WorldWideScience

Sample records for angle x-ray scattering

  1. Small angle X-ray scattering from hydrating tricalcium silicate

    International Nuclear Information System (INIS)

    The small-angle X-ray scattering technique was used to study the structural evolution of hydrated tricalcium silicate at room temperature. The changes in specific area of the associated porosity and the evolution of density fluctuations in the solid hydrated phase were deduced from the scattering data. A correlation of these variations with the hydration mechanism is tried. (Author)

  2. Low angle X-ray scattering

    International Nuclear Information System (INIS)

    The theoretical and experimental problems appearing in diffraction experiments at very low angles by several kinds of materials are discussed. The importance of synchrotron radiation in such problems is shown. (L.C.)

  3. Small-angle X-ray scattering of solutions

    International Nuclear Information System (INIS)

    The use of synchrotron radiation in small-angle X-ray scattering (SAXS) techniques in biological structural studies is described. The main features of the monochromatic radiation systems and the white radiation systems are considered. The detectors, data acquisition and experimental procedures are briefly described. Experimental results are presented for 1) measurements on dilute solutions and weak scatterers, 2) measurement of conformational transitions, 3) contrast variation experiments, 4) time-resolved measurements and 5) complex contrast variation. (U.K.)

  4. Small angle x-ray scattering with edge-illumination

    Science.gov (United States)

    Modregger, Peter; Cremona, Tiziana P.; Benarafa, Charaf; Schittny, Johannes C.; Olivo, Alessandro; Endrizzi, Marco

    2016-08-01

    Sensitivity to sub-pixel sample features has been demonstrated as a valuable capability of phase contrast x-ray imaging. Here, we report on a method to obtain angular-resolved small angle x-ray scattering distributions with edge-illumination- based imaging utilizing incoherent illumination from an x-ray tube. Our approach provides both the three established image modalities (absorption, differential phase and scatter strength), plus a number of additional contrasts related to unresolved sample features. The complementarity of these contrasts is experimentally validated by using different materials in powder form. As a significant application example we show that the extended complementary contrasts could allow the diagnosis of pulmonary emphysema in a murine model. In support of this, we demonstrate that the properties of the retrieved scattering distributions are consistent with the expectation of increased feature sizes related to pulmonary emphysema. Combined with the simplicity of implementation of edge-illumination, these findings suggest a high potential for exploiting extended sub-pixel contrasts in the diagnosis of lung diseases and beyond.

  5. Low-angle X-ray scattering from spices

    Science.gov (United States)

    Desouky, Omar S.; Ashour, Ahmed H.; Abdullah, Mohamed I.; Elshemey, Wael M.

    2002-07-01

    Low-angle scattering of X-rays is characterized by the presence of one or more peaks in the forward direction of scattering. These peaks are due to the interference of photons coherently scattered from the molecules of the medium. Thus these patterns are closely linked to the molecular structure of the investigated medium. In this work, low-angle X-ray scattering (LAXS) profiles of five spices; pimpinella anisum (anise), coriandrum sativum (coriander), cuminum cyminum (cumin), foenculum vulgare (fennel) and nigella sativa (nigella or black cumin) are presented after extensive measurements. It is found that all spices exhibit one characteristic peak at a scattering angle around 10°. This is equivalent to a value x=0.0565 Å -1, where x=sin( θ⧸2)⧸ λ. The full width at half maximum (FWHM) of this peak is found to be characteristic for each type of the investigated spices. The possibility to detect the irradiation of these spices from their LAXS profiles is also examined after 10, 20, 30 and 40 kGy doses of gamma radiation. Except for anise, coriander and cumin at 40 kGy, there are no detectable deviations from the control samples in the scattering profiles of irradiated samples. These results comply with the recommendations of the FDA (US Food and Drug Administration) which defines 30 kGy as the maximum dose for irradiation of spices. The present technique could be used to detect over-irradiation, which causes damage to the molecular structure of some spices.

  6. Low-angle X-ray scattering from spices

    International Nuclear Information System (INIS)

    Low-angle scattering of X-rays is characterized by the presence of one or more peaks in the forward direction of scattering. These peaks are due to the interference of photons coherently scattered from the molecules of the medium. Thus these patterns are closely linked to the molecular structure of the investigated medium. In this work, low-angle X-ray scattering (LAXS) profiles of five spices; pimpinella anisum (anise), coriandrum sativum (coriander), cuminum cyminum (cumin), foenculum vulgare (fennel) and nigella sativa (nigella or black cumin) are presented after extensive measurements. It is found that all spices exhibit one characteristic peak at a scattering angle around 10 deg. This is equivalent to a value x=0.0565 A-1, where x=sin(θ/2)/λ. The full width at half maximum (FWHM) of this peak is found to be characteristic for each type of the investigated spices. The possibility to detect the irradiation of these spices from their LAXS profiles is also examined after 10, 20, 30 and 40 kGy doses of gamma radiation. Except for anise, coriander and cumin at 40 kGy, there are no detectable deviations from the control samples in the scattering profiles of irradiated samples. These results comply with the recommendations of the FDA (US Food and Drug Administration) which defines 30 kGy as the maximum dose for irradiation of spices. The present technique could be used to detect over-irradiation, which causes damage to the molecular structure of some spices

  7. Low-angle X-ray scattering from spices

    Energy Technology Data Exchange (ETDEWEB)

    Desouky, O.S. E-mail: omardesouky@yahoo.com; Ashour, Ahmed H.; Abdullah, Mohamed I.; Elshemey, Wael M

    2002-07-01

    Low-angle scattering of X-rays is characterized by the presence of one or more peaks in the forward direction of scattering. These peaks are due to the interference of photons coherently scattered from the molecules of the medium. Thus these patterns are closely linked to the molecular structure of the investigated medium. In this work, low-angle X-ray scattering (LAXS) profiles of five spices; pimpinella anisum (anise), coriandrum sativum (coriander), cuminum cyminum (cumin), foenculum vulgare (fennel) and nigella sativa (nigella or black cumin) are presented after extensive measurements. It is found that all spices exhibit one characteristic peak at a scattering angle around 10 deg. This is equivalent to a value x=0.0565 A{sup -1}, where x=sin({theta}/2)/{lambda}. The full width at half maximum (FWHM) of this peak is found to be characteristic for each type of the investigated spices. The possibility to detect the irradiation of these spices from their LAXS profiles is also examined after 10, 20, 30 and 40 kGy doses of gamma radiation. Except for anise, coriander and cumin at 40 kGy, there are no detectable deviations from the control samples in the scattering profiles of irradiated samples. These results comply with the recommendations of the FDA (US Food and Drug Administration) which defines 30 kGy as the maximum dose for irradiation of spices. The present technique could be used to detect over-irradiation, which causes damage to the molecular structure of some spices.

  8. Small-angle X-ray scattering of filled rubber

    International Nuclear Information System (INIS)

    The addition of fillers such as carbon black and silica in rubber shows reinforcement effects, which increase modulus of elasticity, tensile strength, and cracking resistance. The mechanism of the reinforcement has not yet been understood. A filter composes a hierarchical structure in rubber, where primary particles form aggregates and the aggregates from agglomerates. The structures of the aggregates and agglomerates, on a size of 100 μm∼10 μm, are considered to be the origins of the reinforcement. A two-dimensional ultra-small-angle x-ray scattering (2D-USAXS) system is a promising tool for the observation of the structural change on a size of 100 nm∼10 μm and has been installed in the SPring-8 storage ring. The combination of 2D-USAXS and viscoelastic measurements for styrene-butadiene rubber reveals the relationship between the aggregate structure and reinforcement. The energy dissipation mechanism of fillers will be resolved on the basis of the fluctuation-dissipation theorem from the observation of the fluctuation of fillers by the time-resolved spectra of the coherent microbeam x-ray small angle scattering. (Y.K.)

  9. X-ray absorption spectroscopy and small-angle x-ray scattering studies of metal nanoparticles using synchrotron radiation

    International Nuclear Information System (INIS)

    The synchrotron-radiation-based techniques of x-ray absorption spectroscopy and small-angle x-ray scattering are ideally suited to the characterisation of nanoparticles. Their combined application to study the structural and vibrational properties of elemental metal nanoparticles embedded in silica is described here

  10. Microfluidics for small angle x-ray scattering experiments

    International Nuclear Information System (INIS)

    Full text: Small Angle X-ray Scattering (SAXS) is a powerful technique which provides structural information on samples with characteristic size between ten and few thousand Angstroms. Therefore, it can be successfully employed in various fields such as material science (e.g. design of new nano-structured materials) or biology (e.g. structural characterization of biological processes). Recent developments in this method and novel x-ray detectors made it possible to conduct measurements in the regime of very short time-scales, very broad resolution range and to work with nanometer beam sizes. Micro and nano fabrication techniques permit the design and fabrication of new microfluidic devices and systems relying on different physical principles than on the macroscale, enabling to precisely control biological and chemical entities. Moreover, microfluidics lead to reduced sample and reagent consumption. By creating a strong synergy between state of the art microtechnology and advanced measurement and manipulation techniques is thus possible to access new fields of investigation. Our activity aims at the design, fabrication and test of microfluidic prototypes focusing on a versatile, modular set-up to be adopted in various research areas, i.e. chemistry and biology. In this communication, two microfluidic devices will be presented. The first is a rapid mixing device with a free jet flow for studying ultrafast chemical reactions by SAXS. The second is a microfluidic cell for the study of localized biological nanostructures by means of SAXS and laser tweezers which are a scientific instrument using a focused laser beam to provide an attractive or repulsive force, to physically hold and move microscopic objects. (author)

  11. Magnetic nanoparticles studied by small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cristiano Luis Pinto [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Grupo de Fluidos Complexos; Antonel, Soledad; Negri, Martin [Universidad de Buenos Aires (UBA) (Argentina). Facultad de Ciencias Exactas y Naturales. Dept. de Quimica Inorganica, Analitica y Quimica Fisica

    2011-07-01

    nanoparticles are very interesting because they exhibit magnetic (ferromagnetic) and electrical properties in the same material. Then, the nickel nanoparticles could be used for the development of electroelastic materials. In this case, the electrical conductivity of the material can be strongly dependent on the applied magnetic field, for example the case of nickel metal nanoparticles dispersed in a polymer, resulting in an anisotropic material with combined piezomagnetic and piezoelectric properties. In order to investigate the structural characteristics of cobalt-iron oxides and nickel nanoparticles, powder samples of those magnetic materials were studied by Small-Angle X-Ray Scattering. As will be shown, from the analysis and modeling of the scattering data, structural information could be obtained, enabling a detailed description of the structural properties of the studied samples which could be directly correlated to the magnetic properties. (author)

  12. Magnetic nanoparticles studied by small angle X-ray scattering

    International Nuclear Information System (INIS)

    they exhibit magnetic (ferromagnetic) and electrical properties in the same material. Then, the nickel nanoparticles could be used for the development of electroelastic materials. In this case, the electrical conductivity of the material can be strongly dependent on the applied magnetic field, for example the case of nickel metal nanoparticles dispersed in a polymer, resulting in an anisotropic material with combined piezomagnetic and piezoelectric properties. In order to investigate the structural characteristics of cobalt-iron oxides and nickel nanoparticles, powder samples of those magnetic materials were studied by Small-Angle X-Ray Scattering. As will be shown, from the analysis and modeling of the scattering data, structural information could be obtained, enabling a detailed description of the structural properties of the studied samples which could be directly correlated to the magnetic properties. (

  13. Investigations of time resolved x-ray wide-angle scattering and x-ray small-angle scattering at DESY

    International Nuclear Information System (INIS)

    Instrumentation is described for the simultaneous wide-angle and small-angle x-ray scattering. The method was applied to the study of the isothermal crystallization of polyethylene terephthalates. In agreement with the classical theories of crystallization, the data showed that the density difference between the crystals and the non-crystalline regions does not change with time. The mechanisms of melting, recrystallization, and crystal thickening were investigated by small-angle x-ray scattering with stepwise changes and continuous changes of temperature using polyethylene terephthalate

  14. Precipitation study in thin layers by grazing small-angle scattering of X-rays

    OpenAIRE

    Slimani, T.; Thoft, N.; Naudon, A.

    1993-01-01

    Studies of thin layer by small-angle scattering of X-rays in the transmission mode give weak intensities because the X-ray path is short. Grazing-incidence X-ray scattering circumvents this difficulty for the analysis of a thin layer deposited on a substrate. Furthermore, for a bulk sample, grazing incidence is the only way to study the surface layer, and the penetration depth can be controlled by the incidence angle of the X-ray beam. In this study, we report on krypton and xenon bubbles whi...

  15. X-ray imaging based on small-angle X-ray scattering using spatial coherence of parametric X-ray radiation

    International Nuclear Information System (INIS)

    X-ray imaging based on small-angle X-ray scattering (SAXS) was carried out using the parametric X-ray radiation (PXR) source at the Laboratory for Electron Beam Research and Application (LEBRA) of Nihon University. The experimental setup employed in this novel imaging approach is the same as that employed in diffraction-enhanced imaging (DEI), a kind of X-ray phase-contrast imaging method. In SAXS-based imaging, the image contrast is correlated with the broadening of the rocking curve peak due to the scattering from micron- or sub-micron-sized grains in the sample material. An experiment using the 25.5-keV PXR beam demonstrated that SAXS-based imaging with PXR provides a substantially strong contrast for granular materials despite the extremely low density of the material.

  16. Feasibility Study on Anomalous Small-Angle X-ray Scattering near Sulphur K-edge

    International Nuclear Information System (INIS)

    Anomalous small-angle X-ray scattering (ASAXS) is expected to be a powerful and vital tool for the structural study of soft matter. We investigated feasibility of ASAXS near sulphur K absorption edge at SPring-8. Scattering pattern was successfully obtained and the dependence of scattering intensity on the energy of X-ray well agreed with the calculated one. This study can be the basis of structural study of soft matter using ASAXS, especially non-crystalline/amorphous materials.

  17. X-ray crystal structure and small-angle X-ray scattering of sheep liver sorbitol dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Yennawar, Hemant [Pennsylvania State University, 8 Althouse Laboratory, University Park, PA 16802 (United States); Møller, Magda [Cornell High Energy Synchrotron Source, Ithaca, NY 14853 (United States); University of Copenhagen, DK-2100 Copenhagen (Denmark); Gillilan, Richard [Cornell High Energy Synchrotron Source, Ithaca, NY 14853 (United States); Yennawar, Neela, E-mail: nhy1@psu.edu [Pennsylvania State University, 8 Althouse Laboratory, University Park, PA 16802 (United States)

    2011-05-01

    The X-ray crystal structure and a small-angle X-ray scattering solution structure of sheep liver sorbitol dehydrogenase have been determined. The details of the interactions that enable the tetramer scaffold to be the functional biological unit have been analyzed. The X-ray crystal structure of sheep liver sorbitol dehydrogenase (slSDH) has been determined using the crystal structure of human sorbitol dehydrogenase (hSDH) as a molecular-replacement model. slSDH crystallized in space group I222 with one monomer in the asymmetric unit. A conserved tetramer that superposes well with that seen in hSDH (despite belonging to a different space group) and obeying the 222 crystal symmetry is seen in slSDH. An acetate molecule is bound in the active site, coordinating to the active-site zinc through a water molecule. Glycerol, a substrate of slSDH, also occupies the substrate-binding pocket together with the acetate designed by nature to fit large polyol substrates. The substrate-binding pocket is seen to be in close proximity to the tetramer interface, which explains the need for the structural integrity of the tetramer for enzyme activity. Small-angle X-ray scattering was also used to identify the quaternary structure of the tetramer of slSDH in solution.

  18. A preliminary study of breast cancer diagnosis using laboratory based small angle x-ray scattering

    International Nuclear Information System (INIS)

    Breast tissue collected from tumour samples and normal tissue from bi-lateral mastectomy procedures were examined using small angle x-ray scattering. Previous work has indicated that breast tissue disease diagnosis could be performed using small angle x-ray scattering (SAXS) from a synchrotron radiation source. The technique would be more useful to health services if it could be made to work using a conventional x-ray source. Consistent and reliable differences in x-ray scatter distributions were observed between samples from normal and tumour tissue samples using the laboratory based 'SAXSess' system. Albeit from a small number of samples, a sensitivity of 100% was obtained. This result encourages us to pursue the implementation of SAXS as a laboratory based diagnosis technique

  19. A preliminary study of breast cancer diagnosis using laboratory based small angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Round, A R [Daresbury Laboratories, Warrington, WA4 4AD (United Kingdom); Wilkinson, S J [Daresbury Laboratories, Warrington, WA4 4AD (United Kingdom); Hall, C J [Daresbury Laboratories, Warrington, WA4 4AD (United Kingdom); Rogers, K D [Department of Materials and Medical Sciences, Cranfield University, Swindon, SN6 8LA (United Kingdom); Glatter, O [Department of Chemistry, University of Graz (Austria); Wess, T [School of Optometry and Vision Sciences, Cardiff University, Cardiff CF10 3NB, Wales (United Kingdom); Ellis, I O [Nottingham City Hospital, Nottingham (United Kingdom)

    2005-09-07

    Breast tissue collected from tumour samples and normal tissue from bi-lateral mastectomy procedures were examined using small angle x-ray scattering. Previous work has indicated that breast tissue disease diagnosis could be performed using small angle x-ray scattering (SAXS) from a synchrotron radiation source. The technique would be more useful to health services if it could be made to work using a conventional x-ray source. Consistent and reliable differences in x-ray scatter distributions were observed between samples from normal and tumour tissue samples using the laboratory based 'SAXSess' system. Albeit from a small number of samples, a sensitivity of 100% was obtained. This result encourages us to pursue the implementation of SAXS as a laboratory based diagnosis technique.

  20. Diffractometer for small angle resonant soft x-ray scattering under magnetic field

    International Nuclear Information System (INIS)

    There has been a recent increasing interest in a topological spin texture, so-called skyrmion crystal, stimulated by small-angle neutron scattering and Lorentz-TEM studies. For the purpose of measuring the resonant soft x-ray magnetic scattering to characterize the distribution of magnetic moments with long-wavelength in range of a few tens to hundreds nm, we have developed a diffractometer for small angle soft x-ray scattering. The principle features of the diffractometer and the initial experimental results are presented.

  1. Database for rapid protein classification based on small-angle X-ray scattering data

    International Nuclear Information System (INIS)

    A method was developed for rapid protein classification based on comparison of the experimental small-angle X-ray scattering data with scattering curves calculated for proteins with known structures. For this purpose, a database was compiled from about 1500 theoretical scattering curves for proteins with known structures. The potential of this method was illustrated by its application to analysis of the experimental scattering data from sperm whale myoglobin

  2. [Diffuse x-ray wide-angle scattering of polyglutamic acid in solution].

    Science.gov (United States)

    Fedorov, B A; Becker, M; Damaschun, G; Damaschun, H; Gedicke, C; Zirwer, D

    1977-01-01

    The diffuse wide angle x-ray scattering (WAXS) of polyglutamic acid (PGA) in solution was studied using an x-ray diffractometer with small aperture of the primary beam. The scattering curve was recorded at an angular interval from (article: see text). The experimental scattering intensity of PGA with alpha-helical CD spectrum showed a maximum at 14.4 nm-1. Unordered PGA in solution yielded no maximum at this scattering angle. The studies have proved that the scattering theory can be applied to globular proteins in solution as well as to chain molecules in solution in this angular interval. The differences between the calculated scattering curves and the experimental curves indicate minor movements of the side chains of PGA in solutions and slight structuring of the solvent at the surface of the polypeptide chain. PMID:25547

  3. Application of small-angle X-ray scattering for differentiation among breast tumors

    Directory of Open Access Journals (Sweden)

    Changizi V

    2008-01-01

    Full Text Available Small-angle X-ray scattering (SAXS is an X-ray diffraction-based technique where a narrow collimated beam of X-rays is focused onto a sample and the scattered X-rays recorded by a detector. The pattern of the scattered X-rays carries information on the molecular structure of the material. As breast cancer is the most widespread cancer in women and differentiation among its tumors is important, this project compared the results of coherent X-ray scattering measurements obtained from benign and malignant breast tissues. The energy-dispersive method with a setup including X-ray tube, primary collimator, sample holder, secondary collimator and high-purity germanium (HpGe detector was used. One hundred thirty-one breast-tissue samples, including normal, fibrocystic changes and carcinoma, were studied at the 6° scattering angle. Diffraction profiles (corrected scattered intensity versus momentum transfer of normal, fibrocystic changes and carcinoma were obtained. These profiles showed a few peak positions for adipose (1.15 ± 0.06 nm -1 , mixed normal (1.15 ± 0.06 nm -1 and 1.4 ± 0.04 nm -1 , fibrocystic changes (1.46 ± 0.05 nm -1 and 1.74 ± 0.04 nm -1 and carcinoma (1.55 ± 0.04 nm -1 , 1.73 ± 0.06 nm -1 , 1.85 ± 0.05 nm -1 . We were able to differentiate between normal, fibrocystic changes (benign and carcinoma (malignant breast tissues by SAXS. However, we were unable to differentiate between different types of carcinoma.

  4. Small angle neutron scattering and small angle X-ray scattering studies of platinum-loaded carbon foams

    Indian Academy of Sciences (India)

    P U Sastry; V K Aswal; A G Wagh

    2008-11-01

    The morphology of carbon nanofoam samples comprising platinum nanoparticles dispersed in the matrix was characterized by small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) techniques. Results show that the structure of pores of carbon matrix exhibits a mass (pore) fractal nature and the average radius of the platinum particles is about 2.5 nm. The fractal dimension as well as the size distribution parameters of platinum particles varies markedly with the platinum content and annealing temperature. Transmission electron micrographs of the samples corroborate the SANS and SAXS results.

  5. Small-Angle X-ray Scattering Screening Complements Conventional Biophysical Analysis

    DEFF Research Database (Denmark)

    Tian, Xinsheng; Langkilde, Annette Eva; Thorolfsson, Matthias; Rasmussen, Hanne B; Vestergaard, Bente

    2014-01-01

    introduce small-angle X-ray scattering (SAXS) to characterize antibody solution behavior, which strongly complements conventional biophysical analysis. First, we apply a variety of conventional biophysical techniques for the evaluation of structural, conformational, and colloidal stability and report a...

  6. Ultrasmall-angle X-ray scattering analysis of photonic crystal structure

    NARCIS (Netherlands)

    Abramova, V.V.; Sinitskii, A.S.; Grigoryeva, N.A.; Grigoriev, S.V.; Belov, D.V.; Petukhov, A.V.; Mistonov, A.A.; Vasilieva, A.V.; Tretyakov, Y.D.

    2009-01-01

    The results of an ultrasmall angle X ray scattering study of iron(III) oxide inverse opal thin films are presented. The photonic crystals examined are shown to have fcc structure with amount of stacking faults varying among the samples. The method used in this study makes it possible to easily disti

  7. Investigation of nanoscale structures by small-angle X-ray scattering in a radiochromic dosimeter

    DEFF Research Database (Denmark)

    Skyt, Peter Sandegaard; Jensen, Grethe Vestergaard; Wahlstedt, Isak Hannes;

    2014-01-01

    This study examines the nanoscale structures in a radiochromic dosimeter that was based on leuco-malachite-green dye and the surfactant sodium dodecyl sulfate (SDS) suspended in a gelatin matrix. Small-angle X-ray scattering was used to investigate the structures of a range of compositions of the...

  8. Synaptic vesicles studied by small-angle X-ray scattering

    International Nuclear Information System (INIS)

    The heterogeneous structure of synaptic vesicles isolated from rat brain is investigated considering solution small-angle X-ray scattering data in combination with data obtained by cryogenic electron microscopy, dynamic light scattering and biochemical analysis. Overall low resolution structural models of the entire functional synaptic vesicle are proposed, elucidating details on the density profile of the membrane, including contributions from the lipids and the proteins, as well as addressing the average conformation and overall lateral organization of proteins in micro-domains on the average synaptic vesicle under quasi-physiological conditions. Entropic contributions to free energy due to possible protein cluster formation and disintegration on the synaptic vesicle are investigated. Further, cell free fusion systems are characterized employing dynamic light scattering and applicability of small-angle X-ray scattering is considered for investigating membrane fusion processes.

  9. Small-angle scattering studies of meso-scopic structures with synchrotron X-rays

    Science.gov (United States)

    Dore, J. C.; North, A. N.; Rigden, J. S.

    1995-03-01

    The use of small-angle X-ray scattering techniques for the study of spatial inhomogeneities over the range 20 Å to 2 μm is reviewed. The basic formalism for scattering by an inhomogeneous medium is developed with particular reference to liquid suspensions, porous solids and solid aggregates. The instrumentation available on the Synchrotron Radiation Source at the Daresbury Laboratory is briefly presented and the use of the Bonse-Hart method for studies at ultra-low scattering angles described. The extraction of structural information for a range of natural and synthetic materials is presented with particular reference to microemulsions, porous silicas, clays and composites. The complementarity of X-ray and neutron techniques is critically reviewed and prospects for future developments, particularly for the study of anisotropic systems, are discussed.

  10. Small angle x-ray and neutron scattering for materials characterisation

    International Nuclear Information System (INIS)

    Full text: Small angle X-ray and neutron scattering (SAXS and SANS) are excellent techniques to characterise inhomogeneities in materials in the size range from 10 Angstroms to several thousand Angstroms. Ultra small angle neutron and X-ray scattering (USANS and USAXS) have extended this size range out to 20 μm. SAXS is due to the electron density difference between the matrix and the inhomogeneity, whereas SANS is due to the scattering length density difference. SANS and SAXS have been used successfully to characterise colloidal particles in solution, colloidal powders, glasses and a wide range of solids such as metals, alloys, and natural and synthetic high polymers. Small angle scattering and complementary techniques, such transmission and scanning electron microscopy (TEM and SEM) are a powerful combination for the investigation of submicron particles. This paper will introduce the reader to the small angle scattering techniques and will use the aluminium hydrogen (Al-H) system as an example to demonstrate the applicability of each method. Aluminium foils (99.99% purity) and single crystals (99.999% purity) were charged with hydrogen using a gas plasma method (voltage range of 1.0 - 1.2 keV). The results from the SANS, USANS, TEM, SEM, X-ray diffraction and inelastic neutron scattering experiments showed a wide range of H2 bubbles on the surface and in the bulk of the Al-H sample (2 bubbles was formed by the diffusion of H-vacancy complexes into the bulk. The volume concentration of vacant sites determined from precision density measurements was within experimental error to that calculated from the SANS and USANS experiments. Copyright (1999) Australian X-ray Analytical Association Inc

  11. What can be obtained by bringing together small angle X-ray scattering and deep X-ray lithography?

    International Nuclear Information System (INIS)

    Full text: Micro-nanotechnology has melted away the borders between material science and biology. In fact, the miniaturization of chemical and biological assays, promoted by micro-nanofluidics, requires both a careful selection of the fabrication methods and the development of tailored materials for the specific applications. As a consequence, interdisciplinary is becoming fundamental also in the combination of microfabrication and characterization techniques both aimed at the construction of new devices and at the development of novel materials for chemistry and biology applications. In this communication, we want to underline the advantages obtainable by combining two techniques: Deep X-ray Lithography (DXRL) for microfabrication and Small and Wide Angle X-ray Scattering (SAXS/WAXS) for investigation. On one hand DXRL makes it possible for SAXS to improve time resolution and create new sample environments. On the other hand SAXS permits the investigation of the nanostructural morphology of the microstructures fabricated by DXRL in order to tune the morphology for specific applications like nanosensors and biosensors or to determine the effect of irradiation on new materials. Examples will be presented to highlight both. First, microdevices fabricated for time resolved experiments of fast biological and chemical reactions, or for the study of the effect of confinement on crystal growth will be discussed. Then, the combination of bottom-up and top-down approaches for the development of new functionalized materials for which characterization with SAXS/WAXS is fundamental will be described. (author)

  12. X-ray spectral determination by detection of radiation scattered at different angles

    International Nuclear Information System (INIS)

    A precise knowledge of the spectral content of an X-ray beam is of fundamental importance in areas such as X-ray fluorescence analysis by absolute methods, radiodiagnosis, radiotherapy, computed tomography, etc. A simple practical method was developed to determine X-ray spectra emitted by X-ray tubes. It is based on the scattering of the beam on a solid target and detection of this radiation at different angles. This methodology can easily be adapted to the successive attenuation of the beam procedure. Numerical parameter values of a proposed analytical function for the energy spectrum are found measuring the radiation intensity with a suitable detector (ionization chamber or plastic scintillation detector) and equating it with the convolution integral of the proposed spectrum with the incoherent scattering function. This procedure of spectra determination is enclosed in the same group of those generically referred as successive modifications of the irradiation set up used in absolute methods of X-ray fluorescence analysis. (Author)

  13. Large-angle x-ray scatter in Talbot–Lau interferometry for breast imaging

    International Nuclear Information System (INIS)

    Monte Carlo simulations were used to investigate large-angle x-ray scatter at design energy of 25 keV during small field of view (9.6 cm × 5 cm) differential phase contrast imaging of the breast using Talbot–Lau interferometry. Homogenous, adipose and fibroglandular breasts of uniform thickness ranging from 2 to 8 cm encompassing the field of view were modeled. Theoretically determined transmission efficiencies of the gratings were used to validate the Monte Carlo simulations, followed by simulations to determine the x-ray scatter reaching the detector. The recorded x-ray scatter was classified into x-ray photons that underwent at least one Compton interaction (incoherent scatter) and Rayleigh interaction alone (coherent scatter) for further analysis. Monte Carlo based estimates of transmission efficiencies showed good correspondence (r2>0.99) with theoretical estimates. Scatter-to-primary ratio increased with increasing breast thickness, ranging from 0.11 to 0.22 for 2–8 cm thick adipose breasts and from 0.12 to 0.28 for 2–8 cm thick fibroglandular breasts. The analyzer grating reduced incoherent scatter by ∼18% for 2 cm thick adipose breast and by ∼35% for 8 cm thick fibroglandular breast. Coherent scatter was the dominant contributor to the total scatter. Coherent-to-incoherent scatter ratio ranged from 2.2 to 3.1 for 2–8 cm thick adipose breasts and from 2.7 to 3.4 for 2–8 cm thick fibroglandular breasts. (paper)

  14. Brain tumor imaging using small-angle x-ray scattering tomography

    Science.gov (United States)

    Jensen, Torben H.; Bech, Martin; Bunk, Oliver; Thomsen, Maria; Menzel, Andreas; Bouchet, Audrey; Le Duc, Géraldine; Feidenhans'l, Robert; Pfeiffer, Franz

    2011-03-01

    We demonstrate high-resolution small-angle x-ray scattering computed tomography (SAXS-CT) of soft matter and soft tissue samples. Complete SAXS patterns over extended ranges of momentum transfer are reconstructed spatially resolved from volumes inside an extended sample. Several SAXS standard samples are used to quantitatively validate the method and demonstrate its performance. Further results on biomedical tissue samples (rat brains) are presented that demonstrate the advantages of the method compared to existing biomedical x-ray imaging approaches. Functional areas of the brains as well as tumor morphology are imaged. By providing insights into the structural organization at the nano-level, SAXS-CT complements and extends results obtainable with standard methods such as x-ray absorption tomography and histology.

  15. Wide angle crystal spectrometer for angularly and spectrally resolved x-ray scattering experiments

    OpenAIRE

    Garcia Saiz, E.; Khattak, F. Y.; G. Gregori; Bandyopadhyay, S; Clarke, R J; Fell, B.; Freeman, R R; Jeffries, J.; Jung, Daniel; Notley, M. M.; Weber, R. L.; Van Woerkom, L.; Riley, David

    2007-01-01

    A novel wide angle spectrometer has been implemented with a highly oriented pyrolytic graphite crystal coupled to an image plate. This spectrometer has allowed us to look at the energy resolved spectrum of scattered x rays from a dense plasma over a wide range of angles ( ~ 30°) in a single shot. Using this spectrometer we were able to observe the temporal evolution of the angular scatter cross section from a laser shocked foil. A spectrometer of this type may also be useful in investigations...

  16. Study of humic acids by small-angle X-ray and neutron scattering

    International Nuclear Information System (INIS)

    Humic acids are an important component of natural ecological system and represent a polydisperse complex of natural biopolymers with molecular masses from several to hundreds kilodaltons. They are both a source of organic compounds and a protector against anthropogenic pollutions of biosphere. The aim of the report is to underline some possibilities of small-angle X-ray and neutron scattering to study HA and their fractions. (author)

  17. Hybrid - block copolymer nanocomposites. characterization of nanostructure by small-angle X-ray scattering (SAXS)

    OpenAIRE

    A. Romo-Uribe

    2007-01-01

    The nanoscopic order of a series of block copolymer-inorganic nanocomposites was characterized using small-angle X-ray scattering (SAXS). The nanostructures were obtained via a diblock copolymer directed sol-gel synthesis. The copolymer consists of blocks of poly(isoprene) -PI- and blocks of poly(ethylene oxide) -PEO. The inorganic material consists of a crosslinked sol of 3-glycidoxypropyltrimethoxysilane and aluminum-tri-sec-butoxide in a 4:1 mole ratio, to generate an aluminosilicate ceram...

  18. Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models

    OpenAIRE

    Stovgaard Kasper; Andreetta Christian; Ferkinghoff-Borg Jesper; Hamelryck Thomas

    2010-01-01

    Abstract Background Genome sequencing projects have expanded the gap between the amount of known protein sequences and structures. The limitations of current high resolution structure determination methods make it unlikely that this gap will disappear in the near future. Small angle X-ray scattering (SAXS) is an established low resolution method for routinely determining the structure of proteins in solution. The purpose of this study is to develop a method for the efficient calculation of ac...

  19. Upgrade of the small angle X-ray scattering beamlines at the Photon Factory

    International Nuclear Information System (INIS)

    BL-10C and BL-15A at the Photon Factory, which became operational in 1982, are some of the oldest small angle X-ray scattering beamlines in the world. Recently, both beamlines were upgraded for two-dimensional (2D) SAXS-WAXS experiments. A wide-area imaging plate (IP) detector and a fast-readout flat panel (FP) detector were installed at BL-10C and BL-15A, respectively. Preliminary experiments of both systems showed promising results.

  20. Small angle x-ray scattering study of the porosity in coals

    Science.gov (United States)

    Schmidt, P. W.; Kalliat, M.; Kwak, C. Y.

    1981-02-01

    Small-angle scattering curves have bee obtained for some Pennsylvania State University PSOC coal samples and for several other coals. The x-ray scattering data provide information about the porosity in the coals and suggest that there are three classes of pores, which have average dimensions of the order of 1000 A˚, 30 A˚, and less than 5 A˚, corresponding to the macropores, transition pores and micropores discussed by Dubinin. The principal factor determining the form of the scattering curves has been found to be the rank of the coal. In coals of all ranks, the specific surface associated with the macropores is about 1 to 10 m2/gm. The micropores are most highly developed in high-rank coals. Comparison of the x-ray and adsorption results suggests that x-ray scattering and nitrogen adsorption detect only the specific surface of the macropores and transition pores, while carbon dioxide adsorption measures the total porosity from the micropores. Scattering data have also been recorded for a series of coals which had been tested for their suitability for conversion to liquid fuels. All the coals which were well-suited for producing liquid fuels were found to have a well-developed transition pore structure, while coals which were not especially good for coal liquefaction processes had almost no transition pores.

  1. A gradient method for anomalous small-angle x-ray scattering

    International Nuclear Information System (INIS)

    A new method of general applicability for analyzing data from anomalous dispersion small-angle X-ray scattering (ASAXS) measurements is described. ASAXS is used as a contrast variation method to label the scattering from a single element in a complex material containing several types of scatterers. The contrast variation is achieved through the anomalous dispersion of X-rays. Thus only one sample is required for a complete analysis. To label a scatterer by ASAXS, the atomic scattering factor of an element in the sample is varied by the selection of photon energies near the absorption edge of the element. Careful selection of the photon energies allows the contrast of only the labeled scatterer to change. Data from several small-angle scattering measurements, each conducted at a fixed energy, are combined in a single analysis. The gradient method, used as an extension to a standard SAXS data analysis method, is demonstrated by isolating the volume fraction size distribution of Cr23C6 in 9Cr-1 MoVNb steel

  2. Radiation embrittlement studies using anomalous small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Anomalous small angle x-ray scattering (ASAXS) was performed on an Fe-O.9 wt.% Cu-1.0 wt.% Mn alloy subjected to annealing or electron irradiation. ASAXS takes advantage of natural variations in the atomic scattering factor which exist at energies very near an element's x-ray absorption edge. By performing systematic SAXS experiments at energies near these absorption edges of the constituent alloy elements it is possible to vary the contrast of scattering centers containing the elements and in doing so quantify scatterer composition. The results of such an analysis for the samples in this work indicate the presence of Cu-rich, Cu85Mn15 precipitates in the alloy. By applying the maximum entropy technique to the scattering data, it was possible to extract size distributions of scattering centers fog the different treatments. The results demonstrate the ability to detect and characterize small (11 A radius) scatterers at quite low irradiation damage levels (5x10-4 displacements per atom)

  3. Radiation embrittlement studies using anomalous small-angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, D. E.; Kestel, B. J.; Seifert, S.; Jemian, P. R.; Odette, G. R.; Klingensmith, D.; Gragg, D.

    1999-12-06

    Anomalous small angle x-ray scattering (ASAXS) was performed on an Fe-O.9 wt.% Cu-1.0 wt.% Mn alloy subjected to annealing or electron irradiation. ASAXS takes advantage of natural variations in the atomic scattering factor which exist at energies very near an element's x-ray absorption edge. By performing systematic SAXS experiments at energies near these absorption edges of the constituent alloy elements it is possible to vary the contrast of scattering centers containing the elements and in doing so quantify scatterer composition. The results of such an analysis for the samples in this work indicate the presence of Cu-rich, Cu{sub 85}Mn{sub 15} precipitates in the alloy. By applying the maximum entropy technique to the scattering data, it was possible to extract size distributions of scattering centers fog the different treatments. The results demonstrate the ability to detect and characterize small (11 {angstrom} radius) scatterers at quite low irradiation damage levels (5x10{sup {minus} 4} displacements per atom).

  4. High-performance permanent magnetic circuit designed for small-angle X-ray scattering using synchrotron radiation source

    International Nuclear Information System (INIS)

    A new type of permanent magnetic circuit with several prominent characteristics was developed and applied to the studies of oriented macromolecular assemblies by small-angle X-ray scattering using synchrotron radiation source. (orig.)

  5. Light-Induced Structural Flexibility of Thylakoid Membranes - Investigated using Small-Angle X-ray and Neutron Scattering

    OpenAIRE

    Aagaard, Thomas Helverskov

    2005-01-01

    Using small-angle x-ray and neutron scattering the light-induced structural changes in pea thylakoids have been investigated. It is shown that light-induced shinkage in the thylakoids is connected to photosynthetic electron transduction.

  6. A Microbeam Small-Angle X-ray Scattering Study on Enamel Crystallites in Subsurface Lesion

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, N; Ohta, N; Matsuo, T [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Tanaka, T; Terada, Y; Kamasaka, H; Kometani, T, E-mail: yagi@spring8.or.j [Ezaki Glico Co. Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502 (Japan)

    2010-10-01

    The early caries lesion in bovine tooth enamel was studied by two different X-ray diffraction systems at the SPring-8 third generation synchrotron radiation facility. Both allowed us simultaneous measurement of the small and large angle regions. The beam size was 6{mu}m at BL40XU and 50{mu}m at BL45XU. The small-angle scattering from voids in the hydroxyapatite crystallites and the wide-angle diffraction from the hydroxyapatite crystals were observed simultaneously. At BL40XU an X-ray image intensifier was used for the small-angle and a CMOS flatpanel detector for the large-angle region. At BL45XU, a large-area CCD detector was used to cover both regions. A linear microbeam scan at BL40XU showed a detailed distribution of voids and crystals and made it possible to examine the structural details in the lesion. The two-dimensional scan at BL45XU showed distribution of voids and crystals in a wider region in the enamel. The simultaneous small- and wide-angle measurement with a microbeam is a powerful tool to elucidate the mechanisms of demineralization and remineralization in the early caries lesion.

  7. Probing ballistic microdrop coalescence by stroboscopic small-angle X-ray scattering

    Science.gov (United States)

    Graceffa, R.; Burghammer, M.; Davies, R. J.; Riekel, C.

    2012-12-01

    The coalescence of ballistic microdrops has been explored by stroboscopic synchrotron radiation microbeam small-angle X-ray scattering (μSAXS). About 80 μm diameter microdrops generated by a drop-on-demand inkjet system travelled at ˜1.7 m/s through a ˜1 μm X-ray beam. Microdrops of cytochrome C and acetate buffer solutions were merged in order to study the pH driven conformational change. μSAXS patterns were accumulated on a pixel detector, which was activated for a few μsec during the transit time of each microdrop through the microbeam. Local probing of the merging microdrops reveals the internal protein solution flow.

  8. ORNL 10-m small-angle X-ray scattering camera

    International Nuclear Information System (INIS)

    A new small-angle x-ray scattering camera utilizing a rotating anode x-ray source, crystal monochromatization of the incident beam, pinhole collimation, and a two-dimensional position-sensitive proportional counter was developed. The sample, and the resolution element of the detector are each approximately 1 x 1 mm2, the camera was designed so that the focal spot-to-sample and sample-to-detector distances may each be varied in 0.5-m increments up to 5 m to provide a system resolution in the range 0.5 to 4.0 mrad. A large, general-purpose specimen chamber has been provided into which a wide variety of special-purpose specimen holders can be mounted. The detector has an active area of 200 x 200 mm and has up to 200 x 200 resolution elements. The data are recorded in the memory of a minicomputer by a high-speed interface which uses a microprocessor to map the position of an incident photon into an absolute minicomputer memory address. The data recorded in the computer memory can be processed on-line by a variety of programs designed to enhance the user's interaction with the experiment. At the highest angular resolution (0.4 mrad), the flux incident on the specimen is 1.0 x 106 photons/s with the x-ray source operating at 45 kV and 100 mA. SAX and its associated programs OVF and MOT are high-priority, pre-queued, nonresident foreground tasks which run under the ModComp II MAX III operating system to provide complete user control of the ORNL 10-m small-angle x-ray scattering camera

  9. ORNL 10-m small-angle X-ray scattering camera

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, R.W.

    1979-12-01

    A new small-angle x-ray scattering camera utilizing a rotating anode x-ray source, crystal monochromatization of the incident beam, pinhole collimation, and a two-dimensional position-sensitive proportional counter was developed. The sample, and the resolution element of the detector are each approximately 1 x 1 mm/sup 2/, the camera was designed so that the focal spot-to-sample and sample-to-detector distances may each be varied in 0.5-m increments up to 5 m to provide a system resolution in the range 0.5 to 4.0 mrad. A large, general-purpose specimen chamber has been provided into which a wide variety of special-purpose specimen holders can be mounted. The detector has an active area of 200 x 200 mm and has up to 200 x 200 resolution elements. The data are recorded in the memory of a minicomputer by a high-speed interface which uses a microprocessor to map the position of an incident photon into an absolute minicomputer memory address. The data recorded in the computer memory can be processed on-line by a variety of programs designed to enhance the user's interaction with the experiment. At the highest angular resolution (0.4 mrad), the flux incident on the specimen is 1.0 x 10/sup 6/ photons/s with the x-ray source operating at 45 kV and 100 mA. SAX and its associated programs OVF and MOT are high-priority, pre-queued, nonresident foreground tasks which run under the ModComp II MAX III operating system to provide complete user control of the ORNL 10-m small-angle x-ray scattering camera.

  10. A Small Angle X-ray Scattering Method to Investigate the Crack Tip in Metals

    OpenAIRE

    Böhmert, Jürgen; Müller, Gudrun; Ouytsel, Krist'l van

    2010-01-01

    The work in this report, financed by the European Union through the Marie Curie Fellowship Association, was carried out at the FZ-Rossendorf. The subject of the research was to develop a method to investigate the damage, the high defect gradients at the tip of a ductile crack by means of Small Angle X-ray Scattering. The work explains the objectives and entails a brief introduction and background; it portrays and discusses the results which can be summarized as follows. Different damage param...

  11. Small angle X-ray and neutron scattering on cadmium sulfide nanoparticles in silicate glass

    Science.gov (United States)

    Kuznetsova, Yu. V.; Rempel, A. A.; Meyer, M.; Pipich, V.; Gerth, S.; Magerl, A.

    2016-08-01

    Small angle X-ray and neutron scattering on Cd and S doped glass annealed at 600 °C shows after the first 12 h nucleation and growth of spherical CdS nanoparticles with a radius of up to 34±4 Å. After the nucleation is completed after 24 h, further growth in this amorphous environment is governed by oriented particle attachment mechanism as found for a liquid medium. Towards 48 h the particle shape has changed into spheroidal with short and long axis of 40±2 Å and 120±2 Å, respectively.

  12. Integrative structural modeling with small angle X-ray scattering profiles

    Directory of Open Access Journals (Sweden)

    Schneidman-Duhovny Dina

    2012-07-01

    Full Text Available Abstract Recent technological advances enabled high-throughput collection of Small Angle X-ray Scattering (SAXS profiles of biological macromolecules. Thus, computational methods for integrating SAXS profiles into structural modeling are needed more than ever. Here, we review specifically the use of SAXS profiles for the structural modeling of proteins, nucleic acids, and their complexes. First, the approaches for computing theoretical SAXS profiles from structures are presented. Second, computational methods for predicting protein structures, dynamics of proteins in solution, and assembly structures are covered. Third, we discuss the use of SAXS profiles in integrative structure modeling approaches that depend simultaneously on several data types.

  13. Characterization of Pt/C catalyst by small angle X-ray scattering

    International Nuclear Information System (INIS)

    Pt/C catalyst plays an important role in hydrogen-water isotopic exchange reaction. Small Angle X-ray scattering (SAXS) is applied to investigate the structure of three kinds of Pt nanoparticles which were produced by three processes, Glycol synthesis, Soakage-reducing and Microwave heating. The SAXS analysis of size, shape, surface and the aggregates of primary Pt particles is reported here. Additionally, Transmission Electron Microscope (TEM) measurements also carried out, the results of TEM are in agreement with SAXS conclusions. It is shown that three processes produced different sizes and surface area of Pt aggregations. (authors)

  14. Small-angle x-ray scattering measurements of hydrogen evolution from an epitaxial Nb film

    International Nuclear Information System (INIS)

    Small-angle x-ray scattering (SAXS) measurements have been performed to investigate particle morphology during in situ hydrogen evolution from a 1000-A epitaxial Nb film on (112-bar0) sapphire initially loaded to saturation with hydrogen. The SAXS intensity follows the plate or disk single-particle form factor (Q-2, where Q is the wave-vector transfer) during hydrogen evolution. A fit to this power-law behavior yields a plate thickness of ≅7 A. A second power-law behavior (Q-3) was observed after complete hydrogen evolution. This power law corresponds to the small-angle scattering response from edge dislocations and is consistent with the broadening of the lattice mosaic induced by hydride decomposition

  15. Small angle x ray scattering studies of aggregation in supercritical fluid solutions

    Science.gov (United States)

    Fulton, J. L.; Pfund, D. M.

