site Model (RISM) from liquid-state statistical mechanics is employed to compute the solvent distribution around the solute, including both water and ions. X-ray scattering profiles are computed from this distribution together with the solute geometry. We describe an efficient procedure for performing this calculation employing a Lebedev grid for the angular averaging. The intensity profiles (which involve no adjustable parameters) match experiment and molecular dynamics simulations up to wide angle for two proteins (lysozyme and myoglobin) in water, as well as the small-angle profiles for a dozen biomolecules taken from the BioIsis.net database. The RISM model is especially well-suited for studies of nucleic acids in salt solution. Use of fiber-diffraction models for the structure of duplex DNA in solution yields close agreement with the observed scattering profiles in both the small and wide angle scattering (SAXS and WAXS) regimes. In addition, computed profiles of anomalous SAXS signals (for Rb(+) and Sr(2+)) emphasize the ionic contribution to scattering and are in reasonable agreement with experiment. In cases where an absolute calibration of the experimental data at q = 0 is available, one can extract a count of the excess number of waters and ions; computed values depend on the closure that is assumed in the solution of the Ornstein-Zernike equations, with results from the Kovalenko-Hirata closure being closest to experiment for the cases studied here.

  18. Comparison of X-ray and neutron small-angle scattering from an Al-Zn alloy

    International Nuclear Information System (INIS)

    Gerold, V.; Epperson, J.E.; Gerstenberg, K.W.

    1978-01-01

    The normalized integrated small-angle scattered intensity for Al-Zn alloys should be independent of whether the measurements are made with X-rays or neutrons. In order to check this, and thus the correction and standardization processes, the small-angle scattering from an Al-5.05 at.% Zn alloy containing GP zones was measured with these two types of radiation. The data were corrected and converted to absolute units with reference to the commonly accepted secondary standards: vanadium for the neutron data and polyethylene (Lupolen) for the X-ray data. The results are shown to differ by, at best, 6% if reasonable values for the change in atomic volume with alloy composition are taken into account. These findings are compared with those available from the literature, and the consistency is found to be somewhat lacking. Additional careful work is clearly needed to determine if the difficulty is traceable to the data correction or to the conversion to absolute units. (Auth.)

  19. Structure and property characterization of low-k dielectric porous thin films determined by x-ray reflectivity and small-angle neutron scattering

    International Nuclear Information System (INIS)

    Lin, Eric K.; Lee, Hae-jeong; Wang, Howard; Wu Wenli

    2001-01-01

    A novel methodology using a combination of high energy ion scattering, x-ray reflectivity, and small angle neutron scattering is developed to characterize the structure and properties of porous thin films for use as low-k dielectric materials. Ion scattering is used to determine the elemental composition of the film. X-ray reflectivity is used to measure the average electron density, film thickness, and electron density depth profile. Small angle neutron scattering is used to determine the pore structure and pore connectivity. Combining information from all three techniques, the film porosity and matrix material density can be uniquely determined

  20. Investigating the Effect of Adding Drug (Lidocaine) to a Drug Delivery System Using Small-Angle X-Ray Scattering

    Science.gov (United States)

    Balogh, Joakim; Pedersen, Jan Skov

    The effect on a model drug delivery system when adding a drug, lidocaine, has been studied. Temperature and concentration dependence of a nonionic microemulsion with part of the oil, 1 and %[vol.]10, substituted with drug has been investigated. A nonionic oil-in-water microemulsion consisting of CH3(CH2)11(OCH2CH2)5OH, (C12E5), decane, water and the drug (lidocaine) that has been used to substitute part of the oil was studied. The microscopic differences have been derived from small-angle X-ray scattering (SAXS) data and the results are compared with light scattering data. Using these results together with the macroscopic differences, as observed in the phase diagram (lowering of phase boundaries), between the systems with and without lidocaine can be explained.

  1. Quantifying "Softness" of Organic Coatings on Gold Nanoparticles Using Correlated Small-Angle X-ray and Neutron Scattering.

    Science.gov (United States)

    Diroll, Benjamin T; Weigandt, Katie M; Jishkariani, Davit; Cargnello, Matteo; Murphy, Ryan J; Hough, Lawrence A; Murray, Christopher B; Donnio, Bertrand

    2015-12-09

    Small-angle X-ray and neutron scattering provide powerful tools to selectively characterize the inorganic and organic components of hybrid nanomaterials. Using hydrophobic gold nanoparticles coated with several commercial and dendritic thiols, the size of the organic layer on the gold particles is shown to increase from 1.2 to 4.1 nm. A comparison between solid-state diffraction from self-assembled lattices of nanoparticles and the solution data from neutron scattering suggests that engineering softness/deformability in nanoparticle coatings is less straightforward than simply increasing the organic size. The "dendritic effect" in which higher generations yield increasingly compact molecules explains changes in the deformability of organic ligand shells.

  2. Time-Resolving Study of Stress-Induced Transformations of Isotactic Polypropylene through Wide Angle X-ray Scattering Measurements

    Directory of Open Access Journals (Sweden)

    Finizia Auriemma

    2018-02-01

    Full Text Available The development of a highly oriented fiber morphology by effect of tensile deformation of stereodefective isotactic polypropylene (iPP samples, starting from the unoriented γ form, is studied by following the transformation in real time during stretching through wide angle X-ray scattering (WAXS measurements. In the stretching process, after yielding, the initial γ form transforms into the mesomorphic form of iPP through mechanical melting and re-crystallization. The analysis of the scattering invariant measured in the WAXS region highlights that the size of the mesomorphic domains included in the well oriented fiber morphology obtained at high deformations increases through a process which involves the coalescence of the small fragments formed by effect of tensile stress during lamellar destruction with the domain of higher dimensions.

  3. Small-Angle X-Ray Scattering for Imaging of Surface Layers on Intact Bacteria in the Native Environment

    Science.gov (United States)

    Sekot, Gerhard; Schuster, David; Messner, Paul; Pum, Dietmar

    2013-01-01

    Crystalline cell surface layers (S-layers) represent a natural two-dimensional (2D) protein self-assembly system with nanometer-scale periodicity that decorate many prokaryotic cells. Here, we analyze the S-layer on intact bacterial cells of the Gram-positive organism Geobacillus stearothermophilus ATCC 12980 and the Gram-negative organism Aquaspirillum serpens MW5 by small-angle X-ray scattering (SAXS) and relate it to the structure obtained by transmission electron microscopy (TEM) after platinum/carbon shadowing. By measuring the scattering pattern of X rays obtained from a suspension of bacterial cells, integral information on structural elements such as the thickness and lattice parameters of the S-layers on intact, hydrated cells can be obtained nondestructively. In contrast, TEM of whole mounts is used to analyze the S-layer lattice type and parameters as well as the physical structure in a nonaqueous environment and local information on the structure is delivered. Application of SAXS to S-layer research on intact bacteria is a challenging task, as the scattering volume of the generally thin (3- to 30-nm) bacterial S-layers is low in comparison to the scattering volume of the bacterium itself. For enhancement of the scattering contrast of the S-layer in SAXS measurement, either silicification (treatment with tetraethyl orthosilicate) is used, or the difference between SAXS signals from an S-layer-deficient mutant and the corresponding S-layer-carrying bacterium is used for determination of the scattering signal. The good agreement of the SAXS and TEM data shows that S-layers on the bacterial cell surface are remarkably stable. PMID:23504021

  4. Effects of phosphonium-based ionic liquids on phospholipid membranes studied by small-angle X-ray scattering

    Czech Academy of Sciences Publication Activity Database

    Kontro, I.; Svedström, K.; Duša, Filip; Ahvenainen, P.; Ruokonen, S. K.; Witos, J.; Wiedmer, S. K.

    2016-01-01

    Roč. 201, DEC (2016), s. 59-66 ISSN 0009-3084 Institutional support: RVO:68081715 Keywords : phospholipids * x-ray scattering Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.361, year: 2016

  5. The small-angle X-ray scattering beamline of the Brazilian Synchrotron Light Laboratory

    International Nuclear Information System (INIS)

    Kellermann, G.; Vicentin, F.; Tamura, E.; Rocha, M.; Tolentino, H.; Craievich, A.; Barbosa, A.; Torriani, I.

    1997-01-01

    This paper describes the small-angle scattering beamline built at the Brazilian synchrotron light laboratory (LNLS). Vertical focusing of the synchrotron beam is achieved by an elastically bent gold-plated cylindrical mirror. An asymmetric cut curved triangle-shaped silicon single crystal (111 reflection) is used for monochromatization and horizontal focusing. The mirror, monochromator optics and 2θ arm were designed to cover the spectral range between 1.0 and 2.0 A. Three slit sets, a secondary photon shutter, two beam monitors, filters and absorbers, a multi-sample holder, a vacuum path, a beam-stopper and a set of detectors are the basic components of the workstation. The stepping motors are equipped with specially designed encoders. All mechanical and pneumatic movements and detectors can be remotely controlled using a direct panel or a PC. (orig.)

  6. Small-angle x-ray scattering/diffraction system for studies of biological and other materials at the Stanford Synchrotron Radiation Laboratory (abstract)

    International Nuclear Information System (INIS)

    Wakatsuki, S.; Hodgson, K.O.; Eliezer, D.; Rice, M.; Hubbard, S.; Gillis, N.; Doniach, S.; Spann, U.

    1992-01-01

    A versatile small-angle x-ray diffraction/scattering system has been developed at Stanford Synchrotron Radiation Laboratory for studies of biological and other materials. The system includes two sets of collimation slits separated by an ionization chamber, a sample holder cooled by a circulation bath, a vacuum/He scattering path after the sample holder and a detector, either a linear one-dimensional position-sensitive proportional counter or a position-sensitive quadrant detector. Data aquisition is controlled by a VAXstation through a CAMAC interface. Menu-driven data acquisition and on-line analysis software has been developed. The system can be used to collect small- to intermediate-angle x-ray scattering and diffraction data. Monochromatic, anomalous, and time-resolved diffraction/scattering experiments are possible. A time-resolved spectrophotometer using photodiode arrays has also been developed for simultaneous measurements of optical absorption spectra and x-ray scattering/diffraction

  7. Fluid adsorption in ordered mesoporous solids determined by in situ small-angle X-ray scattering.

    Science.gov (United States)

    Findenegg, Gerhard H; Jähnert, Susanne; Müter, Dirk; Prass, Johannes; Paris, Oskar

    2010-07-14

    The adsorption of two organic fluids (n-pentane and perfluoropentane) in a periodic mesoporous silica material (SBA-15) is investigated by in situ small-angle X-ray scattering (SAXS) using synchrotron radiation. Structural changes are monitored as the ordered and disordered pores in the silica matrix are gradually filled with the fluids. The experiments yield integrated peak intensities from up to ten Bragg reflections from the 2D hexagonal pore lattice, and additionally diffuse scattering contributions arising from disordered (mostly intrawall) porosity. The analysis of the scattering data is based on a separation of these two contributions. Bragg scattering is described by adopting a form factor model for ordered pores of cylindrical symmetry which accounts for the filling of the microporous corona, the formation of a fluid film at the pore walls, and condensation of the fluid in the core. The filling fraction of the disordered intrawall pores is extracted from the diffuse scattering intensity and its dependence on the fluid pressure is analyzed on the basis of a three-phase model. The data analysis introduced here provides an important generalisation of a formalism presented recently (J. Phys. Chem. C, 2009, 13, 15201), which was applicable to contrast-matching fluids only. In this way, the adsorption behaviour of fluids into ordered and disordered pores in periodic mesoporous materials can be analyzed quantitatively irrespective of the fluid density.

  8. Small-angle neutron and X-ray scattering studies of supraatomic structure of synthetic quartz irradiated by fast neutrons

    International Nuclear Information System (INIS)

    Lebedev, V.M.; Lebedev, V.T.; Orlov, S.P.; Golubkov, V.V.; Pevzner, B.Z.; Tolstikhin, I.N.

    2008-01-01

    Quartz nanostructures have been simulated for the investigation into diffusion of gases in the Earth crust. The nanostructure of synthetic quartz irradiated by fast neutrons with energy E n >0.1 MeV was studied by neutron and X-ray small-angle scattering. The range of neutron fluence is of 10 17 cm -2 up to 2x10 -2 0 cm -2 . In the irradiated samples the different kinds of defects such as point-like, extended linear (dislocations) and globular (size ∼100 nm, amorphous phase nuclei) were observed. The density of highly irradiated quartz (fluence 2x10 20 cm -2 ) is shown to decrease by 0.39 g/cm 2 and reach the magnitude of 2.260 g/cm 2 corresponding to 100% metamict phase. The first results of model structures helium saturation have been received [ru

  9. X-ray magnetic circular dichroism and small angle neutron scattering studies of thiol capped gold nanoparticles

    International Nuclear Information System (INIS)

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M.A.; Haskel, D.; te Velthuis, S.G.E; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian Fernandez, C.; Garcia, M.A.

    2009-01-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 · 10 -4 was found at the Au L 3 edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M s , of 0.06 emu/g Au . SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences

  10. X-ray magnetic circular dichroism and small angle neutron scattering studies of thiol capped gold nanoparticles.

    Science.gov (United States)

    de la Venta, J; Bouzas, V; Pucci, A; Laguna-Marco, M A; Haskel, D; te Velthuis, S G E; Hoffmann, A; Lal, J; Bleuel, M; Ruggeri, G; de Julián Fernández, C; García, M A

    2009-11-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 x 10(-4) was found at the Au L3 edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M(S), of 0.06 emu/g(Au). SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.

  11. X-ray magnetic circular dichroism and small angle neutron scattering studies of thiol capped gold nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M. A.; Haskel, D.; te Velthuis, S. G. E; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian Fernandez, C.; Garcia, M. A.; Univ.Complutense de Madrid; Inst. de Magnetismo Aplicado; Univ. of Pisa; Lab. di Magnetismo Molecolare

    2009-01-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 {center_dot} 10{sup -4} was found at the Au L{sub 3} edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M{sub s}, of 0.06 emu/g{sub Au}. SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.

  12. X-ray magnetic circular dichroism and small angle neutron scattering study of thiol capped gold nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M. A.; Haskel, D.; Pinel, E. F.; te Velthuis, S. G. E.; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian, C.; Garcia, M. A.; Univ. Complutense de Madrid; Inst. de Magnetismo Aplicado UCM; Univ. Pisa; Univ. di Padova

    2009-11-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 {center_dot} 10{sup -4} was found at the Au L{sub 3} edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M{sub s}, of 0.06 emu/g{sub Au}. SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.

  13. Ultra-small angle neutron scattering and X-ray tomography studies of caseinate-hydroxyapatite microporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Ritzoulis, C., E-mail: critzou@food.teithe.gr [ATEI of Thessaloniki, PO Box 141, 57400 Thessaloniki (Greece); Strobl, M. [Ruprecht-Karls-University Heidelberg, Physikalisch-Chemisches Institut, Im Neuenheimer Feld 229, 69120 Heidelberg (Germany); Helmholtz Centre Berlin for Materials and Energy (former Hahn-Meitner Institute), SF1, Glienicker Str. 100, 14109 Berlin (Germany); Panayiotou, C. [Aristotle University of Thessaloniki, University Campus (Greece); Choinka, G. [Helmholtz Centre Berlin for Materials and Energy (former Hahn-Meitner Institute), SF1, Glienicker Str. 100, 14109 Berlin (Germany); Tsioptsias, C. [Aristotle University of Thessaloniki, University Campus (Greece); Vasiliadou, C. [KEPAMAH, 22nd April 1, 63100 Polygyros, Chalkidiki (Greece); Vasilakos, V. [University of Crete, Department of Biology, 71409 Heraklion, Crete (Greece); Beckmann, F.; Herzen, J.; Donath, T. [Institute for Materials Research, GKSS-Research Center, 21502 Geesthacht (Germany)

    2010-09-01

    Microporous hydroxyapatite-protein composite materials of bimodal pore size distribution, intended for utilization as bone regeneration scaffolds, have been prepared by means of milk caseinate emulsion droplet templating. Ultra-small angle neutron scattering (USANS) has been utilized in order to obtain information on the size distribution of the smaller pores (less than tens of micrometers), as compared to the emulsions that have been initially used as templates. The samples were subsequently visualized in 3 dimensions using synchrotron radiation X-ray tomography, where information concerning the larger pores has been obtained. The examination of the samples confirmed a strong correlation between the size of the templating droplets and the produced pores. In addition, 1 {mu}m-sized pores appear to adhere to the surface of 20-70 {mu}m pores, providing an irregular surface on the large pore walls, a desirable feature in bone-mimicking materials.

  14. Quantitative analysis of inclusions in low carbon free cutting steel using small-angle X-ray and neutron scattering

    International Nuclear Information System (INIS)

    Oba, Yojiro; Koppoju, Suresh; Ohnuma, Masato; Kinjo, Yuki; Tomota, Yo; Morooka, Satoshi; Suzuki, Jun-ichi; Yamaguchi, Daisuke; Koizumi, Satoshi; Sato, Masugu; Shiraga, Tetsuo

    2012-01-01

    The microstructure of inclusions in low carbon free cutting steel without lead addition was investigated using small-angle X-ray scattering (SAXS) coupled with small-angle neutron scattering (SANS). The two-dimensional (2D) SAXS pattern shows clear scattering due to inclusions composed of large elongated particles aligned along the rolling direction, and small isotropic particles. From a comparison of the simulated and experimental 2D SAXS patterns, the shapes of the inclusions are regarded as ellipsoid for the larger inclusions and spherical for the smaller inclusions. The length of the minor axis in the large inclusion is 6.9 μm, while the diameter of the small inclusion is 0.50 μm. The aspect ratio of the large inclusion is estimated to be 3.8 in the lower q region, and is reduced slightly to 3.5 in the higher q region from the azimuthal plots. The results of an alloy contrast variation (ACV) analysis using both the SAXS and SANS data indicate that the chemical composition of the inclusions is almost NaCl-type manganese sulfide, and that the amount of iron sulfide is low. The volume fractions are 1.4% for the large inclusions and 0.2% for the small inclusions. This is consistent with the area fraction estimated using an optical microscope, and indicates that nearly all of the sulfur in the steel sample forms the manganese sulfide inclusions. (author)

  15. A combined small-angle X-ray and neutron scattering study of the structure of purified soluble gastrointestinal mucins.

    Science.gov (United States)

    Georgiades, Pantelis; di Cola, Emanuela; Heenan, Richard K; Pudney, Paul D A; Thornton, David J; Waigh, Thomas A

    2014-12-01

    The structures of purified soluble porcine gastric (Muc5ac) and duodenal (Muc2) mucin solutions at neutral and acidic pH were examined using small-angle X-ray scattering and small-angle neutron scattering experiments. We provide evidence for the morphology of the network above the semidilute overlap concentration and above the entanglement concentration. Furthermore, we investigated the gelation of both types of mucin solutions in response to a reduction in pH, where we observed the formation of large-scale heterogeneities within the polymer solutions, typical of microphase-separated gels. The concentration dependence of the inhomogeneity length scale (Ξ) and the amplitude of the excess scattering intensity [I(ex) (0)] are consistent with previously studied gelled synthetic polymeric systems. The persistence lengths of the chains were found to be similar for both Muc5ac and Muc2 from Kratky plots of the neutron data (8 ± 2 nm). © 2014 Wiley Periodicals, Inc.

  16. Conformational Flexibility of Proteins Involved in Ribosome Biogenesis: Investigations via Small Angle X-ray Scattering (SAXS

    Directory of Open Access Journals (Sweden)

    Dritan Siliqi

    2018-02-01

    Full Text Available The dynamism of proteins is central to their function, and several proteins have been described as flexible, as consisting of multiple domains joined by flexible linkers, and even as intrinsically disordered. Several techniques exist to study protein structures, but small angle X-ray scattering (SAXS has proven to be particularly powerful for the quantitative analysis of such flexible systems. In the present report, we have used SAXS in combination with X-ray crystallography to highlight their usefulness at characterizing flexible proteins, using as examples two proteins involved in different steps of ribosome biogenesis. The yeast BRCA2 and CDKN1A-interactig protein, Bcp1, is a chaperone for Rpl23 of unknown structure. We showed that it consists of a rigid, slightly elongated protein, with a secondary structure comprising a mixture of alpha helices and beta sheets. As an example of a flexible molecule, we studied the SBDS (Shwachman-Bodian-Diamond Syndrome protein that is involved in the cytoplasmic maturation of the 60S subunit and constitutes the mutated target in the Shwachman-Diamond Syndrome. In solution, this protein coexists in an ensemble of three main conformations, with the N- and C-terminal ends adopting different orientations with respect to the central domain. The structure observed in the protein crystal corresponds to an average of those predicted by the SAXS flexibility analysis.

  17. Structural features of various kinds of carbon fibers as determined by small-angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Denghua; Du, Sujun [Shanxi Transportation Research Institute, National and Local Joint Engineering Laboratory of Advanced Road Materials, Taiyuan (China); Lu, Chunxiang; Wu, Gangping; Yang, Yu; Wang, Lina [Chinese Academy of Sciences, National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Taiyuan (China)

    2016-11-15

    The structural features of polyacrylonitrile and pitch-based carbon fibers were analyzed from a comprehensive point of view by X-ray measurements and related techniques. The results indicated that the undulating graphite ribbon with embedded microvoid was the main structural unit for graphitic fibers. The void's parameters for these fibers could be obtained directly by small-angle X-ray scattering following the classic method deduced based on the typical two-phase system (i.e., Porod's law, Guinier's law and Debye's law). The non-graphitic fibers, however, were composed of two-dimensional turbostratic crystallites in the aggregation of microfibril and thus had a quasi two-phase structure (microfibril, interfibrillar amorphous structure and microvoid embedded within the microfibril). The extended Debye or Beaucage model in this case should be applied in order to obtain the structural parameters. It also revealed that the quasi two-phase system would complete its transformation to two-phase system during high-temperature graphitization. Therefore, the degree of graphitization was speculated to be the essential indicator distinguishing graphitic fibers from non-graphitic ones and would be helpful in understanding the transformation of structural features during the graphitization of carbon fibers. (orig.)

  18. Structural features of various kinds of carbon fibers as determined by small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Li, Denghua; Du, Sujun; Lu, Chunxiang; Wu, Gangping; Yang, Yu; Wang, Lina

    2016-01-01

    The structural features of polyacrylonitrile and pitch-based carbon fibers were analyzed from a comprehensive point of view by X-ray measurements and related techniques. The results indicated that the undulating graphite ribbon with embedded microvoid was the main structural unit for graphitic fibers. The void's parameters for these fibers could be obtained directly by small-angle X-ray scattering following the classic method deduced based on the typical two-phase system (i.e., Porod's law, Guinier's law and Debye's law). The non-graphitic fibers, however, were composed of two-dimensional turbostratic crystallites in the aggregation of microfibril and thus had a quasi two-phase structure (microfibril, interfibrillar amorphous structure and microvoid embedded within the microfibril). The extended Debye or Beaucage model in this case should be applied in order to obtain the structural parameters. It also revealed that the quasi two-phase system would complete its transformation to two-phase system during high-temperature graphitization. Therefore, the degree of graphitization was speculated to be the essential indicator distinguishing graphitic fibers from non-graphitic ones and would be helpful in understanding the transformation of structural features during the graphitization of carbon fibers. (orig.)

  19. Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution.

    Science.gov (United States)

    Polte, Jörg; Erler, Robert; Thünemann, Andreas F; Sokolov, Sergey; Ahner, T Torsten; Rademann, Klaus; Emmerling, Franziska; Kraehnert, Ralph

    2010-02-23

    Gold nanoparticles (AuNP) were prepared by the homogeneous mixing of continuous flows of an aqueous tetrachloroauric acid solution and a sodium borohydride solution applying a microstructured static mixer. The online characterization and screening of this fast process ( approximately 2 s) was enabled by coupling a micromixer operating in continuous-flow mode with a conventional in-house small angle X-ray scattering (SAXS) setup. This online characterization technique enables the time-resolved investigation of the growth process of the nanoparticles from an average radius of ca. 0.8 nm to about 2 nm. To the best of our knowledge, this is the first demonstration of a continuous-flow SAXS setup for time-resolved studies of nanoparticle formation mechanisms that does not require the use of synchrotron facilities. In combination with X-ray absorption near edge structure microscopy, scanning electron microscopy, and UV-vis spectroscopy the obtained data allow the deduction of a two-step mechanism of gold nanoparticle formation. The first step is a rapid conversion of the ionic gold precursor into metallic gold nuclei, followed by particle growth via coalescence of smaller entities. Consequently it could be shown that the studied synthesis serves as a model system for growth driven only by coalescence processes.

  20. Direct monitoring of calcium-triggered phase transitions in cubosomes using small-angle X-ray scattering combined with microfluidics

    DEFF Research Database (Denmark)

    Ghazal, Aghiad; Gontsarik, Mark; Kutter, Jörg P.

    2016-01-01

    This article introduces a simple microfluidic device that can be combined with synchrotron small-angle X-ray scattering (SAXS) for monitoring dynamic structural transitions. The microfluidic device is a thiol-ene-based system equipped with 125 µm-thick polystyrene windows, which are suitable for X....... The combination of microfluidics with X-ray techniques can be used for investigating protein unfolding, for monitoring the formation of nanoparticles in real time, and for other biomedical and pharmaceutical investigations....

  1. Characterisation of large scale structures in starch granules via small-angle neutron and X-ray scattering.

    Science.gov (United States)

    Doutch, James; Gilbert, Elliot P

    2013-01-02

    Small angle scattering (SAS) techniques have a distinguished track record in illuminating the semi-crystalline lamellar structure of the starch granule. To date, there have been few attempts to use SAS techniques to characterise larger-scale structures reported from imaging techniques such as growth rings, blocklets or pores, nor how these structures would modulate the well-known scattering arising from the semi-crystalline lamellar structure. In this study, SAS data collected over an extended q range were gathered from dry and hydrated starch powders from varied botanical sources. The use of neutrons and X-rays, as well as comparing dry and hydrated granules, allowed different levels of contrast in scattering length density to be probed and therefore selected structural regions to be highlighted. The lowest q range, 0.002-0.04 Å(-1), was found to be dominated by scattering from the starch granules themselves, especially in the dry powders; however an inflection point from a low contrast structure was observed at 0.035 Å(-1). The associated scattering was interpreted within a unified scattering framework with the inflexion point correlating with a structure with radius of gyration ~90 Å - a size comparable to small blocklets or superhelices. In hydrated starches, it is observed that there is an inflection point between lamellar and q(-4) power-law scattering regions at approximately 0.004 Å(-1) which may correlate with growth rings and large blocklets. The implications of these findings on existing models of starch lamellar scattering are discussed. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  2. Ultra-small-angle X-ray scattering characterization of diesel/gasoline soot: sizes and particle-packing conditions

    Science.gov (United States)

    Kameya, Yuki; Lee, Kyeong O.

    2013-10-01

    Regulations on particulate emissions from internal combustion engines tend to become more stringent, accordingly the importance of particulate filters in the after-treatment system has been increasing. In this work, the applicability of ultra-small-angle X-ray scattering (USAXS) to diesel soot cake and gasoline soot was investigated. Gasoline-direct-injection engine soot was collected at different fuel injection timings. The unified fits method was applied to analyze the resultant scattering curves. The validity of analysis was supported by comparing with carbon black and taking the sample images using a transmission electron microscope, which revealed that the primary particle size ranged from 20 to 55 nm. In addition, the effects of particle-packing conditions on the USAXS measurement were demonstrated by using samples suspended in acetone. Then, the investigation was extended to characterization of diesel soot cake deposited on a diesel particulate filter (DPF). Diesel soot was trapped on a small piece of DPF at different deposition conditions which were specified using the Peclet number. The dependence of scattering curve on soot-deposition conditions was demonstrated. To support the interpretation of the USAXS results, soot cake samples were observed using a scanning electron microscope and the influence of particle-packing conditions on scattering curve was discussed.

  3. Ultra-small-angle X-ray scattering characterization of diesel/gasoline soot: sizes and particle-packing conditions

    International Nuclear Information System (INIS)

    Kameya, Yuki; Lee, Kyeong O.

    2013-01-01

    Regulations on particulate emissions from internal combustion engines tend to become more stringent, accordingly the importance of particulate filters in the after-treatment system has been increasing. In this work, the applicability of ultra-small-angle X-ray scattering (USAXS) to diesel soot cake and gasoline soot was investigated. Gasoline-direct-injection engine soot was collected at different fuel injection timings. The unified fits method was applied to analyze the resultant scattering curves. The validity of analysis was supported by comparing with carbon black and taking the sample images using a transmission electron microscope, which revealed that the primary particle size ranged from 20 to 55 nm. In addition, the effects of particle-packing conditions on the USAXS measurement were demonstrated by using samples suspended in acetone. Then, the investigation was extended to characterization of diesel soot cake deposited on a diesel particulate filter (DPF). Diesel soot was trapped on a small piece of DPF at different deposition conditions which were specified using the Peclet number. The dependence of scattering curve on soot-deposition conditions was demonstrated. To support the interpretation of the USAXS results, soot cake samples were observed using a scanning electron microscope and the influence of particle-packing conditions on scattering curve was discussed

  4. Small Angle X-ray and Neutron Scattering: Powerful Tools for Studying the Structure of Drug-Loaded Liposomes

    Science.gov (United States)

    Di Cola, Emanuela; Grillo, Isabelle; Ristori, Sandra

    2016-01-01

    Nanovectors, such as liposomes, micelles and lipid nanoparticles, are recognized as efficient platforms for delivering therapeutic agents, especially those with low solubility in water. Besides being safe and non-toxic, drug carriers with improved performance should meet the requirements of (i) appropriate size and shape and (ii) cargo upload/release with unmodified properties. Structural issues are of primary importance to control the mechanism of action of loaded vectors. Overall properties, such as mean diameter and surface charge, can be obtained using bench instruments (Dynamic Light Scattering and Zeta potential). However, techniques with higher space and time resolution are needed for in-depth structural characterization. Small-angle X-ray (SAXS) and neutron (SANS) scattering techniques provide information at the nanoscale and have therefore been largely used to investigate nanovectors loaded with drugs or other biologically relevant molecules. Here we revise recent applications of these complementary scattering techniques in the field of drug delivery in pharmaceutics and medicine with a focus to liposomal carriers. In particular, we highlight those aspects that can be more commonly accessed by the interested users. PMID:27043614

  5. Small Angle X-ray and Neutron Scattering: Powerful Tools for Studying the Structure of Drug-Loaded Liposomes

    Directory of Open Access Journals (Sweden)

    Emanuela Di Cola

    2016-03-01

    Full Text Available Nanovectors, such as liposomes, micelles and lipid nanoparticles, are recognized as efficient platforms for delivering therapeutic agents, especially those with low solubility in water. Besides being safe and non-toxic, drug carriers with improved performance should meet the requirements of (i appropriate size and shape and (ii cargo upload/release with unmodified properties. Structural issues are of primary importance to control the mechanism of action of loaded vectors. Overall properties, such as mean diameter and surface charge, can be obtained using bench instruments (Dynamic Light Scattering and Zeta potential. However, techniques with higher space and time resolution are needed for in-depth structural characterization. Small-angle X-ray (SAXS and neutron (SANS scattering techniques provide information at the nanoscale and have therefore been largely used to investigate nanovectors loaded with drugs or other biologically relevant molecules. Here we revise recent applications of these complementary scattering techniques in the field of drug delivery in pharmaceutics and medicine with a focus to liposomal carriers. In particular, we highlight those aspects that can be more commonly accessed by the interested users.

  6. Small Angle X-ray and Neutron Scattering: Powerful Tools for Studying the Structure of Drug-Loaded Liposomes.

    Science.gov (United States)

    Di Cola, Emanuela; Grillo, Isabelle; Ristori, Sandra

    2016-03-28

    Nanovectors, such as liposomes, micelles and lipid nanoparticles, are recognized as efficient platforms for delivering therapeutic agents, especially those with low solubility in water. Besides being safe and non-toxic, drug carriers with improved performance should meet the requirements of (i) appropriate size and shape and (ii) cargo upload/release with unmodified properties. Structural issues are of primary importance to control the mechanism of action of loaded vectors. Overall properties, such as mean diameter and surface charge, can be obtained using bench instruments (Dynamic Light Scattering and Zeta potential). However, techniques with higher space and time resolution are needed for in-depth structural characterization. Small-angle X-ray (SAXS) and neutron (SANS) scattering techniques provide information at the nanoscale and have therefore been largely used to investigate nanovectors loaded with drugs or other biologically relevant molecules. Here we revise recent applications of these complementary scattering techniques in the field of drug delivery in pharmaceutics and medicine with a focus to liposomal carriers. In particular, we highlight those aspects that can be more commonly accessed by the interested users.

  7. A small-angle X-ray scattering study of the lyotropic nematic phase of vanadium pentoxide gels

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, P. [Universite de Paris-Sud, Orsay (France). Lab. de Phys. des Solides; Bourgaux, C.; Sergot, P.; Livage, J.

    1997-10-01

    Aqueous suspensions of vanadium pentoxide (V{sub 2}O{sub 5}) ribbons, also called Zocher phases, are known to display a lyotropic nematic phase. In this paper, it is shown how the small-angle X-ray scattering (SAXS) technique can provide useful information on the building blocks and their organization in this phase. SAXS experiments were performed either on unoriented samples or on samples aligned by a magnetic field or by shear flow. The scattering is comparable to that of the other classic lyotropic nematic phases displayed by stiff organic rod-like particles such as the tobacco mosaic virus. Scattering studies show that the building blocks have a ribbon shape, that their thickness is 9(1) A and indirectly that their width is several 100 A. Their length is known to be around a few thousand A and therefore could not be measured by SAXS. By following the average distance between the ribbons as a function of concentration, it is shown that the swelling of the phase is one-dimensional at large concentrations and two-dimensional at low concentrations. Finally, estimates of the nematic order parameter of a single domain sample and of samples sheared in a Couette cell have been obtained. (orig.). 24 refs.

  8. Structure of PEP-PEO block copolymer micelles: Exploiting the complementarity of small-angle X-ray scattering and static light scattering

    DEFF Research Database (Denmark)

    Jensen, Grethe Vestergaard; Shi, Qing; Hernansanz, María J.

    2011-01-01

    . The present work shows that the same information can be obtained by combining static light scattering (SLS) and small-angle X-ray scattering (SAXS), which provide information on, respectively, large and short length scales. Micelles of a series of block copolymers of poly(ethylene propylene)-b-poly(ethylene...... oxide) (PEP-PEO) in a 70% ethanol solution are investigated. The polymers have identical PEP blocks of 5.0 kDa and varying PEO blocks of 2.8-49 kDa. The SLS contrasts of PEP and PEO are similar, providing a homogeneous contrast, making SLS ideal for determining the overall micelle morphology. The SAXS...

  9. The nanomechanics of feather keratin studied by small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Pabisch, Silvia; Puchegger, Stephan; Peterlik, Herwig; Weiss, Ingrid; Kirchner, Helmut

    2012-01-01

    Full text: Feather keratin is a highly conserved protein of 98 amino acids synthesized intracellularly in aves. In the cortex of the tail covert feathers of the peacock it forms a crystalline structure, held together by disulfide bonds between the nine cysteines of the molecule. Despite the biological importance of the molecule, its spatial structure has not yet been determined. Fraser and Parry proposed a crystallographic arrangement of beta-barrels and relegate the N-terminus and the C-terminus to an amorphous matrix, akin to the situation in silk. Therefore, in-situ tension and compression tests were made to investigate the changes in axial and lateral direction. Nanoscopically a pronounced structural asymmetry between tension and compression rules out a dihedral axis normal to the fibril direction, and indicates a strong clip-like polarization of the molecule. Based on these X-ray diffraction data from Pavo cristatus feathers, a model is presented for the axial and lateral arrangement of the molecule in feather keratin, which integrates biochemical structure and mechanical experiments. (author)

  10. Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models

    DEFF Research Database (Denmark)

    Stovgaard, Kasper; Andreetta, Christian; Ferkinghoff-Borg, Jesper

    2010-01-01

    scattering bodies per amino acid led to significantly better results than a single scattering body. Conclusion: We show that the obtained point estimates allow the calculation of accurate SAXS curves from coarse-grained protein models. The resulting curves are on par with the current state-of-the-art program...... CRYSOL, which requires full atomic detail. Our method was also comparable to CRYSOL in recognizing native structures among native-like decoys. As a proof-of-concept, we combined the coarse-grained Debye calculation with a previously described probabilistic model of protein structure, Torus...

  11. Recent developments and ASAXS measurements at the ultra small angle X-ray scattering instrument of HASYLAB

    CERN Document Server

    Krosigk, G V; Gehrke, R; Kranold, R

    2001-01-01

    The wiggler beamline BW4 at the synchrotron radiation facility HASYLAB (DESY) is mainly designed for Ultra Small Angle X-ray Scattering (USAXS) and usually operated with detector-sample distances up to 13 m and at photon energies between 4 and 16 keV. With a new optical design the largest observable correlation distances have now been increased up to 9x10 sup 3 A. A grazing incidence set-up [P. Mueller-Buschbaum et al., Europhys. Lett. 42 (5) (1998) 517], vapor chamber, furnace, tensile testing machine and other instruments make the USAXS beamline attractive for a variety of scattering experiments [A. Endres et al., Rev. Sci. Instrum. 11 (1997) 68; A. Karl et al., J. Macromolecular Sci.-Phys. B 38 (5 and 6) (1999) 901; S. Minko et al., J. Macromolecular Sci., Phys. B 38 (5 and 6) (1999) 913]. A fully evacuated beampath allows high quality measurements with very low background signal. A photodiode mounted in the primary beam stop registers the primary beam flux simultaneously to the data acquisition and thus p...

  12. Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and X-ray scattering

    Science.gov (United States)

    Pan, Jianjun; Heberle, Frederick A.; Tristram-Nagle, Stephanie; Szymanski, Michelle; Koepfinger, Mary; Katsaras, John; Kučerka, Norbert

    2013-01-01

    We have determined the molecular structures of commonly used phosphatidylglycerols (PGs) in the commonly accepted biologically relevant fluid phase. This was done by simultaneously analyzing small angle neutron and X-ray scattering data, with the constraint of measured lipid volumes. We report the temperature dependence of bilayer parameters obtained using the one-dimensional scattering density profile model – which was derived from molecular dynamics simulations – including the area per lipid, the overall bilayer thickness, as well as other intrabilayer parameters (e.g., hydrocarbon thickness). Lipid areas are found to be larger than their phosphatidylcholine (PC) counterparts, a result likely due to repulsive electrostatic interactions taking place between the charged PG headgroups even in the presence of sodium counterions. In general, PG and PC bilayers show a similar response to changes in temperature and chain length, but differ in their response to chain unsaturation. For example, compared to PC bilayers, the inclusion of a first double bond in PG lipids results in a smaller incremental change to the area per lipid and bilayer thickness. However, the extrapolated lipid area of saturated PG lipids to infinite chain length is found to be similar to that of PCs, an indication of the glycerol–carbonyl backbone's pivotal role in influencing the lipid–water interface. PMID:22583835

  13. Characterization of cirrhosis and hepatocellular carcinoma using low-angle x-ray scattering signatures of serum

    International Nuclear Information System (INIS)

    Elshemey, Wael M; Desouky, Omar S; Mohammed, Mohammed S; Elsayed, Anwar A; El-houseini, Motawa E

    2003-01-01

    The diagnosis of hepatocellular carcinoma (HCC) usually occurs at late stages in the disease when there are few effective treatment options. The measurement of the concentration of tumour markers in the serum of patients is a complementary tool frequently used for the interpretation of diagnostic imaging results. It is also used as a prognostic tool for the detection of cancer. Unfortunately, the sensitivity of tumour markers is still low and many times it yields normal results for cirrhotic and HCC patients. In the current work, the detection possibility of the structural changes in serum proteins accompanying cirrhosis and HCC is investigated using a low-angle x-ray scattering (LAXS) technique. The results show that there are significant differences in the LAXS profiles of cirrhosis and HCC lyophilized serum samples compared to normal. The changes in shape, total counts and position of the first scattering peak at 4.8 deg., which was previously reported to be sensitive to the structural changes in protein, showed the most characteristic deviations from normal serum. The present results are promising and would offer a potentially helpful complementary tool for monitoring cirrhosis and HCC. (note)

  14. Automation and remote access of EMBL small angle X-ray scattering beamline X33 dedicated to biological macromolecules

    International Nuclear Information System (INIS)

    Weifeng Shang; Roessle, M.; Blanchet, C.; Zozulya, A.; Franke, D.; Petoukhov, M.; Kikhney, A.; Svergun, D.

    2009-01-01

    Full text: The small-angle X-ray scattering beamline X33 of the European Molecular Biology Laboratory (EMBL) at the DORIS III storage ring (HASYLAB/DESY) has been dedicated to structural studies of non-crystalline biological systems for more than two decades. In the last several years, the introduction of new optical systems (monochromator, mirror, slits etc) and detector systems (large area image plate Mar345 and PILATUS 1M) leads to an improvement of photon flux by a factor of 3 and a reduction of the exposure time by a factor of 7. Moreover, an automated sample changer has been constructed and in operation since August 2007. The data analysis pipeline consisting of the program suite yields the radius of gyration and forward scattering intensity using Guinier analysis (AutoRg), pair distance distribution function p(r) using indirect Fourier transform method (AutoGNOM), and bead models using ab initio shape determination (DAMMIN and DAMMIF). The results of these analysis which are immediately available after each measurement provides an invaluable tool for data quality control during the data collection. Furthermore, works on remote control of the integrated data collection and analysis software is ongoing and expected to be operated in late 2009 where users can send their samples and control the measurements at home institutes. (author)

  15. Measurement of carbon condensation using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    Energy Technology Data Exchange (ETDEWEB)

    Bagge-Hansen, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lauderbach, L. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hodgin, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bastea, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fried, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jones, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); van Buuren, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hansen, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benterou, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); May, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Graber, T. [Washington State Univ., Pullman, WA (United States); Jensen, B. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ilavsky, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Willey, T. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-24

    The dynamics of carboncondensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. As a result, the power-law slope is about –3, which is consistent with a complex disordered, irregular, or folded sp2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.

  16. High-throughput biological small-angle X-ray scattering with a robotically loaded capillary cell.

    Science.gov (United States)

    Nielsen, S S; Møller, M; Gillilan, R E

    2012-04-01

    With the rise in popularity of biological small-angle X-ray scattering (BioSAXS) measurements, synchrotron beamlines are confronted with an ever-increasing number of samples from a wide range of solution conditions. To meet these demands, an increasing number of beamlines worldwide have begun to provide automated liquid-handling systems for sample loading. This article presents an automated sample-loading system for BioSAXS beamlines, which combines single-channel disposable-tip pipetting with a vacuum-enclosed temperature-controlled capillary flow cell. The design incorporates an easily changeable capillary to reduce the incidence of X-ray window fouling and cross contamination. Both the robot-control and the data-processing systems are written in Python. The data-processing code, RAW, has been enhanced with several new features to form a user-friendly BioSAXS pipeline for the robot. The flow cell also supports efficient manual loading and sample recovery. An effective rinse protocol for the sample cell is developed and tested. Fluid dynamics within the sample capillary reveals a vortex ring pattern of circulation that redistributes radiation-damaged material. Radiation damage is most severe in the boundary layer near the capillary surface. At typical flow speeds, capillaries below 2 mm in diameter are beginning to enter the Stokes (creeping flow) regime in which mixing due to oscillation is limited. Analysis within this regime shows that single-pass exposure and multiple-pass exposure of a sample plug are functionally the same with regard to exposed volume when plug motion reversal is slow. The robot was tested on three different beamlines at the Cornell High-Energy Synchrotron Source, with a variety of detectors and beam characteristics, and it has been used successfully in several published studies as well as in two introductory short courses on basic BioSAXS methods.

  17. Microstructural characterization of dental zinc phosphate cements using combined small angle neutron scattering and microfocus X-ray computed tomography.

    Science.gov (United States)

    Viani, Alberto; Sotiriadis, Konstantinos; Kumpová, Ivana; Mancini, Lucia; Appavou, Marie-Sousai

    2017-04-01

    To characterize the microstructure of two zinc phosphate cement formulations in order to investigate the role of liquid/solid ratio and composition of powder component, on the developed porosity and, consequently, on compressive strength. X-ray powder diffraction with the Rietveld method was used to study the phase composition of zinc oxide powder and cements. Powder component and cement microstructure were investigated with scanning electron microscopy. Small angle neutron scattering (SANS) and microfocus X-ray computed tomography (XmCT) were together employed to characterize porosity and microstructure of dental cements. Compressive strength tests were performed to evaluate their mechanical performance. The beneficial effects obtained by the addition of Al, Mg and B to modulate powder reactivity were mitigated by the crystallization of a Zn aluminate phase not involved in the cement setting reaction. Both cements showed spherical pores with a bimodal distribution at the micro/nano-scale. Pores, containing a low density gel-like phase, developed through segregation of liquid during setting. Increasing liquid/solid ratio from 0.378 to 0.571, increased both SANS and XmCT-derived specific surface area (by 56% and 22%, respectively), porosity (XmCT-derived porosity increased from 3.8% to 5.2%), the relative fraction of large pores ≥50μm, decreased compressive strength from 50±3MPa to 39±3MPa, and favored microstructural and compositional inhomogeneities. Explain aspects of powder design affecting the setting reaction and, in turn, cement performance, to help in optimizing cement formulation. The mechanism behind development of porosity and specific surface area explains mechanical performance, and processes such as erosion and fluoride release/uptake. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Small-angle X-ray scattering studies of metastable intermediates of beta-lactoglobulin isolated after heat-induced aggregation

    DEFF Research Database (Denmark)

    Carrotta, R.; Arleth, L.; Pedersen, J.S.

    2003-01-01

    Small-angle x-ray scattering was used for studying intermediate species, isolated after heat-induced aggregation of the A variant of bovine P-lactoglobulin. The intermediates were separated in two fractions, the heated metastable dimer and heated metastable oligomers larger than the dimer. The pa...

  19. A new small-angle X-ray scattering set-up on the crystallography beamline I711 at MAX-lab

    DEFF Research Database (Denmark)

    Knaapila, M.; Svensson, C.; Barauskas, J.

    2009-01-01

    A small-angle X-ray scattering (SAXS) set-up has recently been developed at beamline I711 at the MAX II storage ring in Lund (Sweden). An overview of the required modifications is presented here together with a number of application examples. The accessible q range in a SAXS experiment is 0.009-0...

  20. Study of change in dispersion and orientation of clay platelets in a polymer nanocomposite during tensile test by variostage small-angle X-ray scattering

    CSIR Research Space (South Africa)

    Bandyopadhyay, J

    2012-04-01

    Full Text Available To understand the change in dispersion and orientation of clay platelets in three-dimensional space during tensile test, neat polymer and its nanocomposite samples were studied by small- and wide-angle X-ray scattering (SWAXS). The samples after...

  1. Small-angle X-ray scattering study of conditions for the formation of growth units of protein crystals in lysozyme solutions

    Science.gov (United States)

    Dyakova, Yu. A.; Ilina, K. B.; Konarev, P. V.; Kryukova, A. E.; Marchenkova, M. A.; Blagov, A. E.; Volkov, V. V.; Pisarevsky, Yu. V.; Kovalchuk, M. V.

    2017-05-01

    The structural composition of lysozyme solutions favorable for the formation of the tetragonal form of protein crystals was studied by synchrotron-based small-angle X-ray scattering depending on the protein concentration and the temperature. Along with lysozyme monomers, dimers and octamers are found in crystallization solutions; the octamer content increases with an increase in the protein concentration.

  2. A customizable software for fast reduction and analysis of large X-ray scattering data sets: applications of the new DPDAK package to small-angle X-ray scattering and grazing-incidence small-angle X-ray scattering.

    Science.gov (United States)

    Benecke, Gunthard; Wagermaier, Wolfgang; Li, Chenghao; Schwartzkopf, Matthias; Flucke, Gero; Hoerth, Rebecca; Zizak, Ivo; Burghammer, Manfred; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Trebbin, Martin; Förster, Stephan; Paris, Oskar; Roth, Stephan V; Fratzl, Peter

    2014-10-01

    X-ray scattering experiments at synchrotron sources are characterized by large and constantly increasing amounts of data. The great number of files generated during a synchrotron experiment is often a limiting factor in the analysis of the data, since appropriate software is rarely available to perform fast and tailored data processing. Furthermore, it is often necessary to perform online data reduction and analysis during the experiment in order to interactively optimize experimental design. This article presents an open-source software package developed to process large amounts of data from synchrotron scattering experiments. These data reduction processes involve calibration and correction of raw data, one- or two-dimensional integration, as well as fitting and further analysis of the data, including the extraction of certain parameters. The software, DPDAK (directly programmable data analysis kit), is based on a plug-in structure and allows individual extension in accordance with the requirements of the user. The article demonstrates the use of DPDAK for on- and offline analysis of scanning small-angle X-ray scattering (SAXS) data on biological samples and microfluidic systems, as well as for a comprehensive analysis of grazing-incidence SAXS data. In addition to a comparison with existing software packages, the structure of DPDAK and the possibilities and limitations are discussed.

  3. Tertiary and quaternary structural differences between two genetic variants of bovine casein by small-angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pessen, H.; Kumosinski, T.F.; Farrell, H.M. Jr.; Brumberger, H. (Dept. of Agriculture, Eastern Regional Research Center, Philadelphia, PA (USA))

    1991-01-01

    The casein complexes of bovine milk consist of four major protein fractions, alpha s1, alpha s2, beta, and kappa. Colloidal particles of casein (termed micelles) contain inorganic calcium and phosphate; they are very roughly spherical with an average radius of 650 A. Removal of Ca2+ leads to the formation of smaller protein aggregates with an average radius of 94 A. Two genetic variants, A and B, of the predominant fraction, alpha s1-casein, result in milks with markedly different physical properties, such as solubility and heat stability. To investigate the molecular basis for these differences, small-angle X-ray scattering was performed on the respective colloidal micelles and submicelles. Scattering curves for submicelles of both variants showed multiple Gaussian character; data for the B variant were previously interpreted in terms of two concentric regions of different electron density, i.e., a compact core and a relatively loose shell. For the submicelle of A, there was a third Gaussian, reflecting a negative contribution due to interparticle interference. Molecular parameters for submicelles of both A and B are in agreement with hydrodynamic data in the literature. Data for the micelles, for which scattering yields cross-sectional information, were fitted by a sum of three Gaussians for both variants; for these, the corresponding two lower radii of gyration represent the two concentric regions of the submicelles, while the third reflects the average packing of submicelles within the micellar cross section. Most of the molecular parameters obtained showed small but consistent differences between A and B, but for submicelles within the micelle several differences were particularly notable: A has a greater molecular weight for the compact region of the constituent submicelle (82,000 vs 60,000) and a much greater submicellar packing number.

  4. Position Accuracy of Gold Nanoparticles on DNA Origami Structures Studied with Small-Angle X-ray Scattering.

    Science.gov (United States)

    Hartl, Caroline; Frank, Kilian; Amenitsch, Heinz; Fischer, Stefan; Liedl, Tim; Nickel, Bert

    2018-04-11

    DNA origami objects allow for accurate positioning of guest molecules in three dimensions. Validation and understanding of design strategies for particle attachment as well as analysis of specific particle arrangements are desirable. Small-angle X-ray scattering (SAXS) is suited to probe distances of nano-objects with subnanometer resolution at physiologically relevant conditions including pH and salt and at varying temperatures. Here, we show that the pair density distribution function (PDDF) obtained from an indirect Fourier transform of SAXS intensities in a model-free way allows to investigate prototypical DNA origami-mediated gold nanoparticle (AuNP) assemblies. We analyze the structure of three AuNP-dimers on a DNA origami block, an AuNP trimer constituted by those dimers, and a helical arrangement of nine AuNPs on a DNA origami cylinder. For the dimers, we compare the model-free PDDF and explicit modeling of the SAXS intensity data by superposition of scattering intensities of the scattering objects. The PDDF of the trimer is verified to be a superposition of its dimeric contributions, that is, here AuNP-DNA origami assemblies were used as test boards underlining the validity of the PDDF analysis beyond pairs of AuNPs. We obtain information about AuNP distances with an uncertainty margin of 1.2 nm. This readout accuracy in turn can be used for high precision placement of AuNP by careful design of the AuNP attachment sites on the DNA-structure and by fine-tuning of the connector types.

  5. Study of particles in solution by small angle x-ray scattering

    International Nuclear Information System (INIS)

    Itri, R.

    1986-01-01

    The implantation of SAXS technique is presented, and mycellas in solution of the dodecyl sodium sulfate SLS/water system are studied. A synthesis of SAXS theory to study parameters such as, volume, radii of gyration and specific surface and distribution function of the distance of homogenous and inhomogeneous particles is also presented. The technique was implanted by the study of a vitreous coal sample with voids in amorphous matrix. Computer programs were used for data treatment. It was concluded that the void configuration must be an oblate ellipsoid with rippled external surface and radii of gyration of ∼20A . The study of mycellas in solution of the SLL/H 2 O binary system showed spherical mycellas with paraffinic radii of 16A and total radii of 25.5 A. Interaction effects start to appear in 15% SLS concentrations. The change in the scattering curve occurs due to the interactions between mycellas. The isotropic-nematic transition in the ternary system by decanol addition was also investigated. (M.C.K.) [pt

  6. Dimensional nanometrology with grazing incidence small angle X-ray scattering (GISAXS)

    Energy Technology Data Exchange (ETDEWEB)

    Wernecke, Jan; Krumrey, Michael; Cibik, Levent; Marggraf, Stefanie; Mueller, Peter [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany)

    2011-07-01

    Reliable methods for dimensional characterisation of structures in the nanometer range are now a necessity in many fields of industry and science, e.g. for next-generation EUV lithography, new photovoltaic devices or magnetic nanoparticles. The method we have chosen for measurements of statistically averaged structural properties of nanostructured surfaces is GISAXS. This is a versatile technique to probe statistic properties such as mean particle size, spacial distribution and roughness of nanostructured surfaces and nanoparticle assemblies on top of or buried in bulk material. The GISAXS experiments were performed at the Four-Crystal Monochromator (FCM) beamline in the laboratory of PTB at BESSY II using the SAXS setup of the Helmholtz-Zentrum Berlin (HZB). This presentation will give a short overview of the instrumentation and the capabilities of the laboratory to perform dimensional nanometrology with GISAXS and will show first experimental results. Gratings for EUV lithography have been investigated in terms of coating layer thickness, roughness, grating period and blaze angle. Furthermore, dimensional properties of Au nanoparticles on silicon substrate were determined. The obtained particle sizes were in good agreement with SAXS measurements of these particles in liquid suspension.

  7. The Structure of Urease Activation Complexes Examined by Flexibility Analysis, Mutagenesis, and Small-angle X-ray Scattering Approaches

    International Nuclear Information System (INIS)

    Quiroz, Soledad; Sukuru, Sai Chetan K.; Hausinger, Robert P.; Kuhn, Leslie A.; Heller, William T

    2008-01-01

    Conformational changes of Klebsiella aerogenes urease apoprotein (UreABC) 3 induced upon binding of the UreD and UreF accessory proteins were examined by a combination of flexibility analysis, mutagenesis, and small-angle X-ray scattering (SAXS). ProFlex analysis of urease provided evidence that the major domain of UreB can move in a hinge-like motion to account for prior chemical cross-linking results. Rigidification of the UreB hinge region, accomplished through a G11P mutation, reduced the extent of urease activation, in part by decreasing the nickel content of the mutant enzyme, and by sequestering a portion of the urease apoprotein in a novel activation complex that includes all of the accessory proteins. SAXS analyses of urease, (UreABC-UreD) 3 , and (UreABC-UreDF) 3 confirm that UreD and UreF bind near UreB at the periphery of the (UreAC) 3 structure. This study supports an activation model in which a domain-shifted UreB conformation in (UreABC-UreDF) 3 allows CO 2 and nickel ions to gain access to the nascent active site

  8. Short-range order in Fe-based metallic glasses: Wide-angle X-ray scattering studies

    International Nuclear Information System (INIS)

    Babilas, Rafał; Hawełek, Łukasz; Burian, Andrzej

    2014-01-01

    The local atomic structure of the Fe 80 B 20 , Fe 70 Nb 10 B 20 and Fe 62 Nb 8 B 30 glasses prepared in the form of ribbons has been studied by wide-angle X-ray scattering. Structural information about the amorphous ribbons has been derived from analysis of the radial distribution functions using the least-squares curve-fitting method. The obtained structural parameters indicate that Fe–Fe, Fe–B, Fe–Nb and Nb–B contributions are involved in the near-neighbor coordination spheres. The possible similarities of the local atomic arrangement in the investigated glasses and the crystalline Fe 3 B, Fe 23 B 6 and bcc Fe structures are also discussed. - Graphical abstract: Pair distribution functions (a) and best-fit model and experimental radial distribution functions for Fe 80 B 20 (b), Fe 70 Nb 10 B 20 (c) and Fe 62 Nb 8 B 30 (d) metallic glasses. - Highlights: • The short-range ordering in the Fe-based metallic glasses is presented. • The results of RDF function have been analyzed using the least-squares method. • The Fe–Fe, Fe–B, Fe–Nb or Nb–B contributions are involved in coordination spheres. • The structural unit is distorted triangular prism containing B, Fe or Nb atoms. • Similarities of atomic arrangement in glassy and crystalline structures are discussed

  9. Nano-Structural Investigation on Cellulose Highly Dissolved in Ionic Liquid: A Small Angle X-ray Scattering Study

    Directory of Open Access Journals (Sweden)

    Takatsugu Endo

    2017-01-01

    Full Text Available We investigated nano-structural changes of cellulose dissolved in 1-ethyl-3-methylimidazolium acetate—an ionic liquid (IL—using a small angle X-ray scattering (SAXS technique over the entire concentration range (0–100 mol %. Fibril structures of cellulose disappeared at 40 mol % of cellulose, which is a significantly higher concentration than the maximum concentration of dissolution (24–28 mol % previously determined in this IL. This behavior is explained by the presence of the anion bridging, whereby an anion prefers to interact with multiple OH groups of different cellulose molecules at high concentrations, discovered in our recent work. Furthermore, we observed the emergence of two aggregated nano-structures in the concentration range of 30–80 mol %. The diameter of one structure was 12–20 nm, dependent on concentration, which is ascribed to cellulose chain entanglement. In contrast, the other with 4.1 nm diameter exhibited concentration independence and is reminiscent of a cellulose microfibril, reflecting the occurrence of nanofibrillation. These results contribute to an understanding of the dissolution mechanism of cellulose in ILs. Finally, we unexpectedly proposed a novel cellulose/IL composite: the cellulose/IL mixtures of 30–50 mol % that possess liquid crystallinity are sufficiently hard to be moldable.

  10. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application

    Directory of Open Access Journals (Sweden)

    Lauren Boldon

    2015-02-01

    Full Text Available In this paper, the fundamental concepts and equations necessary for performing small angle X-ray scattering (SAXS experiments, molecular dynamics (MD simulations, and MD-SAXS analyses were reviewed. Furthermore, several key biological and non-biological applications for SAXS, MD, and MD-SAXS are presented in this review; however, this article does not cover all possible applications. SAXS is an experimental technique used for the analysis of a wide variety of biological and non-biological structures. SAXS utilizes spherical averaging to produce one- or two-dimensional intensity profiles, from which structural data may be extracted. MD simulation is a computer simulation technique that is used to model complex biological and non-biological systems at the atomic level. MD simulations apply classical Newtonian mechanics’ equations of motion to perform force calculations and to predict the theoretical physical properties of the system. This review presents several applications that highlight the ability of both SAXS and MD to study protein folding and function in addition to non-biological applications, such as the study of mechanical, electrical, and structural properties of non-biological nanoparticles. Lastly, the potential benefits of combining SAXS and MD simulations for the study of both biological and non-biological systems are demonstrated through the presentation of several examples that combine the two techniques.

  11. Temperature-dependent atomic models of detergent micelles refined against small-angle X-ray scattering data.

    Science.gov (United States)

    Ivanovic, Milos T; Bruetzel, Linda K; Lipfert, Jan; Hub, Jochen S

    2018-03-13

    Surfactants have found a wide range of industrial and scientific applications. In particular, detergent micelles are used as lipid membrane mimics to solubilize membrane proteins for functional and structural characterisation. However, an atomic-level understanding of surfactants remains limited because many experiments provide only low-resolution structural information on surfactant aggregates. Here, we combine small-angle X-ray scattering with molecular dynamics simulations to derive fully atomic models of two maltoside micelles, at temperatures between 10°C and 70°C. We find that the micelles take the shape of general tri-axial ellipsoids and decrease in size and aggregation number with increasing temperature. Density profiles of hydrophobic groups and water along the three principal axes reveal that the minor micelle axis closely mimics lipid membranes. Our results suggest that coupling atomic simulations with low-resolution data allows for a structural characterisation of surfactant aggregates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Particle evolution of Composition B-3 studied by time-resolved small angle x-ray scattering

    Science.gov (United States)

    Huber, R.; Podlesak, D.; Dattelbaum, D.; Firestone, M.; Gustavsen, R.; Jensen, B.; Ringstrand, B.; Watkins, E.; Bagge-Hansen, M.; Hodgin, R.; Lauderbach, L.; Willey, T.; van Buuren, T.; Graber, T.; Rigg, P.; Sinclair, N.; Seifert, S.

    Accessing various pressures and temperatures of the carbon phase diagram through high explosive (HE) detonations, as a means of synthesis, provides an exciting opportunity to study new carbon allotropes. Carbon allotropes in HE detonations are thought to form through collision of free carbon within the detonation cloud; however direct confirmation of real-time product formation is limited due to experimental restraints. Time-resolved small angle x-ray scattering (TRSAXS) of in-line detonations provides information about particle formation behind the detonation front on the 100's of nanoseconds timescale. The only set-up of its kind in the United States is at Argonne National Laboratory at the Advanced Photon Source in the Dynamic Compression Sector (DCS). Through empirical and analytical analysis of the TRSAXS data, parameters such as particle size and morphology can be deduced with respect to time. In the case of Composition B-3 (40% TNT/60% RDX) particle formation morphs from spherical core-shell structure to an elongated structure at long times ( 2 us) under vacuum. To complete the timeline of carbon formation, the post detonation soot is also analyzed to confirm this elongated structure as the majority carbon product. LA-UR-16-28691

  13. Time-Resolved Small-Angle X-ray Scattering Reveals Millisecond Transitions of a DNA Origami Switch.

    Science.gov (United States)

    Bruetzel, Linda K; Walker, Philipp U; Gerling, Thomas; Dietz, Hendrik; Lipfert, Jan

    2018-04-11

    Self-assembled DNA structures enable creation of specific shapes at the nanometer-micrometer scale with molecular resolution. The construction of functional DNA assemblies will likely require dynamic structures that can undergo controllable conformational changes. DNA devices based on shape complementary stacking interactions have been demonstrated to undergo reversible conformational changes triggered by changes in ionic environment or temperature. An experimentally unexplored aspect is how quickly conformational transitions of large synthetic DNA origami structures can actually occur. Here, we use time-resolved small-angle X-ray scattering to monitor large-scale conformational transitions of a two-state DNA origami switch in free solution. We show that the DNA device switches from its open to its closed conformation upon addition of MgCl 2 in milliseconds, which is close to the theoretical diffusive speed limit. In contrast, measurements of the dimerization of DNA origami bricks reveal much slower and concentration-dependent assembly kinetics. DNA brick dimerization occurs on a time scale of minutes to hours suggesting that the kinetics depend on local concentration and molecular alignment.

  14. Structure of human low-density lipoprotein subfractions, determined by X-ray small-angle scattering.

    Science.gov (United States)

    Baumstark, M W; Kreutz, W; Berg, A; Frey, I; Keul, J

    1990-01-19

    The structure of low-density lipoprotein (LDL) particles from three different density ranges (LDL-1: d = 1.006-1.031 g/ml; LDL-3: d = 1.034-1.037 g/ml; LDL-6: d = 1.044-1.063 g/ml) was determined by X-ray small-angle scattering. By using a theoretical particle model, which accounted for the polydispersity of the samples, we were able to obtain fits of the scattering intensity that were inside the noise interval of the measured intensity. The assumption of deviations from radial symmetry is not supported by our data. This implies a spread-out conformation of the apolipoprotein B (apoB) molecule, which appears to be localized in the outer surface shell. A globular structure is not consistent with our data. Furthermore, different models exist concerning the structure of the cholesterol ester core below the phase transition temperature. The electron density data suggest an arrangement in which the steroid moieties are localized at average radii of 3.2 and 6.4 nm. Model calculations show that packing problems can only be avoided if approximately half of the acyl chains of each shell are pointing towards the center of the particle, the other half towards the surface. This arrangement of the acyl chains has never been proposed before. The LDL particles of different density classes differ mainly with respect to the size of the core but also with respect to the width of the surface shells. Model calculations show that the size of different LDL particles can be accurately predicted from the compositional data.

  15. Mesoscopic structures of triglyceride nanosuspensions studied by small-angle X-ray and neutron scattering and computer simulations.

    Science.gov (United States)

    Schmiele, Martin; Schindler, Torben; Westermann, Martin; Steiniger, Frank; Radulescu, Aurel; Kriele, Armin; Gilles, Ralph; Unruh, Tobias

    2014-07-24

    Aqueous suspensions of platelet-like shaped tripalmitin nanocrystals are studied here at high tripalmitin concentrations (10 wt % tripalmitin) for the first time by a combination of small-angle X-ray and neutron scattering (SAXS and SANS). The suspensions are stabilized by different lecithins, namely, DLPC, DOPC, and the lecithin blend S100. At such high concentrations the platelets start to self-assemble in stacks, which causes interference maxima at low Q-values in the SAXS and SANS patterns, respectively. It is found that the stack-related interference maxima are more pronounced for the suspension stabilized with DOPC and in particular DLPC, compared to suspensions stabilized by S100. By use of the X-ray and neutron powder pattern simulation analysis (XNPPSA), the SAXS and SANS patterns of the native tripalmitin suspensions could only be reproduced simultaneously when assuming the presence of both isolated nanocrystals and stacks of nanocrystals of different size in the simulation model of the dispersions. By a fit of the simulated SAXS and SANS patterns to the experimental data, a distribution of the stack sizes and their volume fractions is determined. The volume fraction of stacklike platelet assemblies is found to rise from 70% for S100-stabilized suspensions to almost 100% for the DLPC-stabilized suspensions. The distribution of the platelet thicknesses could be determined with molecular resolution from a combined analysis of the SAXS and SANS patterns of the corresponding diluted tripalmitin (3 wt %) suspensions. In accordance with microcalorimetric data, it could be concluded that the platelets in the suspensions stabilized with DOPC, and in particular DLPC, are significantly thinner than those stabilized with S100. The DLPC-stabilized suspensions exhibit a significantly narrower platelet thickness distribution compared to DOPC- and S100-stabilized suspensions. The smaller thicknesses for the DLPC- and DOPC-stabilized platelets explain their higher

  16. Direct Evidence of Confined Water in Room-Temperature Ionic Liquids by Complementary Use of Small-Angle X-ray and Neutron Scattering.

    Science.gov (United States)

    Abe, Hiroshi; Takekiyo, Takahiro; Shigemi, Machiko; Yoshimura, Yukihiro; Tsuge, Shu; Hanasaki, Tomonori; Ohishi, Kazuki; Takata, Shinichi; Suzuki, Jun-Ichi

    2014-04-03

    The direct evidence of confined water ("water pocket") inside hydrophilic room-temperature ionic liquids (RTILs) was obtained by complementary use of small-angle X-ray scattering and small-angle neutron scattering (SAXS and SANS). A large contrast in X-ray and neutron scattering cross-section of deuterons was used to distinguish the water pocket from the RTIL. In addition to nanoheterogeneity of pure RTILs, the water pocket formed in the water-rich region. Both water concentration and temperature dependence of the peaks in SANS profiles confirmed the existence of the hidden water pocket. The size of the water pocket was estimated to be ∼3 nm, and D2O aggregations were well-simulated on the basis of the observed SANS data.

  17. Internal structures of thermosensitive hybrid microgels investigated by means of small-angle X-ray scattering.

    Science.gov (United States)

    Suzuki, Daisuke; Nagase, Yasuhisa; Kureha, Takuma; Sato, Takaaki

    2014-02-27

    Internal structures of thermosensitive microgels and their hybrid counterparts that contain Au nanoparticles are investigated by means of small-angle X-ray scattering (SAXS). Thermosensitive cationic microgels were synthesized by aqueous free radical precipitation polymerization from N-isopropylacrylamide and 3-(methacrylamino) propyltrimethylammonium chloride used as monomers. Using the microgels as templates, Au nanoparticles were synthesized in situ, using the cationic sites in the microgel to nucleate particle growth. To obtain different types of the hybrid microgels, Au nanoparticles were synthesized in the presence of the microgels by changing the reduction conditions of the precursor ions, such as temperature and species of reducing reagent. The hybrid microgels were characterized mainly by TEM and SAXS. For SAXS investigation, the hybrid microgels were analyzed in the wide q-range of 0.07 nm(-1) < q < 20 nm(-1), where q is the magnitude of the scattering vector. A quantitative description of the scattering intensities, I(q), for the nonhybrid microgels requires a sum of five components having different physical origins. An upturn increase of the forward intensity originates from the interface of microgels, obeying the Porod law, I(q) ∝ q(-4). An additional Guinier term found in q < 0.2 nm(-1) seems to arise from solidlike density fluctuation due to the inhomogeneities of chemical cross-links. The power-law behavior manifested in the low- to intermediate-q range is directly linked with the fractal nature of the swollen (coil) polymer networks and well described by the Ornstein-Zernike equation. Two interference peaks centered at q ≈ 5 nm (-1) and q ≈ 15 nm(-1) are likely to reflect inter- and intrachain correlations of pNIPAm, respectively, which are formally fitted by pseudo-Voigt equations. As for the hybrid microgels, a pronounced new contribution from the Au nanoparticles emerges, which calls for an additional scattering component describing

  18. Anomalous X-Ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wendin, G.

    1979-01-01

    The availability of tunable synchrotron radiation has made it possible systematically to perform x-ray diffraction studies in regions of anomalous scattering near absorption edges, e.g., in order to derive phase information for crystal structure determination. An overview is given of recent experimental and theoretical work and discussion of the properties of the anomalous atomic scattering factor, with emphasis on threshold resonances and damping effects. The results are applied to a discussion of the very strong anomalous dispersion recently observed near the L3 edge in a cesium complex. Also given is an overview of elements and levels where similar behavior can be expected. Finally, the influence of solid state and chemical effects on the absorption edge structure is discussed. 64 references.

  19. Anomalous x-ray scattering

    International Nuclear Information System (INIS)

    Wendin, G.

    1979-01-01

    The availability of tunable synchrotron radiation has made it possible systematically to perform x-ray diffraction studies in regions of anomalous scattering near absorption edges, e.g. in order to derive phase information for crystal structure determination. An overview is given of recent experimental and theoretical work and discuss the properties of the anomalous atomic scattering factor, with emphasis on threshold resonances and damping effects. The results are applied to a discussion of the very strong anomalous dispersion recently observed near the L 3 edge in a cesium complex. Also given is an overview of elements and levels where similar behavior can be expected. Finally, the influence of solid state and chemical effects on the absorption edge structure is discussed. 64 references

  20. Small-angle X-ray scattering at high brilliance european synchrotrons for biotechnology and nano-technology

    International Nuclear Information System (INIS)

    Svergun, D.; Malfois, M.; Svergun, D.; Douka, M.; Riekel, Ch.; Perez, J.; Roessle, M.; Amenitsch, H.; Gunter Grossman, J.; Vestergaard, B.; Receveur-Brechot, V.; Roth, St.V.; Ferrari, E.

    2007-01-01

    Different issues such as micro-fluidic devices for SAXS (small-angle X-ray diffraction), the use of electro-spray and ion trapping for SAXS in the gas phase, the study of flexible and disordered proteins through SAXS, the time-resolved SAXS studies in solution, or the study of nano-structured soft materials, were addressed in this workshop. This document gathers the transparencies of the presentations

  1. Small-angle X-ray scattering at high brilliance european synchrotrons for biotechnology and nano-technology

    Energy Technology Data Exchange (ETDEWEB)

    Svergun, D.; Malfois, M. [EMBL c/o DESY, Hamburg (Germany); Svergun, D. [Institute of Crystallography, Russian Academy of Sciences, Moscow (Russian Federation); Douka, M. [Commission Europeenne, DG III, Bruxelles (Belgium); Riekel, Ch. [European Synchrotron Radiation Facility (ESRF), 38 - Grenoble (France); Perez, J. [Soleil, 91 - Saclay (France); Roessle, M. [European Molecular Biology Laboratory (EMBL), 38 - Grenoble (France); Amenitsch, H. [IBN/Elettra (Germany); Gunter Grossman, J. [Daresbury Synchrotron Radiation Source (SRS) (United Kingdom); Vestergaard, B. [University of Pharmaceutical Sciences, Copenhagen (Denmark); Receveur-Brechot, V. [Centre National de la Recherche Scientifique (CNRS/AFMB), 13 - Marseille (France); Roth, St.V. [Deutsches Elektronen Synchrotron (HASYLAB), Hamburg (Germany); Ferrari, E. [National Institute for the Physics of Matter (CNR-INFM), Trieste (Italy)

    2007-07-01

    Different issues such as micro-fluidic devices for SAXS (small-angle X-ray diffraction), the use of electro-spray and ion trapping for SAXS in the gas phase, the study of flexible and disordered proteins through SAXS, the time-resolved SAXS studies in solution, or the study of nano-structured soft materials, were addressed in this workshop. This document gathers the transparencies of the presentations.

  2. Grazing Incidence X-ray Scattering and Diffraction

    Indian Academy of Sciences (India)

    IAS Admin

    tion. In thia article, various aspects of surface X- ray diffraction and scattering are discussed with illustrations of some typical applications of these techniques. 1. ..... ray reflectivity. Here, X-rays are incident on the sample at very small grazing angles to the surface and below the critical angle, αc. As explained earlier, this ...

  3. In situ anomalous small-angle X-ray scattering studies of platinum nanoparticle fuel cell electrocatalyst degradation.

    Science.gov (United States)

    Gilbert, James A; Kariuki, Nancy N; Subbaraman, Ram; Kropf, A Jeremy; Smith, Matt C; Holby, Edward F; Morgan, Dane; Myers, Deborah J

    2012-09-12

    Polymer electrolyte fuel cells (PEFCs) are a promising high-efficiency energy conversion technology, but their cost-effective implementation, especially for automotive power, has been hindered by degradation of the electrochemically active surface area (ECA) of the Pt nanoparticle electrocatalysts. While numerous studies using ex situ post-mortem techniques have provided insight into the effect of operating conditions on ECA loss, the governing mechanisms and underlying processes are not fully understood. Toward the goal of elucidating the electrocatalyst degradation mechanisms, we have followed Pt nanoparticle growth during potential cycling of the electrocatalyst in an aqueous acidic environment using in situ anomalous small-angle X-ray scattering (ASAXS). ASAXS patterns were analyzed to obtain particle size distributions (PSDs) of the Pt nanoparticle electrocatalysts at periodic intervals during the potential cycling. Oxide coverages reached under the applied potential cycling protocols were both calculated and determined experimentally. Changes in the PSD, mean diameter, and geometric surface area identify the mechanism behind Pt nanoparticle coarsening in an aqueous environment. Over the first 80 potential cycles, the dominant Pt surface area loss mechanism when cycling to 1.0-1.1 V was found to be preferential dissolution or loss of the smallest particles with varying extents of reprecipitation of the dissolved species onto existing particles, resulting in particle growth, depending on potential profile. Correlation of ASAXS-determined particle growth with both calculated and voltammetrically determined oxide coverages demonstrates that the oxide coverage is playing a key role in the dissolution process and in the corresponding growth of the mean Pt nanoparticle size and loss of ECA. This understanding potentially reduces the complex changes in PSD and ECA resulting from various voltage profiles to a response dependent on oxide coverage.

  4. Small-angle x-ray scattering of calpain-5 reveals a highly open conformation among calpains

    Science.gov (United States)

    Gakhar, Lokesh; Bassuk, Alexander G.; Velez, Gabriel; Khan, Saif; Yang, Jing; Tsang, Stephen H.; Mahajan, Vinit B.

    2016-01-01

    Calpain-5 is a calcium-activated protease expressed in the retina. Mutations in calpain-5 cause autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV, OMIM#193235). The structure of calpain-5 has not been determined, thus hindering the investigation of its proteolytic targets and pathological role in ADNIV. Herein, we report models of the proteolytic core of calpain-5 (mini-calpain-5) containing two globular domains (termed DIIa-IIb) connected by a short, flexible linker, consistent with small-angle x-ray scattering (SAXS) data. Structural modeling in the absence of calcium suggests that mini-calpain-5 adopts a more open conformation when compared to previously determined structures of other calpain cores. This open conformation, achieved by a rotation of DIIa and DIIb with respect to each other, prevents formation of the active site and constrains the enzyme in an inactivated form. The relative domain rotation of 60-100°we found for mini-calpain-5 (a non-classical calpain) is significantly greater than the largest rotation previously observed for a classical calpain (i.e., 55.0°for mini-calpain-9). Together with our prediction that, in the full-length form, a long loop in DIIb (loop C1), a few residues downstream of the inter-domain linker, likely interacts with the shorter, acidic, inactivating loop on domain-III (DIII), these structural insights illuminate the complexity of calpain regulation. Moreover, our studies argue that pursuing higher resolution structural studies are necessary to understand the complex activity regulation prevalent in the calpain family and for the design of specific calpain inhibitors. PMID:27474374

  5. EXPRESSION, PURIFICATION, AND SMALL ANGLE X-RAY SCATTERING OF DNA REPLICATION AND REPAIR PROTEINS FROM THE HYPERTHERMOPHILE SULFOLOBUS SOLFATARICUS

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, S.M.; Hatherill, J.R.; Hammel, M.; Hura, G.L.; Tainer, J.A.; Yannone, S.M.

    2008-01-01

    Vital molecular processes such as DNA replication, transcription, translation, and maintenance occur through transient protein interactions. Elucidating the mechanisms by which these protein complexes and interactions function could lead to treatments for diseases related to DNA damage and cell division control. In the recent decades since its introduction as a third domain, Archaea have shown to be simpler models for complicated eukaryotic processes such as DNA replication, repair, transcription, and translation. Sulfolobus solfataricus is one such model organism. A hyperthermophile with an optimal growth temperature of 80°C, Sulfolobus protein-protein complexes and transient protein interactions should be more stable at moderate temperatures, providing a means to isolate and study their structure and function. Here we provide the initial steps towards characterizing three DNA-related Sulfolobus proteins with small angle X-ray scattering (SAXS): Sso0257, a cell division control and origin recognition complex homolog, Sso0768, the small subunit of the replication factor C, and Sso3167, a Mut-T like protein. SAXS analysis was performed at multiple concentrations for both short and long exposure times. The Sso0257 sample was determined to be either a mixture of monomeric and dimeric states or a population of dynamic monomers in various conformational states in solution, consistent with a fl exible winged helix domain. Sso0768 was found to be a complex mixture of multimeric states in solution. Finally, molecular envelope reconstruction from SAXS data for Sso3167 revealed a novel structural component which may function as a disordered to ordered region in the presence of its substrates and/or protein partners.

  6. X-Ray-Scattering Measurements Of Strain In PEEK

    Science.gov (United States)

    Cebe, Peggy; Lowry, Lynn E.; Chung, Shirley Y.; Yavrouian, Andre H.; Gupta, Amitava

    1988-01-01

    Internal stress relieved by heating above glass-transition temperature. Report describes wide-angle x-ray scattering and differential scanning calorimetry of specimens of poly(etheretherketone) having undergone various thermal treatments. Wide-angle x-ray scattering particularly useful in determining distances between atoms, crystallinity, and related microstructurally generated phenomena, as thermal expansion and strain. Calorimetric measurements aid interpretation of scattering measurements by enabling correlation with thermal effects.

  7. Automated microfluidic sample-preparation platform for high-throughput structural investigation of proteins by small-angle X-ray scattering

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Snakenborg, Detlef; Nielsen, Søren Skou

    2011-01-01

    A new microfluidic sample-preparation system is presented for the structural investigation of proteins using small-angle X-ray scattering (SAXS) at synchrotrons. The system includes hardware and software features for precise fluidic control, sample mixing by diffusion, automated X-ray exposure...... control, UV absorbance measurements and automated data analysis. As little as 15 l of sample is required to perform a complete analysis cycle, including sample mixing, SAXS measurement, continuous UV absorbance measurements, and cleaning of the channels and X-ray cell with buffer. The complete analysis...... cycle can be performed in less than 3 min. Bovine serum albumin was used as a model protein to characterize the mixing efficiency and sample consumption of the system. The N2 fragment of an adaptor protein (p120-RasGAP) was used to demonstrate how the device can be used to survey the structural space...

  8. Study of the gel films of Acetobacter Xylinum cellulose and its modified samples by {sup 1}H NMR cryoporometry and small-angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Babushkina, T. A.; Klimova, T. P. [Russian Academy of Sciences, Nesmeyanov Institute of Organoelement Compounds (Russian Federation); Shtykova, E. V.; Dembo, K. A.; Volkov, V. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Khripunov, A. K. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation); Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2010-03-15

    Gel films of Acetobacter Xylinum cellulose and its modified samples have been investigated by 1H nuclear magnetic resonance (NMR) cryoporometry and small-angle X-ray scattering. The joint use of these two methods made it possible to characterize the sizes of aqueous pores in gel films and estimate the sizes of structural inhomogeneities before and after the sorption of polyvinylpyrrolidone and Se{sub 0} nanoparticles (stabilized by polyvinylpyrrolidone) into the films. According to small-angle X-ray scattering data, the sizes of inhomogeneities in a gel film change only slightly upon the sorption of polyvinylpyrrolidone and nanoparticles. The impregnated material is sorbed into water-filled cavities that are present in the gel film. {sup 1}H NMR cryoporometry allowed us to reveal the details of changes in the sizes of small aqueous pores during modifications.

  9. Assessment of firing conditions in old fired-clay bricks. The contribution of X-ray powder diffraction with the Rietveld method and small angle neutron scattering

    Czech Academy of Sciences Publication Activity Database

    Viani, Alberto; Sotiriadis, Konstantinos; Len, A.; Šašek, Petr; Ševčík, Radek

    2016-01-01

    Roč. 116, June (2016), s. 33-43 ISSN 1044-5803 R&D Projects: GA MŠk(CZ) LO1219 Keywords : fired-clay brick * Rietveld method * small angle neutron scattering * X-ray diffraction * firing temperature Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 2.714, year: 2016 http://www.sciencedirect.com/science/article/pii/S1044580316300870

  10. In-situ small-angle x-ray scattering study of nanoparticles in the plasma plume induced by pulsed laser irradiation of metallic targets

    Energy Technology Data Exchange (ETDEWEB)

    Lavisse, L.; Jouvard, J.-M.; Girault, M.; Potin, V.; Andrzejewski, H.; Marco de Lucas, M. C.; Bourgeois, S. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Universite de Bourgogne, 9 Avenue A. Savary, BP 47870-21078 Dijon Cedex (France); Le Garrec, J.-L.; Carles, S.; Mitchell, J. B. A. [Institut de Physique de Rennes, UMR 6251 CNRS-Universite de Rennes 1, 35042 Rennes Cedex (France); Hallo, L. [CEA CESTA, 15 Avenue des Sablieres CS 60001, 33116 Le Barp Cedex (France); Perez, J. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, F-91192 Gif-sur-Yvette Cedex (France); Decloux, J. [Kaluti System, Optique et Laser, Centre Scientifique d' Orsay, 91400 Orsay (France)

    2012-04-16

    Small angle x-ray scattering was used to probe in-situ the formation of nanoparticles in the plasma plume generated by pulsed laser irradiation of a titanium metal surface under atmospheric conditions. The size and morphology of the nanoparticles were characterized as function of laser irradiance. Two families of nanoparticles were identified with sizes on the order of 10 and 70 nm, respectively. These results were confirmed by ex-situ transmission electron microscopy experiments.

  11. Microstructure of amorphous-silicon-based solar cell materials by small-angle x-ray scattering. Annual subcontract report, 6 April 1994--5 April 1995

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, D.L. [Colorado School of Mines, Golden, CO (United States)

    1995-08-01

    The general objective of this research is to provide detailed microstructural information on the amorphous-silicon-based, thin-film materials under development for improved multijunction solar cells. The experimental technique used is small-angle x-ray scattering (SAXS) providing microstructural data on microvoid fractions, sizes, shapes, and their preferred orientations. Other microstructural features such as alloy segregation, hydrogen-rich clusters and alloy short-range order are probed.

  12. SAXSANA: an interactive program for the analysis and monitoring of static and time-resolved small-angle X-ray solution scattering measurements.

    Science.gov (United States)

    Hiragi, Yuzuru; Sano, Yoh; Matsumoto, Tomoharu

    2003-03-01

    An interactive analytical program, SAXSANA, for small-angle X-ray scattering measurements of solutions is described. The program processes scattered data without disciplined knowledge of small-angle scattering. SAXSANA also assists in finding the best experimental conditions, thus avoiding blind runs of experiments. SAXSANA consists of the following procedures: (i) determination of the centre of scattered X-rays and moment transfer Q (Q = 4pisintheta/lambda, where 2theta is the scattering angle and lambda is the wavelength) for each measured channel; (ii) conversion of the data format to the format of Q versus scattered intensities J(Q); (iii) truncation of unnecessary data and smoothing of scattering curves by cubic-spline function; (iv) correction of the absorption effect and subtraction of the scattered intensity of the buffer (solvent) solution from that of the sample solution; (v) creation of a data file for a three-dimensional representation of time-resolved scattering curves; (vi) determination of radii of gyration by Guinier plots; (vii) determination of persistent lengths by Kratky plots; (viii) extrapolation of the small-angle part by Guinier plots; (ix) extrapolation of the wide-angle part by Porod's & Luzzati's laws for the Hankel transformation in order to obtain the distance distribution function p(r); (x) calculation of p(r) and computation of the invariant, the chord length, the Volume, the spherical radius, the maximum dimension D(max) and the radius of gyration (Rg). SAXSANA also serves as an on-site monitor for the validity of an experimental result during the measurements.

  13. Watching Nanoparticles Form: An In Situ (Small-/Wide-Angle X-ray Scattering/Total Scattering) Study of the Growth of Yttria-Stabilised Zirconia in Supercritical Fluids

    DEFF Research Database (Denmark)

    Tyrsted, Christoffer; Pauw, Brian; Jensen, Kirsten Marie Ørnsbjerg

    2012-01-01

    Understanding nanoparticle formation reactions requires multitechnique in situ characterisation, since no single characterisation technique provides adequate information. Here, the first combined small-angle X-ray scattering (SAXS)/wide-angle X-ray scattering (WAXS)/total-scattering study of nano...... of nanoparticle formation is presented. We report on the formation and growth of yttria-stabilised zirconia (YSZ) under the extreme conditions of supercritical methanol for particles with Y2O3 equivalent molar fractions of 0, 4, 8, 12 and 25%....

  14. Detection of short range order in SiO{sub 2} thin-films by grazing-incidence wide and small-angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Kohki, E-mail: nagata.koki@iri-tokyo.jp [Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo 135-0064 (Japan); School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Ogura, Atsushi [School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Hirosawa, Ichiro [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Suwa, Tomoyuki; Teramoto, Akinobu; Ohmi, Tadahiro [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramakiazaaoba, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2016-04-21

    The effects of the fabrication process conditions on the microstructure of silicon dioxide thin films of <10 nm thickness are presented. The microstructure was investigated using grazing-incidence wide and small-angle X-ray scattering methods with synchrotron radiation. The combination of a high brilliance light source and grazing incident configuration enabled the observation of very weak diffuse X-ray scattering from SiO{sub 2} thin films. The results revealed different microstructures, which were dependent on oxidizing species or temperature. The micro-level properties differed from bulk properties reported in the previous literature. It was indicated that these differences originate from inner stress. The detailed structure in an amorphous thin film was not revealed owing to detection difficulties.

  15. Very large-scale structures in sintered silica aerogels as evidenced by atomic force microscopy and ultra-small angle X-ray scattering experiments

    CERN Document Server

    Marliere, C; Etienne, P; Woignier, T; Dieudonné, P; Phalippou, J

    2001-01-01

    During the last few years the bulk structure of silica aerogels has been extensively studied mainly by scattering techniques (neutrons, X-rays, light). It has been shown that small silica particles aggregate to constitute a fractal network. Its spatial extension and fractal dimension are strongly dependent on the synthesis conditions (e.g., pH of gelifying solutions). These typical lengths range from 1 to 10 nm. Ultra-small angle X-ray scattering (USAXS) and atomic force microscopy (AFM) experiments have been carried out on aerogels at different steps of densification. The results presented in this paper reveal the existence of a spatial arrangement of the solid part at a very large length scale. The evolution of this very large-scale structure during the densification process has been studied and reveals a contraction of this macro-structure made of aggregates of clusters. (16 refs).

  16. Molecular X-ray scattering, ch. 4

    International Nuclear Information System (INIS)

    Welzen, Th. L.

    1977-01-01

    This chapter considers the evaluation of coherently and incoherently scattered X-ray intensities of single freely rotating molecules (gas scattering). A purely analytical procedure is given based upon the use of LCAO-MO Gaussian wave functions

  17. Scattered X-ray beam nondestructive testing

    International Nuclear Information System (INIS)

    Harding, G.; Kosanetzky, J.

    1988-01-01

    X-ray scatter interactions generally dominate the linear attenuation coefficient at the photon energies typical of medical and industrial radiography. Specific advantages of X-ray scatter imaging, including a flexible choice of measurement geometry, direct 3D-imaging capability (tomography) and improved information for material characterization, are illustrated with results from Compton and coherent scatter devices. Applications of a Compton backscatter scanner (ComScan) in the aerospace industry and coherent scatter imaging in security screening are briefly considered [pt

  18. Quantitative determination of the lateral density and intermolecular correlation between proteins anchored on the membrane surfaces using grazing incidence small-angle X-ray scattering and grazing incidence X-ray fluorescence.

    Science.gov (United States)

    Abuillan, Wasim; Vorobiev, Alexei; Hartel, Andreas; Jones, Nicola G; Engstler, Markus; Tanaka, Motomu

    2012-11-28

    As a physical model of the surface of cells coated with densely packed, non-crystalline proteins coupled to lipid anchors, we functionalized the surface of phospholipid membranes by coupling of neutravidin to biotinylated lipid anchors. After the characterization of fine structures perpendicular to the plane of membrane using specular X-ray reflectivity, the same membrane was characterized by grazing incidence small angle X-ray scattering (GISAXS). Within the framework of distorted wave Born approximation and two-dimensional Percus-Yevick function, we can analyze the form and structure factors of the non-crystalline, membrane-anchored proteins for the first time. As a new experimental technique to quantify the surface density of proteins on the membrane surface, we utilized grazing incidence X-ray fluorescence (GIXF). Here, the mean intermolecular distance between proteins from the sulfur peak intensities can be calculated by applying Abelé's matrix formalism. The characteristic correlation distance between non-crystalline neutravidin obtained by the GISAXS analysis agrees well with the intermolecular distance calculated by GIXF, suggesting a large potential of the combination of GISAXS and GIXF in probing the lateral density and correlation of non-crystalline proteins displayed on the membrane surface.

  19. In Operando Monitoring of the Pore Dynamics in Ordered Mesoporous Electrode Materials by Small Angle X-ray Scattering.

    Science.gov (United States)

    Park, Gwi Ok; Yoon, Jeongbae; Park, Eunjun; Park, Su Bin; Kim, Hyunchul; Kim, Kyoung Ho; Jin, Xing; Shin, Tae Joo; Kim, Hansu; Yoon, Won-Sub; Kim, Ji Man

    2015-05-26

    To monitor dynamic volume changes of electrode materials during electrochemical lithium storage and removal process is of utmost importance for developing high performance lithium storage materials. We herein report an in operando probing of mesoscopic structural changes in ordered mesoporous electrode materials during cycling with synchrotron-based small angel X-ray scattering (SAXS) technique. In operando SAXS studies combined with electrochemical and other physical characterizations straightforwardly show how porous electrode materials underwent volume changes during the whole process of charge and discharge, with respect to their own reaction mechanism with lithium. This comprehensive information on the pore dynamics as well as volume changes of the electrode materials will not only be critical in further understanding of lithium ion storage reaction mechanism of materials, but also enable the innovative design of high performance nanostructured materials for next generation batteries.

  20. Ultra-small angle X-ray diffraction from muscle

    Energy Technology Data Exchange (ETDEWEB)

    Nave, C.; Diakun, G.P.; Bordas, J.

    1986-05-15

    An ultra-small angle X-ray scattering instrument is described. It uses two channel cut crystals, one to monochromatise and collimate the beam and the other to analyse the scattered radiation. It has been used to collect diffraction data from muscle, in which the physiological unit cell, the sarcomere, has a repeat of 2000 nm or more.

  1. X-ray and neutron small-angle scattering analysis of the complex formed by the Met receptor and the Listeria monocytogenes invasion protein InlB.

    Science.gov (United States)

    Niemann, Hartmut H; Petoukhov, Maxim V; Härtlein, Michael; Moulin, Martine; Gherardi, Ermanno; Timmins, Peter; Heinz, Dirk W; Svergun, Dmitri I

    2008-03-21

    The Listeria monocytogenes surface protein InlB binds to the extracellular domain of the human receptor tyrosine kinase Met, the product of the c-met proto-oncogene. InlB binding activates the Met receptor, leading to uptake of Listeria into normally nonphagocytic host cells. The N-terminal half of InlB (InlB(321)) is sufficient for Met binding and activation. The complex between this Met-binding domain of InlB and various constructs of the Met ectodomain was characterized by size exclusion chromatography and dynamic light scattering, and structural models were built using small-angle X-ray scattering and small-angle neutron scattering. Although most receptor tyrosine kinase ligands induce receptor dimerization, InlB(321) consistently binds the Met ectodomain with a 1:1 stoichiometry. A construct comprising the Sema and PSI domains of Met, although sufficient to bind the physiological Met ligand hepatocyte growth factor/scatter factor, does not form a complex with InlB(321) in solution, highlighting the importance of Met Ig domains for InlB binding. Small-angle X-ray scattering and small-angle neutron scattering measurements of ligand and receptor, both free and in complex, reveal an elongated shape for the receptor. The four Ig domains form a bent, rather than a fully extended, conformation, and InlB(321) binds to Sema and the first Ig domain of Met, in agreement with the recent crystal structure of a smaller Met fragment in complex with InlB(321). These results call into question whether receptor dimerization is the basic underlying event in InlB(321)-mediated Met activation and demonstrate differences in the mechanisms by which the physiological ligand hepatocyte growth factor/scatter factor and InlB(321) bind and activate the Met receptor.

  2. Ultrafast x-ray scattering on nanoparticle dynamics

    International Nuclear Information System (INIS)

    Plech, A; Ibrahimkutty, S; Issenmann, D; Kotaidis, V; Siems, A

    2013-01-01

    Pulsed X-ray scattering is used for the determination of structural dynamics of laser-irradiated gold particles. By combining several scattering methods such as powder scattering, small angle scattering and diffuse wide angle scattering it is possible to reconstruct the kinetics of structure evolution on several lengths scales and derive complementary information on the particles and their local environment. A generic structural phase diagram for the reaction as function of delay time after laser excitation and laser fluence can be constructed.

  3. A Mo-anode-based in-house source for small-angle X-ray scattering measurements of biological macromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Bruetzel, Linda K.; Fischer, Stefan; Salditt, Annalena; Sedlak, Steffen M.; Nickel, Bert; Lipfert, Jan, E-mail: Jan.Lipfert@lmu.de [Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, Ludwig-Maximilians-University Munich, Amalienstr. 54, 80799 Munich, Germany and Geschwister-Scholl Platz 1, 80539 Munich (Germany)

    2016-02-15

    We demonstrate the use of a molybdenum-anode-based in-house small-angle X-ray scattering (SAXS) setup to study biological macromolecules in solution. Our system consists of a microfocus X-ray tube delivering a highly collimated flux of 2.5 × 10{sup 6} photons/s at a beam size of 1.2 × 1.2 mm{sup 2} at the collimation path exit and a maximum beam divergence of 0.16 mrad. The resulting observable scattering vectors q are in the range of 0.38 Å{sup −1} down to 0.009 Å{sup −1} in SAXS configuration and of 0.26 Å{sup −1} up to 5.7 Å{sup −1} in wide-angle X-ray scattering (WAXS) mode. To determine the capabilities of the instrument, we collected SAXS data on weakly scattering biological macromolecules including proteins and a nucleic acid sample with molecular weights varying from ∼12 to 69 kDa and concentrations of 1.5–24 mg/ml. The measured scattering data display a high signal-to-noise ratio up to q-values of ∼0.2 Å{sup −1} allowing for an accurate structural characterization of the samples. Moreover, the in-house source data are of sufficient quality to perform ab initio 3D structure reconstructions that are in excellent agreement with the available crystallographic structures. In addition, measurements for the detergent decyl-maltoside show that the setup can be used to determine the size, shape, and interactions (as characterized by the second virial coefficient) of detergent micelles. This demonstrates that the use of a Mo-anode based in-house source is sufficient to determine basic geometric parameters and 3D shapes of biomolecules and presents a viable alternative to valuable beam time at third generation synchrotron sources.

  4. Magnetic neutron and x-ray scattering

    International Nuclear Information System (INIS)

    Vettier, C.

    1999-01-01

    Most of our knowledge about the microscopic properties of magnetic materials comes from neutron scattering experiments owing to the strength of the interaction between the neutron spin and magnetisation densities which is exploited to study the statics and dynamics of magnetic moments. Neutron diffraction is the probe of choice for magnetic structure determinations and inelastic neutron scattering is the only tool to observe the propagation of magnetic excitations. However, neutron scattering suffer from two drawbacks: i) neutron beams have a low flux and a low brilliance; ii) the magnetic neutron scattering amplitude is neither electronic shell sensitive nor species selective. These limitations are easily overcome by the x-ray methods. On the one hand, x-rays are extremely sensitive to electronic distributions and the use of resonant scattering has proven to be extremely sensitive to the symmetry of the site and electronic shell which carries the magnetisation. On the other hand, the high brilliance x-ray beams delivered by the modern synchrotron facilities are perfectly suited to the study of small samples. Furthermore, the recent progress achieved in x-ray instrumentation has stimulated considerable theoretical interest on the use of the x-ray scattering and new phenomena related to magnetism can be directly detected in x-ray scattering experiments. Recent specific examples are presented to underline the complementary use of neutron and x-ray methods. (author)

  5. Gas gain operations with single photon resolution using an integrating ionization chamber in small-angle X-ray scattering experiments

    CERN Document Server

    Menk, R H; Besch, H J; Walenta, Albert H; Amenitsch, H; Bernstorff, S

    2000-01-01

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. Initially, MicroCAT was thought of as a shielding grid (Frisch-grid) but later was used as an active electron amplification device that enables single X-ray photon resolution measurements at low fluxes even with integrating readout electronics. Moreover, the adjustable gas gain that continuously covers the entire range from pure ionization chamber mode up to high gas gains (30000 and more) provides stable operation yielding a huge dynamic range of about 10 sup 8 and more. First measurements on biological samples using small angle X-ray scattering techniques with synchrotron radiation will be presented.