    1994-10-01

    Small-angle x ray scattering (SAXS) can be used to derive structural information on molecular aggregates having sizes from 2 to 200 nm. Not only is the technique useful for probing fluid structure in pure and simple binary supercritical fluid systems, but the technique is also well suited to investigate a range of much more complex multi-molecular aggregates that form when surfactants are added to supercritical fluids. The authors describe the experimental apparatus that was constructed for these studies and the experimental approach used to collect the scattering data. They present scattering results for pure fluids and for fluids containing various types of microemulsion phases, including reverse micelle and normal micelle phases. These results demonstrate that SAXS is a powerful technique for probing various types of molecular aggregation in supercritical fluid solutions.

  16. The accurate assessment of small-angle X-ray scattering data

    International Nuclear Information System (INIS)

    A set of quantitative techniques is suggested for assessing SAXS data quality. These are applied in the form of a script, SAXStats, to a test set of 27 proteins, showing that these techniques are more sensitive than manual assessment of data quality. Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targets for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality

  17. Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kao-Hsiang, E-mail: codeliu@gmail.com [Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (China); Joint Institute for Neutron Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Zhang, Yang [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Jeng, U-Ser [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Mou, Chung-Yuan [Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (China)

    2015-09-07

    Water’s behavior near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. By monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure. Furthermore, differential scanning calorimetry and X-ray diffraction measurements showed that the majority of such hydrophobically confined water did not crystallize in the investigated temperature range. By exploiting the fast speed of SAXS measurements and the continuous temperature ramping, the average density profile and the deduced thermal expansion coefficient (α{sub p}) were obtained. We found that the well-known density maximum of water at 277 K downshifted to 260 K, and the density minimum which has been observed in hydrophilic confinement disappeared. In addition, the previously measured large density decreasing of 18% at low temperature was recalibrated to a more reasonable 10% instead. Consequently, the recalculated α{sub p} peak was found to be quite similar to that of the water confined in hydrophilic MCM-41-S-15 suggesting an intrinsic property of water, which does not sensitively depend on the confinement surface.

  18. Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering.

    Science.gov (United States)

    Liu, Kao-Hsiang; Zhang, Yang; Jeng, U-Ser; Mou, Chung-Yuan

    2015-09-01

    Water's behavior near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. By monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure. Furthermore, differential scanning calorimetry and X-ray diffraction measurements showed that the majority of such hydrophobically confined water did not crystallize in the investigated temperature range. By exploiting the fast speed of SAXS measurements and the continuous temperature ramping, the average density profile and the deduced thermal expansion coefficient (αp) were obtained. We found that the well-known density maximum of water at 277 K downshifted to 260 K, and the density minimum which has been observed in hydrophilic confinement disappeared. In addition, the previously measured large density decreasing of 18% at low temperature was recalibrated to a more reasonable 10% instead. Consequently, the recalculated αp peak was found to be quite similar to that of the water confined in hydrophilic MCM-41-S-15 suggesting an intrinsic property of water, which does not sensitively depend on the confinement surface. PMID:26342380

  19. Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering

    International Nuclear Information System (INIS)

    Water’s behavior near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. By monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure. Furthermore, differential scanning calorimetry and X-ray diffraction measurements showed that the majority of such hydrophobically confined water did not crystallize in the investigated temperature range. By exploiting the fast speed of SAXS measurements and the continuous temperature ramping, the average density profile and the deduced thermal expansion coefficient (αp) were obtained. We found that the well-known density maximum of water at 277 K downshifted to 260 K, and the density minimum which has been observed in hydrophilic confinement disappeared. In addition, the previously measured large density decreasing of 18% at low temperature was recalibrated to a more reasonable 10% instead. Consequently, the recalculated αp peak was found to be quite similar to that of the water confined in hydrophilic MCM-41-S-15 suggesting an intrinsic property of water, which does not sensitively depend on the confinement surface

  20. Study of human blood and hemocomponents irradiated by low angle x ray scattering (LAXS)

    International Nuclear Information System (INIS)

    Irradiation of blood and blood components is currently practiced in developed and in a few developing countries. The main purpose of this process is the prevention of graft versus host disease in immunodeficient patients. The Food and Drug Administration recommends a dose range of 15 Gy to 25 Gy for these blood components. When x-ray photons are scattered from biological samples, their angular distribution shows one or more peaks in the forward direction of scattering. These peaks are characteristic for the investigated samples. Due to its wide range of biological and medical applications, low-angle x-ray scattering has attracted the attention of many authors. Thus in this present work was studied the possible variations in scattering profiles due to the irradiation when the gender of patients was considered. Fresh blood specimens were obtained from volunteers using vacutainer tubes containing EDTA, at the Dr. Eliel Figueiredo Laboratory, Rio de Janeiro. All the samples were lyophilized for 48 hours in a freeze drier in order to remove the water. The scattering measurements were carried out in e-2e reflection geometry using a powder diffractometer Shimadzu XRD- 6000. The measured characterization parameters for LAXS were associated with epidemiological data (gender). The mean values of the different parameters were compared using the Students's t-test for each characterization parameters. The scattering profiles from plasma and formed elements are characterized by the presence of two peaks in the forward direction of scattering. For epidemiological data (gender) analyzed was not found significant changes in the mostly of characterization parameters (p>0.05). (author)

  1. Study of human blood and hemocomponents irradiated by low angle x ray scattering (LAXS)

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Nivia G. Villela; Barroso, Regina C. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Fisica. Dept. de Fisica Aplicada e Termodinamica], e-mail: nitatag@gmail.com; Mota, Carla L.S.; Almeida, Andre P.; Azeredo, Soraia R.; Braz, Delson [Coordenacao dos Programas de Pos-graduacao em Engenharia (COPPE/UFRJ), RJ (Brazil). Lab. de Instrumentacao Nuclear], e-mail: delson@lin.ufrj.br

    2009-07-01

    Irradiation of blood and blood components is currently practiced in developed and in a few developing countries. The main purpose of this process is the prevention of graft versus host disease in immunodeficient patients. The Food and Drug Administration recommends a dose range of 15 Gy to 25 Gy for these blood components. When x-ray photons are scattered from biological samples, their angular distribution shows one or more peaks in the forward direction of scattering. These peaks are characteristic for the investigated samples. Due to its wide range of biological and medical applications, low-angle x-ray scattering has attracted the attention of many authors. Thus in this present work was studied the possible variations in scattering profiles due to the irradiation when the gender of patients was considered. Fresh blood specimens were obtained from volunteers using vacutainer tubes containing EDTA, at the Dr. Eliel Figueiredo Laboratory, Rio de Janeiro. All the samples were lyophilized for 48 hours in a freeze drier in order to remove the water. The scattering measurements were carried out in e-2e reflection geometry using a powder diffractometer Shimadzu XRD- 6000. The measured characterization parameters for LAXS were associated with epidemiological data (gender). The mean values of the different parameters were compared using the Students's t-test for each characterization parameters. The scattering profiles from plasma and formed elements are characterized by the presence of two peaks in the forward direction of scattering. For epidemiological data (gender) analyzed was not found significant changes in the mostly of characterization parameters (p>0.05). (author)

  2. Application of X-ray absorption spectroscopy and anomalous small angle scattering to RNA polymerase

    International Nuclear Information System (INIS)

    X-ray absorption spectroscopy is ideally suited for the investigation of the electronic structure and the local environment (≤∝5 A) of specific atoms in biomolecules. While the edge region provides information about the valence state of the absorbing atom, the chemical identity of neighboring atoms, and the coordination geometry, the EXAFS region contains information about the number and average distance of neighboring atoms and their relative disorder. The development of sensitive detection methods has allowed studies using near-physiological concentrations (as low as ∝100 μM). With careful choice of model compounds, judicious use of fitting procedures, and consideration of the results of biochemical and other spectrOScopic results, this data has provided pivotal information about the structures of these active sites which store energy in their conformation changes or ligand exchanges. Although the application of anomalous small angle scattering to biomolecules has occurred more recently, it clearly provides a method of determining distances between active sites that are outside the range of X-ray absorption spectroscopy. The wavelength dependence of the X-ray scattering power varies rapidly near the edge of the absorbing atom in both amplitude and phase. This behavior selectively alters the contribution of the absorbing atom to the scattering pattern. The structure-function relationship of the intermediate states provide the key to understanding the mechanisms of these complex molecules. It is this precise structural information about the active sites that is not obtainable by other spectroscopic techniques. Combination of these techniques offers a unique approach to the determination of the organization of active sites in biomolecules, especially metalloenzymes. Application of these methods to the substrate and template binding sites of RNA polymerase which contain zinc atoms demonstrates the versatility of this approach. (orig.)

  3. Three dimensional reconstruction of nanoislands from grazing-incidence small-angle X-ray scattering

    Science.gov (United States)

    Yefanov, O. M.; Vartanyants, I. A.

    2009-02-01

    The combination of grazing-incidence small-angle x-ray scattering (GISAXS) with tomographic methods and phase retrieval is proposed for the reconstruction of the three-dimensional (3D) electron density of nanometer sized objects. In this approach GISAXS data from a small object are collected successively at different azimuthal angular positions. This 3D intensity distribution in reciprocal space is used for the phase retrieval and reconstruction of the 3D electron density. The power of our approach is demonstrated in a series of calculations performed in the frame of kinematical and distorted-wave Born approximation (DWBA) theories for the case of GISAXS scattering on a 200 nm island in the form of truncated pyramid.

  4. Colloidal crystallite suspensions studied by high pressure small angle x-ray scattering

    Science.gov (United States)

    Schroer, M. A.; Westermeier, F.; Lehmkühler, F.; Conrad, H.; Schavkan, A.; Zozulya, A. V.; Fischer, B.; Roseker, W.; Sprung, M.; Gutt, C.; Grübel, G.

    2016-02-01

    We report on high pressure small angle x-ray scattering on suspensions of colloidal crystallites in water. The crystallites made out of charge-stabilized poly-acrylate particles exhibit a complex pressure dependence which is based on the specific pressure properties of the suspending medium water. The dominant effect is a compression of the crystallites caused by the compression of the water. In addition, we find indications that also the electrostatic properties of the system, i.e. the particle charge and the dissociation of ions, might play a role for the pressure dependence of the samples. The data further suggest that crystallites in a metastable state induced by shear-induced melting can relax to a similar structural state upon the application of pressure and dilution with water. X-ray cross correlation analysis of the two-dimensional scattering patterns indicates a pressure-dependent increase of the orientational order of the crystallites correlated with growth of these in the suspension. This study underlines the potential of pressure as a very relevant parameter to understand colloidal crystallite systems in aqueous suspension.

  5. Particle-scale structure in frozen colloidal suspensions from small-angle x-ray scattering

    KAUST Repository

    Spannuth, Melissa

    2011-02-01

    During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has concentrated mostly on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small-angle x-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high-density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by standard interparticle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium densification processes. © 2011 American Physical Society.

  6. Morphological and structural characterization of PHBV/organoclay nanocomposites by small angle X-ray scattering.

    Science.gov (United States)

    Carli, Larissa N; Bianchi, Otávio; Machado, Giovanna; Crespo, Janaina S; Mauler, Raquel S

    2013-03-01

    In this work, the morphological and structural behaviors of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposites were investigated using small angle X-ray scattering (SAXS), wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). The nanocomposites with 1, 3 and 5 wt.% of organically modified montmorillonite Cloisite® 30B (OMMT) were prepared by melt processing in a twin screw extruder using two different processing conditions (low and high shear intensity). The lamellar long period of the polymer was lower for the nanocomposites, with high polydispersity values. However, the crystalline thickness increased with the clay content and was independent of the processing conditions. This behavior resulted in a high linear crystallinity of the nanocomposites with 3 and 5 wt.% OMMT. The disruption factor (β) was in agreement with the WAXD and TEM findings, indicating a good dispersion of the nanoparticles in the PHBV matrix with 3 wt.% of OMMT during the high shear intensity of melt processing. PMID:25427508

  7. Morphological and structural characterization of PHBV/organoclay nanocomposites by small angle X-ray scattering

    International Nuclear Information System (INIS)

    In this work, the morphological and structural behaviors of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposites were investigated using small angle X-ray scattering (SAXS), wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). The nanocomposites with 1, 3 and 5 wt.% of organically modified montmorillonite Cloisite® 30B (OMMT) were prepared by melt processing in a twin screw extruder using two different processing conditions (low and high shear intensity). The lamellar long period of the polymer was lower for the nanocomposites, with high polydispersity values. However, the crystalline thickness increased with the clay content and was independent of the processing conditions. This behavior resulted in a high linear crystallinity of the nanocomposites with 3 and 5 wt.% OMMT. The disruption factor (β) was in agreement with the WAXD and TEM findings, indicating a good dispersion of the nanoparticles in the PHBV matrix with 3 wt.% of OMMT during the high shear intensity of melt processing. Highlights: ► SAXS was used for morphological and crystalline studies of PHBV/OMMT nanocomposites. ► The crystalline structure was influenced by the presence of clay. ► The degree of clay dispersion in a polymer matrix was quantified. ► The morphology comprised exfoliated particles, nanoscale and microscale clusters. ► The results obtained by SAXS agreed well with TEM and WAXD results.

  8. Morphological and structural characterization of PHBV/organoclay nanocomposites by small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Carli, Larissa N., E-mail: lncarli@ucs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, Porto Alegre, 91501-970, RS (Brazil); Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, Rua Francisco Getulio Vargas, 1130, Caxias do Sul, 95070-560, RS (Brazil); Bianchi, Otavio, E-mail: obianchi@ucs.br [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, Rua Francisco Getulio Vargas, 1130, Caxias do Sul, 95070-560, RS (Brazil); Machado, Giovanna, E-mail: giovannamachado@uol.com.br [Centro de Tecnologias Estrategicas do Nordeste, Av. Prof. Luiz Freire, 01, Cidade Universitaria, Recife, 50740-540, PE (Brazil); Programa de Pos-Graduacao de Materiais, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Recife, 50670-901, PE (Brazil); Crespo, Janaina S., E-mail: jscrespo@ucs.br [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, Rua Francisco Getulio Vargas, 1130, Caxias do Sul, 95070-560, RS (Brazil); Mauler, Raquel S., E-mail: raquel.mauler@ufrgs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, Porto Alegre, 91501-970, RS (Brazil)

    2013-03-01

    In this work, the morphological and structural behaviors of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposites were investigated using small angle X-ray scattering (SAXS), wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). The nanocomposites with 1, 3 and 5 wt.% of organically modified montmorillonite Cloisite Registered-Sign 30B (OMMT) were prepared by melt processing in a twin screw extruder using two different processing conditions (low and high shear intensity). The lamellar long period of the polymer was lower for the nanocomposites, with high polydispersity values. However, the crystalline thickness increased with the clay content and was independent of the processing conditions. This behavior resulted in a high linear crystallinity of the nanocomposites with 3 and 5 wt.% OMMT. The disruption factor ({beta}) was in agreement with the WAXD and TEM findings, indicating a good dispersion of the nanoparticles in the PHBV matrix with 3 wt.% of OMMT during the high shear intensity of melt processing. Highlights: Black-Right-Pointing-Pointer SAXS was used for morphological and crystalline studies of PHBV/OMMT nanocomposites. Black-Right-Pointing-Pointer The crystalline structure was influenced by the presence of clay. Black-Right-Pointing-Pointer The degree of clay dispersion in a polymer matrix was quantified. Black-Right-Pointing-Pointer The morphology comprised exfoliated particles, nanoscale and microscale clusters. Black-Right-Pointing-Pointer The results obtained by SAXS agreed well with TEM and WAXD results.

  9. Portable high precision small/wide angle X-ray scattering diffractometer

    CERN Document Server

    Gaponov, Y A; Kochubey, D I; Tolochko, B P

    2001-01-01

    The portable high precision small/wide angle X-ray scattering diffractometer (modified Bonze-Hart optical scheme) was designed and developed for the investigation of structure rearrangement during liquid state-solid state transformations (with reaction time of 10 h or more) for the investigation of the process of solid state phase formation. The FEM detectors are used as monitor and detector. The double crystal Si sub 1 sub 1 sub 1 analyzer (with changeable relative angle of the second crystal) is used as analyzer. All controlling electronics are designed in CAMAC. The diffractometer is controlled by a Sun SPARCStation with SVIC/VCC modules under a Solaris 2.4 operating system, and allows one to obtain the SAXS curves with accuracies (on s-vector for photon energy 8 keV) of about delta s approx 0.002 nm sup - sup 1 , s sub m sub i sub n approx 0.005 nm sup - sup 1 (scattering centers with the size of about 200-500 nm may be observed) and s sub m sub a sub x approx 50 nm sup - sup 1 (scattering angle is about ...

  10. Portable high precision small/wide angle X-ray scattering diffractometer

    International Nuclear Information System (INIS)

    The portable high precision small/wide angle X-ray scattering diffractometer (modified Bonze-Hart optical scheme) was designed and developed for the investigation of structure rearrangement during liquid state-solid state transformations (with reaction time of 10 h or more) for the investigation of the process of solid state phase formation. The FEM detectors are used as monitor and detector. The double crystal Si111 analyzer (with changeable relative angle of the second crystal) is used as analyzer. All controlling electronics are designed in CAMAC. The diffractometer is controlled by a Sun SPARCStation with SVIC/VCC modules under a Solaris 2.4 operating system, and allows one to obtain the SAXS curves with accuracies (on s-vector for photon energy 8 keV) of about δs∼0.002 nm-1, smin∼0.005 nm-1 (scattering centers with the size of about 200-500 nm may be observed) and smax∼50 nm-1 (scattering angle is about 80 deg.)

  11. High-resolution soft-X-ray beamline ADRESS at Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies

    OpenAIRE

    Strocov, V. N.; Schmitt, T; U. Flechsig; Schmidt, T.; Imhof, A; Q. Chen; J. Raabe; Betemps, R.; Zimoch, D.; Krempasky, J.; A. Piazzalunga; X Wang; Grioni, M.; Patthey, L.

    2009-01-01

    We describe the concepts and technical realization of the high-resolution soft-X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for Resonant Inelastic X-ray Scattering (RIXS) and Angle-Resolved Photoelectron Spectroscopy (ARPES). The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0-180 deg rotatable linear polarizations) but als...

  12. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies

    OpenAIRE

    Strocov, V. N.; Schmitt, T; U. Flechsig; Schmidt, T.; Imhof, A; Q. Chen; J. Raabe; Betemps, R.; Zimoch, D.; Krempasky, J.; X Wang; Grioni, M.; A. Piazzalunga; Patthey, L.

    2010-01-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0–180° rotatable linear polarizations) but also...

  13. Low-angle X-ray scattering properties of irradiated spices

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, A.P.G. [Nuclear Instrumentation Laboratory (LIN/COPPE), P. O. Box 68509, 21945-970, Rio de Janeiro RJ (Brazil)], E-mail: delson@lin.ufrj.br; Braz, D. [Nuclear Instrumentation Laboratory (LIN/COPPE), P. O. Box 68509, 21945-970, Rio de Janeiro RJ (Brazil); Barroso, R.C. [Physics Institute (IF/UERJ), University of Rio de Janeiro State, 20550-900 Rio de Janeiro RJ (Brazil); Lopes, R.T. [Nuclear Instrumentation Laboratory (LIN/COPPE), P. O. Box 68509, 21945-970, Rio de Janeiro RJ (Brazil)

    2007-09-21

    The scattering of X-rays at low angles (LAXS) is a technique dominated by the coherent scattering process. One characteristic observation of low-angle coherent scattering is the so-called molecular interference effect, being characterized by the presence of one or more peaks in the forward direction of scattering. In the present study, LAXS profiles from five different spices are carefully measured in order to establish characteristic scattering signatures. Samples of Ceylon cinnamon, cumin, nutmeg, paprika and black pepper were bought in local market in Rio de Janeiro, Brazil. The LAXS patterns were obtained using a Shimadzu DRX 6000 diffractometer in reflection geometry. Coherent scattering patterns are measured for the samples for {theta}=5-35{sup o}. The data were collected in 0.05{sup o} increments every 3 s. In order to evaluate the possible molecular structure changes caused to the irradiation procedure, the signatures obtained for control (non-irradiated) spices were compared with spice samples irradiated with different doses varying from 3 to 40 kGy. The LAXS patterns of all samples were obtained after 30, 60, 90, 120 days to evaluate the effect of storage period. Scattering profiles from spices irradiated with different irradiation doses were obtained and the results compared. For each spice, there is no considerable deviation in shape in function of the irradiation dose. It indicates that the molecular structure of each analyzed spices is preserved considering the dose range chosen. The results show that the molecular structure was found to be stable during storage at the ambient temperature for up to 4 months.

  14. Low-angle X-ray scattering properties of irradiated spices

    Science.gov (United States)

    Almeida, A. P. G.; Braz, D.; Barroso, R. C.; Lopes, R. T.

    2007-09-01

    The scattering of X-rays at low angles (LAXS) is a technique dominated by the coherent scattering process. One characteristic observation of low-angle coherent scattering is the so-called molecular interference effect, being characterized by the presence of one or more peaks in the forward direction of scattering. In the present study, LAXS profiles from five different spices are carefully measured in order to establish characteristic scattering signatures. Samples of Ceylon cinnamon, cumin, nutmeg, paprika and black pepper were bought in local market in Rio de Janeiro, Brazil. The LAXS patterns were obtained using a Shimadzu DRX 6000 diffractometer in reflection geometry. Coherent scattering patterns are measured for the samples for θ=5-35°. The data were collected in 0.05° increments every 3 s. In order to evaluate the possible molecular structure changes caused to the irradiation procedure, the signatures obtained for control (non-irradiated) spices were compared with spice samples irradiated with different doses varying from 3 to 40 kGy. The LAXS patterns of all samples were obtained after 30, 60, 90, 120 days to evaluate the effect of storage period. Scattering profiles from spices irradiated with different irradiation doses were obtained and the results compared. For each spice, there is no considerable deviation in shape in function of the irradiation dose. It indicates that the molecular structure of each analyzed spices is preserved considering the dose range chosen. The results show that the molecular structure was found to be stable during storage at the ambient temperature for up to 4 months.

  15. Small angle X-ray scattering study of oxygen precipitation in silicon

    International Nuclear Information System (INIS)

    Czochralski-grown dislocation-free silicon is used in the semiconductor industry almost exclusively for manufacturing VLSI devices. Such material contains small quantities (∼20 ppm) of dissolved oxygen, which can have a crucial effect on the properties of produced devices. Therefore it is of great importance to study its precipitation in a silicon matrix after given thermal treatment. The small angle X-ray scattering (SAXS) technique was used to study oxygen precipitation in monocrystalline silicon samples. We used 8 and 16 keV radiation to overcome the high absorption at low energies. A series of samples has been prepared with controlled sequence of oxygen nucleation and precipitation phase and measured with SAXS. It is shown that this low contrast changes in standard wafers can be investigated using synchrotron radiation

  16. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)

    Energy Technology Data Exchange (ETDEWEB)

    Hura, Greg L.; Menon, Angeli L.; Hammel, Michal; Rambo, Robert P.; Poole II, Farris L.; Tsutakawa, Susan E.; Jenney Jr, Francis E.; Classen, Scott; Frankel, Kenneth A.; Hopkins, Robert C.; Yang, Sungjae; Scott, Joseph W.; Dillard, Bret D.; Adams, Michael W. W.; Tainer, John A.

    2009-07-20

    We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.

  17. Structural characterization of surface-functionalized nanoparticles and nanocomposites by small angle x-ray scattering

    International Nuclear Information System (INIS)

    Full text: One of the driving forces in the development and chemical optimization of inorganic-organic nanocomposites is the substitution of traditional compounds, such as metals, ceramics or polymers, with superior physical properties. An example for the need of nanocomposites is the replacement of heavy weight materials, which cause a quite bad fuel economy in transportation industry, by novel light systems with similar or even better properties. Inorganic-organic nanocomposites often show excellent mechanical properties if the inorganic nanobuilding blocks such as nanoparticles are crosslinked with the organic matrix. This is achieved by surface-functionalization of the nanoparticles. Structural characterization of the resulting nanocomposites is performed by small angle x-ray scattering (SAXS) measurements: From the SAXS intensity, information on the size of nanoparticles and their aggregation behaviour is obtained. The effect of different surface-functionalization and different amounts of surface coverage on the aggregation behaviour of the nanoparticles within the nanocomposites are presented. (author)

  18. Small angle neutron/x-ray scattering study of microtubules and polycations

    International Nuclear Information System (INIS)

    Microtubules (MTs) are hollow cylindrical protein nanotubes with 25 nm diameter, composed of α/β-tubulin heterodimers with surface charge density ~ e/nm2. They are involved in many cellular functions such as cell division, maintaining cell shape, and intracellular trafficking. There have been studies about higher-order assemblies of MTs (e.g. Hexagonal bundle of MTs, inverted tubulin tubes, etc) in the presence of multivalent cations (e.g. Ca2+, spermine, etc). We show our recent findings on the assembly structures of MTs and cationic polymers, which have different structures as the concentration of the polycations changes. Various assemblies are studied both in real and reciprocal spaces using small angle Neutron/X-ray scattering and transmission electron microscopy.

  19. Application of small angle X-ray scattering synchrotron technology for measuring ovine meat quality.

    Science.gov (United States)

    Hoban, J M; Hopkins, D L; Kirby, N; Collins, D; Dunshea, F R; Kerr, M G; Bailes, K; Cottrell, J J; Holman, B W B; Brown, W; Ponnampalam, E N

    2016-07-01

    A small angle X-ray scattering (SAXS) synchrotron was used to evaluate 100 ovine m. longissimus lumborum, representing lamb (n=50) and sheep (n=50). The diffraction of X-rays gives information on muscle myofibril structure and fat content. The linear relationships between SAXS measures with measures such as, shear force, intramuscular fat content (IMF) and collagen content/solubility, were investigated. A relationship was found between the d-spacing of the actin/myosin fibril spacing (SAX1 and SAX2) and the cross sectional area of the rhombohedral unit cell (Cell area) and shear force after 1 and 5day ageing. There was a positive relationship between IMF and a SAXS Fat area measure. There was a muscle site effect on SAX1, SAX2 and Cell area, with the cranial site having a larger distance between myofibrils. The potential of SAXS as a powerful research tool to determine not only the structural components of ovine tenderness, but also the fat content related to IMF is evident. PMID:26971308

  20. Alzheimer's disease imaging biomarkers using small-angle x-ray scattering

    Science.gov (United States)

    Choi, Mina; Alam, Nadia; Dahal, Eshan; Ghammraoui, Bahaa; Badano, Aldo

    2016-03-01

    There is a need for novel imaging techniques for the earlier detection of Alzheimer's disease (AD). Two hallmarks of AD are amyloid beta (Aβ) plaques and tau tangles that are formed in the brain. Well-characterized x-ray cross sections of Aβ and tau proteins in a variety of structural states could potentially be used as AD biomarkers for small-angle x-ray scattering (SAXS) imaging without the need for injectable probes or contrast agents. First, however, the protein structures must be controlled and measured to determine accurate biomarkers for SAXS imaging. Here we report SAXS measurements of Aβ42 and tau352 in a 50% dimethyl sulfoxide (DMSO) solution in which these proteins are believed to remain monomeric because of the stabilizing interaction of DMSO solution. Our SAXS analysis showed the aggregation of both proteins. In particular, we found that the aggregation of Aβ42 slowly progresses with time in comparison to tau352 that aggregates at a faster rate and reaches a steady-state. Furthermore, the measured signals were compared to the theoretical SAXS profiles of Aβ42 monomer, Aβ42 fibril, and tau352 that were computed from their respective protein data bank structures. We have begun the work to systematically control the structural states of these proteins in vitro using various solvent conditions. Our future work is to utilize the distinct SAXS profiles of various structural states of Aβ and tau to build a library of signals of interest for SAXS imaging in brain tissue.

  1. Small-angle neutron and X-ray scattering reveal conformational changes in rhodopsin activation

    Science.gov (United States)

    Shrestha, Utsab R.; Bhowmik, Debsindhu; Perera, Suchitrhanga M. C. D.; Chawla, Udeep; Struts, Andrey V.; Graziono, Vito; Pingali, Sai Venkatesh; Heller, William T.; Qian, Shuo; Brown, Michael F.; Chu, Xiang-Qiang

    2015-03-01

    Understanding G-protein-coupled receptor (GPCR) activation plays a crucial role in the development of novel improved molecular drugs. During photo-activation, the retinal chromophore of the visual GPCR rhodopsin isomerizes from 11-cis to all-trans conformation, yielding an equilibrium between inactive Meta-I and active Meta-II states. The principal goals of this work are to address whether the activation of rhodopsin leads to a single state or a conformational ensemble, and how protein organizational structure changes with detergent environment in solution. We use both small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) techniques to answer the above questions. For the first time we observe the change in protein conformational ensemble upon photo-activation by SANS with contrast variation, which enables the separate study of the protein structure within the detergent assembly. In addition, SAXS study of protein structure within detergent assembly suggests that the detergent molecules form a belt of monolayer (micelle) around protein with different geometrical shapes to keep the protein in folded state.

  2. Nano-scale morphology of melanosomes revealed by small-angle X-ray scattering.

    Directory of Open Access Journals (Sweden)

    Thomas Gorniak

    Full Text Available Melanosomes are highly specialized organelles that produce and store the pigment melanin, thereby fulfilling essential functions within their host organism. Besides having obvious cosmetic consequences--determining the color of skin, hair and the iris--they contribute to photochemical protection from ultraviolet radiation, as well as to vision (by defining how much light enters the eye. Though melanosomes can be beneficial for health, abnormalities in their structure can lead to adverse effects. Knowledge of their ultrastructure will be crucial to gaining insight into the mechanisms that ultimately lead to melanosome-related diseases. However, due to their small size and electron-dense content, physiologically intact melanosomes are recalcitrant to study by common imaging techniques such as light and transmission electron microscopy. In contrast, X-ray-based methodologies offer both high spatial resolution and powerful penetrating capabilities, and thus are well suited to study the ultrastructure of electron-dense organelles in their natural, hydrated form. Here, we report on the application of small-angle X-ray scattering--a method effective in determining the three-dimensional structures of biomolecules--to whole, hydrated murine melanosomes. The use of complementary information from the scattering signal of a large ensemble of suspended organelles and from single, vitrified specimens revealed a melanosomal sub-structure whose surface and bulk properties differ in two commonly used inbred strains of laboratory mice. Whereas melanosomes in C57BL/6J mice have a well-defined surface and are densely packed with 40-nm units, their counterparts in DBA/2J mice feature a rough surface, are more granular and consist of 60-nm building blocks. The fact that these strains have different coat colors and distinct susceptibilities to pigment-related eye disease suggest that these differences in size and packing are of biological significance.

  3. Spatially-resolved small-angle x-ray scattering studies of soot inception and growth

    International Nuclear Information System (INIS)

    The high spectral brilliance of x-rays produced at the Basic Energy Sciences Synchrotron Radiation Center of Argonne's Advanced Photon Source allows us to perform small-angle x-ray scattering (SAXS) measurements of the distributions of soot particles in flames. SAXS provides an in situ probe of the size and distribution of particles in the region between 1 and 100 nm. Detailed measurements on a propylene/air diffusion flame allow us to extract a spatially dependent background, which occurs in gas-phase combustion systems, and to perform Abel inversions, which provide the radial dependence of the scattering intensity. A bimodal distribution of soot particles is needed to describe our results. The radial behavior of the two modes of this distribution implies that the chemistry and fluid dynamics are strongly coupled in this simple diffusion flame. The larger particles of this distribution correspond to the previously observed primary particles, which have a relatively complex radial dependence. Midway between the fuel source and the widest part of the flame the primary particles have a mean radius of 6 nm or less and their concentration is symmetrically distributed about the flame front. At the widest part of the flame, two distinct distributions of primary particles are observed. Near the center of the flame the particles have a mean radius of 10 nm and a polydispersity of 0.3 and beyond a transition region they have a mean radius of 21 nm and a polydispersity of 0.2. The smaller particles, which require additional experiments before they can be identified, correspond either to soot nuclei, PAH species such as naphthalene, and/or disordered carbons with graphitic basal planes

  4. Characterization of Physically and Chemically Separated Athabasca Asphaltenes Using Small-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Amundaraín Hurtado, Jesús Leonardo; Chodakowski, Martin; Long, Bingwen; Shaw, John M. (Alberta)

    2012-02-07

    Athabasca asphaltenes were characterized using small-angle X-ray scattering (SAXS). Two methods were used to separate asphaltenes from the Athabasca bitumen: namely, chemical separation by precipitation with n-pentane and physical separation by nanofiltration using a zirconia membrane with a 20 nm average pore size. The permeate and chemically separated samples were diluted in 1-methylnaphtalene and n-dodecane prior to SAXS measurements. The temperature and asphaltene concentration ranges were 50-310 C and 1-10.4 wt %, respectively. Model-independent analysis of SAXS data provided the radius of gyration and the scattering coefficients. Model-dependent fits provided size distributions for asphaltenes assuming that they are dense and spherical. Model-independent analysis for physically and chemically separated asphaltenes showed significant differences in nominal size and structure, and the temperature dependence of structural properties. The results challenge the merits of using chemically separated asphaltene properties as a basis for asphaltene property prediction in hydrocarbon resources. While the residuals for model-dependent fits are small, the results are inconsistent with the structural parameters obtained from model-independent analysis.

  5. Counterion Distribution Around Protein-SNAs probed by Small-angle X-ray scattering

    Science.gov (United States)

    Krishnamoorthy, Kurinji; Bedzyk, Michael; Kewalramani, Sumit; Moreau, Liane; Mirkin, Chad

    Protein-DNA conjugates couple the advanced cell transfection capabilities of spherical DNA architecture and the biocompatible enzymatic activity of a protein core to potentially create therapeutic agents with dual functionality. An understanding of their stabilizing ionic environment is crucial to better understand and predict their properties. Here, we use Small-angle X-ray scattering techniques to decipher the structure of the counterion cloud surrounding these DNA coated nanoparticles. Through the use of anomalous scattering techniques we have mapped the local concentrations of Rb+ ions in the region around the Protein-DNA constructs. These results are further corroborated with simulations using a geometric model for the excess charge density as function of radial distance from the protein core. Further, we investigate the influence of solution ionic strength on the structure of the DNA corona and demonstrate a reduction in the extension of the DNA corona with increasing concentration of NaCl in solution for the case of both single and double stranded DNA shells. Our work reveals the distribution of counterions in the vicinity of Protein-DNA conjugates and decouples the effect of solution ionic strength on the thickness of the DNA layer.

  6. Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models

    Directory of Open Access Journals (Sweden)

    Stovgaard Kasper

    2010-08-01

    Full Text Available Abstract Background Genome sequencing projects have expanded the gap between the amount of known protein sequences and structures. The limitations of current high resolution structure determination methods make it unlikely that this gap will disappear in the near future. Small angle X-ray scattering (SAXS is an established low resolution method for routinely determining the structure of proteins in solution. The purpose of this study is to develop a method for the efficient calculation of accurate SAXS curves from coarse-grained protein models. Such a method can for example be used to construct a likelihood function, which is paramount for structure determination based on statistical inference. Results We present a method for the efficient calculation of accurate SAXS curves based on the Debye formula and a set of scattering form factors for dummy atom representations of amino acids. Such a method avoids the computationally costly iteration over all atoms. We estimated the form factors using generated data from a set of high quality protein structures. No ad hoc scaling or correction factors are applied in the calculation of the curves. Two coarse-grained representations of protein structure were investigated; two scattering bodies per amino acid led to significantly better results than a single scattering body. Conclusion We show that the obtained point estimates allow the calculation of accurate SAXS curves from coarse-grained protein models. The resulting curves are on par with the current state-of-the-art program CRYSOL, which requires full atomic detail. Our method was also comparable to CRYSOL in recognizing native structures among native-like decoys. As a proof-of-concept, we combined the coarse-grained Debye calculation with a previously described probabilistic model of protein structure, TorusDBN. This resulted in a significant improvement in the decoy recognition performance. In conclusion, the presented method shows great promise for

  7. Studying nanostructure gradients in injection-molded polypropylene/montmorillonite composites by microbeam small-angle x-ray scattering

    DEFF Research Database (Denmark)

    Stribeck, Norbert; Schneider, Konrad; Zeinolebadi, Ahmad;

    2014-01-01

    The core–shell structure in oriented cylindrical rods of polypropylene (PP) and nanoclay composites (NCs) from PP and montmorillonite (MMT) is studied by microbeam small-angle x-ray scattering (SAXS). The structure of neat PP is almost homogeneous across the rod showing regular semicrystalline st...

  8. Studies of protein structure in solution and protein folding using synchrotron small-angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lingling

    1996-04-01

    Synchrotron small angle x-ray scattering (SAXS) has been applied to the structural study of several biological systems, including the nitrogenase complex, the heat shock cognate protein (hsc70), and lysozyme folding. The structural information revealed from the SAXS experiments is complementary to information obtained by other physical and biochemical methods, and adds to our knowledge and understanding of these systems.

  9. Monitoring the recrystallisation of amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering.

    Science.gov (United States)

    Palomäki, Emmi; Ahvenainen, Patrik; Ehlers, Henrik; Svedström, Kirsi; Huotari, Simo; Yliruusi, Jouko

    2016-07-11

    In this paper we present a fast model system for monitoring the recrystallization of quench-cooled amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering. The use of these two methods enables comparison between surface and bulk crystallization. Non-ordered mesoporous silica micro-particles were added to the system in order to alter the rate of crystallization of the amorphous xylitol. Raman measurements showed that adding silica to the system increased the rate of surface crystallization, while X-ray measurements showed that the rate of bulk crystallization decreased. Using this model system it is possible to measure fast changes, which occur in minutes or within a few hours. Raman-spectroscopy and wide-angle X-ray scattering were found to be complementary techniques when assessing surface and bulk crystallization of amorphous xylitol. PMID:27163527

  10. Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements

    International Nuclear Information System (INIS)

    The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.

  11. Crystal Growth through Progressive Densification Identified by Synchrotron Small-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Cookson, D.J.; Gerson, A.R. (U. South Australia); (Aust. Synch.)

    2008-08-21

    For the first time, evolution of the interfacial structure of aluminum hydroxide nuclei forming within concentrated caustic solutions has been examined in situ in real time. In both dilute and concentrated caustic aluminate solutions (NaOH = 1.0 and 3.0 M, respectively, [NaOH]/[Al] = 1.22), the measured synchrotron small-angle X-ray scattering data indicate distinctly different surface structures throughout the maturation process. In the dilute solution, the data are consistent with a thin layer of less dense, recently accreted material on the surface of large fully dense particles -- consistent with the familiar model process of species attachment to well-faceted surfaces. In contrast to this, the data for the concentrated solution are consistent with large diffuse particles growing with a mass fractal dimension of approximately 2.5 which densify to form rough surface fractal particles on maturation. This unusual densification crystallization mechanism may occur in analogous concentrated systems where the fractal structures may be entropically stablized.

  12. Dynamic Conformations of Nucleosome Arrays in Solution from Small-Angle X-ray Scattering

    Science.gov (United States)

    Howell, Steven C.

    Chromatin conformation and dynamics remains unsolved despite the critical role of the chromatin in fundamental genetic functions such as transcription, replication, and repair. At the molecular level, chromatin can be viewed as a linear array of nucleosomes, each consisting of 147 base pairs (bp) of double-stranded DNA (dsDNA) wrapped around a protein core and connected by 10 to 90 bp of linker dsDNA. Using small-angle X-ray scattering (SAXS), we investigated how the conformations of model nucleosome arrays in solution are modulated by ionic condition as well as the effect of linker histone proteins. To facilitate ensemble modeling of these SAXS measurements, we developed a simulation method that treats coarse-grained DNA as a Markov chain, then explores possible DNA conformations using Metropolis Monte Carlo (MC) sampling. This algorithm extends the functionality of SASSIE, a program used to model intrinsically disordered biological molecules, adding to the previous methods for simulating protein, carbohydrates, and single-stranded DNA. Our SAXS measurements of various nucleosome arrays together with the MC generated models provide valuable solution structure information identifying specific differences from the structure of crystallized arrays.

  13. Automated acquisition and analysis of small angle X-ray scattering data

    International Nuclear Information System (INIS)

    Small Angle X-ray Scattering (SAXS) is a powerful tool in the study of biological macromolecules providing information about the shape, conformation, assembly and folding states in solution. Recent advances in robotic fluid handling make it possible to perform automated high throughput experiments including fast screening of solution conditions, measurement of structural responses to ligand binding, changes in temperature or chemical modifications. Here, an approach to full automation of SAXS data acquisition and data analysis is presented, which advances automated experiments to the level of a routine tool suitable for large scale structural studies. The approach links automated sample loading, primary data reduction and further processing, facilitating queuing of multiple samples for subsequent measurement and analysis and providing means of remote experiment control. The system was implemented and comprehensively tested in user operation at the BioSAXS beamlines X33 and P12 of EMBL at the DORIS and PETRA storage rings of DESY, Hamburg, respectively, but is also easily applicable to other SAXS stations due to its modular design.

  14. Lysozyme crystal growth, as observed by small angle X-ray scattering, proceeds without crystallization intermediates

    International Nuclear Information System (INIS)

    A combination of small angle X-ray scattering and gel techniques was used to follow the kinetics of protein crystal growth as a function of time. Hen egg white lysozyme, at different protein concentrations, was used as a model system. A new sample holder was designed, in which supersaturation is induced in the presence of salt by decreasing the temperature. It had been shown previously that a decrease in temperature and/or an increase in crystallizing agent induces an increase in the attractive interactions present in the lysozyme solutions, the lysozyme remaining monomeric. In the present paper we show that similar behaviour is observed in NaCl when agarose gels are used. During crystal growth, special attention was paid to determine whether oligomers were formed as the protein in solution was incorporated in the newly formed crystals. From these first series of experiments, we did not find any indication of oligomer formation between monomer in solution and crystal. The results obtained are in agreement with the hypothesis that lysozyme crystals in NaCl grow by addition of monomeric particles. (orig.)

  15. Crystal Growth through Progressive Densification Identified by Synchrotron Small-Angle X-ray Scattering

    International Nuclear Information System (INIS)

    For the first time, evolution of the interfacial structure of aluminum hydroxide nuclei forming within concentrated caustic solutions has been examined in situ in real time. In both dilute and concentrated caustic aluminate solutions (NaOH = 1.0 and 3.0 M, respectively, (NaOH)/(Al) = 1.22), the measured synchrotron small-angle X-ray scattering data indicate distinctly different surface structures throughout the maturation process. In the dilute solution, the data are consistent with a thin layer of less dense, recently accreted material on the surface of large fully dense particles -- consistent with the familiar model process of species attachment to well-faceted surfaces. In contrast to this, the data for the concentrated solution are consistent with large diffuse particles growing with a mass fractal dimension of approximately 2.5 which densify to form rough surface fractal particles on maturation. This unusual densification crystallization mechanism may occur in analogous concentrated systems where the fractal structures may be entropically stablized.

  16. Topological investigation of electronic silicon nanoparticulate aggregates using ultra-small-angle X-ray scattering

    International Nuclear Information System (INIS)

    The network topology of two types of silicon nanoparticles, produced by high energy milling and pyrolysis of silane, in layers deposited from inks on permeable and impermeable substrates has been quantitatively characterized using ultra-small-angle X-ray scattering, supported by scanning electron microscopy observations. The milled particles with a highly polydisperse size distribution form agglomerates, which in turn cluster to form larger aggregates with a very high degree of aggregation. Smaller nanoparticles with less polydisperse size distribution synthesized by thermal catalytic pyrolysis of silane form small open clusters. The Sauter mean diameters of the primary particles of the two types of nanoparticles were obtained from USAXS particle volume to surface ratio, with values of ∼41 and ∼21 nm obtained for the high energy milled and pyrolysis samples, respectively. Assuming a log-normal distribution of the particles, the geometric standard deviation of the particles was calculated to be ∼1.48 for all the samples, using parameters derived from the unified fit to the USAXS data. The flow properties of the inks and substrate combination lead to quantitative changes in the mean particle separation, with slowly curing systems with good capillary flow resulting in denser networks with smaller aggregates and better contact between particles.

  17. X-ray crystal structure and small-angle X-ray scattering of sheep liver sorbitol dehydrogenase

    DEFF Research Database (Denmark)

    Yennawar, Hemant; Møller, Magda; Gillilan, Richard; Yennawar, Neela

    The X-ray crystal structure of sheep liver sorbitol dehydrogenase (slSDH) has been determined using the crystal structure of human sorbitol dehydrogenase (hSDH) as a molecular-replacement model. slSDH crystallized in space group I222 with one monomer in the asymmetric unit. A conserved tetramer...

  18. Structural characterization of the human cerebral myelin sheath by small angle x-ray scattering

    Science.gov (United States)

    DeFelici, M.; Felici, R.; Ferrero, C.; Tartari, A.; Gambaccini, M.; Finet, S.

    2008-10-01

    Myelin is a multi-lamellar membrane surrounding neuronal axons and increasing their conduction velocity. When investigated by small-angle x-ray scattering (SAXS), the lamellar quasi-periodical arrangement of the myelin sheath gives rise to distinct peaks, which allow the determination of its molecular organization and the dimensions of its substructures. In this study we report on the myelin sheath structural determination carried out on a set of human brain tissue samples coming from surgical biopsies of two patients: a man around 60 and a woman nearly 90 years old. The samples were extracted either from white or grey cerebral matter and did not undergo any manipulation or chemical-physical treatment, which could possibly have altered their structure, except dipping them into a formalin solution for their conservation. Analysis of the scattered intensity from white matter of intact human cerebral tissue allowed the evaluation not only of the myelin sheath periodicity but also of its electronic charge density profile. In particular, the thicknesses of the cytoplasm and extracellular regions were established, as well as those of the hydrophilic polar heads and hydrophobic tails of the lipid bilayer. SAXS patterns were measured at several locations on each sample in order to establish the statistical variations of the structural parameters within a single sample and among different samples. This work demonstrates that a detailed structural analysis of the myelin sheath can also be carried out in randomly oriented samples of intact human white matter, which is of importance for studying the aetiology and evolution of the central nervous system pathologies inducing myelin degeneration.

  19. An Assessment of Critical Dimension Small Angle X-ray Scattering Metrology for Advanced Semiconductor Manufacturing

    Science.gov (United States)

    Settens, Charles M.