  6. Novel Melt-Spun Polymer-Optical Poly(methyl methacrylate Fibers Studied by Small-Angle X-ray Scattering

    Directory of Open Access Journals (Sweden)

    Markus Beckers

    2017-02-01

    Full Text Available The structural properties of novel melt-spun polymer optical fibers (POFs are investigated by small-angle X-ray scattering. The amorphous PMMA POFs were subjected to a rapid cooling in a water quench right after extrusion in order to obtain a radial refractive index profile. Four fiber samples were investigated with small-angle X-ray scattering (SAXS. The resulting distance-distribution functions obtained from the respective equatorial and meridional SAXS data exhibit a real-space correlation peak indicative of periodic cross-sectional and axial variations in the scattering density contrast. Simple model calculations demonstrate how the structural information contained particularly in the equatorial distance distribution function can be interpreted. The respective results are qualitatively verified for one of the fiber samples by comparison of the model curve with the measured SAXS data. Eventually, the study confirms that the cross-sectional variation of the (scattering- density is the main reason for the formation of radial refractive-index profiles in the POFs.

  7. Plasma-assisted atomic layer epitaxial growth of aluminum nitride studied with real time grazing angle small angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Virginia R.; Nepal, Neeraj; Johnson, Scooter D.; Robinson, Zachary R.; Nath, Anindya; Kozen, Alexander C.; Qadri, Syed B.; DeMasi, Alexander; Hite, Jennifer K.; Ludwig, Karl F.; Eddy, Charles R.

    2017-05-01

    Wide bandgap semiconducting nitrides have found wide-spread application as light emitting and laser diodes and are under investigation for further application in optoelectronics, photovoltaics, and efficient power switching technologies. Alloys of the binary semiconductors allow adjustments of the band gap, an important semiconductor material characteristic, which is 6.2 eV for aluminum nitride (AlN), 3.4 eV for gallium nitride, and 0.7 eV for (InN). Currently, the highest quality III-nitride films are deposited by metalorganic chemical vapor deposition and molecular beam epitaxy. Temperatures of 900 °C and higher are required to deposit high quality AlN. Research into depositing III-nitrides with atomic layer epitaxy (ALEp) is ongoing because it is a fabrication friendly technique allowing lower growth temperatures. Because it is a relatively new technique, there is insufficient understanding of the ALEp growth mechanism which will be essential to development of the process. Here, grazing incidence small angle x-ray scattering is employed to observe the evolving behavior of the surface morphology during growth of AlN by ALEp at temperatures from 360 to 480 °C. Increased temperatures of AlN resulted in lower impurities and relatively fewer features with short range correlations.

  8. Salt Dependence of the Radius of Gyration and Flexibility of Single-stranded DNA in Solution probed by Small-angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Adelene Y.L.; Lipfert, Jan; Herschlag, Daniel; Doniach, Sebastian

    2012-07-06

    Short single-stranded nucleic acids are ubiquitous in biological processes and understanding their physical properties provides insights to nucleic acid folding and dynamics. We used small angle x-ray scattering to study 8-100 residue homopolymeric single-stranded DNAs in solution, without external forces or labeling probes. Poly-T's structural ensemble changes with increasing ionic strength in a manner consistent with a polyelectrolyte persistence length theory that accounts for molecular flexibility. For any number of residues, poly-A is consistently more elongated than poly-T, likely due to the tendency of A residues to form stronger base-stacking interactions than T residues.

  9. GENFIT: software for the analysis of small-angle X-ray and neutron scattering data of macro-molecules in solution.

    Science.gov (United States)

    Spinozzi, Francesco; Ferrero, Claudio; Ortore, Maria Grazia; De Maria Antolinos, Alejandro; Mariani, Paolo

    2014-06-01

    Many research topics in the fields of condensed matter and the life sciences are based on small-angle X-ray and neutron scattering techniques. With the current rapid progress in source brilliance and detector technology, high data fluxes of ever-increasing quality are produced. In order to exploit such a huge quantity of data and richness of information, wider and more sophisticated approaches to data analysis are needed. Presented here is GENFIT , a new software tool able to fit small-angle scattering data of randomly oriented macromolecular or nanosized systems according to a wide list of models, including form and structure factors. Batches of curves can be analysed simultaneously in terms of common fitting parameters or by expressing the model parameters via physical or phenomenological link functions. The models can also be combined, enabling the user to describe complex heterogeneous systems.

  10. The model resolution function - a technique for estimating the quality of approximation of particles by models in small-angle X-ray or neutron scattering

    International Nuclear Information System (INIS)

    Mueller, J.J.; Damaschun, G.; Schmidt, P.W.

    1985-01-01

    Although the quality of a structure model obtained from small-angle X-ray or neutron scattering curves for polymers can be determined qualitatively by comparing the isotropic scattering curve calculated for the model with the experimental scattering data for a solution of polymer molecules, other methods are needed for a more precise evaluation. A model resolution function has been defined to permit quantitative comparisons. With this function, the quality of the approximation can be assessed, and the structure resolution can be determined. An overinterpretation of scattering curves by use of complex but uniform-density models can thus be avoided. Furthermore, the value of the Porod volume calculated from the scattering data has been found to depend strongly on the interval in which the scattering data are recorded or selected for evaluation. The calculations with the atomic model curves showed that it is impossible to compute physically meaningful values of the hydration of the molecules from the Porod volume and the dry volume by use of extrapolated scattering curves with an insufficient resolution. The theory of the model resolution function and the interpretation of the Porod volume have been verified and tested with experimental scattering curves from solutions of RNA molecules. (orig.)

  11. The capability of measuring cross-sectional profile for hole patterns in nanoimprint templates using small-angle x-ray scattering

    Science.gov (United States)

    Hagihara, Kazuki; Taniguchi, Rikiya; Yamanaka, Eiji; Omote, Kazuhiko; Ito, Yoshiyasu; Ogata, Kiyoshi; Hayashi, Naoya

    2017-07-01

    Nanoimprint lithography (NIL) is one of the highest potential candidates for next generation lithography in semiconductors. NIL is very useful technology for pattern fabrication in high resolution compared to conventional optical lithography. NIL technology makes use of replication from quartz templates. The cross-sectional profile of the template is directly transferred to the resist profile on a wafer. Accordingly, the management of the cross-sectional profile on the template pattern is much more important than on each photomask. In our previous report, we had studied the performance of measuring cross-sectional profiles using grazing-incidence small-angle X-ray scattering (GISAXS). GISAXS has made it possible to analyze the repeated nanostructure patterns with a 2D X-ray scattering pattern. After various researches, we found the application is very effective in the method of cross-sectional profiling of sub-20 nm half-pitch lines-and-spaces (LS) patterns. In this report, we investigated the capabilities of measuring cross-sectional profiles for hole patterns using GISAXS. Since the pattern density of hole patterns is much lower than that of LS patterns, the intensity of X-ray scattering in hole measurements is much lower. We optimized some measurement conditions to build the hole measurement system. Finally, the results suggested that 3D profile measurement of hole pattern using GISAXS has sufficient performance to manage the cross-sectional profile of template. The measurement system using GISAXS for measuring 3D profiles establishes the cross-sectional profile management essential for the production of high quality quartz hole templates.

  12. Agglomeration and Sintering in Annealed FePt Nanoparticle Assemblies Studied by Small Angle Neutron Scattering and X-Ray Diffraction

    International Nuclear Information System (INIS)

    Thomson, T.

    2005-01-01

    In this work we give a detailed account of the use of small angle neutron scattering to study the properties of polymer mediated, self assembled nanoparticle arrays as a function of annealing temperature. The results from neutron scattering are compared with those obtained from x-ray diffraction. Both techniques show that particle size increases with annealing temperatures of 580 C and above. They also show that the distribution of particle diameters is significant and increases with annealing temperature. The complementary nature of the two measurements allows a comprehensive structural model of the assemblies to be developed in terms of particle sintering and agglomeration. To realize the potential of nanoparticle assemblies as a monodispersed data storage medium the problem of particle separation necessary to avoid sintering and agglomeration during annealing must be addressed

  13. Core–Shell Structure and Aggregation Number of Micelles Composed of Amphiphilic Block Copolymers and Amphiphilic Heterografted Polymer Brushes Determined by Small-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Szymusiak, Magdalena; Kalkowski, Joseph; Luo, Hanying; Donovan, Alexander J.; Zhang, Pin; Liu, Chang; Shang, Weifeng; Irving, Thomas; Herrera-Alonso, Margarita; Liu, Ying (JHU); (IIT); (UIC)

    2017-08-31

    A large group of functional nanomaterials employed in biomedical applications, including targeted drug delivery, relies on amphiphilic polymers to encapsulate therapeutic payloads via self-assembly processes. Knowledge of the micelle structures will provide critical insights into design of polymeric drug delivery systems. Core–shell micelles composed of linear diblock copolymers poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL), poly(ethylene oxide)-b-poly(lactic acid) (PEG-b-PLA), as well as a heterografted brush consisting of a poly(glycidyl methacrylate) backbone with PEG and PLA branches (PGMA-g-PEG/PLA) were characterized by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) measurements to gain structural information regarding the particle morphology, core–shell size, and aggregation number. The structural information at this quasi-equilibrium state can also be used as a reference when studying the kinetics of polymer micellization.

  14. Core–Shell Structure and Aggregation Number of Micelles Composed of Amphiphilic Block Copolymers and Amphiphilic Heterografted Polymer Brushes Determined by Small-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Szymusiak, Magdalena [Department; Kalkowski, Joseph [Department; Luo, Hanying [Department; Donovan, Alexander J. [Department; Zhang, Pin [Department; Liu, Chang [Department; Shang, Weifeng [Department; Irving, Thomas [Department; Herrera-Alonso, Margarita [Department; Liu, Ying [Department; Department

    2017-08-16

    A large group of functional nanomaterials employed in biomedical applications, including targeted drug delivery, relies on amphiphilic polymers to encapsulate therapeutic payloads via self-assembly processes. Knowledge of the micelle structures will provide critical insights into design of polymeric drug delivery systems. Core–shell micelles composed of linear diblock copolymers poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL), poly(ethylene oxide)-b-poly(lactic acid) (PEG-b-PLA), as well as a heterografted brush consisting of a poly(glycidyl methacrylate) backbone with PEG and PLA branches (PGMA-g-PEG/PLA) were characterized by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) measurements to gain structural information regarding the particle morphology, core–shell size, and aggregation number. The structural information at this quasi-equilibrium state can also be used as a reference when studying the kinetics of polymer micellization.

  15. In situ small-angle X-ray scattering observations of Pt/NaY catalysts during processing: sintering of Pt

    Energy Technology Data Exchange (ETDEWEB)

    Brumberger, H. [Syracuse Univ., NY (United States). Dept. of Chemistry; Goodisman, J. [Syracuse Univ., NY (United States). Dept. of Chemistry; Ramaya, R. [Syracuse Univ., NY (United States). Dept. of Chemistry; Ciccariello, S. [Padua Univ. (Italy). Dipt. di Fisica

    1996-10-01

    Small-angle X-ray scattering observations on Pt/NaY catalysts, made in situ during calcination and reduction stages of processing, demonstrate the usefulness of this technique in following morphological changes. Observations show that the same platinum species (Pt{sup 0} under the preparation conditions used) is present in the early stages of calcination, carried out at relatively high heating rates, as after reduction, and that the ultimate dispersity of the metal is already reached within 0.5 h of the start of calcination. Increasing aggregation of metal particles occurs at calcination temperatures higher than 573 K, leading to average particle sizes too large to fit the supercages of the zeolite framework. With the assumption that the metal is a Maxwellian distribution of spheres, values of the distribution parameters giving the best fit to the scattering for each catalyst sample are found; from these parameters, average particle radii are calculated. (orig.).

  16. Structural characterization of the phospholipid stabilizer layer at the solid-liquid interface of dispersed triglyceride nanocrystals with small-angle x-ray and neutron scattering

    Science.gov (United States)

    Schmiele, Martin; Schindler, Torben; Unruh, Tobias; Busch, Sebastian; Morhenn, Humphrey; Westermann, Martin; Steiniger, Frank; Radulescu, Aurel; Lindner, Peter; Schweins, Ralf; Boesecke, Peter

    2013-06-01

    Dispersions of crystalline nanoparticles with at least one sufficiently large unit cell dimension can give rise to Bragg reflections in the small-angle scattering range. If the nanocrystals possess only a small number of unit cells along these particular crystallographic directions, the corresponding Bragg reflections will be broadened. In a previous study of phospholipid stabilized dispersions of β-tripalmitin platelets [Unruh, J. Appl. Crystallogr.JACGAR0021-889810.1107/S0021889807044378 40, 1008 (2007)], the x-ray powder pattern simulation analysis (XPPSA) was developed. The XPPSA method facilitates the interpretation of the rather complicated small-angle x-ray scattering (SAXS) curves of such dispersions of nanocrystals. The XPPSA method yields the distribution function of the platelet thicknesses and facilitates a structural characterization of the phospholipid stabilizer layer at the solid-liquid interface between the nanocrystals and the dispersion medium from the shape of the broadened 001 Bragg reflection. In this contribution an improved and extended version of the XPPSA method is presented. The SAXS and small-angle neutron scattering patterns of dilute phospholipid stabilized tripalmitin dispersions can be reproduced on the basis of a consistent simulation model for the particles and their phospholipid stabilizer layer on an absolute scale. The results indicate a surprisingly flat arrangement of the phospholipid molecules in the stabilizer layer with a total thickness of only 12 Å. The stabilizer layer can be modeled by an inner shell for the fatty acid chains and an outer shell including the head groups and additional water. The experiments support a dense packing of the phospholipid molecules on the nanocrystal surfaces rather than isolated phospholipid domains.

  17. Solution structure of human plasma fibronectin using small-angle X-ray and neutron scattering at physiological pH and ionic strength

    International Nuclear Information System (INIS)

    Sjoeberg, B.P.; Pap, S.; Osterlund, E.; Osterlund, K.; Vuento, M.; Kjems, J.

    1987-01-01

    Human plasma fibronectin has been investigated at physiological pH and ionic strength, by using small-angle X-ray and neutron scattering techniques. The results indicate that the molecule is disc shaped with an axial ratio of about 1:10. In fact, an ellipsoid of revolution with semiaxes a = 1.44 nm and b = c = 13.8 nm is in agreement with the experimental scattering data, and can also fully explain the rather extreme hydrodynamic parameters reported for fibronectin. The X-ray data gave a radius of gyration of 8.9 nm and a molecular weight of 510,000, whereas the neutron data gave slightly larger values, 9.5 nm and 530,000, respectively. From the volume of the best fitting ellipsoid we obtain a degree of hydration of 0.61 g H 2 O/g protein (dry weight). Neutron data, recorded at different D 2 O concentrations in the solvent, gave a match point of 43% D 2 O, which indicates that approximately 80% of the hydrogens bound to oxygen and nitrogen are exchangeable

  18. Micellar Surfactant Association in the Presence of a Glucoside-based Amphiphile Detected via High-Throughput Small Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Stanic, Vesna [Brazilian Synchrotron Light Source, Campinas (Brazil); Broadbent, Charlotte [Columbia Univ., New York, NY (United States). Engineering Dept.; DiMasi, Elaine [Brookhaven National Lab. (BNL), Upton, NY (United States). Photon Sciences Division; Galleguillos, Ramiro [Lubrizol Advanced Materials, Cleveland, OH (United States); Woodward, Valerie [Lubrizol Advanced Materials, Cleveland, OH (United States)

    2016-11-14

    The interactions of mixtures of anionic and amphoteric surfactants with sugar amphiphiles were studied via high throughput small angle x-ray scattering (SAXS). The sugar amphiphile was composed of Caprate, Caprylate, and Oleate mixed ester of methyl glucoside, MeGCCO. Optimal surfactant interactions are sought which have desirable physical properties, which must be identified in a cost effective manner that can access the large phase space of possible molecular combinations. X-ray scattering patterns obtained via high throughput SAXS can probe a combinatorial sample space and reveal the incorporation of MeGCCO into the micelles and the molecular associations between surfactant molecules. Such data make it possible to efficiently assess the effects of the new amphiphiles in the formulation. A specific finding of this study is that formulations containing comparatively monodisperse and homogeneous surfactant mixtures can be reliably tuned by addition of NaCl, which swells the surfactant micelles with a monotonic dependence on salt concentration. In contrast, the presence of multiple different surfactants destroys clear correlations with NaCl concentration, even in otherwise similar series of formulations.

  19. An Optimized Table-Top Small-Angle X-ray Scattering Set-up for the Nanoscale Structural Analysis of Soft Matter

    KAUST Repository

    Sibillano, T.

    2014-11-10

    The paper shows how a table top superbright microfocus laboratory X-ray source and an innovative restoring-data algorithm, used in combination, allow to analyze the super molecular structure of soft matter by means of Small Angle X-ray Scattering ex-situ experiments. The proposed theoretical approach is aimed to restore diffraction features from SAXS profiles collected from low scattering biomaterials or soft tissues, and therefore to deal with extremely noisy diffraction SAXS profiles/maps. As biological test cases we inspected: i) residues of exosomes\\' drops from healthy epithelial colon cell line and colorectal cancer cells; ii) collagen/human elastin artificial scaffolds developed for vascular tissue engineering applications; iii) apoferritin protein in solution. Our results show how this combination can provide morphological/structural nanoscale information to characterize new artificial biomaterials and/or to get insight into the transition between healthy and pathological tissues during the progression of a disease, or to morphologically characterize nanoscale proteins, based on SAXS data collected in a room-sized laboratory.

  20. GALAXI: Gallium anode low-angle x-ray instrument

    Directory of Open Access Journals (Sweden)

    Emmanuel Kentzinger

    2016-03-01

    Full Text Available The high brilliance laboratory small angle X-ray scattering instrument GALAXI, which is operated by JCNS, Forschungszentrum Jülich, permits the investigation of chemical correlations in bulk materials or of structures deposited on a surface at nanometre and mesoscopic length scales. The instrument is capable to perform GISAXS experiments in reflection at grazing incidence as well as SAXS experiments in transmission geometry. The X-ray flux on sample is comparable or higher than the one obtained at a comparable beamline at a second generation synchrotron radiation source.

  1. Conformational variability of the stationary phase survival protein E from Xylella fastidiosa revealed by X-ray crystallography, small-angle X-ray scattering studies, and normal mode analysis.

    Science.gov (United States)

    Machado, Agnes Thiane Pereira; Fonseca, Emanuella Maria Barreto; Reis, Marcelo Augusto Dos; Saraiva, Antonio Marcos; Santos, Clelton Aparecido Dos; de Toledo, Marcelo Augusto Szymanski; Polikarpov, Igor; de Souza, Anete Pereira; Aparicio, Ricardo; Iulek, Jorge

    2017-10-01

    Xylella fastidiosa is a xylem-limited bacterium that infects a wide variety of plants. Stationary phase survival protein E is classified as a nucleotidase, which is expressed when bacterial cells are in the stationary growth phase and subjected to environmental stresses. Here, we report four refined X-ray structures of this protein from X. fastidiosa in four different crystal forms in the presence and/or absence of the substrate 3'-AMP. In all chains, the conserved loop verified in family members assumes a closed conformation in either condition. Therefore, the enzymatic mechanism for the target protein might be different of its homologs. Two crystal forms exhibit two monomers whereas the other two show four monomers in the asymmetric unit. While the biological unit has been characterized as a tetramer, differences of their sizes and symmetry are remarkable. Four conformers identified by Small-Angle X-ray Scattering (SAXS) in a ligand-free solution are related to the low frequency normal modes of the crystallographic structures associated with rigid body-like protomer arrangements responsible for the longitudinal and symmetric adjustments between tetramers. When the substrate is present in solution, only two conformers are selected. The most prominent conformer for each case is associated to a normal mode able to elongate the protein by moving apart two dimers. To our knowledge, this work was the first investigation based on the normal modes that analyzed the quaternary structure variability for an enzyme of the SurE family followed by crystallography and SAXS validation. The combined results raise new directions to study allosteric features of XfSurE protein. © 2017 Wiley Periodicals, Inc.

  2. Microstructural Parameters in 8 MeV Electron-Irradiated BOMBYX MORI Silk Fibers by Wide-ANGLE X-Ray Scattering Studies (waxs)

    Science.gov (United States)

    Sangappa, Asha, S.; Sanjeev, Ganesh; Subramanya, G.; Parameswara, P.; Somashekar, R.

    2010-01-01

    The present work looks into the microstructural modification in electron irradiated Bombyx mori P31 silk fibers. The irradiation process was performed in air at room temperature using 8 MeV electron accelerator at different doses: 0, 25, 50 and 100 kGy. Irradiation of polymer is used to cross-link or degrade the desired component or to fix the polymer morphology. The changes in microstructural parameters in these natural polymer fibers have been computed using wide angle X-ray scattering (WAXS) data and employing line profile analysis (LPA) using Fourier transform technique of Warren. Exponential, Lognormal and Reinhold functions for the column length distributions have been used for the determination of crystal size, lattice strain and enthalpy parameters.

  3. Solution small-angle x-ray scattering as a screening and predictive tool in the fabrication of asymmetric block copolymer membranes

    KAUST Repository

    Dorin, Rachel Mika

    2012-05-15

    Small-angle X-ray scattering (SAXS) analysis of the diblock copolymer poly(styrene-b-(4-vinyl)pyridine) in a ternary solvent system of 1,4-dioxane, tetrahydrofuran, and N,N-dimethylformamide, and the triblock terpolymer poly(isoprene-b-styrene-b-(4-vinyl)-pyridine) in a binary solvent system of 1,4-dioxane and tetrahydrofuran, reveals a concentration-dependent onset of ordered structure formation. Asymmetric membranes fabricated from casting solutions with polymer concentrations at or slightly below this ordering concentration possess selective layers with the desired nanostructure. In addition to rapidly screening possible polymer solution concentrations, solution SAXS analysis also predicts hexagonal and square pore lattices of the final membrane surface structure. These results suggest solution SAXS as a powerful tool for screening casting solution concentrations and predicting surface structure in the fabrication of asymmetric ultrafiltration membranes from self-assembled block copolymers. (Figure presented) © 2012 American Chemical Society.

  4. Wavelet-based feature extraction applied to small-angle x-ray scattering patterns from breast tissue: a tool for differentiating between tissue types

    International Nuclear Information System (INIS)

    Falzon, G; Pearson, S; Murison, R; Hall, C; Siu, K; Evans, A; Rogers, K; Lewis, R

    2006-01-01

    This paper reports on the application of wavelet decomposition to small-angle x-ray scattering (SAXS) patterns from human breast tissue produced by a synchrotron source. The pixel intensities of SAXS patterns of normal, benign and malignant tissue types were transformed into wavelet coefficients. Statistical analysis found significant differences between the wavelet coefficients describing the patterns produced by different tissue types. These differences were then correlated with position in the image and have been linked to the supra-molecular structural changes that occur in breast tissue in the presence of disease. Specifically, results indicate that there are significant differences between healthy and diseased tissues in the wavelet coefficients that describe the peaks produced by the axial d-spacing of collagen. These differences suggest that a useful classification tool could be based upon the spectral information within the axial peaks

  5. BioXTAS RAW, a software program for high-throughput automated small-angle X-ray scattering data reduction and preliminary analysis

    DEFF Research Database (Denmark)

    Nielsen, S.S.; Toft, K.N.; Snakenborg, Detlef

    2009-01-01

    A fully open source software program for automated two-dimensional and one-dimensional data reduction and preliminary analysis of isotropic small-angle X-ray scattering (SAXS) data is presented. The program is freely distributed, following the open-source philosophy, and does not rely on any...... commercial software packages. BioXTAS RAW is a fully automated program that, via an online feature, reads raw two-dimensional SAXS detector output files and processes and plots data as the data files are created during measurement sessions. The software handles all steps in the data reduction. This includes......-dimensional data in terms of the indirect Fourier transform using the objective Bayesian approach to obtain the pair-distance distribution function, PDDF, and is thereby a free and open-source alternative to existing PDDF estimation software. Apart from the TIFF input format, the program also accepts ASCII...

  6. Chaperone-client interactions between Hsp21 and client proteins monitored in solution by small angle X-ray scattering and captured by crosslinking mass spectrometry

    DEFF Research Database (Denmark)

    Rutsdottir, Gudrun; I Rasmussen, Morten; Hojrup, Peter

    2018-01-01

    and six inwardly-facing. Here, we investigated the interactions between Hsp21 and thermosensitive model substrate client proteins in solution, by small-angle X-ray scattering (SAXS) and crosslinking mass spectrometry. The chaperone-client complexes were monitored and the Rg-values were found to increase......The small heat shock protein (sHsp) chaperones are important for stress survival, yet the molecular details of how they interact with client proteins are not understood. All sHsps share a folded middle domain to which is appended flexible N- and C-terminal regions varying in length and sequence...... continuously during 20 min at 45°, which could reflect binding of partially unfolded clients to the flexible N-terminal arms of the Hsp21 dodecamer. No such increase in Rg-values was observed with a mutational variant of Hsp21, which is mainly dimeric and has reduced chaperone activity. Crosslinking data...

  7. Small angle X-ray scattering by TiO2/ZrO2 mixed oxide particles and a Synroc precursor

    International Nuclear Information System (INIS)

    Gazeau, D.; Zemb, T.; Amal, R.; Bartlett, J.

    1992-09-01

    This high resolution small angle X-ray scattering study of a concentrated oxide sol, precursor of the SYNROC matrix for the storage of the high level radioactive waste, evidences a locally cylindrical microstructure. Locally, nanometric cylinders show disordered axis with some concentration dependent connections. This microstructure explains the paradoxal stability of this oxide dispersions upon the addition of concentrated acidic solutions. This stability has a steric origin and electrostatic repulsions are not needed. The addition of aluminium to the initial titanium-zirconium mixture enhances branching on the locally cylindrical microstructure. Finally, we show that the solid powder obtained after calcination (drying) of the sol has the same specific area (∼ 1000 m 2 /g) than the sol. (Author). 23 refs., 7 figs., 1 tab

  8. Solution structure of variant H2A.Z.1 nucleosome investigated by small-angle X-ray and neutron scatterings.

    Science.gov (United States)

    Sugiyama, Masaaki; Horikoshi, Naoki; Suzuki, Yuya; Taguchi, Hiroyuki; Kujirai, Tomoya; Inoue, Rintaro; Oba, Yojiro; Sato, Nobuhiro; Martel, Anne; Porcar, Lionel; Kurumizaka, Hitoshi

    2015-12-01

    Solution structures of nucleosomes containing a human histone variant, H2A.Z.1, were measured by small-angle X-ray and neutron scatterings (SAXS and SANS). SAXS revealed that the outer shape, reflecting the DNA shape, of the H2A.Z.1 nucleosome is almost the same as that of the canonical H2A nucleosome. In contrast, SANS employing a contrast variation technique revealed that the histone octamer of the H2A.Z.1 nucleosome is smaller than that of the canonical nucleosome. The DNA within the H2A.Z.1 nucleosome was more susceptible to micrococcal nuclease than that within the canonical nucleosome. These results suggested that the DNA is loosely wrapped around the histone core in the H2A.Z.1 nucleosome.

  9. Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering.

    Science.gov (United States)

    Yuan, Xueming; Duan, Yonghao; He, Lilin; Singh, Seema; Simmons, Blake; Cheng, Gang

    2017-05-01

    A systematic study was performed to understand interactions among biomass loading during ionic liquid (IL) pretreatment, biomass type and biomass structures. White poplar and eucalyptus samples were pretreated using 1-ethyl-3-methylimidazolium acetate (EmimOAc) at 110°C for 3h at biomass loadings of 5, 10, 15, 20 and 25wt%. All of the samples were chemically characterized and tested for enzymatic hydrolysis. Physical structures including biomass crystallinity and porosity were measured by X-ray diffraction (XRD) and small angle neutron scattering (SANS), respectively. SANS detected pores of radii ranging from ∼25 to 625Å, enabling assessment of contributions of pores with different sizes to increased porosity after pretreatment. Contrasting dependences of sugar conversion on white poplar and eucalyptus as a function of biomass loading were observed and cellulose crystalline structure was found to play an important role. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Agglomeration and sintering in annealed FePt nanoparticle assemblies studied by small angle neutron scattering and x-ray diffraction

    International Nuclear Information System (INIS)

    Thomson, T.; Lee, S.L.; Oates, C.J.; Toney, M.F.; Dewhurst, C.D.; Ogrin, F.Y.; Sun, S.

    2005-01-01

    In this work we give a detailed account of complementary small angle neutron scattering and x-ray diffraction studies of polymer mediated, self-assembled FePt nanoparticle arrays as a function of annealing temperature. The combination of these two techniques provides significantly greater physical insight than is available using either individually. Since both methods integrate over a large number of particles statistically meaningful data can be obtained in contrast to imaging techniques where typically only small areas are analyzed. The data show that the median particle size increases with annealing at temperatures of 580 deg. C and above. The data also demonstrate that the distribution of particle diameters is significant and increases with annealing temperature. These results allow a comprehensive structural model of the annealed assemblies to be developed in terms of particle sintering and agglomeration. This enhanced understanding will allow new strategies to be pursued in realizing the potential of nanoparticle assemblies as a monodispersed data storage medium

  11. A small-angle X-ray scattering study of complexes formed in mixtures of a cationic polyelectrolyte and an anionic surfactant

    DEFF Research Database (Denmark)

    Bergström, M.; Kjellin, U.R.M.; Claesson, P.M.

    2002-01-01

    The internal structure of the solid phase formed in mixtures of the anionic surfactant sodium dodecyl sulfate (SDS) and a range of oppositely charged polyelectrolytes with different side chains and charge density has been investigated using small-angle X-ray scattering. Polyelectrolytes with short....... The hexagonal structure of MAPTAC is retained either when a neutral monomer (acrylamide, AM) is included in the polymer backbone to reduce the charge density or when a nonionic surfactant is admixed to the SDS/polyelctrolyte complex.. The unit cell length of AM-MAPTAC increases with decreasing charge density...... structure and the bilayers in the lamellar structure are based on self-assembled surfactant aggregates with the polyelectrolyte mainly located in the aqueous region adjacent to the charged surfactant headgroups....

  12. Combined in situ small and wide angle X-ray scattering studies of TiO2 nano-particle annealing to 1023 K

    DEFF Research Database (Denmark)

    Kehres, Jan; Andreasen, Jens Wenzel; Krebs, Frederik C

    2010-01-01

    Combined in situ small- and wide-angle X-ray scattering (SAXS/WAXS) studies were performed in a recently developed laboratory setup to investigate the dynamical properties of dry oleic acid-capped titanium dioxide nanorods during annealing in an inert gas stream in a temperature interval of 298......-1023 K. Aggregates formed by the titanium dioxide particles exhibit a continuous growth as a function of temperature. The particle size determined with SAXS and the crystallite size refined from WAXS show a correlated growth at temperatures above 673 K, where the decomposition of the surfactant...... microscopy studies of the sample. Transmission electron microscopy shows a transformation from a rod to a spherical particle shape; the WAXS data indicate that the shape change occurs in a temperature interval of 773-923 K. The highly crystalline titanium dioxide particles remain in the metastable anatase...

  13. Effect of additives on distributions of lamellar structures in sheared polymer: a study of synchrotron small-angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Pengwei; Edward, Graham [Cooperative Research Center for Polymers (Australia); Nichols, Lance [Cooperative Research Centre for Polymers, Vic 3800 (Australia)

    2009-12-21

    The effects of additives on the distributions of lamellar morphology and orientation in sheared isotactic polypropylene were investigated using the small beam of synchrotron small-angle x-ray scattering. The Cu-phthalocyanine can template the lamellar orientation even under low shear rates, whereas the ultramarine blue cannot. The surface contact is suggested to play a role in stabilizing the formation of oriented nuclei which subsequently direct the growth of oriented lamellae. The additives have no notable effects on the long spacing in the shear region. However, at high shear rates, they decrease the thickness of crystalline lamellae or increase the thickness of amorphous lamellae. Since the additives increase the degree of volume crystalline in the shear region, the number of crystalline lamellae should be increased. The results are helpful in designing and selecting suitable additives for controlling lamellar morphology and orientation.

  14. Probing He bubbles in naturally aged and annealed δ-Pu alloys using ultra-small-angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jeffries, J. R.; Hammons, J. A.; Willey, T. M.; Wall, M. A.; Ruddle, D.; Ilavsky, J.; Allen, P. G.; van Buuren, T.

    2018-01-01

    The self-irradiation of Pu alloys generates He that is trapped within the metal matrix in the form of He bubbles. The distribution of these He bubbles in δ-phase Pu-Ga alloys exhibits a peak near a radius of 0.7 nm, and this size is remarkably stable as function of time. When annealed, the He bubbles in δ-Pu alloys grow, coarsening the distribution. However, the magnitude of this coarsening is uncertain, as different experimental methods reveal bubbles that differ by at least one order of magnitude. Small-angle x-ray scattering results, which can probe a wide range of bubble sizes, imply only a mild coarsening of the He bubble distribution for an annealing treatment of 425 °C for 24 h, and analysis of the He bubble content suggests that He is actually lost from the bubbles with annealing.

  15. Small-angle x-ray scattering and density measurements of liquid Se50-Te50 mixture at high temperatures and high pressures using synchrotron radiation

    International Nuclear Information System (INIS)

    Kajihara, Y; Inui, M; Matsuda, K; Tomioka, Y

    2010-01-01

    We have carried out small-angle x-ray scattering and x-ray transmission measurements of liquid Se 50 -Te 50 mixture at SPring-8 in Japan and obtained the structure factor S(Q) at small-Q region (0.6 -1 ) and the density at high temperatures and high pressures up to 1000 0 C and 180 MPa. We report preliminary results in this paper. With increasing temperature, the density shows a minimum at around 500 0 C and a maximum at around 700 0 C. On the other hand, S(0) becomes maximum and S(Q) strongly depends on Q at around 600 0 C, which is about the middle temperature where the density shows the minimum and maximum. The temperatures shift to lower side when the pressure increases. These results prove that, with increasing temperature, the sample exhibits gradual transition from low-density structure to high-density structure, which causes mesoscopic density fluctuations in the intermediate temperature region.

  16. Experimental set-up for time resolved small angle X-ray scattering studies of nanoparticles formation using a free-jet micromixer

    Energy Technology Data Exchange (ETDEWEB)

    Marmiroli, Benedetta [Institute for Biophysics and Nanosystem Research, Austrian Academy of Science, Schmiedlstrasse 6, Graz (Austria); Grenci, Gianluca [TASC INFM/CNR, SS 14 km 163.5, Basovizza, TS (Italy); Cacho-Nerin, Fernando; Sartori, Barbara; Laggner, Peter [Institute for Biophysics and Nanosystem Research, Austrian Academy of Science, Schmiedlstrasse 6, Graz (Austria); Businaro, Luca [TASC INFM/CNR, SS 14 km 163.5, Basovizza, TS (Italy); Amenitsch, Heinz, E-mail: heinz.amenitsch@elettra.trieste.i [Institute for Biophysics and Nanosystem Research, Austrian Academy of Science, Schmiedlstrasse 6, Graz (Austria)

    2010-02-15

    Recently, we have designed, fabricated and tested a free-jet micromixer for time resolved small angle X-ray scattering (SAXS) studies of nanoparticles formation in the <100 mus time range. The microjet has a diameter of 25 mum and a time of first accessible measurement of 75 mus has been obtained. This result can still be improved. In this communication, we present a method to estimate whether a given chemical or biological reaction can be investigated with the micromixer, and to optimize the beam size for the measurement at the chosen SAXS beamline. Moreover, we describe a system based on stereoscopic imaging which allows the alignment of the jet with the X-ray beam with a precision of 20 mum. The proposed experimental procedures have been successfully employed to observe the formation of calcium carbonate (CaCO{sub 3}) nanoparticles from the reaction of sodium carbonate (Na{sub 2}CO{sub 3}) and calcium chloride (CaCl{sub 2}). The induction time has been estimated in the order of 200 mus and the determined radius of the particles is about 14 nm.

  17. Crystal Structures and Small-angle X-ray Scattering Analysis of UDP-galactopyranose Mutase from the Pathogenic Fungus Aspergillus fumigatus

    Energy Technology Data Exchange (ETDEWEB)

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Karr, Dale B.; Nix, Jay C.; Sobrado, Pablo; Tanner, John J. (LBNL); (Missouri); (VPI)

    2015-10-15

    UDP-galactopyranose mutase (UGM) is a flavoenzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, which is a central reaction in galactofuranose biosynthesis. Galactofuranose has never been found in humans but is an essential building block of the cell wall and extracellular matrix of many bacteria, fungi, and protozoa. The importance of UGM for the viability of many pathogens and its absence in humans make UGM a potential drug target. Here we report the first crystal structures and small-angle x-ray scattering data for UGM from the fungus Aspergillus fumigatus, the causative agent of aspergillosis. The structures reveal that Aspergillus UGM has several extra secondary and tertiary structural elements that are not found in bacterial UGMs yet are important for substrate recognition and oligomerization. Small-angle x-ray scattering data show that Aspergillus UGM forms a tetramer in solution, which is unprecedented for UGMs. The binding of UDP or the substrate induces profound conformational changes in the enzyme. Two loops on opposite sides of the active site move toward each other by over 10 {angstrom} to cover the substrate and create a closed active site. The degree of substrate-induced conformational change exceeds that of bacterial UGMs and is a direct consequence of the unique quaternary structure of Aspergillus UGM. Galactopyranose binds at the re face of the FAD isoalloxazine with the anomeric carbon atom poised for nucleophilic attack by the FAD N5 atom. The structural data provide new insight into substrate recognition and the catalytic mechanism and thus will aid inhibitor design.

  18. Small angle X-ray scattering data and structure factor fitting for the study of the quaternary structure of the spermidine N-acetyltransferase SpeG.

    Science.gov (United States)

    Weigand, Steven; Filippova, Ekaterina V; Kiryukhina, Olga; Anderson, Wayne F

    2016-03-01

    Here we describe the treatment of the small-angle X-ray Scattering (SAXS) data used during SpeG quaternary structure study as part of the research article "Substrate induced allosteric change in the quaternary structure of the spermidine N-acetyltransferase SpeG" published in Journal of Molecular Biology [1]. These data were collected on two separate area detectors as separate dilution series of the SpeG and the SpeG with spermine samples along with data from their companion buffers. The data were radially integrated, corrected for incident beam variation, and scaled to absolute units. After subtraction of volume-fraction scaled buffer scattering and division by the SpeG concentration, multiple scattering curves free of an inter-molecular structure factor were derived from the dilution series. Rather than extrapolating to infinite dilution, the structure factor contribution was estimated by fitting to the full set of data provided by dividing the scattering curves of a dilution series by the curve from the most dilute sample in that series.

  19. Glancing angle synchrotron X-ray diffraction

    International Nuclear Information System (INIS)

    Cernik, R.J.

    1996-01-01

    This paper describes in basic detail some of the techniques that can be used to study thin films and surfaces. These are all in the X-ray region and cover reflectivity, diffraction form polycrystalline films, textured films and single crystal films. Other effects such as fluorescence and diffuse scattering are mentioned but not discussed in detail. Two examples of the reflectivity from multilayers and the diffraction from iron oxide films are discussed. The advantages of the synchrotron for these studies is stressed and the experimental geometries that can be employed are described i detail. A brief bibliography is provided at the end to accompany this part of the 1996 Frascati school

  20. Glancing angle synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cernik, R.J. [Daresbury Lab., Warrington, WA (United States)

    1996-09-01

    This paper describes in basic detail some of the techniques that can be used to study thin films and surfaces. These are all in the X-ray region and cover reflectivity, diffraction form polycrystalline films, textured films and single crystal films. Other effects such as fluorescence and diffuse scattering are mentioned but not discussed in detail. Two examples of the reflectivity from multilayers and the diffraction from iron oxide films are discussed. The advantages of the synchrotron for these studies is stressed and the experimental geometries that can be employed are described i detail. A brief bibliography is provided at the end to accompany this part of the 1996 Frascati school.

  1. A small angle X-ray scattering method to investigate the crack tip in metals. Final report of the Marie Curie individual fellowship project

    International Nuclear Information System (INIS)

    Ouytsel, K. van; Boehmert, J.; Mueller, G.

    2003-08-01

    Structural materials, such as ferritic and austenitic steels or aluminium alloys used in the nuclear and aircraft industry, are subjected to external operational loads in different environments. Adopting a damage tolerant design principle, understanding the growth of preexisting or newly formed cracks under these conditions is of prime relevance to prevent extensive crack propagation and failure of the component. Within this framework, the characterization of early stages of the damage processes, as nucleation, growth and coalescence of micro-voids and the evolution of the spatial dislocation distribution (dislocation patterning) is a particularly challenging aspect. It was the objective of the work performed to investigate the damage structure near a crack tip by means of small angle X-ray scattering (SAXS). Pre-cracked fracture mechanics standard specimens from different aluminium alloys and steels were loaded up to different amounts of crack growth. From the crack tip range samples of 100 to 200 μm thickness were prepared and a small region around the crack tip was scanned using a microfocused Synchrotron beam. The SAXS experiments were performed at different Synchrotron sources and equipments with different beam cross section, scan step width and X-ray energy. Additionally, the investigation was completed by other methods like X-ray diffraction, X-ray imaging diffraction technique (MAXIM), transmission electron microscopy, scanning electron microscopy, and positron annihilation spectroscopy. The SAXS intensity pattern shows location-related effects. Potential SAXS parameters to characterize the damage are the integral intensity, a fractal dimension parameter and a value determined from the ratio of the intensity vertical and horizontal to the direction of crack growth. Above all, the last parameter is suitable to depict the damage zone around the crack tip. It is robust and applicable even for a material which exhibits an anisotropic SAXS pattern in the

  2. Assessment of firing conditions in old fired-clay bricks: The contribution of X-ray powder diffraction with the Rietveld method and small angle neutron scattering

    International Nuclear Information System (INIS)

    Viani, Alberto; Sotiriadis, Konstantinos; Len, Adél; Šašek, Petr; Ševčík, Radek

    2016-01-01

    Full characterization of fired-clay bricks is crucial for the improvement of process variables in manufacturing and, in case of old bricks, for restoration/replacement purposes. To this aim, five bricks produced in a plant in Czech Republic in the past have been investigated with a combination of analytical techniques in order to derive information on the firing process. An additional old brick from another brickyard was also used to study the influence of different raw materials on sample microstructure. The potential of X-ray diffraction with the Rietveld method and small angle neutron scattering technique has been exploited to describe the phase transformations taking place during firing and characterize the brick microstructure. Unit-cell parameter of spinel and amount of hematite are proposed as indicators of the maximum firing temperature, although for the latter, limited to bricks produced from the same raw material. The fractal quality of the surface area of pores obtained from small angle neutron scattering is also suggested as a method to distinguish between bricks produced from different raw clays. - Highlights: • Rietveld method helps in describing microstructure and physical properties of bricks. • XRPD derived cell parameter of spinel is proposed as an indicator of firing temperature. • SANS effectively describes brick micro and nanostructure, including closed porosity. • Fractal quality of pore surface is proposed as ‘fingerprint’ of brick manufacturing.

  3. Assessment of firing conditions in old fired-clay bricks: The contribution of X-ray powder diffraction with the Rietveld method and small angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Viani, Alberto, E-mail: viani@itam.cas.cz [Institute of Theoretical and Applied Mechanics AS CR, Centre of Excellence Telč, Batelovská 485, CZ-58856 Telč (Czech Republic); Sotiriadis, Konstantinos [Institute of Theoretical and Applied Mechanics AS CR, Centre of Excellence Telč, Batelovská 485, CZ-58856 Telč (Czech Republic); Len, Adél [Wigner Research Centre for Physics HAS, Konkoly-Thege 29-33, 1121 Budapest (Hungary); Šašek, Petr; Ševčík, Radek [Institute of Theoretical and Applied Mechanics AS CR, Centre of Excellence Telč, Batelovská 485, CZ-58856 Telč (Czech Republic)

    2016-06-15

    Full characterization of fired-clay bricks is crucial for the improvement of process variables in manufacturing and, in case of old bricks, for restoration/replacement purposes. To this aim, five bricks produced in a plant in Czech Republic in the past have been investigated with a combination of analytical techniques in order to derive information on the firing process. An additional old brick from another brickyard was also used to study the influence of different raw materials on sample microstructure. The potential of X-ray diffraction with the Rietveld method and small angle neutron scattering technique has been exploited to describe the phase transformations taking place during firing and characterize the brick microstructure. Unit-cell parameter of spinel and amount of hematite are proposed as indicators of the maximum firing temperature, although for the latter, limited to bricks produced from the same raw material. The fractal quality of the surface area of pores obtained from small angle neutron scattering is also suggested as a method to distinguish between bricks produced from different raw clays. - Highlights: • Rietveld method helps in describing microstructure and physical properties of bricks. • XRPD derived cell parameter of spinel is proposed as an indicator of firing temperature. • SANS effectively describes brick micro and nanostructure, including closed porosity. • Fractal quality of pore surface is proposed as ‘fingerprint’ of brick manufacturing.

  4. Small-Angle X-ray Scattering Study on Internal Microscopic Structures of Poly(N-isopropylacrylamide-co-tris(2,2'-bipyridyl))ruthenium(II) Complex Microgels.

    Science.gov (United States)

    Matsui, Shusuke; Kureha, Takuma; Nagase, Yasuhisa; Okeyoshi, Kosuke; Yoshida, Ryo; Sato, Takaaki; Suzuki, Daisuke

    2015-07-07

    Internal microscopic structures of poly(N-isopropylacrylamide-co-tris(2,2'-bipyridyl))ruthenium(II) complex microgels were investigated using small-angle X-ray scattering (SAXS) in the extended q-range of 0.07 ≤ q/nm(-1) ≤ 20. The microgels were prepared by aqueous free-radical precipitation polymerization, resulting in formation of monodispersed, submicrometer-sized microgels, which was confirmed by transmission electron microscopy and dynamic light scattering. To reveal the changes in the microscopic structures of the microgels during swelling/deswelling or dispersing/flocculating oscillation, the redox state of Ru(bpy)3 complexes was fixed in the microgels using Ce(IV) or Ce(III) ions under high ionic strength (1.5 M) during the SAXS measurements. The scattering intensity of the microgels manifested five different structural features. In particular, the correlation length (ξ), which was obtained from the fitting analysis using the Ornstein-Zernike equation, of the microgels both in the reduced and oxidized Ru(bpy)3 states exhibited divergent-like behavior. In addition, a low-q peak centered at q ≈ 5 nm(-1) did not appear clearly in both the reduced [Ru(bpy)3](2+) and oxidized [Ru(bpy)3](3+) states, indicating that the formation of a polymer-rich domain was suppressed; thus, Ru(bpy)3 complexes can be active even though the microgels are deswollen or flocculated during the oscillation reaction.

  5. Structure of immune stimulating complex matrices and immune stimulating complexes in suspension determined by small-angle x-ray scattering.

    Science.gov (United States)

    Pedersen, Jan Skov; Oliveira, Cristiano L P; Hübschmann, Henriette Baun; Arleth, Lise; Manniche, Søren; Kirkby, Nicolai; Nielsen, Hanne Mørck

    2012-05-16

    Immune stimulating complex (ISCOM) particles consisting of a mixture of Quil-A, cholesterol, and phospholipids were structurally characterized by small-angle x-ray scattering (SAXS). The ISCOM particles are perforated vesicles of very well-defined structures. We developed and implemented a novel (to our knowledge) modeling method based on Monte Carlo simulation integrations to describe the SAXS data. This approach is similar to the traditional modeling of SAXS data, in which a structure is assumed, the scattering intensity is calculated, and structural parameters are optimized by weighted least-squares methods when the model scattering intensity is fitted to the experimental data. SAXS data from plain ISCOM matrix particles in aqueous suspension, as well as those from complete ISCOMs (i.e., with an antigen (tetanus toxoid) incorporated) can be modeled as a polydisperse distribution of perforated bilayer vesicles with icosahedral, football, or tennis ball structures. The dominating structure is the tennis ball structure, with an outer diameter of 40 nm and with 20 holes 5-6 nm in diameter. The lipid bilayer membrane is 4.6 nm thick, with a low-electron-density, 2.0-nm-thick hydrocarbon core. Surprisingly, in the ISCOMs, the tetanus toxoid is located just below the membrane inside the particles. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. X-ray scattering signatures of {beta}-thalassemia

    Energy Technology Data Exchange (ETDEWEB)

    Desouky, Omar S. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT) (Egypt); Elshemey, Wael M. [Biophysics Department, Faculty of Science, Cairo University (Egypt)], E-mail: waelelshemey@yahoo.com; Selim, Nabila S. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT) (Egypt)

    2009-08-11

    X-ray scattering from lyophilized proteins or protein-rich samples is characterized by the presence of two characteristic broad peaks at scattering angles equivalent to momentum transfer values of 0.27 and 0.6 nm{sup -1}, respectively. These peaks arise from the interference of coherently scattered photons. Once the conformation of a protein is changed, these two peaks reflect such change with considerable sensitivity. The present work examines the possibility of characterizing the most common cause of hemolytic anaemia in Egypt and many Mediterranean countries; {beta}-thalassemia, from its X-ray scattering profile. This disease emerges from a genetic defect causing reduced rate in the synthesis of one of the globin chains that make up hemoglobin. As a result, structurally abnormal hemoglobin molecules are formed. In order to detect such molecular disorder, hemoglobin samples of {beta}-thalassemia patients are collected, lyophilized and measured using a conventional X-ray diffractometer. Results show significant differences in the X-ray scattering profiles of most of the diseased samples compared to control. The shape of the first scattering peak at 0.27 nm{sup -1}, in addition to the relative intensity of the first to the second scattering peaks, provides the most reliable signs of abnormality in diseased samples. The results are interpreted and confirmed with the aid of Fourier Transform Infrared (FTIR) spectroscopy of normal and thalassemia samples.

  7. X-ray scattering signatures of β-thalassemia

    Science.gov (United States)

    Desouky, Omar S.; Elshemey, Wael M.; Selim, Nabila S.