    Simultaneous migration of planar transistors to FinFET architectures, the introduction of a plurality of materials to ensure suitable electrical characteristics, and the establishment of reliable multiple patterning lithography schemes to pattern sub-10 nm feature sizes imposes formidable challenges to current in-line dimensional metrologies. Because the shape of a FinFET channel cross-section immediately influences the electrical characteristics, the evaluation of 3D device structures requires measurement of parameters beyond traditional critical dimension (CD), including their sidewall angles, top corner rounding and footing, roughness, recesses and undercuts at single nanometer dimensions; thus, metrologies require sub-nm and approaching atomic level measurement uncertainty. Synchrotron critical dimension small angle X-ray scattering (CD-SAXS) has unique capabilities to non-destructively monitor the cross-section shape of surface structures with single nanometer uncertainty and can perform overlay metrology to sub-nm uncertainty. In this dissertation, we perform a systematic experimental investigation using CD-SAXS metrology on a hierarchy of semiconductor 3D device architectures including, high-aspect-ratio contact holes, H 2 annealed Si fins, and a series of grating type samples at multiple points along a FinFET fabrication process increasing in structural intricacy and ending with fully fabricated FinFET. Comparative studies between CD-SAXS metrology and other relevant semiconductor dimensional metrologies, particularly CD-SEM, CD-AFM and TEM are used to determine physical limits of CD-SAXS approach for advanced semiconductor samples. CD-SAXS experimental tradeoffs, advice for model-dependent analysis and thoughts on the compatibility with a semiconductor manufacturing environment are discussed.

  20. Simultaneous measurement of X-ray small angle scattering, absorption and reactivity: A continuous flow catalysis reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungsik; Lee, Byeongdu; Seifert, Soenke [X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Vajda, Stefan [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Department of Chemical Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520 (United States); Winans, Randall E., E-mail: rewinans@anl.gov [X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2011-09-01

    A fixed-bed, continuous flow catalysis reactor is described, in which GISAXS (grazing incidence small angle X-ray scattering)/GIXAS (grazing incidence X-ray absorption spectroscopy) and TPR (temperature-programmed reaction) can be measured simultaneously on samples with low metal coverage. The capabilities offered by this setup are illustrated in the example of the dehydrogenation of cyclohexene, where the size, oxidation state and reactivity of supported cobalt clusters were investigated under ambient pressure conditions. The GIXAS data reveal an evolution of the oxidation state of the catalytic particles with temperature. Simultaneously recorded GISAXS data show stable clusters, without any indication of sintering under employed reaction conditions.

  1. Microfocus wide-angle X-ray scattering of polymers crystallized in a fast scanning chip calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Drongelen, Martin van [Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Meijer-Vissers, Tamara [Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven (Netherlands); Cavallo, Dario, E-mail: d.cavallo1@tue.nl [Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Portale, Giuseppe [ESRF, Dubble CRG, Netherlands Organization of Scientific Research (NWO), 38043 Grenoble (France); Poel, Geert Vanden [DSM Resolve, Urmonderbaan 22, 6167 RD Geleen (Netherlands); Androsch, René, E-mail: rene.androsch@iw.uni-halle.de [Martin-Luther-University Halle-Wittenberg, Center of Engineering Sciences, 06099 Halle/Saale (Germany)

    2013-07-10

    Graphical abstract: - Highlights: • Micro-focused synchrotron radiation was used for WAXS analysis of FSC samples. • FSC polymer crystallization experiments were completed by in situ X-ray structure analysis. • The supercooling-controlled polymorphism of iPP and PA 6 has been confirmed. - Abstract: Microfocus wide-angle X-ray scattering (WAXS) has been applied for analysis of the polymorphism of isotactic polypropylene and polyamide 6 prepared in a fast scanning chip calorimeter (FSC). Samples with a typical mass of few hundred nanograms, and lateral dimension and thickness of about 100 μm and 20 μm, respectively, were exposed to a defined thermal history in the FSC and subsequently analyzed regarding the X-ray structure at ambient temperature using an intense synchrotron microfocused X-ray beam. The relaxed melt of isotactic polypropylene was cooled at rates of 40 K s{sup −1} and 200 K s{sup −1} which allowed formation of α-crystals or mesophase, respectively. Polyamide 6 was isothermally crystallized at 95 °C and 180 °C which led to formation of γ-mesophase and α-crystals, respectively. This study demonstrated, for the first time, that FSC polymer crystallization experiments could be completed and expanded by subsequent in situ structure analysis by X-ray scattering.

  2. Analysis of the Data from Compton X-ray Polarimeters which Measure the Azimuthal and Polar Scattering Angles

    CERN Document Server

    ,

    2011-01-01

    X-ray polarimetry has the potential to make key-contributions to our understanding of galactic compact objects like binary black hole systems and neutron stars, and extragalactic objects like active galactic nuclei, blazars, and neutron stars. Furthermore, several particle astrophysics topics can be addressed including uniquely sensitive tests of Lorentz invariance. In the energy range from 10-20 keV to several MeV, Compton polarimeters achieve the best performance. In this paper we evaluate the benefit that comes from using the azimuthal and polar angles of the Compton scattered photons in the analysis, rather than using the azimuthal scattering angles alone. We study the case of an ideal Compton polarimeter and show that a Maximum Likelihood analysis which uses the two scattering angles lowers the Minimum Detectable Polarization (MDP) by ~20% compared to a standard analysis based on the azimuthal scattering angles alone. The accuracies with which the polarization fraction and the polarization direction can ...

  3. Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering

    Directory of Open Access Journals (Sweden)

    Norbert Kučerka

    2015-09-01

    Full Text Available We review recent developments in the rapidly growing field of membrane biophysics, with a focus on the structural properties of single lipid bilayers determined by different scattering techniques, namely neutron and X-ray scattering. The need for accurate lipid structural properties is emphasized by the sometimes conflicting results found in the literature, even in the case of the most studied lipid bilayers. Increasingly, accurate and detailed structural models require more experimental data, such as those from contrast varied neutron scattering and X-ray scattering experiments that are jointly refined with molecular dynamics simulations. This experimental and computational approach produces robust bilayer structural parameters that enable insights, for example, into the interplay between collective membrane properties and its components (e.g., hydrocarbon chain length and unsaturation, and lipid headgroup composition. From model studies such as these, one is better able to appreciate how a real biological membrane can be tuned by balancing the contributions from the lipid’s different moieties (e.g., acyl chains, headgroups, backbones, etc..

  4. Beyond simple small-angle X-ray scattering: developments in online complementary techniques and sample environments

    Directory of Open Access Journals (Sweden)

    Wim Bras

    2014-11-01

    Full Text Available Small- and wide-angle X-ray scattering (SAXS, WAXS are standard tools in materials research. The simultaneous measurement of SAXS and WAXS data in time-resolved studies has gained popularity due to the complementary information obtained. Furthermore, the combination of these data with non X-ray based techniques, via either simultaneous or independent measurements, has advanced understanding of the driving forces that lead to the structures and morphologies of materials, which in turn give rise to their properties. The simultaneous measurement of different data regimes and types, using either X-rays or neutrons, and the desire to control parameters that initiate and control structural changes have led to greater demands on sample environments. Examples of developments in technique combinations and sample environment design are discussed, together with a brief speculation about promising future developments.

  5. Crystallization and melting behavior of polymer blend observed by microbeam small-angle x-ray scattering

    International Nuclear Information System (INIS)

    The microbeam small angle x-ray scattering (SAXS) technique gives the novel information about micron-scale structural distribution (or inhomogeneity). By using microbeam SAXS, we have studied the crystallization and melting behavior of miscible polymer blend PCL (poly- ε caprolactone)/PVB (poly-vinyl butyral). In PCL/PVB, the very large spherulite with highly regular band structure is formed because of low frequency of nucleation. By irradiating an X-ray microbeam near the edge of the spherulite, we have measured the lamella formation at the growth front. It is found that PCL/PVB crystal has two populations of lamella bundle (longer and usual periodic structure) and the very long periodic structure grows before the appearance of the usual lamella period. We have also scanned the X-ray microbeam along the radial direction of the spherulite and have observed a periodic change of SAXS intensity, the period of which corresponds to the band period. (author)

  6. Analysis of the aggregation structure from amphiphilic block copolymers in solutions by small-angle x-ray scattering

    CERN Document Server

    Rong Li Xia; Wang Jun; Wei Liu He; Li Fu Mian; Li Zi Chen

    2002-01-01

    The aggregation structure of polystyrene-p vinyl benzoic amphiphilic block copolymers which were prepared in different conditions was investigated by synchrotron radiation small-angle x-ray scattering (SAXS). The micelle was self-assembled in selective solvents of the block copolymers. Authors' results demonstrate that the structure of the micelle depends on the factors, such as the composition of the copolymers, the nature of the solvent and the concentration of the solution

  7. DMSO-Induced Dehydration of DPPC Membranes Studied by X-ray Diffraction, Small-Angle Neutron Scattering, and Calorimetry

    OpenAIRE

    Kiselev, M. A.; Lesieur, P.; Kisselev, A. M.; Grabielle-Madelmond, C.; Ollivon, M.

    2001-01-01

    The influence of dimethyl sulfoxide (DMSO) on membrane thickness, multilamellar repeat distance, and phase transitions of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) was investigated by X-ray diffraction and small-angle neutron scattering (SANS). The differential scanning calorimetry (DSC) study of water freezing and ice melting was performed in the ternary DPPC /DMSO /water and binary DMSO /water systems. The methods applied demonstrated the differences in membrane structure in t...

  8. Quantitative Analysis of the Orientation of Mineral in Bone from Small-Angle X-Ray Scattering Patterns

    Science.gov (United States)

    Matsushima, Norio; Akiyama, Morio; Terayama, Yoshio

    1982-01-01

    The small-angle X-ray scattering data from a rabbit femur is quantitatively evaluated with respect to the mineral distribution in bone. The results show the existence of a needle-like mineral with a length of at least 300 A and a preferred orientation of the needle axes parallel to the long axis of the bone. The angular distribution of the needle axes gives a value of 30° for the mean inclination.

  9. Synthesis of a nanorod ferrofluid and characterisation by magnetic-field-dependent small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Compared to conventional ferrofluids, which contain mostly spherical particles, a dispersion of highly anisometric particles such as rods or chains is expected to give rise to an enhancement or modification of well-known ferrofluid properties. This contribution reports on the synthesis of a ferrofluid containing stable chains of iron nanoparticles and on its microstructural characterisation by means of transmission electron microscopy and small-angle X-ray scattering (SAXS). The SAXS measurements develop a pronounced anisotropy of the scattering pattern as a function of an increasing external magnetic field. Evaluation of the radially averaged SAXS curves in terms of basic scattering functions is discussed

  10. Synthesis of a nanorod ferrofluid and characterisation by magnetic-field-dependent small-angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Doebrich, F. [Universitaet des Saarlandes, Technische Physik, Geb. D2 2, 66041 Saarbruecken (Germany)]. E-mail: f.doebrich@nano.uni-saarland.de; Michels, A. [Universitaet des Saarlandes, Technische Physik, Geb. D2 2, 66041 Saarbruecken (Germany); Birringer, R. [Universitaet des Saarlandes, Technische Physik, Geb. D2 2, 66041 Saarbruecken (Germany)

    2007-09-15

    Compared to conventional ferrofluids, which contain mostly spherical particles, a dispersion of highly anisometric particles such as rods or chains is expected to give rise to an enhancement or modification of well-known ferrofluid properties. This contribution reports on the synthesis of a ferrofluid containing stable chains of iron nanoparticles and on its microstructural characterisation by means of transmission electron microscopy and small-angle X-ray scattering (SAXS). The SAXS measurements develop a pronounced anisotropy of the scattering pattern as a function of an increasing external magnetic field. Evaluation of the radially averaged SAXS curves in terms of basic scattering functions is discussed.

  11. Nano materials Characterization by Small-angle X-ray Scattering Applied on a Multi-purpose X-ray Diffractometer Platform

    International Nuclear Information System (INIS)

    We present the application of the small-angle X-ray scattering (SAXS) technique for the structural characterization of nano materials. This technique has become available in the laboratory on a multipurpose X-ray diffractometer platform and yields information that is complementary to what can be deduced from XRD (or WAXS) data. Among others SAXS is used for the determination of the size distribution, shape, specific surface area, inner structure and aggregation behavior of nanoparticles. It may also be applied to investigate pore size distributions in meso porous materials as well as ordered nano structures. Several application examples dealing with the characterization of photo catalytic nano powders, porous materials, polymer nano composites, colloidal dispersions, surfactants and related samples will be given. Furthermore, the SAXS technique will be compared and contrasted to complementary experimental techniques, such as dynamic light scattering, ultracentrifugation, electron microscopy, BET measurements and mercury intrusion porosimetry. Whereas this presentation focuses on the application examples of the SAXS technique, a more fundamental and practical introduction will be given within the workshop. (author)

  12. High-resolution soft-X-ray beamline ADRESS at Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies

    CERN Document Server

    Strocov, V N; Flechsig, U; Schmidt, T; Imhof, A; Chen, Q; Raabe, J; Betemps, R; Zimoch, D; Krempasky, J; Piazzalunga, A; Wang, X; Grioni, M; Patthey, L

    2009-01-01

    We describe the concepts and technical realization of the high-resolution soft-X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for Resonant Inelastic X-ray Scattering (RIXS) and Angle-Resolved Photoelectron Spectroscopy (ARPES). The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0-180 deg rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well-established scheme of plane grating monochromator (PGM) operating in collimated light. The ultimate resolving power E/dE is above 33000 at 1 keV photon energy. The choice of blazed vs lamellar gratings and optimization of their profile parameters is described. Due to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, high photon flux is achieved up to 1.0e13 photons/s/0.01%BW at 1 keV. Ellipsoida...

  13. Structure of PEP-PEO block copolymer micelles: Exploiting the complementarity of small-angle X-ray scattering and static light scattering

    DEFF Research Database (Denmark)

    Jensen, Grethe Vestergaard; Shi, Qing; Hernansanz, María J.;

    2011-01-01

    . The present work shows that the same information can be obtained by combining static light scattering (SLS) and small-angle X-ray scattering (SAXS), which provide information on, respectively, large and short length scales. Micelles of a series of block copolymers of poly(ethylene propylene...

  14. The atomic scale structure of CXV carbon: wide-angle x-ray scattering and modeling studies

    Science.gov (United States)

    Hawelek, L.; Brodka, A.; Dore, J. C.; Honkimaki, V.; Burian, A.

    2013-11-01

    The disordered structure of commercially available CXV activated carbon produced from finely powdered wood-based carbon has been studied using the wide-angle x-ray scattering technique, molecular dynamics and density functional theory simulations. The x-ray scattering data has been converted to the real space representation in the form of the pair correlation function via the Fourier transform. Geometry optimizations using classical molecular dynamics based on the reactive empirical bond order potential and density functional theory at the B3LYP/6-31g* level have been performed to generate nanoscale models of CXV carbon consistent with the experimental data. The final model of the structure comprises four chain-like and buckled graphitic layers containing a small percentage of four-fold coordinated atoms (sp3 defects) in each layer. The presence of non-hexagonal rings in the atomic arrangement has been also considered.

  15. A Grazing-Incidence Small-Angle X-Ray Scattering View of Vertically Aligned ZnO Nanowires

    Directory of Open Access Journals (Sweden)

    M. Lučić Lavčević

    2013-01-01

    Full Text Available We report a grazing-incidence small-angle X-ray scattering study of ZnO films with vertically aligned and randomly distributed nanowires, grown through a hydrothermal growth process on nanostructured ZnO seeding coatings and deposited by electron beam evaporation on silicon and glass, respectively. The comparison of the scattering patterns of seeding coatings and nanowires showed that the scattering of vertically aligned nanowires exhibited a specific feature: the dominant characteristic of their scattering patterns is the appearance of fine structure effects around the specular peak. These effects were clarified by the combined reflection and scattering phenomena, suggested for the aligned nanowires-substrate system. Furthermore, they enabled the calculation of the average gyration radius of nanowires in horizontal direction. The calculated value was in good agreement with the radii of nanowires estimated by surface electron microscopy. Therefore, the observed feature in the scattering pattern can serve as evidence of the aligned growth of nanowires.

  16. Anomalous Small-angle X-ray Scattering Study on Aggregation of a Block Copolymer in a Selective Solvent

    International Nuclear Information System (INIS)

    Anomalous small-angle X-ray Scattering (ASAXS) analysis for poly(4-vinylphenol)-b-poly(4-bromostyrene) (PVPh-b-PBrS) in N,N,N',N'-tetramethyl ethylene diamine (TMEDA) solution was examined. The ASAXS measurements, executed at three different energies, provided the separation of the scattering of the Br atoms from whole system. The energy-dependent term in the SAXS profile, which is corresponding to the form factor of PBrS domain, sufficiently agree with the SAXS profile calculated for hard sphere with 41 nm radius. Therefore, the PBrS chains assemble into spherical core with 41 nm radius in TMEDA solution.

  17. Comparative anomalous small-angle X-ray scattering study of hotwire and plasma grown amorphous silicon-germanium alloys

    OpenAIRE

    Goerigk, G.; Williamson, D. L.

    2001-01-01

    The nanostructure of hydrogenated amorphous silicon-germanium alloys, a-Si1-xGex:H, prepared by the hotwire deposition technique (x=0.06-0.79) and by the plasma enhanced chemical vapor deposition technique (x=0 and 0.50) was analyzed by anomalous small-angle x-ray scattering experiments. For all alloys with x >0 the Ge component was found to be inhomogeneously distributed with correlation lengths of about 1 nm. A systematic increase of the separated scattering was found due to the increasing ...

  18. New reactor dedicated to in operando studies of model catalysts by means of surface x-ray diffraction and grazing incidence small angle x-ray scattering

    International Nuclear Information System (INIS)

    A new experimental setup has been developed to enable in situ studies of catalyst surfaces during chemical reactions by means of surface x-ray diffraction (SXRD) and grazing incidence small angle x-ray scattering. The x-ray reactor chamber was designed for both ultrahigh-vacuum (UHV) and reactive gas environments. A laser beam heating of the sample was implemented; the sample temperature reaches 1100 K in UHV and 600 K in the presence of reactive gases. The reactor equipment allows dynamical observations of the surface with various, perfectly mixed gases at controlled partial pressures. It can run in two modes: as a bath reactor in the pressure range of 1-1000 mbars and as a continuous flow cell for pressure lower than 10-3 mbar. The reactor is connected to an UHV preparation chamber also equipped with low energy electron diffraction and Auger spectroscopy. This setup is thus perfectly well suited to extend in situ studies to more complex surfaces, such as epitaxial films or supported nanoparticles. It offers the possibility to follow the chemically induced changes of the morphology, the structure, the composition, and growth processes of the model catalyst surface during exposure to reactive gases. As an example the Pd8Ni92(110) surface structure was followed by SXRD under a few millibars of hydrogen and during butadiene hydrogenation while the reaction was monitored by quadrupole mass spectrometry. This experiment evidenced the great sensitivity of the diffracted intensity to the subtle interaction between the surface atoms and the gas molecules

  19. Anomalous small-angle X-ray scattering of nanoporous two-phase atomistic models for amorphous silicon–germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chehaidar, A., E-mail: Abdallah.Chehaidar@fss.rnu.tn

    2015-09-15

    The present work deals with a detailed analysis of the anomalous small-angle X-ray scattering in amorphous silicon–germanium alloy using the simulation technique. We envisage the nanoporous two-phase alloy model consisting in a mixture of Ge-rich and Ge-poor domains and voids at the nanoscale. By substituting Ge atoms for Si atoms in nanoporous amorphous silicon network, compositionally heterogeneous alloys are generated with various composition-contrasts between the two phases. After relaxing the as-generated structure, we compute its radial distribution function, and then we deduce by the Fourier transform technique its anomalous X-ray scattering pattern. Using a smoothing procedure, the computed X-ray scattering patterns are corrected for the termination errors due to the finite size of the model, allowing so a rigorous quantitative analysis of the anomalous small-angle scattering. Our simulation shows that, as expected, the anomalous small-angle X-ray scattering technique is a tool of choice for characterizing compositional heterogeneities coexisting with structural inhomogeneities in an amorphous alloy. Furthermore, the sizes of the compositional nanoheterogeneities, as measured by anomalous small-angle X-ray scattering technique, are X-ray energy independent. A quantitative analysis of the separated reduced anomalous small-angle X-ray scattering, as defined in this work, provided a good estimate of their size.

  20. Understanding nucleic acid structural changes by comparing wide-angle x-ray scattering (WAXS) experiments to molecular dynamics simulations

    Science.gov (United States)

    Pabit, Suzette A.; Katz, Andrea M.; Tolokh, Igor S.; Drozdetski, Aleksander; Baker, Nathan; Onufriev, Alexey V.; Pollack, Lois

    2016-05-01

    Wide-angle x-ray scattering (WAXS) is emerging as a powerful tool for increasing the resolution of solution structure measurements of biomolecules. Compared to its better known complement, small angle x-ray scattering (SAXS), WAXS targets higher scattering angles and can enhance structural studies of molecules by accessing finer details of solution structures. Although the extension from SAXS to WAXS is easy to implement experimentally, the computational tools required to fully harness the power of WAXS are still under development. Currently, WAXS is employed to study structural changes and ligand binding in proteins; however, the methods are not as fully developed for nucleic acids. Here, we show how WAXS can qualitatively characterize nucleic acid structures as well as the small but significant structural changes driven by the addition of multivalent ions. We show the potential of WAXS to test all-atom molecular dynamics (MD) simulations and to provide insight into understanding how the trivalent ion cobalt(III) hexammine (CoHex) affects the structure of RNA and DNA helices. We find that MD simulations capture the RNA structural change that occurs due to addition of CoHex.

  1. Grazing incidence small angle X-ray scattering study of silver nanoparticles in ion-exchanged glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Weidong, E-mail: 57399942@qq.com [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Wu, Zhaojun [Department of Practice Teaching and Equipment Management, Qiqihar University, Qiqihar 161006 (China); Gu, Xiaohua [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Xing, Xueqing; Mo, Guang [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu, Zhonghua, E-mail: wuzh@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-05-15

    The size and distribution of silver nanoparticles in ion-exchanged silicate glass induced by thermal treatments in air at different temperatures were investigated by means of grazing incidence small angle X-ray scattering technique, X-ray diffraction and optical absorption spectra. Silver–sodium ion exchange of soda-lime silicate glasses was done at 350 °C for 240 min, then the samples were treated by thermal annealing in air at different temperatures 400, 500 and 550 °C, respectively, for 1 h. After the annealing treatment above 400 °C for 1 h, smaller Ag nanoparticles occurred, together with bigger ones. Both dissolution of smaller Ag nanoparticles and diffusion of larger ones are discussed in these stages of annealing in this contribution.

  2. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies.

    Science.gov (United States)

    Strocov, V N; Schmitt, T; Flechsig, U; Schmidt, T; Imhof, A; Chen, Q; Raabe, J; Betemps, R; Zimoch, D; Krempasky, J; Wang, X; Grioni, M; Piazzalunga, A; Patthey, L

    2010-09-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0-180 degrees rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/DeltaE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 x 10(13) photons s(-1) (0.01% BW)(-1) at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 microm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/DeltaE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given. PMID:20724785

  3. Helical rearrangement of photoactivated rhodopsin in monomeric and dimeric forms probed by high-angle X-ray scattering

    OpenAIRE

    Imamoto, Yasushi; Kojima, Keiichi; Oka, Toshihiko; Maeda, Ryo; Shichida, Yoshinori

    2015-01-01

    Light-induced helical rearrangement of vertebrate visual rhodopsin was directly monitored by high-angle X-ray scattering (HAXS), ranging from Q (= 4π sin θ/λ) = 0.03 Å-1 to Q = 1.5 Å-1. HAXS of nanodiscs containing a single rhodopsin molecule was performed before and after photoactivation of rhodopsin. The intensity difference curve obtained by HAXS agreed with that calculated from the crystal structure of dark state rhodopsin and metarhodopsin II, indicating that the conformational change of...

  4. [Prediction of Protein Conformational Mobility and Evaluation of Its Reliability Using Small-Angle X-ray Scattering].

    Science.gov (United States)

    Knyazev, S N; Kalyakin, V Y; Deryabin, I N; Fedorov, B A; Smirnov, A V; Stepanov, E O; Porozov, Yu B

    2015-01-01

    The "coarse-grained" model of protein conformational mobility is presented. We compared the trajectories of conformational motions predicted for five proteins using this model with the motion obtained by the method of the "nearest neighbor", based on small-angle X-ray scattering data. It is shown that for all studied proteins the sequence of conformations calculated on the basis of "coarse-grained" model and on the basis of the "nearest neighbor", coincides well, although there are exceptions. Some separate consideration should be given to each protein to discern the causes of these exceptions. PMID:26841499

  5. Small-angle X-ray scattering determination of the distribution of particle diameters in photochromic glasses

    International Nuclear Information System (INIS)

    The existing methods for determining particle size distributions from small angle X-ray scattering data are reviewed. The improved transform technique was used for calculating diameter distributions N(D) of lightsensitive silverhalide crystallites in photochromic glasses. From the evolution of N(D) during a certain heat treatment it can be concluded that two generations of crystallites of different size are precipitated. In glass I, the mean diameter D increases proportional to the time t of the treatment (reaction-limited growth) and in glass II D3 approximately t (diffusion-limited ripening) is obtained. (author)

  6. Analysis of biostructural changes, dynamics, and interactions - Small-angle X-ray scattering to the rescue.

    Science.gov (United States)

    Vestergaard, Bente

    2016-07-15

    Solution small angle X-ray scattering from biological macromolecules (BioSAXS) plays an increasingly important role in biostructural research. The analysis of complex protein mixtures, dynamic equilibriums, intrinsic disorder and evolving structural processes is facilitated by SAXS data, either in stand-alone applications, or with SAXS taking a prominent role in hybrid biostructural analysis. This is not the least due to the significant advances in both hardware and software that have taken place in particular at the large-scale facilities. Here, recent developments and the future potential of BioSAXS are reviewed, exemplified by numerous examples of elegant applications to challenging systems. PMID:26945933

  7. [Wide-angle x-ray scattering comparison of the structure of crystalline cytochrome c and cytochrome c in solution].

    Science.gov (United States)

    Timchenko, A A; Denesiuk, A I; Fedorov, B A

    1981-01-01

    Large-angle X-ray diffuse scattering has been used for studying the conformational changes in cytochrome c during its transition from crystal into solution and during a change of the electron state of the heme. It has been found that the structure of cytochrome c in solution differs from its structure in crystal by a shift of the chain fragment in the region of 60-77 amino acid residues. The studies of the oxidized, reduced and cyanoforms of protein in solution have not revealed noticeable changes in the protein structure. PMID:6261840

  8. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    Science.gov (United States)

    Liu, Yifei; Manjubala, Inderchand; Roschger, Paul; Schell, Hanna; Duda, Georg N.; Fratzl, Peter

    2010-10-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  9. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  10. Effects of the environmental factors on the casein micelle structure studied by cryo transmission electron microscopy and small-angle x-ray scattering/ultrasmall-angle x-ray scattering

    Science.gov (United States)

    Marchin, Stéphane; Putaux, Jean-Luc; Pignon, Frédéric; Léonil, Joëlle

    2007-01-01

    Casein micelles are colloidal protein-calcium-transport complexes whose structure has not been unequivocally elucidated. This study used small-angle x-ray scattering (SAXS) and ultrasmall angle x-ray scattering (USAXS) as well as cryo transmission electron microscopy (cryo-TEM) to provide fine structural details on their structure. Cryo-TEM observations of native casein micelles fractionated by differential centrifugation showed that colloidal calcium phosphate appeared as nanoclusters with a diameter of about 2.5nm. They were uniformly distributed in a homogeneous tangled web of caseins and were primarily responsible for the intensity distribution in the SAXS profiles at the highest q vectors corresponding to the internal structure of the casein micelles. A specific demineralization of casein micelles by decreasing the pH from 6.7 to 5.2 resulted in a reduced granular aspect of the micelles observed by cryo-TEM and the existence of a characteristic point of inflection in SAXS profiles. This supports the hypothesis that the smaller substructures detected by SAXS are colloidal calcium phosphate nanoclusters rather than putative submicelles.

  11. Introducing a standard method for experimental determination of the solvent response in laser pump, x-ray probe time-resolved wide-angle x-ray scattering experiments on systems in solution

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Brandt van Driel, Tim; Kehres, Jan;

    2013-01-01

    extract the structural information of the solute, the solvent response has to be treated. Methodologies capable of doing so include both theoretical modelling and experimental determination of the solvent response. In the work presented here, we have investigated how to obtain a reproducible solvent......In time-resolved laser pump, X-ray probe wide-angle X-ray scattering experiments on systems in solution the structural response of the system is accompanied by a solvent response. The solvent response is caused by reorganization of the bulk solvent following the laser pump event, and in order to...... response-the solvent term-experimentally when applying laser pump, X-ray probe time-resolved wide-angle X-ray scattering. The solvent term describes difference scattering arising from the structural response of the solvent to changes in the hydrodynamic parameters: pressure, temperature and density. We...

  12. Ordered array of ω particles in β-Ti matrix studied by small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Nanosized particles of ω phase in a β-Ti alloy were investigated by small-angle X-ray scattering using synchrotron radiation. We demonstrated that the particles are spontaneously weakly ordered in a three-dimensional cubic array along the 〈100〉-directions in the β-Ti matrix. The small-angle scattering data fit well to a three-dimensional short-range-order model; from the fit we determined the evolution of the mean particle size and mean distance between particles during ageing. The self-ordering of the particles is explained by elastic interaction between the particles, since the relative positions of the particles coincide with local minima of the interaction energy. We performed numerical Monte Carlo simulation of the particle ordering and we obtained a good agreement with the experimental data

  13. The characterization of oil-soluble calcium carbonate dispersions using Small-Angle X-ray Scattering (SAXS) and Small-Angle Neutron Scattering (SANS)

    International Nuclear Information System (INIS)

    Calcium carbonate dispersions stabilized by an adsorbed surfactant layer are used to regulate the acidity of lubricating oils for internal combustion engines. Three typical commercial samples have been examined using a combination of X-ray and neutron scattering techniques. The solid active material was extracted from the samples and redispersed in heptane and mixtures of toluene and toluene-d8 and n-octane and n-octane-d18. The results were in broad agreement with the core/shell model. The core radius was obtained from SAXS data. The total particle radius (∝20-50A) and hence the shell thickness were obtained by model fitting to the deuterated-solvent and 65% deuterated solvent SANS data with the core radius from the X-ray data. In determining the best fit, the core density, amount of solvent in the shell and polydispersity were also adjusted to give fits with a shell-to-core-volume ratio and a volume fraction that agreed with the expected values. The SANS data were weaker than expected assuming a simple monodisperse core/shell model with a calcite core. This is consistent with the observed polydispersity and in addition implies diffuse boundaries. Although WAXS (wide-angle X-ray scattering) confirmed that the cores were non-crystalline the best model fits were obtained with a core scattering density not much less than that calculated for calcite. The absolute intensities suggested that some solvent was incorporated into the shells of all the samples and one sample showed a preference for uptake of octane as compared to toluene. (orig./GSCH)

  14. Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids

    Science.gov (United States)

    Nguyen, Hung T.; Pabit, Suzette A.; Meisburger, Steve P.; Pollack, Lois; Case, David A.

    2014-12-01

    A new method is introduced to compute X-ray solution scattering profiles from atomic models of macromolecules. The three-dimensional version of the Reference Interaction Site Model (RISM) from liquid-state statistical mechanics is employed to compute the solvent distribution around the solute, including both water and ions. X-ray scattering profiles are computed from this distribution together with the solute geometry. We describe an efficient procedure for performing this calculation employing a Lebedev grid for the angular averaging. The intensity profiles (which involve no adjustable parameters) match experiment and molecular dynamics simulations up to wide angle for two proteins (lysozyme and myoglobin) in water, as well as the small-angle profiles for a dozen biomolecules taken from the BioIsis.net database. The RISM model is especially well-suited for studies of nucleic acids in salt solution. Use of fiber-diffraction models for the structure of duplex DNA in solution yields close agreement with the observed scattering profiles in both the small and wide angle scattering (SAXS and WAXS) regimes. In addition, computed profiles of anomalous SAXS signals (for Rb+ and Sr2+) emphasize the ionic contribution to scattering and are in reasonable agreement with experiment. In cases where an absolute calibration of the experimental data at q = 0 is available, one can extract a count of the excess number of waters and ions; computed values depend on the closure that is assumed in the solution of the Ornstein-Zernike equations, with results from the Kovalenko-Hirata closure being closest to experiment for the cases studied here.

  15. A study of mixtures of nanometer sized Fe and Cu crystallites by anomalous small angle X-ray scattering (ASAXS)

    International Nuclear Information System (INIS)

    Mixtures of Fe crystallites and Cu crystallites with diameters of about 6-14 nm, have been prepared by inert gas condensation and subsequent compaction of the crystallites. Small angle X-ray scattering experiments using synchrotron radiation have been carried out to study the microstructure of the compacts on a nanometer scale. By variation of the atomic scattering factors near the K absorption edge of Fe, partial intensities have been obtained which provide separate information about the environment of the Fe or the Cu atoms, respectively. The partial intensities are interpreted in terms of scattering contributions of particles with different sizes. The resulting size distribution functions not only indicate the presence of Fe and Cu crystallites but also give evidence for correlations between the crystallites. These correlations between Fe and Cu crystals are interpreted in terms of a mixture of the chemically different crystallites on a nanometer scale. (orig.)

  16. Small angle x-ray scattering and electron paramagnetic resonance studies of nucleation and crystallisation in basalt glasses

    International Nuclear Information System (INIS)

    We report here small angle x-ray scattering, wide angle x-ray diffraction, and electron paramagnetic resonance measurements on glasses of the same origin but prepared under various tholeitic basalt redox conditions and melted at 16000C for 16 h. The spatial correlation between growing particles is associated with interference effects observed on the scattering curves. These were completely smoothed out for reduced samples. For crystallisation temperatures of 720, 740, and 7600C the growth stage was around 5, 5, and 1 min respectively. At longer times volume diffusion controlled Ostwald ripening occurs. The resonance spectra at 9 GHz of the oxidised and reduced samples were similar and consisted of isolated paramagnetic Fe3+ with g = 4.26 and a broad asymmetric absorption ΔH (300 K) > 500 G with a peak at g = 2.0. The temperature dependence of the linewidth and intensity in fused samples and samples treated at 6350C were such as would be expected for small (of the order of 100 A) ferrimagnetic particles, and in the spectrum of a sample treated at 635 and 7050C was characteristic of a magnetic phase transition. Ferrimagnetic particles are present in quenched samples and increase in size with thermal treatment, but are not affected by fusion under the oxidising and reducing conditions used in these experiments. (author)

  17. Structure and kinetics of chemically cross-linked protein gels from small-angle X-ray scattering

    CERN Document Server

    Kaieda, Shuji; Halle, Bertil

    2014-01-01

    Glutaraldehyde (GA) reacts with amino groups in proteins, forming intermolecular cross-links that, at sufficiently high protein concentration, can transform a protein solution into a gel. Although GA has been used as a cross-linking reagent for decades, neither the cross-linking chemistry nor the microstructure of the resulting protein gel have been clearly established. Here we use small-angle X-ray scattering (SAXS) to characterise the microstructure and structural kinetics of gels formed by cross-linking of pancreatic trypsin inhibitor, myoglobin or intestinal fatty acid-binding protein. By comparing the scattering from gels and dilute solutions, we extract the structure factor and the pair correlation function of the gel. The protein gels are spatially heterogeneous, with dense clusters linked by sparse networks. Within the clusters, adjacent protein molecules are almost in contact, but the protein concentration in the cluster is much lower than in a crystal. At the $\\sim$ 1 nm SAXS resolution, the native ...

  18. Measurement of latent tracks in amorphous SiO{sub 2} using small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kluth, P. [Department of Electronic Materials Engineering, Australian National University, Canberra ACT 0200 (Australia)], E-mail: patrick.kluth@anu.edu.au; Schnohr, C.S.; Sprouster, D.J. [Department of Electronic Materials Engineering, Australian National University, Canberra ACT 0200 (Australia); Byrne, A.P. [Department of Nuclear Physics, Faculty of Physics, Australian National University, Canberra ACT 0200 (Australia); Cookson, D.J. [Australian Synchrotron Research Program, Building 434, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Ridgway, M.C. [Department of Electronic Materials Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2008-06-15

    In this paper we present preliminary yet promising results on the measurement of latent ion tracks in amorphous, 2 {mu}m thick SiO{sub 2} layers using small angle X-ray scattering (SAXS). The tracks were generated by ion irradiation with 89 MeV Au ions to fluences between 3 x 10{sup 10} and 3 x 10{sup 12} ions/cm{sup 2}. Transmission SAXS measurements show distinct scattering from the irradiated SiO{sub 2} as compared to the unirradiated material. Analysis of the SAXS spectra using a cylindrical model suggests a core-shell like density distribution in the ion tracks with a lower density core and a higher density shell as compared to unirradiated material. The total track radius of {approx}48 A is in very good agreement with previous experiments and calculations based on an inelastic thermal spike model.

  19. Measurement of latent tracks in amorphous SiO2 using small angle X-ray scattering

    International Nuclear Information System (INIS)

    In this paper we present preliminary yet promising results on the measurement of latent ion tracks in amorphous, 2 μm thick SiO2 layers using small angle X-ray scattering (SAXS). The tracks were generated by ion irradiation with 89 MeV Au ions to fluences between 3 x 1010 and 3 x 1012 ions/cm2. Transmission SAXS measurements show distinct scattering from the irradiated SiO2 as compared to the unirradiated material. Analysis of the SAXS spectra using a cylindrical model suggests a core-shell like density distribution in the ion tracks with a lower density core and a higher density shell as compared to unirradiated material. The total track radius of ∼48 A is in very good agreement with previous experiments and calculations based on an inelastic thermal spike model

  20. Grazing-incidence small-angle X-ray scattering from alkaline phosphatase immobilized in atmospheric plasmapolymer coatings

    Science.gov (United States)

    Ortore, M. G.; Sinibaldi, R.; Heyse, P.; Paulussen, S.; Bernstorff, S.; Sels, B.; Mariani, P.; Rustichelli, F.; Spinozzi, F.

    2008-06-01

    Grazing-incidence small-angle X-ray scattering (GISAXS) has been used to study proteins embedded in thin polymer films obtained by a new cold, atmospheric-pressure plasma technique. In order to test the efficiency of the technology, four samples of alkaline phosphatase incorporated in organic polymer coatings in different plasma conditions have been investigated. Data have been analysed in the framework of the distorted-wave Born approximation (DWBA), by using a new method for the simultaneous fitting of the two-dimensional diffuse scattering from each sample. As a result, protein film concentration and aggregation state as well as a set of parameters describing the polymer coatings have been obtained.

  1. Size Determination of a Liposomal Drug by Small-Angle X-ray Scattering Using Continuous Contrast Variation.

    Science.gov (United States)

    Garcia-Diez, Raul; Gollwitzer, Christian; Krumrey, Michael; Varga, Zoltan

    2016-01-26

    The continuously growing complexity of nanodrugs urges for complementary characterization techniques which can elude the current limitations. In this paper, the applicability of continuous contrast variation in small-angle X-ray scattering (SAXS) for the accurate size determination of a complex nanocarrier is demonstrated on the example of PEGylated liposomal doxorubicin (Caelyx). The mean size and average electron density of Caelyx was determined by SAXS using a gradient of aqueous iodixanol (Optiprep), an iso-osmolar suspending medium. The study is focused on the isoscattering point position and the analysis of the Guinier region of the scattering curves recorded at different solvent densities. An average diameter of (69 ± 5) nm and electron density of (346.2 ± 1.2) nm(-3) were determined for the liposomal formulation of doxorubicin. The response of the liposomal nanocarrier to increasing solvent osmolality and the structure of the liposome-encapsulated doxorubicin after the osmotic shrinkage of the liposome are evaluated with sucrose contrast variation in SAXS and wide-angle X-ray scattering (WAXS). In the case of using sucrose as contrast agent, a clear osmolality threshold at 670 mOsm kg(-1) was observed, above which the liposomal drug carriers start to shrink, though preserving the intraliposomal doxorubicin structure. The average size obtained by this technique is smaller than the value measured by dynamic light scattering (DLS), though this difference is expected due to the hydrodynamic size of the PEG moieties attached to the liposomal surface, which are not probed with solvent contrast variation in SAXS. The advantages and drawbacks of the proposed technique are discussed in comparison to DLS, the most frequently used sizing method in nanomedicine. PMID:26673729

  2. In situ microfluidic dialysis for biological small-angle X-ray scattering

    DEFF Research Database (Denmark)

    Skou, Magda; Skou, Soren; Jensen, Thomas Glasdam;

    2014-01-01

    for simultaneous SAXS and ultraviolet absorption measurements during protein dialysis, integrated directly on a SAXS beamline. Microfluidic dialysis can be used for monitoring structural changes in response to buffer exchange or, as demonstrated, protein concentration. By collecting X-ray data during...

  3. A Grazing-Incidence Small-Angle X-Ray Scattering View of Vertically Aligned ZnO Nano wires

    International Nuclear Information System (INIS)

    We report a grazing-incidence small-angle X-ray scattering study of ZnO films with vertically aligned and randomly distributed nano wires, grown through a hydrothermal growth process on nano structured ZnO seeding coatings and deposited by electron beam evaporation on silicon and glass, respectively. The comparison of the scattering patterns of seeding coatings and nano wires showed that the scattering of vertically aligned nano wires exhibited a specific feature: the dominant characteristic of their scattering patterns is the appearance of fine structure effects around the specular peak. These effects were clarified by the combined reflection and scattering phenomena, suggested for the aligned nano wires-substrate system. Furthermore, they enabled the calculation of the average gyration radius of nano wires in horizontal direction. The calculated value was in good agreement with the radii of nano wires estimated by surface electron microscopy. Therefore, the observed feature in the scattering pattern can serve as evidence of the aligned growth of nano wires.

  4. The distribution of Sr2+ counterions around polyacrylate chains analyzed by anomalous small-angle X-ray scattering

    Science.gov (United States)

    Goerigk, G.; Schweins, R.; Huber, K.; Ballauff, M.

    2004-05-01

    The distribution of Sr counterions around negatively charged sodium polyacrylate chains (NaPA) in aqueous solution was studied by anomalous small-angle X-ray scattering. Different ratios of the concentrations of SrCl2/[NaPA] reveal dramatic changes in the scattering curves. At the lower ratio the scattering curves indicate a coil-like behavior, while at the higher ratio the scattering curves are contracted to smaller q-values, caused by the collapse of the NaPA coil. The form factor of the scattering contribution of the counterions was separated and analyzed. For the scattering curves of the collapsed chains, this analysis agrees with the model of a pearl necklace, consisting of collapsed sphere-like subdomains which are connected by stretched chain segments. An averaged radius of the pearls of 19 nm and a distance between neighbouring pearls close to 60 nm could be established for the collapsed state of the NaPA chains.

  5. Small-angle and wide-angle X-ray scattering study on the bilayer structure of synthetic and bovine heart cardiolipins

    International Nuclear Information System (INIS)

    Cardiolipin (CL) is a membrane phospholipid containing four fatty acid chains. CL plays an important role in energy transformation in mitochondria. The disorder of CL biosynthesis is involved in a genetic disease, Barth syndrome. Alteration of fatty acid composition of CLs has been found in Barth syndrome patients, i.e., the decrease of unsaturated fatty acid chains. In this study, we investigated how the degree of saturation alters the structure of CL bilayers by using X-ray scattering. Bovine heart CL and two synthetic CLs were compared. Fatty acid compositions of these three CLs have different saturation. Small-angle X-ray scattering data showed that the decrease of the number of double bonds in the unsaturated fatty acid chains causes to thicken the CL bilayers. In addition, wide-angle X-ray scattering data suggested that the decrease reduces the degree of disorder of the hydrophobic region in a liquid crystalline phase. These results may be related to the dysfunction of mitochondria in Barth syndrome.

  6. Small-angle and wide-angle X-ray scattering study on the bilayer structure of synthetic and bovine heart cardiolipins

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi [Biophysics Laboratory, Department of Chemistry and Chemical Biology, Gunma University, Maebashi, Gunma, 371-8510 (Japan); Hayakawa, Tomohiro [Life Science Laboratory, Advanced Materials Laboratories, Sony Corporation, Yushima, Bunkyo-ku, Tokyo, 113-8510 (Japan); Ito, Kazuki; Takata, Masaki [Structural Materials Science Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 (Japan); Kobayashi, Toshihide, E-mail: htakahas@chem-bio.gunma-u.ac.j [Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198 (Japan)

    2010-10-01

    Cardiolipin (CL) is a membrane phospholipid containing four fatty acid chains. CL plays an important role in energy transformation in mitochondria. The disorder of CL biosynthesis is involved in a genetic disease, Barth syndrome. Alteration of fatty acid composition of CLs has been found in Barth syndrome patients, i.e., the decrease of unsaturated fatty acid chains. In this study, we investigated how the degree of saturation alters the structure of CL bilayers by using X-ray scattering. Bovine heart CL and two synthetic CLs were compared. Fatty acid compositions of these three CLs have different saturation. Small-angle X-ray scattering data showed that the decrease of the number of double bonds in the unsaturated fatty acid chains causes to thicken the CL bilayers. In addition, wide-angle X-ray scattering data suggested that the decrease reduces the degree of disorder of the hydrophobic region in a liquid crystalline phase. These results may be related to the dysfunction of mitochondria in Barth syndrome.

  7. Critical dimension small angle X-ray scattering measurements of FinFET and 3D memory structures

    Science.gov (United States)

    Settens, Charles; Bunday, Benjamin; Thiel, Brad; Kline, R. Joseph; Sunday, Daniel; Wang, Chengqing; Wu, Wen-li; Matyi, Richard

    2013-04-01

    We have demonstrated that transmission critical dimension small angle X-ray scattering (CD-SAXS) provides high accuracy and precision CD measurements on advanced 3D microelectronic architectures. The competitive advantage of CD-SAXS over current 3D metrology methods such as optical scatterometry is that CD-SAXS is able to decouple and fit cross-section parameters without any significant parameter cross-correlations. As the industry aggressively scales beyond the 22 nm node, CD-SAXS can be used to quantitatively measure nanoscale deviations in the average crosssections of FinFETs and high-aspect ratio (HAR) memory devices. Fitting the average cross-section of 18:1 isolated HAR contact holes with an effective trapezoid model yielded an average pitch of 796.9 +/- 0.4 nm, top diameter of 70.3 +/- 0.9 nm, height of 1088 +/- 4 nm, and sidewall angle below 0.1°. Simulations of dense 40:1 HAR contact holes and FinFET fin-gate crossbar structures have been analyzed using CD-SAXS to inquire the theoretical precision of the technique to measure important process parameters such as fin CD, height, and sidewall angle; BOX etch recess, thickness of hafnium oxide and titanium nitride layers; gate CD, height, and sidewall angle; and hafnium oxide and titanium nitride etch recess. The simulations of HAR and FinFET structures mimic the characteristics of experimental data collected at a synchrotron x-ray source. Using the CD-SAXS simulator, we estimate the measurement capabilities for smaller similar structures expected at future nodes to predict the applicability of this technique to fulfill important CD metrology needs.