    2009-08-01

    X-ray scattering from lyophilized proteins or protein-rich samples is characterized by the presence of two characteristic broad peaks at scattering angles equivalent to momentum transfer values of 0.27 and 0.6 nm -1, respectively. These peaks arise from the interference of coherently scattered photons. Once the conformation of a protein is changed, these two peaks reflect such change with considerable sensitivity. The present work examines the possibility of characterizing the most common cause of hemolytic anaemia in Egypt and many Mediterranean countries; β-thalassemia, from its X-ray scattering profile. This disease emerges from a genetic defect causing reduced rate in the synthesis of one of the globin chains that make up hemoglobin. As a result, structurally abnormal hemoglobin molecules are formed. In order to detect such molecular disorder, hemoglobin samples of β-thalassemia patients are collected, lyophilized and measured using a conventional X-ray diffractometer. Results show significant differences in the X-ray scattering profiles of most of the diseased samples compared to control. The shape of the first scattering peak at 0.27 nm -1, in addition to the relative intensity of the first to the second scattering peaks, provides the most reliable signs of abnormality in diseased samples. The results are interpreted and confirmed with the aid of Fourier Transform Infrared (FTIR) spectroscopy of normal and thalassemia samples.

  8. X-ray scattering signatures of β-thalassemia

    International Nuclear Information System (INIS)

    Desouky, Omar S.; Elshemey, Wael M.; Selim, Nabila S.

    2009-01-01

    X-ray scattering from lyophilized proteins or protein-rich samples is characterized by the presence of two characteristic broad peaks at scattering angles equivalent to momentum transfer values of 0.27 and 0.6 nm -1 , respectively. These peaks arise from the interference of coherently scattered photons. Once the conformation of a protein is changed, these two peaks reflect such change with considerable sensitivity. The present work examines the possibility of characterizing the most common cause of hemolytic anaemia in Egypt and many Mediterranean countries; β-thalassemia, from its X-ray scattering profile. This disease emerges from a genetic defect causing reduced rate in the synthesis of one of the globin chains that make up hemoglobin. As a result, structurally abnormal hemoglobin molecules are formed. In order to detect such molecular disorder, hemoglobin samples of β-thalassemia patients are collected, lyophilized and measured using a conventional X-ray diffractometer. Results show significant differences in the X-ray scattering profiles of most of the diseased samples compared to control. The shape of the first scattering peak at 0.27 nm -1 , in addition to the relative intensity of the first to the second scattering peaks, provides the most reliable signs of abnormality in diseased samples. The results are interpreted and confirmed with the aid of Fourier Transform Infrared (FTIR) spectroscopy of normal and thalassemia samples.

  9. Measurement of density by back scattered X-rays

    International Nuclear Information System (INIS)

    Mizunuma, Mamoru

    1990-01-01

    Density-measurement by using back scattering of X-rays instead of gamma-rays have been studied. The back scattering were measured at 2 points of surface length of scatter for eliminated the bad effect be caused by unstable X-rays. The difference in distance of 2 points having constant ratio of the scattering and the ratio of scattering at 2 points having constant difference in distance were measured, and studied the relationship between the density and the ratio of scattering or the difference in distance of 2 points in theory and experiment. Furthermore, the relationship between the several unstable factors and accuracy of measurement were studied. These factors were the thickness of scatter, the fluctuation of X-rays, and the setting error of incident angle. The results were shown that the thickness need some dimension according to the tube voltage, and that the higher tube voltage and the larger exposure have better accuracy, and that in high incident angle, these measurements are little affected by the setting angle error. (author)

  10. BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis.

    Science.gov (United States)

    Hopkins, Jesse Bennett; Gillilan, Richard E; Skou, Soren

    2017-10-01

    BioXTAS RAW is a graphical-user-interface-based free open-source Python program for reduction and analysis of small-angle X-ray solution scattering (SAXS) data. The software is designed for biological SAXS data and enables creation and plotting of one-dimensional scattering profiles from two-dimensional detector images, standard data operations such as averaging and subtraction and analysis of radius of gyration and molecular weight, and advanced analysis such as calculation of inverse Fourier transforms and envelopes. It also allows easy processing of inline size-exclusion chromatography coupled SAXS data and data deconvolution using the evolving factor analysis method. It provides an alternative to closed-source programs such as Primus and ScÅtter for primary data analysis. Because it can calibrate, mask and integrate images it also provides an alternative to synchrotron beamline pipelines that scientists can install on their own computers and use both at home and at the beamline.

  11. Small-angle x-ray scattering studies of microvoids in amorphous-silicon-based semiconductors. Final subcontract report, 1 February 1991--31 January 1994

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, D.L.; Jone, S.J.; Chen, Y. [Colorado School of Mines, Golden, CO (United States)

    1994-07-01

    This report describes work performed to provide new details of the microstructure for the size scale from about 1 nm to 30 nm in high-quality hydrogenated amorphous-silicon and related alloys prepared by current state-of-the-art deposition methods as well as by new and emerging deposition technologies. The purpose of this work is to help determine the role of microvoids and other density fluctuations in controlling the opto-electronic and photovoltaic properties. The approach involved collaboration with several groups that supplied relevant systematic sets of samples and the associated opto-electronic/photovoltaic data to help address particular issues. The small-angle X-ray scattering (SAXS) technique, as developed during this project, was able to provide microstructural information with a high degree of sensitivity not available from other methods. It is particularly sensitive to microvoids or H-rich microdomains and to the presence of oriented microstructures. The latter is readily associated with columnar-type growth and can even be observed in premature stages not detectable by transmission electron microscopy. Flotation density measurements provided important complementary data. Systematic correlations demonstrated that material with more SAXS-detected microstructure has to-electronic and photovoltaic properties and increased degradation under light soaking. New results related to alloy randomness emerged from our ability to measure the difffuse scattering component of the SAXS.

  12. Synchrotron X-ray magnetic scattering

    CERN Document Server

    Stirling, W G

    2003-01-01

    Research on magnetic materials constitutes an increasingly important part of the programmes of most major synchrotron radiation centres. The extremely high brilliance and small spot size of advanced synchrotron beamlines, combined with element-specific resonant effects at certain absorption edges, provide a powerful probe of magnetic structures and phase transitions, with excellent wavevector resolution. Over the last decade a variety of experimental techniques have been developed, exploiting these effects for the study of thin film, multilayer and bulk magnetic materials. In this paper the basic concepts of X-ray magnetic scattering will be introduced, followed by recent examples taken from work at Daresbury Laboratory (UK), the European Synchrotron Radiation Facility (Grenoble, France) and the National Synchrotron Light Source (Brookhaven National Laboratory, USA). Investigations of domain patterns in thin magnetic films employing X-ray resonant magnetic scattering (XRMS) will be described, followed by a se...

  13. Small-angle X-ray scattering studies of the oligomeric state and quaternary structure of the trifunctional proline utilization A (PutA) flavoprotein from Escherichia coli.

    Science.gov (United States)

    Singh, Ranjan K; Larson, John D; Zhu, Weidong; Rambo, Robert P; Hura, Greg L; Becker, Donald F; Tanner, John J

    2011-12-16

    The trifunctional flavoprotein proline utilization A (PutA) links metabolism and gene regulation in Gram-negative bacteria by catalyzing the two-step oxidation of proline to glutamate and repressing transcription of the proline utilization regulon. Small-angle x-ray scattering (SAXS) and domain deletion analysis were used to obtain solution structural information for the 1320-residue PutA from Escherichia coli. Shape reconstructions show that PutA is a symmetric V-shaped dimer having dimensions of 205 × 85 × 55 Å. The particle consists of two large lobes connected by a 30-Å diameter cylinder. Domain deletion analysis shows that the N-terminal DNA-binding domain mediates dimerization. Rigid body modeling was performed using the crystal structure of the DNA-binding domain and a hybrid x-ray/homology model of residues 87-1113. The calculations suggest that the DNA-binding domain is located in the connecting cylinder, whereas residues 87-1113, which contain the two catalytic active sites, reside in the large lobes. The SAXS data and amino acid sequence analysis suggest that the Δ(1)-pyrroline-5-carboxylate dehydrogenase domains lack the conventional oligomerization flap, which is unprecedented for the aldehyde dehydrogenase superfamily. The data also provide insight into the function of the 200-residue C-terminal domain. It is proposed that this domain serves as a lid that covers the internal substrate channeling cavity, thus preventing escape of the catalytic intermediate into the bulk medium. Finally, the SAXS model is consistent with a cloaking mechanism of gene regulation whereby interaction of PutA with the membrane hides the DNA-binding surface from the put regulon thereby activating transcription.

  14. Small-angle X-ray Scattering Studies of the Oligomeric State and Quaternary Structure of the Trifunctional Proline Utilization A (PutA) Flavoprotein from Escherichia coli*

    Science.gov (United States)

    Singh, Ranjan K.; Larson, John D.; Zhu, Weidong; Rambo, Robert P.; Hura, Greg L.; Becker, Donald F.; Tanner, John J.

    2011-01-01

    The trifunctional flavoprotein proline utilization A (PutA) links metabolism and gene regulation in Gram-negative bacteria by catalyzing the two-step oxidation of proline to glutamate and repressing transcription of the proline utilization regulon. Small-angle x-ray scattering (SAXS) and domain deletion analysis were used to obtain solution structural information for the 1320-residue PutA from Escherichia coli. Shape reconstructions show that PutA is a symmetric V-shaped dimer having dimensions of 205 × 85 × 55 Å. The particle consists of two large lobes connected by a 30-Å diameter cylinder. Domain deletion analysis shows that the N-terminal DNA-binding domain mediates dimerization. Rigid body modeling was performed using the crystal structure of the DNA-binding domain and a hybrid x-ray/homology model of residues 87–1113. The calculations suggest that the DNA-binding domain is located in the connecting cylinder, whereas residues 87–1113, which contain the two catalytic active sites, reside in the large lobes. The SAXS data and amino acid sequence analysis suggest that the Δ1-pyrroline-5-carboxylate dehydrogenase domains lack the conventional oligomerization flap, which is unprecedented for the aldehyde dehydrogenase superfamily. The data also provide insight into the function of the 200-residue C-terminal domain. It is proposed that this domain serves as a lid that covers the internal substrate channeling cavity, thus preventing escape of the catalytic intermediate into the bulk medium. Finally, the SAXS model is consistent with a cloaking mechanism of gene regulation whereby interaction of PutA with the membrane hides the DNA-binding surface from the put regulon thereby activating transcription. PMID:22013066

  15. Analysis of InGaN nanodots grown by droplet heteroepitaxy using grazing incidence small-angle X-ray scattering and electron microscopy

    Science.gov (United States)

    Woodward, J. M.; Nikiforov, A. Yu.; Ludwig, K. F.; Moustakas, T. D.

    2017-08-01

    We present a detailed structural investigation of self-assembled indium gallium nitride nanodots grown on c-plane aluminum nitride templates by the droplet heteroepitaxy technique in a plasma-assisted molecular beam epitaxy reactor. Various growth parameters, including the total coverage of the metal species, relative and total metal effusion fluxes, and nitridation temperature were investigated. Analyses of in situ reflection high-energy electron diffraction patterns and comparison with simulations showed that the resulting crystal structure was a mixture of wurtzite and twinned zinc blende phases, with the zinc blende phase increasingly dominant for lower metal coverages and lower nitridation temperatures, and the wurtzite phase increasingly dominant for higher nitridation temperature. Studies by field emission scanning electron microscopy and atomic force microscopy revealed that the nanodots exhibit trimodal size distributions, with the dot morphologies of the intermediate size mode often resembling aggregations of distinct clusters. Nanodots grown at higher nitridation temperatures had larger inter-dot spacings, with hexagonal in-plane ordering observable at a sufficiently high temperature. Using grazing incidence small angle X-ray scattering, we determined the nanodots to be approximately truncated cone shaped, and extracted the mean radius, height, and inter-dot distance for each distribution. Microstructural investigations of the nanodots by cross-sectional transmission electron microscopy indicated that the majority of the dots were formed in dislocation-free regions, and confirmed that the intermediate size dots were approximately truncated cone shaped and consisted of both zinc blende and wurtzite regions. Mapping of the elemental distributions by energy dispersive X-ray spectroscopy in scanning transmission electron microscopy mode indicated highly nonuniform indium distributions within both small and intermediate size dots which are potentially

  16. Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species.

    Science.gov (United States)

    Saranathan, Vinodkumar; Forster, Jason D; Noh, Heeso; Liew, Seng-Fatt; Mochrie, Simon G J; Cao, Hui; Dufresne, Eric R; Prum, Richard O

    2012-10-07

    Non-iridescent structural colours of feathers are a diverse and an important part of the phenotype of many birds. These colours are generally produced by three-dimensional, amorphous (or quasi-ordered) spongy β-keratin and air nanostructures found in the medullary cells of feather barbs. Two main classes of three-dimensional barb nanostructures are known, characterized by a tortuous network of air channels or a close packing of spheroidal air cavities. Using synchrotron small angle X-ray scattering (SAXS) and optical spectrophotometry, we characterized the nanostructure and optical function of 297 distinctly coloured feathers from 230 species belonging to 163 genera in 51 avian families. The SAXS data provided quantitative diagnoses of the channel- and sphere-type nanostructures, and confirmed the presence of a predominant, isotropic length scale of variation in refractive index that produces strong reinforcement of a narrow band of scattered wavelengths. The SAXS structural data identified a new class of rudimentary or weakly nanostructured feathers responsible for slate-grey, and blue-grey structural colours. SAXS structural data provided good predictions of the single-scattering peak of the optical reflectance of the feathers. The SAXS structural measurements of channel- and sphere-type nanostructures are also similar to experimental scattering data from synthetic soft matter systems that self-assemble by phase separation. These results further support the hypothesis that colour-producing protein and air nanostructures in feather barbs are probably self-assembled by arrested phase separation of polymerizing β-keratin from the cytoplasm of medullary cells. Such avian amorphous photonic nanostructures with isotropic optical properties may provide biomimetic inspiration for photonic technology.

  17. In Situ Lipolysis and Synchrotron Small-Angle X-ray Scattering for the Direct Determination of the Precipitation and Solid-State Form of a Poorly Water-Soluble Drug During Digestion of a Lipid-Based Formulation

    DEFF Research Database (Denmark)

    Khan, Jamal; Hawley, Adrian; Rades, Thomas

    2016-01-01

    In situ lipolysis and synchrotron small-angle X-ray scattering (SAXS) were used to directly detect and elucidate the solid-state form of precipitated fenofibrate from the digestion of a model lipid-based formulation (LBF). This method was developed in light of recent findings that indicate...

  18. Characterization of structure and coagulation behaviour of refractory organic substances (ROS) using small-angle neutron scattering (SANS), small-angle x-ray scattering (SAXS) and x-ray microscopy; Charakterisierung von Struktur und Koagulationsverhalten von Refraktaeren Organischen Saeuren (ROS) mit Hilfe von Neutronenkleinwinkelstreuung (SANS), Roentgenkleinwinkelstreuung (SAXS) und Roentgenmikroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Pranzas, P.K. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1999-07-01

    In this work structure, coagulation and complexation behaviour of aquatic refractory organic substances (ROS) (humic and fulvic acids) were characterized. For this purpose a structural analytical system with the methods small-angle neutron scattering (SANS), small-angle x-ray scattering (SAXS) and X-ray microscopy with synchrotron radiation was developed and established. Size distributions of ROS of different origin were calculated from the scattering curves. Spherical ROS units were obtained, which coagulated by forming chainlike structures or disordered ROS agglomerates at higher concentrations. Additionally the average molecular weights of several ROS were calculated. Studies of the coagulation behaviour of ROS towards copper ions resulted in larger ROS-agglomerates besides the spherical ROS units. A linear relation between the addition of Cu{sup 2+} and the formation of the ROS-Cu{sup 2+}-agglomerates was found. With X-ray microscopy an extensive ROS-Cu{sup 2}-network structure could be registrated. For mercury and cadmium ions such coagulation interactions were not found. Investigations with X-ray microscopy of the coagulation behaviour of ROS towards the cationic surfactant DTB resulted in micel-like structures of equal size, which were spread throughout the solution. With increasing concentrations of DTB larger agglomerates up to network structures were obtained. (orig.) [German] In dieser Arbeit wurden Struktur, Koagulations- und Komplexierungsverhalten von aquatischen refraktaeren organischen Saeuren (ROS) (Humin- und Fulvinsaeuren) charakterisiert. Zu diesem Zweck wurde ein strukturanalytisches Gesamtsystem mit den Methoden Neutronenkleinwinkelstreuung (SANS), Roentgenkleinwinkelstreuung (SAXS) und Roentgenmikroskopie mit Synchrotronstrahlung entwickelt und etabliert. Fuer ROS unterschiedlicher Herkunft in Loesung wurden Groessenverteilungen aus den Streukurven berechnet. Es wurden kugelfoermige ROS-Einheiten gefunden, die bei hoeheren ROS

  19. A comparison of the merits of isotopic substitution in neutron small-angle scattering and anomalous X-ray scattering for the evaluation of partial structure functions in a ternary alloy

    International Nuclear Information System (INIS)

    Simon, J.P.; Grenoble-1 Univ., 38; Lyon, O.; Paris-11 Univ., 91 - Orsay; Fontaine, D. de

    1985-01-01

    Solute partitioning during decomposition of a ternary alloy may be evaluated through the inversion of a system of linear equations, obtained by performing at least three independent small-angle scattering experiments. The merits of neutron scattering (with isotopic contrast) and of anomalous X-ray scattering (near the absorption edges) are compared. It appears that neutron scattering, although having good contrast, is not suited to these studies since slight structural differences between the three samples may lead to erroneous results. On the other hand, the use of the same sample in anomalous scattering avoids this problem, but with the drawback of a more ill-conditioned system. Nevertheless, the possibility of performing more than three anomalous experiments may improve the results and a new analysis of data is proposed. (orig.)

  20. Versatile application of indirect Fourier transformation to structure factor analysis: from X-ray diffraction of molecular liquids to small angle scattering of protein solutions.

    Science.gov (United States)

    Fukasawa, Toshiko; Sato, Takaaki

    2011-02-28

    We highlight versatile applicability of a structure-factor indirect Fourier transformation (IFT) technique, hereafter called SQ-IFT. The original IFT aims at the pair distance distribution function, p(r), of colloidal particles from small angle scattering of X-rays (SAXS) and neutrons (SANS), allowing the conversion of the experimental form factor, P(q), into a more intuitive real-space spatial autocorrelation function. Instead, SQ-IFT is an interaction potential model-free approach to the 'effective' or 'experimental' structure factor to yield the pair correlation functions (PCFs), g(r), of colloidal dispersions like globular protein solutions for small-angle scattering data as well as the radial distribution functions (RDFs) of molecular liquids in liquid diffraction (LD) experiments. We show that SQ-IFT yields accurate RDFs of liquid H(2)O and monohydric alcohol reflecting their local intermolecular structures, in which q-weighted structure function, qH(q), conventionally utilized in many LD studies out of necessity of performing direct Fourier transformation, is no longer required. We also show that SQ-IFT applied to theoretically calculated structure factors for uncharged and charged colloidal dispersions almost perfectly reproduces g(r) obtained as a solution of the Ornstein-Zernike (OZ) equation. We further demonstrate the relevance of SQ-IFT in its practical applications, using SANS effective structure factors of lysozyme solutions reported in recent literatures which revealed the equilibrium cluster formation due to coexisting long range electrostatic repulsion and short range attraction between the proteins. Finally, we present SAXS experiments on human serum albumin (HSA) at different ionic strength and protein concentration, in which we discuss the real space picture of spatial distributions of the proteins via the interaction potential model-free route.

  1. Determination of the quaternary structural states of bovine casein by small-angle X-ray scattering: submicellar and micellar forms

    Energy Technology Data Exchange (ETDEWEB)

    Kumosinski, T.F.; Pessen, H.; Farrell, H.M. Jr.; Brumberger, H.

    1988-11-01

    Whole casein occurs in milk as a spherical colloidal complex of protein and salts called the casein micelle, with approximate average radii of 650 A as determined by electron microscopy. Removal of Ca2+ is thought to result in dissociation into smaller noncolloidal protein complexes called submicelles. Hydrodynamic and light scattering studies on whole casein submicelles suggest that they are predominantly spherical particles with a hydrophobic core. To investigate whether the integrity of a hydrophobically stabilized submicellar structure is preserved in the electrostatically stabilized colloidal micellar structure, small-angle X-ray scattering (SAXS) experiments were undertaken on whole casein from bovine milk under submicellar and micellar conditions. All SAXS results showed multiple Gaussian character and could be analyzed best by nonlinear regression in place of the customary Guinier plot. Analysis of the SAXS data for submicellar casein showed two Gaussian components which could be interpreted in terms of a particle with two concentric regions of different electron density, designated as a compact core and a loose shell, respectively. The submicelle was found to have an average molecular weight of 285,000 +/- 14,600 and a mass fraction of higher electron density core, k, of 0.212 +/- 0.028. The radius of gyration of the core, RC, was 37.98 +/- 0.01 A with an electron density difference, delta rho C, of 0.0148 +/- 0.0014 e-/A3, while the loose region had values of RL = 88.2 +/- 0.8 A with delta rho L = 0.0091 +/- 0.0003 e-/A3. Calculated distance distribution functions and normalized scattering curves also were consistent with an overall spherical particle with a concentric spherical inner core of higher electron density. (Abstract Truncated)

  2. Protein crowding in solution, frozen and freeze-dried states: small-angle neutron and X-ray scattering study of lysozyme/sorbitol/water systems

    Science.gov (United States)

    Krueger, Susan; Khodadadi, Sheila; Clark, Nicholas; McAuley, Arnold; Cristiglio, Viviana; Theyencheri, Narayanan; Curtis, Joseph; Shalaev, Evgenyi

    2015-03-01

    For effective preservation, proteins are often stored as frozen solutions or in glassy states using a freeze-drying process. However, aggregation is often observed after freeze-thaw or reconstitution of freeze-dried powder and the stability of the protein is no longer assured. In this study, small-angle neutron and X-ray scattering (SANS and SAXS) have been used to investigate changes in protein-protein interaction distances of a model protein/cryoprotectant system of lysozyme/sorbitol/water, under representative pharmaceutical processing conditions. The results demonstrate the utility of SAXS and SANS methods to monitor protein crowding at different stages of freezing and drying. The SANS measurements of solution samples showed at least one protein interaction peak corresponding to an interaction distance of ~ 90 Å. In the frozen state, two protein interaction peaks were observed by SANS with corresponding interaction distances at 40 Å as well as 90 Å. On the other hand, both SAXS and SANS data for freeze-dried samples showed three peaks, suggesting interaction distances ranging from ~ 15 Å to 170 Å. Possible interpretations of these interaction peaks will be discussed, as well as the role of sorbitol as a cryoprotectant during the freezing and drying process.

  3. Insights into Surface Interactions between Metal Organic Frameworks and Gases during Transient Adsorption and Diffusion by In-Situ Small Angle X-ray Scattering

    Directory of Open Access Journals (Sweden)

    Ludovic F. Dumée

    2016-09-01

    Full Text Available The fabrication of molecular gas sieving materials with specific affinities for a single gas species and able to store large quantities of materials at a low or atmospheric pressure is desperately required to reduce the adverse effects of coal and oil usage in carbon capture. Fundamental understanding of the dynamic adsorption of gas, the diffusion mechanisms across thin film membranes, and the impact of interfaces play a vital role in developing these materials. In this work, single gas permeation tests across micro-porous membrane materials, based on metal organic framework crystals grown on the surface of carbon nanotubes (ZiF-8@CNT, were performed for the first time in-situ at the Australian Synchrotron on the small angle X-ray scattering beamline in order to reveal molecular sieving mechanisms and gas adsorption within the material. The results show that specific chemi-sorption of CO2 across the ZiF-8 crystal lattices affected the morphology and unit cell parameters, while the sieving of other noble or noble like gases across the ZiF-8@CNT membranes was found to largely follow Knudsen diffusion. This work demonstrates for the first time a novel and effective technique to assess molecular diffusion at the nano-scale across sub-nano-porous materials by probing molecular flexibility across crystal lattice and single cell units.

  4. Comprehension of direct extraction of hydrophilic antioxidants using vegetable oils by polar paradox theory and small angle X-ray scattering analysis.

    Science.gov (United States)

    Li, Ying; Fabiano-Tixier, Anne Sylvie; Ruiz, Karine; Rossignol Castera, Anne; Bauduin, Pierre; Diat, Olivier; Chemat, Farid

    2015-04-15

    Since the polar paradox theory rationalised the fact that polar antioxidants are more effective in nonpolar media, extractions of phenolic compounds in vegetable oils were inspired and achieved in this study for obtaining oils enriched in phenolic compounds. Moreover, the influence of surfactants on the extractability of phenolic compounds was experimentally studied first, followed by the small angle X-ray scattering analysis for the oil structural observation before and after extraction so as to better understand the dissolving mechanism underpinning the extraction. The results showed a significant difference on the extraction yield of phenolic compounds among oils, which was mainly dependent on their composition instead of the unsaturation of fatty acids. Appropriate surfactant additions could significantly improve extraction yield for refined sunflower oils, which 1% w/w addition of glyceryl oleate was determined as the optimal. Besides, 5% w/w addition of lecithin performed the best in oil enrichments compared with mono- and di-glycerides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Microstructural parameters in 8 MeV Electron irradiated Bombyx mori silk fibers by wide-angle X-ray scattering studies (WAXS)

    International Nuclear Information System (INIS)

    Halabhavi, Sangappa

    2009-01-01

    The present work looks into the microstructural modification in Bombyx mori silk fibers, induced by electron irradiation. The irradiation process was performed in air at room temperature by use of 8 MeV electron accelerators at different doses: 0, 25, 50, 75 and 100 kGy respectively. Irradiation of polymer can be used to crosslink or degrade the desired component or to fixate the polymer morphology. The changes in microstructural parameters in these natural polymer fibers have been studied using wide angle X-ray scattering (WAXS) method. The crystal imperfection parameters such as crystallite size , lattice strain (g in %) and enthalpy (a * ) have been determined by line profile analysis (LPA) using Fourier method of Warren. Exponential, Lognormal and Reinhold functions for the column length distributions have been used for the determination of these parameters. The goodness of the fit and the consistency of these results suggest that the exponential distribution gives much better results, even though lognormal distribution has been widely used to estimate the similar stacking faults in metal oxide compounds. (author)

  6. Three-Dimensional Morphology Control Yielding Enhanced Hole Mobility in Air-Processed Organic Photovoltaics: Demonstration with Grazing-Incidence Wide-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Levi M. J. [School of Polymers; Bhattacharya, Mithun [School of Polymers; Wu, Qi [School of Polymers; Youm, Sang Gil [Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803, United States; Nesterov, Evgueni E. [Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803, United States; Morgan, Sarah E. [School of Polymers

    2017-06-28

    Polymer organic photovoltaic (OPV) device performance is defined by the three-dimensional morphology of the phase-separated domains in the active layer. Here, we determine the evolution of morphology through different stages of tailored solvent vapor and thermal annealing techniques in air-processed poly(3-hexylthiophene-2,5-diyl)/phenyl-C61-butyric acid methyl ester-based OPV blends. A comparative evaluation of the effect of solvent type used for vapor annealing was performed using grazing-incidence wide-angle X-ray scattering, atomic force microscopy, and UV–vis spectroscopy to probe the active-layer morphology. A nonhalogenated orthogonal solvent was found to impart controlled morphological features within the exciton diffusion length scales, enhanced absorbance, greater crystallinity, increased paracrystalline disorder, and improved charge-carrier mobility. Low-boiling, fast-diffusing isopropanol allowed the greatest control over the nanoscale structure of the solvents evaluated and yielded a cocontinuous morphology with narrowed domains and enhanced paths for the charge carrier to reach the anode.

  7. Precise small-angle X-ray scattering evaluation of the pore structures in track-etched membranes: Comparison with other convenient evaluation methods

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Tsukasa, E-mail: t_miyazaki@cross.or.jp [Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1106 (Japan); Takenaka, Mikihito [Department of Polymer Chemistry, Gradual School of Engineering, Kyoto University, Kyotodaigaku-katsura, Kyoto 615-8510 (Japan)

    2017-03-01

    Poly(ethylene terephthalate) (PET)-based track-etched membranes (TMs) with pore sizes ranging from few nanometers to approximately 1 μm are used in various applications in the biological field, and their pore structures are determined by small-angle X-ray scattering (SAXS). These TMs with the nanometer-sized cylindrical pores aligned parallel to the film thickness direction are produced by chemical etching of the track in the PET films irradiated by heavy ions with the sodium hydroxide aqueous solution. It is well known that SAXS allows us to precisely and statistically estimate the pore size and the pore size distribution in the TMs by using the form factor of a cylinder with the extremely long pore length relative to the pore diameter. The results obtained were compared with those estimated with scanning electron microscopy and gas permeability measurements. The result showed that the gas permeability measurement is convenient to evaluate the pore size of TMs within a wide length scale, and the SEM observation is also suited to estimate the pore size, although SEM observation is usually limited above approximately 30 nm.

  8. Controlled Terahertz Birefringence in Stretched Poly(lactic acid) Films Investigated by Terahertz Time-Domain Spectroscopy and Wide-Angle X-ray Scattering.

    Science.gov (United States)

    Iwasaki, Hotsumi; Nakamura, Madoka; Komatsubara, Nozomu; Okano, Makoto; Nakasako, Masayoshi; Sato, Harumi; Watanabe, Shinichi

    2017-07-20

    We report a correlation between the dielectric property and structure of stretched poly(lactic acid) (PLA) films, revealed by polarization-sensitive terahertz time-domain spectroscopy and two-dimensional (2D) wide-angle X-ray scattering (WAXS). The experiments evidence that the dielectric function of the PLA film becomes more anisotropic with increasing draw ratio (DR). This behavior is explained by a classical Lorentz oscillator model assuming polarization-dependent absorption. The birefringence can be systematically altered from 0 to 0.13 by controlling DR. The combination of terahertz spectroscopy and 2D WAXS measurement reveals a clear correlation between the birefringence in the terahertz frequency domain and the degree of orientation of the PLA molecular chains. These findings imply that the birefringence is a result of the orientation of the PLA chains with anisotropic macromolecular vibration modes. Because of a good controllability of the birefringence, polymer-based materials will provide an attractive materials system for phase retarders in the terahertz frequency range.

  9. Quantitative Correlation between Viscosity of Concentrated MAb Solutions and Particle Size Parameters Obtained from Small-Angle X-ray Scattering.

    Science.gov (United States)

    Fukuda, Masakazu; Moriyama, Chifumi; Yamazaki, Tadao; Imaeda, Yoshimi; Koga, Akiko

    2015-12-01

    To investigate the relationship between viscosity of concentrated MAb solutions and particle size parameters obtained from small-angle X-ray scattering (SAXS). The viscosity of three MAb solutions (MAb1, MAb2, and MAb3; 40-200 mg/mL) was measured by electromagnetically spinning viscometer. The protein interactions of MAb solutions (at 60 mg/mL) was evaluated by SAXS. The phase behavior of 60 mg/mL MAb solutions in a low-salt buffer was observed after 1 week storage at 25°C. The MAb1 solutions exhibited the highest viscosity among the three MAbs in the buffer containing 50 mM NaCl. Viscosity of MAb1 solutions decreased with increasing temperature, increasing salt concentration, and addition of amino acids. Viscosity of MAb1 solutions was lowest in the buffer containing histidine, arginine, and aspartic acid. Particle size parameters obtained from SAXS measurements correlated very well with the viscosity of MAb solutions at 200 mg/mL. MAb1 exhibited liquid-liquid phase separation at a low salt concentration. Simultaneous addition of basic and acidic amino acids effectively suppressed intermolecular attractive interactions and decreased viscosity of MAb1 solutions. SAXS can be performed using a small volume of samples; therefore, the particle size parameters obtained from SAXS at intermediate protein concentration could be used to screen for low viscosity antibodies in the early development stage.

  10. Evolution of Helium with Temperature in Neutron-Irradiated 10B-Doped Aluminum by Small-Angle X-Ray Scattering

    Directory of Open Access Journals (Sweden)

    Chaoqiang Huang

    2014-01-01

    Full Text Available Helium status is the primary effect of material properties under radiation. 10B-doped aluminum samples were prepared via arc melting technique and rapidly cooled with liquid nitrogen to increase the boron concentration during the formation of compounds. An accumulated helium concentration of ~6.2 × 1025 m−3 was obtained via reactor neutron irradiation with the reaction of 10B(n, α7Li. Temperature-stimulated helium evolution was observed via small-angle X-ray scattering (SAXS and was confirmed via transmission electron microscopy (TEM. The SAXS results show that the volume fraction of helium bubbles significantly increased with temperature. The amount of helium bubbles reached its maximum at 600°C, and the most probable diameter of the helium bubbles increased with temperature until 14.6 nm at 700°C. A similar size distribution of helium bubbles was obtained via TEM after in situ SAXS measurement at 700°C, except that the most probable diameter was 3.9 nm smaller.

  11. Three-Dimensional Morphology Control Yielding Enhanced Hole Mobility in Air-Processed Organic Photovoltaics: Demonstration with Grazing-Incidence Wide-Angle X-ray Scattering.

    Science.gov (United States)

    Moore, Levi M J; Bhattacharya, Mithun; Wu, Qi; Youm, Sang Gil; Nesterov, Evgueni E; Morgan, Sarah E

    2017-07-12

    Polymer organic photovoltaic (OPV) device performance is defined by the three-dimensional morphology of the phase-separated domains in the active layer. Here, we determine the evolution of morphology through different stages of tailored solvent vapor and thermal annealing techniques in air-processed poly(3-hexylthiophene-2,5-diyl)/phenyl-C 61 -butyric acid methyl ester-based OPV blends. A comparative evaluation of the effect of solvent type used for vapor annealing was performed using grazing-incidence wide-angle X-ray scattering, atomic force microscopy, and UV-vis spectroscopy to probe the active-layer morphology. A nonhalogenated orthogonal solvent was found to impart controlled morphological features within the exciton diffusion length scales, enhanced absorbance, greater crystallinity, increased paracrystalline disorder, and improved charge-carrier mobility. Low-boiling, fast-diffusing isopropanol allowed the greatest control over the nanoscale structure of the solvents evaluated and yielded a cocontinuous morphology with narrowed domains and enhanced paths for the charge carrier to reach the anode.

  12. Effect of urea on bovine serum albumin in aqueous and reverse micelle environments investigated by small angle X-ray scattering, fluorescence and circular dichroism

    International Nuclear Information System (INIS)

    Itri, Rosangela; Caetano, Wilker; Barbosa, Leandro R.S.; Baptista, Mauricio S.

    2004-01-01

    The influence that urea has on the conformation of water-soluble globular protein, bovine serum albumin (BSA), exposed directly to the aqueous solution as compared to the condition where the macromolecule is confined in the Aerosol-OT (AOT - sodium bis-2-ethylhexyl sulfosuccinate)/n-hexane/water reverse micelle (RM) is addressed. Small angle X-ray scattering (SAXS), tryptophan (Trp) fluorescence emission and circular dichroism (CD) spectra of aqueous BSA solution in the absence and in the presence of urea (3M and 5M) confirm the known denaturing effect of urea in proteins. The loss of the globular native structure is observed by the increase in the protein maximum dimension and gyration radius, through the Trp emission increase and maximum red-shift as well as the decrease in helix content. In RMs, the Trp fluorescence and CD spectra show that BSA is mainly located in its interfacial region independently of the micellar size. Addition of urea in this BSA/RM system also causes changes in the Trp fluorescence (emission decrease and maximum red-shift) and in the BSA CD spectra (decrease in helix content), which are compatible with the denaturation of the protein and Trp exposition to a more apolar environment in the RM. The fact that urea causes changes in the protein structure when it is located in the interfacial region (evidenced by CD) is interpreted as an indication that the direct interaction of urea with the protein is the major factor to explain its denaturing effect. (author)

  13. Wide-Angle X-ray Scattering Study on Shear-Induced Crystallization of Propylene-1-Butylene Random Copolymer: Experiment and Diffraction Pattern Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Y Mao; C Burger; F Zuo; B Hsiao; A Mehta; C Mitchell; A Tsou

    2011-12-31

    Shear-induced crystallization of a propylene-1-butylene random copolymer with low butylene content (5.7 mol %) was studied using time-resolved wide-angle X-ray scattering (WAXS) techniques. Polymorphism, preferred crystal orientation, crystallization kinetics, and disorder effect were investigated based on WAXS 2D whole pattern analysis. It was found that at 100 C, the crystallite of P-B copolymer was a mixture of 80% {gamma}-form and 20% {alpha}-form of isotactic polypropylene (iPP) crystals. The application of a step shear (shear rate = 100 s{sup -1}, shear duration =3s) induced {gamma}-form crystals with c-axis oriented perpendicular to the shear direction. In contrast, the c-axis of {alpha}-form crystals was normally in parallel to the shear direction. Both crystallization kinetics and crystallinity were greatly enhanced by shear. The disorder effect was found to play an important role in the crystallization behavior of P-B copolymer. In the early stage crystallization, the chosen copolymer contained a large amount of structure defects, where crystals became more ordered upon annealing. The degree of crystal orientation was also found to decrease during crystallization due to the relaxation after shear.

  14. Measuring the molecular dimensions of wine tannins: comparison of small-angle X-ray scattering, gel-permeation chromatography and mean degree of polymerization.

    Science.gov (United States)

    McRae, Jacqui M; Kirby, Nigel; Mertens, Haydyn D T; Kassara, Stella; Smith, Paul A

    2014-07-23

    The molecular size of wine tannins can influence astringency, and yet it has been unclear as to whether the standard methods for determining average tannin molecular weight (MW), including gel-permeation chromatography (GPC) and depolymerization reactions, are actually related to the size of the tannin in wine-like conditions. Small-angle X-ray scattering (SAXS) was therefore used to determine the molecular sizes and corresponding MWs of wine tannin samples from 3 and 7 year old Cabernet Sauvignon wine in a variety of wine-like matrixes: 5-15% and 100% ethanol; 0-200 mM NaCl and pH 3.0-4.0, and compared to those measured using the standard methods. The SAXS results indicated that the tannin samples from the older wine were larger than those of the younger wine and that wine composition did not greatly impact on tannin molecular size. The average tannin MWs as determined by GPC correlated strongly with the SAXS results, suggesting that this method does give a good indication of tannin molecular size in wine-like conditions. The MW as determined from the depolymerization reactions did not correlate as strongly with the SAXS results. To our knowledge, SAXS measurements have not previously been attempted for wine tannins.

  15. Small-angle x-ray scattering studies of microvoids in amorphous-silicon-based semiconductors. Annual subcontract report, February 1, 1992--January 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, D L; Jones, S J; Chen, Y [Colorado School of Mines, Golden, CO (United States)

    1994-05-01

    Our general objectives are to provide new details of the microstructure for the size scale from about 1 to 30 nm in high-quality a-Si:H and related alloys prepared by current state-of-the-art deposition methods as well as by new and emerging deposition technologies and thereby help determine the role of microvoids and other density fluctuations in controlling the opto-electronic properties. More specifically, the objectives are to determine whether the presence of microstructure as detected by small-angle x-ray scattering (SAXS) (1) limits the photovoltaic properties of device-quality a-Si:H, (2) plays a role in determining the photo-stability of a-Si:H, and (3) is responsible for degradation of the photovoltaic properties due to alloying with Ge, C and other constituents. The approach involves collaboration with several groups that can supply relevant systematic sets of samples and the associated opto-electronic data to help address these issues. Since the SAXS technique has not been a standard characterization technique for thin-film materials, and was recently set up at CSM with support by NREL, the project involves considerable development of the method with regard to standardizing the procedures, minimizing substrate influences and implementing improved data reduction and modeling methodology. Precise, highly reproducible, and accurate results are being sought in order to allow useful, reliable, and sensitive comparisons of materials deposited under different conditions, by different methods, and by different systems that represent the same nominal method.

  16. A portable extruder for in situ wide angle x-ray scattering study on multi-dimensional flow field induced crystallization of polymer

    Science.gov (United States)

    Chang, Jiarui; Wang, Zhen; Tang, Xiaoliang; Tian, Fucheng; Ye, Ke; Li, Liangbin

    2018-02-01

    We have designed and constructed a portable extruder with a rotatable mandrel, which can be employed to study the multi-dimensional flow field (MDFF) induced crystallization of polymer combined with in situ wide angle x-ray scattering (WAXS). With the piston driving the melt sample to flow along the channel, a direct axial shear field is achieved. At the same time, the central mandrel keeps rotating under a stable speed, providing the sample with an additional circumferential shear field. By presetting different proportions of the two shear fields, namely, axial and circumferential, various flow states of the sample can be obtained, which makes it capable of investigating the effects of MDFF on polymer crystallization. We have performed an in situ WAXS experiment of MDFF induced crystallization of isotactic polypropylene based on the portable extruder at the beam line BL16B in Shanghai Synchrotron Radiation Facility. The rheological and structural information is collected simultaneously, which manifests the viability of the portable extruder on regulating MDFF and can provide guidance for polymer processing.

  17. Structural analysis of the yeast exosome Rrp6p–Rrp47p complex by small-angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Dedic, Emil; Seweryn, Paulina; Jonstrup, Anette Thyssen; Flygaard, Rasmus Koch [Centre for mRNP Biogenesis and Metabolism, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C (Denmark); Department of Molecular Biology and Genetics, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C (Denmark); Fedosova, Natalya U. [Department of Biomedicine, Ole Worms Allé 6, Aarhus University, DK-8000 Aarhus C (Denmark); Hoffmann, Søren Vrønning [Institute for Storage Ring Facilities (ISA), Department of Physics and Astronomy, Ny Munkegade 120, Aarhus University, DK-8000 Aarhus C (Denmark); Boesen, Thomas [Centre for Membrane Pumps in Cells and Disease – PUMPKIN, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C (Denmark); Department of Molecular Biology and Genetics, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C (Denmark); Brodersen, Ditlev Egeskov, E-mail: deb@mb.au.dk [Centre for mRNP Biogenesis and Metabolism, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C (Denmark); Department of Molecular Biology and Genetics, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C (Denmark)

    2014-07-18

    Highlights: • We show that S. cerevisiae Rrp6p and Rrp47p stabilise each other in vitro. • We determine molecular envelopes of the Rrp6p–Rrp47p complex by SAXS. • Rrp47p binds at the top of the Rrp6p exonuclease domain. • Rrp47p modulates the activity of Rrp6p on a variety of RNA substrates. • Rrp47p does not affect RNA affinity by Rrp6p. - Abstract: The RNase D-type 3′–5′ exonuclease Rrp6p from Saccharomyces cerevisiae is a nuclear-specific cofactor of the RNA exosome and associates in vivo with Rrp47p (Lrp1p). Here, we show using biochemistry and small-angle X-ray scattering (SAXS) that Rrp6p and Rrp47p associate into a stable, heterodimeric complex with an elongated shape consistent with binding of Rrp47p to the nuclease domain and opposite of the HRDC domain of Rrp6p. Rrp47p reduces the exonucleolytic activity of Rrp6p on both single-stranded and structured RNA substrates without significantly altering the affinity towards RNA or the ability of Rrp6p to degrade RNA secondary structure.

  18. A New Insight into Growth Mechanism and Kinetics of Mesoporous Silica Nanoparticles by in Situ Small Angle X-ray Scattering.

    Science.gov (United States)

    Yi, Zhifeng; Dumée, Ludovic F; Garvey, Christopher J; Feng, Chunfang; She, Fenghua; Rookes, James E; Mudie, Stephen; Cahill, David M; Kong, Lingxue

    2015-08-04

    The growth mechanism and kinetics of mesoporous silica nanoparticles (MSNs) were investigated for the first time by using a synchrotron time-resolved small-angle X-ray scattering (SAXS) analysis. The synchrotron SAXS offers unsurpassed time resolution and the ability to detect structural changes of nanometer sized objects, which are beneficial for the understanding of the growth mechanism of small MSNs (∼20 nm). The Porod invariant was used to quantify the conversion of tetraethyl orthosilicate (TEOS) in silica during MSN formation, and the growth kinetics were investigated at different solution pH and temperature through calculating the scattering invariant as a function of reaction time. The growth of MSNs was found to be accelerated at high temperature and high pH, resulting in a higher rate of silica formation. Modeling SAXS data of micelles, where a well-defined electrostatic interaction is assumed, determines the size and shape of hexadecyltrimethylammonium bromide (CTAB) micelles before and after the addition of TEOS. The results suggested that the micelle size increases and the micelle shape changes from ellipsoid to spherical, which might be attributed to the solubilization of TEOS in the hydrophobic core of CTAB micelles. A new "swelling-shrinking" mechanism is proposed. The mechanism provides new insights into understanding MSN growth for the formation of functional mesoporous materials exhibiting controlled morphologies. The SAXS analyses were correlated to the structure of CTAB micelles and chemical reaction of TEOS. This study has provided critical information to an understanding of the growth kinetics and mechanism of MSNs.

  19. Structure factor of blends of solvent-free nanoparticle-organic hybrid materials: density-functional theory and small angle X-ray scattering.

    Science.gov (United States)

    Yu, Hsiu-Yu; Srivastava, Samanvaya; Archer, Lynden A; Koch, Donald L

    2014-12-07

    We investigate the static structure factor S(q) of solvent-free nanoparticle-organic hybrid materials consisting of silica nanocores and space-filling polyethylene glycol coronas using a density-functional theory and small angle X-ray scattering measurements. The theory considers a bidisperse suspension of hard spheres with different radii and tethered bead-spring oligomers with different grafting densities to approximate the polydispersity effects in experiments. The experimental systems studied include pure samples with different silica core volume fractions and the associated mean corona grafting densities, and blends with different mixing ratios of the pure samples, in order to introduce varying polydispersity of corona grafting density. Our scattering experiments and theory show that, compared to the hard-sphere suspension with the same core volume fraction, S(q) for pure samples exhibit both substantially smaller values at small q and stronger particle correlations corresponding to a larger effective hard core at large q, indicating that the tethered incompressible oligomers enforce a more uniform particle distribution, and the densely grafted brush gives rise to an additional exclusionary effect between the nanoparticles. According to the theory, polydispersity in the oligomer grafting density controls the deviation of S(q) from the monodisperse system at smaller q, and the interplay of the enhanced effective core size and the entropic attraction among the particles is responsible for complex variations in the particle correlations at larger q. The successful comparison between the predictions and the measurements for the blends further suggests that S(q) can be used to assess the uniformity of grafting density in polymer-grafted nanoparticle materials.

  20. Structure factor of blends of solvent-free nanoparticle–organic hybrid materials: density-functional theory and small angle X-ray scattering

    KAUST Repository

    Yu, Hsiu-Yu

    2014-09-15

    © the Partner Organisations 2014. We investigate the static structure factor S(q) of solvent-free nanoparticle-organic hybrid materials consisting of silica nanocores and space-filling polyethylene glycol coronas using a density-functional theory and small angle X-ray scattering measurements. The theory considers a bidisperse suspension of hard spheres with different radii and tethered bead-spring oligomers with different grafting densities to approximate the polydispersity effects in experiments. The experimental systems studied include pure samples with different silica core volume fractions and the associated mean corona grafting densities, and blends with different mixing ratios of the pure samples, in order to introduce varying polydispersity of corona grafting density. Our scattering experiments and theory show that, compared to the hard-sphere suspension with the same core volume fraction, S(q) for pure samples exhibit both substantially smaller values at small q and stronger particle correlations corresponding to a larger effective hard core at large q, indicating that the tethered incompressible oligomers enforce a more uniform particle distribution, and the densely grafted brush gives rise to an additional exclusionary effect between the nanoparticles. According to the theory, polydispersity in the oligomer grafting density controls the deviation of S(q) from the monodisperse system at smaller q, and the interplay of the enhanced effective core size and the entropic attraction among the particles is responsible for complex variations in the particle correlations at larger q. The successful comparison between the predictions and the measurements for the blends further suggests that S(q) can be used to assess the uniformity of grafting density in polymer-grafted nanoparticle materials. This journal is

  1. Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations.

    Science.gov (United States)

    Pan, Jianjun; Cheng, Xiaolin; Sharp, Melissa; Ho, Chian-Sing; Khadka, Nawal; Katsaras, John

    2015-01-07

    The detailed structural and mechanical properties of a tetraoleoyl cardiolipin (TOCL) bilayer were determined using neutron spin echo (NSE) spectroscopy, small angle neutron and X-ray scattering (SANS and SAXS, respectively), and molecular dynamics (MD) simulations. We used MD simulations to develop a scattering density profile (SDP) model, which was then utilized to jointly refine SANS and SAXS data. In addition to commonly reported lipid bilayer structural parameters, component distributions were obtained, including the volume probability, electron density and neutron scattering length density. Of note, the distance between electron density maxima DHH (39.4 Å) and the hydrocarbon chain thickness 2DC (29.1 Å) of TOCL bilayers were both found to be larger than the corresponding values for dioleoyl phosphatidylcholine (DOPC) bilayers. Conversely, TOCL bilayers have a smaller overall bilayer thickness DB (36.7 Å), primarily due to their smaller headgroup volume per phosphate. SDP analysis yielded a lipid area of 129.8 Å(2), indicating that the cross-sectional area per oleoyl chain in TOCL bilayers (i.e., 32.5 Å(2)) is smaller than that for DOPC bilayers. Multiple sets of MD simulations were performed with the lipid area constrained at different values. The calculated surface tension versus lipid area resulted in a lateral area compressibility modulus KA of 342 mN m(-1), which is slightly larger compared to DOPC bilayers. Model free comparison to experimental scattering data revealed the best simulated TOCL bilayer from which detailed molecular interactions were determined. Specifically, Na(+) cations were found to interact most strongly with the glycerol hydroxyl linkage, followed by the phosphate and backbone carbonyl oxygens. Inter- and intra-lipid interactions were facilitated by hydrogen bonding between the glycerol hydroxyl and phosphate oxygen, but not with the backbone carbonyl. Finally, analysis of the intermediate scattering functions from NSE

  2. A new high-resolution small-angle X-ray scattering apparatus using a fine-focus rotating anode, point-focusing collimation and a position-sensitive proportional counter

    International Nuclear Information System (INIS)

    Yoda, O.