  8. Ultra-small angle neutron scattering and X-ray tomography studies of caseinate-hydroxyapatite microporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Ritzoulis, C., E-mail: critzou@food.teithe.gr [ATEI of Thessaloniki, PO Box 141, 57400 Thessaloniki (Greece); Strobl, M. [Ruprecht-Karls-University Heidelberg, Physikalisch-Chemisches Institut, Im Neuenheimer Feld 229, 69120 Heidelberg (Germany); Helmholtz Centre Berlin for Materials and Energy (former Hahn-Meitner Institute), SF1, Glienicker Str. 100, 14109 Berlin (Germany); Panayiotou, C. [Aristotle University of Thessaloniki, University Campus (Greece); Choinka, G. [Helmholtz Centre Berlin for Materials and Energy (former Hahn-Meitner Institute), SF1, Glienicker Str. 100, 14109 Berlin (Germany); Tsioptsias, C. [Aristotle University of Thessaloniki, University Campus (Greece); Vasiliadou, C. [KEPAMAH, 22nd April 1, 63100 Polygyros, Chalkidiki (Greece); Vasilakos, V. [University of Crete, Department of Biology, 71409 Heraklion, Crete (Greece); Beckmann, F.; Herzen, J.; Donath, T. [Institute for Materials Research, GKSS-Research Center, 21502 Geesthacht (Germany)

    2010-09-01

    Microporous hydroxyapatite-protein composite materials of bimodal pore size distribution, intended for utilization as bone regeneration scaffolds, have been prepared by means of milk caseinate emulsion droplet templating. Ultra-small angle neutron scattering (USANS) has been utilized in order to obtain information on the size distribution of the smaller pores (less than tens of micrometers), as compared to the emulsions that have been initially used as templates. The samples were subsequently visualized in 3 dimensions using synchrotron radiation X-ray tomography, where information concerning the larger pores has been obtained. The examination of the samples confirmed a strong correlation between the size of the templating droplets and the produced pores. In addition, 1 {mu}m-sized pores appear to adhere to the surface of 20-70 {mu}m pores, providing an irregular surface on the large pore walls, a desirable feature in bone-mimicking materials.

  9. X-ray magnetic circular dichroism and small angle neutron scattering study of thiol capped gold nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M. A.; Haskel, D.; Pinel, E. F.; te Velthuis, S. G. E.; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian, C.; Garcia, M. A.; Univ. Complutense de Madrid; Inst. de Magnetismo Aplicado UCM; Univ. Pisa; Univ. di Padova

    2009-11-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 {center_dot} 10{sup -4} was found at the Au L{sub 3} edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M{sub s}, of 0.06 emu/g{sub Au}. SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.

  10. X-ray magnetic circular dichroism and small angle neutron scattering studies of thiol capped gold nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M. A.; Haskel, D.; te Velthuis, S. G. E; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian Fernandez, C.; Garcia, M. A.; Univ.Complutense de Madrid; Inst. de Magnetismo Aplicado; Univ. of Pisa; Lab. di Magnetismo Molecolare

    2009-01-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 {center_dot} 10{sup -4} was found at the Au L{sub 3} edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M{sub s}, of 0.06 emu/g{sub Au}. SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.

  11. Structure of Carbon Nanotube Porins in Lipid Bilayers: An in Situ Small-Angle X-ray Scattering (SAXS) Study.

    Science.gov (United States)

    Tran, Ich C; Tunuguntla, Ramya H; Kim, Kyunghoon; Lee, Jonathan R I; Willey, Trevor M; Weiss, Thomas M; Noy, Aleksandr; van Buuren, Tony

    2016-07-13

    Carbon nanotube porins (CNTPs), small segments of carbon nanotubes capable of forming defined pores in lipid membranes, are important future components for bionanoelectronic devices as they could provide a robust analog of biological membrane channels. In order to control the incorporation of these CNT channels into lipid bilayers, it is important to understand the structure of the CNTPs before and after insertion into the lipid bilayer as well as the impact of such insertion on the bilayer structure. Here we employed a noninvasive in situ probe, small-angle X-ray scattering, to study the integration of CNT porins into dioleoylphosphatidylcholine bilayers. Our results show that CNTPs in solution are stabilized by a monolayer of lipid molecules wrapped around their outer surface. We also demonstrate that insertion of CNTPs into the lipid bilayer results in decreased bilayer thickness with the magnitude of this effect increasing with the concentration of CNTPs. PMID:27322135

  12. Characterization of the nanopore structures of PAN-based carbon fiber precursors by small angle X-ray scattering

    International Nuclear Information System (INIS)

    The nanopore structures m precursors are crucial to the performance of PAN-based carbon fibers. Four carbon-fiber precursors are prepared. They are bath-fed filaments (A), water-washing filaments (B), hot-stretching filaments (C) and drying-densification filaments (D). Synchrotron radiation small angle X-ray scattering is used to probe and compare the nanopore structures of the four fibers. The nanopore size, discrete volume distribution, nanopore orientation degree along the fiber axis and the porosity are obtained. The results demonstrate that the nanopores are mainly formed in the water-washing stage. During the processes of the subsequent production technologies, the slenderness ratio of nanopores and their orientation degree along the fiber axis increase further and simultaneously, the porosity decreases. These results are helpful for improving the performance of the final carbon fibers. (authors)

  13. Small-Angle X-ray Scattering Demonstrates Similar Nanostructure in Cortical Bone from Young Adult Animals of Different Species.

    Science.gov (United States)

    Kaspersen, Jørn Døvling; Turunen, Mikael Juhani; Mathavan, Neashan; Lages, Sebastian; Pedersen, Jan Skov; Olsson, Ulf; Isaksson, Hanna

    2016-07-01

    Despite the vast amount of studies focusing on bone nanostructure that have been performed for several decades, doubts regarding the detailed structure of the constituting hydroxyapatite crystal still exist. Different experimental techniques report somewhat different sizes and locations, possibly due to different requirements for the sample preparation. In this study, small- and wide-angle X-ray scattering is used to investigate the nanostructure of femur samples from young adult ovine, bovine, porcine, and murine cortical bone, including three different orthogonal directions relative to the long axis of the bone. The radially averaged scattering from all samples reveals a remarkable similarity in the entire q range, which indicates that the nanostructure is essentially the same in all species. Small differences in the data from different directions confirm that the crystals are elongated in the [001] direction and that this direction is parallel to the long axis of the bone. A model consisting of thin plates is successfully employed to describe the scattering and extract the plate thicknesses, which are found to be in the range of 20-40 Å for most samples but 40-60 Å for the cow samples. It is demonstrated that the mineral plates have a large degree of polydispersity in plate thickness. Additionally, and equally importantly, the scattering data and the model are critically evaluated in terms of model uncertainties and overall information content. PMID:26914607

  14. Ultra-small-angle X-ray scattering characterization of diesel/gasoline soot: sizes and particle-packing conditions

    International Nuclear Information System (INIS)

    Regulations on particulate emissions from internal combustion engines tend to become more stringent, accordingly the importance of particulate filters in the after-treatment system has been increasing. In this work, the applicability of ultra-small-angle X-ray scattering (USAXS) to diesel soot cake and gasoline soot was investigated. Gasoline-direct-injection engine soot was collected at different fuel injection timings. The unified fits method was applied to analyze the resultant scattering curves. The validity of analysis was supported by comparing with carbon black and taking the sample images using a transmission electron microscope, which revealed that the primary particle size ranged from 20 to 55 nm. In addition, the effects of particle-packing conditions on the USAXS measurement were demonstrated by using samples suspended in acetone. Then, the investigation was extended to characterization of diesel soot cake deposited on a diesel particulate filter (DPF). Diesel soot was trapped on a small piece of DPF at different deposition conditions which were specified using the Peclet number. The dependence of scattering curve on soot-deposition conditions was demonstrated. To support the interpretation of the USAXS results, soot cake samples were observed using a scanning electron microscope and the influence of particle-packing conditions on scattering curve was discussed

  15. Larger scale structures in starch granules chartacterised via small-angle neutron and x-ray scattering

    International Nuclear Information System (INIS)

    Starch is the primary carbohydrate component in the human diet and the major storage polysaccharide in plants. Small angle scattering (SAS) techniques have an extensive track record in illuminating the semi-crystalline lamellar structure of the starch granule, however, there have been few attempts to use SAS techniques to characterise larger-scale structures reported from imaging techniques, such as growth rings, blocklets or pores. In this study, SAS data collected over an extended q range were gathered from dry and hydrated starch powders of various botanical origins. The use of neutrons and x-rays, as well as comparing dry and hydrated granules, allowed different levels of contrast in scattering length density to be probed and therefore selected structural regions to be highlighted. SAXS measurements were obtained with the Bruker Nanostar, whilst SANS measurements taken at the QUOKKA instrument, ANSTO. Data were analysed with the 'unified' method, which fits SAS curves from hierarchical structures, with each level consisting of a Guinier and Porod component which can be refined during fitting. The lowest q range, 0.002 - 0.04 Å-1, was found to be dominated by scattering from the starch granules themselves, especially in the dry powders; however an inflection point from a low contrast structure was observed at 0.035 Å-1. The associated scattering was interpreted within a unified scattering framework with the inflexion point correlating with a structure with radius of gyration -90 Å - a size comparable to small blocklets or superhelices. In hydrated starches, it is observed that there is an inflection point between lamellar and q-4 power-law scattering regions at approximately 0.004 Å-1 which may correlate with growth rings and large blocklets. The implications of these findings on existing models of starch lamellar scattering are discussed.

  16. The microfocus small-angle X-ray scattering at SSRF BL16B1

    CERN Document Server

    Hua, Wenqiang; Zhou, Ping; Li, Xiuhong; Bian, Fenggang; Wang, Jie

    2016-01-01

    Offering high-brilliance X-ray beams on micrometer length scales, the microfocus SAXS at SSRF BL16B1 was established with a KB mirror system for studying small sample volumes, or probing micro-scopic morphologies. The SAXS minimum q value was 0.1nm^-1 with a flux of 1.5 x 10^10photons/s. Two position-resolved scanning experimental methods was combined with microfocus SAXS that include STXM and CT. The experimental results of a standard sample was presented to illustrate the performance of the microfocus SAXS method. Because of the significant smearing effect in the horizontal direction, an effective and easy-to-use desmearing procedure for two-dimensional SAXS pattern based on the blind deconvolution was developed and the deblurring results demonstrated the good restoration effect for the defocus image.

  17. Small Angle X-ray and Neutron Scattering: Powerful Tools for Studying the Structure of Drug-Loaded Liposomes

    Science.gov (United States)

    Di Cola, Emanuela; Grillo, Isabelle; Ristori, Sandra

    2016-01-01

    Nanovectors, such as liposomes, micelles and lipid nanoparticles, are recognized as efficient platforms for delivering therapeutic agents, especially those with low solubility in water. Besides being safe and non-toxic, drug carriers with improved performance should meet the requirements of (i) appropriate size and shape and (ii) cargo upload/release with unmodified properties. Structural issues are of primary importance to control the mechanism of action of loaded vectors. Overall properties, such as mean diameter and surface charge, can be obtained using bench instruments (Dynamic Light Scattering and Zeta potential). However, techniques with higher space and time resolution are needed for in-depth structural characterization. Small-angle X-ray (SAXS) and neutron (SANS) scattering techniques provide information at the nanoscale and have therefore been largely used to investigate nanovectors loaded with drugs or other biologically relevant molecules. Here we revise recent applications of these complementary scattering techniques in the field of drug delivery in pharmaceutics and medicine with a focus to liposomal carriers. In particular, we highlight those aspects that can be more commonly accessed by the interested users. PMID:27043614

  18. Quantitative analysis of grazing incidence small-angle x-ray scattering: Pd/MgO(001) growth

    International Nuclear Information System (INIS)

    The present paper focuses on the analysis of grazing incidence small-angle x-ray scattering (GISAXS) of islands on a substrate. Getting accurate morphological parameters relevant for the elaboration process, i.e., growth curves, island equilibrium shape, and interfacial energy, implies a quantitative data analysis. The emphasis is put on the island form factor, i.e., the Fourier transform of the island shape. It is shown that the island shape and size can be obtained through the island symmetry, the presence of island facets, the asymptotic behavior at high momentum transfer for large polydispersity, and the zeros or minima of the intensity for small polydispersity. The specificity brought by the grazing incidence scattering geometry is highlighted by a careful comparison between the Born approximation and the more accurate distorted wave Born approximation. The interplay between the form factor and the interference function is all the more important in the total scattering intensity when incoherent diffuse scattering comes into play at small momentum transfer for disordered systems. Getting rid of these interpretation difficulties requires accurate measurements of the scattered intensity far in the reciprocal space. This analysis methodology is illustrated through recently acquired GISAXS patterns during the in situ molecular beam epitaxy of Pd nanoislands on MgO(001) single crystals for different thicknesses and temperatures. The morphological parameters obtained agree very well with subsequent transmission electron microscopy-results. Finally, GISAXS diffuse scattering has been shown, originating from the growth-coalescence process and from the size dependence of the island capture area

  19. ``Ordered'' structure in dilute solutions of sodium polystyrenesulfonates as studied by small-angle x-ray scattering

    Science.gov (United States)

    Ise, Norio; Okubo, Tsuneo; Kunugi, Shigeru; Matsuoka, Hideki; Yamamoto, K.; Ishii, Yasuo

    1984-10-01

    The small angle x-ray scattering measurements were performed for aqueous solutions of sodium polystyrenesulfonates having relatively narrow molecular weight distributions. As was observed for other synthetic macroions, polynucleotide and proteins, a single, broad peak was observed. The scattering vector at the peak position (Sm) was shifted toward larger values with increasing polymer concentration and toward lower values with increasing salt concentration, which confirmed earlier observations with polyacrylate and poly-L-lysine. The molecular weight dependence of the scattering behavior, which was earlier observed, was confirmed to be true for samples with Mw of 74 000, 18 000, and 4600. The mixture of two fractions with different Mw's gave a scattering curve which was again different from the composite curve obtained with the parent curves before mixing. A similar situation was observed for the mixture of polystyrenesulfonate and polyacrylate. Thus, it was concluded that the observed single peak indicates the presence of an intermolecular ordering, not an intramolecular ordering. The intermacroion distance (2Dexp) was thus calculated by using the Bragg equation. 2Dexp decreased with increasing polymer concentration and increased (not decreased) with increasing concentration of added salt and Mw. The 2Dexp values thus obtained were smaller beyond the experimental error than 2D0, a theoretical distance calculated from the concentration by assuming the uniform distribution of the macroions throughout the solution and the 2D0/2Dexp value amounted to 3.5 for high molecular weight samples. This fact indicates the presence of an intermacroion attractive interaction. When two fractions with different Mw's were compared at a given number concentration of macroions, the 2Dexp value for the sample of a larger Mw was smaller than that for the fraction of a smaller Mw. This implies that the attraction must be intensified, though unexpectedly, with increasing valency of the

  20. Measurement of carbon condensation using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    Energy Technology Data Exchange (ETDEWEB)

    Bagge-Hansen, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lauderbach, L. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hodgin, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bastea, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fried, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jones, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); van Buuren, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hansen, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benterou, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); May, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Graber, T. [Washington State Univ., Pullman, WA (United States); Jensen, B. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ilavsky, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Willey, T. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-24

    The dynamics of carboncondensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. As a result, the power-law slope is about –3, which is consistent with a complex disordered, irregular, or folded sp2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.

  1. Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    International Nuclear Information System (INIS)

    The dynamics of carbon condensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. The power-law slope is about −3, which is consistent with a complex disordered, irregular, or folded sp2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS

  2. Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    Science.gov (United States)

    Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.; Bastea, S.; Fried, L.; Jones, A.; van Buuren, T.; Hansen, D.; Benterou, J.; May, C.; Graber, T.; Jensen, B. J.; Ilavsky, J.; Willey, T. M.

    2015-06-01

    The dynamics of carbon condensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. The power-law slope is about -3, which is consistent with a complex disordered, irregular, or folded sp2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.

  3. Nano-structural study of microfibrils in acacia mangium wood using small- angle x-ray scattering (SAXS)

    International Nuclear Information System (INIS)

    Small-angle X-ray scattering (SAXS) was used to investigate the nanostructure of the microfibrils of cell wall in Acacia Mangium wood. Parameters, such as the fibre length (L), surface area of the single fibre (S), the correspondence distance from the center of the fibre to the center of its neighbor and the shape of the fibre were determined as a function to the distance from pith towards the bark The results indicate that the fibre length ranged from 53.44 mm to 13.72 mm from pith to bark. Surface area of the single fibre varied from 0.65 nm?2 to 4.36 nm?2, the highest being found at the end of bark region. The mean value of the correspondence distance is 13.95 nm. Surface structure analysis from scattering graph showed a rod shape off fibre in the pith region of Acacia Mangium wood. The use of SAXS technique and scanning electron microscope (SEM) micrographs gives the most reliable dimensions values. (Author)

  4. Recent developments and ASAXS measurements at the ultra small angle X-ray scattering instrument of HASYLAB

    CERN Document Server

    Krosigk, G V; Gehrke, R; Kranold, R

    2001-01-01

    The wiggler beamline BW4 at the synchrotron radiation facility HASYLAB (DESY) is mainly designed for Ultra Small Angle X-ray Scattering (USAXS) and usually operated with detector-sample distances up to 13 m and at photon energies between 4 and 16 keV. With a new optical design the largest observable correlation distances have now been increased up to 9x10 sup 3 A. A grazing incidence set-up [P. Mueller-Buschbaum et al., Europhys. Lett. 42 (5) (1998) 517], vapor chamber, furnace, tensile testing machine and other instruments make the USAXS beamline attractive for a variety of scattering experiments [A. Endres et al., Rev. Sci. Instrum. 11 (1997) 68; A. Karl et al., J. Macromolecular Sci.-Phys. B 38 (5 and 6) (1999) 901; S. Minko et al., J. Macromolecular Sci., Phys. B 38 (5 and 6) (1999) 913]. A fully evacuated beampath allows high quality measurements with very low background signal. A photodiode mounted in the primary beam stop registers the primary beam flux simultaneously to the data acquisition and thus p...

  5. Temperature Assisted in-Situ Small Angle X-ray Scattering Analysis of Ph-POSS/PC Polymer Nanocomposite.

    Science.gov (United States)

    Yadav, Ramdayal; Naebe, Minoo; Wang, Xungai; Kandasubramanian, Balasubramanian

    2016-01-01

    Inorganic/organic nanofillers have been extensively exploited to impart thermal stability to polymer nanocomposite via various strategies that can endure structural changes when exposed a wide range of thermal environment during their application. In this abstraction, we have utilized temperature assisted in-situ small angle X-ray scattering (SAXS) to examine the structural orientation distribution of inorganic/organic nanofiller octa phenyl substituted polyhedral oligomeric silsesquioxane (Ph-POSS) in Polycarbonate (PC) matrix from ambient temperature to 180 °C. A constant interval of 30 °C with the heating rate of 3 °C/min was utilized to guise the temperature below and above the glass transition temperature of PC followed by thermal gravimetric, HRTEM, FESEM and hydrophobic analysis at ambient temperature. The HRTEM images of Ph-POSS nano unit demonstrated hyperrectangular structure, while FESEM image of the developed nano composite rendered separated phase containing flocculated and overlapped stacking of POSS units in the PC matrix. The phase separation in polymer nanocomposite was further substantiated by thermodynamic interaction parameter (χ) and mixing energy (Emix) gleaned via Accelrys Materials studio. The SAXS spectra has demonstrated duplex peak at higher scattering vector region, postulated as a primary and secondary segregated POSS domain and followed by abundance of secondary peak with temperature augmentation. PMID:27436152

  6. Automation and remote access of EMBL small angle X-ray scattering beamline X33 dedicated to biological macromolecules

    International Nuclear Information System (INIS)

    Full text: The small-angle X-ray scattering beamline X33 of the European Molecular Biology Laboratory (EMBL) at the DORIS III storage ring (HASYLAB/DESY) has been dedicated to structural studies of non-crystalline biological systems for more than two decades. In the last several years, the introduction of new optical systems (monochromator, mirror, slits etc) and detector systems (large area image plate Mar345 and PILATUS 1M) leads to an improvement of photon flux by a factor of 3 and a reduction of the exposure time by a factor of 7. Moreover, an automated sample changer has been constructed and in operation since August 2007. The data analysis pipeline consisting of the program suite yields the radius of gyration and forward scattering intensity using Guinier analysis (AutoRg), pair distance distribution function p(r) using indirect Fourier transform method (AutoGNOM), and bead models using ab initio shape determination (DAMMIN and DAMMIF). The results of these analysis which are immediately available after each measurement provides an invaluable tool for data quality control during the data collection. Furthermore, works on remote control of the integrated data collection and analysis software is ongoing and expected to be operated in late 2009 where users can send their samples and control the measurements at home institutes. (author)

  7. Temperature Assisted in-Situ Small Angle X-ray Scattering Analysis of Ph-POSS/PC Polymer Nanocomposite

    Science.gov (United States)

    Yadav, Ramdayal; Naebe, Minoo; Wang, Xungai; Kandasubramanian, Balasubramanian

    2016-07-01

    Inorganic/organic nanofillers have been extensively exploited to impart thermal stability to polymer nanocomposite via various strategies that can endure structural changes when exposed a wide range of thermal environment during their application. In this abstraction, we have utilized temperature assisted in-situ small angle X-ray scattering (SAXS) to examine the structural orientation distribution of inorganic/organic nanofiller octa phenyl substituted polyhedral oligomeric silsesquioxane (Ph-POSS) in Polycarbonate (PC) matrix from ambient temperature to 180 °C. A constant interval of 30 °C with the heating rate of 3 °C/min was utilized to guise the temperature below and above the glass transition temperature of PC followed by thermal gravimetric, HRTEM, FESEM and hydrophobic analysis at ambient temperature. The HRTEM images of Ph-POSS nano unit demonstrated hyperrectangular structure, while FESEM image of the developed nano composite rendered separated phase containing flocculated and overlapped stacking of POSS units in the PC matrix. The phase separation in polymer nanocomposite was further substantiated by thermodynamic interaction parameter (χ) and mixing energy (Emix) gleaned via Accelrys Materials studio. The SAXS spectra has demonstrated duplex peak at higher scattering vector region, postulated as a primary and secondary segregated POSS domain and followed by abundance of secondary peak with temperature augmentation.

  8. THE MEDIUM RANGE STRUCTURE OF HYDROGENATED Cu-Ti AMORPHOUS ALLOYS STUDIED BY ANOMALOUS SMALL-ANGLE SCATTERING OF X-RAYS AND NEUTRON DIFFRACTION

    OpenAIRE

    Goudeau, P.; Naudon, A.; Rodmacq, B.; Mangin, P; Chamberod, A.

    1985-01-01

    Amorphous Cu-Ti alloys, when hydrogenated, reveal a strong small-angle scattered intensity. The anomalous X-ray scattering effect is used to analyse this SAS intensity on both copper and titanium edges. It allows to assert the presence of very small clusters of titanium hydride having the TiH2 composition. These results are in good agreement with those obtained by neutron scattering experiments when using either hydrogen (b 0) for the hydrogenation of the samples.

  9. Investigation of the solid surface structural inhomogeneities by the 'combined' small-angle X-ray scattering and Hg porosimetry methods

    Science.gov (United States)

    Skatkov, L. I.; Cheremskoy, P. G.; Gomozov, V. P.; Bayrachny, B. I.

    1996-08-01

    The surface inhomogeneities, i.e. submicropores of porous solids, were investigated by combination of the small-angle X-ray scattering (SAXS) [1-4] and Hg porosimetry methods [5,6]. An optimal approximation of the submicropore shapes and correlation between the shape and the radius of the pores was obtained. The fractal nature of the investigated structure was shown.

  10. Studying nanostructure gradients in injection-molded polypropylene/montmorillonite composites by microbeam small-angle x-ray scattering

    International Nuclear Information System (INIS)

    The core–shell structure in oriented cylindrical rods of polypropylene (PP) and nanoclay composites (NCs) from PP and montmorillonite (MMT) is studied by microbeam small-angle x-ray scattering (SAXS). The structure of neat PP is almost homogeneous across the rod showing regular semicrystalline stacks. In the NCs the discrete SAXS of arranged crystalline PP domains is limited to a skin zone of 300 μm thickness. Even there only frozen-in primary lamellae are detected. The core of the NCs is dominated by diffuse scattering from crystalline domains placed at random. The SAXS of the MMT flakes exhibits a complex skin–core gradient. Both the direction of the symmetry axis and the apparent perfection of flake-orientation are varying. Thus there is no local fiber symmetry, and the structure gradient cannot be reconstructed from a scan across the full rod. To overcome the problem the rods are machined. Scans across the residual webs are performed. For the first time webs have been carved out in two principal directions. Comparison of the corresponding two sets of SAXS patterns demonstrates the complexity of the MMT orientation. Close to the surface (< 1 mm) the flakes cling to the wall. The variation of the orientation distribution widths indicates the presence of both MMT flakes and grains. The grains have not been oriented in the flowing melt. An empirical equation is presented which describes the variation from skin to core of one component of the inclination angle of flake-shaped phyllosilicate filler particles. (paper)

  11. A customizable software for fast reduction and analysis of large X-ray scattering data sets: applications of the new DPDAK package to small-angle X-ray scattering and grazing-incidence small-angle X-ray scattering.

    Science.gov (United States)

    Benecke, Gunthard; Wagermaier, Wolfgang; Li, Chenghao; Schwartzkopf, Matthias; Flucke, Gero; Hoerth, Rebecca; Zizak, Ivo; Burghammer, Manfred; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Trebbin, Martin; Förster, Stephan; Paris, Oskar; Roth, Stephan V; Fratzl, Peter

    2014-10-01

    X-ray scattering experiments at synchrotron sources are characterized by large and constantly increasing amounts of data. The great number of files generated during a synchrotron experiment is often a limiting factor in the analysis of the data, since appropriate software is rarely available to perform fast and tailored data processing. Furthermore, it is often necessary to perform online data reduction and analysis during the experiment in order to interactively optimize experimental design. This article presents an open-source software package developed to process large amounts of data from synchrotron scattering experiments. These data reduction processes involve calibration and correction of raw data, one- or two-dimensional integration, as well as fitting and further analysis of the data, including the extraction of certain parameters. The software, DPDAK (directly programmable data analysis kit), is based on a plug-in structure and allows individual extension in accordance with the requirements of the user. The article demonstrates the use of DPDAK for on- and offline analysis of scanning small-angle X-ray scattering (SAXS) data on biological samples and microfluidic systems, as well as for a comprehensive analysis of grazing-incidence SAXS data. In addition to a comparison with existing software packages, the structure of DPDAK and the possibilities and limitations are discussed. PMID:25294982

  12. Study of particles in solution by small angle x-ray scattering

    International Nuclear Information System (INIS)

    The implantation of SAXS technique is presented, and mycellas in solution of the dodecyl sodium sulfate SLS/water system are studied. A synthesis of SAXS theory to study parameters such as, volume, radii of gyration and specific surface and distribution function of the distance of homogenous and inhomogeneous particles is also presented. The technique was implanted by the study of a vitreous coal sample with voids in amorphous matrix. Computer programs were used for data treatment. It was concluded that the void configuration must be an oblate ellipsoid with rippled external surface and radii of gyration of ∼20A . The study of mycellas in solution of the SLL/H2O binary system showed spherical mycellas with paraffinic radii of 16A and total radii of 25.5 A. Interaction effects start to appear in 15% SLS concentrations. The change in the scattering curve occurs due to the interactions between mycellas. The isotropic-nematic transition in the ternary system by decanol addition was also investigated. (M.C.K.)

  13. Tertiary and quaternary structural differences between two genetic variants of bovine casein by small-angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pessen, H.; Kumosinski, T.F.; Farrell, H.M. Jr.; Brumberger, H. (Dept. of Agriculture, Eastern Regional Research Center, Philadelphia, PA (USA))

    1991-01-01

    The casein complexes of bovine milk consist of four major protein fractions, alpha s1, alpha s2, beta, and kappa. Colloidal particles of casein (termed micelles) contain inorganic calcium and phosphate; they are very roughly spherical with an average radius of 650 A. Removal of Ca2+ leads to the formation of smaller protein aggregates with an average radius of 94 A. Two genetic variants, A and B, of the predominant fraction, alpha s1-casein, result in milks with markedly different physical properties, such as solubility and heat stability. To investigate the molecular basis for these differences, small-angle X-ray scattering was performed on the respective colloidal micelles and submicelles. Scattering curves for submicelles of both variants showed multiple Gaussian character; data for the B variant were previously interpreted in terms of two concentric regions of different electron density, i.e., a compact core and a relatively loose shell. For the submicelle of A, there was a third Gaussian, reflecting a negative contribution due to interparticle interference. Molecular parameters for submicelles of both A and B are in agreement with hydrodynamic data in the literature. Data for the micelles, for which scattering yields cross-sectional information, were fitted by a sum of three Gaussians for both variants; for these, the corresponding two lower radii of gyration represent the two concentric regions of the submicelles, while the third reflects the average packing of submicelles within the micellar cross section. Most of the molecular parameters obtained showed small but consistent differences between A and B, but for submicelles within the micelle several differences were particularly notable: A has a greater molecular weight for the compact region of the constituent submicelle (82,000 vs 60,000) and a much greater submicellar packing number.

  14. Small-angle x-ray scattering study of kinetics of spinodal decomposition in N-isopropylacrylamide gels

    International Nuclear Information System (INIS)

    We present synchrotron-based time-resolved small-angle x-ray scattering (SAXS) measurements of spinodal decomposition in a covalently cross-linked N-isopropylacrylamide gel. The range of wave numbers examined is well beyond the position of the maximum in the structure factor S(q,t). The equilibrium structure factor is described by the sum of a Lorentzian and a Gaussian. Following a temperature jump into the two phase region, the scattered intensity increases with time and eventually saturates. For early times the linear Cahn-Hilliard-Cook (CHC) theory can be used to describe the time evolution of the scattered intensity. From this analysis we found that the growth rate R(q) is linearly dependent on q2, in agreement with mean-field theoretical predictions. However the Onsager transport coefficient Λ(q)∼q-4, which is stronger than the q dependence predicted by the mean-field theory. We found that the growth rate R(q)>0, even though the wave numbers q probed by SAXS are greater than √ (2) qm where qm is the position of the peak of S(q,t), also in agreement with the mean-field predictions for a deep quench. We have also examined the range of validity of the linear CHC theory, and found that its breakdown occurs earlier at higher wave numbers. At later times, a pinning of the structure was observed. The relaxation to a final, microphase-separated morphology is faster and occurs earlier at the highest wave numbers, which probe length scales comparable to the average distance between crosslinks. copyright 1999 The American Physical Society

  15. Tertiary and quaternary structural differences between two genetic variants of bovine casein by small-angle X-ray scattering

    International Nuclear Information System (INIS)

    The casein complexes of bovine milk consist of four major protein fractions, alpha s1, alpha s2, beta, and kappa. Colloidal particles of casein (termed micelles) contain inorganic calcium and phosphate; they are very roughly spherical with an average radius of 650 A. Removal of Ca2+ leads to the formation of smaller protein aggregates with an average radius of 94 A. Two genetic variants, A and B, of the predominant fraction, alpha s1-casein, result in milks with markedly different physical properties, such as solubility and heat stability. To investigate the molecular basis for these differences, small-angle X-ray scattering was performed on the respective colloidal micelles and submicelles. Scattering curves for submicelles of both variants showed multiple Gaussian character; data for the B variant were previously interpreted in terms of two concentric regions of different electron density, i.e., a compact core and a relatively loose shell. For the submicelle of A, there was a third Gaussian, reflecting a negative contribution due to interparticle interference. Molecular parameters for submicelles of both A and B are in agreement with hydrodynamic data in the literature. Data for the micelles, for which scattering yields cross-sectional information, were fitted by a sum of three Gaussians for both variants; for these, the corresponding two lower radii of gyration represent the two concentric regions of the submicelles, while the third reflects the average packing of submicelles within the micellar cross section. Most of the molecular parameters obtained showed small but consistent differences between A and B, but for submicelles within the micelle several differences were particularly notable: A has a greater molecular weight for the compact region of the constituent submicelle (82,000 vs 60,000) and a much greater submicellar packing number

  16. DMSO-induced dehydration of DPPC membranes studied by x-ray diffraction, small angle neutron scattering and calorimetry

    International Nuclear Information System (INIS)

    The properties of dimethyl sulfoxide (DMSO), a cryoprotector well known for its biological and therapeutic applications, were investigated on lipid membranes by x-ray diffraction, differential scanning calorimetry (DSC) and small angle neutron scattering (SANS). The DSC study of water freezing and melting of ice was performed in the ternary system which consists of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC)/DMSO/water system. The influence of DMSO on the DPPC membrane structure was established in the excess of solvent in the region of DMSO mole fraction from 0.0 to 1.0. The methods applied demonstrated the differences in the membrane structure in three sub-regions of DMSO mole fraction (XDMSO) from 0.0 to 0.3 for the first, from 0.3 to 0.9 for the second, and from 0.9 to 1.0 for the third sub-region. The results for 0.0 ≤ XDMSO ≤ 0.3 can be explained in the framework of DMSO-induced dehydration of intermembrane space

  17. Collagen Orientation and Crystallite Size in Human Dentin: A Small Angle X-ray Scattering Study; TOPICAL

    International Nuclear Information System (INIS)

    The mechanical properties of dentin are largely determined by the intertubular dentin matrix, which is a complex composite of type I collagen fibers and a carbonate-rich apatite mineral phase. The authors perform a small angle x-ray scattering (SAXS) study on fully mineralized human dentin to quantify this fiber/mineral composite architecture from the nanoscopic through continuum length scales. The SAXS results were consistent with nucleation and growth of the apatite phase within periodic gaps in the collagen fibers. These mineralized fibers were perpendicular to the dentinal tubules and parallel with the mineralization growth front. Within the plane of the mineralization front, the mineralized collagen fibers were isotropic near the pulp, but became mildly anisotropic in the mid-dentin. Analysis of the data also indicated that near the pulp the mineral crystallites were approximately needle-like, and progressed to a more plate-like shape near the dentino-enamel junction. The thickness of these crystallites,(approx) 5 nm, did not vary significantly with position in the tooth. These results were considered within the context of dentinogenesis and maturation

  18. DMSO-Induced Dehydration of DPPC Membranes Studied by X-ray Diffraction, Small-Angle Neutron Scattering, and Calorimetry

    CERN Document Server

    Kiselev, M A; Kisselev, A M; Grabielle-Madelmond, C; Ollivon, M

    1999-01-01

    The influence of dimethyl sulfoxide (DMSO) on membrane thickness, multilamellar repeat distance, and phase transitions of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) was investigated by X-ray diffraction and small-angle neutron scattering (SANS). The differential scanning calorimetry (DSC) study of water freezing and ice melting was performed in the ternary DPPC /DMSO /water and binary DMSO /water systems. The methods applied demonstrated the differences in membrane structure in three sub-regions of the DMSO mole fraction (X_dmso): from 0.0 to 0.3 for the first, from 0.3 to 0.8 for the second, and from 0.9 to 1.0 for the third sub-region. The thickness of the intermembrane solvent at T =20C decreases from 14.4 +/- 1.8 A at X_dmso =0.0 to 7.8 +/- 1.8 A at X_dmso =0.1. The data were used to determine the number of free water molecules in the intermembrane space in the presence of DMSO. The results for 0.0 < X_dmso < 0.3 were explained in the framework of DMSO-induced dehydration of the interme...

  19. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application

    Directory of Open Access Journals (Sweden)

    Lauren Boldon

    2015-02-01

    Full Text Available In this paper, the fundamental concepts and equations necessary for performing small angle X-ray scattering (SAXS experiments, molecular dynamics (MD simulations, and MD-SAXS analyses were reviewed. Furthermore, several key biological and non-biological applications for SAXS, MD, and MD-SAXS are presented in this review; however, this article does not cover all possible applications. SAXS is an experimental technique used for the analysis of a wide variety of biological and non-biological structures. SAXS utilizes spherical averaging to produce one- or two-dimensional intensity profiles, from which structural data may be extracted. MD simulation is a computer simulation technique that is used to model complex biological and non-biological systems at the atomic level. MD simulations apply classical Newtonian mechanics’ equations of motion to perform force calculations and to predict the theoretical physical properties of the system. This review presents several applications that highlight the ability of both SAXS and MD to study protein folding and function in addition to non-biological applications, such as the study of mechanical, electrical, and structural properties of non-biological nanoparticles. Lastly, the potential benefits of combining SAXS and MD simulations for the study of both biological and non-biological systems are demonstrated through the presentation of several examples that combine the two techniques.

  20. Small angle X-ray scattering coupled with in situ electromechanical probing of nanoparticle-based resistive strain gauges.

    Science.gov (United States)

    Decorde, Nicolas; Sangeetha, Neralagatta M; Viallet, Benoit; Viau, Guillaume; Grisolia, Jérémie; Coati, Alessandro; Vlad, Alina; Garreau, Yves; Ressier, Laurence

    2014-12-21

    A comprehensive study on the electromechanical behavior of nanoparticle-based resistive strain gauges in action through normal and grazing incidence small angle X-ray scattering (SAXS/GISAXS) investigations is presented. The strain gauges were fabricated from arrays of colloidal gold nanoparticle (NP) wires assembled on flexible polyethylene terephthalate and polyimide substrates by convective self-assembly. Microstructural changes (mean interparticle distance variations) within these NP wires under uniaxial stretching estimated by SAXS/GISAXS are correlated to their macroscopic electrical resistance variations. SAXS measurements suggest a linear longitudinal extension and transversal contraction of the NP wires with applied strain (0 to ∼ 13%). The slope of this longitudinal variation is less than unity, implying a partial strain transfer from the substrate to the NP wires. The simultaneously measured electrical resistance of the strain gauges shows an exponential variation within the elastic domain of the substrate deformation, consistent with electron tunnelling through the interparticle gaps. A slower variation observed within the plastic domain suggests the formation of new electronic conduction pathways. Implications of transversal contraction of the NP wires on the directional sensitivities of strain gauges are evaluated by simulating electronic conduction in models mimicking a realistic NP arrangement. A loss of directionality of the NP-based strain gauges due to transversal current flow within the NP wires is deduced. PMID:25371292

  1. Microstructure determination of AOT + phenol organogels utilizing small-angle X-ray scattering and atomic force microscopy.

    Science.gov (United States)

    Simmons, B A; Taylor, C E; Landis, F A; John, V T; McPherson, G L; Schwartz, D K; Moore, R

    2001-03-14

    Dry reverse micelles of the anionic twin-tailed surfactant bis(2-ethylhexyl) sulfosuccinate (AOT) dissolved in nonpolar solvents spontaneously form an organogel when p-chlorophenol is added in a 1:1 AOT:phenol molar ratio. The solvents used were benzene, toluene, m-xylene, 2,2,4-trimethylpentane (isooctane), decane, dodecane, tetradecane, hexadecane, and 2,6,10,14-tetramethylpentadecane (TMPD). The proposed microstructure of the gel is based on strands of stacked phenols linked to AOT through hydrogen bonding. Small-angle X-ray scattering (SAXS) spectra of the organogels suggest a characteristic length scale for these phenol-AOT strands that is independent of concentration but dependent on the chemical nature of the nonpolar solvent used. Correlation lengths determined from the SAXS spectra indicate that the strands self-assemble into fibers. Direct visualization of the gel in its native state is accomplished by using tapping mode atomic force microscopy (AFM). It is shown that these organogels consist of fiber bundle assemblies. The SAXS and AFM data reinforce the theory of a molecular architecture consisting of three length scales-AOT/phenolic strands (ca. 2 nm in diameter) that self-assemble into fibers (ca. 10 nm in diameter), which then aggregate into fiber bundles (ca. 20-100 nm in diameter) and form the organogel. PMID:11456891

  2. Short-range order in Fe-based metallic glasses: Wide-angle X-ray scattering studies

    International Nuclear Information System (INIS)

    The local atomic structure of the Fe80B20, Fe70Nb10B20 and Fe62Nb8B30 glasses prepared in the form of ribbons has been studied by wide-angle X-ray scattering. Structural information about the amorphous ribbons has been derived from analysis of the radial distribution functions using the least-squares curve-fitting method. The obtained structural parameters indicate that Fe–Fe, Fe–B, Fe–Nb and Nb–B contributions are involved in the near-neighbor coordination spheres. The possible similarities of the local atomic arrangement in the investigated glasses and the crystalline Fe3B, Fe23B6 and bcc Fe structures are also discussed. - Graphical abstract: Pair distribution functions (a) and best-fit model and experimental radial distribution functions for Fe80B20 (b), Fe70Nb10B20 (c) and Fe62Nb8B30 (d) metallic glasses. - Highlights: • The short-range ordering in the Fe-based metallic glasses is presented. • The results of RDF function have been analyzed using the least-squares method. • The Fe–Fe, Fe–B, Fe–Nb or Nb–B contributions are involved in coordination spheres. • The structural unit is distorted triangular prism containing B, Fe or Nb atoms. • Similarities of atomic arrangement in glassy and crystalline structures are discussed

  3. The Structure of Urease Activation Complexes Examined by Flexibility Analysis, Mutagenesis, and Small-angle X-ray Scattering Approaches

    International Nuclear Information System (INIS)

    Conformational changes of Klebsiella aerogenes urease apoprotein (UreABC)3 induced upon binding of the UreD and UreF accessory proteins were examined by a combination of flexibility analysis, mutagenesis, and small-angle X-ray scattering (SAXS). ProFlex analysis of urease provided evidence that the major domain of UreB can move in a hinge-like motion to account for prior chemical cross-linking results. Rigidification of the UreB hinge region, accomplished through a G11P mutation, reduced the extent of urease activation, in part by decreasing the nickel content of the mutant enzyme, and by sequestering a portion of the urease apoprotein in a novel activation complex that includes all of the accessory proteins. SAXS analyses of urease, (UreABC-UreD)3, and (UreABC-UreDF)3 confirm that UreD and UreF bind near UreB at the periphery of the (UreAC)3 structure. This study supports an activation model in which a domain-shifted UreB conformation in (UreABC-UreDF)3 allows CO2 and nickel ions to gain access to the nascent active site

  4. In situ small-angle X-ray scattering analysis of palladium nanoparticle growth on tobacco mosaic virus nanotemplates.

    Science.gov (United States)

    Manocchi, Amy K; Seifert, Soenke; Lee, Byeongdu; Yi, Hyunmin

    2011-06-01

    We present an examination of palladium (Pd) nanoparticle growth on genetically modified tobacco mosaic virus (TMV1cys) nanotemplates via in situ small-angle X-ray scattering (SAXS). Specifically, we examine the role of the TMV1cys templates in Pd nanoparticle formation through the electroless reduction of Pd precursor by a chemical reducing agent as compared to identical conditions in the absence of the TMV1cys templates. We show that in the presence of TMV1cys, the viral nanotemplates provide preferential growth sites for Pd nanoparticle formation, as no measurable Pd particle growth was observed in the bulk solution. In situ SAXS confirmed that particle formation was due to the rapid adsorption of Pd atoms onto the TMV1cys templates at the very early stage of mixing, rather than adsorption of particles formed in the bulk solution. Importantly, Pd nanoparticles were significantly smaller and more uniform as compared to particle formation in the absence of TMV1cys. The Pd nanoparticle coating density was tunable based on Pd precursor concentration. Finally, we show that Pd particle growth on the TMV1cys templates was highly rapid, and complete within 33 s for most samples, in contrast to slower Pd particle growth in the absence of TMV templates. We envision that the results presented here will be valuable in furthering the fundamental understanding of the role of viral nanotemplates in particle formation, as well as of their utility in a wide range of applications. PMID:21520923

  5. Structure of diglycerol monomyristate reverse micelles in styrene: a small-angle X-ray scattering (SAXS) study.

    Science.gov (United States)

    Shrestha, Lok Kumar; Shrestha, Rekha Goswami; Aramaki, Kenji; Ariga, Katsuhiko

    2011-08-01

    Structure of diglycerol monomyristate (designated as C14G2) nonionic surfactant reverse micelles in aromatic solvent styrene has been investigated as a function of surfactant concentration, temperature, and water addition by using small-angle X-ray scattering (SAXS) technique. Structure of micelles in real-space so called pair-distance distribution function, p(r), was obtained by the generalized indirect fourier transformation (GIFT) evaluation of SAXS data. It was found that C14G2 spontaneously self-assembles into spheroid reverse micelles with maximum diameter approximately 3.0 nm when added into styrene under ambient condition. The micellar shape and size remained essentially the same despite a wide variation in surfactant concentration (5 to 30%) but an opposite trend was observed with the rise of temperature; size decreased by approximately 25% with increase in temperature from 25 to 75 degrees C. Addition of traces water favored micellar growth and eventually ellipsoid prolate type micelles were formed, whose scenario is understood in terms of decrease in the critical packing parameter (cpp); water hydrates the surfactant's headgroup and decreases cpp. At a particular concentration of water, increasing temperature decreased the micellar size due to dehydration of headgroup. It is interesting to note that size of 1.57% water incorporated micelle is approximately 2.5 times bigger than the empty micelles. PMID:22103110

  6. Mass-fractal growth in niobia/silsesquioxane mixtures: a small-angle X-ray scattering study

    Science.gov (United States)

    Besselink, Rogier; ten Elshof, Johan E.

    2014-01-01

    The nucleation and growth of niobium pentaethoxide (NPE)-derived clusters in ethanol, through acid-catalyzed hydrolysis/condensation in the presence and absence of the silsesquioxane 1,2-bis(triethoxysilyl)ethane (BTESE), was monitored at 298–333 K by small-angle X-ray scattering. The data were analyzed with a newly derived model for polydisperse mass-fractal-like structures. At 298–313 K in the absence of BTESE the data indicated the development of relatively monodisperse NPE-derived structures with self-preserving polydispersity during growth. The growth exponent was consistent with irreversible diffusion-limited cluster agglomeration. At 333 K the growth exponent was characteristic for fast-gelling reaction-limited cluster agglomeration. The reaction yielded substantially higher degrees of polydispersity. In the presence of BTESE the growth exponents were substantially smaller. The smaller growth exponent in this case is not consistent with irreversible Smoluchowski-type agglomeration. Instead, reversible Lifshitz–Slyozov-type agglomeration seems to be more consistent with the experimental data. PMID:25294980

  7. Poisson's ratio of collagen fibrils measured by small angle X-ray scattering of strained bovine pericardium

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Hannah C.; Sizeland, Katie H.; Kayed, Hanan R.; Haverkamp, Richard G., E-mail: r.haverkamp@massey.ac.nz [School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North 4442 (New Zealand); Kirby, Nigel; Hawley, Adrian; Mudie, Stephen T. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2015-01-28

    Type I collagen is the main structural component of skin, tendons, and skin products, such as leather. Understanding the mechanical performance of collagen fibrils is important for understanding the mechanical performance of the tissues that they make up, while the mechanical properties of bulk tissue are well characterized, less is known about the mechanical behavior of individual collagen fibrils. In this study, bovine pericardium is subjected to strain while small angle X-ray scattering (SAXS) patterns are recorded using synchrotron radiation. The change in d-spacing, which is a measure of fibril extension, and the change in fibril diameter are determined from SAXS. The tissue is strained 0.25 (25%) with a corresponding strain in the collagen fibrils of 0.045 observed. The ratio of collagen fibril width contraction to length extension, or the Poisson's ratio, is 2.1 ± 0.7 for a tissue strain from 0 to 0.25. This Poisson's ratio indicates that the volume of individual collagen fibrils decreases with increasing strain, which is quite unlike most engineering materials. This high Poisson's ratio of individual fibrils may contribute to high Poisson's ratio observed for tissues, contributing to some of the remarkable properties of collagen-based materials.

  8. The morphology of block copolymer micelles in supercritical carbon dioxide by small-angle neutron and X-ray scattering

    International Nuclear Information System (INIS)

    Above its critical point, carbon dioxide forms a supercritical fluid, which promises to be an environmentally responsible replacement for the organic solvents traditionally used in polymerizations. Many lipophilic polymers such as polystyrene (PS) are insol- uble in CO2, though polymerizations may be accomplished via the use of PS-fluoropolymer stabilizers, which act as emulsifying agents. Small-angle neutron and X-ray scattering have been used to show that these molecules form micelles with a CO2-phobic PS core and a CO2-philic fluoropolymer corona. When the PS block was fixed in length and the fluorinated corona block was varied, the number of block copolymer molecules per micelle (six to seven) remained constant. Thus, the coronal block molecular weight exerts negligible influence on the aggregation number, in accordance with the theoretical predictions of Halperin, Tirrell and Lodge [Adv. Polym. Sci. (1992), 100, 31-46]. These observations are relevant to understanding the mechanisms of micellization and solubilization in supercritical fluids. (orig.)

  9. The morphology of block copolymer micelles in supercritical carbon dioxide by small-angle neutron and X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Londono, J.D.; Dharmapurikar, R.; Cochran, H.D.; Wignall, G.D. [Oak Ridge National Lab., TN (United States); McClain, J.B.; Betts, D.E.; Canelas, D.A.; DeSimone, J.M.; Samulski, E.T.; Chillura-Martino, D.; Triolo, R.

    1997-10-01

    Above its critical point, carbon dioxide forms a supercritical fluid, which promises to be an environmentally responsible replacement for the organic solvents traditionally used in polymerizations. Many lipophilic polymers such as polystyrene (PS) are insol- uble in CO{sub 2}, though polymerizations may be accomplished via the use of PS-fluoropolymer stabilizers, which act as emulsifying agents. Small-angle neutron and X-ray scattering have been used to show that these molecules form micelles with a CO{sub 2}-phobic PS core and a CO{sub 2}-philic fluoropolymer corona. When the PS block was fixed in length and the fluorinated corona block was varied, the number of block copolymer molecules per micelle (six to seven) remained constant. Thus, the coronal block molecular weight exerts negligible influence on the aggregation number, in accordance with the theoretical predictions of Halperin, Tirrell and Lodge [Adv. Polym. Sci. (1992), 100, 31-46]. These observations are relevant to understanding the mechanisms of micellization and solubilization in supercritical fluids. (orig.). 24 refs.

  10. Application of wide-angle scattering techniques using microfocus X-ray beam to investigate structural variation in polymer laminates

    International Nuclear Information System (INIS)

    Experiments have been conducted at the European Synchrotron Radiation Facility (ESRF) at Grenoble (France). The Synchrotron Radiation used provides a monochromatic X-ray beam with brilliance and flux density far greater than is attainable with a rotating anode laboratory source. In addition the glass capillary optics used, increases the flux density at the capillary exit as well as providing a sub-micron beam which coupled with the XYZ stage allows data to be collected at high spatial resolution. A Photonics Science CCD detector coupled to a frame grabber has permitted data to be collected at high temporal resolution (40ms) as well as displaying the data in real-time mode. Software used during analysis was used to reduce the amount of spurious signals due to background scatter as well as enable results to be calculated with a high degree of confidence. The aim of this research was to investigate the effect of industrial processing parameters in production of PET laminates and PEN films. Wide Angle X-ray Scattering (WAXS) patterns have been collected, using a beam size of 2.3 μm at intervals of 1 μm through the sample. Crystallite size and orientation analyses on patterns collected have been used as an indication of changes in the structural morphology through the thickness of the films. Data analyses of PET films show that biaxial stretching of films is very complex and depending on the parameters at each stage of the process, the final film has very different characteristics. It has been shown that the effects of draw ratio and draw temperature in the forward direction results in a range of crystallite sizes that lead to either crystal fracture or reorientation of the crystallites as the dominant process in the transverse draw. The effects of annealing can also lead to crystal welding or melting and re-crystallisation depending on the amount of time spent in the lamination process. Data analyses of PEN films show that the choice of parameters in biaxial

  11. Solution properties of a hydrophobically associating polyacrylamide and its polyelectrolyte derivatives determined by Light Scattering, Small Angle X-ray Scattering and viscometry

    International Nuclear Information System (INIS)

    A hydrophobically-modified polyacrylamide and two partially hydrolyzed derivatives containing hydrophobic and carboxylic groups were prepared by micellar polymerization and post hydrolysis. The molecular weight, second virial coefficient and radius of gyration were determined by static light scattering (SLS). Dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) were employed to determine the aggregate formation and type of chain packing in the semidilute regime, respectively. The behavior of solutions in dilute and semidilute regimes was also studied by viscometry and rheology. The hydrophobically-modified polyacrylamide showed a tendency to form aggregates due to the hydrophobic groups, but not enough to increase apparent viscosity. The partially hydrolyzed derivatives did not show the same aggregate-forming tendency. Rather, they exhibited anisotropic behavior, due to the charge density introduced into the polymer chain, which led to a more elongated macromolecular conformation and higher viscosity. (author)

  12. Solution properties of a hydrophobically associating polyacrylamide and its polyelectrolyte derivatives determined by Light Scattering, Small Angle X-ray Scattering and viscometry

    Energy Technology Data Exchange (ETDEWEB)

    Maia, Ana M.S.; Vidal, Rosangela R.L.; Balaban, Rosangela C., E-mail: balaban@supercabo.com.b [Universidade Federal do Rio Grande do Norte (LAPET/DQ/UFRN), Natal, RN (Brazil). Dept. de Quimica. Lab. de Pesquisa em Petroleo; Villetti, Marcos A. [Universidade Federal de Santa Maria (DF/UFSM), RS (Brazil). Dept. de Fisica; Borsali, Redouane [Universite Bordeaux 1, Pessac Cedex (France)

    2011-07-01

    A hydrophobically-modified polyacrylamide and two partially hydrolyzed derivatives containing hydrophobic and carboxylic groups were prepared by micellar polymerization and post hydrolysis. The molecular weight, second virial coefficient and radius of gyration were determined by static light scattering (SLS). Dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) were employed to determine the aggregate formation and type of chain packing in the semidilute regime, respectively. The behavior of solutions in dilute and semidilute regimes was also studied by viscometry and rheology. The hydrophobically-modified polyacrylamide showed a tendency to form aggregates due to the hydrophobic groups, but not enough to increase apparent viscosity. The partially hydrolyzed derivatives did not show the same aggregate-forming tendency. Rather, they exhibited anisotropic behavior, due to the charge density introduced into the polymer chain, which led to a more elongated macromolecular conformation and higher viscosity. (author)

  13. Small-angle X-ray scattering at high brilliance european synchrotrons for biotechnology and nano-technology

    Energy Technology Data Exchange (ETDEWEB)

    Svergun, D.; Malfois, M. [EMBL c/o DESY, Hamburg (Germany); Svergun, D. [Institute of Crystallography, Russian Academy of Sciences, Moscow (Russian Federation); Douka, M. [Commission Europeenne, DG III, Bruxelles (Belgium); Riekel, Ch. [European Synchrotron Radiation Facility (ESRF), 38 - Grenoble (France); Perez, J. [Soleil, 91 - Saclay (France); Roessle, M. [European Molecular Biology Laboratory (EMBL), 38 - Grenoble (France); Amenitsch, H. [IBN/Elettra (Germany); Gunter Grossman, J. [Daresbury Synchrotron Radiation Source (SRS) (United Kingdom); Vestergaard, B. [University of Pharmaceutical Sciences, Copenhagen (Denmark); Receveur-Brechot, V. [Centre National de la Recherche Scientifique (CNRS/AFMB), 13 - Marseille (France); Roth, St.V. [Deutsches Elektronen Synchrotron (HASYLAB), Hamburg (Germany); Ferrari, E. [National Institute for the Physics of Matter (CNR-INFM), Trieste (Italy)

    2007-07-01

    Different issues such as micro-fluidic devices for SAXS (small-angle X-ray diffraction), the use of electro-spray and ion trapping for SAXS in the gas phase, the study of flexible and disordered proteins through SAXS, the time-resolved SAXS studies in solution, or the study of nano-structured soft materials, were addressed in this workshop. This document gathers the transparencies of the presentations.

  14. Small-angle X-ray scattering at high brilliance european synchrotrons for biotechnology and nano-technology

    International Nuclear Information System (INIS)

    Different issues such as micro-fluidic devices for SAXS (small-angle X-ray diffraction), the use of electro-spray and ion trapping for SAXS in the gas phase, the study of flexible and disordered proteins through SAXS, the time-resolved SAXS studies in solution, or the study of nano-structured soft materials, were addressed in this workshop. This document gathers the transparencies of the presentations

  15. Small angle x-ray scattering study on the conformation of polystyrene in toluene during adding anti-solvent CO2

    Institute of Scientific and Technical Information of China (English)

    柳义; 陈东风; 王洪立; 陈娜; 李丹; 韩布兴; 荣利霞; 赵辉; 王俊; 董宝中

    2002-01-01

    The conformation of polystyrene in the anti-solvent process of supercritical fluids (compressed CO2 + polystyrene + toluene) has been studied by small angle x-ray scattering with synchrotron radiation as an x-ray source. Coilto-globule transformation of the polystyrene chain was observed with the increase of the anti-solvent CO2 pressure;i.e. polystyrene coiled at a pressure lower than the cloud point pressure (Pc) and turned into a globule with a uniform density at pressures higher than Pc. Fractal behaviour was also found in the chain contraction, and the mass fractal dimension increased with increasing CO2 pressure.

  16. In-Situ Anomalous Small-Angle X-ray Scattering Studies of Polymer Electrolyte Membrane Fuel Cell Catalyst Degradation

    Science.gov (United States)

    Gilbert, James Andrew

    Polymer electrolyte membrane fuel cells (PEMFCs) are a promising high efficiency energy conversion technology, but their cost effective implementation, especially for automotive power, has been hindered by degradation of the electrochemically-active surface area (ECA) of the Pt nanoparticle electrocatalysts. While numerous studies using ex-situ post-mortem techniques have provided insight into the effect of operating conditions on ECA loss, the governing mechanisms and underlying processes are not fully understood. Toward the goal of elucidating the electrocatalyst degradation mechanisms, we have followed particle size distribution (PSD) growth evolutions of Pt and Pt-alloy nanoparticle catalysts during potential cycling in an aqueous acidic environment (with and without flow of electrolyte) and in a fuel cell environment using in-situ anomalous small-angle X-ray scattering (ASAXS). The results of this thesis show a surface area loss mechanism of Pt nanoparticles supported on carbon to be predominantly controlled by Pt dissolution, the particle size dependence of Pt dissolution, the loss of dissolved Pt into the membrane and electrolyte, and, to a lesser extent, the re-deposition of dissolved Pt onto larger particles. The relative extent of these loss mechanisms are shown to be dependent on the environment, the temperature, and the potential cycling conditions. Correlation of ASAXS-determined particle growth with both calculated and voltammetrically-determined oxide coverages demonstrates that the oxide coverage is playing a key role in the dissolution process and in the corresponding growth of the mean Pt nanoparticle size and loss of ECA. This understanding potentially reduces the complex changes in PSDs and ECA resulting from various voltage profiles to the response to a single variable, oxide coverage. A better understanding of the degradation mechanisms of Pt and Pt-alloy nanoparticle distributions could lead to more stable electrocatalysts while

  17. In situ anomalous small-angle X-ray scattering studies of platinum nanoparticle fuel cell electrocatalyst degradation.

    Science.gov (United States)

    Gilbert, James A; Kariuki, Nancy N; Subbaraman, Ram; Kropf, A Jeremy; Smith, Matt C; Holby, Edward F; Morgan, Dane; Myers, Deborah J

    2012-09-12

    Polymer electrolyte fuel cells (PEFCs) are a promising high-efficiency energy conversion technology, but their cost-effective implementation, especially for automotive power, has been hindered by degradation of the electrochemically active surface area (ECA) of the Pt nanoparticle electrocatalysts. While numerous studies using ex situ post-mortem techniques have provided insight into the effect of operating conditions on ECA loss, the governing mechanisms and underlying processes are not fully understood. Toward the goal of elucidating the electrocatalyst degradation mechanisms, we have followed Pt nanoparticle growth during potential cycling of the electrocatalyst in an aqueous acidic environment using in situ anomalous small-angle X-ray scattering (ASAXS). ASAXS patterns were analyzed to obtain particle size distributions (PSDs) of the Pt nanoparticle electrocatalysts at periodic intervals during the potential cycling. Oxide coverages reached under the applied potential cycling protocols were both calculated and determined experimentally. Changes in the PSD, mean diameter, and geometric surface area identify the mechanism behind Pt nanoparticle coarsening in an aqueous environment. Over the first 80 potential cycles, the dominant Pt surface area loss mechanism when cycling to 1.0-1.1 V was found to be preferential dissolution or loss of the smallest particles with varying extents of reprecipitation of the dissolved species onto existing particles, resulting in particle growth, depending on potential profile. Correlation of ASAXS-determined particle growth with both calculated and voltammetrically determined oxide coverages demonstrates that the oxide coverage is playing a key role in the dissolution process and in the corresponding growth of the mean Pt nanoparticle size and loss of ECA. This understanding potentially reduces the complex changes in PSD and ECA resulting from various voltage profiles to a response dependent on oxide coverage. PMID:22857132

  18. EXPRESSION, PURIFICATION, AND SMALL ANGLE X-RAY SCATTERING OF DNA REPLICATION AND REPAIR PROTEINS FROM THE HYPERTHERMOPHILE SULFOLOBUS SOLFATARICUS

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, S.M.; Hatherill, J.R.; Hammel, M.; Hura, G.L.; Tainer, J.A.; Yannone, S.M.

    2008-01-01

    Vital molecular processes such as DNA replication, transcription, translation, and maintenance occur through transient protein interactions. Elucidating the mechanisms by which these protein complexes and interactions function could lead to treatments for diseases related to DNA damage and cell division control. In the recent decades since its introduction as a third domain, Archaea have shown to be simpler models for complicated eukaryotic processes such as DNA replication, repair, transcription, and translation. Sulfolobus solfataricus is one such model organism. A hyperthermophile with an optimal growth temperature of 80°C, Sulfolobus protein-protein complexes and transient protein interactions should be more stable at moderate temperatures, providing a means to isolate and study their structure and function. Here we provide the initial steps towards characterizing three DNA-related Sulfolobus proteins with small angle X-ray scattering (SAXS): Sso0257, a cell division control and origin recognition complex homolog, Sso0768, the small subunit of the replication factor C, and Sso3167, a Mut-T like protein. SAXS analysis was performed at multiple concentrations for both short and long exposure times. The Sso0257 sample was determined to be either a mixture of monomeric and dimeric states or a population of dynamic monomers in various conformational states in solution, consistent with a fl exible winged helix domain. Sso0768 was found to be a complex mixture of multimeric states in solution. Finally, molecular envelope reconstruction from SAXS data for Sso3167 revealed a novel structural component which may function as a disordered to ordered region in the presence of its substrates and/or protein partners.

  19. Scattering by Interstellar Dust Grains. II. X-Rays

    CERN Document Server

    Draine, B T

    2003-01-01

    Scattering and absorption of X-rays by interstellar dust is calculated for a model consisting of carbonaceous grains and amorphous silicate grains. The calculations employ realistic dielectric functions with structure near X-ray absorption edges, with resulting features in absorption, scattering, and extinction. Differential scattering cross sections are calculated for energies between 0.3 and 10 keV. The median scattering angle is given as a function of energy, and simple but accurate approximations are found for the X-ray scattering properties of the dust mixture, as well as for the angular distribution of the scattered X-ray halo for dust with simple spatial distributions. Observational estimates of the X-ray scattering optical depth are compared to model predictions. Observations of X-ray halos to test interstellar dust grain models are best carried out using extragalactic point sources.

  20. Study of the gel films of Acetobacter Xylinum cellulose and its modified samples by 1H NMR cryoporometry and small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Gel films of Acetobacter Xylinum cellulose and its modified samples have been investigated by 1H nuclear magnetic resonance (NMR) cryoporometry and small-angle X-ray scattering. The joint use of these two methods made it possible to characterize the sizes of aqueous pores in gel films and estimate the sizes of structural inhomogeneities before and after the sorption of polyvinylpyrrolidone and Se0 nanoparticles (stabilized by polyvinylpyrrolidone) into the films. According to small-angle X-ray scattering data, the sizes of inhomogeneities in a gel film change only slightly upon the sorption of polyvinylpyrrolidone and nanoparticles. The impregnated material is sorbed into water-filled cavities that are present in the gel film. 1H NMR cryoporometry allowed us to reveal the details of changes in the sizes of small aqueous pores during modifications.

  1. Small-angle X-ray scattering investigation of aging behavior of Al-Cu-Mg-Ag alloys using synchrotron radiation

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The aging behavior of Al-Cu-Mg-Ag alloys with high Cu/Mg was studied by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) using synchrotron radiation. TEM study reveals that the major strengthening phases of the alloy after aging at 160?C for 10 h are Ω and less θ′. SAXS study shows that the scattering patterns are composed of several concentric circles at the beginning of aging process, which is replaced by the butterfly-wings scattering patterns with the increase of aging time...

  2. Anomalous x-ray scattering

    International Nuclear Information System (INIS)

    The availability of tunable synchrotron radiation has made it possible systematically to perform x-ray diffraction studies in regions of anomalous scattering near absorption edges, e.g. in order to derive phase information for crystal structure determination. An overview is given of recent experimental and theoretical work and discuss the properties of the anomalous atomic scattering factor, with emphasis on threshold resonances and damping effects. The results are applied to a discussion of the very strong anomalous dispersion recently observed near the L3 edge in a cesium complex. Also given is an overview of elements and levels where similar behavior can be expected. Finally, the influence of solid state and chemical effects on the absorption edge structure is discussed. 64 references

  3. Small Angle X-ray Scattering Study of Palladium Nanoparticle Growth on Genetically Engineered Tobacco Mosaic Virus Nanotemplates

    Science.gov (United States)

    Manocchi, Amy K.

    Transition metal nanoparticles possess valuable specific size dependent properties that arise at the nanoscale, and differ significantly from their bulk properties. However, the fabrication of these nanoparticles is often difficult to predict and control due to harsh reaction conditions and effects of capping agents or surfactants. Therefore, there is a critical need for facile routes toward controllable nanoparticle fabrication. Biological supramolecules, such as viruses, offer attractive templates for nanoparticle synthesis, due to their precise size and shape. In addition, simple genetic modifications can be employed to confer additional functionality with a high number of precisely spaced functional groups. In this work we exploit the specificity of genetically modified Tobacco Mosaic Virus (TMV1cys) for readily controllable palladium (Pd) nanoparticle synthesis via simple electroless deposition. TMV1cys, engineered to display one cysteine residue on the surface of each of over 2000 identical coat proteins, provides high density precisely spaced thiol groups for the preferential nucleation and growth of Pd nanoparticles. Small-Angle X-ray Scattering (SAXS) was employed to provide a statistically meaningful route to the investigation of Pd nanoparticle size ranges formed on the viral-nanotemplates. Specifically, we examine the size range and thermal stability of Pd nanoparticles formed on surface assembled TMV1cys. Further, we investigate the growth of Pd nanoparticles on TMV1cys in solution using in situ SAXS to better understand and predict nanoparticle growth on these nanotemplates. Lastly, we compare TMV1cys templated particle growth to Pd nanoparticle growth in the absence of TMV1cys to elucidate the role of TMV in particle formation. We show that Pd nanoparticles form preferentially on surface assembled TMV1cys in high density in a broad particle size range (4-18nm). Further, we show that Pd nanoparticles are significantly smaller and more uniform when

  4. Small angle X-ray scattering as a high-throughput method to classify antimicrobial modes of action.

    Science.gov (United States)

    von Gundlach, A R; Garamus, V M; Gorniak, T; Davies, H A; Reischl, M; Mikut, R; Hilpert, K; Rosenhahn, A

    2016-05-01

    Multi-drug resistant bacteria are currently undermining our health care system worldwide. While novel antimicrobial drugs, such as antimicrobial peptides, are urgently needed, identification of new modes of action is money and time consuming, and in addition current approaches are not available in a high throughput manner. Here we explore how small angle X-ray scattering (SAXS) as high throughput method can contribute to classify the mode of action for novel antimicrobials and therefore supports fast decision making in drug development. Using data bases for natural occurring antimicrobial peptides or predicting novel artificial peptides, many candidates can be discovered that will kill a selected target bacterium. However, in order to narrow down the selection it is important to know if these peptides follow all the same mode of action. In addition, the mode of action should be different from conventional antibiotics, in consequence peptide candidates can be developed further into drugs against multi-drug resistant bacteria. Here we used one short antimicrobial peptide with unknown mode of action and compared the ultrastructural changes of Escherichia coli cells after treatment with the peptide to cells treated with classic antibiotics. The key finding is that SAXS as a structure sensitive tool provides a rapid feedback on drug induced ultrastructural alterations in whole E. coli cells. We could demonstrate that ultrastructural changes depend on the used antibiotics and their specific mode of action. This is demonstrated using several well characterized antimicrobial compounds and the analysis of resulting SAXS curves by principal component analysis. To understand the result of the PCA analysis, the data is correlated with TEM images. In contrast to real space imaging techniques, SAXS allows to obtain nanoscale information averaged over approximately one million cells. The measurement takes only seconds, while conventional tests to identify a mode of action require

  5. Ultrahigh vacuum/high-pressure flow reactor for surface x-ray diffraction and grazing incidence small angle x-ray scattering studies close to conditions for industrial catalysis

    International Nuclear Information System (INIS)

    A versatile instrument for the in situ study of catalyst surfaces by surface x-ray diffraction and grazing incidence small angle x-ray scattering in a 13 ml flow reactor combined with reaction product analysis by mass spectrometry has been developed. The instrument bridges the so-called ''pressure gap'' and ''materials gap'' at the same time, within one experimental setup. It allows for the preparation and study of catalytically active single crystal surfaces and is also equipped with an evaporator for the deposition of thin, pure metal films, necessary for the formation of small metal particles on oxide supports. Reactions can be studied in flow mode and batch mode in a pressure range of 100-1200 mbar and temperatures up to 950 K. The setup provides a unique combination of sample preparation, characterization, and in situ experiments where the structure and reactivity of both single crystals and supported nanoparticles can be simultaneously determined.

  6. Preparation of metal oxide nanoparticles of different sizes and morphologies, their characterization using small angle X-ray scattering and study of thermal properties

    International Nuclear Information System (INIS)

    In an effort to shed light into the role of surface morphology of nanoparticles on their thermal properties, we have prepared Fe3O4 and CuO nanoparticles of different sizes and morphologies using co-precipitation and precipitation approach, respectively. The prepared particles are characterized using Small Angle X-ray Scattering (SAXS) and the results are compared with X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Dynamic Light Scattering (DLS). The results show that the size distribution and surface morphologies of nanoparticles can be quite accurately measured by using SAXS with the aid of appropriate models. The thermal conductivity of spherical Fe3O4 nanofluids follows effective medium theory whereas the CuO nanorod based dispersions show a much larger thermal conductivity beyond the effective medium theory. The abnormal thermal conductivity in CuO is attributed to effective conduction of heat through nanorods of higher aspect ratio. These finding are useful for engineering efficient nanofluids for thermal management. - Highlights: • Fe3O4 and CuO nanoparticles of different sizes and morphologies were prepared. • The morphological evaluation was done using Small Angle X-ray Scattering (SAXS). • Thermal conductivity (k) of Fe3O4 nanofluids follows effective medium theory (EMT). • CuO nanorod based dispersions show a k enhancement beyond the EMT. • Abnormal k in CuO is due to the effective conduction of heat through nanorods

  7. Characterization of a particle size distribution in a Ni-C granular thin film by grazing incidence small-angle X-ray scattering

    International Nuclear Information System (INIS)

    A grazing incidence small-angle X-ray scattering (GISAXS) technique has been applied for characterizing a particle size distribution of nickel nano-particles in a nickel-carbon granular (Ni-C granular) film fabricated by a cosputtering method on a silicon substrate. The particles were modelled as a spherical shape in order to calculate scattering intensity, and a Γ-distribution was employed for determining the size distribution. In addition, a grazing incidence X-ray diffraction (GIXRD) was also measured in order to determine crystallite size of the particles. The crystallite size was analyzed by the Sherrer equation. The average particle size and the crystallite size are 5.7 and 5.2 nm respectively. These results suggest most of nickel particles are single crystal

  8. Very large-scale structures in sintered silica aerogels as evidenced by atomic force microscopy and ultra-small angle X-ray scattering experiments

    CERN Document Server

    Marliere, C; Etienne, P; Woignier, T; Dieudonné, P; Phalippou, J

    2001-01-01

    During the last few years the bulk structure of silica aerogels has been extensively studied mainly by scattering techniques (neutrons, X-rays, light). It has been shown that small silica particles aggregate to constitute a fractal network. Its spatial extension and fractal dimension are strongly dependent on the synthesis conditions (e.g., pH of gelifying solutions). These typical lengths range from 1 to 10 nm. Ultra-small angle X-ray scattering (USAXS) and atomic force microscopy (AFM) experiments have been carried out on aerogels at different steps of densification. The results presented in this paper reveal the existence of a spatial arrangement of the solid part at a very large length scale. The evolution of this very large-scale structure during the densification process has been studied and reveals a contraction of this macro-structure made of aggregates of clusters. (16 refs).

  9. Small-angle X-ray scattering study of the growth kinetics of CuCl nanocrystals in NaCl

    OpenAIRE

    Kranold, R.; Kriesen, S.; Haselhoff, M.; Weber, H.-J.; Goerigk, G.

    2003-01-01

    The precipitation of CuCl nanocrystals in a NaCl matrix has been studied by time-resolved small-angle X-ray scattering. The experimental results suggest that the nucleation process is accelerated by lattice defects of the matrix remaining in the NaCl lattice after the dissolution of previous nanocrystals at high temperature. The evolution of structural parameters calculated from the scattering curves, such as volume fraction, mean radius and particle number density of the nanocrystals, is dis...

  10. In Operando Monitoring of the Pore Dynamics in Ordered Mesoporous Electrode Materials by Small Angle X-ray Scattering.

    Science.gov (United States)

    Park, Gwi Ok; Yoon, Jeongbae; Park, Eunjun; Park, Su Bin; Kim, Hyunchul; Kim, Kyoung Ho; Jin, Xing; Shin, Tae Joo; Kim, Hansu; Yoon, Won-Sub; Kim, Ji Man

    2015-05-26

    To monitor dynamic volume changes of electrode materials during electrochemical lithium storage and removal process is of utmost importance for developing high performance lithium storage materials. We herein report an in operando probing of mesoscopic structural changes in ordered mesoporous electrode materials during cycling with synchrotron-based small angel X-ray scattering (SAXS) technique. In operando SAXS studies combined with electrochemical and other physical characterizations straightforwardly show how porous electrode materials underwent volume changes during the whole process of charge and discharge, with respect to their own reaction mechanism with lithium. This comprehensive information on the pore dynamics as well as volume changes of the electrode materials will not only be critical in further understanding of lithium ion storage reaction mechanism of materials, but also enable the innovative design of high performance nanostructured materials for next generation batteries. PMID:25869353

  11. Small-angle X-ray scattering studies on the X-ray induced aggregation of ribonnuclease, lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase and serum albumin. A comparison with malate synthase

    International Nuclear Information System (INIS)

    The X-ray induced aggregation of ribonuclease, lactate dehydrogenase (LDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and serum albumin in aqueous solution was monitored in situ by means of small-angle X-ray scattering. Measurements carried out with ribonuclease, LDH and serum albumin in the absence of dithiothreitol (DTT) and with GAPDH in the presence of 0.2mM DTT established the following series for the rates of aggregation of the proteins under these conditions: ribonuclease >LDH> >GAPDH> serum albumin. Within six hours from the beginning of irradiation (i.e. about the time required for the exposure of one complete scattering curve under the conditions of our experiments) the following increases of R tilde resulted: ribonuclease 9%, LDH 7%, GAPDH 4%, serum albumin <1%. Changes of R tilde exceeding 1% are, of course, too high to be tolerated in conventional scattering experiments. Measurements carried out with LDH and GAPDH in the presence of 2mM DTT established a strong protective effect of DTT against the X-ray induced aggregation of these enzymes. The initial increase of R tilde upon irradiation of LDH and GAPDH in the presence of 2mM DTT was found to be even lower than the increase of R tilde observed when serum albumin was irradiated in the absence of DTT. However, the observed decrease of anti x of LDH and GAPDH at the early stages of irradiation suggested the occurrence of fragmentation of the enzymes as another consequence of radiation damage. This finding is discussed in context with the results from previous scattering experiments and electrophoretic studies on malate synthase. (author)

  12. Systematic Limitations in Concentration Analysis via Anomalous Small-Angle X-ray Scattering in the Small Structure Limit

    OpenAIRE

    Guenter Goerigk; Sebastian Lages; Klaus Huber

    2016-01-01

    Anomalous small angle scattering measurements have been applied to diluted solutions of anionic polyacrylates decorated by specifically-interacting Pb2+ cations, revealing partial collapse of the polyacrylate into pearl-like subdomains with a size on the order of a few nanometers. From the pure-resonant scattering contribution of the Pb2+ cations, and from subsequent analysis of the resonant-invariant, the amount of Pb2+ cations condensed onto the polyanions with respect to the total amount o...

  13. A Mo-anode-based in-house source for small-angle X-ray scattering measurements of biological macromolecules

    International Nuclear Information System (INIS)

    We demonstrate the use of a molybdenum-anode-based in-house small-angle X-ray scattering (SAXS) setup to study biological macromolecules in solution. Our system consists of a microfocus X-ray tube delivering a highly collimated flux of 2.5 × 106 photons/s at a beam size of 1.2 × 1.2 mm2 at the collimation path exit and a maximum beam divergence of 0.16 mrad. The resulting observable scattering vectors q are in the range of 0.38 Å−1 down to 0.009 Å−1 in SAXS configuration and of 0.26 Å−1 up to 5.7 Å−1 in wide-angle X-ray scattering (WAXS) mode. To determine the capabilities of the instrument, we collected SAXS data on weakly scattering biological macromolecules including proteins and a nucleic acid sample with molecular weights varying from ∼12 to 69 kDa and concentrations of 1.5–24 mg/ml. The measured scattering data display a high signal-to-noise ratio up to q-values of ∼0.2 Å−1 allowing for an accurate structural characterization of the samples. Moreover, the in-house source data are of sufficient quality to perform ab initio 3D structure reconstructions that are in excellent agreement with the available crystallographic structures. In addition, measurements for the detergent decyl-maltoside show that the setup can be used to determine the size, shape, and interactions (as characterized by the second virial coefficient) of detergent micelles. This demonstrates that the use of a Mo-anode based in-house source is sufficient to determine basic geometric parameters and 3D shapes of biomolecules and presents a viable alternative to valuable beam time at third generation synchrotron sources

  14. A Mo-anode-based in-house source for small-angle X-ray scattering measurements of biological macromolecules

    Science.gov (United States)

    Bruetzel, Linda K.; Fischer, Stefan; Salditt, Annalena; Sedlak, Steffen M.; Nickel, Bert; Lipfert, Jan

    2016-02-01

    We demonstrate the use of a molybdenum-anode-based in-house small-angle X-ray scattering (SAXS) setup to study biological macromolecules in solution. Our system consists of a microfocus X-ray tube delivering a highly collimated flux of 2.5 × 106 photons/s at a beam size of 1.2 × 1.2 mm2 at the collimation path exit and a maximum beam divergence of 0.16 mrad. The resulting observable scattering vectors q are in the range of 0.38 Å-1 down to 0.009 Å-1 in SAXS configuration and of 0.26 Å-1 up to 5.7 Å-1 in wide-angle X-ray scattering (WAXS) mode. To determine the capabilities of the instrument, we collected SAXS data on weakly scattering biological macromolecules including proteins and a nucleic acid sample with molecular weights varying from ˜12 to 69 kDa and concentrations of 1.5-24 mg/ml. The measured scattering data display a high signal-to-noise ratio up to q-values of ˜0.2 Å-1 allowing for an accurate structural characterization of the samples. Moreover, the in-house source data are of sufficient quality to perform ab initio 3D structure reconstructions that are in excellent agreement with the available crystallographic structures. In addition, measurements for the detergent decyl-maltoside show that the setup can be used to determine the size, shape, and interactions (as characterized by the second virial coefficient) of detergent micelles. This demonstrates that the use of a Mo-anode based in-house source is sufficient to determine basic geometric parameters and 3D shapes of biomolecules and presents a viable alternative to valuable beam time at third generation synchrotron sources.

  15. A Mo-anode-based in-house source for small-angle X-ray scattering measurements of biological macromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Bruetzel, Linda K.; Fischer, Stefan; Salditt, Annalena; Sedlak, Steffen M.; Nickel, Bert; Lipfert, Jan, E-mail: Jan.Lipfert@lmu.de [Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, Ludwig-Maximilians-University Munich, Amalienstr. 54, 80799 Munich, Germany and Geschwister-Scholl Platz 1, 80539 Munich (Germany)

    2016-02-15

    We demonstrate the use of a molybdenum-anode-based in-house small-angle X-ray scattering (SAXS) setup to study biological macromolecules in solution. Our system consists of a microfocus X-ray tube delivering a highly collimated flux of 2.5 × 10{sup 6} photons/s at a beam size of 1.2 × 1.2 mm{sup 2} at the collimation path exit and a maximum beam divergence of 0.16 mrad. The resulting observable scattering vectors q are in the range of 0.38 Å{sup −1} down to 0.009 Å{sup −1} in SAXS configuration and of 0.26 Å{sup −1} up to 5.7 Å{sup −1} in wide-angle X-ray scattering (WAXS) mode. To determine the capabilities of the instrument, we collected SAXS data on weakly scattering biological macromolecules including proteins and a nucleic acid sample with molecular weights varying from ∼12 to 69 kDa and concentrations of 1.5–24 mg/ml. The measured scattering data display a high signal-to-noise ratio up to q-values of ∼0.2 Å{sup −1} allowing for an accurate structural characterization of the samples. Moreover, the in-house source data are of sufficient quality to perform ab initio 3D structure reconstructions that are in excellent agreement with the available crystallographic structures. In addition, measurements for the detergent decyl-maltoside show that the setup can be used to determine the size, shape, and interactions (as characterized by the second virial coefficient) of detergent micelles. This demonstrates that the use of a Mo-anode based in-house source is sufficient to determine basic geometric parameters and 3D shapes of biomolecules and presents a viable alternative to valuable beam time at third generation synchrotron sources.

  16. Gas gain operations with single photon resolution using an integrating ionization chamber in small-angle X-ray scattering experiments

    International Nuclear Information System (INIS)

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. Initially, MicroCAT was thought of as a shielding grid (Frisch-grid) but later was used as an active electron amplification device that enables single X-ray photon resolution measurements at low fluxes even with integrating readout electronics. Moreover, the adjustable gas gain that continuously covers the entire range from pure ionization chamber mode up to high gas gains (30000 and more) provides stable operation yielding a huge dynamic range of about 108 and more. First measurements on biological samples using small angle X-ray scattering techniques with synchrotron radiation will be presented

  17. Gas gain operations with single photon resolution using an integrating ionization chamber in small-angle X-ray scattering experiments

    Science.gov (United States)

    Menk, R. H.; Sarvestani, A.; Besch, H. J.; Walenta, A. H.; Amenitsch, H.; Bernstorff, S.

    2000-01-01

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. Initially, MicroCAT was thought of as a shielding grid (Frisch-grid) but later was used as an active electron amplification device that enables single X-ray photon resolution measurements at low fluxes even with integrating readout electronics. Moreover, the adjustable gas gain that continuously covers the entire range from pure ionization chamber mode up to high gas gains (30 000 and more) provides stable operation yielding a huge dynamic range of about 10 8 and more. First measurements on biological samples using small angle X-ray scattering techniques with synchrotron radiation will be presented.

  18. Gas gain operations with single photon resolution using an integrating ionization chamber in small-angle X-ray scattering experiments

    CERN Document Server

    Menk, R H; Besch, H J; Walenta, Albert H; Amenitsch, H; Bernstorff, S

    2000-01-01

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. Initially, MicroCAT was thought of as a shielding grid (Frisch-grid) but later was used as an active electron amplification device that enables single X-ray photon resolution measurements at low fluxes even with integrating readout electronics. Moreover, the adjustable gas gain that continuously covers the entire range from pure ionization chamber mode up to high gas gains (30000 and more) provides stable operation yielding a huge dynamic range of about 10 sup 8 and more. First measurements on biological samples using small angle X-ray scattering techniques with synchrotron radiation will be presented.

  19. Small-Angle X-Ray Scattering on the ChemMatCARS Beamline at the Advanced Photon Source: A Study of Shear-Induced Crystallisation in Polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, D.; Hanley, T.; Knott, R.; Cookson, D. (CRC); (ANSTO)

    2008-09-08

    The first ever time-resolved small-angle X-ray scattering (SAXS) data from the undulator 15-ID-D beamline (ChemMatCARS) are presented. A 1.3 {angstrom} (9.54 keV) X-ray beam was selected to study the structure development in a polypropylene sample during shear-induced crystallization. A Linkam CSS450 shear cell provided the temperature and shear control. The polypropylene was first melted and then quenched to the crystallization temperature, where a step shear was applied. The SAXS data were collected using a Bruker 6000 CCD detector, which provided images of excellent resolution. The SAXS images (with 180{sup o} rotational symmetry) indicated that the polypropylene crystallizes with a high degree of anisotropy, and the lamellae are oriented perpendicular to the flow direction.

  20. Characterization of Surface Microstructures on Bio-based Polymer Film Fabricated with Nano-imprint Lithography by Synchrotron Radiation Small Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, Takamichi; Takahara, Atsushi [Graduate School of Engineering, Kyushu University, 744, Motooka, Nishi-ku Fukuoka 819-0395 (Japan); Shirahase, Tomoko; Murakami, Daiki; Hoshino, Taiki; Kikuchi, Moriya [Institute for Materials Chemistry and Engtineering, Kyushu University, 744, Motooka, Nishi-ku Fukuoka 819-0395 (Japan); Koike, Jun-ichiro; Horigome, Misao [DIC Cooperation, 631 Sakado, Sakura, Chiba 285-8688 (Japan); Masunaga, Hiroyasu; Ogawa, Hiroki, E-mail: takahara@cstf.kyushu-u.ac.jp [Japan Synchrotron Radiation Research Instiutute, Kouto, Sayo-cho, Hyogo, 679-5198 (Japan)

    2011-09-19

    Nano-imprint lithography (NIL) is a simple, low cost and high-resolution patterning method. However the precise evaluation method of nano-imprinted structure has not been established. Synchrotron radiation small angle X-ray scattering (SR-SAXS) measurement is a nondestructive and high resolution characterization method. In this study, we attempt to fabricate nanostructures on the poly(lactic acid) (PLA) film by NIL and evaluated with microscopic and scattering techniques. The mold with line/space pattern was used for NIL. Scanning electron microscope observation confirmed the formation of surface nano-structure in large areas. Also, nano-imprinted PLA film was evaluated using SR-SAXS measurement. The scattering patterns obtained from nano-imprinted PLA films were clearly observed up to higher order scattering spots. These results suggested that highly regular structure was fabricated on the surface of PLA films.

  1. Architecture of a Full-length Retroviral Integrase Monomer and Dimer, Revealed by Small Angle X-ray Scattering and Chemical Cross-linking

    Energy Technology Data Exchange (ETDEWEB)

    Bojja, Ravi S.; Andrake, Mark D.; Weigand, Steven; Merkel, George; Yarychkivska, Olya; Henderson, Adam; Kummerling, Marissa; Skalka, Anna Marie (Fox Chase); (NWU)

    2012-02-07

    We determined the size and shape of full-length avian sarcoma virus (ASV) integrase (IN) monomers and dimers in solution using small angle x-ray scattering. The low resolution data obtained establish constraints for the relative arrangements of the three component domains in both forms. Domain organization within the small angle x-ray envelopes was determined by combining available atomic resolution data for individual domains with results from cross-linking coupled with mass spectrometry. The full-length dimer architecture so revealed is unequivocally different from that proposed from x-ray crystallographic analyses of two-domain fragments, in which interactions between the catalytic core domains play a prominent role. Core-core interactions are detected only in cross-linked IN tetramers and are required for concerted integration. The solution dimer is stabilized by C-terminal domain (CTD-CTD) interactions and by interactions of the N-terminal domain in one subunit with the core and CTD in the second subunit. These results suggest a pathway for formation of functional IN-DNA complexes that has not previously been considered and possible strategies for preventing such assembly.

  2. Increasing correlation length in bulk supercooled H2O, D2O, and NaCl solution determined from small angle x-ray scattering

    OpenAIRE

    Huang, Congcong; Weiss, T M; Nordlund, D.; Wikfeldt, K. T.; Pettersson, L. G. M.; Nilsson, A.

    2010-01-01

    Using small angle x-ray scattering, we find that the correlation length of bulk liquid water shows a steep increase as temperature decreases at subzero temperatures (supercooling) and that it can, similar to the thermodynamic response functions, be fitted to a power law. This indicates that the anomalous properties of water are attributable to fluctuations between low- and high-density regions with rapidly growing average size upon supercooling. The substitution of H2O with D2O, as well as th...

  3. Small-angle x-ray scattering and differential scanning calorimetry studies of DPPC multilamellar structures containing membranotropic agents of different chemical nature

    International Nuclear Information System (INIS)

    Multilamellar structures formed in DPPC/water/glycerol and DPPC/water/oxyethylated glycerol systems are studied by small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) methods. The effects of glycerol, oxyethylated glycerol, and other membranotropic agents (MTAs) on the lamellar repeat distance D are compared in gel, ripple, and high-temperature (Lα) liquid crystal phases of the hydrated phospholipids. It is noted that the introduction of MTAs could lead to different types of 'D vs. temperature' behavior in the Lα phase, which is correlated with changes in D caused by the introduction of these substances to the DPPC/water reference system

  4. Salt Dependence of the Radius of Gyration and Flexibility of Single-stranded DNA in Solution probed by Small-angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Adelene Y.L.; Lipfert, Jan; Herschlag, Daniel; Doniach, Sebastian

    2012-07-06

    Short single-stranded nucleic acids are ubiquitous in biological processes and understanding their physical properties provides insights to nucleic acid folding and dynamics. We used small angle x-ray scattering to study 8-100 residue homopolymeric single-stranded DNAs in solution, without external forces or labeling probes. Poly-T's structural ensemble changes with increasing ionic strength in a manner consistent with a polyelectrolyte persistence length theory that accounts for molecular flexibility. For any number of residues, poly-A is consistently more elongated than poly-T, likely due to the tendency of A residues to form stronger base-stacking interactions than T residues.

  5. A Customizable Software for Fast Reduction and Analysis of Large X-Ray Scattering Data Sets: Applications of the New DPDAK Package to Small-Angle X-Ray Scattering and Grazing-Incidence Small-Angle X-Ray scattering

    OpenAIRE

    Benecke, Gunthard; Wagermaier, Wolfgang; Trebbin, Martin; Förster, Stephan; Paris, Oskar; Roth, Stephan V.; Fratzl, Peter; Li, Chenghao; Schwartzkopf, Matthias; Flucke, Gero; Hoerth, Rebecca; Zizak, Ivo; Burghammer, Manfred; Metwalli, Ezzeldin; Müller-Buschbaum, Peter

    2014-01-01

    X-ray scattering experiments at synchrotron sources are characterized by large and constantly increasing amounts of data. The great number of files generated during a synchrotron experiment is often a limiting factor in the analysis of the data, since appropriate software is rarely available to perform fast and tailored data processing. Furthermore, it is often necessary to perform online data reduction and analysis during the experiment in order to interactively optimize experimental design....

  6. Trends in anomalous small-angle X-ray scattering in grazing incidence for supported nano-alloyed and core-shell metallic nano-particles

    International Nuclear Information System (INIS)

    As atomic structure and morphology of particles are directly correlated to their functional properties, experimental methods probing local and average features of particles at the nano-scale elicit a growing interest. Anomalous small-angle X-ray scattering (ASAXS) is a very attractive technique to investigate the size, shape and spatial distribution of nano-objects embedded in a homogeneous matrix or in porous media. The anomalous variation of the scattering factor close to an absorption edge enables element specific investigations. In the case of supported nano-objects, the use of grazing incidence is necessary to limit the probed depth. The combination of grazing incidence with the anomalous technique provides a powerful new method, anomalous grazing incidence small-angle X-ray scattering (AGISAXS), to disentangle complex chemical patterns in supported multi-component nano-structures. Nevertheless, a proper data analysis requires accurate quantitative measurements associated to an adapted theoretical framework. This paper presents anomalous methods applied to nano-alloys phase separation in the 1-10 nm size range, and focuses on the application of AGISAXS in bimetallic systems: nano-composite films and core-shell supported nano-particles

  7. Scattered X-ray beam nondestructive testing

    Science.gov (United States)

    Harding, G.; Kosanetzky, J.

    1989-08-01

    X-ray scatter interactions generally dominate the linear attenuation coefficient at the photon energies typical of medical and industrial radiography. Specific advantages of X-ray scatter imaging, including a flexible choice of measurement geometry, direct 3D-imaging capability (tomography) and improved information for material characterization, are illustrated with results from Compton and coherent scatter devices. Applications of a Compton backscatter scanner (ComScan) in the aerospace industry and coherent scatter imaging in security screening are briefly considered.