    1984-01-01

    A high-resolution small-angle X-ray scattering camera has been built, which has the following features. (i) The point collimation optics employed allows the scattering cross section of the sample to be directly measured without corrections for desmearing. (ii) A small-angle resolution better than 0.5 mrad is achieved with a camera length of 1.6 m. (iii) A high photon flux of 0.9 photons μs -1 is obtained on the sample with the rotating-anode X-ray generator operated at 40 kV-30 mA. (iv) Incident X-rays are monochromatized by a bent quartz crystal, which makes the determination of the incident X-ray intensity simple and unambiguous. (v) By rotation of the position-sensitive proportional counter around the direct beam, anisotropic scattering patterns can be observed without adjusting the sample. Details of the design and performance are presented with some applications. (Auth.)

  3. Investigation of the effect of sugar stereochemistry on biologically relevant lyotropic phases from branched-chain synthetic glycolipids by small-angle X-ray scattering.

    Science.gov (United States)

    Zahid, N Idayu; Conn, Charlotte E; Brooks, Nicholas J; Ahmad, Noraini; Seddon, John M; Hashim, Rauzah

    2013-12-23

    Synthetic branched-chain glycolipids are suitable as model systems in understanding biological cell membranes, particularly because certain natural lipids possess chain branching. Herein, four branched-chain glycopyranosides, namely, 2-hexyl-decyl-α-D-glucopyranoside (α-Glc-OC10C6), 2-hexyl-decyl-β-D-glucopyranoside (β-Glc-OC10C6), 2-hexyl-decyl-α-D-galactopyranoside (α-Gal-OC10C6), and 2-hexyl-decyl-β-D-galactopyranoside (β-Gal-OC10C6), with a total alkyl chain length of 16 carbon atoms have been synthesized, and their phase behavior has been studied. The partial binary phase diagrams of these nonionic surfactants in water were investigated by optical polarizing microscopy (OPM) and small-angle X-ray scattering (SAXS). The introduction of chain branching in the hydrocarbon chain region is shown to result in the formation of inverse structures such as inverse hexagonal and inverse bicontinuous cubic phases. A comparison of the four compounds showed that they exhibited different polymorphism, especially in the thermotropic state, as a result of contributions from anomeric and epimeric effects according to their stereochemistry. The neat α-Glc-OC10C6 compound exhibited a lamellar (Lα) phase whereas dry α-Gal-OC10C6 formed an inverse bicontinuous cubic Ia3d (QII(G)) phase. Both β-anomers of glucoside and galactoside adopted the inverse hexagonal phase (HII) in the dry state. Generally, in the presence of water, all four glycolipids formed inverse bicontinuous cubic Ia3d (QII(G)) and Pn3m (QII(D)) phases over wide temperature and concentration ranges. The formation of inverse nonlamellar phases by these Guerbet branched-chain glycosides confirms their potential as materials for novel biotechnological applications such as drug delivery and crystallization of membrane proteins.

  4. Small angle X-ray scattering and cross-linking for data assisted protein structure prediction in CASP 12 with prospects for improved accuracy

    KAUST Repository

    Ogorzalek, Tadeusz L.

    2018-01-04

    Experimental data offers empowering constraints for structure prediction. These constraints can be used to filter equivalently scored models or more powerfully within optimization functions toward prediction. In CASP12, Small Angle X-ray Scattering (SAXS) and Cross-Linking Mass Spectrometry (CLMS) data, measured on an exemplary set of novel fold targets, were provided to the CASP community of protein structure predictors. As HT, solution-based techniques, SAXS and CLMS can efficiently measure states of the full-length sequence in its native solution conformation and assembly. However, this experimental data did not substantially improve prediction accuracy judged by fits to crystallographic models. One issue, beyond intrinsic limitations of the algorithms, was a disconnect between crystal structures and solution-based measurements. Our analyses show that many targets had substantial percentages of disordered regions (up to 40%) or were multimeric or both. Thus, solution measurements of flexibility and assembly support variations that may confound prediction algorithms trained on crystallographic data and expecting globular fully-folded monomeric proteins. Here, we consider the CLMS and SAXS data collected, the information in these solution measurements, and the challenges in incorporating them into computational prediction. As improvement opportunities were only partly realized in CASP12, we provide guidance on how data from the full-length biological unit and the solution state can better aid prediction of the folded monomer or subunit. We furthermore describe strategic integrations of solution measurements with computational prediction programs with the aim of substantially improving foundational knowledge and the accuracy of computational algorithms for biologically-relevant structure predictions for proteins in solution. This article is protected by copyright. All rights reserved.

  5. Structure of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia revealed by crystallographic and small-angle X-ray scattering analysis.

    Science.gov (United States)

    Smith, Clyde A; Toth, Marta; Weiss, Thomas M; Frase, Hilary; Vakulenko, Sergei B

    2014-10-01

    Broad-spectrum resistance to aminoglycoside antibiotics in clinically important Gram-positive staphylococcal and enterococcal pathogens is primarily conferred by the bifunctional enzyme AAC(6')-Ie-APH(2'')-Ia. This enzyme possesses an N-terminal coenzyme A-dependent acetyltransferase domain [AAC(6')-Ie] and a C-terminal GTP-dependent phosphotransferase domain [APH(2'')-Ia], and together they produce resistance to almost all known aminoglycosides in clinical use. Despite considerable effort over the last two or more decades, structural details of AAC(6')-Ie-APH(2'')-Ia have remained elusive. In a recent breakthrough, the structure of the isolated C-terminal APH(2'')-Ia enzyme was determined as the binary Mg2GDP complex. Here, the high-resolution structure of the N-terminal AAC(6')-Ie enzyme is reported as a ternary kanamycin/coenzyme A abortive complex. The structure of the full-length bifunctional enzyme has subsequently been elucidated based upon small-angle X-ray scattering data using the two crystallographic models. The AAC(6')-Ie enzyme is joined to APH(2'')-Ia by a short, predominantly rigid linker at the N-terminal end of a long α-helix. This α-helix is in turn intrinsically associated with the N-terminus of APH(2'')-Ia. This structural arrangement supports earlier observations that the presence of the intact α-helix is essential to the activity of both functionalities of the full-length AAC(6')-Ie-APH(2'')-Ia enzyme.

  6. Small Angle X-ray Scattering and Electron Spin Resonance Spectroscopy Study on Fragrance Infused Cationic Vesicles Modeling Scent-Releasing Fabric Softeners.

    Science.gov (United States)

    Ogura, Taku; Sato, Takaaki; Abe, Masahiko; Okano, Tomomichi

    2018-02-01

    Industrially relevant systems for household and personal-care products often involve a large number of components. Such multiple component formulations are indispensable and effective for functionalization of the products, but may simultaneously provide more complex structural features compared to those in ideal systems comprising a smaller number of highly pure substances. Using cryogenic transmission electron microscopy (cryo-TEM), small angle X-ray scattering (SAXS), and electron spin resonance (ESR) spectroscopy, we have investigated effects of fragrance-incorporation into cationic vesicles on their bilayer structures and membrane-membrane interactions. Cationic vesicles were prepared from TEQ surfactant, whose major component was di(alkyl fatty ester) quaternary ammonium methosulfate, and fragrance components, l-menthol, linalool, and d-limonene, were infused into the vesicle membranes to model scent-releasing fabric softeners. The cryo-TEM images confirm formation of multilamellar vesicles (MLVs). Generalized indirect Fourier transformation (GIFT) analysis of the SAXS intensities based on the modified Caillé structure factor model reveals that incorporation of a more hydrophobic fragrance component leads to a more pronounced increase of the surface separation (water layer thickness). Furthermore, the fragrance-infused systems show longer-range order of the bilayer correlations and enhanced undulation fluctuation of the membranes than those in the TEQ alone system. The spin-label ESR results indicate different restricted molecular motions in the TEQ bilayers depending on the labeled position and their marked changes upon addition of the fragrance components, suggesting different mixing schemes and solubilization positions of the fragrance molecules in the TEQ bilayers. The present data have demonstrated how the infused fragrance molecules having different hydrophobicity and molecular architectures into the cationic vesicles affect the membrane structures and

  7. Combining NMR and small angle X-ray and neutron scattering in the structural analysis of a ternary protein-RNA complex

    International Nuclear Information System (INIS)

    Hennig, Janosch; Wang, Iren; Sonntag, Miriam; Gabel, Frank; Sattler, Michael

    2013-01-01

    Many processes in the regulation of gene expression and signaling involve the formation of protein complexes involving multi-domain proteins. Individual domains that mediate protein-protein and protein-nucleic acid interactions are typically connected by flexible linkers, which contribute to conformational dynamics and enable the formation of complexes with distinct binding partners. Solution techniques are therefore required for structural analysis and to characterize potential conformational dynamics. Nuclear magnetic resonance spectroscopy (NMR) provides such information but often only sparse data are obtained with increasing molecular weight of the complexes. It is therefore beneficial to combine NMR data with additional structural restraints from complementary solution techniques. Small angle X-ray/neutron scattering (SAXS/SANS) data can be efficiently combined with NMR-derived information, either for validation or by providing additional restraints for structural analysis. Here, we show that the combination of SAXS and SANS data can help to refine structural models obtained from data-driven docking using HADDOCK based on sparse NMR data. The approach is demonstrated with the ternary protein-protein-RNA complex involving two RNA recognition motif (RRM) domains of Sex-lethal, the N-terminal cold shock domain of Upstream-to-N-Ras, and msl-2 mRNA. Based on chemical shift perturbations we have mapped protein-protein and protein-RNA interfaces and complemented this NMR-derived information with SAXS data, as well as SANS measurements on subunit-selectively deuterated samples of the ternary complex. Our results show that, while the use of SAXS data is beneficial, the additional combination with contrast variation in SANS data resolves remaining ambiguities and improves the docking based on chemical shift perturbations of the ternary protein-RNA complex.

  8. Small angle X-ray scattering and cross-linking for data assisted protein structure prediction in CASP 12 with prospects for improved accuracy.

    Science.gov (United States)

    Ogorzalek, Tadeusz L; Hura, Greg L; Belsom, Adam; Burnett, Kathryn H; Kryshtafovych, Andriy; Tainer, John A; Rappsilber, Juri; Tsutakawa, Susan E; Fidelis, Krzysztof

    2018-03-01

    Experimental data offers empowering constraints for structure prediction. These constraints can be used to filter equivalently scored models or more powerfully within optimization functions toward prediction. In CASP12, Small Angle X-ray Scattering (SAXS) and Cross-Linking Mass Spectrometry (CLMS) data, measured on an exemplary set of novel fold targets, were provided to the CASP community of protein structure predictors. As solution-based techniques, SAXS and CLMS can efficiently measure states of the full-length sequence in its native solution conformation and assembly. However, this experimental data did not substantially improve prediction accuracy judged by fits to crystallographic models. One issue, beyond intrinsic limitations of the algorithms, was a disconnect between crystal structures and solution-based measurements. Our analyses show that many targets had substantial percentages of disordered regions (up to 40%) or were multimeric or both. Thus, solution measurements of flexibility and assembly support variations that may confound prediction algorithms trained on crystallographic data and expecting globular fully-folded monomeric proteins. Here, we consider the CLMS and SAXS data collected, the information in these solution measurements, and the challenges in incorporating them into computational prediction. As improvement opportunities were only partly realized in CASP12, we provide guidance on how data from the full-length biological unit and the solution state can better aid prediction of the folded monomer or subunit. We furthermore describe strategic integrations of solution measurements with computational prediction programs with the aim of substantially improving foundational knowledge and the accuracy of computational algorithms for biologically-relevant structure predictions for proteins in solution. © 2018 Wiley Periodicals, Inc.

  9. In-Situ Monitoring of the Microstructure of TATB-based Explosive Formulations During Temperature Cycling using Ultra-small Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Hoffman, D M; van Buuren, T; Lauderbach, L; Ilavsky, J; Gee, R H; Maiti, A; Overturf, G; Fried, L

    2008-02-06

    TATB (1,3,5 triamino-2,4,6-trinitrobenzene), an extremely insensitive explosive, is used both in plastic-bonded explosives (PBXs) and as an ultra-fine pressed powder (UFTATB). With both PBXs and UFTATB, an irreversible expansion occurs with temperature cycling known as ratchet growth. In TATB-based explosives using Kel-F 800 as binder (LX-17 and PBX-9502), additional voids, sizes hundreds of nanometers to a few microns account for much of the volume expansion caused by temperature cycling. These voids are in the predicted size regime for hot-spot formation during ignition and detonation, and thus an experimental measure of these voids is important feedback for hot-spot theory and for determining the relationship between void size distributions and detonation properties. Also, understanding the mechanism of ratchet growth allows future choice of explosive/binder mixtures to minimize these types of changes to explosives, further extending PBX shelf life. This paper presents the void size distributions of LX-17, UFTATB, and PBXs using commercially available Cytop M, Cytop A, and Hyflon AD60 binders during temperature cycling between -55 C and 70 C. These void size distributions are derived from ultra-small angle x-ray scattering (USAXS), a technique sensitive to structures from about 10 nm to about 2 mm. Structures with these sizes do not appreciably change in UFTATB, indicating voids or cracks larger than a few microns appear in UFTATB during temperature cycling. Compared to Kel-F 800 binders, Cytop M and Cytop A show relatively small increases in void volume from 0.9% to 1.3% and 0.6% to 1.1%, respectively, while Hyflon fails to prevent irreversible volume expansion (1.2% to 4.6%). Computational mesoscale models of ratchet growth and binder wetting and adhesion properties point to mechanisms of ratchet growth, and are discussed in combination with the experimental results.

  10. Adsorption of bovine hemoglobin onto spherical polyelectrolyte brushes monitored by small-angle X-ray scattering and Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Henzler, Katja; Wittemann, Alexander; Breininger, Eugenia; Ballauff, Matthias; Rosenfeldt, Sabine

    2007-11-01

    The adsorption of bovine hemoglobin (BHb) onto colloidal spherical polyelectrolyte brushes (SPBs) is studied by a combination of small-angle X-ray scattering (SAXS) and Fourier transform infrared spectroscopy (FTIR). The SPBs consist of a polystyrene core onto which long chains of poly(styrene sulfonic acid) are grafted. Hemoglobin is a tetrameric protein that disassembles at low pH's and high ionic strengths. The protein is embedded into the brush layer composed of strong polyacids. Thus, the protein is subjected to a pH and ionic strength that largely differs from the bulk solution. At low ionic strengths up to 650 mg of BHb per gram of SPB could be immobilized. The analysis of the particles loaded with protein by SAXS demonstrates that the protein enters deeply into the brush. A large fraction of hemoglobin is bound at the surface of the polystyrene core. We attribute this strong affinity to hydrophobic interactions between the protein and the polystyrene core. The other protein molecules are closely correlated with the polyelectrolyte chains. The secondary structure of the protein within the brush was studied by FTIR spectroscopy. The analysis revealed a significant disturbance of the secondary structure of the tetrameric protein. The content of alpha-helix is significantly lowered compared to the native conformation. Moreover, there is an increase of beta-sheet structure as compared to the native conformation. The partial loss of the structural integrity of the hydrophobic protein is due to hydrophobic interactions with the hydrophobic polystyrene core. Hydrophobic interactions with the phenyl groups of the poly(styrene sulfonate) chains influence the secondary structure as well. These findings indicate that changes of the secondary structure play a role in the uptake of hemoglobin into the poly(styrene sulfonate) brushes.

  11. Time-resolved small-angle x-ray scattering study of the early stage of amyloid formation of an apomyoglobin mutant

    Science.gov (United States)

    Ortore, Maria Grazia; Spinozzi, Francesco; Vilasi, Silvia; Sirangelo, Ivana; Irace, Gaetano; Shukla, Anuj; Narayanan, Theyencheri; Sinibaldi, Raffaele; Mariani, Paolo

    2011-12-01

    The description of the fibrillogenesis pathway and the identification of “on-pathway” or “off-pathway” intermediates are key issues in amyloid research as they are concerned with the mechanism for onset of certain diseases and with therapeutic treatments. Recent results on the fibril formation process revealed an unexpected complexity both in the number and in the types of species involved, but the early aggregation events are still largely unknown, mainly because of their experimental inaccessibility. To provide information on the early stage events of self-assembly of an amyloidogenic protein, during the so-called lag phase, stopped-flow time-resolved small angle x-ray scattering (SAXS) experiments were performed. Using a global fitting analysis, the structural and aggregation properties of the apomyoglobin W7FW14F mutant, which is monomeric and partly folded at acidic pH but forms amyloid fibrils after neutralization, were derived from the first few milliseconds onward. SAXS data indicated that the first aggregates appear in less than 20 ms after the pH jump to neutrality and further revealed the simultaneous presence of diverse species. In particular, worm-like unstructured monomers, very large assemblies, and elongated particles were detected, and their structural features and relative concentrations were derived as a function of time on the basis of our model. The final results show that, during the lag phase, early assembling occurs due to the presence of transient monomeric species very prone to association and through successive competing aggregation and rearrangement processes leading to coexisting on-pathway and off-pathway transient species.

  12. Small-angle x-ray scattering studies of the porosity of coals and chars. Quarterly progress report, July 1-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, P.W.

    1980-09-01

    Considerable effort has been devoted to checking and verifying some of the preliminary data reported previously. The technique employed in the past for measuring the x-ray transmission of the samples has been modified to provide more accurate values of the transmission. These transmission measurements are important for quantitative interpretation of the scattering data both because they are needed to determine the amount of background scattering that must be subtracted from a measured scattering curve and also because the value of the transmission is required for calculating the specific surface from the scattering data. Previous determinations of the specific surface have been checked and modified when corrected transmission values made recalculation necessary. Evaluation of the specific surface from the scattering data also requires a measurement of the absolute scattered intensity, or scattering cross section. In other words, the fraction of the incident radiation which is scattered must be known. For this scattering investigation of coals, the absolute intensity for the scattering system was determined by measurement of the scattering from a colloidal silica suspension. The details of this technique are described by I.S. Patel and P.W. Schmidt, J. Appl. Cryst. 4, 50 to 55. (1971).

  13. Structural Studies on Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) Malaria Antigens Using Small Angle X-Ray Scattering (SAXS)

    DEFF Research Database (Denmark)

    Christoffersen, Stig

    Infection with the pathogenic Plasmodium falciparum parasite causes the potentially deadly Malaria disease which leads to over 1 million fatalities each year according to the WHO (World Health Organization). Individuals subjected to multiple infections gradually become immune to the disease...... purposes. Macromolecular crystallography is typically the biophysical method of choice for obtaining detailed structural information but it unfortunately requires the formation of X-ray scattering protein crystals. The protein crystallization step remains a major bottleneck for X-ray protein...... crystallography. While conducting the SAXS experiments on PfEMP1 protein solutions, I alongside performed crystallization experiments using these solutions and found that the purified proteins showed very poor aptitude towards crystals formation. On the other hand, the SAXS method proved itself as a valuable tool...

  14. Advancing X-ray scattering metrology using inverse genetic algorithms

    Science.gov (United States)

    Hannon, Adam F.; Sunday, Daniel F.; Windover, Donald; Kline, R. Joseph

    2016-01-01

    We compare the speed and effectiveness of two genetic optimization algorithms to the results of statistical sampling via a Markov chain Monte Carlo algorithm to find which is the most robust method for determining real space structure in periodic gratings measured using critical dimension small angle X-ray scattering. Both a covariance matrix adaptation evolutionary strategy and differential evolution algorithm are implemented and compared using various objective functions. The algorithms and objective functions are used to minimize differences between diffraction simulations and measured diffraction data. These simulations are parameterized with an electron density model known to roughly correspond to the real space structure of our nanogratings. The study shows that for X-ray scattering data, the covariance matrix adaptation coupled with a mean-absolute error log objective function is the most efficient combination of algorithm and goodness of fit criterion for finding structures with little foreknowledge about the underlying fine scale structure features of the nanograting. PMID:27551326

  15. New insights into nucleation. Pressure trace measurements and the first small angle X-ray scattering experiments in a supersonic laval nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, D.

    2007-07-01

    Homogeneous nucleation rates of the n-alcohols and the n-alkanes have been determined by combining information from two sets of supersonic Laval nozzle expansion experiments under identical conditions. The nucleation rates J=N/{delta}t{sub Jmax} for the n-alcohols are in the range of 1.10{sup 17}Angle X-ray Scattering experiments are conducted to determine the particle number density for both substance classes. Particle number densities in the range of 1.10{sup 12}scattering spectrum, information on the

  16. New insights into nucleation. Pressure trace measurements and the first small angle X-ray scattering experiments in a supersonic laval nozzle

    International Nuclear Information System (INIS)

    Ghosh, D.

    2007-01-01

    Homogeneous nucleation rates of the n-alcohols and the n-alkanes have been determined by combining information from two sets of supersonic Laval nozzle expansion experiments under identical conditions. The nucleation rates J=N/Δt Jmax for the n-alcohols are in the range of 1.10 17 -3 s -1 17 for the temperatures 207≤T/K≤249, the nucleation rates for the n-alkanes lie in the range of 5.10 15 -3 s -1 18 for the temperatures 143 ≤T/K≤215. For the first time it is shown that the nucleation rate is not only a function of the supersaturation and temperature but clearly also sensitive to the expansion rate during supersonic nozzle expansion. A good agreement between the experimental results and those available in literature is found by applying Hale's scaling formalism [Hale, B., Phys. Rev. A 33, 4256 (1986); Hale, B., Metall. Trans. A 23, 1863 (1992)]. The scaling parameters from this work are also in good agreement with those shown by Rusyniak et al. [Rusyniak, M., M. S. El-Shall, J. Phys. Chem. B 105, 11873 (2001)] and Brus et al. [Brus, D., V. Zdimal F. Stratmann, J. Chem Phys. 124, 164306 (2006)]. In the first experiment static pressure measurements were conducted for the n-alkanes to determine the condensible partial pressure, temperature, supersaturation, characteristic time, and the expansion rate corresponding to the maximum nucleation rate. Characteristic times in the range of 13≤Δt Jmax /μs≤34 were found. In the second set of experiments, the first flow rate resolved Small Angle X-ray Scattering experiments are conducted to determine the particle number density for both substance classes. Particle number densities in the range of 1.10 12 -3 12 and 1.10 11 -3 12 for the n-alcohols and n-alkanes are found, respectively. Additionally, by analyzing the radially averaged scattering spectrum, information on the mean radius and the width of the size distribution of the aerosols is obtained. Mean radii for the n-alcohols in the range of 4< left angle r

  17. Crystal structure analysis in solution-processed uniaxially oriented polycrystalline thin film of non-peripheral octahexyl phthalocyanine by grazing incidence wide-angle x-ray scattering techniques

    Science.gov (United States)

    Ohmori, Masashi; Uno, Takashi; Nakatani, Mitsuhiro; Nakano, Chika; Fujii, Akihiko; Ozaki, Masanori

    2016-10-01

    Uniaxially oriented thin films of metal-free non-peripherally octahexyl-substituted phthalocyanine (C6PcH2), which exhibits high carrier mobility, have been fabricated by the bar-coating technique, which is a simple solution process. The molecular orientation and molecular steps in the thin film were observed by the polarized spectroscopy and the atomic force microscopy, respectively. The three-dimensional molecular packing structure in the thin film was investigated by the grazing incidence wide-angle X-ray scattering technique with an in-plane sample rotation. The crystal orientation was clarified, and the three-dimensional molecular packing structure of the thin film was found to match the single crystal structure. Moreover, the X-ray diffraction patterns of the oriented thin films were simulated by using the lattice parameters of C6PcH2 single crystal to reproduce the observed X-ray diffraction patterns.

  18. New developments in the simultaneous measurement system of wide-angle and small-angle x-ray scatterings and vibrational spectra for the static and dynamic analyses of the hierarchical structures of polymer solids

    International Nuclear Information System (INIS)

    Tashiro, Kohji; Yamamoto, Hiroko; Yoshioka, Taiyo; Ninh, Tran Hai; Shimada, Shigeru; Nakatani, Takeshi; Iwamoto, Hiroyuki; Ohta, Noboru; Masunaga, Hiroyasu

    2012-01-01

    A simultaneous measurement system of wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS) and Raman or transmission-type infrared spectroscopy was developed by us. Its purposes is to clarify the static and dynamic structural changes of polymer materials subjected to the various external condition changes. Some examples described here include the study of the stretch-induced reorientation phenomenon of a-axially-oriented polyethylene, the study of structural change in photo-induced solid-state polymerization reaction of muconic acid ester monomer crystal, the study of the two-stage high-temperature phase transitions of aliphatic nylons, the study of stress-induced crystalline phase transition of an oriented poly(tetramethylene terephthalate) sample and its relation to the higher-order structural change, and the study of structural regularization process of poly(L-lactic acid) in the isothermal crystallization of the meso phase. These case studies in the clarification of hierarchical structural changes of polymer materials have proven that the simultaneous measurement systems can be useful to examine the structural changes in polymer systems. (author)

  19. Liquid structure of 1-alkyl-3-methylimidazolium-hexafluorophosphates by wide angle x-ray and neutron scattering and molecular dynamics.

    Science.gov (United States)

    Macchiagodena, Marina; Gontrani, Lorenzo; Ramondo, Fabio; Triolo, Alessandro; Caminiti, Ruggero

    2011-03-21

    We report for the first time joined energy dispersed x-ray and neutron diffraction experiments on a series of (both protiated and selectively deuteriated) 1-alkyl-3-methylimidazolium hexafluorophosphate salts (alkyl = butyl, hexyl, octyl) at ambient conditions. The x-ray experimental data are used to optimize the interaction potential used for running molecular dynamics simulations on these systems. Such a potential leads to a good description of neutron scattering data from the samples without additional refinement, thus further validating the potential definition. The molecular dynamics simulations were used to access microscopic information on the morphology of the proposed systems, thus probing the role played by alkyl chain length on the structure. The comparison of x-ray weighted and neutron-weighted computed diffraction patterns allows the rationalization of several diffraction features. Further insight into cation-anion coordination and alkyl chain conformational equilibrium is provided on the basis of the MD-derived snapshots, confirming and extending previously obtained results on these issues.

  20. Resonant X-ray scattering in correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Youichi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan). Inst. of Materials Structure Science; Ishihara, Sumio (ed.) [Tohoku Univ., Sendai, Miyagi (Japan). Dept. of Physics

    2017-03-01

    The research and its outcomes presented here is devoted to the use of X-ray scattering to study correlated electron systems and magnetism. Different X-ray based methods are provided to analyze three dimensional electron systems and the structure of transition-metal oxides. Finally the observation of multipole orderings with X-ray diffraction is shown.

  1. Resonant x-ray scattering in correlated systems

    CERN Document Server

    Ishihara, Sumio

    2017-01-01

    The research and its outcomes presented here is devoted to the use of x-ray scattering to study correlated electron systems and magnetism. Different x-ray based methods are provided to analyze three dimensional electron systems and the structure of transition-metal oxides. Finally the observation of multipole orderings with x-ray diffraction is shown.

  2. Resonant inelastic x-ray scattering studies of elementary excitations

    NARCIS (Netherlands)

    Ament, Lucas Johannes Peter (Luuk)

    2010-01-01

    Resonant Inelastic X-ray Scattering (RIXS) is an X-ray in, X-ray out technique that enables one to study the dispersion of excitations in solids. In this thesis, we investigated how various elementary excitations of transition metal oxides show up in RIXS spectra.

  3. C60-propylamine adduct monolayers at the gas/water interface: A Brewster angle microscopy and x-ray scattering study

    International Nuclear Information System (INIS)

    Fukuto, M.; Penanen, K.; Heilmann, R.K.; Pershan, P.S.; Vaknin, D.

    1997-01-01

    Brewster angle microscopy (BAM), x-ray specular reflectivity and grazing-incidence x-ray diffraction (GID) studies of C 60 -propylamine adduct monolayers at the gas/water interface as a function of molecular area are reported. At large molecular areas (A>∼150 Angstrom 2 /molecule), BAM images reveal macroscopic heterogeneity in the film, consisting of the coexistence between regions covered with uniform solidlike monolayer and bare water surface. After compression to a limiting molecular area of 150 Angstrom 2 /molecule, the film is observed to be homogeneous, with the uniform monolayer covering the entire available surface. Both the x-ray reflectivity results and the GID patterns are consistent with the formation of a uniform monolayer at A∼150 Angstrom 2 /molecule, while the little dependence that the GID patterns have on the molecular area for A>∼150 Angstrom 2 /molecule is consistent with the heterogeneity in the film. Upon further compression to higher densities (A 2 /molecule), the x-ray reflectivity results suggest the formation of a partial layer either at the molecule/gas interface or at the molecule/water interface. In this high density regime, the shift in the observed GID pattern with molecular area is much smaller than would be expected if the film were to remain a homogeneous monolayer, also consistent with the formation of an inhomogeneous partial layer. The analysis of the broad GID pattern observed from a uniform monolayer in terms of a model 2D radial distribution function, implies a short range positional correlation, extending to only a few molecular distances. The average nearest neighbor distance (d∼13 Angstrom), extracted from the GID analysis, is consistent with the limiting molecular area (A∼150 Angstrom 2 /molecule) assuming local hexagonal packing. (Abstract Truncated)

  4. Small-angle scattering, topography and radiography

    International Nuclear Information System (INIS)

    Schelten, J.

    1978-01-01

    A table is given showing scattering and imaging methods for X-rays and neutrons, followed, by a discussion of such topics as 1. Radiography 2. Topography 3. Small-angle scattering 3.1. The differential cross section 3.2. Comparison of X-ray and neutron small-angle scattering 3.3. Examples of small-angle scattering. (orig.) [de

  5. Magnetic X-Ray Scattering with Synchrotron Radiation

    DEFF Research Database (Denmark)

    Moncton, D. E.; Gibbs, D.; Bohr, Jakob

    1986-01-01

    With the availability of high-brilliance synchrotron radiation from multiple wigglers, magnetic X-ray scattering has become a powerful new probe of magnetic structure and phase transitions. Similar to the well-established magnetic neutron scattering technique, magnetic X-ray scattering methods have...

  6. Structural analysis and characterization of synthesized ordered mesoporous silicate (MCM-41) using small angle X-rays scattering and complementary techniques

    Science.gov (United States)

    Akinlalu, Ademola V.

    Mesoporous silicate have widespread potential applications, such as drug delivery, supports for catalysis, selective adsorption and host to guest molecules. Most important in the area of scientific research and industrial applications is their demand due to its extremely high surface areas (> 800m 2g-1) and larger pores with well defined structures. Mesoporous silicate (MCM-41) samples were prepared by hydrothermal method under various chemo-physical conditions and various experimental methods such as small angle X-rays scattering (SAXS), Nitrogen adsorption-desorption analysis at 77 K, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were employed to investigate the changes in the structural morphology and subtle lattice parameter changes. With regards to the subtle changes in the structural characteristics of the synthesized mesoporous silicate, we seek to understand the electron density function changes as the synthesis parameter are varied from low molar concentration of ATAB/Si to higher concentration, the system becoming more acidity due to increase in the hydrolysis time of pH regulator as a result of increased production of ethanol and acetic acid and the changes due to extended reaction time. This Ph.D. research tries to understand the influence of various parameters like surfactant-Si molar ratio, reaction time, and the hydrolysis of the pH regulator on the orderliness/disorderliness of the lattice order, lattice spacing and electron density function. The stages during synthesis are carefully selected to better understand where the greater influence on the overall structural morphology exist so as to be able to ne tune this parameter for any desired specification and application. The SAXS measurement were conducted on a HECUS S3-Micro X-ray system at Rensselaer Polytechnic Institute, Troy, NY. while the data evaluation and visualization were carried in 3DView 4.2 and EasySWAXS software. The electron density functions

  7. Investigating Polymer–Metal Interfaces by Grazing Incidence Small-Angle X-Ray Scattering from Gradients to Real-Time Studies

    Directory of Open Access Journals (Sweden)

    Matthias Schwartzkopf

    2016-12-01

    Full Text Available Tailoring the polymer–metal interface is crucial for advanced material design. Vacuum deposition methods for metal layer coating are widely used in industry and research. They allow for installing a variety of nanostructures, often making use of the selective interaction of the metal atoms with the underlying polymer thin film. The polymer thin film may eventually be nanostructured, too, in order to create a hierarchy in length scales. Grazing incidence X-ray scattering is an advanced method to characterize and investigate polymer–metal interfaces. Being non-destructive and yielding statistically relevant results, it allows for deducing the detailed polymer–metal interaction. We review the use of grazing incidence X-ray scattering to elucidate the polymer–metal interface, making use of the modern synchrotron radiation facilities, allowing for very local studies via in situ (so-called “stop-sputter” experiments as well as studies observing the nanostructured metal nanoparticle layer growth in real time.

  8. Edible oil structures at low and intermediate concentrations. II. Ultra-small angle X-ray scattering of in situ tristearin solids in triolein

    Energy Technology Data Exchange (ETDEWEB)

    Peyronel, Fernanda; Marangoni, Alejandro G. [Food Science Department, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Ilavsky, Jan [Advanced Photon Source, Argonne National Laboratory, 9700S Cass Ave., Bldg. 434D, Argonne, Illinois 60439 (United States); Mazzanti, Gianfranco [Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Pink, David A. [Food Science Department, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Physics Department, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5 (Canada)

    2013-12-21

    Ultra-small angle X-ray scattering has been used for the first time to elucidate, in situ, the aggregation structure of a model edible oil system. The three-dimensional nano- to micro-structure of tristearin solid particles in triolein solvent was investigated using 5, 10, 15, and 20% solids. Three different sample preparation procedures were investigated: two slow cooling rates of 0.5°/min, case 1 (22 days of storage at room temperature) and case 2 (no storage), and one fast cooling of 30°/min, case 3 (no storage). The length scale investigated, by using the Bonse-Hart camera at beamline ID-15D at the Advanced Photon Source, Argonne National Laboratory, covered the range from 300 Å to 10 μm. The unified fit and the Guinier-Porod models in the Irena software were used to fit the data. The former was used to fit 3 structural levels. Level 1 structures showed that the primary scatterers were essentially 2-dimensional objects for the three cases. The scatterers possessed lateral dimensions between 1000 and 4300 Å. This is consistent with the sizes of crystalline nanoplatelets present which were observed using cryo-TEM. Level 2 structures were aggregates possessing radii of gyration, R{sub g2} between 1800 Å and 12000 Å and fractal dimensions of either D{sub 2}=1 for case 3 or 1.8≤D{sub 2}≤2.1 for case 1 and case 2. D{sub 2} = 1 is consistent with unaggregated 1-dimensional objects. 1.8 ≤ D{sub 2} ≤ 2.1 is consistent with these 1-dimensional objects (below) forming structures characteristic of diffusion or reaction limited cluster-cluster aggregation. Level 3 structures showed that the spatial distribution of the level 2 structures was uniform, on the average, for case 1, with fractal dimension D{sub 3}≈3 while for case 2 and case 3 the fractal dimension was D{sub 3}≈2.2, which suggested that the large-scale distribution had not come to equilibrium. The Guinier-Porod model showed that the structures giving rise to the aggregates

  9. A compact high vacuum heating chamber for in-situ x-ray scattering studies.

    Science.gov (United States)

    Bertram, F; Deiter, C; Pflaum, K; Seeck, O H

    2012-08-01

    A very compact multi purpose high vacuum heating chamber for x-ray scattering techniques was developed. The compact design allows the chamber to be installed on high precision diffractometers which usually cannot support heavy and/or large equipment. The chamber is covered by a Be dome allowing full access to the hemisphere above the sample which is required for in-plane grazing incident x-ray diffraction and out-off plane wide angle x-ray diffraction.

  10. A compact high vacuum heating chamber for in-situ x-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, F.; Deiter, C.; Pflaum, K.; Seeck, O. H. [Hamburger Synchrotronstrahlungslabor am Deutschen Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg (Germany)

    2012-08-15

    A very compact multi purpose high vacuum heating chamber for x-ray scattering techniques was developed. The compact design allows the chamber to be installed on high precision diffractometers which usually cannot support heavy and/or large equipment. The chamber is covered by a Be dome allowing full access to the hemisphere above the sample which is required for in-plane grazing incident x-ray diffraction and out-off plane wide angle x-ray diffraction.

  11. Fast sampling model for X-ray Rayleigh scattering

    CERN Document Server

    Grichine, V M

    2013-01-01

    A simple model for X-ray Rayleigh scattering is discussed in terms of the process total cross-section and the angular distribution of scattered X-ray photons. Comparisons with other calculations and experimental data are presented. The model is optimized for the simulation of X-ray tracking inside experimental setups with complex geometry where performance and memory volume are issues to be optimized. (C) 2013 Elsevier B.V. All rights reserved.

  12. ORNL-SAS: Versatile software for calculation of small-angle x-ray and neutron scattering intensity profiles from arbitrary structures

    International Nuclear Information System (INIS)

    Heller, William T; Tjioe, Elina

    2007-01-01

    ORNL-SAS is software for calculating solution small-angle scattering intensity profiles from any structure provided in the Protein Data Bank format and can also compare the results with experimental data

  13. Resonance magnetic x-ray scattering study of erbium

    DEFF Research Database (Denmark)

    Sanyal, M.K.; Gibbs, D.; Bohr, J.

    1994-01-01

    The magnetic phases of erbium have been studied by resonance x-ray-scattering techniques. When the incident x-ray energy is tuned near the L(III) absorption edge, large resonant enhancements of the magnetic scattering are observed above 18 K. We have measured the energy and polarization dependence...

  14. VPD residue search by monitoring scattered x-rays

    International Nuclear Information System (INIS)

    Mori, Y.; Yamagami, M.; Yamada, T.

    2000-01-01

    Recently, VPD-TXRF has come into wide use for semiconductor analysis. In VPD-TXRF technique, adjusting the mechanical measuring point to the center of dried residue is of importance for accurate determination. Until now, the following searching methods have been used: monitoring light scattering under bright illumination, using laser scattering particle mapper, applying internal standard as a marker. However, each method has individual disadvantage. For example, interference of Kβ line (ex. Sc-Kβ to Ti-Kα) occurs in the internal standard method. We propose a new searching method 'scattered x-ray search' which utilizes x-ray scattering form the dried residue as a marker. Since the line profile of x-ray scattering agrees with that of fluorescent x-rays, scattered x-ray can be used as an alternative marker instead of internal standard. According to our experimental results, this search method shows the same accuracy as internal standard method. The merits are as follows: 1) no need to add internal standard, 2) rapid search because of high intensity of scattered x-rays, 3) searching software for internal standard can be applied without any modification. In this method, diffraction of incident x-rays by substrate causes irregular change over the detected scattering x-rays. Therefore, this method works better under x-y controlled stage than r-Θ one. (author)

  15. Scattering of x rays from low-Z materials

    International Nuclear Information System (INIS)

    Gaines, J.L.; Kissel, L.D.; Catron, H.C.; Hansen, R.A.

    1980-01-01

    X rays incident on thin beryllium, boron, carbon, and other low-Z materials undergo both elastic and inelastic scattering as well as diffraction from the crystalline or crystalline-like structure of the material. Unpolarized monoenergetic x rays in the 1.5 to 8.0-keV energy range were used to determine the absolute scattering efficiency of thin beryllium, carbon, and boron foils. These measurements are compared to calculated scattering efficiencies predicted by single-atom theories. In addition, the relative scattering efficiency versus x-ray energy was measured for other low-Z foils using unpolarized bremsstrahlung x rays. In all the low-Z foils examined, we observed Bragg-like x-ray diffraction due to the ordered structure of the materials

  16. Resonant x-ray magnetic scattering in holmium

    International Nuclear Information System (INIS)

    Gibbs, D.

    1991-01-01

    We review the results of resonant x-ray magnetic scattering experiments on the rare earth metal holmium. When the incident incident x-ray energy is tuned near the L III absorption edge, large resonant enhancements of the magnetic scattering and resonant integer harmonics are observed. These results are analyzed within the theory of x-ray resonance exchange scattering assuming electric dipole (2p → 5d) and quadrupole (2p → 4f) transitions among atomic orbitals. 30 refs., 5 figs

  17. Small-angle X-ray scattering study of the influence of solvent replacement (from H2O to D2O) on the initial crystallization stage of tetragonal lysozyme

    Science.gov (United States)

    Boikova, A. S.; D'yakova, Yu. A.; Il'ina, K. B.; Konarev, P. V.; Kryukova, A. E.; Marchenkova, M. A.; Blagov, A. E.; Pisarevskii, Yu. V.; Koval'chuk, M. V.

    2017-11-01

    The composition of lysozyme solutions in D2O under conditions favorable for the formation of tetragonal crystals has been investigated at different protein concentrations by small-angle X-ray scattering using the synchrotron radiation. In addition to lysozyme monomers, dimeric and octameric species are found in the crystallization solutions; the octamer content increases with an increase in the protein concentration. A comparison of the data with those obtained under similar conditions but with H2O used as a solvent has shown that the replacement of light water with heavy one leads to increase of octamer volume fraction in solution.

  18. X-ray scattering measurements from thin-foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; BYRNAK, BP; Hornstrup, Allan

    1992-01-01

    Thin foil X-ray mirrors are to be used as the reflecting elements in the telescopes of the X-ray satellites Spectrum-X-Gamma (SRG) and ASTRO-D. High resolution X-ray scattering measurements from the Au coated and dip-lacquered Al foils are presented. These were obtained from SRG mirrors positioned...... in a test quadrant of the telescope structure and from ASTRO-D foils held in a simple fixture. The X-ray data is compared with laser data and other surface structure data such as STM, atomic force microscopy (AFM), TEM, and electron micrography. The data obtained at Cu K-alpha(1), (8.05 keV) from all...

  19. Kharkov X-ray Generator Based On Compton Scattering

    International Nuclear Information System (INIS)

    Shcherbakov, A.; Zelinsky, A.; Mytsykov, A.; Gladkikh, P.; Karnaukhov, I.; Lapshin, V.; Telegin, Y.; Androsov, V.; Bulyak, E.; Botman, J.I.M.; Tatchyn, R.; Lebedev, A.

    2004-01-01

    Nowadays X-ray sources based on storage rings with low beam energy and Compton scattering of intense laser beams are under development in several laboratories. An international cooperative project of an advanced X-ray source of this type at the Kharkov Institute of Physics and Technology (KIPT) is described. The status of the project is reviewed. The design lattice of the storage ring and calculated X-ray beam parameters are presented. The results of numerical simulation carried out for proposed facility show a peak spectral X-ray intensity of about 1014 can be produced

  20. Coherent x-ray scatter imaging for foodstuff contamination detection

    Science.gov (United States)

    Martens, Gerhard; Bomsdorf, H.; Harding, Geoffrey L.; Kanzenbach, Jurgen; Linde, R.

    1994-03-01

    Using the novel technique of energy-dispersive X-ray diffraction tomography, measurements were made of the coherent X-ray scatter from various types of foodstuff (chocolate, bacon, cherry jam, chicken breast) with their typical contaminants (macrolon, blue foil, cherry stones/wood and bone, respectively). In addition, it is shown how the use of a window technique in the diffraction spectrum allows cancellation of the foodstuff contribution in scatter images, leaving only that of the contaminant. The extension to multicomponent systems, allowing arbitrary elimination of unwanted materials in coherent scatter images, is possible. Taken together, these results indicate the great potential of coherent X-ray scatter analysis for contamination detection in the foodstuff industry. By development of more efficient X-ray scatter geometries, using e.g. fan beam irradiation with simultaneous acquisition of spectra from different voxels, the requirements of industrial mass production with respect to inspection time and resolution are likely to be met.

  1. Dimyristoylphosphatidylcholine/C16 : 0-ceramide binary liposomes studied by differential scanning calorimetry and wide- and small-angle X-ray scattering

    DEFF Research Database (Denmark)

    Holopainen, J. M.; Lemmich, Jesper; Richter, F.

    2000-01-01

    hysteresis in the thermal phase behavior of ceramide-containing membranes. A partial phase diagram was constructed based on results from a combination of these two methods. DSC heating scans show that with increased X-cer the pretransition temperature T-P first increases, whereafter at X-cer > 0.06 it can...... of the studied compositions there is an endotherm in the region close to the T-m for DMPC. At X-cer greater than or equal to 0.03 a second endotherm is evident at higher temperatures, starting at 32.1 degrees C and reaching 54.6 degrees C at X-cer = 0.30. X-ray small-angle reflection heating scans reveal...... a lamellar phase within the temperature range of 15-60 degrees C, regardless of composition. The pretransition is observed up to X-cer repeat distance d increases from similar to 61 Angstrom at X-cer = 0.03, to 67 Angstrom at X-cer = 0...

  2. Electron Dynamics by Inelastic X-Ray Scattering

    CERN Document Server

    Schülke, Winfried

    2007-01-01

    The book offers the first comprehensive review of experimental methods, theory, and successful applications of synchrotron radiation based inelastic X-ray scattering (IXS) spectroscopy, which enables the investigation of electron dynamics in condensed matter (correlated motion and excitation).

  3. Application of X-ray and neutron small angle scattering techniques to study the hierarchical structure of plant cell walls: a review.

    Science.gov (United States)

    Martínez-Sanz, Marta; Gidley, Michael J; Gilbert, Elliot P

    2015-07-10

    Plant cell walls present an extremely complex structure of hierarchically assembled cellulose microfibrils embedded in a multi-component matrix. The biosynthesis process determines the mechanism of cellulose crystallisation and assembly, as well as the interaction of cellulose with other cell wall components. Thus, a knowledge of cellulose microfibril and bundle architecture, and the structural role of matrix components, is crucial for understanding cell wall functional and technological roles. Small angle scattering techniques, combined with complementary methods, provide an efficient approach to characterise plant cell walls, covering a broad and relevant size range while minimising experimental artefacts derived from sample treatment. Given the system complexity, approaches such as component extraction and the use of plant cell wall analogues are typically employed to enable the interpretation of experimental results. This review summarises the current research status on the characterisation of the hierarchical structure of plant cell walls using small angle scattering techniques. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  4. X-ray scattering studies of surfaces and interfaces

    International Nuclear Information System (INIS)

    Sanyal, M.K.

    1998-01-01

    Here we shall briefly review the basics and some applications of x-ray specular reflectivity and diffuse scattering techniques. These x-ray scattering techniques are uniquely suited to study of the structure of surfaces and interfaces at atomic resolutions as they are nondestructive and can probe even interfaces which are buried. The study of structure of surfaces and interfaces is not only required in understanding physics in reduced dimensions but is also essential in developing technologically important materials

  5. Glancing angle x-ray studies of oxide films

    International Nuclear Information System (INIS)

    Davenport, A.J.; Isaacs, H.S.

    1989-01-01

    High brightness synchrotron radiation incident at glancing angles has been used to study inhibiting species present in low concentrations in oxide films on aluminum. Glancing incident angle fluorescence measurements give surface-sensitive information on the valence state of elements from the shape of the x-ray absorption edge. Angle-resolved measurements show the depth distribution of the species present. 15 refs., 4 figs

  6. Sources of the X-rays Based on Compton Scattering

    International Nuclear Information System (INIS)

    Androsov, V.; Bulyak, E.; Gladkikh, P.; Karnaukhov, I.; Mytsykov, A.; Telegin, Yu.; Shcherbakov, A.; Zelinsky, A.

    2007-01-01

    The principles of the intense X-rays generation by laser beam scattering on a relativistic electron beam are described and description of facilities assigned to produce the X-rays based on Compton scattering is presented. The possibilities of various types of such facilities are estimated and discussed. The source of the X-rays based on a storage ring with low beam energy is described in details and advantages of the sources of such type are discussed.The results of calculation and numerical simulation carried out for laser electron storage ring NESTOR that is under development in NSC KIPT show wide prospects of the accelerator facility of such type

  7. Depth distribution of multiple order X-ray scatter

    International Nuclear Information System (INIS)

    Yao Weiguang; Leszczynski, Konrad

    2008-01-01

    Scatter can significantly affect quality of projectional X-ray radiographs and tomographic reconstructions. With this in mind, we examined some of the physical properties of multiple orders of scatter of X-ray photons traversing through a layer of scattering media such as water. Using Monte Carlo techniques, we investigated depth distributions of interactions between incident X-ray photons and water before the resulting scattered photons reach the detector plane. Effects of factors such as radiation field size, air gap, thickness of the layer of scattering medium and X-ray energy, on the scatter were included in the scope of this study. The following scatter characteristics were observed: (1) for a layer of scattering material corresponding to the typical subject thickness in medical imaging, frequency distribution of locations of the last scattering interaction increases approximately exponentially with depth, and the higher the order of scatter or the energy of the incident photon, the narrower is the distribution; (2) for the second order scatter, the distribution of locations of the first interaction is more uniform than that of the last interaction and is dependent on the energy of the primary photons. Theoretical proofs for some of these properties are given. These properties are important to better understanding of effects of scatter on the radiographic and tomographic imaging process and to developing effective methods for scatter correction

  8. A filter based analyzer for studies of X-ray Raman scattering

    CERN Document Server

    Seidler, G T

    2001-01-01

    Non-resonant X-ray Raman scattering (XRS) with hard X-rays holds the potential for measuring local structure and local electronic properties around low-Z atoms in environments where traditional soft X-ray techniques are inapplicable. However, the small cross-section for XRS requires that experiments must simultaneously achieve high detection efficiency, large collection solid angles, and good energy resolution. We report here that a simple X-ray analyzer consisting of an absorber and a point-focusing spatial filter can be used to study some X-ray Raman near-edge features. This apparatus has greater than 10% detection efficiency, has an energy resolution of 8 eV, and can be readily extended to collection angles of more than 1 sr. We present preliminary measurements of the XRS from the nitrogen 1 s shell in pyrolitic boron nitride.

  9. Molecular bond selective x-ray scattering for nanoscale analysis of soft matter

    Science.gov (United States)

    Mitchell, G. E.; Landes, B. G.; Lyons, J.; Kern, B. J.; Devon, M. J.; Koprinarov, I.; Gullikson, E. M.; Kortright, J. B.