  8. Preparation of metal oxide nanoparticles of different sizes and morphologies, their characterization using small angle X-ray scattering and study of thermal properties

    Energy Technology Data Exchange (ETDEWEB)

    Gopinath, S.; Philip, John, E-mail: philip@igcar.gov.in

    2014-05-01

    In an effort to shed light into the role of surface morphology of nanoparticles on their thermal properties, we have prepared Fe{sub 3}O{sub 4} and CuO nanoparticles of different sizes and morphologies using co-precipitation and precipitation approach, respectively. The prepared particles are characterized using Small Angle X-ray Scattering (SAXS) and the results are compared with X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Dynamic Light Scattering (DLS). The results show that the size distribution and surface morphologies of nanoparticles can be quite accurately measured by using SAXS with the aid of appropriate models. The thermal conductivity of spherical Fe{sub 3}O{sub 4} nanofluids follows effective medium theory whereas the CuO nanorod based dispersions show a much larger thermal conductivity beyond the effective medium theory. The abnormal thermal conductivity in CuO is attributed to effective conduction of heat through nanorods of higher aspect ratio. These finding are useful for engineering efficient nanofluids for thermal management. - Highlights: • Fe{sub 3}O{sub 4} and CuO nanoparticles of different sizes and morphologies were prepared. • The morphological evaluation was done using Small Angle X-ray Scattering (SAXS). • Thermal conductivity (k) of Fe{sub 3}O{sub 4} nanofluids follows effective medium theory (EMT). • CuO nanorod based dispersions show a k enhancement beyond the EMT. • Abnormal k in CuO is due to the effective conduction of heat through nanorods.

  9. Ultrafast x-ray scattering on nanoparticle dynamics

    International Nuclear Information System (INIS)

    Pulsed X-ray scattering is used for the determination of structural dynamics of laser-irradiated gold particles. By combining several scattering methods such as powder scattering, small angle scattering and diffuse wide angle scattering it is possible to reconstruct the kinetics of structure evolution on several lengths scales and derive complementary information on the particles and their local environment. A generic structural phase diagram for the reaction as function of delay time after laser excitation and laser fluence can be constructed.

  10. In-Situ Small-Angle X-Ray Scattering Study of Simple Shear Oriented Poly(ethylene Terephthalate) during Heating

    Science.gov (United States)

    Wang, Zhigang; Xia, Zhiyong; Hsiao, Benjamin; Sue, Hj; Han, Charles

    2002-03-01

    An equal channel angular extrusion (ECAE) process was used to prepare poly(ethylene terephthalate) samples with segmental lamellar orientations. In-situ small-angle X-ray scattering measurements were carried out to follow the structure changes during heating of sections of equal-channel-angular-extruded PET samples before and after the transition line. The total scattering power, fractions of anisotropic and isotropic scattering, orientation factors and long periods along the flow directions were obtained. The changes in these parameters revealed the processes of lamellar relaxation, recrystallization and melting during heating in specimens of different orientation and morphology. Acknowledgements. The financial support of this work is provided by a grant from NIST and NSF (DMR 0098104). The Advanced Polymers Beamline is supported by DOE (DE-FG02-99ER 45760).

  11. X-ray scattering studies of lignocellulosic biomass: a review.

    Science.gov (United States)

    Xu, Feng; Shi, Yong-Cheng; Wang, Donghai

    2013-05-15

    The high processing cost of lignocellulosic ethanol is one of the most important barriers to its profitable commercialization. Pretreatments have been used to change the structure of biomass significantly and to improve sugar and ethanol yield. Great efforts have been made to understand the structural changes of biomass during these processes, including the molecular assembly of crystalline cellulose. Wide-angle and small-angle X-ray scattering are powerful techniques in studying the biomass structure at a molecular level. In this review, after we introduce the basic structure of lignocellulosic biomass, the effects of commonly used pretreatment methods on biomass structure, and the principle of X-ray scattering technique, the application of X-ray scattering, including studies of crystallinity, crystallite size, orientation distribution, and pore structure, and the related results in biomass conversion are summarized and discussed. Future study of biomass with X-ray scattering also is proposed. PMID:23544649

  12. Small-angle X-ray-scattering investigation and structural-model study of the fatty-acid synthetase from pig liver

    International Nuclear Information System (INIS)

    The structure of the fatty acid synthetase from pig liver was studied on models based upon structural and functional properties selected from pertinent results available from numerous investigations carried out with fatty acid synthetase from this and other sources. When comparing small-angle X-ray-scattering curves calculated with these models and curves obtained from small-angle X-ray-scattering experiments carried out with the pig-liver enzyme, we tried to select a model which would lead to an acceptable correlation between the calculated and the experimental curves and at the same time fulfil the known structural and the functional requirements. The comparison of the curves was started with a model of low complexity. The observed discrepancy, together with arguments from the structural and the functional properties, helped decide which is the next most reasonable model to be considered. This procedure was repeated for five models of increasing complexity. In the model which led to the best fit the multienzyme complex is composed of two halves in an asymmetric conformation including hollow spaces. This highly anisotropic model would imply that the two halves change their conformation each time a synthetic cycle is completed and that the growing fatty acid is handed over from one half to the other. (orig.)

  13. Growth Kinetics of Nanocrystals and Nanorods by Employing Small-angle. X-ray Scattering (SAXS) and Other Techniques

    Institute of Scientific and Technical Information of China (English)

    Kanishka BISWAS; Neenu VARGHESE; C.N.R.Rao

    2008-01-01

    In this article, we report the results of our detailed investigations of the growth kinetics of zero-dimensional nanocrystals as well as one-dimensional nanorods by the combined use of small angel X-ray scattering (SAXS), transmissipon electron microscopy (TEM) along with other physical techniques. The study includes growth kinetics of gold nanocrystals formed by the reduction of HAuCl4 by tetrakis(hydroxymethyl) phosphonium chloride in aqueous solution, of CdSe nanocrystals formed by the reaction of cadmium stearate and selenium under solvothermal conditions, and of ZnO nanorods formed by the reaction of zinc acetate with sodium hydroxide under solvothermal conditions in the absence and presence of capping agents. The growth of gold nanocrystals does not follow the diffusion-limited Ostwald ripening, and instead follows a Sigmoidal rate curve. The heat change associated with the growth determined by isothermal titration calorimetry is about 10 kcal·mol-1 per 1 nm increase in the diameter of the nanocrystals. In the case of CdSe nanocrystals also, the growth mechanism deviates from diffusion-limited growth and follows a combined model containing both diffusion and surface reaction terms. Our study of the growth kinetics of uncapped and poly(vinyl pyrollidone) (PVP)-capped ZnO nanorods has yielded interesting insights. We observe small nanocrystals next to the ZnO nanorods after a lapse of time in addition to periodic focusing and defocusing of the width of the length distribution. These observations lend support to the diffusion-limited growth model for the growth of uncapped ZnO nanorods. Accordingly, the time dependence on the length of uncapped nanorods follows the L3 law as required for diffusion-limited Ostwald ripening. The PVP-capped nanorods, however, show a time dependence, which is best described by a combination of diffusion (L3) and surface reaction (L2) terms.

  14. In-situ study of precipitates in Al–Zn–Mg–Cu alloys using anomalous small-angle x-ray scattering

    Science.gov (United States)

    Chun-Ming, Yang; Feng-Gang, Bian; Bai-Qing, Xiong; Dong-Mei, Liu; Yi-Wen, Li; Wen-Qiang, Hua; Jie, Wang

    2016-06-01

    In the present work, the precipitate compositions and precipitate amounts of these elements (including the size distribution, volume fraction, and inter-precipitate distance) on the Cu-containing 7000 series aluminum alloys (7150 and 7085 Al alloys), are investigated by anomalous small-angle x-ray scattering (ASAXS) at various energies. The scattering intensity of 7150 alloy with T6 aging treatment decreases as the incident x-ray energy approaches the Zn absorption edge from the lower energy side, while scattering intensity does not show a noticeable energy dependence near the Cu absorption edge. Similar results are observed in the 7085 alloy in an aging process (120 °C) by employing in-situ ASAXS measurements, indicating that the precipitate compositions should include Zn element and should not be strongly related to Cu element at the early stage after 10 min. In the aging process, the precipitate particles with an initial average size of ∼ 8 Å increase with aging time at an energy of 9.60 keV, while the increase with a slower rate is observed at an energy of 9.65 keV as near the Zn absorption edge. Project supported by the National Natural Science Foundation of China (Grant Nos. 11005143, 11405259, and 51274046) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China (Grant No. [2014]1685).

  15. In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating

    Science.gov (United States)

    Kenel, C.; Schloth, P.; Van Petegem, S.; Fife, J. L.; Grolimund, D.; Menzel, A.; Van Swygenhoven, H.; Leinenbach, C.

    2016-03-01

    Beam-based additive manufacturing (AM) typically involves high cooling rates in a range of 103-104 K/s. Therefore, new techniques are required to understand the non-equilibrium evolution of materials at appropriate time scales. Most technical alloys have not been optimized for such rapid solidification, and microstructural, phase, and elemental solubility behavior can be very different. In this work, the combination of complementary in situ synchrotron micro-x-ray diffraction (microXRD) and small angle x-ray scattering (SAXS) studies with laser-based heating and rapid cooling is presented as an approach to study alloy behavior under processing conditions similar to AM techniques. In rapidly solidified Ti-48Al, the full solidification and phase transformation sequences are observed using microXRD with high temporal resolution. The high cooling rates are achieved by fast heat extraction. Further, the temperature- and cooling rate-dependent precipitation of sub-nanometer clusters in an Al-Cu-Mg alloy can be studied by SAXS. The sensitivity of SAXS on the length scales of the newly formed phases allows their size and fraction to be determined. These techniques are unique tools to help provide a deeper understanding of underlying alloy behavior and its influence on resulting microstructures and properties after AM. Their availability to materials scientists is crucial for both in-depth investigations of novel alloys and also future production of high-quality parts using AM.

  16. Nonlinear X-ray Compton Scattering

    OpenAIRE

    Fuchs, Matthias; Trigo, Mariano; Chen, Jian; Ghimire, Shambhu; Shwartz, Sharon; Kozina, Michael; Jiang, Mason; Henighan, Thomas; Bray, Crystal; Ndabashimiye, Georges; Bucksbaum, P. H.; Feng, Yiping; Herrmann, Sven; Carini, Gabriella; Pines, Jack

    2015-01-01

    X-ray scattering is a weak linear probe of matter. It is primarily sensitive to the position of electrons and their momentum distribution. Elastic X-ray scattering forms the basis of atomic structural determination while inelastic Compton scattering is often used as a spectroscopic probe of both single-particle excitations and collective modes. X-ray free-electron lasers (XFELs) are unique tools for studying matter on its natural time and length scales due to their bright and coherent ultrash...

  17. Systematic Limitations in Concentration Analysis via Anomalous Small-Angle X-ray Scattering in the Small Structure Limit

    Directory of Open Access Journals (Sweden)

    Guenter Goerigk

    2016-03-01

    Full Text Available Anomalous small angle scattering measurements have been applied to diluted solutions of anionic polyacrylates decorated by specifically-interacting Pb2+ cations, revealing partial collapse of the polyacrylate into pearl-like subdomains with a size on the order of a few nanometers. From the pure-resonant scattering contribution of the Pb2+ cations, and from subsequent analysis of the resonant-invariant, the amount of Pb2+ cations condensed onto the polyanions with respect to the total amount of Pb2+ cations in the solvent was estimated. In order to scrutinize systematic limitations in the determination of the chemical concentrations of resonant scattering counterions in the collapsed phase, Monte Carlo simulations have been performed. The simulations are based on structural confinements at variable size in the range of few nanometers, which represent the collapsed subdomains in the polyanions. These confinements were gradually filled to a high degree of the volume fraction with resonant scattering counterions giving access to a resonant-invariant at a variable degree of filling. The simulations revealed in the limit of small structures a significant underestimation of the true degree of filling of the collapsed subdomains when determining chemical concentrations of Pb2+ cations from the resonant invariant.

  18. Guanosine Quadruplexes in Solution: A Small-Angle X-Ray Scattering Analysis of Temperature Effects on Self-Assembling of Deoxyguanosine Monophosphate

    Directory of Open Access Journals (Sweden)

    P. Mariani

    2010-01-01

    Full Text Available We investigated quadruplex formation in aqueous solutions of 2′-deoxyriboguanosine 5′-monophosphate, d(pG, which takes place in the absence of the covalent axial backbone. A series of in-solution small angle X-ray scattering experiments on d(pG have been performed as a function of temperature in the absence of excess salt, at a concentration just above the critical one at which self-assembling occurs. A global fit approach has been used to derive composition and size distribution of the scattering particles as a function of temperature. The obtained results give thermodynamical justification for the observed phase-behavior, indicating that octamer formation is essential for quadruplex elongation. Our investigation shows that d(pG quadruplexes are very suitable to assess the potential of G-quadruplex formation and to study the self-assembling thermodynamics.

  19. Investigation of the topological shape of bovine serum albumin in solution by small-angle x-ray scattering at Beijing synchrotron radiation facility

    International Nuclear Information System (INIS)

    This paper reports that at a newly constructed small-angle x-ray scattering station of Beijing Synchrotron Radiation Facility, the topological shape of ligand-free bovine serum albumin in solution has been investigated. An appropriate scattering curve is obtained and the calculated value of the gyration radius is 31.2ű0.25A (1Å=0.1 nm) which is coincident with other ones' results. It finds that the low-resolution structure models obtained by making use of ab initio reconstruction methods are fitting the crystal structure of human serum albumin very well. All of these results perform the potential of the beamline to apply to structural biology studies. The characteristics, the defects, and the improving measures of the station in future are also discussed. (condensed matter: structure, thermal and mechanical properties)

  20. Note: An X-ray powder diffractometer with a wide scattering-angle range of 72° using asymmetrically positioned one-dimensional detectors

    Energy Technology Data Exchange (ETDEWEB)

    Katsuya, Yoshio; Tanaka, Masahiko [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Song, Chulho [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Global Research Center for Environment and Energy based Nanomaterials Science (GREEN), Lithium Air Battery Specially Promoted Research Team, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Ito, Kimihiko; Kubo, Yoshimi [Global Research Center for Environment and Energy based Nanomaterials Science (GREEN), Lithium Air Battery Specially Promoted Research Team, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Global Research Center for Environment and Energy based Nanomaterials Science (GREEN), Lithium Air Battery Specially Promoted Research Team, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Synchrotron X-ray Group, Quantum Beam Unit, NIMS, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan)

    2016-01-15

    An X-ray powder diffractometer has been developed for a time-resolved measurement without the requirement of a scattering angle (2θ) scan. Six one-dimensional detector modules are asymmetrically arranged in a vertical line at a designed distance of 286.5 mm. A detector module actually covers a diffraction angle of about 12° with an angular resolution of 0.01°. A diffracted intensity pattern is simultaneously recorded in a 2θ angular range from 1.63° to 74.37° in a “one shot” measurement. We tested the performance of the diffractometer with reference CeO{sub 2} powders and demonstrated diffraction measurements from an operating lithium-air battery.

  1. Note: An X-ray powder diffractometer with a wide scattering-angle range of 72° using asymmetrically positioned one-dimensional detectors

    Science.gov (United States)

    Katsuya, Yoshio; Song, Chulho; Tanaka, Masahiko; Ito, Kimihiko; Kubo, Yoshimi; Sakata, Osami

    2016-01-01

    An X-ray powder diffractometer has been developed for a time-resolved measurement without the requirement of a scattering angle (2θ) scan. Six one-dimensional detector modules are asymmetrically arranged in a vertical line at a designed distance of 286.5 mm. A detector module actually covers a diffraction angle of about 12° with an angular resolution of 0.01°. A diffracted intensity pattern is simultaneously recorded in a 2θ angular range from 1.63° to 74.37° in a "one shot" measurement. We tested the performance of the diffractometer with reference CeO2 powders and demonstrated diffraction measurements from an operating lithium-air battery.

  2. Note: An X-ray powder diffractometer with a wide scattering-angle range of 72° using asymmetrically positioned one-dimensional detectors

    International Nuclear Information System (INIS)

    An X-ray powder diffractometer has been developed for a time-resolved measurement without the requirement of a scattering angle (2θ) scan. Six one-dimensional detector modules are asymmetrically arranged in a vertical line at a designed distance of 286.5 mm. A detector module actually covers a diffraction angle of about 12° with an angular resolution of 0.01°. A diffracted intensity pattern is simultaneously recorded in a 2θ angular range from 1.63° to 74.37° in a “one shot” measurement. We tested the performance of the diffractometer with reference CeO2 powders and demonstrated diffraction measurements from an operating lithium-air battery

  3. An Optimized Table-Top Small-Angle X-ray Scattering Set-up for the Nanoscale Structural Analysis of Soft Matter

    KAUST Repository

    Sibillano, T.

    2014-11-10

    The paper shows how a table top superbright microfocus laboratory X-ray source and an innovative restoring-data algorithm, used in combination, allow to analyze the super molecular structure of soft matter by means of Small Angle X-ray Scattering ex-situ experiments. The proposed theoretical approach is aimed to restore diffraction features from SAXS profiles collected from low scattering biomaterials or soft tissues, and therefore to deal with extremely noisy diffraction SAXS profiles/maps. As biological test cases we inspected: i) residues of exosomes\\' drops from healthy epithelial colon cell line and colorectal cancer cells; ii) collagen/human elastin artificial scaffolds developed for vascular tissue engineering applications; iii) apoferritin protein in solution. Our results show how this combination can provide morphological/structural nanoscale information to characterize new artificial biomaterials and/or to get insight into the transition between healthy and pathological tissues during the progression of a disease, or to morphologically characterize nanoscale proteins, based on SAXS data collected in a room-sized laboratory.

  4. Domain Movements upon Activation of Phenylalanine Hydroxylase Characterized by Crystallography and Chromatography-Coupled Small-Angle X-ray Scattering.

    Science.gov (United States)

    Meisburger, Steve P; Taylor, Alexander B; Khan, Crystal A; Zhang, Shengnan; Fitzpatrick, Paul F; Ando, Nozomi

    2016-05-25

    Mammalian phenylalanine hydroxylase (PheH) is an allosteric enzyme that catalyzes the first step in the catabolism of the amino acid phenylalanine. Following allosteric activation by high phenylalanine levels, the enzyme catalyzes the pterin-dependent conversion of phenylalanine to tyrosine. Inability to control elevated phenylalanine levels in the blood leads to increased risk of mental disabilities commonly associated with the inherited metabolic disorder, phenylketonuria. Although extensively studied, structural changes associated with allosteric activation in mammalian PheH have been elusive. Here, we examine the complex allosteric mechanisms of rat PheH using X-ray crystallography, isothermal titration calorimetry (ITC), and small-angle X-ray scattering (SAXS). We describe crystal structures of the preactivated state of the PheH tetramer depicting the regulatory domains docked against the catalytic domains and preventing substrate binding. Using SAXS, we further describe the domain movements involved in allosteric activation of PheH in solution and present the first demonstration of chromatography-coupled SAXS with Evolving Factor Analysis (EFA), a powerful method for separating scattering components in a model-independent way. Together, these results support a model for allostery in PheH in which phenylalanine stabilizes the dimerization of the regulatory domains and exposes the active site for substrate binding and other structural changes needed for activity. PMID:27145334

  5. An Optimized Table-Top Small-Angle X-ray Scattering Set-up for the Nanoscale Structural Analysis of Soft Matter

    Science.gov (United States)

    Sibillano, T.; de Caro, L.; Altamura, D.; Siliqi, D.; Ramella, M.; Boccafoschi, F.; Ciasca, G.; Campi, G.; Tirinato, L.; di Fabrizio, E.; Giannini, C.

    2014-11-01

    The paper shows how a table top superbright microfocus laboratory X-ray source and an innovative restoring-data algorithm, used in combination, allow to analyze the super molecular structure of soft matter by means of Small Angle X-ray Scattering ex-situ experiments. The proposed theoretical approach is aimed to restore diffraction features from SAXS profiles collected from low scattering biomaterials or soft tissues, and therefore to deal with extremely noisy diffraction SAXS profiles/maps. As biological test cases we inspected: i) residues of exosomes' drops from healthy epithelial colon cell line and colorectal cancer cells; ii) collagen/human elastin artificial scaffolds developed for vascular tissue engineering applications; iii) apoferritin protein in solution. Our results show how this combination can provide morphological/structural nanoscale information to characterize new artificial biomaterials and/or to get insight into the transition between healthy and pathological tissues during the progression of a disease, or to morphologically characterize nanoscale proteins, based on SAXS data collected in a room-sized laboratory.

  6. Time-slicing subsystem of the biology small-angle x-ray scattering station at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    The time-slicing subsystem of the Biology Small-Angle X-ray Scattering divides the time period during which the data for small-angle x-ray diffraction patterns from biological samples is collected into time slices (or frames). The subsystem, being part of a multiprocessor experiment control and data acquisition system, has its own dedicated processor; it also has special-purpose front-end electronics sufficient to generate the gating and other control signals required to produce a sequence of as many as 256 time slices, measured with a basic time unit of 1 μsec. The electronics also synchronizes with execution of the time slice sequence the application of stimuli to the biological sample, the measurement of voltages generated by the sample, and the application of auxiliary device trigger pulses and routes detector data and auxiliary scaler data into appropriate time-slice-indexed buffers in a large external data memory array. The structure of the entire experiment control and data acquisition system is briefly reviewed. Details of the structure and operation of the time slice subsystem are presented. 7 refs., 5 figs

  7. Inelastic magnetic X-ray scattering

    Science.gov (United States)

    Platzman, P. M.; Tzoar, N.

    1985-04-01

    The theory of magnetic X-ray scattering is used to discuss the possibilities for employing inelastic scattering to probe the magnetic properties of condensed matter systems. In particular, it is shown how the interference between the nonmagnetic (Compton) and magnetic scattering arising from the use of circularly polarized X-rays is absolutely essential in such experiments. The very beautiful preliminary experiments by Sakai and Ono (1976) on Fe which use circularly polarized Moessbauer gamma-rays will be discussed. They already show the sensitivity of the technique to the 'magnetic form factor'. In addition, the physics of a unique quarter wave plate employed in obtaining circularly polarized X-rays is considered, and the implications of this advance for doing such experiments on existing synchrotron X-ray sources are discussed.

  8. Aggregation of bovine serum albumin upon cleavage of its disulfide bonds, studied by the time-resolved small-angle X-ray scattering technique with synchrotron radiation

    International Nuclear Information System (INIS)

    A rapid mixing system of the stopped-flow type, used with small-angle X-ray scattering equipment using synchrotron radiation, is described. The process of aggregation of bovine serum albumin was traced with a time interval of 50 s, initiated upon cleavage of its disulfide bonds by reduction with dithiothreitol. The results indicate that a 218-fold molar excess of dithiothreitol over the number of moles of disulfide bonds in bovine serum albumin is sufficient to initiate the reaction immediately after mixing, which reaches equilibrium in about 15 min. On the other hand, half this amount is not sufficient to initiate the reaction, so that the reaction is delayed by about 150 s. Such a single-shot time-resolved experiment showed that experiments with a time interval of 100 ms are possible with repeated multi-shot runs. (Auth.)

  9. Effects of detergents on the oligomeric structures of hemolytic lectin CEL-III as determined by small-angle X-ray scattering.

    Science.gov (United States)

    Goda, Shuichiro; Sadakata, Hitoshi; Unno, Hideaki; Hatakeyama, Tomomitsu

    2013-01-01

    Hemolytic lectin CEL-III isolated from the sea cucumber Cucumaria echinata forms transmembrane pores by self-oligomerization in target cell membranes. It also formed soluble oligomers in aqueous solution upon binding with specific carbohydrates under conditions of high pH and a high salt concentration. The size of the soluble CEL-III oligomers decreased when treated with detergents such as Triton X-100 and SDS. Small-angle X-ray scattering measurements suggested that the dissociated unit of the oligomer was a tightly associated CEL-III heptamer. Without detergents in solution, these heptamers further assembled into larger 21mer oligomers, comprising three heptamers held together by relatively weak hydrophobic interactions. PMID:23470749

  10. Weak self-interactions of globular proteins studied by small-angle X-ray scattering and structure-based modeling

    CERN Document Server

    Kaieda, Shuji; Plivelic, Tomás S; Halle, Bertil

    2014-01-01

    We investigate protein-protein interactions in solution by small-angle X-ray scattering (SAXS) and theoretical modeling. The structure factor for solutions of bovine pancreatic trypsin inhibitor (BPTI), myoglobin (Mb), and intestinal fatty acid-binding protein (IFABP) is determined from SAXS measurements at multiple concentrations, from Monte Carlo simulations with a coarse-grained structure-based interaction model, and from analytic approximate solutions of two idealized colloidal interaction models without adjustable parameters. By combining these approaches, we find that the structure factor is essentially determined by hard-core and screened electrostatic interactions. Other soft short-ranged interactions (van der Waals and solvation-related) are either individually insignificant or tend to cancel out. The structure factor is also not significantly affected by charge fluctuations. For Mb and IFABP, with small net charge and relatively symmetric charge distribution, the structure factor is well described b...

  11. Variation of long periodicity in blends of styrene butadiene, styrene copolymer/polyaniline using small angle X-ray scattering data

    Indian Academy of Sciences (India)

    B G Soares; Fernando G Souza Jr; A Manjunath; H Somashekarappa; R Somashekar; Siddaramaiah

    2007-09-01

    Small angle X-ray scattering data have been recorded for the blends of styrene butadiene, styrene copolymer/polyaniline using the beamline of the LNLS (Laboratorio Nacional de Luz sincroton-Campinas, Brazil). Employing one-dimensional Hosemann's paracrystalline model, we have simulated the meridional reflections of these blends in order to compute the long periodicity and hence to find the variation with concentrations of the blends. Within the region of available experimental data we observe that there is a linear relationship between long periodicity and concentration of blends. These parameters are compared with physical measurements like tensile strength to find the structure–property relation in these blends.

  12. Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility

    International Nuclear Information System (INIS)

    The calculation for the optics of the synchrotron radiation small and wide angle x-ray scattering beamline, currently under construction at SESAME is described. This beamline is based on a cylindrically bent germanium (111) single crystal with an asymmetric cut of 10.5 deg., followed by a 1.2 m long rhodium coated plane mirror bent into a cylindrical form. The focusing properties of bent asymmetrically cut crystals have not yet been studied in depth. The present paper is devoted to study of a particular application of a bent asymmetrically cut crystal using ray tracing simulations with the SHADOW code. These simulations show that photon fluxes of order of 1.09x1011 photons/s will be available at the experimental focus at 8.79 keV. The focused beam dimensions will be 2.2 mm horizontal full width at half maximum (FWHM) by 0.12 mm vertical (FWHM).

  13. Solution small-angle x-ray scattering as a screening and predictive tool in the fabrication of asymmetric block copolymer membranes

    KAUST Repository

    Dorin, Rachel Mika

    2012-05-15

    Small-angle X-ray scattering (SAXS) analysis of the diblock copolymer poly(styrene-b-(4-vinyl)pyridine) in a ternary solvent system of 1,4-dioxane, tetrahydrofuran, and N,N-dimethylformamide, and the triblock terpolymer poly(isoprene-b-styrene-b-(4-vinyl)-pyridine) in a binary solvent system of 1,4-dioxane and tetrahydrofuran, reveals a concentration-dependent onset of ordered structure formation. Asymmetric membranes fabricated from casting solutions with polymer concentrations at or slightly below this ordering concentration possess selective layers with the desired nanostructure. In addition to rapidly screening possible polymer solution concentrations, solution SAXS analysis also predicts hexagonal and square pore lattices of the final membrane surface structure. These results suggest solution SAXS as a powerful tool for screening casting solution concentrations and predicting surface structure in the fabrication of asymmetric ultrafiltration membranes from self-assembled block copolymers. (Figure presented) © 2012 American Chemical Society.

  14. A small-angle X-ray scattering study of complexes formed in mixtures of a cationic polyelectrolyte and an anionic surfactant

    DEFF Research Database (Denmark)

    Bergström, M.; Kjellin, U.R.M.; Claesson, P.M.; Pedersen, J.S.; Nielsen, Martin Meedom

    2002-01-01

    The internal structure of the solid phase formed in mixtures of the anionic surfactant sodium dodecyl sulfate (SDS) and a range of oppositely charged polyelectrolytes with different side chains and charge density has been investigated using small-angle X-ray scattering. Polyelectrolytes with short...... side chains ([3-(2-methylpropionamido)propyl]trimethylammonium chloride, MAPTAC, and poly{[(2-propionyloxy)ethyl]-trimethylammonium chloride}, PCMA) form a 2-dimensional hexagonal structure with SDS, whereas a polyelectrolyte without side chains (poly(vinlyamine), PVAm) forms a lamellar structure. The...... from a=47.7 Angstrom (MAPTAC, 100% charge density) to 58.5 Angstrom (AM-MAPTAC, 30% charge density). The unit cell length in the lamellar SDS/PVAm complex (a=36.1 Angstrom) is significantly smaller than for the different hexagonal structures. It is conjectured that the cylinders in the hexagonal...

  15. Unraveling the Nanostructure and Chain Conformation of Peptide-polymer Conjugates in Solution using Small-angle X-ray Scattering

    Science.gov (United States)

    Lund, Reidar; Xu, Ting; Dong, He

    For therapeutics, polymer functionalization, often by poly(ethylene glycol), PEG (``PEGylation''), is an effective method to improve the solubility, increase the life time and protect the proteins from the immune system[1]. However it is essential that the proteins maintain their structural integrity in solution- thus the role of the polymer and their interactions with proteins needs to be understood. In this work we show how small-angle X-ray scattering (SAXS) can be used as a powerful technique to characterize the structural components of peptide-polymer conjugates in solution [2, 3]. We specifically show that by applying detailed modelling very detailed structural features can be revealed, including the PEG chain conformation. In the presentation we will provide an overview of the methodology, specifically addressing peptides that form either alpha-helical bundles [2, 3] or beta-sheet structures [4, 5] and relate their structure in solution to their crystal structure.

  16. In situ synchrotron study of liquid phase separation process in Al-10 wt.% Bi immiscible alloys by radiography and small angle X-ray scattering

    Science.gov (United States)

    Lu, W. Q.; Zhang, S. G.; Li, J. G.

    2016-03-01

    Liquid phase separation process of immiscible alloys has been repeatedly tuned to create special structure for developing materials with unique properties. However, the fundamental understanding of the liquid phase separation process is still under debate due to the characteristics of immiscible alloys in opacity and high temperature environment of alloy melt. Here, the liquid phase separation process in solidifying Al-Bi immiscible alloys was investigated by synchrotron radiography and small angle X-ray scattering. We provide the first direct evidence of surface segregation prior to liquid decomposition and present that the time dependence on the number of Bi droplets follows Logistic curve. The liquid decomposition results from a nucleation and growth process rather than spinodal decomposition mechanism because of the positive deviation from Porod's law. We also found that the nanometer-sized Bi-rich droplets in Al matrix melt present mass fractal characteristics.

  17. Combined in situ small and wide angle X-ray scattering studies of TiO2 nano-particle annealing to 1023 K

    DEFF Research Database (Denmark)

    Kehres, Jan; Andreasen, Jens Wenzel; Krebs, Frederik C;

    2010-01-01

    Combined in situ small- and wide-angle X-ray scattering (SAXS/WAXS) studies were performed in a recently developed laboratory setup to investigate the dynamical properties of dry oleic acid-capped titanium dioxide nanorods during annealing in an inert gas stream in a temperature interval of 298......-1023 K. Aggregates formed by the titanium dioxide particles exhibit a continuous growth as a function of temperature. The particle size determined with SAXS and the crystallite size refined from WAXS show a correlated growth at temperatures above 673 K, where the decomposition of the surfactant is...... microscopy studies of the sample. Transmission electron microscopy shows a transformation from a rod to a spherical particle shape; the WAXS data indicate that the shape change occurs in a temperature interval of 773-923 K. The highly crystalline titanium dioxide particles remain in the metastable anatase...

  18. Crystal Structures and Small-angle X-ray Scattering Analysis of UDP-galactopyranose Mutase from the Pathogenic Fungus Aspergillus fumigatus

    Energy Technology Data Exchange (ETDEWEB)

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Karr, Dale B.; Nix, Jay C.; Sobrado, Pablo; Tanner, John J. (LBNL); (Missouri); (VPI)

    2015-10-15

    UDP-galactopyranose mutase (UGM) is a flavoenzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, which is a central reaction in galactofuranose biosynthesis. Galactofuranose has never been found in humans but is an essential building block of the cell wall and extracellular matrix of many bacteria, fungi, and protozoa. The importance of UGM for the viability of many pathogens and its absence in humans make UGM a potential drug target. Here we report the first crystal structures and small-angle x-ray scattering data for UGM from the fungus Aspergillus fumigatus, the causative agent of aspergillosis. The structures reveal that Aspergillus UGM has several extra secondary and tertiary structural elements that are not found in bacterial UGMs yet are important for substrate recognition and oligomerization. Small-angle x-ray scattering data show that Aspergillus UGM forms a tetramer in solution, which is unprecedented for UGMs. The binding of UDP or the substrate induces profound conformational changes in the enzyme. Two loops on opposite sides of the active site move toward each other by over 10 {angstrom} to cover the substrate and create a closed active site. The degree of substrate-induced conformational change exceeds that of bacterial UGMs and is a direct consequence of the unique quaternary structure of Aspergillus UGM. Galactopyranose binds at the re face of the FAD isoalloxazine with the anomeric carbon atom poised for nucleophilic attack by the FAD N5 atom. The structural data provide new insight into substrate recognition and the catalytic mechanism and thus will aid inhibitor design.

  19. Flat-top silver nanocrystals on the two polar faces of ZnO: An all angle x-ray scattering investigation

    International Nuclear Information System (INIS)

    The growth of silver at room temperature on the two polar faces of ZnO (0001) Zn terminated and (0001) O terminated, has been investigated in situ by using grazing incidence x-ray diffraction and grazing incidence small angle x-ray scattering (GISAXS). On both surfaces, silver forms nanoclusters with (111) top facets in hexagon-on-hexagon epitaxy with [101]Ag parallel [100]ZnO. Despite the high lattice mismatch in the latter direction (-11%), the Ag islands adopt their bulk parameter even at the very beginning of the growth, a key feature assigned to a quasi-perfect coincidence of a 9x9 Ag cell on a 8x8 ZnO cell. The GISAXS patterns give evidence of triangular and hexagonal cluster shapes on the Zn and O surfaces, respectively, which reflect the topographies of the two surfaces. Quantitative analysis is performed to deduce the morphological parameters as a function of coverage. To represent highly covered surfaces involving large clusters with complex shapes, a specific GISAXS treatment in terms of holes in a continuous metal layer is proposed. In the O case, flat-top islands develop mostly laterally until an incompletely filled thick layer is formed. In the Zn case, the islands grow both in height and in diameter until the film can be represented by a layer with holes. The derived growth parameters attest that silver spreads significantly better on the O-terminated face than on the Zn termination

  20. Glancing angle synchrotron X-ray diffraction

    International Nuclear Information System (INIS)

    This paper describes in basic detail some of the techniques that can be used to study thin films and surfaces. These are all in the X-ray region and cover reflectivity, diffraction form polycrystalline films, textured films and single crystal films. Other effects such as fluorescence and diffuse scattering are mentioned but not discussed in detail. Two examples of the reflectivity from multilayers and the diffraction from iron oxide films are discussed. The advantages of the synchrotron for these studies is stressed and the experimental geometries that can be employed are described i detail. A brief bibliography is provided at the end to accompany this part of the 1996 Frascati school

  1. Glancing angle synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cernik, R.J. [Daresbury Lab., Warrington, WA (United States)

    1996-09-01

    This paper describes in basic detail some of the techniques that can be used to study thin films and surfaces. These are all in the X-ray region and cover reflectivity, diffraction form polycrystalline films, textured films and single crystal films. Other effects such as fluorescence and diffuse scattering are mentioned but not discussed in detail. Two examples of the reflectivity from multilayers and the diffraction from iron oxide films are discussed. The advantages of the synchrotron for these studies is stressed and the experimental geometries that can be employed are described i detail. A brief bibliography is provided at the end to accompany this part of the 1996 Frascati school.

  2. Probing the extent of the Sr2+ ion condensation to anionic polyacrylate coils: A quantitative anomalous small-angle x-ray scattering study

    Science.gov (United States)

    Goerigk, G.; Huber, K.; Schweins, R.

    2007-10-01

    The shrinking process of anionic sodium polyacrylate (NaPA) chains in aqueous solution induced by Sr2+ counterions was analyzed by anomalous small-angle x-ray scattering. Scattering experiments were performed close to the precipitation threshold of strontium polyacrylate. The pure-resonant scattering contribution, which is related to the structural distribution of the Sr2+ counterions, was used to analyze the extent of Sr2+ condensation onto the polyacrylate coils. A series of four samples with different ratios [Sr2+]/[NaPA] (between 0.451 and 0.464) has been investigated. From the quantitative analysis of the resonant invariant, the amount of Sr cations localized in the collapsed phase was calculated with concentrations v¯ between 0.94×1017 and 2.01×1017cm-3 corresponding to an amount of Sr cations in the collapsed phase between 9% and 23% of the total Sr2+ cations in solution. If compared to the concentration of polyacrylate expressed in moles of monomers [NaPA], a degree of site binding of r =[Sr2+]/[NaPA] between 0.05 and 0.11 was estimated. These values clearly differ from r =0.25, which was established from former light scattering experiments, indicating that the counterion condensation starts before the phase border is reached and increases rather sharply at the border.

  3. Nonlinear X-ray Compton Scattering

    CERN Document Server

    Fuchs, Matthias; Chen, Jian; Ghimire, Shambhu; Shwartz, Sharon; Kozina, Michael; Jiang, Mason; Henighan, Thomas; Bray, Crystal; Ndabashimiye, Georges; Bucksbaum, P H; Feng, Yiping; Herrmann, Sven; Carini, Gabriella; Pines, Jack; Hart, Philip; Kenney, Christopher; Guillet, Serge; Boutet, Sebastien; Williams, Garth; Messerschmidt, Marc; Seibert, Marvin; Moeller, Stefan; Hastings, Jerome B; Reis, David A

    2015-01-01

    X-ray scattering is a weak linear probe of matter. It is primarily sensitive to the position of electrons and their momentum distribution. Elastic X-ray scattering forms the basis of atomic structural determination while inelastic Compton scattering is often used as a spectroscopic probe of both single-particle excitations and collective modes. X-ray free-electron lasers (XFELs) are unique tools for studying matter on its natural time and length scales due to their bright and coherent ultrashort pulses. However, in the focus of an XFEL the assumption of a weak linear probe breaks down, and nonlinear light-matter interactions can become ubiquitous. The field can be sufficiently high that even non-resonant multiphoton interactions at hard X-rays wavelengths become relevant. Here we report the observation of one of the most fundamental nonlinear X-ray-matter interactions, the simultaneous Compton scattering of two identical photons producing a single photon at nearly twice the photon energy. We measure scattered...

  4. Characterization of the shape and line-edge roughness of polymer gratings with grazing incidence small-angle X-ray scattering and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Hyo Seon; Chen, Xuanxuan; Rincon-Delgadillo, Paulina A.; Jiang, Zhang; Strzalka, Joseph; Wang, Jin; Chen, Wei; Gronheid, Roel; de Pablo, Juan J.; Ferrier, Nicola; Doxastakis, Manolis; Nealey, Paul F.

    2016-04-22

    Grazing-incidence small-angle X-ray scattering (GISAXS) is increasingly used for the metrology of substrate-supported nanoscale features and nanostructured films. In the case of line gratings, where long objects are arranged with a nanoscale periodicity perpendicular to the beam, a series of characteristic spots of high-intensity (grating truncation rods, GTRs) are recorded on a two-dimensional detector. The intensity of the GTRs is modulated by the three-dimensional shape and arrangement of the lines. Previous studies aimed to extract an average cross-sectional profile of the gratings, attributing intensity loss at GTRs to sample imperfections. Such imperfections are just as important as the average shape when employing soft polymer gratings which display significant line-edge roughness. Herein are reported a series of GISAXS measurements of polymer line gratings over a range of incident angles. Both an average shape and fluctuations contributing to the intensity in between the GTRs are extracted. The results are critically compared with atomic force microscopy (AFM) measurements, and it is found that the two methods are in good agreement if appropriate corrections for scattering from the substrate (GISAXS) and contributions from the probe shape (AFM) are accounted for.

  5. A small angle X-ray scattering method to investigate the crack tip in metals. Final report of the Marie Curie individual fellowship project

    International Nuclear Information System (INIS)

    Structural materials, such as ferritic and austenitic steels or aluminium alloys used in the nuclear and aircraft industry, are subjected to external operational loads in different environments. Adopting a damage tolerant design principle, understanding the growth of preexisting or newly formed cracks under these conditions is of prime relevance to prevent extensive crack propagation and failure of the component. Within this framework, the characterization of early stages of the damage processes, as nucleation, growth and coalescence of micro-voids and the evolution of the spatial dislocation distribution (dislocation patterning) is a particularly challenging aspect. It was the objective of the work performed to investigate the damage structure near a crack tip by means of small angle X-ray scattering (SAXS). Pre-cracked fracture mechanics standard specimens from different aluminium alloys and steels were loaded up to different amounts of crack growth. From the crack tip range samples of 100 to 200 μm thickness were prepared and a small region around the crack tip was scanned using a microfocused Synchrotron beam. The SAXS experiments were performed at different Synchrotron sources and equipments with different beam cross section, scan step width and X-ray energy. Additionally, the investigation was completed by other methods like X-ray diffraction, X-ray imaging diffraction technique (MAXIM), transmission electron microscopy, scanning electron microscopy, and positron annihilation spectroscopy. The SAXS intensity pattern shows location-related effects. Potential SAXS parameters to characterize the damage are the integral intensity, a fractal dimension parameter and a value determined from the ratio of the intensity vertical and horizontal to the direction of crack growth. Above all, the last parameter is suitable to depict the damage zone around the crack tip. It is robust and applicable even for a material which exhibits an anisotropic SAXS pattern in the

  6. MgATP-induced conformational changes in the iron protein from Azotobacter vinelandii, as studied by small-angle x-ray scattering.

    Science.gov (United States)

    Chen, L; Gavini, N; Tsuruta, H; Eliezer, D; Burgess, B K; Doniach, S; Hodgson, K O

    1994-02-01

    Small angle x-ray scattering experiments have been carried out on the purified iron proteins of nitrogenase from wild-type Azotobacter vinelandii and from a Nif- mutant strain, A. vinelandii UW91 (which has an A157S mutation). This study was designed to investigate the influence of MgATP and MgADP binding on the protein structure in solution. For the wild-type protein, the binding of MgATP induces a significant conformational change that is observed as a decrease of about 2.0 A in the radius of gyration. In contrast, the binding of MgADP to the wild-type iron protein does not detectably affect the radius of gyration. In the absence of nucleotides, the radius of gyration for the UW91 mutant is indistinguishable from that of the wild-type. However, unlike for the wild-type protein, the radius of gyration of the UW91 iron protein is unaffected by the addition of MgATP. We have previously shown that the UW91 iron protein has a normal [4Fe-4S] cluster and MgATP binding ability but that it is completely blocked for electron transfer and MgATP hydrolysis (Gavini, N., and Burgess, B. K. (1992) J. Biol. Chem. 267, 21179-21186). These x-ray scattering measurements suggest that a conformation different from that of the native state is therefore required for the iron protein to perform electron transfer to the MoFe protein. These results also support the hypothesis that Ala-157 is crucial for the iron protein to establish the electron-transfer-favored conformation induced by MgATP binding. PMID:8106367

  7. Modeling the amorphous structure of mechanically alloyed Ti50Ni25Cu25 using anomalous wide-angle x-ray scattering and reverse Monte Carlo simulation

    International Nuclear Information System (INIS)

    An amorphous Ti50Ni25Cu25 alloy was produced by 19 h of mechanical alloying. Anomalous wide angle x-ray scattering data were collected at six energies and six total scattering factors were obtained. By considering the data collected at two energies close to the Ni and Cu K edges, two differential anomalous scattering factors about the Ni and Cu atoms were obtained, showing that the chemical environments around these atoms are different. Eight factors were used as input data to the reverse Monte Carlo method used to compute the partial structure factors STi3Ti(K), STi–Cu(K), STi–Ni(K), SCu3Cu(K), SCu–Ni(K) and SNi–Ni(K) and the partial pair distribution functions GTi3Ti(r), GTi–Cu(r), GTi–Ni(r), GCu3Cu(r), GCu–Ni(r) and GNi–Ni(r). From the RMC final atomic configuration and Gij(r) functions, the coordination numbers and interatomic atomic distances for the first neighbors were determined

  8. Small angle X-ray scattering study of poly(N-isopropyl acrylamide) based cryogels near the volume-phase transition temperature

    International Nuclear Information System (INIS)

    The structural modifications induced by changes in temperature are investigated by Small-Angle X-ray Scattering (SAXS) over a broad range of q-values (3.5x10-2 - 12 nm-1) in cryogels based on N-isopropylacrylamide (NIPA) and/or 2-Hydroxyethyl methacrylate-L-Lactide-Dextran (HEMA-LLA-D) macromer. Various copolymeric cryogels of these two monomers are prepared by cryopolymerization yielding macroporous gels (cryogels). For the plain pNIPA cryogel, the SAXS curves obtained at each temperature are well fitted by a sum of four equations describing respectively the scattering resulting from the gel surface (power law), from the solid-like (Guinier equation) and liquid-like (Ornstein-Zernike equation) heterogeneities and from the chain-chain correlation yielding a broad peak (pseudo-Voigt equation) in the high-q domain. The temperature dependence of the parameters obtained from the fit is analyzed and discussed. It is shown that the existence of an isoscattering (or isosbestic) point observed in pNIPA gels and in some copolymers is related to features observed by Differential Scanning Calorimetry and swelling ratio measurements.

  9. Long-living intermediates during a lamellar to a diamond-cubic lipid phase transition: a small-angle X-ray scattering investigation.

    Science.gov (United States)

    Angelov, Borislav; Angelova, Angelina; Vainio, Ulla; Garamus, Vasil M; Lesieur, Sylviane; Willumeit, Regine; Couvreur, Patrick

    2009-04-01

    To generate nanostructured vehicles with tunable internal organization, the structural phase behavior of a self-assembled amphiphilic mixture involving poly(ethylene glycol) monooleate (MO-PEG) and glycerol monooleate (MO) is studied in excess aqueous medium by time-resolved small-angle X-ray scattering (SAXS) in the temperature range from 1 to 68 degrees C. The SAXS data indicate miscibility of the two components in lamellar and nonlamellar soft-matter nanostructures. The functionalization of the MO assemblies by a MO-PEG amphiphile, which has a flexible large hydrophilic moiety, appears to hinder the epitaxial growth of a double diamond (D) cubic lattice from the lamellar (L) bilayer structure during the thermal phase transition. The incorporated MO-PEG additive is found to facilitate the formation of structural intermediates. They exhibit greater characteristic spacings and large diffusive scattering in broad temperature and time intervals. Their features are compared with those of swollen long-living intermediates in MO/octylglucoside assemblies. A conclusion can be drawn that long-living intermediate states can be equilibrium stabilized in two- or multicomponent amphiphilic systems. Their role as cubic phase precursors is to smooth the structural distortions arising from curvature mismatch between flat and curved regions. The considered MO-PEG functionalized assemblies may be useful for preparation of sterically stabilized liquid-crystalline nanovehicles for confinement of therapeutic biomolecules. PMID:19708151

  10. Amorphous supramolecular structure of carboxymethyl cellulose in aqueous solution at different pH values as determined by rheology, small angle X-ray and light scattering.