    2006-07-01

    We demonstrate the utility of resonant soft x-ray scattering in characterizing heterogeneous chemical structure at nanometer length scales in polymer films and nanostructures. Resonant enhancements near the carbon K edge bring bond specific contrast and increased sensitivity to bridge a gap between x-ray absorption contrast in chemical sensitive imaging and higher spatial resolution hard x-ray and neutron small-angle scattering. Chemical bond sensitivity is illustrated in the scattering from latex spheres of differing chemistry and size. Resonant enhancements are then shown to yield sensitivity to heterogeneity in two-phase polymer films for which hard x-ray and nondeuterated neutron scattering lack sensitivity due to low contrast.

  10. Coherent methods in X-ray scattering

    International Nuclear Information System (INIS)

    Gorobtsov, Oleg

    2017-05-01

    X-ray radiation has been used to study structural properties of materials for more than a hundred years. Construction of extremely coherent and bright X-ray radiation sources such as free electron lasers (FELs) and latest generationstorage rings led to rapid development of experimental methods relying on high radiation coherence. These methods allow to perform revolutionary studies in a wide range of fields from solid state physics to biology. In this thesis I focus on several important problems connected with the coherent methods. The first part considers applications of dynamical diffraction theory on crystals to studies with coherent X-ray radiation. It presents the design of a high-resolution spectrometer for free electron lasers that should allow to resolve spectral structure of individual FEL pulses. The spectrometer is based on the principle of dynamical diffraction focusing. The knowledge of individual FEL pulse spectra is necessary for understanding FEL longitudinal coherence. In the same part I present quasi-kinematical approximation to dynamical theory which allows to treat analytically phase effects observed in X-ray coherent imaging on nanocrystals. These effects may play a big role when methods such as ptychography are used to study crystalline samples. The second part deals with measurements of FEL coherence properties using intensity - intensity interferometry. Results of several experiments performed at FELs FLASH and LCLS are revealed in this section. I have developed models and theories to explain the behavior observed in experiments on FLASH. These models allowed to extract information about external positional jitter of FEL pulses and secondary beams present in FEL radiation. In the LCLS experiment the Hanbury Brown and Twiss type interferometry was performed on Bragg peaks from colloidal crystal. This did not require additional measurements without the sample and information was extracted directly from diffraction patterns. Therefore intensity

  11. Coherent methods in X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gorobtsov, Oleg

    2017-05-15

    X-ray radiation has been used to study structural properties of materials for more than a hundred years. Construction of extremely coherent and bright X-ray radiation sources such as free electron lasers (FELs) and latest generationstorage rings led to rapid development of experimental methods relying on high radiation coherence. These methods allow to perform revolutionary studies in a wide range of fields from solid state physics to biology. In this thesis I focus on several important problems connected with the coherent methods. The first part considers applications of dynamical diffraction theory on crystals to studies with coherent X-ray radiation. It presents the design of a high-resolution spectrometer for free electron lasers that should allow to resolve spectral structure of individual FEL pulses. The spectrometer is based on the principle of dynamical diffraction focusing. The knowledge of individual FEL pulse spectra is necessary for understanding FEL longitudinal coherence. In the same part I present quasi-kinematical approximation to dynamical theory which allows to treat analytically phase effects observed in X-ray coherent imaging on nanocrystals. These effects may play a big role when methods such as ptychography are used to study crystalline samples. The second part deals with measurements of FEL coherence properties using intensity - intensity interferometry. Results of several experiments performed at FELs FLASH and LCLS are revealed in this section. I have developed models and theories to explain the behavior observed in experiments on FLASH. These models allowed to extract information about external positional jitter of FEL pulses and secondary beams present in FEL radiation. In the LCLS experiment the Hanbury Brown and Twiss type interferometry was performed on Bragg peaks from colloidal crystal. This did not require additional measurements without the sample and information was extracted directly from diffraction patterns. Therefore intensity

  12. A CdZnTe array for the detection of explosives in baggage by energy-dispersive X-ray diffraction signatures at multiple scatter angles

    CERN Document Server

    Malden, C H

    2000-01-01

    CdZnTe detectors were used to collect energy-dispersive diffraction spectra at a range of scatter angles, from sheets of explosives hidden in baggage. It is shown that the combined information from these 'signatures' can be used to determine whether an explosive sample is present or not. The geometrical configuration of the collimation and the position of the baggage within the scanner must be taken into careful consideration when optimising the capabilities of such a system. The CdZnTe array lends itself well to the detection of explosives in baggage since multiple signals may be collected simultaneously providing more rapid detection than achieved using a single detector.

  13. Studying Dust Scattering Halos with Galactic X-ray Binaries

    Science.gov (United States)

    Beeler, Doreen; Corrales, Lia; Heinz, Sebastian

    2018-01-01

    Dust is an important part of the interstellar medium (ISM) and contributes to the formation of stars and planets. Since the advent of modern X-ray telescopes, Galactic X-ray point sources have permitted a closer look at all phases of the ISM. Interstellar metals from oxygen to iron — in both gas and dust form — are responsible for absorption and scattering of X-ray light. Dust scatters the light in a forward direction and creates a diffuse halo image surrounding many bright Galactic X-ray binaries. We use all the bright X-ray point sources available in the Chandra HETG archive to study dust scattering halos from the local ISM. We have described a data analysis pipeline using a combination of the data reduction software CIAO and Python. We compare our results from Chandra HETG and ACIS-I observations of a well studied dust scattering halo around GX 13+1, in order to characterize any systematic errors associated with the HETG data set. We describe how our data products will be used to measure ISM scaling relations for X-ray extinction, dust abundance, and dust-to-metal ratios.

  14. X-ray Thomson Scattering from Spherically Imploded ICF Ablators

    Science.gov (United States)

    Kritcher, Andrea; Doeppner, Tilo; Landen, Otto; Glenzer, Siegfried

    2010-11-01

    Time-resolved X-ray Thomson scattering measurements from spherically imploded inertial fusion capsules-type targets have been obtained for the first time at the Omega OMEGA laser facility to characterize the in-flight properties of ICF ablators. In these experiments, the non-collective, or microscopic particle behavior, of imploding CH and Be shells, was probed using a 9 keV Zn He-alpha x-ray source at scattering angles of 113^o and 135^o. for two drive pulse shapes.As an example, the analysis of In-flight scattering measurements from one set of directly-driven compressed 8600 μm-diameter, 40-μm thick Be shells taken (4.2 ns after the start of the compression beamswhen compressed a factor of 4.83x) yielded electron densities of ˜ 1.2±0.23x10^24cm-3, temperatures of ˜13±32 eV, and an ionization state of Be(+2), with uncertainties in the temperature and density of about 40% and 20%. These conditions resulting in an inferred adiabat (ratio of plasma pressure to Fermi degenerate pressure) of 1.797 +0.3/-.5 with an error of about 30%. The high signal-to-noise and high signal-to-background ratio of data obtained in these experiments provides a platform for studying the adiabat of other indirect-drive ICF ablators such as CH and High Density Carbon (HDC) ablators and demonstrates the viability of using this diagnostic to study the in-flight properties adiabat of implosion targets at the National Ignition Facility (NIF).

  15. Workshop report on new directions in x-ray scattering

    International Nuclear Information System (INIS)

    Brown, G.; Del Grande, N.K.; Fuoss, P.; Mallett, J.H.; Pratt, R.; Templeton, D.

    1987-01-01

    This report is a summary of the Workshop on New Directions in X-Ray Scattering held at the Asilomar Conference Center, Pacific Grove, California, April 2-5, 1985. The report primarily consists of the edited transcript of the final review session of the workshop, in which members of a panel summarized the proceedings. It is clear that we are close to achieving an accurate theory of scattering in independent particle approximation, but for edge regions, there is need to go beyond this approach. Much of what is experimentally interesting in scattering is occurring between the photoabsorption edge and the photoelectric threshold. Applications in condensed matter and biological and chemical material studies are expanding, exploiting higher intensity sources and faster time resolution as in magnetic scattering and surface studies. Storage rings are now conventional sources, and new high-intensity beam lines are under development; the free electron laser is one of the more speculative sources. Recent work in x-ray scattering has led to advances in x-ray optics, and conversely, advances in x-ray optics have benefitted our understanding of x-ray scattering

  16. Sub-pixel porosity revealed by x-ray scatter dark field imaging

    Energy Technology Data Exchange (ETDEWEB)

    Revol, V. [Photonics Division, Centre Suisse d' Electronique et Microtechnique SA, Technoparkstr. 1, 8005 Zuerich (Switzerland); Physics Institute, University of Zuerich, Winterthurerstr. 190, 8057 Zuerich (Switzerland); Jerjen, I.; Schuetz, P.; Luethi, T.; Sennhauser, U. [Swiss Federal Laboratories for Materials Science and Technology (Empa), Ueberlandstr. 129, 8600 Duebendorf (Switzerland); Kottler, C.; Kaufmann, R.; Urban, C. [Photonics Division, Centre Suisse d' Electronique et Microtechnique SA, Technoparkstr. 1, 8005 Zuerich (Switzerland); Straumann, U. [Physics Institute, University of Zuerich, Winterthurerstr. 190, 8057 Zuerich (Switzerland)

    2011-08-15

    X-ray scatter dark field imaging based on the Talbot-Lau interferometer allows for the measurement of ultra-small angle x-ray scattering. The latter is related to the variations in the electron density in the sample at the sub- and micron-scale. Therefore, information on features of the object below the detector resolution can be revealed.In this article, it is demonstrated that scatter dark field imaging is particularly adapted to the study of a material's porosity. An interferometer, optimized for x-ray energies around 50 keV, enables the investigation of aluminum welding with conventional laboratory x-ray tubes. The results show an unprecedented contrast between the pool and the aluminum workpiece. Our conclusions are confirmed due to micro-tomographic three-dimensional reconstructions of the same object with a microscopic resolution.

  17. Sub-pixel porosity revealed by x-ray scatter dark field imaging

    International Nuclear Information System (INIS)

    Revol, V.; Jerjen, I.; Schuetz, P.; Luethi, T.; Sennhauser, U.; Kottler, C.; Kaufmann, R.; Urban, C.; Straumann, U.

    2011-01-01

    X-ray scatter dark field imaging based on the Talbot-Lau interferometer allows for the measurement of ultra-small angle x-ray scattering. The latter is related to the variations in the electron density in the sample at the sub- and micron-scale. Therefore, information on features of the object below the detector resolution can be revealed.In this article, it is demonstrated that scatter dark field imaging is particularly adapted to the study of a material's porosity. An interferometer, optimized for x-ray energies around 50 keV, enables the investigation of aluminum welding with conventional laboratory x-ray tubes. The results show an unprecedented contrast between the pool and the aluminum workpiece. Our conclusions are confirmed due to micro-tomographic three-dimensional reconstructions of the same object with a microscopic resolution.

  18. Superhydrophobic surfaces allow probing of exosome self organization using X-ray scattering

    KAUST Repository

    Accardo, Angelo

    2013-01-01

    Drops of exosome dispersions from healthy epithelial colon cell line and colorectal cancer cells were dried on a superhydrophobic PMMA substrate. The residues were studied by small- and wide-angle X-ray scattering using both a synchrotron radiation micrometric beam and a high-flux table-top X-ray source. Structural differences between healthy and cancerous cells were detected in the lamellar lattices of the exosome macro-aggregates. © 2013 The Royal Society of Chemistry.

  19. Surface morphology of vacuum-evaporated pentacene film on Si substrate studied by in situ grazing-incidence small-angle X-ray scattering: I. The initial stage of formation of pentacene film

    Science.gov (United States)

    Hirosawa, Ichiro; Watanabe, Takeshi; Koganezawa, Tomoyuki; Kikuchi, Mamoru; Yoshimoto, Noriyuki

    2018-03-01

    The progress of the surface morphology of a growing sub-monolayered pentacene film on a Si substrate was studied by in situ grazing-incidence small angle X-ray scattering (GISAXS). The observed GISAXS profiles did not show sizes of pentacene islands but mainly protuberances on the boundaries around pentacene film. Scattering of X-ray by residual pits in the pentacene film was also detected in the GISAXS profiles of an almost fully covered film. The average radius of pentacene protuberances increased from 13 to 24 nm as the coverage increased to 0.83 monolayer, and the most frequent radius was almost constant at approximately 9 nm. This result suggests that the population of larger protuberances increase with increasing lengths of boundaries of the pentacene film. It can also be considered that the detected protuberances were crystallites of pentacene, since the average size of protuberances was nearly equal to crystallite sizes of pentacene films. The almost constant characteristic distance of 610 nm and amplitudes of pair correlation functions at low coverages suggest that the growth of pentacene films obeyed the diffusion-limited aggregation (DLA) model, as previously reported. It is also considered that the sites of islands show a triangular distribution for small variations of estimated correlation distances.

  20. Reflection of X-rays from a rough surface at extremely small grazing angles.

    Science.gov (United States)

    Wen, Mingwu; Kozhevnikov, Igor V; Wang, Zhanshan

    2015-09-21

    Peculiarities of X-ray diffraction from a rough surface at an extremely small grazing angle of an incident beam are theoretically studied. The interrelation of four diffraction channels (coherent reflectance, coherent transmittance, diffuse scattering in vacuum, and scattering into the matter depth) is analyzed for different limiting cases (large and small correlation length of roughness and large and extremely small grazing angle of incident radiation). Both the Debye-Waller and the Nevot-Croce factors are demonstrated to describe improperly the features of X-ray diffraction at extremely small grazing angles. More appropriate simple analytic expressions for the specular reflectivity and total integrated scattering in vacuum are obtained instead. Transformation of one limiting diffraction regime into another one with variation in the correlation length of roughness is discussed.

  1. The 7th Japan-Taiwan joint meeting on neutron and X-ray scattering. Proceedings

    International Nuclear Information System (INIS)

    2016-03-01

    The 7th Japan-Taiwan joint meeting on neutron and X-ray scattering in Kumatori is held bilaterally in Japan and Taiwan. This meeting provides the recent outstanding results in the fields of fundamental polymer and biological sciences and their applications as well. In the fields of the X-ray and/or neutron scattering, the methodological progress expands the research fields and gives us new scientific insights. This meeting invites the researchers developing new methodologies, such as dynamics measurement utilizing nuclear Bragg resonance, subunit-kinetics measurement with deuteration-assisted small-angle neutron scattering and so on. (J.P.N.)

  2. Magnetism in heterogeneous thin film systems: Resonant X-ray scattering studies

    International Nuclear Information System (INIS)

    Kortright, J.B.; Jiang, J.S.; Bader, S.D.; Hellwig, O.; Marguiles, D.T.; Fullerton, E.E.

    2002-01-01

    Magnetic and chemical heterogeneity are common in a broad range of magnetic thin film systems. Emerging resonant soft x-ray scattering techniques are well suited to resolve such heterogeneity at relevant length scales. Resonant x-ray magneto-optical Kerr effect measurements laterally average over heterogeneity but can provide depth resolution in different ways, as illustrated in measurements resolving reversible and irreversible changes in different layers of exchange-spring heterostructures. Resonant small-angle scattering measures in-plane heterogeneity and can resolve magnetic and chemical scattering sources in different ways, as illustrated in measurements of granular alloy recording media

  3. Determination of the size and phase composition of silver nanoparticles in a gel film of bacterial cellulose by small-angle X-ray scattering, electron diffraction, and electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, V. V.; Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru; Shtykova, E. V.; Dembo, K. A.; Arkharova, N. A.; Ivakin, G. I. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Smyslov, R. Yu. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation)

    2009-03-15

    The nanoscale structural features in a composite (gel film of Acetobacter Xylinum cellulose with adsorbed silver nanoparticles, stabilized by N-polyvinylpyrrolidone) have been investigated by small-angle X-ray scattering. The size distributions of inhomogeneities in the porous structure of the cellulose matrix and the size distributions of silver nanoparticles in the composite have been determined. It is shown that the sizes of synthesized nanoparticles correlate with the sizes of inhomogeneities in the gel film. Particles of larger size (with radii up to 100 nm) have also been found. Electron microscopy of thin cross sections of a dried composite layer showed that large particles are located on the cellulose layer surface. Electron diffraction revealed a crystal structure of silver nanoparticles in the composite.

  4. X-ray and neutron scattering from surface and interface

    International Nuclear Information System (INIS)

    Metoki, Naoto

    1995-01-01

    Recent X-ray and neutron surface scattering studies of magnetic metal thin films and superlattices are reviewed. The Fresnel and Master formula for the specular reflectivity of ideal and real surfaces, respectively, are explained. We show some experimental results of X-ray specular reflectivity of Si, Co thin film, and Co/Cr superlattices as well as spin-polarized neutron reflectivity of a non-colinearly coupled Fe/Cr superlattice. A recent surface scattering study of hcp-bcc structural change of Co layers in Co/Cr (001) superlattices is reviewed as an example of this method. (author)

  5. Probing the surface microstructure of layer-by-layer self-assembly chitosan/poly(L-glutamic acid) multilayers: A grazing-incidence small-angle X-ray scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nie; Yang, Chunming, E-mail: yangchunming@sinap.ac.cn; Wang, Yuzhu; Zhao, Binyu; Bian, Fenggang; Li, Xiuhong; Wang, Jie, E-mail: wangjie@sinap.ac.cn

    2016-01-01

    This study characterized the surface structure of layer-by-layer self-assembly chitosan/poly(L-glutamic acid) multilayers through grazing-incidence small-angle X-ray scattering (GISAXS), X-ray reflectivity (XRR), and atomic force microscopy (AFM). A weakly long-period ordered structure along the in-plane direction was firstly observed in the polyelectrolyte multilayer by the GISAXS technique. This structure can be attributed to the specific domains on the film surface. In the domain, nanodroplets that were formed by polyelectrolyte molecules were orderly arranged along the free surface of the films. This ordered structure gradually disappeared with the increasing bilayer number because of the complex merging behavior of nanodroplets into large islands. Furthermore, resonant diffuse scattering became evident in the GISAXS patterns as the number of bilayers in the polyelectrolyte multilayer was increased. Notably, the lateral cutoff length of resonant diffuse scattering for these polyelectrolyte films was comparable with the long-period value of the ordered nanodroplets in the polyelectrolyte multilayer. Therefore, the nanodroplets could be considered as a basic transmission unit for structure propagation from the inner interface to the film surface. It suggests that the surface structure with length scale larger than the size of nanodroplets was partially complicated from the interface structure near the substrate, but surface structure smaller than the cutoff length was mainly depended on the conformation of nanodroplets. - Highlights: • The growth of ordered nanodroplets in PEMs was characterized by the GISAXS technique. • The basic transmission units for structure propagation within PEMs were nanodroplets. • High-performance of wave-guiding devices prepared by PEMs was predicted.

  6. X-ray coherent scattering tomography of textured material (Conference Presentation)

    Science.gov (United States)

    Zhu, Zheyuan; Pang, Shuo

    2017-05-01

    Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.

  7. X-ray diffraction at Bragg angles around π/2

    International Nuclear Information System (INIS)

    Mayolo, C.M.G. de.

    1991-01-01

    X-ray diffraction at Bragg angles around π/2 is studied from the theoretical and experimental points of view. The proposed corrections to the dynamical theory in the θ β ≅ π/2 cases, has been reviewed showing the equivalence between two formalisms leading to a corrected expression for the dependence of the angular parameter y with the angle of incidence. An expression for y valid in the conventional and θ β ≅ π/2 cases has been obtained. A general expression for Bragg law and for energy resolution after a Bragg diffraction was also deduced. (author)

  8. Structural studies using X-ray absorption and scattering techniques

    International Nuclear Information System (INIS)

    Ericson, Agneta.

    1989-01-01

    The thesis presents extended X-ray absorption fine structure, EXAFS, and large angle X-ray scattering, LAXS, techniques; instrumentation, data collection and reduction, and applications. These techniques have been used to determine the structures of magnesium halides and organomagnesium halides in diethyl ether and tetrahydrofuran solution. The iodides were used for the LAXS measurements and Br K edge EXAFS data were collected for the corresponding bromides. Two different complexes are present in the diethyl ether solution of magnesium iodide; a polymeric chain-type structure where magnesium is tetrahedrally coordinated, as well as dimeric complex with octahedrally coordinated magnesium. Solvated MgI + is the dominating species in tetrahydrofuran solution. The organomagnesium halides are present in diethyl ether solution as both solvated monomeric and dimeric complexes. Magnesium coordinates a halide ion, an alkyl or aryl group and four solvent molecules octahedrally in the monomeric complex. In the dimeric complex magnesium is octahedrally coordinated by two bridging halide ions, an alkyl or aryl group and three solvent molecules. The distribution of monomeric and dimeric complexes in various solutions are given by a dimerisation constant, K dl . The results indicate that the Schlenk equilibrium is present in these solutions, however, in an extended form. In diethyl ether solution, where MgX 2 does not dissociate, no MgX 2 complex and thereby no Schlenk equilibrium has been observed. In tetrahydrofuran solution MgI 2 has dissociated into mainly MgI + and I - . This indicates that the concentration of MgI 2 is low and that the Schlenk equilibrium should be expanded even further to include the dissociation equilibrium of the magnesium halide. In the thesis Fe K edge EXAFS data collected for the semireduced form of protein A of methane monooxygenase from Methylococcus capsulatus, are also presented. (139 refs.)

  9. Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases, model biomembranes and proteins in solution at high pressure.

    Science.gov (United States)

    Winter, Roland

    2002-03-25

    In this review we discuss the use of X-ray and neutron diffraction methods for investigating the temperature- and pressure-dependent structure and phase behaviour of lipid and model biomembrane systems. Hydrostatic pressure has been used as a physical parameter for studying the stability and energetics of lipid mesophases, but also because high pressure is an important feature of certain natural membrane environments and because the high pressure phase behaviour of biomolecules is of importance for several biotechnological processes. Using the pressure jump relaxation technique in combination with time-resolved synchrotron X-ray diffraction, the kinetics of different lipid phase transformations was investigated. The techniques can also be applied to the study of other soft matter and biomolecular phase transformations, such as surfactant phase transitions and protein un/refolding reactions. Several examples are given. In particular, we present data on the pressure-induced unfolding and refolding of small proteins, such as Snase. The data are compared with the corresponding results obtained using other trigger mechanisms and are discussed in the light of recent theoretical approaches.

  10. X-ray scattering from surfaces of organic crystals

    DEFF Research Database (Denmark)

    Gidalevitz, D.; Feidenhans'l, R.; Smilgies, D.-M.

    1997-01-01

    X-ray scattering experiments have been performed on the surfaces of organic crystals. The (010) cleavage planes of beta-alanine and alpha-glycine were investigated, and both specular and off-specular crystal truncation rods were measured. This allowed a determination of the molecular layering...

  11. Overview of surface/interface X-ray scattering

    International Nuclear Information System (INIS)

    Chen, Haydn H.D.; Aburano, R.D.

    1997-01-01

    The theory and nomenclature of 2-D diffraction experiments is described. Some topics deemed essential to understanding the experimental investigations were presented in detail, while others were explained qualitatively. A number of sources available for more detailed and quantitative explanations and examples of surface/interface X-ray scattering are given

  12. Basic X-ray scattering for soft matter

    CERN Document Server

    De Jeu, Wim H

    2016-01-01

    X-ray scattering is a well-established technique in materials science. Several excellent textbooks exist in the field, typically written by physicists who use mathematics to make things clear. Often these books do not reach students and scientists in the field of soft matter (polymers, liquid crystals, colloids, and self-assembled organic systems), who usually have a chemical-oriented background with limited mathematics. Moreover, often these people like to know more about x-ray scattering as a technique to be used, but do not necessarily intend to become an expert. This volume is unique in trying to accommodate both points. The aim of the book is to explain basic principles and applications of x-ray scattering in a simple way. The intention is a paperback of limited size that people will like to have on hand rather than on a shelf. Second, it includes a large variety of examples of x-ray scattering of soft matter with, at the end of each chapter, a more elaborate case study. Third, the book contains a separa...

  13. X-Ray Form Factor, Attenuation and Scattering Tables

    Science.gov (United States)

    SRD 66 X-Ray Form Factor, Attenuation and Scattering Tables (Web, free access)   This database collects tables and graphs of the form factors, the photoabsorption cross section, and the total attenuation coefficient for any element (Z <= 92).

  14. Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure

    International Nuclear Information System (INIS)

    Chow, P.; Xiao, Y. M.; Rod, E.; Bai, L. G.; Shen, G. Y.; Sinogeikin, S.; Gao, N.; Ding, Y.; Mao, H.-K.

    2015-01-01

    The double-differential scattering cross-section for the inelastic scattering of x-ray photons from electrons is typically orders of magnitude smaller than that of elastic scattering. With samples 10-100 μm size in a diamond anvil cell at high pressure, the inelastic x-ray scattering signals from samples are obscured by scattering from the cell gasket and diamonds. One major experimental challenge is to measure a clean inelastic signal from the sample in a diamond anvil cell. Among the many strategies for doing this, we have used a focusing polycapillary as a post-sample optic, which allows essentially only scattered photons within its input field of view to be refocused and transmitted to the backscattering energy analyzer of the spectrometer. We describe the modified inelastic x-ray spectrometer and its alignment. With a focused incident beam which matches the sample size and the field of view of polycapillary, at relatively large scattering angles, the polycapillary effectively reduces parasitic scattering from the diamond anvil cell gasket and diamonds. Raw data collected from the helium exciton measured by x-ray inelastic scattering at high pressure using the polycapillary method are compared with those using conventional post-sample slit collimation

  15. Small-Angle X-ray and Neutron Scattering Study on Microphase Separation Induced by Non-Solvent in a Semi-Dilute Solution of an Ultra-High-Molecular-Weight Block Copolymer

    International Nuclear Information System (INIS)

    Okamoto, Shigeru

    2009-01-01

    Full text: A block copolymer consists of immiscible different polymers covalently connected to each other and form micro domain structures such as lamellae, cylinders, spheres, gyroids, etc of the size of their own molecular size. Utilization of an ultra-high-molecular-weight block copolymer enables us to create micro domains on the order of several hundred nanometers. However, such large molecules have high viscosity due to the large number of entanglements per chain. Therefore the structures usually contain a lot of defects or distortion and are far from the equilibrated state. Here, We found a very interesting phenomenon that a microphase separation is induced by addition of a non-solvent into a semi dilute solution of an ultra-high-molecular-weight block copolymer. The solvent mixture of the common solvent and the non-solvent act as a highly selective solvent and are selectively introduced into one phase of the phase-separated state. We investigated the structures by the small-angle x-ray scattering (SAXS) technique using synchrotron radiation and the small-angle neutron scattering (SANS) technique. The results showed that micro domain structures were highly ordered and the grain size was gigantic because block copolymers in a semi dilute solution has high mobility due to the dilution effect by solvents. The SANS results showed there was not the composition fluctuation of constituent different solvent molecules in both phases. In other words, the results means the common good solvent was also selectively introduced into one phase. (author)

  16. Effects of blending poly(D,L-lactide) with poly(ethylene glycol) on the higher-order crystalline structures of poly(ethylene glycol) as revealed by small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Tien, N D; Kimura, G; Yamashiro, Y; Fujiwara, H; Sasaki, S; Sakurai, S; Hoa, T P; Mochizuki, M

    2011-01-01

    Effects of blending poly(lactic acid) (PLA) with poly(ethylene glycol) (PEG) on higher-order crystalline structures of PEG were examined using small-angle X-ray scattering (SAXS). For this purpose, the fact that two polymers are both crystalline makes situtation much complicated. To simplify, non-crystalline PLA is suitable. Thus, we used poly(D,L-lactic acid) (DLPLA), which is random copolymer comprising D- and L-lactic acid moieties. Multiple scattering peaks arising from the regular crystalline lamellar structure were observed for the PEG homopolymer and the blends. Surprisingly, the structure is much more regular for the blend DLPLA/PEG at composition of 20/80 wt.% than for the PEG homopolymer. Also for this blend sample as well as for a PEG homopolymer, very peculiar SAXS profiles were observed just 1 deg. C below T m of PEG. This is found to be a particle scattering of plate-like objects, which has never been reported for polymer blends or crystalline polymers. Futhermore, it was found that there was strong hysteresis of the higher-order structure formation.

  17. Modeling the amorphous structure of mechanically alloyed Ti{sub 50}Ni{sub 25}Cu{sub 25} using anomalous wide-angle x-ray scattering and reverse Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lima, J.C. de, E-mail: fsc1jcd@fisica.ufsc.br [Departamento de Física, Universidade Federal de Santa Catarina, Campus Universitário Trindade, S/N, C.P. 476, 88040-900 Florianópolis, Santa Catarina (Brazil); Poffo, C.M. [Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, Campus Universitário Trindade, S/N, C.P. 476, 88040-900 Florianópolis, Santa Catarina (Brazil); Departamento de Física, Universidade Federal do Amazonas, 3000 Japiim, 69077-000 Manaus, Amazonas (Brazil); Souza, S.M. [Departamento de Física, Universidade Federal do Amazonas, 3000 Japiim, 69077-000 Manaus, Amazonas (Brazil); Machado, K.D. [Departamento de Física, Centro Politécnico, Universidade Federal do Paraná, 81531-990 Curitiba, Paraná (Brazil); Trichês, D.M. [Departamento de Física, Universidade Federal do Amazonas, 3000 Japiim, 69077-000 Manaus, Amazonas (Brazil); Grandi, T.A. [Departamento de Física, Universidade Federal de Santa Catarina, Campus Universitário Trindade, S/N, C.P. 476, 88040-900 Florianópolis, Santa Catarina (Brazil); Biasi, R.S. de [Seção de Engenharia Mecânica e de Materiais, Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ (Brazil)

    2013-09-01

    An amorphous Ti{sub 50}Ni{sub 25}Cu{sub 25} alloy was produced by 19 h of mechanical alloying. Anomalous wide angle x-ray scattering data were collected at six energies and six total scattering factors were obtained. By considering the data collected at two energies close to the Ni and Cu K edges, two differential anomalous scattering factors about the Ni and Cu atoms were obtained, showing that the chemical environments around these atoms are different. Eight factors were used as input data to the reverse Monte Carlo method used to compute the partial structure factors S{sub Ti3Ti}(K), S{sub Ti–Cu}(K), S{sub Ti–Ni}(K), S{sub Cu3Cu}(K), S{sub Cu–Ni}(K) and S{sub Ni–Ni}(K) and the partial pair distribution functions G{sub Ti3Ti}(r), G{sub Ti–Cu}(r), G{sub Ti–Ni}(r), G{sub Cu3Cu}(r), G{sub Cu–Ni}(r) and G{sub Ni–Ni}(r). From the RMC final atomic configuration and G{sub ij}(r) functions, the coordination numbers and interatomic atomic distances for the first neighbors were determined.

  18. Determination of X-ray anomalous scattering in silicon

    International Nuclear Information System (INIS)

    Cusatis, C.

    1987-01-01

    The linear attenuation coeficient for X-ray in silicon was measured with approximately 0,1% accuracy, for 6 diferent wavelenghts of caracteristic radiation. From these result the imaginary parts of the atomic scattering factors, for silicon and for those wavelenghts, were obtained with the same accuracy. The results are compared with the most recent published values. The proposed method to avoid Rayleigh scattering can be used for any type of ''perfect'' crystal. (author) [pt

  19. Decoherence phenomenon in X-ray diffraction and scattering from rough multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Chernov, V.A. [Siberian SR Center at Budker Institute of Nuclear Physics, 11 Lavrentyev Ave, 630090 Novosibirsk (Russian Federation); Kondratiev, V.I. [Siberian SR Center at Budker Institute of Nuclear Physics, 11 Lavrentyev Ave, 630090 Novosibirsk (Russian Federation); Kovalenko, N.V. [Siberian SR Center at Budker Institute of Nuclear Physics, 11 Lavrentyev Ave, 630090 Novosibirsk (Russian Federation); Mytnichenko, S.V. [Siberian SR Center at Budker Institute of Nuclear Physics, 11 Lavrentyev Ave, 630090 Novosibirsk (Russian Federation)]. E-mail: s.v.mytnichenko@inp.nsk.su; Zolotarev, K.V. [Siberian SR Center at Budker Institute of Nuclear Physics, 11 Lavrentyev Ave, 630090 Novosibirsk (Russian Federation)

    2005-02-28

    High-resolution X-ray diffractometry was used to study the diffuse scattering from a series of rough multilayers. Reciprocal-space maps were obtained around the small- and wide-angle Bragg reflections using SR from the VEPP-3 storage ring. The data obtained reveal well-known quasi-Bragg diffuse-scattering sheets caused by conformal behavior of interfacial roughness as well as amplification of diffuse scattering when the incoming or outgoing angle is nearly equal to the Bragg angle (incoming and outgoing Bragg scattering) and when incoming and outgoing angles are nearly equal (quasi-specular diffuse scattering). The observed domination in intensity of the incoming Bragg features over outgoing ones, which demonstrates the breakdown of the reciprocity principle, is shown to reflect the decay rate of the coherent X-ray field through the diffuse-scattering channel, which becomes predominant as the spatial coherence of the incident X-ray beam increases. This diffuse-scattering behavior can be considered as a decoherence phenomenon inherent to open quantum systems.

  20. Crystal defect studies using x-ray diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.

  1. Theory of inelastic scattering and absorption of X-rays

    CERN Document Server

    Veenendaal, Michel van

    2015-01-01

    This comprehensive, self-contained guide to X-ray spectroscopy will equip you with everything you need to begin extracting the maximum amount of information available from X-ray spectra. Key topics such as the interaction between X-rays and matter, the basic theory of spectroscopy, and selection and sum rules, are introduced from the ground up, providing a solid theoretical grounding. The book also introduces core underlying concepts such as atomic structure, solid-state effects, the fundamentals of tensor algebra and group theory, many-body interactions, scattering theory, and response functions, placing spectroscopy within a broader conceptual framework, and encouraging a deep understanding of this essential theoretical background. Suitable for graduate students, researchers, materials scientists and optical engineers, this is the definitive guide to the theory behind this powerful and widely used technique.

  2. Neutron, x-ray scattering and TEM studies of Ni-Ti multilayers

    International Nuclear Information System (INIS)

    Keem, J.E.; Wood, J.; Grupido, N.; Hart, K.; Nutt, S.; Reichel, D.G.; Yelon, W.B.

    1988-01-01

    The authors present an analysis of Ni-Ti multilayer neutron reflectors and supermirrors undertaken to identify the causes of the lower than expected observed scattering power and critical angle enhancement of Ni-Ti supermirrors. Results of these investigations focus attention on cusp formation in the Ni-Ti bilayers as probable cause for the reduced neutron scattering power. Grazing angle x-ray and neutron scattering, wide angle neutron diffraction and analytical cross sectional TEM have been used. The multilayers were produced by magnetron sputtering and ion-beam deposition on float glass substrates and silicon wafers

  3. Structural and magnetic properties of inverse opal photonic crystals studied by x-ray diffraction, scanning electron microscopy, and small-angle neutron scattering

    NARCIS (Netherlands)

    Grigoriev, S.V.; Napolskii, K.S.; Grigoryeva, N.A.; Vasilieva, A.V.; Mistonov, A.A.; Chernyshov, D.Y.; Petukhov, A.V.; Belov, D.V.; Eliseev, A.A.; Lukashin, A.V.; Tretyakov, Y.D.; Sinitskii, A.S.; Eckerlebe, H.

    2009-01-01

    The structural and magnetic properties of nickel inverse opal photonic crystal have been studied by complementary experimental techniques, including scanning electron microscopy, wide-angle and small-angle diffraction of synchrotron radiation, and polarized neutrons. The sample was fabricated by

  4. Scattering of x-ray from crystal surfaces

    International Nuclear Information System (INIS)

    Andrews, S.R.; Cowley, R.A.

    1985-01-01

    X-ray measurements performed on a variety of materials demonstrate that it is possible to observe diffuse scattering that originates in the abrupt change of density at a crystal surface. Such a discontinuity gives rise, in general, to rods of scattering in reciprocal space which are most intense close to the Bragg peaks tau and are well defined for sufficiently smooth surfaces. For wave-vector transfer Q=tau+q the q-dependence of the intensity of scattering gives information on the topographic structure of the crystal surface. Experimental results on crystals of GaAs and KTaO 3 , with surfaces prepared in various ways, were obtained using conventional x-ray techniques with a rotating anode source and can be described by a continuum model of the surface. There are discrepancies between the predictions of the models and the experimental results and the suggest that further experiments are needed to achieve a more complete understanding. (author)

  5. X-ray and Neutron Scattering of Water.

    Science.gov (United States)

    Amann-Winkel, Katrin; Bellissent-Funel, Marie-Claire; Bove, Livia E; Loerting, Thomas; Nilsson, Anders; Paciaroni, Alessandro; Schlesinger, Daniel; Skinner, Lawrie

    2016-07-13

    This review article focuses on the most recent advances in X-ray and neutron scattering studies of water structure, from ambient temperature to the deeply supercooled and amorphous states, and of water diffusive and collective dynamics, in disparate thermodynamic conditions and environments. In particular, the ability to measure X-ray and neutron diffraction of water with unprecedented high accuracy in an extended range of momentum transfers has allowed the derivation of detailed O-O pair correlation functions. A panorama of the diffusive dynamics of water in a wide range of temperatures (from 400 K down to supercooled water) and pressures (from ambient up to multiple gigapascals) is presented. The recent results obtained by quasi-elastic neutron scattering under high pressure are compared with the existing data from nuclear magnetic resonance, dielectric and infrared measurements, and modeling. A detailed description of the vibrational dynamics of water as measured by inelastic neutron scattering is presented. The dependence of the water vibrational density of states on temperature and pressure, and in the presence of biological molecules, is discussed. Results about the collective dynamics of water and its dispersion curves as measured by coherent inelastic neutron scattering and inelastic X-ray scattering in different thermodynamic conditions are reported.

  6. Dynamic angle selection in X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Dabravolski, Andrei, E-mail: andrei.dabravolski@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Batenburg, Kees Joost, E-mail: joost.batenburg@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Centrum Wiskunde and Informatica (CWI), Science Park 123, 1098 XG Amsterdam (Netherlands); Sijbers, Jan, E-mail: jan.sijbers@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium)

    2014-04-01

    Highlights: • We propose the dynamic angle selection algorithm for CT scanning. • The approach is based on the concept of information gain over a set of solutions. • Projection angles are selected based on the already available projection data. • The approach can lead to more accurate results from fewer projections. - Abstract: In X-ray tomography, a number of radiographs (projections) are recorded from which a tomogram is then reconstructed. Conventionally, these projections are acquired equiangularly, resulting in an unbiased sampling of the Radon space. However, especially in case when only a limited number of projections can be acquired, the selection of the angles has a large impact on the quality of the reconstructed image. In this paper, a dynamic algorithm is proposed, in which new projection angles are selected by maximizing the information gain about the object, given the set of possible new angles. Experiments show that this approach can select projection angles for which the accuracy of the reconstructed image is significantly higher compared to the standard angle selections schemes.

  7. Small-angle X-ray scattering analysis reveals the ATP-bound monomeric state of the ATPase domain from the homodimeric MutL endonuclease, a GHKL phosphotransferase superfamily protein.

    Science.gov (United States)

    Iino, Hitoshi; Hikima, Takaaki; Nishida, Yuya; Yamamoto, Masaki; Kuramitsu, Seiki; Fukui, Kenji

    2015-05-01

    DNA mismatch repair is an excision system that removes mismatched bases chiefly generated by replication errors. In this system, MutL endonucleases direct the excision reaction to the error-containing strand of the duplex by specifically incising the newly synthesized strand. Both bacterial homodimeric and eukaryotic heterodimeric MutL proteins belong to the GHKL ATPase/kinase superfamily that comprises the N-terminal ATPase and C-terminal dimerization regions. Generally, the GHKL proteins show large ATPase cycle-dependent conformational changes, including dimerization-coupled ATP binding of the N-terminal domain. Interestingly, the ATPase domain of human PMS2, a subunit of the MutL heterodimer, binds ATP without dimerization. The monomeric ATP-bound state of the domain has been thought to be characteristic of heterodimeric GHKL proteins. In this study, we characterized the ATP-bound state of the ATPase domain from the Aquifex aeolicus MutL endonuclease, which is a homodimeric GHKL protein unlike the eukaryotic MutL. Gel filtration, dynamic light scattering, and small-angle X-ray scattering analyses clearly showed that the domain binds ATP in a monomeric form despite its homodimeric nature. This indicates that the uncoupling of dimerization and ATP binding is a common feature among bacterial and eukaryotic MutL endonucleases, which we suggest is closely related to the molecular mechanisms underlying mismatch repair.

  8. Dietary iron-loaded rat liver haemosiderin and ferritin: in situ measurement of iron core nanoparticle size and cluster structure using anomalous small-angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bovell, Eliza; Buckley, Craig E.; Chua-anusorn, Wanida; Cookson, David; Kirby, Nigel; Saunders, Martin; St. Pierre, Timothy G. ((UWA)); ((Curtin U.)); ((ASRP))

    2009-03-16

    The morphology, particle size distribution and cluster structure of the hydrated iron(III) oxyhydroxide particles associated with haemosiderin and ferritin in dietary iron-loaded rat liver tissue have been investigated using transmission electron microscopy (TEM) and anomalous small-angle x-ray scattering (ASAXS). Rat liver tissue was removed from a series of female Porton rats which had been fed an iron-rich diet until sacrifice at various ages from 2-24 months. Hepatic iron concentrations ranged from 1 to 65 mg Fe g{sup -1} dry tissue. TEM studies showed both dispersed and clustered iron-containing nanoparticles. The dispersed particles were found to have mean sizes ({+-}standard deviation) of 54 {+-} 8 {angstrom} for the iron-loaded animals and 55 {+-} 7 {angstrom} for the controls. Superposition of particles in TEM images prevented direct measurement of nanoparticulate size in the clusters. The ASAXS data were modelled to provide a quantitative estimate of both the size and spacing of iron oxyhydroxide particles in the bulk samples. The modelling yielded close-packed particles with sizes of 60 to 78 {angstrom} which when corrected for anomalous scattering suggests sizes from 54 to 70 {angstrom}. Particle size distributions are of particular importance since they determine the surface iron to core iron ratios, which in turn are expected to be related to the molar toxicity of iron deposits in cells.

  9. Resonant magnetic scattering of polarized soft x rays

    Energy Technology Data Exchange (ETDEWEB)

    Sacchi, M. [Centre Universitaire Paris-Sud, Orsay (France); Hague, C.F. [Universite Pierre et Marie Curie, Paris (France); Gullikson, E.M.; Underwood, J. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of the first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.

  10. Modeling X-Ray Scattering Process and Applications of the Scattering Model

    Science.gov (United States)

    Al-Jundi, Taher Lutfi

    1995-01-01

    Computer modeling of nondestructive inspections with x-rays is proving to be a very useful tool for enhancing the performance of these techniques. Two x-ray based inspection techniques are considered in this study. The first is "Radiographic Inspection", where an existing simulation model has been improved to account for scattered radiation effects. The second technique is "Inspection with Compton backscattering", where a new simulation model has been developed. The effect of scattered radiation on a simulated radiographic image can be insignificant, equally important, or more important than the effect of the uncollided flux. Techniques to account for the scattered radiation effects include Monte Carlo techniques, and solving the particle transport equation for photons. However, these two techniques although accurate, are computationally expensive and hence inappropriate for use in computer simulation of radiography. A less accurate approach but computationally efficient is the principle of buildup factors. Traditionally, buildup factors are defined for monoenergetic photons of energies typical of a nuclear reactor. In this work I have expanded the definition of buildup factors to include a bremsstrahlung spectrum of photons with energies typically used in radiography (keV's instead of MeV's). This expansion of the definition relies on an intensive experimental work to measure buildup factors for a white spectrum of x-rays. I have also developed a monte carlo code to reproduce the measured buildup factors. The code was then converted to a parallel code and distributed on a network of workstations to reduce the execution time. The second inspection technique is based on Compton backscattering, where photons are scattered at large angles, more than 90 degrees. The importance of this technique arises when the inspected object is very large, or when access is limited to only one side of the specimen. The downside of detecting photons from backscattering is the low

  11. Structure of immune stimulating complex matrices and immune stimulating complexes in suspension determined by small-angle X-ray scattering

    DEFF Research Database (Denmark)

    Pedersen, Jan Skov; Oliveira, Cristiano Luis Pinto De; Madsen, Henriette Baun

    2012-01-01

    least-squares methods when the model scattering intensity is fitted to the experimental data. SAXS data from plain ISCOM matrix particles in aqueous suspension, as well as those from complete ISCOMs (i.e., with an antigen (tetanus toxoid) incorporated) can be modeled as a polydisperse distribution...... core. Surprisingly, in the ISCOMs, the tetanus toxoid is located just below the membrane inside the particles....

  12. Planning, performing and analyzing X-ray Raman scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sahle, Ch. J., E-mail: christoph.sahle@esrf.fr [Department of Physics, PO Box 64, FI-00014 University of Helsinki, Helsinki (Finland); European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Mirone, A. [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Niskanen, J.; Inkinen, J. [Department of Physics, PO Box 64, FI-00014 University of Helsinki, Helsinki (Finland); Krisch, M. [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Huotari, S. [Department of Physics, PO Box 64, FI-00014 University of Helsinki, Helsinki (Finland)

    2015-02-03

    A summarising review of data treatment for non-resonant inelastic X-ray scattering data from modern synchrotron-based multi-analyzer spectrometers. A compilation of procedures for planning and performing X-ray Raman scattering (XRS) experiments and analyzing data obtained from them is presented. In particular, it is demonstrated how to predict the overall shape of the spectra, estimate detection limits for dilute samples, and how to normalize the recorded spectra to absolute units. In addition, methods for processing data from multiple-crystal XRS spectrometers with imaging capability are presented, including a super-resolution method that can be used for direct tomography using XRS spectra as the contrast. An open-source software package with these procedures implemented is also made available.

  13. Diffuse scattering of neutrons and X-rays

    International Nuclear Information System (INIS)

    Novion, C.H. de

    1978-01-01

    Diffuse scattering is used to study defect concentrations of about 10 -4 in the case of X-rays and 10 -3 in the case of neutrons. The foundations of diffuse scattering formalism are given, some experimental devices described and a few applications discussed: study by diffraction on powders of defects in CeOsub(2-x); short-range order study by X-rays on Cusub(0.75) Ausub(0.25); short-range order study by neutrons on Cusub(0.435)Nisub(0.565); short-range order study by electrons TiOx; study of irradiation-induced self-interstitials in Al; study of holes created by neutrons in Al [fr

  14. Neutron and Synchrotron X-Ray Scattering Studies of Superconductors

    International Nuclear Information System (INIS)

    Tranquada, J.M.

    2008-01-01

    Superconductors hold the promise for a more stable and efficient electrical grid, but new isotropic, high-temperature superconductors are needed in order to reduce cable manufacturing costs. The effort to understand high-temperature superconductivity, especially in the layered cuprates, provides guidance to the search for new superconductors. Neutron scattering has long provided an important probe of the collective excitations that are involved in the pairing mechanism. For the cuprates, neutron and x-ray diffraction techniques also provide information on competing types of order, such as charge and spin stripes, that appear to be closely connected to the superconductivity. Recently, inelastic x-ray scattering has become competitive for studying phonons and may soon provide valuable information on electronic excitations. Examples of how these techniques contribute to our understanding of superconductivity are presented

  15. Revealing inner shell dynamics with inelastic X-ray scattering

    International Nuclear Information System (INIS)

    Franck, C.

    1990-01-01

    One of the many opportunities provided by the Advanced Photon Source (APS) is to extend the study of intra-atomic dynamics. As a means of testing dynamic response, inelastic x-ray scattering is particularly promising since it allows us to independently vary the period of the exciting field in both space and time. As an example of this type of work, the author presents experiments performed at the Cornell High Energy Synchrotron Source (CHESS) laboratory, a prototype for the APS. This was inner shell inelastic scattering with a twist: in order to explore a new distance scale an x-ray fluorescence trigger was employed. Aside for the atomic insight gained, the experiment taught them the importance of the time structure of the synchrotron beam for coincidence experiments which are dominated by accidental events

  16. X-ray and neutron scattering studies of complex confined fluids

    International Nuclear Information System (INIS)

    Sinha, S. K.

    1999-01-01

    We review recent X-ray and neutron scattering studies of the structure and dynamics of confined complex fluids. This includes the study of polymer conformations and binary fluid phase transitions in porous media using Small Angle Neutron scattering, and the use of synchrotrons radiation to study ordering and fluctuation phenomena at solid/liquid and liquid/air interfaces. Ordering of liquids near a solid surface or in confinement will be discussed, and the study, via specular and off-specular X-ray reflectivity, of capillary wave fluctuations on liquid polymer films. Finally, we shall discuss the use of high-brilliance beams from X-ray synchrotrons to study via photon correlation spectroscopy the slow dynamics of soft condensed matter systems

  17. X-ray and neutron scattering studies of complex confined fluids.

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, S. K.

    1999-08-04

    We review recent X-ray and neutron scattering studies of the structure and dynamics of confined complex fluids. This includes the study of polymer conformations and binary fluid phase transitions in porous media using Small Angle Neutron scattering, and the use of synchrotrons radiation to study ordering and fluctuation phenomena at solid/liquid and liquid/air interfaces. Ordering of liquids near a solid surface or in confinement will be discussed, and the study, via specular and off-specular X-ray reflectivity, of capillary wave fluctuations on liquid polymer films. Finally, we shall discuss the use of high-brilliance beams from X-ray synchrotrons to study via photon correlation spectroscopy the slow dynamics of soft condensed matter systems.

  18. Linear dichroism in molecular resonant inelastic x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lindle, D W; Stolte, W C [Department of Chemistry, University of Nevada, Las Vegas, NV 89154-4003 (United States); Guillemint, R; Carniato, S; Journel, L; Taieb, R; Simon, M, E-mail: lindle@unlv.nevada.ed [UPMC, CNRS U Paris 06, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France)

    2009-11-01

    Polarization-dependent resonant inelastic x-ray scattering (RIXS) is shown to be a new probe of molecular-field effects on molecular electronic structure. Combining experiment and theory, linear dichroism in Cl 2p RIXS following Cl 1s excitation in HCl, Cl{sub 2}, and CF{sub 3}Cl is ascribed to molecular-field effects, indicating polarized-RIXS provides a direct probe of spin-orbit-state populations generally applicable to all molecules.