    Science.gov (United States)

    Dogsa, Iztok; Tomšič, Matija; Orehek, Janez; Benigar, Elizabeta; Jamnik, Andrej; Stopar, David

    2014-10-13

    Carboxymethyl cellulose (CMC) is one of the most widely used thickening agents in industry. The combination of small-angle X-ray scattering (SAXS), static and dynamic light scattering, as well as viscosity measurements and microscopy at different pH values was utilized to explore the physicochemical properties of CMC on a scale ranging from individual macromolecules to supramolecular assemblies. The supramolecular structure of CMC was represented as a set of characteristic sample subspaces based on SAXS data utilizing the string-of-beads model. The results indicate that at pH 7.0 individual CMC molecules are approximately uniformly distributed in a supramolecular structure owing to strong intra- and intermolecular repulsive interactions. The structure of CMC is most expanded at the value of pKa, where it has the largest radius of gyration, persistence length, and size of heterogeneous regions. Below pKa the majority of the CMC sample volume belongs to the low density subspaces. Most of CMC molecules, however, reside in a few high density subspaces. Dynamically, supramolecular structure of CMC is composed of fast diffusive relaxation processes embedded in a background of non-diffusive slow relaxation process at high pH and mostly slow relaxation processes at low pH. The rheological properties of CMC at different pH values were directly related to the CMC supramolecular structure in the aqueous environment. PMID:25037380

  11. Small angle X-ray scattering study of poly(N-isopropyl acrylamide) based cryogels near the volume-phase transition temperature

    Science.gov (United States)

    Chalal, Mohand; Ehrburger-Dolle, Françoise; Morfin, Isabelle; Aguilar de Armas, Maria-Rosa; López, Maria-Luisa; Bley, Françoise

    2010-10-01

    The structural modifications induced by changes in temperature are investigated by Small-Angle X-ray Scattering (SAXS) over a broad range of q-values (3.5×10-2 - 12 nm-1) in cryogels based on N-isopropylacrylamide (NIPA) and/or 2-Hydroxyethyl methacrylate-L-Lactide-Dextran (HEMA-LLA-D) macromer. Various copolymeric cryogels of these two monomers are prepared by cryopolymerization yielding macroporous gels (cryogels). For the plain pNIPA cryogel, the SAXS curves obtained at each temperature are well fitted by a sum of four equations describing respectively the scattering resulting from the gel surface (power law), from the solid-like (Guinier equation) and liquid-like (Ornstein-Zernike equation) heterogeneities and from the chain-chain correlation yielding a broad peak (pseudo-Voigt equation) in the high-q domain. The temperature dependence of the parameters obtained from the fit is analyzed and discussed. It is shown that the existence of an isoscattering (or isosbestic) point observed in pNIPA gels and in some copolymers is related to features observed by Differential Scanning Calorimetry and swelling ratio measurements.

  12. Novel in situ setup to study the formation of nanoparticles in the gas phase by small angle x-ray scattering

    International Nuclear Information System (INIS)

    An in-house built aerosol generator setup for in situ gas phase studies of aerosol and nanoparticles is described. The aerosol generator with an ultrasonic ceramic disk mist maker provides high enough particle concentrations for structural gas phase analysis by synchrotron small angle x-ray scattering (for water ∼4x108 droplets/s with a droplet size of ∼2.5 μm). The working principle was proved by scattering of gold nanoparticles. For evaporation induced self-assembly studies of nanostructured particles, an additional thermal treatment chamber was included in the setup. The first on-line gas phase data with our setup for mesostructured silica particles are presented for different thermal treatments. Scanning electron microscope imaging revealed the average particle size to be ∼1 μm. Furthermore, to quantify their internal nanostructure, diffraction experiments of deposited silica aerosols were carried out and the corresponding electron density map indicates a silica wall thickness of about 1 nm

  13. DEFORMATION OF SOFT COLLOIDAL CRYSTALLINE STRUCTURE-THEORETICAL CONSIDERATIONS AND EXPERIMENTAL EVIDENCES BY SYNCHROTRON SMALL-ANGLE X-RAY SCATTERING ON TENSILE STRETCHED POLYMERIC LATEX FILM

    Institute of Scientific and Technical Information of China (English)

    Jian-qi Zhang; Yong-feng Men

    2009-01-01

    Films obtained via drying a polymeric latex dispersion are normally colloidal crystalline where latex particles are packed into a face centered cubic (fcc) structure.Different from conventional atomic crystallites or hard sphere colloidal crystallites,the crystalline structure of these films is normally deformable due to the low glass transition temperature of the latex particles.Upon tensile deformation,depending on the drawing direction with respect to the normal of specific crystallographic plane,one observes different crystalline structural changes.Three typical situations where crystallographic c-axis,body diagonal or face diagonal of the fcc structure of the colloidal crystallites being parallel to the stretching direction were investigated.Tilting angle and d-spacing of several crystallographic planes as a function of draw ratio at each situation were derived.Experimental evidences for such relationships were also given by considering in-situ synchrotron small angle X-ray scattering data of a typical latex film during stretching.It turns out that the experimental results are fully in accordance with the mathematical calculations.

  14. Preliminary Examination of X-ray Scattering from Human Tissues

    International Nuclear Information System (INIS)

    Small Angle x-ray scattering (SAXS) and wide angle x-ray scattering (WAXS) patterns have been recorded from different human soft tissues using x-ray synchrotron radiation.Pathological breast, normal kidney and lung tissues show SAXS peaks at q-values equal to 0.291 nm-1 and 0.481 nm-1 (d 21.6 nm and d =13. nm) which are the 3rd and 5th order of the well known axial D-spacing of collagen fibrils. The diffraction is particularly intense in the meridional direction indicating some febrile alignment. In contrast, the normal tissue of brain, liver and heart shows diffuse scatter.The wide-angle coherent scattering from normal human tissues of brain, liver, heart, lung, and kidney is typical of that for amorphous materials. The scatter of the healthy adipose breast tissue shows a sharp peak at momentum transfer 1.24 nm-1 (d= 0.417 nm). The data of the other tissues appears to consist of a broad scattering peak. The two scattering regimes succeed in differentiating between the two major components of breast tissue, collagen and adipose tissue. The results of this study suggest that the soft tissues may have scattering patterns that are characteristics for the particular tissue types and tissue disease state. These results indicate that it may be possible use the coherent scattering as a diagnostic tool

  15. The filament forming reactions of vimentin tetramers studied in a serial-inlet microflow device by small angle x-ray scattering.

    Science.gov (United States)

    Saldanha, Oliva; Brennich, Martha E; Burghammer, Manfred; Herrmann, Harald; Köster, Sarah

    2016-03-01

    The structural organization of metazoan cells and their shape are established through the coordinated interaction of a composite network consisting of three individual filament systems, collectively termed the cytoskeleton. Specifically, microtubules and actin filaments, which assemble from monomeric globular proteins, provide polar structures that serve motor proteins as tracks. In contrast, intermediate filaments (IFs) assemble from highly charged, extended coiled coils in a hierarchical assembly mechanism of lateral and longitudinal interaction steps into non-polar structures. IF proteins are expressed in a distinctly tissue-specific way and thereby serve to generate the precise plasticity of the respective cells and tissues. Accordingly, in the cell, numerous parameters such as pH and salt concentration are adjusted such that the generation of functional networks is ensured. Here, we transfer the problem for the mesenchymal IF protein vimentin to an in vitro setting and combine small angle x-ray scattering with microfluidics and finite element method simulations. Our approach is adapted to resolve the early assembly steps, which take place in the sub-second to second range. In particular, we reveal the influence of ion species and concentrations on the assembly. By tuning the flow rates and thus concentration profiles, we find a minimal critical salt concentration for the initiation of the assembly. Furthermore, our analysis of the surface sensitive Porod regime in the x-ray data reveals that the formation of first assembly intermediates, so-called unit length filaments, is not a one-step reaction but consists of distinct consecutive lateral association steps followed by radial compaction as well as smoothening of the surface of the full-width filament. PMID:27042250

  16. Anomalous nonlinear X-ray Compton scattering

    Science.gov (United States)

    Fuchs, Matthias; Trigo, Mariano; Chen, Jian; Ghimire, Shambhu; Shwartz, Sharon; Kozina, Michael; Jiang, Mason; Henighan, Thomas; Bray, Crystal; Ndabashimiye, Georges; Bucksbaum, Philip H.; Feng, Yiping; Herrmann, Sven; Carini, Gabriella A.; Pines, Jack; Hart, Philip; Kenney, Christopher; Guillet, Serge; Boutet, Sébastien; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Moeller, Stefan; Hastings, Jerome B.; Reis, David A.

    2015-11-01

    X-ray scattering is typically used as a weak linear atomic-scale probe of matter. At high intensities, such as produced at free-electron lasers, nonlinearities can become important, and the probe may no longer be considered weak. Here we report the observation of one of the most fundamental nonlinear X-ray-matter interactions: the concerted nonlinear Compton scattering of two identical hard X-ray photons producing a single higher-energy photon. The X-ray intensity reached 4 × 1020 W cm-2, corresponding to an electric field well above the atomic unit of strength and within almost four orders of magnitude of the quantum-electrodynamic critical field. We measure a signal from solid beryllium that scales quadratically in intensity, consistent with simultaneous non-resonant two-photon scattering from nearly-free electrons. The high-energy photons show an anomalously large redshift that is incompatible with a free-electron approximation for the ground-state electron distribution, suggesting an enhanced nonlinearity for scattering at large momentum transfer.

  17. How Large is an α-Helix? Studies of the Radii of Gyration of Helical Peptides by Small-angle X-ray Scattering and Molecular Dynamics

    International Nuclear Information System (INIS)

    Using synchrotron radiation and the small-angle X-ray scattering technique we have measured the radii of gyration of a series of alanine-based alpha-helix-forming peptides of the composition Ace-(AAKAA)(n)-GY-NH(2), n=2-7, in aqueous solvent at 10(+/-1) degrees C. In contrast to other techniques typically used to study alpha-helices in isolation (such as nuclear magnetic resonance and circular dichroism), small-angle X-ray scattering reports on the global structure of a molecule and, as such, provides complementary information to these other, more sequence-local measuring techniques. The radii of gyration that we measure are, except for the 12-mer, lower than the radii of gyration of ideal alpha-helices or helices with frayed ends of the equivalent sequence-length. For example, the measured radius of gyration of the 37-mer is 14.2(+/-0.6)A, which is to be compared with the radius of gyration of an ideal 37-mer alpha-helix of 17.6A. Attempts are made to analyze the origin of this discrepancy in terms of the analytical Zimm-Bragg-Nagai (ZBN) theory, as well as distributed computing explicit solvent molecular dynamics simulations using two variants of the AMBER force-field. The ZBN theory, which treats helices as cylinders connected by random walk segments, predicts markedly larger radii of gyration than those measured. This is true even when the persistence length of the random walk parts is taken to be extremely short (about one residue). Similarly, the molecular dynamics simulations, at the level of sampling available to us, give inaccurate values of the radii of gyration of the molecules (by overestimating them by around 25% for longer peptides) and/or their helical content. We conclude that even at the short sequences examined here (< or =37 amino acid residues), these alpha-helical peptides behave as fluctuating semi-broken rods rather than straight cylinders with frayed ends.

  18. The Diffraction Pattern Calculator (DPC) toolkit: a user-friendly approach to unit-cell lattice parameter identification of two-dimensional grazing-incidence wide-angle X-ray scattering data

    OpenAIRE

    Hailey, Anna K.; Hiszpanski, Anna M.; Smilgies, Detlef-M.; Loo, Yueh-Lin

    2014-01-01

    The computer program DPC toolkit is a simple and user-friendly tool that identifies the unit-cell lattice parameters of a crystal structure that are consistent with a given set of two-dimensional grazing-incidence wide-angle X-ray scattering data.

  19. Characterization of structure and coagulation behaviour of refractory organic substances (ROS) using small-angle neutron scattering (SANS), small-angle x-ray scattering (SAXS) and x-ray microscopy; Charakterisierung von Struktur und Koagulationsverhalten von Refraktaeren Organischen Saeuren (ROS) mit Hilfe von Neutronenkleinwinkelstreuung (SANS), Roentgenkleinwinkelstreuung (SAXS) und Roentgenmikroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Pranzas, P.K. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1999-07-01

    In this work structure, coagulation and complexation behaviour of aquatic refractory organic substances (ROS) (humic and fulvic acids) were characterized. For this purpose a structural analytical system with the methods small-angle neutron scattering (SANS), small-angle x-ray scattering (SAXS) and X-ray microscopy with synchrotron radiation was developed and established. Size distributions of ROS of different origin were calculated from the scattering curves. Spherical ROS units were obtained, which coagulated by forming chainlike structures or disordered ROS agglomerates at higher concentrations. Additionally the average molecular weights of several ROS were calculated. Studies of the coagulation behaviour of ROS towards copper ions resulted in larger ROS-agglomerates besides the spherical ROS units. A linear relation between the addition of Cu{sup 2+} and the formation of the ROS-Cu{sup 2+}-agglomerates was found. With X-ray microscopy an extensive ROS-Cu{sup 2}-network structure could be registrated. For mercury and cadmium ions such coagulation interactions were not found. Investigations with X-ray microscopy of the coagulation behaviour of ROS towards the cationic surfactant DTB resulted in micel-like structures of equal size, which were spread throughout the solution. With increasing concentrations of DTB larger agglomerates up to network structures were obtained. (orig.) [German] In dieser Arbeit wurden Struktur, Koagulations- und Komplexierungsverhalten von aquatischen refraktaeren organischen Saeuren (ROS) (Humin- und Fulvinsaeuren) charakterisiert. Zu diesem Zweck wurde ein strukturanalytisches Gesamtsystem mit den Methoden Neutronenkleinwinkelstreuung (SANS), Roentgenkleinwinkelstreuung (SAXS) und Roentgenmikroskopie mit Synchrotronstrahlung entwickelt und etabliert. Fuer ROS unterschiedlicher Herkunft in Loesung wurden Groessenverteilungen aus den Streukurven berechnet. Es wurden kugelfoermige ROS-Einheiten gefunden, die bei hoeheren ROS

  20. X-ray resonant magnetic scattering ellipsometer

    International Nuclear Information System (INIS)

    It is very difficult to characterize the polarization of a synchrotron radiation source in the soft and/or intermediate x-ray energy region particularly from 1 to 2 keV. Conventional multilayer mirror or single-crystal polarimeters do not work over this energy region because their throughput (the reflectivities combined with the phase shift) becomes insignificant. In this paper, we present a new ellipsometer scheme that is able to fully characterize the polarization of synchrotron radiation sources in this energy region. It is based on the dichroic x-ray resonant ferromagnetic scattering that yields information on both the polarization of the x-ray and the material (element specific) dielectric-constant tensor [C.-C. Kao et al., Phys. Rev. B 50, 9599 (1994)] due to the interband ferromagnetic Kerr effect [B.R. Cooper, Phys. Rev. A 139, 1504 (1965)]. copyright 1996 American Institute of Physics

  1. New insights into nucleation. Pressure trace measurements and the first small angle X-ray scattering experiments in a supersonic laval nozzle

    International Nuclear Information System (INIS)

    Homogeneous nucleation rates of the n-alcohols and the n-alkanes have been determined by combining information from two sets of supersonic Laval nozzle expansion experiments under identical conditions. The nucleation rates J=N/ΔtJmax for the n-alcohols are in the range of 1.1017-3s-117 for the temperatures 207≤T/K≤249, the nucleation rates for the n-alkanes lie in the range of 5.1015-3s-118 for the temperatures 143 ≤T/K≤215. For the first time it is shown that the nucleation rate is not only a function of the supersaturation and temperature but clearly also sensitive to the expansion rate during supersonic nozzle expansion. A good agreement between the experimental results and those available in literature is found by applying Hale's scaling formalism [Hale, B., Phys. Rev. A 33, 4256 (1986); Hale, B., Metall. Trans. A 23, 1863 (1992)]. The scaling parameters from this work are also in good agreement with those shown by Rusyniak et al. [Rusyniak, M., M. S. El-Shall, J. Phys. Chem. B 105, 11873 (2001)] and Brus et al. [Brus, D., V. Zdimal F. Stratmann, J. Chem Phys. 124, 164306 (2006)]. In the first experiment static pressure measurements were conducted for the n-alkanes to determine the condensible partial pressure, temperature, supersaturation, characteristic time, and the expansion rate corresponding to the maximum nucleation rate. Characteristic times in the range of 13≤ΔtJmax/μs≤34 were found. In the second set of experiments, the first flow rate resolved Small Angle X-ray Scattering experiments are conducted to determine the particle number density for both substance classes. Particle number densities in the range of 1.1012-312 and 1.1011-312 for the n-alcohols and n-alkanes are found, respectively. Additionally, by analyzing the radially averaged scattering spectrum, information on the mean radius and the width of the size distribution of the aerosols is obtained. Mean radii for the n-alcohols in the range of 4< left angle r right angle /nm<10

  2. Determination of the quaternary structural states of bovine casein by small-angle X-ray scattering: submicellar and micellar forms

    International Nuclear Information System (INIS)

    Whole casein occurs in milk as a spherical colloidal complex of protein and salts called the casein micelle, with approximate average radii of 650 A as determined by electron microscopy. Removal of Ca2+ is thought to result in dissociation into smaller noncolloidal protein complexes called submicelles. Hydrodynamic and light scattering studies on whole casein submicelles suggest that they are predominantly spherical particles with a hydrophobic core. To investigate whether the integrity of a hydrophobically stabilized submicellar structure is preserved in the electrostatically stabilized colloidal micellar structure, small-angle X-ray scattering (SAXS) experiments were undertaken on whole casein from bovine milk under submicellar and micellar conditions. All SAXS results showed multiple Gaussian character and could be analyzed best by nonlinear regression in place of the customary Guinier plot. Analysis of the SAXS data for submicellar casein showed two Gaussian components which could be interpreted in terms of a particle with two concentric regions of different electron density, designated as a compact core and a loose shell, respectively. The submicelle was found to have an average molecular weight of 285,000 +/- 14,600 and a mass fraction of higher electron density core, k, of 0.212 +/- 0.028. The radius of gyration of the core, RC, was 37.98 +/- 0.01 A with an electron density difference, delta rho C, of 0.0148 +/- 0.0014 e-/A3, while the loose region had values of RL = 88.2 +/- 0.8 A with delta rho L = 0.0091 +/- 0.0003 e-/A3. Calculated distance distribution functions and normalized scattering curves also were consistent with an overall spherical particle with a concentric spherical inner core of higher electron density. (Abstract Truncated)

  3. Determination of the quaternary structural states of bovine casein by small-angle X-ray scattering: submicellar and micellar forms

    Energy Technology Data Exchange (ETDEWEB)

    Kumosinski, T.F.; Pessen, H.; Farrell, H.M. Jr.; Brumberger, H.

    1988-11-01

    Whole casein occurs in milk as a spherical colloidal complex of protein and salts called the casein micelle, with approximate average radii of 650 A as determined by electron microscopy. Removal of Ca2+ is thought to result in dissociation into smaller noncolloidal protein complexes called submicelles. Hydrodynamic and light scattering studies on whole casein submicelles suggest that they are predominantly spherical particles with a hydrophobic core. To investigate whether the integrity of a hydrophobically stabilized submicellar structure is preserved in the electrostatically stabilized colloidal micellar structure, small-angle X-ray scattering (SAXS) experiments were undertaken on whole casein from bovine milk under submicellar and micellar conditions. All SAXS results showed multiple Gaussian character and could be analyzed best by nonlinear regression in place of the customary Guinier plot. Analysis of the SAXS data for submicellar casein showed two Gaussian components which could be interpreted in terms of a particle with two concentric regions of different electron density, designated as a compact core and a loose shell, respectively. The submicelle was found to have an average molecular weight of 285,000 +/- 14,600 and a mass fraction of higher electron density core, k, of 0.212 +/- 0.028. The radius of gyration of the core, RC, was 37.98 +/- 0.01 A with an electron density difference, delta rho C, of 0.0148 +/- 0.0014 e-/A3, while the loose region had values of RL = 88.2 +/- 0.8 A with delta rho L = 0.0091 +/- 0.0003 e-/A3. Calculated distance distribution functions and normalized scattering curves also were consistent with an overall spherical particle with a concentric spherical inner core of higher electron density. (Abstract Truncated)

  4. X-ray scattering signatures of β-thalassemia

    International Nuclear Information System (INIS)

    X-ray scattering from lyophilized proteins or protein-rich samples is characterized by the presence of two characteristic broad peaks at scattering angles equivalent to momentum transfer values of 0.27 and 0.6 nm-1, respectively. These peaks arise from the interference of coherently scattered photons. Once the conformation of a protein is changed, these two peaks reflect such change with considerable sensitivity. The present work examines the possibility of characterizing the most common cause of hemolytic anaemia in Egypt and many Mediterranean countries; β-thalassemia, from its X-ray scattering profile. This disease emerges from a genetic defect causing reduced rate in the synthesis of one of the globin chains that make up hemoglobin. As a result, structurally abnormal hemoglobin molecules are formed. In order to detect such molecular disorder, hemoglobin samples of β-thalassemia patients are collected, lyophilized and measured using a conventional X-ray diffractometer. Results show significant differences in the X-ray scattering profiles of most of the diseased samples compared to control. The shape of the first scattering peak at 0.27 nm-1, in addition to the relative intensity of the first to the second scattering peaks, provides the most reliable signs of abnormality in diseased samples. The results are interpreted and confirmed with the aid of Fourier Transform Infrared (FTIR) spectroscopy of normal and thalassemia samples.

  5. Time-resolved small-angle X-ray scattering studies of polymer-silica nanocomposite particles: initial formation and subsequent silica redistribution.

    Science.gov (United States)

    Balmer, Jennifer A; Mykhaylyk, Oleksandr O; Armes, Steven P; Fairclough, J Patrick A; Ryan, Anthony J; Gummel, Jeremie; Murray, Martin W; Murray, Kenneth A; Williams, Neal S J

    2011-02-01

    Small angle X-ray scattering (SAXS) is a powerful characterization technique for the analysis of polymer-silica nanocomposite particles due to their relatively narrow particle size distributions and high electron density contrast between the polymer core and the silica shell. Time-resolved SAXS is used to follow the kinetics of both nanocomposite particle formation (via silica nanoparticle adsorption onto sterically stabilized poly(2-vinylpyridine) (P2VP) latex in dilute aqueous solution) and also the spontaneous redistribution of silica that occurs when such P2VP-silica nanocomposite particles are challenged by the addition of sterically stabilized P2VP latex. Silica adsorption is complete within a few seconds at 20 °C and the rate of adsorption strongly dependent on the extent of silica surface coverage. Similar very short time scales for silica redistribution are consistent with facile silica exchange occurring as a result of rapid interparticle collisions due to Brownian motion; this interpretation is consistent with a zeroth-order Smoluchowski-type calculation. PMID:21171624

  6. Structural analysis of the yeast exosome Rrp6p–Rrp47p complex by small-angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Dedic, Emil; Seweryn, Paulina; Jonstrup, Anette Thyssen; Flygaard, Rasmus Koch [Centre for mRNP Biogenesis and Metabolism, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C (Denmark); Department of Molecular Biology and Genetics, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C (Denmark); Fedosova, Natalya U. [Department of Biomedicine, Ole Worms Allé 6, Aarhus University, DK-8000 Aarhus C (Denmark); Hoffmann, Søren Vrønning [Institute for Storage Ring Facilities (ISA), Department of Physics and Astronomy, Ny Munkegade 120, Aarhus University, DK-8000 Aarhus C (Denmark); Boesen, Thomas [Centre for Membrane Pumps in Cells and Disease – PUMPKIN, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C (Denmark); Department of Molecular Biology and Genetics, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C (Denmark); Brodersen, Ditlev Egeskov, E-mail: deb@mb.au.dk [Centre for mRNP Biogenesis and Metabolism, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C (Denmark); Department of Molecular Biology and Genetics, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C (Denmark)

    2014-07-18

    Highlights: • We show that S. cerevisiae Rrp6p and Rrp47p stabilise each other in vitro. • We determine molecular envelopes of the Rrp6p–Rrp47p complex by SAXS. • Rrp47p binds at the top of the Rrp6p exonuclease domain. • Rrp47p modulates the activity of Rrp6p on a variety of RNA substrates. • Rrp47p does not affect RNA affinity by Rrp6p. - Abstract: The RNase D-type 3′–5′ exonuclease Rrp6p from Saccharomyces cerevisiae is a nuclear-specific cofactor of the RNA exosome and associates in vivo with Rrp47p (Lrp1p). Here, we show using biochemistry and small-angle X-ray scattering (SAXS) that Rrp6p and Rrp47p associate into a stable, heterodimeric complex with an elongated shape consistent with binding of Rrp47p to the nuclease domain and opposite of the HRDC domain of Rrp6p. Rrp47p reduces the exonucleolytic activity of Rrp6p on both single-stranded and structured RNA substrates without significantly altering the affinity towards RNA or the ability of Rrp6p to degrade RNA secondary structure.

  7. Unravelling the shape and structural assembly of the photosynthetic GAPDH-CP12-PRK complex from Arabidopsis thaliana by small-angle X-ray scattering analysis.

    Science.gov (United States)

    Del Giudice, Alessandra; Pavel, Nicolae Viorel; Galantini, Luciano; Falini, Giuseppe; Trost, Paolo; Fermani, Simona; Sparla, Francesca

    2015-12-01

    Oxygenic photosynthetic organisms produce sugars through the Calvin-Benson cycle, a metabolism that is tightly linked to the light reactions of photosynthesis and is regulated by different mechanisms, including the formation of protein complexes. Two enzymes of the cycle, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK), form a supramolecular complex with the regulatory protein CP12 with the formula (GAPDH-CP122-PRK)2, in which both enzyme activities are transiently inhibited during the night. Small-angle X-ray scattering analysis performed on both the GAPDH-CP12-PRK complex and its components, GAPDH-CP12 and PRK, from Arabidopsis thaliana showed that (i) PRK has an elongated, bent and screwed shape, (ii) the oxidized N-terminal region of CP12 that is not embedded in the GAPDH-CP12 complex prefers a compact conformation and (iii) the interaction of PRK with the N-terminal region of CP12 favours the approach of two GAPDH tetramers. The interaction between the GAPDH tetramers may contribute to the overall stabilization of the GAPDH-CP12-PRK complex, the structure of which is presented here for the first time. PMID:26627646

  8. Extracting magnetic cluster size and its distributions in advanced perpendicular recording media with shrinking grain size using small angle x-ray scattering

    International Nuclear Information System (INIS)

    We analyze the magnetic cluster size (MCS) and magnetic cluster size distribution (MCSD) in a variety of perpendicular magnetic recording (PMR) media designs using resonant small angle x-ray scattering at the Co L3 absorption edge. The different PMR media flavors considered here vary in grain size between 7.5 and 9.5 nm as well as in lateral inter-granular exchange strength, which is controlled via the segregant amount. While for high inter-granular exchange, the MCS increases rapidly for grain sizes below 8.5 nm, we show that for increased amount of segregant with less exchange the MCS remains relatively small, even for grain sizes of 7.5 and 8 nm. However, the MCSD still increases sharply when shrinking grains from 8 to 7.5 nm. We show evidence that recording performance such as signal-to-noise-ratio on the spin stand correlates well with the product of magnetic cluster size and magnetic cluster size distribution

  9. Response of nanoparticle structure to different types of surface environments: Wide-angle x-ray scattering and molecular dynamics simulations

    Science.gov (United States)

    Zhang, Hengzhong; Chen, Bin; Ren, Yang; Waychunas, Glenn A.; Banfield, Jillian F.

    2010-03-01

    The structure of nanoparticles is nonstationary and changes in response to the surface environment where the nanoparticles are situated. Nanoparticle-environment interaction determines the nature of the structure change, an important consideration for evaluating subsequent environmental impact. In this work, we used ZnS nanoparticles to interact with surface environments that contain different inorganic salts, water, and organic molecules. From analysis of the pair-distribution function (PDF) derived from wide-angle x-ray scattering experiments, we found that a stronger surface interaction results in a thicker crystalline core and a thinner distorted shell, corresponding to PDF curves having larger peaks and more peaks at longer radial distances. Plane-wave electronic calculations were used to quantify the interaction strength. An analogous atomic view of the nanoparticle-environmental interactions and structures was provided by molecular dynamics simulations. The extent of response of the nanoparticle structure to various surface environments is used as a measure of the interaction strength between them.

  10. Structure and dynamics of water in nonionic reverse micelles: a combined time-resolved infrared and small angle x-ray scattering study.

    Science.gov (United States)

    van der Loop, Tibert H; Panman, Matthijs R; Lotze, Stephan; Zhang, Jing; Vad, Thomas; Bakker, Huib J; Sager, Wiebke F C; Woutersen, Sander

    2012-07-28

    We study the structure and reorientation dynamics of nanometer-sized water droplets inside nonionic reverse micelles (water/Igepal-CO-520/cyclohexane) with time-resolved mid-infrared pump-probe spectroscopy and small angle x-ray scattering. In the time-resolved experiments, we probe the vibrational and orientational dynamics of the O-D bonds of dilute HDO:H(2)O mixtures in Igepal reverse micelles as a function of temperature and micelle size. We find that even small micelles contain a large fraction of water that reorients at the same rate as water in the bulk, which indicates that the polyethylene oxide chains of the surfactant do not penetrate into the water volume. We also observe that the confinement affects the reorientation dynamics of only the first hydration layer. From the temperature dependent surface-water dynamics, we estimate an activation enthalpy for reorientation of 45 ± 9 kJ mol(-1) (11 ± 2 kcal mol(-1)), which is close to the activation energy of the reorientation of water molecules in ice. PMID:22852627

  11. Structure and dynamics of water in nonionic reverse micelles: A combined time-resolved infrared and small angle x-ray scattering study

    Science.gov (United States)

    van der Loop, Tibert H.; Panman, Matthijs R.; Lotze, Stephan; Zhang, Jing; Vad, Thomas; Bakker, Huib J.; Sager, Wiebke F. C.; Woutersen, Sander

    2012-07-01

    We study the structure and reorientation dynamics of nanometer-sized water droplets inside nonionic reverse micelles (water/Igepal-CO-520/cyclohexane) with time-resolved mid-infrared pump-probe spectroscopy and small angle x-ray scattering. In the time-resolved experiments, we probe the vibrational and orientational dynamics of the O-D bonds of dilute HDO:H2O mixtures in Igepal reverse micelles as a function of temperature and micelle size. We find that even small micelles contain a large fraction of water that reorients at the same rate as water in the bulk, which indicates that the polyethylene oxide chains of the surfactant do not penetrate into the water volume. We also observe that the confinement affects the reorientation dynamics of only the first hydration layer. From the temperature dependent surface-water dynamics, we estimate an activation enthalpy for reorientation of 45 ± 9 kJ mol-1 (11 ± 2 kcal mol-1), which is close to the activation energy of the reorientation of water molecules in ice.

  12. Convective assembly of 2D lattices of virus-like particles visualized by in-situ grazing-incidence small-angle X-ray scattering.

    Science.gov (United States)

    Ashley, Carlee E; Dunphy, Darren R; Jiang, Zhang; Carnes, Eric C; Yuan, Zhen; Petsev, Dimiter N; Atanassov, Plamen B; Velev, Orlin D; Sprung, Michael; Wang, Jin; Peabody, David S; Brinker, C Jeffrey

    2011-04-18

    The rapid assembly of icosohedral virus-like particles (VLPs) into highly ordered (domain size > 600 nm), oriented 2D superlattices directly onto a solid substrate using convective coating is demonstrated. In-situ grazing-incidence small-angle X-ray scattering (GISAXS) is used to follow the self-assembly process in real time to characterize the mechanism of superlattice formation, with the ultimate goal of tailoring film deposition conditions to optimize long-range order. From water, GISAXS data are consistent with a transport-limited assembly process where convective flow directs assembly of VLPs into a lattice oriented with respect to the water drying line. Addition of a nonvolatile solvent (glycerol) modified this assembly pathway, resulting in non-oriented superlattices with improved long-range order. Modification of electrostatic conditions (solution ionic strength, substrate charge) also alters assembly behavior; however, a comparison of in-situ assembly data between VLPs derived from the bacteriophages MS2 and Qβ show that this assembly process is not fully described by a simple Derjaguin-Landau-Verwey-Overbeek model alone. PMID:21425464

  13. PAMAM6 dendrimers and DNA: pH dependent "beads-on-a-string" behavior revealed by small angle X-ray scattering

    CERN Document Server

    Dootz, Rolf; Pfohl, Thomas

    2011-01-01

    DNA interactions with polycations are not only important for our understanding of chromatin compaction but also for characterizing DNA-binding proteins involved in transcription, replication and repair. DNA is known to form several types of liquid-crystalline phases depending, among other factors, on polycation structure and charge density. Theoretical studies and simulations have predicted the wrapping of DNA around spherical positively charged polycations. As a potential mimic of the histone octamer or other DNA wrapping proteins, poly(amido amine) generation 6 (PAMAM6) dendrimers have been chosen for our study. The self-assembly of DNA induced by PAMAM6 has been investigated using small angle X-ray scattering (SAXS) in order to reveal the assemblies' structure dependence on the pH of the environment and on dendrimers concentration. We demonstrate that at pH 8.5 dense phases are formed and characterized by a 2D-columnar hexagonal lattice which is transformed into a 3D hexagonal lattice with increasing dendr...

  14. Insights into Surface Interactions between Metal Organic Frameworks and Gases during Transient Adsorption and Diffusion by In-Situ Small Angle X-ray Scattering.

    Science.gov (United States)

    Dumée, Ludovic F; He, Li; Hodgson, Peter; Kong, Lingxue

    2016-01-01

    The fabrication of molecular gas sieving materials with specific affinities for a single gas species and able to store large quantities of materials at a low or atmospheric pressure is desperately required to reduce the adverse effects of coal and oil usage in carbon capture. Fundamental understanding of the dynamic adsorption of gas, the diffusion mechanisms across thin film membranes, and the impact of interfaces play a vital role in developing these materials. In this work, single gas permeation tests across micro-porous membrane materials, based on metal organic framework crystals grown on the surface of carbon nanotubes (ZiF-8@CNT), were performed for the first time in-situ at the Australian Synchrotron on the small angle X-ray scattering beamline in order to reveal molecular sieving mechanisms and gas adsorption within the material. The results show that specific chemi-sorption of CO₂ across the ZiF-8 crystal lattices affected the morphology and unit cell parameters, while the sieving of other noble or noble like gases across the ZiF-8@CNT membranes was found to largely follow Knudsen diffusion. This work demonstrates for the first time a novel and effective technique to assess molecular diffusion at the nano-scale across sub-nano-porous materials by probing molecular flexibility across crystal lattice and single cell units. PMID:27598211

  15. Study of pore structure in grafted polymer membranes using slow positron beam and small-angle X-ray scattering techniques

    International Nuclear Information System (INIS)

    Pore structure in polypropylene membranes has been investigated using slow positron beam and small-angle X-ray scattering (SAXS) studies. The pore structure has been modified by chemically grafting methylmethacrylate in polypropylene. Depth-resolved Doppler lineshape S-parameter and positronium (Ps) fraction (3γ/2γ ratio) measurements have been carried out using a variable low energy positron beam. Lineshape S-parameter and Ps fraction are found to decrease with the extent of grafting. The deduced positron diffusion length is also seen to decrease with the extent of pore grafting. The power law dependence of SAXS intensity over a wide range of the wave vector transfer reveals the fractal nature of the pore-membrane surface and, the surface fractal dimensions are seen to increase with amount of pore grafting. The value of the negative exponent of the power law size distribution of the pores has been found to be increasing with increase in grafting revealing reduction in the pore size and narrower pore size distribution. The deduced pore size from SAXS measurements is correlated with positron diffusion length and S-parameter from the positron beam measurements

  16. Effect of urea on bovine serum albumin in aqueous and reverse micelle environments investigated by small angle X-ray scattering, fluorescence and circular dichroism

    International Nuclear Information System (INIS)

    The influence that urea has on the conformation of water-soluble globular protein, bovine serum albumin (BSA), exposed directly to the aqueous solution as compared to the condition where the macromolecule is confined in the Aerosol-OT (AOT - sodium bis-2-ethylhexyl sulfosuccinate)/n-hexane/water reverse micelle (RM) is addressed. Small angle X-ray scattering (SAXS), tryptophan (Trp) fluorescence emission and circular dichroism (CD) spectra of aqueous BSA solution in the absence and in the presence of urea (3M and 5M) confirm the known denaturing effect of urea in proteins. The loss of the globular native structure is observed by the increase in the protein maximum dimension and gyration radius, through the Trp emission increase and maximum red-shift as well as the decrease in helix content. In RMs, the Trp fluorescence and CD spectra show that BSA is mainly located in its interfacial region independently of the micellar size. Addition of urea in this BSA/RM system also causes changes in the Trp fluorescence (emission decrease and maximum red-shift) and in the BSA CD spectra (decrease in helix content), which are compatible with the denaturation of the protein and Trp exposition to a more apolar environment in the RM. The fact that urea causes changes in the protein structure when it is located in the interfacial region (evidenced by CD) is interpreted as an indication that the direct interaction of urea with the protein is the major factor to explain its denaturing effect. (author)

  17. Extracting magnetic cluster size and its distributions in advanced perpendicular recording media with shrinking grain size using small angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Virat; Ikeda, Yoshihiro; Takano, Ken; Terris, Bruce D.; Hellwig, Olav [San Jose Research Center, HGST a Western Digital company, 3403 Yerba Buena Rd., San Jose, California 95135 (United States); Wang, Tianhan [Department of Materials Science and Engineering, Stanford University, Stanford, California 94035 (United States); Stanford Institute for Materials and Energy Science (SIMES), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Wu, Benny; Graves, Catherine [Stanford Institute for Materials and Energy Science (SIMES), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94035 (United States); Dürr, Hermann A.; Scherz, Andreas; Stöhr, Jo [Stanford Institute for Materials and Energy Science (SIMES), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States)

    2015-05-18

    We analyze the magnetic cluster size (MCS) and magnetic cluster size distribution (MCSD) in a variety of perpendicular magnetic recording (PMR) media designs using resonant small angle x-ray scattering at the Co L{sub 3} absorption edge. The different PMR media flavors considered here vary in grain size between 7.5 and 9.5 nm as well as in lateral inter-granular exchange strength, which is controlled via the segregant amount. While for high inter-granular exchange, the MCS increases rapidly for grain sizes below 8.5 nm, we show that for increased amount of segregant with less exchange the MCS remains relatively small, even for grain sizes of 7.5 and 8 nm. However, the MCSD still increases sharply when shrinking grains from 8 to 7.5 nm. We show evidence that recording performance such as signal-to-noise-ratio on the spin stand correlates well with the product of magnetic cluster size and magnetic cluster size distribution.

  18. Modification of Spherical Polyelectrolyte Brushes by Layer-by-Layer Self-Assembly as Observed by Small Angle X-ray Scattering

    Directory of Open Access Journals (Sweden)

    Yuchuan Tian

    2016-04-01

    Full Text Available Multilayer modified spherical polyelectrolyte brushes were prepared through alternate deposition of positively charged poly(allylamine hydrochloride (PAH and negatively charged poly-l-aspartic acid (PAsp onto negatively charged spherical poly(acrylic acid (PAA brushes (SPBs on a poly(styrene core. The charge reversal determined by the zeta potential indicated the success of layer-by-layer (LBL deposition. The change of the structure during the construction of multilayer modified SPBs was observed by small-angle X-ray scattering (SAXS. SAXS results indicated that some PAH chains were able to penetrate into the PAA brush for the PAA-PAH double-layer modified SPBs whereas part of the PAH moved towards the outer layer when the PAsp layer was loaded to form a PAA-PAH-PAsp triple-layer system. The multilayer modified SPBs were stable upon changing the pH (5 to 9 and ionic strength (1 to 100 mM. The triple-layer modified SPBs were more tolerated to high pH (even at 11 compared to the double-layer ones. SAXS is proved to be a powerful tool for studying the inner structure of multilayer modified SPBs, which can establish guidelines for the a range of potential applications of multilayer modified SPBs.

  19. Small-angle X-ray scattering reveals compact domain-domain interactions in the N-terminal region of filamin C.

    Directory of Open Access Journals (Sweden)

    Ritika Sethi

    Full Text Available Filamins are multi-domain, actin cross-linking, and scaffolding proteins. In addition to the actin cross-linking function, filamins have a role in mechanosensor signaling. The mechanosensor function is mediated by domain-domain interaction in the C-terminal region of filamins. Recently, we have shown that there is a three-domain interaction module in the N-terminal region of filamins, where the neighboring domains stabilize the structure of the middle domain and thereby regulate its interaction with ligands. In this study, we have used small-angle X-ray scattering as a tool to screen for potential domain-domain interactions in the N-terminal region. We found evidence of four domain-domain interactions with varying flexibility. These results confirm our previous study showing that domains 3, 4, and 5 exist as a compact three domain module. In addition, we report interactions between domains 11-12 and 14-15, which are thus new candidate sites for mechanical regulation.

  20. Evolution and change of He bubbles in He-containing Ti films upon thermal treatment studied by small-angle X-ray scattering and transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Guangai [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); College of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029 (China); Wu, Erdong, E-mail: ewu@imr.ac.cn [National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Huang, Chaoqiang [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); College of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029 (China); Cheng, Chun [National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Yan, Guanyun [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Wang, Xiaolin [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); College of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029 (China); Liu, Shi [National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Tian, Qiang; Chen, Bo [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Wu, Zhonghua [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Liu, Yi; Wang, Jie [Institute of Shanghai Apply Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-05-02

    Evolution and change of He bubbles in magnetron sputtering prepared He-containing Ti films under thermal treatment are studied by small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM) and X-ray diffraction. Incorporation of He introduces a large number of He-vacancy clusters and some voids in the films, and significantly increases SAXS intensity and causes anisotropic scattering. The change of He induced defects during annealing is affected by thermal diffusion and migration of trapped He to the surface and between interfaces of He induced defects within the films. Annealing at 200 and 400 °C reduces intensity and anisotropy of SAXS, in accord with observed shrinking and disappearance of the voids. The simultaneous growth of non-uniformly distributed He bubbles to the sizes of 1–2 nm and a population level of 10{sup 5}/μm{sup 3} are detected in the temperature range. The changes are explained by migration and coalescence mechanisms, which requires low apparent activation energy. Inconsistence between TEM and SAXS observations is noted and attributed to thinning induced internal stress relaxation of TEM specimen. Remarkable enlargement of He bubbles, associated with increased SAXS intensity and fractal dimension, is observed after 600 °C annealing, indicating involvement of Ostwald Ripening (OR) mechanism. The OR process dominates at 800 °C, where the high temperature provides activation energy for accelerated He dissociation from small bubbles into larger ones, and generating textured microstructure and agglomerated bubble clusters. The inhomogeneous bubble size distribution observed at this temperature covers a broad range of about 10–50 nm and possessing a population density level of 10{sup 3}/μm{sup 3}. - Highlights: • Change of He bubbles in thermally treated Ti–He films is studied by SAXS and TEM. • SAXS reveals size distribution and fractional population of He bubbles in films. • He-vacancy clusters in Ti–He film

  1. Evolution and change of He bubbles in He-containing Ti films upon thermal treatment studied by small-angle X-ray scattering and transmission electron microscopy

    International Nuclear Information System (INIS)

    Evolution and change of He bubbles in magnetron sputtering prepared He-containing Ti films under thermal treatment are studied by small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM) and X-ray diffraction. Incorporation of He introduces a large number of He-vacancy clusters and some voids in the films, and significantly increases SAXS intensity and causes anisotropic scattering. The change of He induced defects during annealing is affected by thermal diffusion and migration of trapped He to the surface and between interfaces of He induced defects within the films. Annealing at 200 and 400 °C reduces intensity and anisotropy of SAXS, in accord with observed shrinking and disappearance of the voids. The simultaneous growth of non-uniformly distributed He bubbles to the sizes of 1–2 nm and a population level of 105/μm3 are detected in the temperature range. The changes are explained by migration and coalescence mechanisms, which requires low apparent activation energy. Inconsistence between TEM and SAXS observations is noted and attributed to thinning induced internal stress relaxation of TEM specimen. Remarkable enlargement of He bubbles, associated with increased SAXS intensity and fractal dimension, is observed after 600 °C annealing, indicating involvement of Ostwald Ripening (OR) mechanism. The OR process dominates at 800 °C, where the high temperature provides activation energy for accelerated He dissociation from small bubbles into larger ones, and generating textured microstructure and agglomerated bubble clusters. The inhomogeneous bubble size distribution observed at this temperature covers a broad range of about 10–50 nm and possessing a population density level of 103/μm3. - Highlights: • Change of He bubbles in thermally treated Ti–He films is studied by SAXS and TEM. • SAXS reveals size distribution and fractional population of He bubbles in films. • He-vacancy clusters in Ti–He film transfer to bubbles and

  2. Multimodal particle size distribution or fractal surface of acrylic acid copolymer nanoparticles: A small-angle X-ray scattering study using direct Fourier and indirect maximum entropy methods

    OpenAIRE

    Mueller, J.J.; Hansen, S; Lukowski, G.; Gast, K.

    1995-01-01

    Acrylic acid copolymers are potential carriers for drug delivery. The surface, surface rugosity and the absolute dimension of the particles are parameters that determine the binding of drugs or detergents, diffusion phenomena at the surface and the distribution of the carrier within the human body. The particle-size distribution and surface rugosity of the particles have been investigated by small-angle X-ray scattering and dynamic light scattering. Direct Fourier transform as well as a new s...

  3. Characterization of polymer-silica nanocomposite particles with core-shell morphologies using Monte Carlo simulations and small angle X-ray scattering.