  19. X-ray diffuse scattering holography of a centrosymmetric sample

    Czech Academy of Sciences Publication Activity Database

    Kopecký, Miloš; Fábry, Jan; Kub, Jiří; Bussetto, E.; Lausi, A.

    2005-01-01

    Roč. 87, č. 23 (2005), 231914/1-231914/3 ISSN 0003-6951 R&D Projects: GA AV ČR IAA100100529 Grant - others:EU(XE) HPRI-CT-1999-00033 Institutional research plan: CEZ:AV0Z10100520 Keywords : x-ray holography * diffuse scattering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.127, year: 2005

  20. Mapping transitions between healthy and pathological lesions in human breast tissues by diffraction enhanced imaging computed tomography (DEI-CT) and small angle x-ray scattering (SAXS)

    Science.gov (United States)

    Conceição, A. L. C.; Antoniassi, M.; Geraldelli, W.; Poletti, M. E.

    2014-02-01

    In this work we have combined the DEI-CT and SAXS technique to study the transition between healthy and pathological breast tissues, which include benign and malignant lesions. The ability of DEI-CT to enhance the contrast between soft tissues was used to localize the tumor region in the sample. Then, the tumor region and its surroundings were scanned by SAXS in order to map the changes promoted by the neoplasias at nano-level.It was clearly observed that pathological tissues present distinguishable SAXS scattering profiles from those of normal tissue. These differences are mainly related to changes in arrangement and diameter of collagen fibrils, evaluated by the higher order of reflection peaks of these fibrils. Differences related to the peak intensities and the total scattered intensity were found by comparing the healthy and pathological regions. The 2nd order of collagen reflection arises only in the healthy region neighboring the benign lesion. A broader peak at q=0.16 nm-1 seems to characterize the malignant lesions. Finally, based on this information, the transition between healthy and pathological human breast tissues was mapped which allowed to get insights into the changes promoted by tumors during growth and progression.

  1. X-ray and neutron scattering studies of magnetic critical fluctuations in holmium

    International Nuclear Information System (INIS)

    Thurston, T.R.; Helgesen, G.; Gibbs, D.; Shirane, G.; Hill, J.P.; Massachusetts Inst. of Tech., Cambridge, MA; Gaulin, B.D.; McMaster Univ., Hamilton, ON

    1993-01-01

    We describe measurements of the magnetic critical fluctuations of holmium by x-ray scattering techniques. The x-ray results are compared to those obtained in neutron scattering experiments performed on the same sample

  2. The roles of the RIIβ linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of the type IIβ protein kinase A: a small angle x-ray and neutron scattering study.

    Science.gov (United States)

    Blumenthal, Donald K; Copps, Jeffrey; Smith-Nguyen, Eric V; Zhang, Ping; Heller, William T; Taylor, Susan S

    2014-10-10

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. The PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme is much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1-280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. Our results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. CHEMICAL APPLICATIONS OF INELASTIC X-RAY SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    HAYASHI,H.; UDAGAWA,Y.; GILLET,J.M.; CALIEBE,W.A.; KAO,C.C.

    2001-08-01

    Inelastic x-ray scattering (IXS), complementary to other more established inelastic scattering probes, such as light scattering, electron scattering, and neutron scattering, is becoming an important experimental technique in the study of elementary excitations in condensed matters. Over the past decade, IXS with total energy resolution of few meV has been achieved, and is being used routinely in the study of phonon dispersions in solids and liquids as well as dynamics in disordered and biological systems. In the study of electronic excitations, IXS with total energy resolution on the order of 100 meV to 1 eV is gaining wider applications also. For example, IXS has been used to study collective excitations of valence electrons, single electron excitations of valence electrons, as well as core electron excitations. In comparison with the alternative scattering techniques mentioned above, IXS has several advantages. First, IXS probes the full momentum transfer range of the dielectric response of the sample, whereas light scattering is limited to very small momentum transfers, and electron scattering suffers the effects of multiple scattering at large momentum transfers. Second, since IXS measures the bulk properties of the sample it is not surface sensitive, therefore it does not require special preparation of the sample. The greater flexibility in sample conditions and environments makes IXS an ideal probe in the study of liquids and samples under extreme temperature, pressure, and magnetic field. Third, the tunability of synchrotron radiation sources enables IXS to exploit element specificity and resonant enhancement of scattering cross sections. Fourth, IXS is unique in the study of dynamics of liquids and amorphous solids because it can probe the particular region of energy-momentum transfer phase space, which is inaccessible to inelastic neutron scattering. On the other hand, the main disadvantages of IXS are the small cross sections and the strong absorption of

  4. A compact X-ray source based on Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bulyak, E.; Gladkikh, P.; Grigor' ev, Yu.; Guk, I.; Karnaukhov, I.; Khodyachikh, A.; Kononenko, S.; Mocheshnikov, N.; Mytsykov, A.; Shcherbakov, A. E-mail: shcherbakov@kipt.kharkov.ua; Tarasenko, A.; Telegin, Yu.; Zelinsky, A

    2001-07-21

    The main parameters of Kharkov electron storage ring N-100 with a beam energy range from 70 to 150 MeV are presented. The main results that were obtained in experimental researches are briefly described. The future of the N-100 upgrade to the development of the X-ray generator based on Compton back-scattering are presented. The electron beam energy range will be extended up to 250 MeV and the circumference of the storage ring will be 13.72 m. The lattice, parameters of the electron beam and the Compton back-scattering photons flux are described.

  5. A compact X-ray source based on Compton scattering

    International Nuclear Information System (INIS)

    Bulyak, E.; Gladkikh, P.; Grigor'ev, Yu.; Guk, I.; Karnaukhov, I.; Khodyachikh, A.; Kononenko, S.; Mocheshnikov, N.; Mytsykov, A.; Shcherbakov, A.; Tarasenko, A.; Telegin, Yu.; Zelinsky, A.

    2001-01-01

    The main parameters of Kharkov electron storage ring N-100 with a beam energy range from 70 to 150 MeV are presented. The main results that were obtained in experimental researches are briefly described. The future of the N-100 upgrade to the development of the X-ray generator based on Compton back-scattering are presented. The electron beam energy range will be extended up to 250 MeV and the circumference of the storage ring will be 13.72 m. The lattice, parameters of the electron beam and the Compton back-scattering photons flux are described

  6. Assessment of data-assisted prediction by inclusion of crosslinking/mass-spectrometry and small angle X-ray scattering data in the 12th Critical Assessment of protein Structure Prediction experiment.

    Science.gov (United States)

    Tamò, Giorgio E; Abriata, Luciano A; Fonti, Giulia; Dal Peraro, Matteo

    2018-03-01

    Integrative modeling approaches attempt to combine experiments and computation to derive structure-function relationships in complex molecular assemblies. Despite their importance for the advancement of life sciences, benchmarking of existing methodologies is rather poor. The 12 th round of the Critical Assessment of protein Structure Prediction (CASP) offered a unique niche to benchmark data and methods from two kinds of experiments often used in integrative modeling, namely residue-residue contacts obtained through crosslinking/mass-spectrometry (CLMS), and small-angle X-ray scattering (SAXS) experiments. Upon assessment of the models submitted by predictors for 3 targets assisted by CLMS data and 11 targets by SAXS data, we observed no significant improvement when compared to the best data-blind models, although most predictors did improve relative to their own data-blind predictions. Only for target Tx892 of the CLMS-assisted category and for target Ts947 of the SAXS-assisted category, there was a net, albeit mild, improvement relative to the best data-blind predictions. We discuss here possible reasons for the relatively poor success, which point rather to inconsistencies in the data sources rather than in the methods, to which a few groups were less sensitive. We conclude with suggestions that could improve the potential of data integration in future CASP rounds in terms of experimental data production, methods development, data management and prediction assessment. © 2017 Wiley Periodicals, Inc.

  7. Structural dynamics and ssDNA binding activity of the three N-terminal domains of the large subunit of Replication Protein A from small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pretto, Dalyir I.; Tsutakawa, Susan; Brosey, Chris A.; Castillo, Amalchi; Chagot, Marie-Eve; Smith, Jarrod A.; Tainer, John A.; Chazin, Walter J.

    2010-03-11

    Replication Protein A (RPA) is the primary eukaryotic ssDNA binding protein utilized in diverse DNA transactions in the cell. RPA is a heterotrimeric protein with seven globular domains connected by flexible linkers, which enable substantial inter-domain motion that is essential to its function. Small angle X-ray scattering (SAXS) experiments on two multi-domain constructs from the N-terminus of the large subunit (RPA70) were used to examine the structural dynamics of these domains and their response to the binding of ssDNA. The SAXS data combined with molecular dynamics simulations reveal substantial interdomain flexibility for both RPA70AB (the tandem high affinity ssDNA binding domains A and B connected by a 10-residue linker) and RPA70NAB (RPA70AB extended by a 70-residue linker to the RPA70N protein interaction domain). Binding of ssDNA to RPA70NAB reduces the interdomain flexibility between the A and B domains, but has no effect on RPA70N. These studies provide the first direct measurements of changes in orientation of these three RPA domains upon binding ssDNA. The results support a model in which RPA70N remains structurally independent of RPA70AB in the DNA bound state and therefore freely available to serve as a protein recruitment module.

  8. INELASTIC X-RAY SCATTERING AT ULTRAHIGH PRESSURES

    International Nuclear Information System (INIS)

    MAO, H.K.; HEMLEY, J.; KAO, C.C.

    2000-01-01

    Inelastic x-ray scattering (IXS) provides high-pressure research with an arsenal of analytical capabilities for key measurements that were previously unattainable, and high pressure research provides IXS with numerous applications where the technique has unique advantages over other methods. High-pressure investigations can now be conducted using non-resonant IXS, resonant IXS, nuclear resonant IXS, and x-ray emission spectroscopy with energy resolutions of 100 meV to 1 eV for electronic transitions and 1 to 10 meV for phonon studies. By pressure-tuning materials over a wide range, we are able to investigate fundamental physics of electron gases, strongly correlated electron systems, high-energy electronic excitations, and phonons in energy and momentum space. The results will have a profound influence on materials applications as well as providing basic information for understanding the deep interior of the Earth and other planets

  9. Soft X-ray radiation damage in EM-CCDs used for Resonant Inelastic X-ray Scattering

    Science.gov (United States)

    Gopinath, D.; Soman, M.; Holland, A.; Keelan, J.; Hall, D.; Holland, K.; Colebrook, D.

    2018-02-01

    Advancement in synchrotron and free electron laser facilities means that X-ray beams with higher intensity than ever before are being created. The high brilliance of the X-ray beam, as well as the ability to use a range of X-ray energies, means that they can be used in a wide range of applications. One such application is Resonant Inelastic X-ray Scattering (RIXS). RIXS uses the intense and tuneable X-ray beams in order to investigate the electronic structure of materials. The photons are focused onto a sample material and the scattered X-ray beam is diffracted off a high resolution grating to disperse the X-ray energies onto a position sensitive detector. Whilst several factors affect the total system energy resolution, the performance of RIXS experiments can be limited by the spatial resolution of the detector used. Electron-Multiplying CCDs (EM-CCDs) at high gain in combination with centroiding of the photon charge cloud across several detector pixels can lead to sub-pixel spatial resolution of 2-3 μm. X-ray radiation can cause damage to CCDs through ionisation damage resulting in increases in dark current and/or a shift in flat band voltage. Understanding the effect of radiation damage on EM-CCDs is important in order to predict lifetime as well as the change in performance over time. Two CCD-97s were taken to PTB at BESSY II and irradiated with large doses of soft X-rays in order to probe the front and back surfaces of the device. The dark current was shown to decay over time with two different exponential components to it. This paper will discuss the use of EM-CCDs for readout of RIXS spectrometers, and limitations on spatial resolution, together with any limitations on instrument use which may arise from X-ray-induced radiation damage.

  10. Characterization of the scattered radiation field around an x-ray tube.

    Science.gov (United States)

    Struelens, Lara; Kauwenberghs, Kim; Vanhavere, Filip

    2011-05-07

    To determine patient doses or doses to the medical staff, Monte Carlo calculations are frequently applied. In these kinds of calculations the x-ray tube is often simplified to make the calculations faster. The purpose of this study is to investigate the influence of simplifications in the Monte Carlo set-up of the x-ray tube on the observed differences between measurements and calculations in the scattered field. At a distance of 50 and 100 cm from the focal spot, air kerma calculations are done for different angles from -90° to 90° from the central beam axis in steps of 15° with the Monte Carlo software code MCNP-X. Different calculations were performed where each time a component of the simulated x-ray tube (collimator, filters, etc) or the environment (walls) is included. Scattered doses are also measured with thermoluminescent dosemeters. For the most simplified geometry of the x-ray tube, measurements are on average 70% larger than the calculated results. A much better agreement with the measurements is observed for more realistic calculations. The current work applies to a particular source in the SCK•CEN calibration laboratory; therefore the obtained results are representative and relevant for studies in calibration laboratories. As clinical sources have more shielding material and as in real imaging situations the scatter generated at the patient is much larger than the scatter leaking from the source, the results of this study have a limited impact on the wider field of clinical dosimetry.

  11. Anomalous scattering and isomorphous replacement in X-ray diffuse scattering holography

    Czech Academy of Sciences Publication Activity Database

    Kopecký, Miloš; Kub, Jiří; Busetto, E.; Lausi, A.; Fábry, Jan; Šourek, Zbyněk

    2007-01-01

    Roč. 204, č. 8 (2007), s. 2572-2577 ISSN 1862-6300 R&D Projects: GA AV ČR IAA100100529; GA MŠk LA 287 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z10100520 Keywords : x-ray difuse scattering * x-ray holography Subject RIV: BM - Solid Matter Physics ; Magnetism

  12. 2011 U.S. National School on Neutron and X-ray Scattering

    International Nuclear Information System (INIS)

    Lang, Jonathan; te Vethuis, Suzanne; Ekkebus, Allen E.; Chakoumakos, Bryan C.; Budai, John D.

    2012-01-01

    The 13th annual U.S. National School on Neutron and X-ray Scattering was held June 11 to 25, 2011, at both Oak Ridge and Argonne National Laboratories. This school brought together 65 early career graduate students from 56 different universities in the US and provided them with a broad introduction to the techniques available at the major large-scale neutron and synchrotron x-ray facilities. This school is focused primarily on techniques relevant to the physical sciences, but also touches on cross-disciplinary bio-related scattering measurements. During the school, students received lectures by over 30 researchers from academia, industry, and national laboratories and participated in a number of short demonstration experiments at Argonne's Advanced Photon Source (APS) and Oak Ridge's Spallation neutron Source (SNS) and High Flux Isotope Reactor (HFIR) facilities to get hands-on experience in using neutron and synchrotron sources. The first week of this year's school was held at Oak Ridge National Lab, where Lab director Thom Mason welcomed the students and provided a shitorical perspective of the neutron and x-ray facilities both at Oak Ridge and Argonne. The first few days of the school were dedicated to lectures laying out the basics of scattering theory and the differences and complementarity between the neutron and x-ray probes given by Sunil Sinha. Jack Carpenter provided an introduction into how neutrons are generated and detected. After this basic introduction, the students received lectures each morning on specific techniques and conducted demonstration experiments each afternoon on one of 15 different instruments at either the SNS or HFIR. Some of the topics covered during this week of the school included inelastic neutron scattering by Bruce Gaulin, x-ray and neutron reflectivity by Chuck Majkrazak, small-angle scattering by Volker Urban, powder diffraction by Ashfia Huq and diffuse scattering by Gene Ice.

  13. Modern approaches to investigation of thin films and monolayers: X-ray reflectivity, grazing-incidence X-ray scattering and X-ray standing waves

    Science.gov (United States)

    Shcherbina, M. A.; Chvalun, S. N.; Ponomarenko, S. A.; Kovalchuk, M. V.

    2014-12-01

    The review concerns modern experimental methods of structure determination of thin films of different nature. The methods are based on total reflection of X-rays from the surface and include X-ray reflectivity, grazing-incidence X-ray scattering and X-ray standing waves. Their potential is exemplified by the investigations of various organic macromolecular systems that exhibit the properties of semiconductors and are thought to be promising as thin-film transistors, light-emitting diodes and photovoltaic cells. It is shown that combination of the title methods enable high-precision investigations of the structure of thin-film materials and structure formation in them, i.e., it is possible to obtain information necessary for improvement of the operating efficiency of elements of organic electronic devices. The bibliography includes 92 references.

  14. Time Resolved X-Ray Scattering of molecules in Solution

    DEFF Research Database (Denmark)

    Brandt van Driel, Tim

    The dissertation describes the use of Time-Resolved X-ray Diffuse Scattering (TR-XDS) to study photo-induced structural changes in molecules in solution. The application of the technique is exemplified with experiments on two bimetallic molecules. The main focus is on the data-flow and process of...... in the purpose built CSPAD detector is presented and applied to the data to highlight the relevance of this work. Thereby showing the ability to capture a molecular movie on the sub-ps time-scale....

  15. Influence of ultrasonic vibrations on thermal diffuse scattering in X-ray dynamical diffraction conditions

    CERN Document Server

    Kovalchuk, M V; Nosik, V L

    2001-01-01

    A theory of thermal diffuse scattering (TDS) in a crystal disturbed by high frequency ultrasonic vibrations is considered. In this case additional X-ray reflexes (satellites) are formed which can be used for obtaining information about vibrational excitations in a crystal. By varying the incident angle one can excite all the satellites one after another and detect the variation in the TDS yield. The possibilities of the experimental observation of these phenomena will also be discussed.

  16. Femtosecond X-ray scattering in condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    Korff Schmising, Clemens von

    2008-11-24

    This thesis investigates the manifold couplings between electronic and structural properties in crystalline Perovskite oxides and a polar molecular crystal. Ultrashort optical excitation changes the electronic structure and the dynamics of the connected reversible lattice rearrangement is imaged in real time by femtosecond X-ray scattering experiments. An epitaxially grown superlattice consisting of alternating nanolayers of metallic and ferromagnetic strontium ruthenate (SRO) and dielectric strontium titanate serves as a model system to study optically generated stress. In the ferromagnetic phase, phonon-mediated and magnetostrictive stress in SRO display similar sub-picosecond dynamics, similar strengths but opposite sign and different excitation spectra. The amplitude of the magnetic component follows the temperature dependent magnetization square, whereas the strength of phononic stress is determined by the amount of deposited energy only. The ultrafast, phonon-mediated stress in SRO compresses ferroelectric nanolayers of lead zirconate titanate in a further superlattice system. This change of tetragonal distortion of the ferroelectric layer reaches up to 2 percent within 1.5 picoseconds and couples to the ferroelectric soft mode, or ion displacement within the unit cell. As a result, the macroscopic polarization is reduced by up to 100 percent with a 500 femtosecond delay that is due to final elongation time of the two anharmonically coupled modes. Femtosecond photoexcitation of organic chromophores in a molecular, polar crystal induces strong changes of the electronic dipole moment via intramolecular charge transfer. Ultrafast changes of transmitted X-ray intensity evidence an angular rotation of molecules around excited dipoles following the 10 picosecond kinetics of the charge transfer reaction. Transient X-ray scattering is governed by solvation, masking changes of the chromophore's molecular structure. (orig.)

  17. Femtosecond X-ray scattering in condensed matter

    International Nuclear Information System (INIS)

    Korff Schmising, Clemens von

    2008-01-01

    This thesis investigates the manifold couplings between electronic and structural properties in crystalline Perovskite oxides and a polar molecular crystal. Ultrashort optical excitation changes the electronic structure and the dynamics of the connected reversible lattice rearrangement is imaged in real time by femtosecond X-ray scattering experiments. An epitaxially grown superlattice consisting of alternating nanolayers of metallic and ferromagnetic strontium ruthenate (SRO) and dielectric strontium titanate serves as a model system to study optically generated stress. In the ferromagnetic phase, phonon-mediated and magnetostrictive stress in SRO display similar sub-picosecond dynamics, similar strengths but opposite sign and different excitation spectra. The amplitude of the magnetic component follows the temperature dependent magnetization square, whereas the strength of phononic stress is determined by the amount of deposited energy only. The ultrafast, phonon-mediated stress in SRO compresses ferroelectric nanolayers of lead zirconate titanate in a further superlattice system. This change of tetragonal distortion of the ferroelectric layer reaches up to 2 percent within 1.5 picoseconds and couples to the ferroelectric soft mode, or ion displacement within the unit cell. As a result, the macroscopic polarization is reduced by up to 100 percent with a 500 femtosecond delay that is due to final elongation time of the two anharmonically coupled modes. Femtosecond photoexcitation of organic chromophores in a molecular, polar crystal induces strong changes of the electronic dipole moment via intramolecular charge transfer. Ultrafast changes of transmitted X-ray intensity evidence an angular rotation of molecules around excited dipoles following the 10 picosecond kinetics of the charge transfer reaction. Transient X-ray scattering is governed by solvation, masking changes of the chromophore's molecular structure. (orig.)

  18. Structure of the bifunctional aminoglycoside-resistance enzyme AAC(6′)-Ie-APH(2′′)-Ia revealed by crystallographic and small-angle X-ray scattering analysis

    Science.gov (United States)

    Smith, Clyde A.; Toth, Marta; Weiss, Thomas M.; Frase, Hilary; Vakulenko, Sergei B.

    2014-01-01

    Broad-spectrum resistance to aminoglycoside antibiotics in clinically important Gram-positive staphylococcal and entero­coccal pathogens is primarily conferred by the bifunctional enzyme AAC(6′)-Ie-APH(2′′)-Ia. This enzyme possesses an N-terminal coenzyme A-dependent acetyltransferase domain [AAC(6′)-Ie] and a C-terminal GTP-dependent phosphotransferase domain [APH(2′′)-Ia], and together they produce resistance to almost all known aminoglycosides in clinical use. Despite considerable effort over the last two or more decades, structural details of AAC(6′)-Ie-APH(2′′)-Ia have remained elusive. In a recent breakthrough, the structure of the isolated C-terminal APH(2′′)-Ia enzyme was determined as the binary Mg2GDP complex. Here, the high-resolution structure of the N-terminal AAC(6′)-Ie enzyme is reported as a ternary kanamycin/coenzyme A abortive complex. The structure of the full-length bifunctional enzyme has subsequently been elucidated based upon small-angle X-ray scattering data using the two crystallographic models. The AAC(6′)-Ie enzyme is joined to APH(2′′)-Ia by a short, predominantly rigid linker at the N-terminal end of a long α-helix. This α-helix is in turn intrinsically associated with the N-terminus of APH(2′′)-Ia. This structural arrangement supports earlier observations that the presence of the intact α-helix is essential to the activity of both functionalities of the full-length AAC(6′)-Ie-APH(2′′)-Ia enzyme. PMID:25286858

  19. Air-core grid for scattered x-ray rejection

    Science.gov (United States)

    Logan, C.M.; Lane, S.M.

    1995-10-03

    The invention is directed to a grid used in x-ray imaging applications to block scattered radiation while allowing the desired imaging radiation to pass through, and to process for making the grid. The grid is composed of glass containing lead oxide, and eliminates the spacer material used in prior known grids, and is therefore, an air-core grid. The glass is arranged in a pattern so that a large fraction of the area is open allowing the imaging radiation to pass through. A small pore size is used and the grid has a thickness chosen to provide high scatter rejection. For example, the grid may be produced with a 200 {micro}m pore size, 80% open area, and 4 mm thickness. 2 figs.

  20. Anisotropic x-ray scattering and orientation fields in cardiac tissue cells

    Science.gov (United States)

    Bernhardt, M.; Nicolas, J.-D.; Eckermann, M.; Eltzner, B.; Rehfeldt, F.; Salditt, T.

    2017-01-01

    X-ray diffraction from biomolecular assemblies is a powerful technique which can provide structural information about complex architectures such as the locomotor systems underlying muscle contraction. However, in its conventional form, macromolecular diffraction averages over large ensembles. Progress in x-ray optics has now enabled to probe structures on sub-cellular scales, with the beam confined to a distinct organelle. Here, we use scanning small angle x-ray scattering (scanning SAXS) to probe the diffraction from cytoskeleton networks in cardiac tissue cells. In particular, we focus on actin-myosin composites, which we identify as the dominating contribution to the anisotropic diffraction patterns, by correlation with optical fluorescence microscopy. To this end, we use a principal component analysis approach to quantify direction, degree of orientation, nematic order, and the second moment of the scattering distribution in each scan point. We compare the fiber orientation from micrographs of fluorescently labeled actin fibers to the structure orientation of the x-ray dataset and thus correlate signals of two different measurements: the native electron density distribution of the local probing area versus specifically labeled constituents of the sample. Further, we develop a robust and automated fitting approach based on a power law expansion, in order to describe the local structure factor in each scan point over a broad range of the momentum transfer {q}{{r}}. Finally, we demonstrate how the methodology shown for freeze dried cells in the first part of the paper can be translated to alive cell recordings.

  1. Microbubbles as a scattering contrast agent for grating-based x-ray dark-field imaging.

    Science.gov (United States)

    Velroyen, A; Bech, M; Malecki, A; Tapfer, A; Yaroshenko, A; Ingrisch, M; Cyran, C C; Auweter, S D; Nikolaou, K; Reiser, M; Pfeiffer, F

    2013-02-21

    In clinically established-absorption-based-biomedical x-ray imaging, contrast agents with high atomic numbers (e.g. iodine) are commonly used for contrast enhancement. The development of novel x-ray contrast modalities such as phase contrast and dark-field contrast opens up the possible use of alternative contrast media in x-ray imaging. We investigate using ultrasound contrast agents, which unlike iodine-based contrast agents can also be administered to patients with renal impairment and thyroid dysfunction, for application with a recently developed novel x-ray dark-field imaging modality. To produce contrast from these microbubble-based contrast agents, our method exploits ultra-small-angle coherent x-ray scattering. Such scattering dark-field x-ray images can be obtained with a grating-based x-ray imaging setup, together with refraction-based differential phase-contrast and the conventional attenuation contrast images. In this work we specifically show that ultrasound contrast agents based on microbubbles can be used to produce strongly enhanced dark-field contrast, with superior contrast-to-noise ratio compared to the attenuation signal. We also demonstrate that this method works well with an x-ray tube-based setup and that the relative contrast gain even increases when the pixel size is increased from tenths of microns to clinically compatible detector resolutions about up to a millimetre.

  2. Large-scale Nanostructure Simulations from X-ray Scattering Data On Graphics Processor Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Sarje, Abhinav; Pien, Jack; Li, Xiaoye; Chan, Elaine; Chourou, Slim; Hexemer, Alexander; Scholz, Arthur; Kramer, Edward

    2012-01-15

    X-ray scattering is a valuable tool for measuring the structural properties of materialsused in the design and fabrication of energy-relevant nanodevices (e.g., photovoltaic, energy storage, battery, fuel, and carbon capture andsequestration devices) that are key to the reduction of carbon emissions. Although today's ultra-fast X-ray scattering detectors can provide tremendousinformation on the structural properties of materials, a primary challenge remains in the analyses of the resulting data. We are developing novelhigh-performance computing algorithms, codes, and software tools for the analyses of X-ray scattering data. In this paper we describe two such HPCalgorithm advances. Firstly, we have implemented a flexible and highly efficient Grazing Incidence Small Angle Scattering (GISAXS) simulation code based on theDistorted Wave Born Approximation (DWBA) theory with C++/CUDA/MPI on a cluster of GPUs. Our code can compute the scattered light intensity from any givensample in all directions of space; thus allowing full construction of the GISAXS pattern. Preliminary tests on a single GPU show speedups over 125x compared tothe sequential code, and almost linear speedup when executing across a GPU cluster with 42 nodes, resulting in an additional 40x speedup compared to usingone GPU node. Secondly, for the structural fitting problems in inverse modeling, we have implemented a Reverse Monte Carlo simulation algorithm with C++/CUDAusing one GPU. Since there are large numbers of parameters for fitting in the in X-ray scattering simulation model, the earlier single CPU code required weeks ofruntime. Deploying the AccelerEyes Jacket/Matlab wrapper to use GPU gave around 100x speedup over the pure CPU code. Our further C++/CUDA optimization deliveredan additional 9x speedup.

  3. X-ray scattering studies of non-equilibrium ordering processes

    International Nuclear Information System (INIS)

    Nagler, S.E.

    1991-01-01

    We report on the progress of the project entitled ''X-ray Scattering Studies of Non-Equilibrium Ordering Processes.'' The past year has seen continued progress in the study of kinetic effects in metallic binary alloys and polymers. In addition, work has begun on a low dimensional CDW system: blue bronze. A sample chamber has been constructed to perform small angle neutron scattering measurements on a model quantum system with phase separation: solid He3/He4. Work is continuing on magnetic systems. Planned future experiments include an investigation of crystallization in Rubidium

  4. Simulations de la croissance de sphérolites de polymère et de spectres de diffusion centrale des rayons X Simulations of Polymer Spherulites Growth and Small-Angle X-Ray Scattering Spectra

    Directory of Open Access Journals (Sweden)

    Jarrin J.

    2006-11-01

    épend fortement du désordre d'empilement des lamelles; différentes situations sont envisagées. Mechanical properties of semi-crystalline polymers are closely related to material microstructure. The latter is usually made of spherulites, within which are radially disposed crystalline lamellae, separated by amorphous regions. A better description of this structure is necessary to predict more accuretely mechanical properties. Various physical and chemical characterization techniques can be used, such as scanning electronic microscopy or small-angle X-ray scattering (SAXS. Microscopy will give a spherulite picture, whereas diffusion technique will be more specific about the average organization of crystalline lamellae from the interference peak observed on spectrum. In order to relate informations given by these two techniques, a modelling approach was adopted, i. e. writing of a spherulite growth simulation software, the base unit being the lamellae, and a SAXS spectra computing program, based on given structural models. The SAXS computing program has been adapted from existing IFP (Institut Français du Pétrole softwares, allowing computing of wide-angle X-ray scattering spectra. Several spherulite growth parameters have been adjusted, so as to obtain a good agreement with scanning electronic micrographs. Also, the simultaneous growth of several spherulitic entities has been simulated, in both instantaneous and homogeneous nucleation cases. The boundaries between spherulites at the end of the growth are very similar to those observed in optical microscopy. The relative orientations and positions of nuclei are of great importance for impingement, interlocking and organization of spherulites, and therefore for mechanical properties. The diffusion spectrum of simulated spherulitic structures did not present an interference peak. Some spherulite branches are in fact composed of a set of crystalline lamellae, which explains the presence of the interference peak. Intensity of the

  5. X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study.

    Science.gov (United States)

    Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo

    2015-11-16

    A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering.

  6. Inelastic x-ray scattering from polycrystalline materials

    International Nuclear Information System (INIS)

    Fischer, I.

    2008-09-01

    Inelastic X-ray scattering (IXS) is a tool to determine the phonon dispersion along high symmetry directions in single crystals. However, novel materials and crystals under extreme conditions are often only available in form of polycrystalline samples. Thus the investigation is limited to orientation-averaged properties. To overcome these limitations, a methodology to extract the single crystal phonon dispersion from polycrystalline materials was developed. The approach consists of recording IXS spectra over a large momentum transfer region and confront them with a Born - von Karman model calculation. A least-square refinement of the model IXS spectra then provides the single crystal dispersion scheme. In this work the method is developed on the test case Be. Further studies were performed on more and more complex systems, in order to explore the limitations. This novel application of IXS promises to be a valuable tool in cases where single crystalline materials are not available. (author)

  7. Reasearches of Thomson Scattering X-Ray Source at Tsinghua University

    CERN Document Server

    Huang, Wenhui; Cheng, C; Cheng, Y; Du, Q; Du Tai Bin; Du, Y C; Ge, Y; He, X Z; Hua, J F; Huang, G; Lin, Y Z; Tang, C X; Xia, B; Xu, M J; Yuan, X D; Zheng, Sh X

    2004-01-01

    The bright and tunable short pulse X-ray sources are being widely used in various research fields including materials, chemistry, biology and solid physics. Thomson scattering source is one of the most promising approaches to short pulsed X-ray sources. Researches on Thomson scattering x-ray sources are being carried out in Tsinghua University. Some theoretical results and the preliminary experiment on the Thomson scattering between electron beams and laser pulses are described in this paper.

  8. In situ small angle x-ray studies of coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, K F

    1983-01-01

    This report summarizes the progress made the first 12 months of a planned 36 month project on small angle x-ray studies of coal and char pore structure. Model carbon studies have been employed to demonstrate the usefulness of small angle x-ray scattering (SAXS) in monitoring the structural changes in porous carbonaceous materials during gasification. Scattering data from particles gasified to varying levels of conversion show increases in the micropore sizes with conversion. This is also supported by surface area measurements by SAXS showing a maximum at intermediate conversion in agreements with previous studies by conventional means. The application of SAXS to PSOC coal samples is also demonstrated. Existing models for the porous structure have been reviewed and percolation theory has been selected as a consistent framework for both the modelling and the data analysis. This theory will make it possible to describe the porous structure in terms of its geometry and connectivity, rather than being limited to a fixed geometry as in conventional approaches. Two graduate students and the PI have been trained in SAXS and the associated theory. Results from the model carbon studies have been published. 18 references, 9 figures, 2 tables.

  9. Effect of temperature on self-assembly of bovine beta-casein above and below isoelectric pH. Structural analysis by cryogenic-transmission electron microscopy and small-angle X-ray scattering.

    Science.gov (United States)

    Moitzi, Christian; Portnaya, Irina; Glatter, Otto; Ramon, Ory; Danino, Dganit

    2008-04-01

    beta-Casein is one of the main proteins in milk, recently classified as an intrinsically unstructured protein. At neutral pH, it is composed of a highly polar N-terminus domain and a hydrophobic C-terminus tail. This amphiphilic block-copolymer-like structure leads to self-organization of the protein monomers into defined micelles. Recently, it has been shown that at room temperature, beta-casein also self-organizes into micelles in an acidic environment, but the effect of temperature on the micelles' formation and properties at the low pH regime were not explored. In the present study, we used two complementary techniques, cryogenic-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS), to characterize at high-resolution the micelles' shape, dimensions, and aggregation numbers and to determine how these properties are affected by temperature between 1 and 40 degrees C. Two different regimes were studied: highly acidic pH where the protein is cationic, and neutral pH, where it is anionic. We found that flat disk-like micelles with low aggregation numbers formed at low temperature in the two pH regimes. Close to neutral pH increase in temperature involves a transition in the micelles' shape and dimensions from flat disks to bulky, almost spheroidal micelles, coupled with a sharp increase in the micelles' aggregation number. In contrast, no effects on the micelles' morphology or aggregation number were detected in the acidic environment within the entire temperature range studied. The self-organization into disk micelles and the lack of effect of temperature in the acidic environment are linked to the unstructured character of the protein and to the charge distribution map. The latter indicates that below the isoelectric pH (pI), beta-casein loses the distinct separation of hydrophobic and hydrophilic domains, thereby suggesting that it may no longer be considered as a classical head-tail block-copolymer amphiphile as in neutral pH.

  10. Study of the grazing-incidence X-ray scattering of strongly disturbed fractal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roshchin, B. S., E-mail: ross@crys.ras.ru; Chukhovsky, F. N.; Pavlyuk, M. D.; Opolchentsev, A. M.; Asadchikov, V. E. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Centre “Crystallography and Photonics” (Russian Federation)

    2017-03-15

    The applicability of different approaches to the description of hard X-ray scattering from rough surfaces is generally limited by a maximum surface roughness height of no more than 1 nm. Meanwhile, this value is several times larger for the surfaces of different materials subjected to treatment, especially in the initial treatment stages. To control the roughness parameters in all stages of surface treatment, a new approach has been developed, which is based on a series expansion of wavefield over the plane eigenstate-function waves describing the small-angle scattering of incident X-rays in terms of plane q-waves propagating through the interface between two media with a random function of relief heights. To determine the amplitudes of reflected and transmitted plane q-waves, a system of two linked integral equations was derived. The solutions to these equations correspond (in zero order) to the well-known Fresnel expressions for a smooth plane interface. Based on these solutions, a statistical fractal model of an isotropic rough interface is built in terms of root-mean-square roughness σ, two-point correlation length l, and fractal surface index h. The model is used to interpret X-ray scattering data for polished surfaces of single-crystal cadmium telluride samples.

  11. Measurements of accurate x-ray scattering data of protein solutions using small stationary sample cells

    Science.gov (United States)

    Hong, Xinguo; Hao, Quan

    2009-01-01

    In this paper, we report a method of precise in situ x-ray scattering measurements on protein solutions using small stationary sample cells. Although reduction in the radiation damage induced by intense synchrotron radiation sources is indispensable for the correct interpretation of scattering data, there is still a lack of effective methods to overcome radiation-induced aggregation and extract scattering profiles free from chemical or structural damage. It is found that radiation-induced aggregation mainly begins on the surface of the sample cell and grows along the beam path; the diameter of the damaged region is comparable to the x-ray beam size. Radiation-induced aggregation can be effectively avoided by using a two-dimensional scan (2D mode), with an interval as small as 1.5 times the beam size, at low temperature (e.g., 4 °C). A radiation sensitive protein, bovine hemoglobin, was used to test the method. A standard deviation of less than 5% in the small angle region was observed from a series of nine spectra recorded in 2D mode, in contrast to the intensity variation seen using the conventional stationary technique, which can exceed 100%. Wide-angle x-ray scattering data were collected at a standard macromolecular diffraction station using the same data collection protocol and showed a good signal/noise ratio (better than the reported data on the same protein using a flow cell). The results indicate that this method is an effective approach for obtaining precise measurements of protein solution scattering.

  12. Measurements of accurate x-ray scattering data of protein solutions using small stationary sample cells

    International Nuclear Information System (INIS)

    Hong Xinguo; Hao Quan

    2009-01-01

    In this paper, we report a method of precise in situ x-ray scattering measurements on protein solutions using small stationary sample cells. Although reduction in the radiation damage induced by intense synchrotron radiation sources is indispensable for the correct interpretation of scattering data, there is still a lack of effective methods to overcome radiation-induced aggregation and extract scattering profiles free from chemical or structural damage. It is found that radiation-induced aggregation mainly begins on the surface of the sample cell and grows along the beam path; the diameter of the damaged region is comparable to the x-ray beam size. Radiation-induced aggregation can be effectively avoided by using a two-dimensional scan (2D mode), with an interval as small as 1.5 times the beam size, at low temperature (e.g., 4 deg. C). A radiation sensitive protein, bovine hemoglobin, was used to test the method. A standard deviation of less than 5% in the small angle region was observed from a series of nine spectra recorded in 2D mode, in contrast to the intensity variation seen using the conventional stationary technique, which can exceed 100%. Wide-angle x-ray scattering data were collected at a standard macromolecular diffraction station using the same data collection protocol and showed a good signal/noise ratio (better than the reported data on the same protein using a flow cell). The results indicate that this method is an effective approach for obtaining precise measurements of protein solution scattering.

  13. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering.

    Science.gov (United States)

    Bunjes, Heike; Unruh, Tobias

    2007-07-10

    Differential scanning calorimetry and X-ray diffraction play a prominent role in the characterization of lipid nanoparticle (LNP) dispersions. This review shortly outlines the measurement principles of these two techniques and summarizes their applications in the field of nanodispersions of solid lipids. These methods are particularly useful for the characterization of the matrix state, polymorphism and phase behavior of the nanoparticles which may be affected by, for example, the small particle size and the composition of the dispersions. The basics of small angle X-ray and neutron scattering which are also very promising methods for the characterization of LNPs are explained in some more detail. Examples for their use in the area of solid LNPs regarding the evaluation of particle size effects and the formation of superstructures in the nanoparticle dispersions are given. Some technical questions concerning the use of the different characterization techniques in the field of LNP research are also addressed.

  14. Composite material characterisation using an advanced small angle x-ray (SAXS) technique

    Science.gov (United States)

    Yazid, Hafizal; Murshidi, Julie A.; Jamro, Rafhayudi; Megat Harun, M. A.; Aziz Mohamed, Abdul

    2018-01-01

    Materials development in the field of composite material spurs the use of advanced characterization technique. As the fillers become in the nanoscale range in size, the effect of agglomeration become apparent and cannot be avoided. The use of Small Angle X-Ray (SAXS) Scattering technique revealed the information on agglomeration based on the value of specific surface (m2/g). Thermoplastic natural rubber composite was found isotropic based on 2D saxs scattering pattern. As the amount of fillers increased from 2-10% wt., the value of specific surface dropped accordingly. This indicated the higher the amount of filler used, the higher the degree of agglomeration. The SAXS system was also tested by Alumina (BAM) powder and yield result which was in good agreement with BET technique.

  15. Novel micro-reactor flow cell for investigation of model catalysts using in situ grazing-incidence X-ray scattering

    DEFF Research Database (Denmark)

    Kehres, Jan; Pedersen, Thomas; Masini, Federico

    2016-01-01

    -incidence small-angle X-ray scattering (GISAXS) in transmission through 10 µm-thick entrance and exit windows by using micro-focused beams. An additional thinning of the Pyrex glass reactor lid allows simultaneous acquisition of the grazing-incidence wide-angle X-ray scattering (GIWAXS). In situ experiments......The design, fabrication and performance of a novel and highly sensitive micro-reactor device for performing in situ grazing-incidence X-ray scattering experiments of model catalyst systems is presented. The design of the reaction chamber, etched in silicon on insulator (SIO), permits grazing...

  16. The Use of Small-Angle X-Ray Diffraction Studies for the Analysis of Structural Features in Archaeological Samples

    DEFF Research Database (Denmark)

    Wess, T. J.; Drakopoulos, M.; Snigirev, A.

    2001-01-01

    the potential of a laboratory source is also described. Specific examples of analysis using X-ray diffraction of historic parchment, archaeological bone, a Central Mexico style pictograph and microdiffraction of calcified tissues are used to show the scope and versatility of the technique. Diffraction data......X-ray diffraction or scattering analysis provides a powerful non-destructive technique capable of providing important information about the state of archaeological samples in the nanometer length scale. Small-angle diffraction facilities are usually found at synchrotron sources, although...

  17. K-alpha conversion efficiency measurments for x-ray scattering in inertial confinement fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kritcher, A L; Neumayer, P; Urry, M K; Robey, H; Niemann, C; Landen, O L; Morse, E; Glenzer, S H

    2006-11-21

    The conversion efficiency of ultra short-pulse laser radiation to K-{alpha} x-rays has been measured for various chlorine-containing targets to be used as x-ray scattering probes of dense plasmas. The spectral and temporal properties of these sources will allow spectrally-resolved x-ray scattering probing with picosecond temporal resolution required for measuring the plasma conditions in inertial confinement fusion experiments. Simulations of x-ray scattering spectra from these plasmas show that fuel capsule density, capsule ablator density, and shock timing information may be inferred.

  18. Resource Letter on Stimulated Inelastic X-ray Scattering at an XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Bruce D.; /SLAC

    2010-09-02

    At sufficient X-ray intensity, stimulated effects in inelastic scattering will become important. These coherent, non-linear optical phenomena may be used to impulsively produce a high degree of collective excitation in, for example, correlated electron materials, suitable for performing ultrafast time-resolved spectroscopy. This Resource Letter collects information on fundamental aspects of stimulated X-ray scattering and evaluates the prospect for successful experiments at a present or future X-ray free electron laser (XFEL) facility.

  19. Transmission X-ray scattering as a probe for complex liquid-surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Fukuto, Masafumi; Yang, Lin; Nykypanchuk, Dmytro; Kuzmenko, Ivan

    2016-01-28

    The need for functional materials calls for increasing complexity in self-assembly systems. As a result, the ability to probe both local structure and heterogeneities, such as phase-coexistence and domain morphologies, has become increasingly important to controlling self-assembly processes, including those at liquid surfaces. The traditional X-ray scattering methods for liquid surfaces, such as specular reflectivity and grazing-incidence diffraction, are not well suited to spatially resolving lateral heterogeneities due to large illuminated footprint. A possible alternative approach is to use scanning transmission X-ray scattering to simultaneously probe local intermolecular structures and heterogeneous domain morphologies on liquid surfaces. To test the feasibility of this approach, transmission small- and wide-angle X-ray scattering (TSAXS/TWAXS) studies of Langmuir films formed on water meniscus against a vertically immersed hydrophilic Si substrate were recently carried out. First-order diffraction rings were observed in TSAXS patterns from a monolayer of hexagonally packed gold nanoparticles and in TWAXS patterns from a monolayer of fluorinated fatty acids, both as a Langmuir monolayer on water meniscus and as a Langmuir–Blodgett monolayer on the substrate. The patterns taken at multiple spots have been analyzed to extract the shape of the meniscus surface and the ordered-monolayer coverage as a function of spot position. These results, together with continual improvement in the brightness and spot size of X-ray beams available at synchrotron facilities, support the possibility of using scanning-probe TSAXS/TWAXS to characterize heterogeneous structures at liquid surfaces.

  20. A small-angle neutron scattering study

    Indian Academy of Sciences (India)

    400Da [9]. Low-angle X-ray scattering [10] and neutron scattering [11] also in- dicated serum albumin to be a prolate ellipsoid. However, studies using 1H NMR indicated that a prolate structure was unlikely; rather a heart-shaped structure was proposed [12]. The shape of albumin reveals a heart-shaped molecule that can.

  1. Calculation of X-ray scattering curves and electron distance distribution functions of biological macromolecules in solution using the PROTEIN DATA BANK

    International Nuclear Information System (INIS)

    Mueller, J.J.; Friedrichowicz, E.; Nothnagel, A.; Wunderlich, T.; Ziehlsdorf, E.; Damaschun, G.

    1983-01-01

    The wide angle X-ray scattering curve, the electron distance distribution function and the solvent excluded volume of a macromolecule in solution are calculated from the atomic coordinates contained in the PROTEIN DATA BANK. The structures and the projections of the excluded volumes are depicted using molecule graphic routines. The described computer programs are used to determine the three-dimensional structure of macromolecules in solution from wide angle X-ray scattering data. (author)

  2. Using X-ray Thomson Scattering to Characterize Highly Compressed, Near-Degenerate Plasmas at the NIF

    Science.gov (United States)

    Doeppner, Tilo; Kraus, D.; Neumayer, P.; Bachmann, B.; Divol, L.; Kritcher, A. L.; Landen, O. L.; Fletcher, L.; Glenzer, S. H.; Falcone, R. W.; MacDonald, M. J.; Saunders, A.; Witte, B.; Redmer, R.; Chapman, D.; Baggott, R.; Gericke, D. O.; Yi, S. A.

    2017-10-01

    We are developing x-ray Thomson scattering for implosion experiments at the National Ignition Facility to characterize plasma conditions in plastic and beryllium capsules near stagnation, reaching more than 20x compression and electron densities of 1025 cm-3, corresponding to a Fermi energy of 170 eV. Using a zinc He- α x-ray source at 9 keV, experiments at a large scattering angle of 120° measure non-collective scattering spectra with high sensitivity to K-shell ionization, and find higher charge states than predicted by widely used ionization models. Reducing the scattering angle to 30° probes the collective scattering regime with sensitivity to collisions and conductivity. We will discuss recent results and future plans. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Feasibility of complementary use of neutron and X-ray scattering techniques in research of lipid mixtures

    International Nuclear Information System (INIS)

    Hirai, Mitsuhiro

    2007-01-01

    It is well recognized that the complementary use of X-ray and neutron small-angle scattering methods serve us fruitful information on nano-scale structures of materials at different phases, especially for systems composed of different components in solutions. This report briefly reviews some recent applications of X-ray and neutron scattering methods of the solutions of lipid mixtures composed of glycosphingolipid, cholesterol and phospholipid. The applications presented here would be very useful and feasible for studies of membrane interfaces in many cases. One of the most promising methods, called s pin contrast variation , is also introduced in comparison with other conventional methods

  4. On-axis microscopes for the inelastic x-ray scattering beamline at NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Gofron, K. J., E-mail: kgofron@bnl.gov; Cai, Y. Q.; Coburn, D. S.; Antonelli, S.; Suvorov, A. [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973 (United States); Flores, J. [Department of Physics and Astronomy, Stony Brook University, NY 11794 (United States)

    2016-07-27

    A novel on-axis X-ray microscope with 3 µm resolution, 3x magnification, and a working distance of 600 mm for in-situ sample alignment and X-ray beam visualization for the Inelastic X-ray Scattering (IXS) beamline at NSLS-II is presented. The microscope uses reflective optics, which minimizes dispersion, and allows imaging from Ultraviolet (UV) to Infrared (IR) with specifically chosen objective components (coatings, etc.). Additionally, a portable high resolution X-ray microscope for KB mirror alignment and X-ray beam characterization was developed.

  5. Scattering of X-rays on the surface acoustic wave in the case of grazing geometry

    CERN Document Server

    Mkrtchyan, A R; Petrosian, A

    2000-01-01

    The scattering of X-rays on a crystal is considered in grazing geometry when a surface acoustic wave is excited normal to the diffraction vector. The intensity of wave field at finite distance from crystal to detector is obtained. It is shown that in the presence of surface acoustic wave the magnitude of the main peak of specular reflected diffracted wave intensity decreases and intensity of satellites increases. The main peak of specular reflected diffracted wave intensity is split up as the grazing observation angle increases.

  6. Nano-crystal growth in cordierite glass ceramics studied with X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bras, Wim; Clark, Simon M.; Greaves, G. N.; Kunz, Martin; van Beek, W.; Radmilovic, V.

    2009-01-16

    The development of monodisperse crystalline particles in cordierite glass doped with Cr3+ after a two-step heat treatment is elucidated by a combination of time-resolved small and wide angle x-ray scattering (SAXS/WAXS) experiments with electron microscopy. The effects of bulk and surface crystallization can clearly be distinguished, and the crystallization kinetics of the bulk phase is characterized. The internal pressure due to structural differences between the crystalline and amorphous phase is measured but the physical cause of this pressure can not unambiguously be attributed. The combined measurements comprise a nearly full characterization of the crystallization processes and the resulting sample morphology.

  7. Response of x-ray intensifying screens to scattered and primary radiation

    NARCIS (Netherlands)

    Koedooder, K.; Venema, H. W.

    1984-01-01

    The energy dependence of the luminance ratio due to scattered and primary radiation has been determined for four types of X-ray intensifying screens. A water phantom of 30 cm X 30 cm X 20 cm was used as the scattering medium. Ten narrow band X-ray spectra were used as incident radiation: the mean

  8. An in-vacuum diffractometer for resonant elastic soft x-ray scattering

    NARCIS (Netherlands)

    Hawthorn, D. G.; He, F.; Davis, H.; Achkar, A. J.; Zhang, J.; Sutarto, R.; Wadati, H.; Radi, A.; Wilson, T.; Wright, G.; Shen, K. M.; Geck, J.; Zhang, H.; Novak, V.; Sawatzky, G. A.; Venema, L.C.

    We describe the design, construction, and performance of a 4-circle in-vacuum diffractometer for resonant elastic soft x-ray scattering. The diffractometer, installed on the resonant elastic and inelastic x-ray scattering beamline at the Canadian Light Source, includes 9 in-vacuum motions driven by

  9. X-Ray Thomson Scattering Without the Chihara Decomposition

    Science.gov (United States)

    Magyar, Rudolph; Baczewski, Andrew; Shulenburger, Luke; Hansen, Stephanie B.; Desjarlais, Michael P.; Sandia National Laboratories Collaboration

    X-Ray Thomson Scattering is an important experimental technique used in dynamic compression experiments to measure the properties of warm dense matter. The fundamental property probed in these experiments is the electronic dynamic structure factor that is typically modeled using an empirical three-term decomposition (Chihara, J. Phys. F, 1987). One of the crucial assumptions of this decomposition is that the system's electrons can be either classified as bound to ions or free. This decomposition may not be accurate for materials in the warm dense regime. We present unambiguous first principles calculations of the dynamic structure factor independent of the Chihara decomposition that can be used to benchmark these assumptions. Results are generated using a finite-temperature real-time time-dependent density functional theory applied for the first time in these conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  10. Interior tomographic imaging for x-ray coherent scattering (Conference Presentation)

    Science.gov (United States)

    Pang, Sean; Zhu, Zheyuan

    2017-05-01

    Conventional computed tomography reconstructs the attenuation only high-dimensional images. Coherent scatter computed tomography, which reconstructs the angular dependent scattering profiles of 3D objects, can provide molecular signatures that improves the accuracy of material identification and classification. Coherent scatter tomography are traditionally acquired by setups similar to x-ray powder diffraction machine; a collimated source in combination with 2D or 1D detector collimation in order to localize the scattering point. In addition, the coherent scatter cross-section is often 3 orders of magnitude lower than that of the absorption cross-section for the same material. Coded aperture and structured illumination approaches has been shown to greatly improve the collection efficiency. In many applications, especially in security imaging and medical diagnosis, fast and accurate identification of the material composition of a small volume within the whole object would lead to an accelerated imaging procedure and reduced radiation dose. Here, we report an imaging method to reconstruct the material coherent scatter profile within a small volume. The reconstruction along one radial direction can reconstruct a scalar coherent scattering tomographic image. Our methods takes advantage of the finite support of the scattering profile in small angle regime. Our system uses a pencil beam setup without using any detector side collimation. Coherent scatter profile of a 10 mm scattering sample embedded in a 30 mm diameter phantom was reconstructed. The setup has small form factor and is suitable for various portable non-destructive detection applications.

  11. Small-angle scattering on soft materials

    International Nuclear Information System (INIS)

    Mortensen, K.

    1994-01-01

    Small angle x-ray and neutron scattering provides tools for investigation of structures on the length scale 10 to 1000 A. This is the length scale which is relevant for many topics within soft materials, like biological macromolecules, polymers, colloids, etc. The very large difference between the scattering amplitude of neutrons by regular hydrogen and deuterium makes neutron scattering a very important technique within soft condensed matter. The basic theory for small angle scattering is reviewed. Experimental results obtained by small angle scattering are shown, with emphasis on soft materials. (author). 33 refs, 6 figs, 1 tab

  12. Structure determination of Pt-coated Au dumbbells via fluctuation X-ray scattering.

    Science.gov (United States)

    Chen, Gang; Modestino, Miguel A; Poon, Billy K; Schirotzek, André; Marchesini, Stefano; Segalman, Rachel A; Hexemer, Alexander; Zwart, Peter H

    2012-09-01

    A fluctuation X-ray scattering experiment has been carried out on platinum-coated gold nanoparticles randomly oriented on a substrate. A complete algorithm for determining the electron density of an individual particle from diffraction patterns of many particles randomly oriented about a single axis is demonstrated. This algorithm operates on angular correlations among the measured intensity distributions and recovers the angular correlation functions of a single particle from measured diffraction patterns. Taking advantage of the cylindrical symmetry of the nanoparticles, a cylindrical slice model is proposed to reconstruct the structure of the nanoparticles by fitting the experimental ring angular auto-correlation and small-angle scattering data obtained from many scattering patterns. The physical meaning of the refined structure is discussed in terms of their statistical distributions of the shape and electron density profile.

  13. Use of wide-angle X-ray diffraction to measure shape and size of dispersed colloidal particles.

    Science.gov (United States)

    Qazi, S Junaid S; Rennie, Adrian R; Cockcroft, Jeremy K; Vickers, Martin

    2009-10-01

    Laboratory X-ray diffraction is used to investigate the size and shape of dispersed plate-like and spherical colloidal particles. Analysis of the wide-angle diffraction data provides information about the size and shape of crystals from the width of the Bragg peaks according to the Debye-Scherrer formula. The measurements, data analysis, and evaluation are discussed. It is shown that X-ray diffraction with conventional laboratory equipment on dispersed particles is feasible as a tool to determine both particle size and shape. Data for two samples--gold colloids and nickel (II) hydroxide particles are presented. The advantages and limitations of the method are discussed. X-ray diffraction measurements that are made in combination with dynamic light scattering can be used to estimate the thickness of stabilizing layers of polymers.

  14. X-ray, neutron, and electron scattering. Report of a materials sciences workshop

    International Nuclear Information System (INIS)

    1977-08-01

    The ERDA Workshop on X-ray, Neutron, and Electron Scattering to assess needs and establish priorities for energy-related basic research on materials. The general goals of the Workshop were: (1) to review various energy technologies where x-ray, neutron, and electron scattering techniques might make significant contributions, (2) to identify present and future materials problems in the energy technologies and translate these problems into requirements for basic research by x-ray, neutron, and electron scattering techniques, (3) to recommend research areas utilizing these three scattering techniques that should be supported by the DPR Materials Sciences Program, and (4) to assign priorities to these research areas

  15. Measurement of scattered and transmitted X-rays from intra-oral and panoramic dental X-ray equipment.

    Science.gov (United States)

    Holroyd, John Richard

    2018-04-10

    To quantify the levels of transmitted radiation arising from the use of intra-oral dental X-ray equipment and scattered radiation arising from the use of both intra-oral and panoramic X-ray equipment. Methods: Levels of scattered radiation were measured at 1 m from a phantom, using an 1800 cc ion chamber. Transmitted radiation was measured using both: i) a phantom and Dose Area Product (DAP) meter, ii) a patient and an 1800 cc ion chamber. Results: For intra-oral radiography the patient study gave a maximum transmission of 1.80% (range 0.04% to 1.80%, mean 0.26%) and the phantom study gave a maximum transmission of 6% (range 2% to 6%, mean 5%). The maximum scattered radiation, per unit DAP, was 5.5 nGy (mGy cm2)-1 at 70 kVp and a distance of 1 m. For panoramic radiography the maximum scattered radiation was 9.3 nGy (mGy cm2)-1 at 80 kVp and a distance of 1 m. Conclusions: Typical doses from scattered and transmitted radiation in modern dental practice have been measured and values are presented to enable the calculation of adequate protection measures for dental radiography rooms. Advances in knowledge: Previous studies have used a phantom and measured radiation doses at 1 m from the phantom to determine the radiation dose transmitted through a patient, whereas this study uses both patient and phantom measurements together with a large area dose meter, positioned to capture the entire X-ray beam, to ensure more realistic dose measurements can be made. © 2018 IOP Publishing Ltd.

  16. Determination of coal ash content by the combined x-ray fluorescence and scattering spectrum

    Science.gov (United States)

    Mikhailov, I. F.; Baturin, A. A.; Mikhailov, A. I.; Borisova, S. S.; Fomina, L. P.

    2018-02-01

    An alternative method is proposed for the determination of the inorganic constituent mass fraction (ash) in solid fuel by the ratio of Compton and Rayleigh X-ray scattering peaks IC/IR subject to the iron fluorescence intensity. An original X-ray optical scheme with a Ti/Mo (or Sc/Cu) double-layer secondary radiator allows registration of the combined fluorescence-and-scattering spectrum at the specified scattering angle. An algorithm for linear calibration of the Compton-to-Rayleigh IC/IR ratio is proposed which uses standard samples with two certified characteristics: mass fractions of ash (Ad) and iron oxide (WFe2O3). Ash mass fractions have been determined for coals of different deposits in the wide range of Ad from 9.4% to 52.7% mass and WFe2O3 from 0.3% to 4.95% mass. Due to the high penetrability of the probing radiation with energy E > 17 keV, the sample preparation procedure is rather simplified in comparison with the traditional method of Ad determination by the sum of fluorescence intensities of all constituent elements.

  17. X-ray scattering evaluation of ultrastructural changes in human dental tissues with thermal treatment.

    Science.gov (United States)

    Sandholzer, Michael A; Sui, Tan; Korsunsky, Alexander M; Walmsley, Anthony Damien; Lumley, Philip J; Landini, Gabriel

    2014-05-01

    Micro- and ultrastructural analysis of burned skeletal remains is crucial for obtaining a reliable estimation of cremation temperature. Earlier studies mainly focused on heat-induced changes in bone tissue, while this study extends this research to human dental tissues using a novel quantitative analytical approach. Twelve tooth sections were burned at 400-900°C (30-min exposure, increments of 100°C). Subsequent combined small- and wide-angle X-ray scattering (SAXS/WAXS) experiments were performed at the Diamond Light Source synchrotron facility, where 28 scattering patterns were collected within each tooth section. In comparison with the control sample, an increase in mean crystal thickness was found in burned dentine (2.8-fold) and enamel (1.4-fold), however at a smaller rate than reported earlier for bone tissue (5-10.7-fold). The results provide a structural reference for traditional X-ray scattering methods and emphasize the need to investigate bone and dental tissues separately to obtain a reliable estimation of cremation temperature. © 2014 American Academy of Forensic Sciences.

  18. Protein folding and protein metallocluster studies using synchrotron small angler X-ray scattering

    International Nuclear Information System (INIS)

    Eliezer, D.

    1994-06-01

    Proteins, biological macromolecules composed of amino-acid building blocks, possess unique three dimensional shapes or conformations which are intimately related to their biological function. All of the information necessary to determine this conformation is stored in a protein's amino acid sequence. The problem of understanding the process by which nature maps protein amino-acid sequences to three-dimensional conformations is known as the protein folding problem, and is one of the central unsolved problems in biophysics today. The possible applications of a solution are broad, ranging from the elucidation of thousands of protein structures to the rational modification and design of protein-based drugs. The scattering of X-rays by matter has long been useful as a tool for the characterization of physical properties of materials, including biological samples. The high photon flux available at synchrotron X-ray sources allows for the measurement of scattering cross-sections of dilute and/or disordered samples. Such measurements do not yield the detailed geometrical information available from crystalline samples, but do allow for lower resolution studies of dynamical processes not observable in the crystalline state. The main focus of the work described here has been the study of the protein folding process using time-resolved small-angle x-ray scattering measurements. The original intention was to observe the decrease in overall size which must accompany the folding of a protein from an extended conformation to its compact native state. Although this process proved too fast for the current time-resolution of the technique, upper bounds were set on the probable compaction times of several small proteins. In addition, an interesting and unexpected process was detected, in which the folding protein passes through an intermediate state which shows a tendency to associate. This state is proposed to be a kinetic molten globule folding intermediate

  19. Protein folding and protein metallocluster studies using synchrotron small angler X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Eliezer, D.

    1994-06-01

    Proteins, biological macromolecules composed of amino-acid building blocks, possess unique three dimensional shapes or conformations which are intimately related to their biological function. All of the information necessary to determine this conformation is stored in a protein`s amino acid sequence. The problem of understanding the process by which nature maps protein amino-acid sequences to three-dimensional conformations is known as the protein folding problem, and is one of the central unsolved problems in biophysics today. The possible applications of a solution are broad, ranging from the elucidation of thousands of protein structures to the rational modification and design of protein-based drugs. The scattering of X-rays by matter has long been useful as a tool for the characterization of physical properties of materials, including biological samples. The high photon flux available at synchrotron X-ray sources allows for the measurement of scattering cross-sections of dilute and/or disordered samples. Such measurements do not yield the detailed geometrical information available from crystalline samples, but do allow for lower resolution studies of dynamical processes not observable in the crystalline state. The main focus of the work described here has been the study of the protein folding process using time-resolved small-angle x-ray scattering measurements. The original intention was to observe the decrease in overall size which must accompany the folding of a protein from an extended conformation to its compact native state. Although this process proved too fast for the current time-resolution of the technique, upper bounds were set on the probable compaction times of several small proteins. In addition, an interesting and unexpected process was detected, in which the folding protein passes through an intermediate state which shows a tendency to associate. This state is proposed to be a kinetic molten globule folding intermediate.

  20. X-ray fluorescence analysis of thin films at glancing-incident and -takeoff angles

    International Nuclear Information System (INIS)

    Tsuji, K.; Sato, S.; Hirokawa, K.

    1995-01-01

    We have developed a new analytical method, Glancing-Incidence and -Takeoff X-Ray Fluorescence (GIT-XRF) method for the first time. Here, we present an idea for a thin-film analysis and a surface analysis by the GIT-XRF method. In this method, the dependence of the fluorescent x-ray intensity on takeoff angle is measured at various incident angles of the primary x-ray. Compared with a total reflection x-ray fluorescence method, the GIT-XRF method allows a detailed thin-film analysis, because the thin film is cross-checked by many experimental curves. Moreover, a surface-sensitive analysis is also possible by the GIT-XRF method. (author)

  1. A Monte Carlo simulation of scattering reduction in spectral x-ray computed tomography

    DEFF Research Database (Denmark)

    Busi, Matteo; Olsen, Ulrik Lund; Bergbäck Knudsen, Erik

    2017-01-01

    photons, enabling spectral analysis of X-ray images. This technique is useful to extract efficiently more information on energy dependent quantities (e.g. mass attenuations coefficients) and study matter interactions (e.g. X-ray scattering, photoelectric absorption, etc...). Having a good knowledge...

  2. Anisotropy enhanced X-ray scattering from solvated transition metal complexes

    DEFF Research Database (Denmark)

    Biasin, Elisa; van Driel, Tim B.; Levi, Gianluca

    2018-01-01

    Time-resolved X-ray scattering patterns from photoexcited molecules in solution are in many cases anisotropic at the ultrafast time scales accessible at X-ray free-electron lasers (XFELs). This anisotropy arises from the interaction of a linearly polarized UV-Vis pump laser pulse with the sample...

  3. Measuring scatter radiation in diagnostic x rays for radiation protection purposes

    International Nuclear Information System (INIS)

    Panayiotakis, George; Vlachos, Ioannis; Delis, Harry; Tsantilas, Xenophon; Kalyvas, Nektarios; Kandarakis, Ioannis

    2015-01-01

    During the last decades, radiation protection and dosimetry in medical X-ray imaging practice has been extensively studied. The purpose of this study was to measure secondary radiation in a conventional radiographic room, in terms of ambient dose rate equivalent H*(10) and its dependence on the radiographic exposure parameters such as X-ray tube voltage, tube current and distance. With some exceptions, the results indicated that the scattered radiation was uniform in the space around the water cylindrical phantom. The results also showed that the tube voltage and filtration affect the dose rate due to the scatter radiation. Finally, the scattered X-ray energy distribution was experimentally calculated. (authors)

  4. Geant4 simulations of soft proton scattering in X-ray optics. A tentative validation using laboratory measurements

    Science.gov (United States)

    Fioretti, Valentina; Mineo, Teresa; Bulgarelli, Andrea; Dondero, Paolo; Ivanchenko, Vladimir; Lei, Fan; Lotti, Simone; Macculi, Claudio; Mantero, Alfonso

    2017-12-01

    Low energy protons (process responsible for the grazing angle scattering processes is mandatory to evaluate the impact of such events on the performance (e.g. observation time, sensitivity) of future X-ray telescopes as the ESA ATHENA mission. The Remizovich model describes particles reflected by solids at glancing angles in terms of the Boltzmann transport equation using the diffuse approximation and the model of continuous slowing down in energy. For the first time this solution, in the approximation of no energy losses, is implemented, verified, and qualitatively validated on top of the Geant4 release 10.2, with the possibility to add a constant energy loss to each interaction. This implementation is verified by comparing the simulated proton distribution to both the theoretical probability distribution and with independent ray-tracing simulations. Both the new scattering physics and the Coulomb scattering already built in the official Geant4 distribution are used to reproduce the latest experimental results on grazing angle proton scattering. At 250 keV multiple scattering delivers large proton angles and it is not consistent with the observation. Among the tested models, the single scattering seems to better reproduce the scattering efficiency at the three energies but energy loss obtained at small scattering angles is significantly lower than the experimental values. In general, the energy losses obtained in the experiment are higher than what obtained by the simulation. The experimental data are not completely representative of the soft proton scattering experienced by current X-ray telescopes because of the lack of measurements at low energies (distribution at the exit of X-ray optics.

  5. Ultrashort hard x-ray pulses generated by 90 degrees Thomson scattering

    International Nuclear Information System (INIS)

    Chin, A.H.; Schoenlein, R.W.; Glover, T.E.

    1997-01-01

    Ultrashort x-ray pulses permit observation of fast structural dynamics in a variety of condensed matter systems. The authors have generated 300 femtosecond, 30 keV x-ray pulses by 90 degrees Thomson scattering between femtosecond laser pulses and relativistic electrons. The x-ray and laser pulses are synchronized on a femtosecond time scale, an important prerequisite for ultrafast pump-probe spectroscopy. Analysis of the x-ray beam properties also allows for electron bunch characterization on a femtosecond time scale

  6. Ultrashort hard x-ray pulses generated by 90 degrees Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chin, A.H. [Univ. of California, Berkeley, CA (United States); Schoenlein, R.W.; Glover, T.E. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Ultrashort x-ray pulses permit observation of fast structural dynamics in a variety of condensed matter systems. The authors have generated 300 femtosecond, 30 keV x-ray pulses by 90 degrees Thomson scattering between femtosecond laser pulses and relativistic electrons. The x-ray and laser pulses are synchronized on a femtosecond time scale, an important prerequisite for ultrafast pump-probe spectroscopy. Analysis of the x-ray beam properties also allows for electron bunch characterization on a femtosecond time scale.

  7. Ultra small angle scattering versus diffraction

    Science.gov (United States)

    Ebrahimi, O.; Treimer, W.; Strobl, M.; Feye-Treimer, U.; Beul, N.; Jericha, E.; Seidel, S. O.

    2010-11-01

    In the case of ultra small angle (neutron or x-ray) scattering (USANS, USAXS) it may happen that structures under investigations are not fully coherently illuminated by the incident wave. Despite this fact interference effects are observed similar to SAS data. In this case the measured scattering patterns must be different interpreted. We propose a procedure to calculate and adapt such scattering patterns to experimental data.

  8. Ultra small angle scattering versus diffraction

    International Nuclear Information System (INIS)

    Ebrahimi, O; Treimer, W; Strobl, M; Feye-Treimer, U; Beul, N; Jericha, E; Seidel, S O

    2010-01-01

    In the case of ultra small angle (neutron or x-ray) scattering (USANS, USAXS) it may happen that structures under investigations are not fully coherently illuminated by the incident wave. Despite this fact interference effects are observed similar to SAS data. In this case the measured scattering patterns must be different interpreted. We propose a procedure to calculate and adapt such scattering patterns to experimental data.

  9. New X-ray beam position monitors with submicron resolution utilizing imaging of scattered X-rays at CHESS

    International Nuclear Information System (INIS)

    Revesz, Peter; Temnykh, Alexander B.; Pauling, Alan K.

    2011-01-01

    At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.

  10. Creation of X-Ray Transparency of Matter by Stimulated Elastic Forward Scattering

    Science.gov (United States)

    Stöhr, J.; Scherz, A.

    2015-09-01

    X-ray absorption by matter has long been described by the famous Beer-Lambert law. Here, we show how this fundamental law needs to be modified for high-intensity coherent x-ray pulses, now available at x-ray free electron lasers, due to the onset of stimulated elastic forward scattering. We present an analytical expression for the modified polarization-dependent Beer-Lambert law for the case of resonant core-to-valence electronic transitions and incident transform limited x-ray pulses. Upon transmission through a solid, the resonant absorption and dichroic contrasts are found to vanish with increasing x-ray intensity, with the stimulation threshold lowered by orders of magnitude through a resonant superradiantlike effect. Our results have broad implications for the study of matter with x-ray lasers.

  11. X-ray scattering studies of lanthanides magnetism

    DEFF Research Database (Denmark)

    McMorrow, D.; Bohr, Jakob; Gibbs, D.

    1999-01-01

    Interest in the applications of X-ray synchrotron radiation has grown rapidly during the last decade. At the present time, intense, ultra-bright synchrotron radiation is available on a routine basis from third-generation sources located in Europe (ESRF), North America (APS) and Japan (Spring8). T...

  12. Small angle X-ray studies of protein-polymer interactions

    International Nuclear Information System (INIS)

    Torriani, Iris; Oliveira, Cristiano L.P. de; Almeida, Nara L.; Loh, Watson

    2003-01-01

    Full text: The interaction between biological macromolecules and non-adsorbing polymers is considered of utmost importance in the study of protein crystallization processes and in the study of a large number of protein-polymer systems or artificial surfaces used in medical procedures, in which polymeric materials are in contact with blood proteins. The structural information furnished by small angle X-ray scattering (SAXS) experiments can be used to describe protein-polymer interaction in solution mixtures considering the dispersion as a two-component system. In this work, two proteins, lysozyme and bovine serum albumin (BSA), were studied in the presence of Poly(ethylene oxide) (PEO), various EO/PO copolymers of varied composition and Poly(ethylene glycol) (PEG). Thermal stability of both lysozyme and BSA was studied in the presence of these polymers. X-ray scattering experiments were performed at the SAXS beamline of the Laboratorio Nacional de Luz Sincrotron, Campinas, SP, using the facility available for liquid dispersions under controlled temperature. Room temperature measurements were aimed at detecting possible polymer-protein interactions. Thermal denaturation processes were studied in some of these systems in order to check the stabilizing effect of some of the polymers used, at fixed temperatures of 25, 50, 60 and 70 deg C. At 80 deg C, using a real time data acquisition system, structural changes could be followed as a function of time in a sequence of frames that show denaturation and aggregation of the proteins. Real space analysis of the intensity functions was performed using a mathematical expression derived for the form factor of a system of particles of different shapes. The pair distance distribution functions of each component of the system could be calculated separately. The possibility of complex formation in the case of the proteins studied is not supported by our results. The presence of polymers may affect the protein-protein interaction

  13. Liquid X-ray scattering with a pink-spectrum undulator.

    Science.gov (United States)

    Bratos, S; Leicknam, J-Cl; Wulff, M; Khakhulin, D

    2014-01-01

    X-ray scattering from a liquid using the spectrum from the undulator fundamental is examined as a function of the bandwidth of the spectrum. The synchrotron-generated X-ray spectrum from an undulator is 'pink', i.e. quasi-monochromatic but having a saw-tooth-shaped spectrum with a bandwidth from 1 to 15%. It is shown that features in S(q) are slightly shifted and dampened compared with strictly monochromatic data. In return, the gain in intensity is 250-500 which makes pink beams very important for time-resolved experiments. The undulator spectrum is described by a single exponential with a low-energy tail. The tail shifts features in the scattering function towards high angles and generates a small reduction in amplitude. The theoretical conclusions are compared with experiments. The r-resolved Fourier transformed signals are discussed next. Passing from q- to r-space requires a sin-Fourier transform. The Warren convergence factor is introduced in this calculation to suppress oscillatory artifacts from the finite qM in the data. It is shown that the deformation of r-resolved signals from the pink spectrum is small compared with that due to the Warren factor. The q-resolved and the r-resolved pink signals thus behave very differently.

  14. Rayleigh scatter in kilovoltage x-ray imaging: is the independent atom approximation good enough?

    OpenAIRE

    Poludniowski, G; Evans, PM; Webb, S

    2009-01-01

    Monte Carlo simulation is the gold standard method for modelling scattering processes in medical x-ray imaging. General-purpose Monte Carlo codes, however, typically use the independent atom approximation (IAA). This is known to be inaccurate for Rayleigh scattering, for many materials, in the forward direction. This work addresses whether the IAA is sufficient for the typical modelling tasks in medical kilovoltage x-ray imaging. As a means of comparison, we incorporate a more realistic 'inte...

  15. Comparing industrial gauges based on neutron and X-ray scattering

    International Nuclear Information System (INIS)

    Bartle, C. Murray; Kroeger, Chris; West, John G.

    2006-01-01

    Neutron, gamma-ray and X-ray radiation scattering phenomena are used in gauges that measure the composition of industrial materials moving on industrial conveyers. Examples include measurement of water in wood chips using the simultaneous transmission of neutrons and gamma-rays and measurement of fat in meat using dual energy X-ray transmission. The scattering processes are modelled to enable the materials to be accurately assessed

  16. Magnetic and resonant X-ray scattering investigations of strongly correlated electron systems

    International Nuclear Information System (INIS)

    Paolasini, L.; Bergevin, F. de

    2008-01-01

    Resonant X-ray scattering is a method which combines high-Q resolution X-ray elastic diffraction and atomic core-hole spectroscopy for investigating electronic and magnetic long-range ordered structures in condensed matter. During recent years the development of theoretical models to describe resonant X-ray scattering amplitudes and the evolution of experimental techniques, which include the control and analysis of linear photon polarization and the introduction of extreme environment conditions such as low temperatures, high magnetic field and high pressures, have opened a new field of investigation in the domain of strongly correlated electron systems. (authors)

  17. X-ray generation by inverse Compton scattering at the superconducting RF test facility

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Hirotaka, E-mail: hirotaka@post.kek.jp [KEK, 1-1 Oho, Tsukuba 305-0801, Ibaraki (Japan); Akemoto, Mitsuo; Arai, Yasuo; Araki, Sakae; Aryshev, Alexander; Fukuda, Masafumi; Fukuda, Shigeki; Haba, Junji; Hara, Kazufumi; Hayano, Hitoshi; Higashi, Yasuo; Honda, Yosuke; Honma, Teruya; Kako, Eiji; Kojima, Yuji; Kondo, Yoshinari; Lekomtsev, Konstantin; Matsumoto, Toshihiro; Michizono, Shinichiro; Miyoshi, Toshinobu [KEK, 1-1 Oho, Tsukuba 305-0801, Ibaraki (Japan); and others

    2015-02-01

    Quasi-monochromatic X-rays with high brightness have a broad range of applications in fields such as life sciences, bio-, medical applications, and microlithography. One method for generating such X-rays is via inverse Compton scattering (ICS). X-ray generation experiments using ICS were carried out at the superconducting RF test facility (STF) accelerator at KEK. A new beam line, newly developed four-mirror optical cavity system, and new X-ray detector system were prepared for experiments downstream section of the STF electron accelerator. Amplified pulsed photons were accumulated into a four-mirror optical cavity and collided with an incoming 40 MeV electron beam. The generated X-rays were detected using a microchannel plate (MCP) detector for X-ray yield measurements and a new silicon-on-insulator (SOI) detector system for energy measurements. The detected X-ray yield by the MCP detector was 1756.8±272.2 photons/(244 electron bunches). To extrapolate this result to 1 ms train length under 5 Hz operations, 4.60×10{sup 5} photons/1%-bandwidth were obtained. The peak X-ray energy, which was confirmed by the SOI detector, was 29 keV, and this is consistent with ICS X-rays.

  18. SU-E-I-44: Some Preliminary Analysis of Angular Distribution of X-Ray Scattered On Soft Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Ganezer, K; Krmar, M; Cvejic, Z; Rakic, S; Pajic, B [University of Novi Sad, Novi Sad Serbia (Serbia)

    2015-06-15

    Purpose: The angular distribution of x-radiation scattered at small angles (up to 16 degrees) from several different animal soft tissue (skin, fat, muscle, retina, etc) were measured using standard equipment devoted to study of crystal structure which provides excellent geometry conditions of measurements. showed measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Methods: An x-ray scattering profile usually consists of sharp diffraction peak; however some properties of the spatial profiles of scattered radiation as intensity, the peak position, height, area, FWHM, the ratio of peak heights, etc. Results: The data contained measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Measurements of different samples in the very preliminary phase showed that simple biological material used in study showed slightly different scattering pattern, especially at higher angles (around 10degrees). Intensity of radiation scattered from same tissue type is very dependent on water content and several more parameters. Conclusion: This preliminary study using animal soft tissues on the angular distributions of scattered x-rays suggests that angular distributions of X-rays scattered off of soft tissues might be useful in distinguishing healthy tissue from malignant soft tissue.

  19. Unraveling skyrmion spin texture using resonant soft x-ray scattering

    Science.gov (United States)

    Roy, Sujoy

    2015-03-01

    The recent discovery of skyrmions, that were originally predicted in context of high energy physics, in magnetic materials has sparked tremendous interest in the research community due to its rich physics and potential in spintronics applications. Skyrmions have an unusual spin texture that manifests as magnetic knot and can be easily moved around. Understanding the fundamental physics and mechanisms for controlling their dynamical properties presents important scientific challenges. So far experimental verifications of the skyrmions in magnetic systems have come from neutron scattering and Lorentz transmission electron microscopy (TEM) measurements. In this talk we report the first observation of the skyrmions using resonant soft x-ray scattering. We have used soft x-rays tuned to the Cu L3 edge to diffract off the skyrmion lattice in a multiferroic Cu2OSeO3 compound. We show that in Cu2OSeO3 there exist two skyrmion lattices arising due to the two inequivalent Cu-O sublattices that have two different magnetically active d-orbitals. The two skyrmion sublattices are mutually rotated with respect to each other. The angle of rotation could be changed by an external magnetic field, thereby indicating possible existence of a new phase. We have also studied skyrmion spin texture in an ultra-thin Fe/Gd multilayer that shows perpendicular anisotropy. The Fe/Gd sample exhibits a near perfect aligned stripe phase. Within a small range of temperature and magnetic field we observe a hexagonal scattering pattern due to skyrmion bubbles. Analysis of the scattering pattern suggests that the skyrmion lattice unit cell contains two skyrmions. The biskyrmion state is also revealed by Lorentz TEM images. The near room temperature discovery of skyrmion in a technology relevant material is a significant step towards using skyrmions in magnetic devices. Work at LBNL was supported by the Office of Basic Energy Sciences of the U.S. Department of Energy (Contract No. DE-AC02-05CH11231).

  20. X-ray scattering and the chemical bond in N2 and CN

    NARCIS (Netherlands)

    Groenewegen, P.P.M.; Zeevalkink, J.; Feil, D.

    1971-01-01

    X-ray scattering from the chemical bond within N2 and CN- has been studied in detail. Differences in scattering from these systems, derived from bonding and non-bonding models, are characterized by R values of ~ 0.04. Partitioning of the scattering into core and valence electron parts clearly

  1. Analysis of urinary stone components by x-ray coherent scatter: characterizing composition beyond laboratory x-ray diffractometry

    International Nuclear Information System (INIS)

    Davidson, Melanie T M; Batchelar, Deidre L; Velupillai, Sujeevan; Denstedt, John D; Cunningham, Ian A

    2005-01-01

    Monoenergetic x-ray diffraction (XRD) analysis is an established standard for the assessment of urinary stone composition. The inherent low energy of x-rays used (8 keV), however, restricts penetration depth and imposes a requirement for small powdered samples. A technique capable of producing detailed information regarding component structural arrangements in calculi non-destructively would provide clearer insights into causes of formation and subsequent growth and allow the selection of more appropriate courses of therapy. We describe a new method based on the detection of coherent scatter (CS) in stone components using polyenergetic x-rays (70 kVp) from diagnostic equipment. While the higher energy allows the analysis of intact calculi, the polyenergetic source causes an angular broadening of measured CS patterns. We show that it is possible to relate the polyenergetic (CS) and monoenergetic (XRD) measurements through a superposition integral of the monoenergetic XRD cross-section with a function representative of the polyenergetic spectrum used in CS. Experimentally acquired diffractometry cross-sections of the seven major urinary stone components were subjected to this operation, revealing good agreement of diffraction features with CS. Therefore, our CS analysis is sensitive to stone component structure, similar to conventional XRD analysis. This indicates that CS analysis can be used as a basis to classify urinary calculi by composition. The potential of identifying stone components non-destructively was demonstrated from a tomographic CS analysis of a stone-mimicking phantom. Tomographic composition maps were generated from CS patterns, showing the structural arrangement of multiple stone components within the phantom. CS analysis has the ability to detect components in the presence of many others. The ability to perform CS measurements in intact calculi would allow for the identification of stone structures critical to patient metaprophylaxis

  2. Biplanar variable angle x-ray examining apparatus

    International Nuclear Information System (INIS)

    Grady, J.K.

    1986-01-01

    This invention relates to radiological equipment, particularly to apparatus for supporting and maneuvering a plurality of radiological examination sets to permit simultaneous or sequential exposure through different planes of an organ. The apparatus comprises: a first radiological examining set including a radiation source, receptor, and support for holding the source and receptor along an axis; and a second examining set with the source and receptor aligned to intersect the first axis at a common isocenter. The first support means is rotatable independently of the second support means about a rotational axis intersecting the common isocenter. The support means for one radiological examining set comprises two arms respectively carrying the radiation source and the radiation receptor of the one set and means reciprocally supporting the respective arms for movement independently of each other parallel to the rotational axis, whereby a series of substantially simultaneous radiological examinations can be made on both radiation axes through the subject at variable angles between the axes

  3. Improvement of a high pressure cell with diamond windows for solution X-ray scattering of proteins

    CERN Document Server

    Nishikawa, Y; Inoko, Y; Moritoki, M

    2001-01-01

    An improved high pressure (up to 500 MPa) cell with diamond windows was developed for small-angle X-ray scattering of protein solutions. When the diamond window was subjected to high pressure, many streaks of parasitic scattering appeared. By changing the wavelength and performing simulations, it was concluded that they are Kossel lines. In order to obtain quantitative scattering data, it is essential that Kossel lines do not interfere with the beamstop. The performance of the improved cell was tested by using Apo-ferritin solutions.

  4. Recent improvements in small angle x-ray diffraction for the study of muscle physiology

    Science.gov (United States)

    Reconditi, Massimo

    2006-10-01

    The molecular mechanism of muscle contraction is one of the most important unresolved problems in biology and biophysics. Notwithstanding the great advances of recent years, it is not yet known in detail how the molecular motor in muscle, the class II myosin, converts the free energy of ATP hydrolysis into work by interacting with its track, the actin filament; neither is it understood how the high efficiency in energy conversion depends on the cooperative action of myosin motors working in parallel along the actin filament. Research in muscle contraction involves the combination of mechanical, biochemical and structural methods in studies that span from tissue to single molecule. Therefore, more than for any other research field, progress in the comprehension of muscle contraction at the molecular level is related to, and in turn contributes to, the advancement of methods in biophysics. This review will focus on the progress achieved by time-resolved small angle x-ray scattering (SAXS) from muscle, an approach made possible by the highly ordered arrangement of both the contractile proteins myosin and actin in the ca 2 µm long structural unit, the sarcomere, that repeats along the whole length of the muscle cell. Among time-resolved structural techniques, SAXS has proved to be the most powerful method of investigation, as it allows the molecular motor to be studied in situ, in intact single muscle cells, where it is possible to combine the structural study with fast mechanical methods that synchronize the action of the molecular motors. The latest development of this technique allows Angstrom-scale measurements of the axial movement of the motors that pull the actin filament towards the centre of the sarcomere, by exploiting the x-ray interference between the two arrays of myosin motors in the two halves of the sarcomere.

  5. Recent improvements in small angle x-ray diffraction for the study of muscle physiology

    Energy Technology Data Exchange (ETDEWEB)

    Reconditi, Massimo [Universita di Firenze, Lab di Fisiologia - DBAG, c/o Dip. di Fisica, via Sansone 1, I-50019 Sesto Fiorentino (Italy)

    2006-10-15

    The molecular mechanism of muscle contraction is one of the most important unresolved problems in biology and biophysics. Notwithstanding the great advances of recent years, it is not yet known in detail how the molecular motor in muscle, the class II myosin, converts the free energy of ATP hydrolysis into work by interacting with its track, the actin filament; neither is it understood how the high efficiency in energy conversion depends on the cooperative action of myosin motors working in parallel along the actin filament. Research in muscle contraction involves the combination of mechanical, biochemical and structural methods in studies that span from tissue to single molecule. Therefore, more than for any other research field, progress in the comprehension of muscle contraction at the molecular level is related to, and in turn contributes to, the advancement of methods in biophysics. This review will focus on the progress achieved by time-resolved small angle x-ray scattering (SAXS) from muscle, an approach made possible by the highly ordered arrangement of both the contractile proteins myosin and actin in the ca 2 {mu}m long structural unit, the sarcomere, that repeats along the whole length of the muscle cell. Among time-resolved structural techniques, SAXS has proved to be the most powerful method of investigation, as it allows the molecular motor to be studied in situ, in intact single muscle cells, where it is possible to combine the structural study with fast mechanical methods that synchronize the action of the molecular motors. The latest development of this technique allows Angstrom-scale measurements of the axial movement of the motors that pull the actin filament towards the centre of the sarcomere, by exploiting the x-ray interference between the two arrays of myosin motors in the two halves of the sarcomere.

  6. Charge and orbital ordered states studied by using x-ray anomalous scattering terms

    CERN Document Server

    Nakao, H

    2002-01-01

    Recently, the studies utilizing anomalous scattering term of atomic scattering factor near absorption edge, so called x-ray anomalous scattering and resonant x-ray scattering, have been rapidly developed. This technique has especially contributed to the determination of the charge-orbital ordered structure in strongly correlated electron system. In this paper, we present the typical examples - the charge ordering of V sup 4 sup + and V sup 5 sup + in NaV sub 2 O sub 5 and the antiferro-quadrupole ordering (orbital ordering) of Ge sup 3 sup + ions in CeB sub 6 (author)

  7. Solution x-ray scattering and structure formation in protein dynamics

    Science.gov (United States)

    Nasedkin, Alexandr; Davidsson, Jan; Niemi, Antti J.; Peng, Xubiao

    2017-12-01

    We propose a computationally effective approach that builds on Landau mean-field theory in combination with modern nonequilibrium statistical mechanics to model and interpret protein dynamics and structure formation in small- to wide-angle x-ray scattering (S/WAXS) experiments. We develop the methodology by analyzing experimental data in the case of Engrailed homeodomain protein as an example. We demonstrate how to interpret S/WAXS data qualitatively with a good precision and over an extended temperature range. We explain experimental observations in terms of protein phase structure, and we make predictions for future experiments and for how to analyze data at different ambient temperature values. We conclude that the approach we propose has the potential to become a highly accurate, computationally effective, and predictive tool for analyzing S/WAXS data. For this, we compare our results with those obtained previously in an all-atom molecular dynamics simulation.

  8. X-RAY VARIABILITY STUDY OF POLAR SCATTERED SEYFERT1 GALAXIES

    Directory of Open Access Journals (Sweden)

    Tobias Beuchert

    2014-08-01

    Full Text Available We study 12 Seyfert 1 galaxies with a high level of optical polarization. Optical light emerging from the innermost regions is predominantly scattered in a polar region above the central engine directly in our line of sight. These sources show characteristics of Seyfert 2 galaxies, e.g. polarized broad lines. The polarization signatures suggest a viewing angle of 45°, classifying them as intermediate Seyfert 1/2 types. The unified model predicts this line of sight to pass through the outer layer of the torus resulting in significant soft X-ray variability due to a strongly varying column density. The aim is to find evidence for this geometrical assumption in the spectral variability of all available historical observations of these sources by XMM-Newton and Swift.

  9. Liquid structure of trihexyltetradecylphosphonium chloride at ambient temperature: an X-ray scattering and simulation study.

    Science.gov (United States)

    Gontrani, Lorenzo; Russina, Olga; Celso, Fabrizio Lo; Caminiti, Ruggero; Annat, Gary; Triolo, Alessandro

    2009-07-09

    We report on an experimental and simulation study done on a representative room temperature ionic liquid, namely tetradecyltrihexylphosphonium chloride, at ambient conditions. The study was conducted using small and wide angle X-ray scattering and molecular dynamics simulations. Both approaches converge in indicating that this material is characterized by the existence of strong P-Cl interactions (with characteristic distances between 3.5 and 5.0 A) and by the occurrence of nanoscale segregation, despite the symmetric nature of the cation and similarly to other room temperature ionic liquids. A good agreement is found between the structure factor and pair correlation functions obtained from MD simulations and the corresponding experimental observables, thus strongly validating the interaction potential used in the simulations.

  10. Evaluation of stress gradient by x-ray stress measurement based on change in angle phi

    International Nuclear Information System (INIS)

    Sasaki, Toshihiko; Kuramoto, Makoto; Yoshioka, Yasuo.

    1985-01-01

    A new principle of X-ray stress evaluation for a sample with steep stress gradient has been prosed. The feature of this method is that the stress is determined by using so-called phi-method based on the change of phi-angle and thus has no effect on the penetration depth of X-rays. The procedure is as follows; firstly, an average stress within the penetration depth of X-rays is determined by changing only phi-angle under a fixed psi-angle, and then a distribution of the average stress vs. the penetration depth of X-rays is detected by repeating the similar procedure at different psi-angles. The following conclusions were found out as the result of residual stress measurements on a carbon steel of type S 55 C polished by emery paper. This method is practical enough to use for a plane stress problem. And the assumption of a linear stress gradient adopted in the authors' previous investigations is valid. In case of a triaxial stress analysis, this method is effective for the solution of three shearing stresses. However, three normal stresses can not be solved perfectly except particular psi-angles. (author)

  11. Small angles X-ray diffraction and Mössbauer characterization of ...

    Indian Academy of Sciences (India)

    The effect of thermal annealing on the structure and magnetic properties of crystalline Tb/Fe multilayers has been studied using conversion electron Mössbauer spectrometry and small-angle X-ray diffraction. The growth of Tb–Fe amorphous alloy from the interface is observed with increasing annealing temperature.

  12. A simple model for dynamic small-angle X-ray diffraction in colloidal crystals

    NARCIS (Netherlands)

    de Beer, A.G.F.; Petukhov, A.V.

    2007-01-01

    A simple model is presented that allows calculation of the small-angle X-ray diffraction patterns of perfect colloidal crystals. The model is based on the Wentzel–Kramers–Brillouin approximation and permits a straightforward evaluation of multibeam interactions. Results are illustrated by several

  13. Small angles X-ray diffraction and Mössbauer characterization of ...

    Indian Academy of Sciences (India)

    Abstract. The effect of thermal annealing on the structure and magnetic properties of crystalline Tb/Fe multilayers has been studied using conversion electron Mössbauer spectrometry and small-angle X-ray diffraction. The growth of Tb–Fe amorphous alloy from the interface is observed with increasing annealing ...

  14. Structural characterization of cellulosic materials using x-ray and neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Penttila, P.

    2013-11-01

    Cellulosic biomass can be used as a feedstock for sustainable production of biofuels and various other products. A complete utilization of the raw material requires understanding on its structural aspects and their role in the various processes. In this thesis, x-ray and neutron scattering methods were applied to study the structure of various cellulosic materials and how they are affected in different processes. The obtained results were reviewed in the context of a model for the cellulose nanostructure. The dimensions of cellulose crystallites and the crystallinity were determined with wide-angle x-ray scattering (WAXS), whereas the nanoscale fibrillar structure of cellulose was characterized with small-angle x-ray and neutron scattering (SAXS and SANS). The properties determined with the small-angle scattering methods included specific surface areas and distances characteristic of the packing of cellulose microfibrils. Also other physical characterization methods, such as x-ray microtomography, infrared spectroscopy, and solid-state NMR were utilized in this work. In the analysis of the results, a comprehensive understanding of the structural changes throughout a range of length scales was aimed at. Pretreatment of birch sawdust by pressurized hot water extraction was observed to increase the crystal width of cellulose, as determined with WAXS, even though the cellulose crystallinity was slightly decreased. A denser packing of microfibrils caused by the removal of hemicelluloses and lignin in the extraction was evidenced by SAXS. This resulted in the opening of new pores between the microfibril bundles and an increase of the specific surface area. Enzymatic hydrolysis of microcrystalline cellulose (MCC) did not lead to differences in the average crystallinity or crystal size of the hydrolysis residues, which was explained to be caused by limitations due to the large size of the enzymes as compared to the pores inside the fibril aggregates. The SAXS intensities

  15. LIGHT SOURCE: A simulation study of Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Tang, Chuan-Xiang; Li, Ren-Kai; Huang, Wen-Hui; Chen, Huai-Bi; Du, Ying-Chao; Du, Qiang; Du, Tai-Bin; He, Xiao-Zhong; Hua, Jian-Fei; Lin, Yu-Zhen; Qian, Hou-Jun; Shi, Jia-Ru; Xiang, Dao; Yan, Li-Xin; Yu, Pei-Cheng

    2009-06-01

    Thomson scattering X-ray sources are compact and affordable facilities that produce short duration, high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies, and also medical and industrial applications. Such a facility has been built at the Accelerator Laboratory of Tsinghua University, and upgrade is in progress. In this paper, we present a proposed layout of the upgrade with design parameters by simulation, aiming at high X-ray pulses flux and brightness, and also enabling advanced dynamics studies and applications of the electron beam. Design and construction status of main subsystems are also presented.

  16. A high-energy-resolution resonant inelastic X-ray scattering spectrometer at ID20 of the European Synchrotron Radiation Facility.

    Science.gov (United States)

    Moretti Sala, M; Martel, K; Henriquet, C; Al Zein, A; Simonelli, L; Sahle, Ch J; Gonzalez, H; Lagier, M C; Ponchut, C; Huotari, S; Verbeni, R; Krisch, M; Monaco, G

    2018-03-01

    An end-station for resonant inelastic X-ray scattering and (resonant) X-ray emission spectroscopy at beamline ID20 of ESRF - The European Synchrotron is presented. The spectrometer hosts five crystal analysers in Rowland geometry for large solid angle collection and is mounted on a rotatable arm for scattering in both the horizontal and vertical planes. The spectrometer is optimized for high-energy-resolution applications, including partial fluorescence yield or high-energy-resolution fluorescence detected X-ray absorption spectroscopy and the study of elementary electronic excitations in solids. In addition, it can be used for non-resonant inelastic X-ray scattering measurements of valence electron excitations.

  17. Ion chamber area monitor for low level scattered x-rays

    International Nuclear Information System (INIS)

    Fergus, R.W.; Robinet, M.J.

    1978-01-01

    An economical, high confidence instrument was developed for laboratories using low energy x-rays. The instrument detects increases in background caused by scattered radiation. Exposure rates close to the open part of the x-ray tubes are of the order of 10 3 to 10 6 R/min. A few meters away the background is a few tenths of a mR/hr

  18. Optimization of the genetic algorithm of jointly fitting different types of X-ray scattering curves

    International Nuclear Information System (INIS)

    Sutyrin, A. G.; Imamov, R. M.

    2011-01-01

    A method for jointly processing X-ray scattering data of different types is developed. It is shown that, by optimizing the genetic algorithm of the joint solution of the inverse problem of X-ray diffractometry and reflectometry, one can reduce the amount of calculations and reliably determine the parameters of layers in the structure under study, even when the information about them is a priori limited.

  19. Resonant X-ray Raman scattering on molecules: A benchmark study on HCl

    International Nuclear Information System (INIS)

    Carniato, Stephane; Taieb, Richard; Journel, Loic; Guillemin, Renaud; Stolte, Wayne C.; Lindle, Dennis W.; Gel'mukhanov, Faris; Simon, Marc

    2010-01-01

    Resonant X-ray Raman scattering is a powerful tool to study molecular dynamics and subtle chemical effects like the molecular field beyond vibrational and lifetime limitations. Using this technique in the tender X-ray region, gas phase HCl is studied as a benchmark molecule for other compounds like freons, which play an important role in physical-chemical properties of the ozone layer of atmosphere.

  20. Resonant X-ray Raman scattering on molecules: A benchmark study on HCl

    Energy Technology Data Exchange (ETDEWEB)

    Carniato, Stephane [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); Taieb, Richard, E-mail: richard.taieb@upmc.f [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); Journel, Loic; Guillemin, Renaud [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); Stolte, Wayne C.; Lindle, Dennis W. [Department of Chemistry, University of Nevada, Las Vegas, NV 89154-4003 (United States); Gel' mukhanov, Faris [Theoretical Chemistry, Roslagstullsbacken 15, Royal Institute of Technology, S-106 91 Stockholm (Sweden); Simon, Marc [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France)

    2010-08-15

    Resonant X-ray Raman scattering is a powerful tool to study molecular dynamics and subtle chemical effects like the molecular field beyond vibrational and lifetime limitations. Using this technique in the tender X-ray region, gas phase HCl is studied as a benchmark molecule for other compounds like freons, which play an important role in physical-chemical properties of the ozone layer of atmosphere.