    Science.gov (United States)

    Balmer, Jennifer A; Mykhaylyk, Oleksandr O; Schmid, Andreas; Armes, Steven P; Fairclough, J Patrick A; Ryan, Anthony J

    2011-07-01

    A two-population model based on standard small-angle X-ray scattering (SAXS) equations is verified for the analysis of core-shell structures comprising spherical colloidal particles with particulate shells. First, Monte Carlo simulations of core-shell structures are performed to demonstrate the applicability of the model. Three possible shell packings are considered: ordered silica shells due to either charge-dependent repulsive or size-dependent Lennard-Jones interactions or randomly arranged silica particles. In most cases, the two-population model produces an excellent fit to calculated SAXS patterns for the simulated core-shell structures, together with a good correlation between the fitting parameters and structural parameters used for the simulation. The limits of application are discussed, and then, this two-population model is applied to the analysis of well-defined core-shell vinyl polymer/silica nanocomposite particles, where the shell comprises a monolayer of spherical silica nanoparticles. Comprehensive SAXS analysis of a series of poly(styrene-co-n-butyl acrylate)/silica colloidal nanocomposite particles (prepared by the in situ emulsion copolymerization of styrene and n-butyl acrylate in the presence of a glycerol-functionalized silica sol) allows the overall core-shell particle diameter, the copolymer latex core diameter and polydispersity, the mean silica shell thickness, the mean silica diameter and polydispersity, the volume fractions of the two components, the silica packing density, and the silica shell structure to be obtained. These experimental SAXS results are consistent with electron microscopy, dynamic light scattering, thermogravimetry, helium pycnometry, and BET surface area studies. The high electron density contrast between the (co)polymer and the silica components, together with the relatively low polydispersity of these core-shell nanocomposite particles, makes SAXS ideally suited for the characterization of this system. Moreover

  4. Picosecond Photobiology: Watching a Signaling Protein Function in Real Time via Time-Resolved Small- and Wide-Angle X-ray Scattering.

    Science.gov (United States)

    Cho, Hyun Sun; Schotte, Friedrich; Dashdorj, Naranbaatar; Kyndt, John; Henning, Robert; Anfinrud, Philip A

    2016-07-20

    The capacity to respond to environmental changes is crucial to an organism's survival. Halorhodospira halophila is a photosynthetic bacterium that swims away from blue light, presumably in an effort to evade photons energetic enough to be genetically harmful. The protein responsible for this response is believed to be photoactive yellow protein (PYP), whose chromophore photoisomerizes from trans to cis in the presence of blue light. We investigated the complete PYP photocycle by acquiring time-resolved small and wide-angle X-ray scattering patterns (SAXS/WAXS) over 10 decades of time spanning from 100 ps to 1 s. Using a sequential model, global analysis of the time-dependent scattering differences recovered four intermediates (pR0/pR1, pR2, pB0, pB1), the first three of which can be assigned to prior time-resolved crystal structures. The 1.8 ms pB0 to pB1 transition produces the PYP signaling state, whose radius of gyration (Rg = 16.6 Å) is significantly larger than that for the ground state (Rg = 14.7 Å) and is therefore inaccessible to time-resolved protein crystallography. The shape of the signaling state, reconstructed using GASBOR, is highly anisotropic and entails significant elongation of the long axis of the protein. This structural change is consistent with unfolding of the 25 residue N-terminal domain, which exposes the β-scaffold of this sensory protein to a potential binding partner. This mechanistically detailed description of the complete PYP photocycle, made possible by time-resolved crystal and solution studies, provides a framework for understanding signal transduction in proteins and for assessing and validating theoretical/computational approaches in protein biophysics. PMID:27305463

  5. Structure factor of blends of solvent-free nanoparticle–organic hybrid materials: density-functional theory and small angle X-ray scattering

    KAUST Repository

    Yu, Hsiu-Yu

    2014-09-15

    © the Partner Organisations 2014. We investigate the static structure factor S(q) of solvent-free nanoparticle-organic hybrid materials consisting of silica nanocores and space-filling polyethylene glycol coronas using a density-functional theory and small angle X-ray scattering measurements. The theory considers a bidisperse suspension of hard spheres with different radii and tethered bead-spring oligomers with different grafting densities to approximate the polydispersity effects in experiments. The experimental systems studied include pure samples with different silica core volume fractions and the associated mean corona grafting densities, and blends with different mixing ratios of the pure samples, in order to introduce varying polydispersity of corona grafting density. Our scattering experiments and theory show that, compared to the hard-sphere suspension with the same core volume fraction, S(q) for pure samples exhibit both substantially smaller values at small q and stronger particle correlations corresponding to a larger effective hard core at large q, indicating that the tethered incompressible oligomers enforce a more uniform particle distribution, and the densely grafted brush gives rise to an additional exclusionary effect between the nanoparticles. According to the theory, polydispersity in the oligomer grafting density controls the deviation of S(q) from the monodisperse system at smaller q, and the interplay of the enhanced effective core size and the entropic attraction among the particles is responsible for complex variations in the particle correlations at larger q. The successful comparison between the predictions and the measurements for the blends further suggests that S(q) can be used to assess the uniformity of grafting density in polymer-grafted nanoparticle materials. This journal is

  6. X-ray scattering measurements from thin-foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; BYRNAK, BP; Hornstrup, Allan;

    1992-01-01

    Thin foil X-ray mirrors are to be used as the reflecting elements in the telescopes of the X-ray satellites Spectrum-X-Gamma (SRG) and ASTRO-D. High resolution X-ray scattering measurements from the Au coated and dip-lacquered Al foils are presented. These were obtained from SRG mirrors positioned...

  7. Small-angle X-ray scattering study of the structural evolution of the drying of teos-derived sonogels with the liquid phase exchanged by acetone

    International Nuclear Information System (INIS)

    Full text: The structural evolution on the drying of wet sonogels of silica with the liquid phase exchanged by acetone, obtained from tetraethoxisilane sonohydrolysis, was studied 'in situ' by small-angle X-ray scattering (SAXS). The SAXS measurements were carried out using synchrotron radiation with a wavelength λ = 0.1608 nm and a pin-hole geometry collimated beam. The periods associated to the structural evolution as determined by SAXS are in agreement with those classical ones established on basis of the features of the evaporation rate of the liquid phase in the obtaining of xerogels. The SAXS data were analyzed on basis of the fractal characteristics of the sonogels. The wet gel can be described as formed by primary particles (microclusters), with characteristic length a ∼ 0.67 nm and surface which is fractal, linking together to form mass fractal structures with mass fractal dimension D = 2.24 in a length scale ξ ∼ 6.7 nm. As the network collapses while the liquid/vapor meniscus is kept out of the gel volume, the mass fractal structure becomes more compacted by increasing D and decreasing ξ, with smoothing of the fractal surface of the microclusters. The time evolution of the density of the wet gels was evaluated exclusively from the SAXS parameters ξ, D and a. The final dried acetone-exchanged gel presents Porod's inhomogeneity length of about 2.8 nm and apparently exhibits an interesting singularity D → 3, as determined by the mass fractal modeling used to t the SAXS intensity data for the obtaining of the parameters ξ and D. (author)

  8. Structural model and stability studies of the extracellular domain of the human amyloid precursor protein obtained using small angle X-ray scattering

    International Nuclear Information System (INIS)

    Full text: The amyloid precursor protein (APP) is the precursor of the β-amyloid peptide (Aβ), which is centrally related to the genesis of Alzheimer's disease (AD). In addition, APP has been suggested to mediate and/or participate in events that lead to neuronal degeneration in AD. Human APP exists in various isoforms, of which the major ones contain 695, 751 and 770 aminoacids. Proteolytic cleavage of APP by α- or β-secretases releases the extracellular soluble fragments sAPPα and sAPPβ, respectively. Despite the fact that sAPPα plays important roles in both physiological and pathological processes in the brain, very little is known about the structure and stability of this protein. We have recently presented a structural model of sAPPα695 obtained from small-angle X-ray scattering (SAXS) measurements (Gralle et al., Biophys. J. 83,3513-3524). The elongated shape of the reported model is in agreement with the circular dichroism and secondary structure predictions based on the aminoacid sequence of APP. This suggests that a significant fraction of APP (30% of the aminoacid residues) is not involved in standard secondary structure elements. We now report high resolution SAXS models and studies of folding and stabilities of both sAPPα695 and sAPPα770. These high resolution measurements allows the calculation of models up to subdomain structure (4 angstrom resolution). These models enable the prediction of hydrodynamic parameters of these proteins which can be compared with measured values. SAXS measurements of the denaturation of sAPPα695 and sAPPα770 by GdnHCl and urea revealed a multi-step folding pathway for both sAPPα isoforms. The stepwise denaturation process can be correlated to the three-dimensional models. (author)

  9. Liquid structure of acetic acid-water and trifluoroacetic acid-water mixtures studied by large-angle X-ray scattering and NMR.

    Science.gov (United States)

    Takamuku, Toshiyuki; Kyoshoin, Yasuhiro; Noguchi, Hiroshi; Kusano, Shoji; Yamaguchi, Toshio

    2007-08-01

    The structures of acetic acid (AA), trifluoroacetic acid (TFA), and their aqueous mixtures over the entire range of acid mole fraction xA have been investigated by using large-angle X-ray scattering (LAXS) and NMR techniques. The results from the LAXS experiments have shown that acetic acid molecules mainly form a chain structure via hydrogen bonding in the pure liquid. In acetic acid-water mixtures hydrogen bonds of acetic acid-water and water-water gradually increase with decreasing xA, while the chain structure of acetic acid molecules is moderately ruptured. Hydrogen bonds among water molecules are remarkably formed in acetic acid-water mixtures at xATFA molecules form not a chain structure but cyclic dimers through hydrogen bonding in the pure liquid. In TFA-water mixtures O...O hydrogen bonds among water molecules gradually increase when xA decreases, and hydrogen bonds among water molecules are significantly formed in the mixtures at xATFA molecules are considerably dissociated to hydrogen ions and trifluoroacetate in the mixtures. 1H, 13C, and 19F NMR chemical shifts of acetic acid and TFA molecules for acetic acid-water and TFA-water mixtures have indicated strong relationships between a structural change of the mixtures and the acid mole fraction. On the basis of both LAXS and NMR results, the structural changes of acetic acid-water and TFA-water mixtures with decreasing acid mole fraction and the effects of fluorination of the methyl group on the structure are discussed at the molecular level. PMID:17628099

  10. Small angle X-ray scattering mapping and kinetics study of sub-critical CO{sub 2} sorption by two Australian coals

    Energy Technology Data Exchange (ETDEWEB)

    Radlinski, Andrzej P. [Geoscience Australia, Symonston, Australian Capital Territory 2609 (Australia)]|[Cooperative Research Centre for Greenhouse Gas Technologies, Canberra, Australian Capital Territory 2601 (Australia)]|[Nanoscale Science and Technology Centre, Griffith University, Brisbane, Queensland 4111 (Australia); Busbridge, Tara L.; Gray, Evan Mac A.; Blach, Tomasz P. [Nanoscale Science and Technology Centre, Griffith University, Brisbane, Queensland 4111 (Australia); Cookson, David J. [Australian Synchrotron, Clayton, Victoria 3168 (Australia)]|[School of Physics, University of Melbourne, Victoria 3010 (Australia)

    2009-01-07

    Time- and position-resolved synchrotron small angle X-ray scattering data were acquired from samples of two Australian coal seams: Bulli seam (Bulli 4, R{sub o} = 1.42%, Sydney Basin), which naturally contains CO{sub 2} and Baralaba seam (R{sub o} = 0.67%, Bowen Basin), a potential candidate for sequestering CO{sub 2}. This experimental approach has provided unique, pore-size-specific insights into the kinetics of CO{sub 2} sorption in the micro- and small mesopores (diameter 5 to 175 A) and the density of the sorbed CO{sub 2} at reservoir-like conditions of temperature and hydrostatic pressure. For both samples, at pressures above 5 bar, the density of CO{sub 2} confined in pores was found to be uniform, with no densification in near-wall regions. In the Bulli 4 sample, CO{sub 2} first flooded the slit pores between polyaromatic sheets. In the pore-size range analysed, the confined CO{sub 2} density was close to that of the free CO{sub 2}. The kinetics data are too noisy for reliable quantitative analysis, but qualitatively indicate faster kinetics in mineral-matter-rich regions. In the Baralaba sample, CO{sub 2} preferentially invaded the smallest micropores and the confined CO{sub 2} density was up to five times that of the free CO{sub 2}. Faster CO{sub 2} sorption kinetics was found to be correlated with higher mineral matter content but, the mineral-matter-rich regions had lower-density CO{sub 2} confined in their pores. Remarkably, the kinetics was pore-size dependent, being faster for smaller pores. These results suggest that injection into the permeable section of an interbedded coal-clastic sequence could provide a viable combination of reasonable injectivity and high sorption capacity. (author)

  11. Combining NMR and small angle X-ray and neutron scattering in the structural analysis of a ternary protein-RNA complex

    International Nuclear Information System (INIS)

    Many processes in the regulation of gene expression and signaling involve the formation of protein complexes involving multi-domain proteins. Individual domains that mediate protein-protein and protein-nucleic acid interactions are typically connected by flexible linkers, which contribute to conformational dynamics and enable the formation of complexes with distinct binding partners. Solution techniques are therefore required for structural analysis and to characterize potential conformational dynamics. Nuclear magnetic resonance spectroscopy (NMR) provides such information but often only sparse data are obtained with increasing molecular weight of the complexes. It is therefore beneficial to combine NMR data with additional structural restraints from complementary solution techniques. Small angle X-ray/neutron scattering (SAXS/SANS) data can be efficiently combined with NMR-derived information, either for validation or by providing additional restraints for structural analysis. Here, we show that the combination of SAXS and SANS data can help to refine structural models obtained from data-driven docking using HADDOCK based on sparse NMR data. The approach is demonstrated with the ternary protein-protein-RNA complex involving two RNA recognition motif (RRM) domains of Sex-lethal, the N-terminal cold shock domain of Upstream-to-N-Ras, and msl-2 mRNA. Based on chemical shift perturbations we have mapped protein-protein and protein-RNA interfaces and complemented this NMR-derived information with SAXS data, as well as SANS measurements on subunit-selectively deuterated samples of the ternary complex. Our results show that, while the use of SAXS data is beneficial, the additional combination with contrast variation in SANS data resolves remaining ambiguities and improves the docking based on chemical shift perturbations of the ternary protein-RNA complex.

  12. Combining NMR and small angle X-ray and neutron scattering in the structural analysis of a ternary protein-RNA complex

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Janosch; Wang, Iren; Sonntag, Miriam [Institute of Structural Biology, Helmholtz Zentrum Muenchen (Germany); Gabel, Frank [Extremophiles and Large Molecular Assemblies Group (ELMA), Institut de Biologie Structurale (IBS) CEA-CNRS-UJF (France); Sattler, Michael, E-mail: sattler@helmholtz-muenchen.de [Institute of Structural Biology, Helmholtz Zentrum Muenchen (Germany)

    2013-05-15

    Many processes in the regulation of gene expression and signaling involve the formation of protein complexes involving multi-domain proteins. Individual domains that mediate protein-protein and protein-nucleic acid interactions are typically connected by flexible linkers, which contribute to conformational dynamics and enable the formation of complexes with distinct binding partners. Solution techniques are therefore required for structural analysis and to characterize potential conformational dynamics. Nuclear magnetic resonance spectroscopy (NMR) provides such information but often only sparse data are obtained with increasing molecular weight of the complexes. It is therefore beneficial to combine NMR data with additional structural restraints from complementary solution techniques. Small angle X-ray/neutron scattering (SAXS/SANS) data can be efficiently combined with NMR-derived information, either for validation or by providing additional restraints for structural analysis. Here, we show that the combination of SAXS and SANS data can help to refine structural models obtained from data-driven docking using HADDOCK based on sparse NMR data. The approach is demonstrated with the ternary protein-protein-RNA complex involving two RNA recognition motif (RRM) domains of Sex-lethal, the N-terminal cold shock domain of Upstream-to-N-Ras, and msl-2 mRNA. Based on chemical shift perturbations we have mapped protein-protein and protein-RNA interfaces and complemented this NMR-derived information with SAXS data, as well as SANS measurements on subunit-selectively deuterated samples of the ternary complex. Our results show that, while the use of SAXS data is beneficial, the additional combination with contrast variation in SANS data resolves remaining ambiguities and improves the docking based on chemical shift perturbations of the ternary protein-RNA complex.

  13. Evolution process of regular structure in isothermal crystallization phenomena of crystalline polymers viewed from synchrotron small- and wide-angle x-ray scatterings and vibrational spectroscopy

    International Nuclear Information System (INIS)

    The evolution processes of regular structure in isothermal crystallization phenomena of crystalline polymers have been investigated from the viewpoints of molecular level, crystal lattice, and higher-order structure on the basis of time-dependent infrared spectral data and synchrotron small- (SAXS) and wide-angle X-ray scattering (WAXD) data. The polymers treated here were isotactic polypropylene (iPP), nylon 10/10 and polyoxymethylene (POM). In the case of iPP, the formation and growing processes of regular helical segments in the molten state are described by utilizing the concept of critical sequential length for infrared bands. Combination of these spectroscopic data with the SAXS and WAXD data clarifies the formation process of domains consisting of regular helical segments, the increment of correlation of neighboring domains, and the development of stacked lamellar structure, during which the remarkable growth of crystal lattices consisting of regular helices occurs in parallel. In the case of nylon 10/10, weak hydrogen bonds are formed between amide groups even in the molten state. Once the isothermal crystallization starts to occur, these more-or-less correlated domains built up by the hydrogen bonds are formed followed by the formation of crystal lattices consisting of relatively regular methylene segments. Such growth is quite different from the case of iPP crystallization. The study of POM is based on the observation of infrared bands intrinsic to the folded chain crystals (FCC) and extended chain crystals (ECC). From the time-resolved measurements of these infrared bands as well as the SAXS and WAXD in the isothermal crystallization process of POM, we clarified that the lamellar structure of FCC morphology is formed at first. Then some new lamellae are formed in between these original lamellae, resulting in the formation of ECC parts in which the regular helices pass through the several neighboring lamellae as taut tie chains. (author)

  14. New insights into nucleation. Pressure trace measurements and the first small angle X-ray scattering experiments in a supersonic laval nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, D.

    2007-07-01

    Homogeneous nucleation rates of the n-alcohols and the n-alkanes have been determined by combining information from two sets of supersonic Laval nozzle expansion experiments under identical conditions. The nucleation rates J=N/{delta}t{sub Jmax} for the n-alcohols are in the range of 1.10{sup 17}Angle X-ray Scattering experiments are conducted to determine the particle number density for both substance classes. Particle number densities in the range of 1.10{sup 12}scattering spectrum, information on the

  15. Preliminary examination of X-ray scattering from human tissues

    International Nuclear Information System (INIS)

    Small angle X-ray scattering (SAXS) and wide angle x-ray scattering (WAXS) patterns have been recorded from different human soft tissues using x-ray synchrotron radiation. Pathological colon and breast and normal kidney and lung tissues show SAXS peaks at q-values equal to 0.29 nm-1 and 0.48 nm-l (d = 21.7 nm and d =13.1 nm) which are the 3 rd and 5 h order Bragg reflection of collagen. The diffraction is particularly intense in the meridional direction indicating some fibrillar alignment. In contrast, the normal tissue of brain, liver and heart shows diffuse scatter with little evidence of ordered collagen. The wide-angle coherent scattering from normal human tissues of brain, lung, kidney, and breast is typical of that for amorphous materials. The scatter of the healthy adipose breast tissue shows a sharp peak at momentum transfer 1.2 nm-1 (d = 0.417 nm). The data of the other tissues appears to consist of 2 broad scattering maxima at 1.2 nin-1 and 1.7 nin-1 (d = 0.294 run). The two scattering regimes succeed in differentiating between the two major components of breast tissue, collagen and adipose tissue. The results of this study suggest that the soft tissues may have scattering patterns that are characteristics for the particular tissue types and tissue disease state. These results indicate that it may be possible use the coherent scattering as a diagnostic tool

  16. Quantification of void network architectures of suspension plasma-sprayed (SPS) yttria-stabilized zirconia (YSZ) coatings using Ultra-small-angle X-ray scattering (USAXS)

    International Nuclear Information System (INIS)

    Suspension plasma spraying (SPS) is able to process a stabilized suspension of nanometer-sized feedstock particles to form thin (from 20 to 100 μm) coatings with unique microstructures. The void (pore) network structure of these ceramic coatings is challenging to characterize and quantify using commonly used techniques due to small sizes involved. Nevertheless, the discrimination of these pores in terms of their size and shape distribution, anisotropy, specific surface area, etc., is critical for the understanding of processing, microstructure, and properties relationships. We will show that one of suitable combinations of techniques providing sufficient detail is ultra-small-angle X-ray scattering (USAXS) and helium pycnometry, combined with scanning electron microscopy (SEM). Yttria-partially stabilized zirconia (YSZ) coatings were manufactured by plasma processing of suspension of particles with average diameter of ∼50 nm. Several sets of spray parameters (plasma gas mixture, spray distance, electric arc intensity, etc.) were used to generate plasma jets with different mass enthalpies and coefficients of thermal transfer and different heat fluxes transferred to the substrate. Free-standing coatings were studied as-sprayed and annealed at 800 and 1100 deg. C for 10 and 100 h (non-constrained sintering). Results indicate that the SPS coatings exhibit nanosized pore microstructure: average void size was about the same size scale as the feedstock size; i.e., nanometer sizes with multimodal void size distribution. About 80% of the pores (by number) exhibited characteristic dimensions smaller than 30 nm. Total void content of as-sprayed SPS coatings varies between 13% and 20%. Most of the voids were found to be opened with only between one-tenth to one-third of voids volume being inaccessible by intrusion (not connected to either surface). During annealing, even at temperatures as low than 800 deg. C, the microstructure transformed: while the total void content did

  17. A small-angle X-ray scattering study of the effect of chain architecture on the shear-induced crystallization of branched and linear poly(ethylene terephthalate)

    OpenAIRE

    Hanley, T.; Sutton, D.; Heeley, E; Moad, G.; KNOTT, R.

    2007-01-01

    The synchrotron-based small-angle X-ray scattering (SAXS) technique was used to investigate the shear-induced crystallization kinetics of branched/unbranched poly(ethylene terephthalate) (PET). Reactive extrusion of bottle-grade PET with the branching and chain-extension agents pyromellitic dianhydride and pentaerythritol results in enhanced rheological properties, such as higher melt strength and higher viscosity. In this study, six samples of PET were investigated: linear PET [intrinsic vis...

  18. Watching nanoparticles form: an in situ (small-/wide-angle X-ray scattering/total scattering) study of the growth of yttria-stabilised zirconia in supercritical fluids.

    Science.gov (United States)

    Tyrsted, Christoffer; Pauw, Brian Richard; Jensen, Kirsten Marie Ørnsbjerg; Becker, Jacob; Christensen, Mogens; Iversen, Bo Brummerstedt

    2012-04-27

    Understanding nanoparticle-formation reactions requires multi-technique in situ characterisation, since no single characterisation technique provides adequate information. Here, the first combined small-angle X-ray scattering (SAXS)/wide-angle X-ray scattering (WAXS)/total-scattering study of nanoparticle formation is presented. We report on the formation and growth of yttria-stabilised zirconia (YSZ) under the extreme conditions of supercritical methanol for particles with Y(2)O(3) equivalent molar fractions of 0, 4, 8, 12 and 25 %. Simultaneous in situ SAXS and WAXS reveals a quick formation (seconds) of sub-nanometre amorphous material forming larger agglomerates with subsequent slow crystallisation (minutes) into nanocrystallites. The amount of yttria dopant is shown to strongly affect the crystallite size and unit-cell dimensions. At yttria-doping levels larger than 8 %, which is known to be the stoichiometry with maximum ionic conductivity, the strain on the crystal lattice is significantly increased. Time-resolved nanoparticle size distributions are calculated based on whole-powder-pattern modelling of the WAXS data, which reveals that concurrent with increasing average particle sizes, a broadening of the particle-size distributions occur. In situ total scattering provides structural insight into the sub-nanometre amorphous phase prior to crystallite growth, and the data reveal an atomic rearrangement from six-coordinated zirconium atoms in the initial amorphous clusters to eight-coordinated zirconia atoms in stable crystallites. Representative samples prepared ex situ and investigated by transmission electron microscopy confirm a transformation from an amorphous material to crystalline nanoparticles upon increased synthesis duration. PMID:22447391

  19. Edible oil structures at low and intermediate concentrations. II. Ultra-small angle X-ray scattering of in situ tristearin solids in triolein

    Energy Technology Data Exchange (ETDEWEB)

    Peyronel, Fernanda; Marangoni, Alejandro G. [Food Science Department, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Ilavsky, Jan [Advanced Photon Source, Argonne National Laboratory, 9700S Cass Ave., Bldg. 434D, Argonne, Illinois 60439 (United States); Mazzanti, Gianfranco [Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Pink, David A. [Food Science Department, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Physics Department, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5 (Canada)

    2013-12-21

    Ultra-small angle X-ray scattering has been used for the first time to elucidate, in situ, the aggregation structure of a model edible oil system. The three-dimensional nano- to micro-structure of tristearin solid particles in triolein solvent was investigated using 5, 10, 15, and 20% solids. Three different sample preparation procedures were investigated: two slow cooling rates of 0.5°/min, case 1 (22 days of storage at room temperature) and case 2 (no storage), and one fast cooling of 30°/min, case 3 (no storage). The length scale investigated, by using the Bonse-Hart camera at beamline ID-15D at the Advanced Photon Source, Argonne National Laboratory, covered the range from 300 Å to 10 μm. The unified fit and the Guinier-Porod models in the Irena software were used to fit the data. The former was used to fit 3 structural levels. Level 1 structures showed that the primary scatterers were essentially 2-dimensional objects for the three cases. The scatterers possessed lateral dimensions between 1000 and 4300 Å. This is consistent with the sizes of crystalline nanoplatelets present which were observed using cryo-TEM. Level 2 structures were aggregates possessing radii of gyration, R{sub g2} between 1800 Å and 12000 Å and fractal dimensions of either D{sub 2}=1 for case 3 or 1.8≤D{sub 2}≤2.1 for case 1 and case 2. D{sub 2} = 1 is consistent with unaggregated 1-dimensional objects. 1.8 ≤ D{sub 2} ≤ 2.1 is consistent with these 1-dimensional objects (below) forming structures characteristic of diffusion or reaction limited cluster-cluster aggregation. Level 3 structures showed that the spatial distribution of the level 2 structures was uniform, on the average, for case 1, with fractal dimension D{sub 3}≈3 while for case 2 and case 3 the fractal dimension was D{sub 3}≈2.2, which suggested that the large-scale distribution had not come to equilibrium. The Guinier-Porod model showed that the structures giving rise to the aggregates

  20. Dimyristoylphosphatidylcholine/C16 : 0-ceramide binary liposomes studied by differential scanning calorimetry and wide- and small-angle X-ray scattering

    DEFF Research Database (Denmark)

    Holopainen, J.M.; Lemmich, J.; Richter, F.; Mouritsen, O.G.; Rapp, G.; Kinnunen, P.K.J.

    2000-01-01

    hydrated binary membranes composed of dimyristoylphosphatidylcholine (DMPC) and N-palmitoyl-ceramide (C16:0-ceramide, up to a mole fraction X-cer = 0.35) were resolved in further detail by high-sensitivity differential scanning calorimetry (DSC) and x-ray diffraction. Both methods reveal very strong...... studied compositions there is an endotherm in the region close to the T-m for DMPC. At X-cer greater than or equal to 0.03 a second endotherm is evident at higher temperatures, starting at 32.1 degrees C and reaching 54.6 degrees C at X-cer = 0.30. X-ray small-angle reflection heating scans reveal a...... lamellar phase within the temperature range of 15-60 degrees C, regardless of composition. The pretransition is observed up to X-cer < 0.18, together with an increase in T-p. In the gel phase the lamellar repeat distance d increases from similar to 61 Angstrom at X-cer = 0.03, to 67 Angstrom at X-cer = 0...

  1. Incoherent x-ray scattering in single molecule imaging

    CERN Document Server

    Slowik, Jan Malte; Dixit, Gopal; Jurek, Zoltan; Santra, Robin

    2014-01-01

    Imaging of the structure of single proteins or other biomolecules with atomic resolution would be enormously beneficial to structural biology. X-ray free-electron lasers generate highly intense and ultrashort x-ray pulses, providing a route towards imaging of single molecules with atomic resolution. The information on molecular structure is encoded in the coherent x-ray scattering signal. In contrast to crystallography there are no Bragg reflections in single molecule imaging, which means the coherent scattering is not enhanced. Consequently, a background signal from incoherent scattering deteriorates the quality of the coherent scattering signal. This background signal cannot be easily eliminated because the spectrum of incoherently scattered photons cannot be resolved by usual scattering detectors. We present an ab initio study of incoherent x-ray scattering from individual carbon atoms, including the electronic radiation damage caused by a highly intense x-ray pulse. We find that the coherent scattering pa...

  2. Resonant Raman scattering of x rays: Evidence for K-M scattering

    International Nuclear Information System (INIS)

    Resonant Raman x-ray scattering on molybdenum was studied using a Mo-anode x-ray tube and a LiF crystal monochromator. Beside the usual resonant Raman peak corresponding to the fluorescent Kα lines, another peak with a smaller energy loss was found. It is attributed to resonant Raman scattering with a final-state M-shell vacancy corresponding to the fluorescent Kβ lines. Both contributions are shown to be independent of the scattering angle. Absolute cross sections have been determined and compared with theoretical predictions

  3. Resonant Raman scattering of x rays: evidence for K--M scattering

    International Nuclear Information System (INIS)

    Resonant Raman x-ray scattering on molybdenum was studied using a Mo-anode x-ray tube and a LiF crystal monochromator. Beside the usual resonant Raman peak corresponding to the fluorescent Kα lines another peak with a smaller energy loss was found. It is attributed to resonant Raman scattering with a final state M-shell vacancy corresponding to the fluorescent Kβ lines. Both contributions are shown to be independent of the scattering angle. Absolute cross sections were determined and compared with theoretical predictions. 9 references

  4. X-ray Photoelectron Spectroscopy (XPS), Rutherford Back Scattering (RBS) studies

    Science.gov (United States)

    Neely, W. C.; Bozak, M. J.; Williams, J. R.

    1993-01-01

    X-ray photoelectron spectroscopy (XPS), Rutherford Back Scattering (RBS) studies of each of sample received were completed. Since low angle X-ray could not be performed because of instrumentation problems, Auger spectrometry was employed instead. The results of these measurements for each of the samples is discussed in turn.

  5. Fast sampling model for X-ray Rayleigh scattering

    CERN Document Server

    Grichine, V M

    2013-01-01

    A simple model for X-ray Rayleigh scattering is discussed in terms of the process total cross-section and the angular distribution of scattered X-ray photons. Comparisons with other calculations and experimental data are presented. The model is optimized for the simulation of X-ray tracking inside experimental setups with complex geometry where performance and memory volume are issues to be optimized. (C) 2013 Elsevier B.V. All rights reserved.

  6. Nanobeam X-ray scattering probing matter at the nanoscale

    CERN Document Server

    Stangl, Julian; Chamard, Virginie; Carbone, Dina

    2013-01-01

    A comprehensive overview of the possibilities and potential of X-ray scattering using nanofocused beams for probing matter at the nanoscale, including guidance on the design of nanobeam experiments. The monograph discusses various sources, including free electron lasers, synchrotron radiation and other portable and non-portable X-ray sources.For scientists using synchrotron radiation or students and scientists with a background in X-ray scattering methods in general.

  7. High energy-resolution inelastic X-ray scattering

    International Nuclear Information System (INIS)

    A brief review is presented of various aspects of high energy-resolution inelastic X-ray scattering based on synchrotron sources. We show what kinematical advantages are provided by the photon probe and propose mirror and monochromator designs to achieve an optically efficient beam line for inelastic X-ray scattering

  8. Proposal of a crossed Bonse-Hart type camera at E.S.R.F. for very high resolution X-Ray diffraction and very low angle scattering

    International Nuclear Information System (INIS)

    We propose a crossed Bonse-Hart diffractometer, unique in it's conception, optimised for the measurement of scattered intensity very near from the direct beam and for the study of the lineshape from crystals, colloidal crystals and liquid crystals. The resolution and the dynamic of a high resolution apparatus are conventionnaly defined as the ratio R between the incident flux at 2θ=0 and the remaining flux at 2θ=30 min of arc. None of the apparatus programmed at the European Synchrotron Radiation Facility (ESRF) is optimised in order to get the maximum ratio R. We propose a camera which might allow to obtain the best rejection ratio of parasitic light in the world. The 4 circles diffractometer carrying the sample is placed after a monochromator composed of several channel cut crystals. The assembly of crossed crystals ensures the parallelism of the incident beam along the horizontal and vertical directions. The analysis is performed by a 5 reflections channel cut crystal associated with a CCD linear multidetector. The sensitivity of this apparatus for samples of low contrast or diluted samples is not reached onto any existing X-ray camera: a ratio larger than 109 is waited between the direct beam intensity and that of the parasitic light for a q value of 0.001 A-1. This crossed Bonse-Hart diffractometer will allow measurements for momentum transfers as low as q=0.0001 A-1

  9. X-ray Thomson Scattering using the Hybrid X-pinch X-ray Source

    Science.gov (United States)

    Hoyt, Cad; Pikuz, Sergei; Shelkovenko, Tania; Hammer, Dave

    2013-10-01

    Stringent photometric and bandwidth requirements have historically relegated X-ray Thomson scattering (XRTS) probe sources to high energy laser plasma sources or free electron lasers. Standard x-pinch configurations in which two or more fine wires cross and subtend an angle of about 30° forming an ``X'' between the anode and cathode of a pulsed power generatorcan produce extremely bright, subnanosecond bursts of continuum and line radiation from micron-scale sources. The hybrid x-pinch is a new configuration based on conical W-Cu alloy electrodes with a short 1-2 mm gap that is bridged by a fine wire resulting in an easier to load setup with improved performance characteristics. We explore the possibility of utilizing the hybid x-pinch as a novel XRTS probe source by examining certain spectral and temporal attributes of a range of materials in a hybrid x-pinch configuration on the XP (500 kA, 50 ns) and COBRA(1MA, 100ns) pulsed power generators. We find that a Ti hybrid x-pinch produces >1012 photons/sr in Ti He-alpha radiation and satisfies the noncollective scattering bandwidth requirement. Measurements of photon fluence, bandwidth and applicability to the relevant scattering regime and initial scattering results will be presented.

  10. Quantum effets in nonresonant X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Slowik, Jan Malte

    2015-11-15

    Due to their versatile properties, X rays are a unique tool to investigate the structure and dynamics of matter. X-ray scattering is the fundamental principle of many imaging techniques. Examples are X-ray crystallography, which recently celebrated one hundred years and is currently the leading method in structure determination of proteins, as well as X-ray phase contrast imaging (PCI), which is an imaging technique with countless applications in biology, medicine, etc. The technological development of X-ray free electron lasers (XFEL) has brought X-ray imaging at the edge of a new scientific revolution. XFELs offer ultrashort X-ray pulses with unprecedented high X-ray fluence and excellent spatial coherence properties. These properties make them an outstanding radiation source for X-ray scattering experiments, providing ultrafast temporal resolution as well as atomic spatial resolution. However, the radiation-matter interaction in XFEL experiments also advances into a novel regime. This demands a sound theoretical fundament to describe and explore the new experimental possibilities. This dissertation is dedicated to the theoretical study of nonresonant X-ray scattering. As the first topic, I consider the near-field imaging by propagation based X-ray phase contrast imaging (PCI). I devise a novel theory of PCI, in which radiation and matter are quantized. Remarkably, the crucial interference term automatically excludes contributions from inelastic scattering. This explains the success of the classical description thus far. The second topic of the thesis is the X-ray imaging of coherent electronic motion, where quantum effects become particularly apparent. The electron density of coherent electronic wave packets - important in charge transfer and bond breaking - varies in time, typically on femto- or attosecond time scales. In the near future, XFELs are envisaged to provide attosecond X-ray pulses, opening the possibility for time-resolved ultrafast X-ray scattering

  11. Quantum effets in nonresonant X-ray scattering

    International Nuclear Information System (INIS)

    Due to their versatile properties, X rays are a unique tool to investigate the structure and dynamics of matter. X-ray scattering is the fundamental principle of many imaging techniques. Examples are X-ray crystallography, which recently celebrated one hundred years and is currently the leading method in structure determination of proteins, as well as X-ray phase contrast imaging (PCI), which is an imaging technique with countless applications in biology, medicine, etc. The technological development of X-ray free electron lasers (XFEL) has brought X-ray imaging at the edge of a new scientific revolution. XFELs offer ultrashort X-ray pulses with unprecedented high X-ray fluence and excellent spatial coherence properties. These properties make them an outstanding radiation source for X-ray scattering experiments, providing ultrafast temporal resolution as well as atomic spatial resolution. However, the radiation-matter interaction in XFEL experiments also advances into a novel regime. This demands a sound theoretical fundament to describe and explore the new experimental possibilities. This dissertation is dedicated to the theoretical study of nonresonant X-ray scattering. As the first topic, I consider the near-field imaging by propagation based X-ray phase contrast imaging (PCI). I devise a novel theory of PCI, in which radiation and matter are quantized. Remarkably, the crucial interference term automatically excludes contributions from inelastic scattering. This explains the success of the classical description thus far. The second topic of the thesis is the X-ray imaging of coherent electronic motion, where quantum effects become particularly apparent. The electron density of coherent electronic wave packets - important in charge transfer and bond breaking - varies in time, typically on femto- or attosecond time scales. In the near future, XFELs are envisaged to provide attosecond X-ray pulses, opening the possibility for time-resolved ultrafast X-ray scattering

  12. X-Ray Absorption and Scattering by Interstellar Grains

    CERN Document Server

    Hoffman, John A

    2015-01-01

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the following false assumptions: (1) the grains are "optically thin" at the observed X-ray wavelengths, and (2) scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. An open...

  13. Magnetic X-Ray Scattering with Synchrotron Radiation

    DEFF Research Database (Denmark)

    Moncton, D. E.; Gibbs, D.; Bohr, Jakob

    1986-01-01

    With the availability of high-brilliance synchrotron radiation from multiple wigglers, magnetic X-ray scattering has become a powerful new probe of magnetic structure and phase transitions. Similar to the well-established magnetic neutron scattering technique, magnetic X-ray scattering methods have...... many complementary advantages. A brief review is presented of the history of magnetic X-ray scattering as well as recent results obtained in studies of the rare-earth magnet holmium with emphasis on instrumentational aspects. In particular, the development of a simple polarization analyzer to...

  14. Micro scale distribution of nanoparticles studied with X-ray near-field scattering

    International Nuclear Information System (INIS)

    In the present study, we investigate the micron-scale inhomogeneous distribution of silica nanoparticles with X-ray near-field scattering. This technique allows us to measure structures of soft matters on a large size scale that is complementary to conventional ultra-small-angle X-ray scattering and/or X-ray imaging. We applied the technique to the observation of the anisotropic structural distribution of silica aggregates in uniaxially stretched rubber. The scattering images show anisotropic butterfly patterns that correspond to the inhomogeneous density distribution of silica aggregates. The spatial distribution of the inhomogeneity in the stretched rubber cab also be determined by this technique. (author)

  15. X-RAY SCATTERING MEASUREMENTS OF SILICON OXIDES ON SILICON

    OpenAIRE

    Cowley, R; Lucas, C.

    1989-01-01

    Measurements have been made of the X-ray reflectivity and the X-ray scattering in the tails of the Bragg reflections from samples of silicon wafers with oxide layers produced by varying techniques and thicknesses. The measurements were performed by using a triple crystal spectrometer on a rotating anode X-ray source. The advantages of using a triple crystal spectrometer for these measurements are high resolution even when the surfaces are not macroscopically flat and a clear separation of the...

  16. Probing the surface microstructure of layer-by-layer self-assembly chitosan/poly(l-glutamic acid) multilayers: A grazing-incidence small-angle X-ray scattering study.

    Science.gov (United States)

    Zhao, Nie; Yang, Chunming; Wang, Yuzhu; Zhao, Binyu; Bian, Fenggang; Li, Xiuhong; Wang, Jie

    2016-01-01

    This study characterized the surface structure of layer-by-layer self-assembly chitosan/poly(L-glutamic acid) multilayers through grazing-incidence small-angle X-ray scattering (GISAXS), X-ray reflectivity (XRR), and atomic force microscopy (AFM). A weakly long-period ordered structure along the in-plane direction was firstly observed in the polyelectrolyte multilayer by the GISAXS technique. This structure can be attributed to the specific domains on the film surface. In the domain, nanodroplets that were formed by polyelectrolyte molecules were orderly arranged along the free surface of the films. This ordered structure gradually disappeared with the increasing bilayer number because of the complex merging behavior of nanodroplets into large islands. Furthermore, resonant diffuse scattering became evident in the GISAXS patterns as the number of bilayers in the polyelectrolyte multilayer was increased. Notably, the lateral cutoff length of resonant diffuse scattering for these polyelectrolyte films was comparable with the long-period value of the ordered nanodroplets in the polyelectrolyte multilayer. Therefore, the nanodroplets could be considered as a basic transmission unit for structure propagation from the inner interface to the film surface. It suggests that the surface structure with length scale larger than the size of nanodroplets was partially complicated from the interface structure near the substrate, but surface structure smaller than the cutoff length was mainly depended on the conformation of nanodroplets. PMID:26478320

  17. X-ray Raman scattering with Bragg diffraction in a La-based superlattice

    OpenAIRE

    André, Jean-Michel; Jonnard, Philippe; Bonnelle, Christiane; O. Filatova, E.; Michaelsen, C.; Wiesmann, J

    2005-01-01

    11 pages The non-dispersed soft x-ray emission from a La/B4C periodic multilayer irradiated by monochromatic x-rays has been measured as a function of the incident photon energy in the 125-200 eV range for different scattering angles. We have observed a scattered intensity peak at incident energies which shift towards the low-energy side as the value of the scattering angle increases. These observations are interpreted as Raman scattering by the 5p level of lanthanum assisted by Bragg diff...

  18. Anomalous x-ray scattering from terbium-labeled parvalbumin in solution.

    OpenAIRE

    R. C. Miake-Lye; Doniach, S.; Hodgson, K O

    1983-01-01

    We have used anomalous small-angle x-ray scattering as a structural probe for solutions of rabbit parvalbumin labeled with terbium. This technique makes use of the large changes in the terbium scattering factor that occur when the x-ray energy is tuned around an L3 absorption edge of this heavy-atom label. These changes in scattering result in changes in the small-angle scattering curve of the labeled protein as a whole, which can then be analyzed to derive structural information concerning t...

  19. Investigations of DNA-netropsin and DNA-protein interactions by X-ray scattering

    International Nuclear Information System (INIS)

    Comparative structure investigations were performed on DNA in solution, on soluble DNA-netropsin complexes, on solutions of chromatin core particles, on condensed DNA-polylysine complexes, and on condensed DNA-H1 (sea urchin) complexes. The mean turn angles between the DNA base pairs were calculated from the intermediate angle X-ray scattering. These turn angles are specifically defined by the cation in the complex. From the small angle X-ray scattering data the distance of netropsin from the DNA helix axis as well as the supermolecular order within the condensates including the shortest distance between neighbouring DNA segments were determined. (author)

  20. A CdZnTe array for the detection of explosives in baggage by energy-dispersive X-ray diffraction signatures at multiple scatter angles

    Science.gov (United States)

    Malden, Catharine H.; Speller, Robert. D.

    2000-07-01

    CdZnTe detectors were used to collect energy-dispersive diffraction spectra at a range of scatter angles, from sheets of explosives hidden in baggage. It is shown that the combined information from these `signatures' can be used to determine whether an explosive sample is present or not. The geometrical configuration of the collimation and the position of the baggage within the scanner must be taken into careful consideration when optimising the capabilities of such a system. The CdZnTe array lends itself well to the detection of explosives in baggage since multiple signals may be collected simultaneously providing more rapid detection than achieved using a single detector.

  1. A CdZnTe array for the detection of explosives in baggage by energy-dispersive X-ray diffraction signatures at multiple scatter angles

    CERN Document Server

    Malden, C H

    2000-01-01

    CdZnTe detectors were used to collect energy-dispersive diffraction spectra at a range of scatter angles, from sheets of explosives hidden in baggage. It is shown that the combined information from these 'signatures' can be used to determine whether an explosive sample is present or not. The geometrical configuration of the collimation and the position of the baggage within the scanner must be taken into careful consideration when optimising the capabilities of such a system. The CdZnTe array lends itself well to the detection of explosives in baggage since multiple signals may be collected simultaneously providing more rapid detection than achieved using a single detector.

  2. X-ray spectrometer for observation of nonlinear Compton scattering

    International Nuclear Information System (INIS)

    An x-ray spectrometer, which consists of a multilayer device and a two-dimensional position sensitive detector, is designed for measurement of the x-ray energy spectrum and angular distribution from the nonlinear Compton scattering of 60 MeV electron and high power CO2 laser beams provided by a user facility at Brookhaven National Laboratory. A Prototype of the spectrometer has constructed and tested using isotropic 8 keV (Cu Kα) x-rays from a sealed x-ray tube

  3. Calculation of x-ray scattering patterns from nanocrystals at high x-ray intensity.

    Science.gov (United States)

    Abdullah, Malik Muhammad; Jurek, Zoltan; Son, Sang-Kil; Santra, Robin

    2016-09-01

    We present a generalized method to describe the x-ray scattering intensity of the Bragg spots in a diffraction pattern from nanocrystals exposed to intense x-ray pulses. Our method involves the subdivision of a crystal into smaller units. In order to calculate the dynamics within every unit, we employ a Monte-Carlo-molecular dynamics-ab-initio hybrid framework using real space periodic boundary conditions. By combining all the units, we simulate the diffraction pattern of a crystal larger than the transverse x-ray beam profile, a situation commonly encountered in femtosecond nanocrystallography experiments with focused x-ray free-electron laser radiation. Radiation damage is not spatially uniform and depends on the fluence associated with each specific region inside the crystal. To investigate the effects of uniform and non-uniform fluence distribution, we have used two different spatial beam profiles, Gaussian and flattop. PMID:27478859

  4. X-ray scattering measurements from thin-foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; BYRNAK, BP; Hornstrup, Allan;

    1992-01-01

    Thin foil X-ray mirrors are to be used as the reflecting elements in the telescopes of the X-ray satellites Spectrum-X-Gamma (SRG) and ASTRO-D. High resolution X-ray scattering measurements from the Au coated and dip-lacquered Al foils are presented. These were obtained from SRG mirrors positioned...... in a test quadrant of the telescope structure and from ASTRO-D foils held in a simple fixture. The X-ray data is compared with laser data and other surface structure data such as STM, atomic force microscopy (AFM), TEM, and electron micrography. The data obtained at Cu K-alpha(1), (8.05 keV) from all...

  5. Calculation of x-ray scattering patterns from nanocrystals at high x-ray intensity

    CERN Document Server

    Abdullah, Malik Muhammad; Son, Sang-Kil; Santra, Robin

    2016-01-01

    We present a generalized method to describe the x-ray scattering intensity of the Bragg spots in a diffraction pattern from nanocrystals exposed to intense x-ray pulses. Our method involves the subdivision of a crystal into smaller units. In order to calculate the dynamics within every unit we employ a Monte-Carlo (MC)-molecular dynamics (MD)-ab-initio hybrid framework using real space periodic boundary conditions. By combining all the units we simulate the diffraction pattern of a crystal larger than the transverse x-ray beam profile, a situation commonly encountered in femtosecond nanocrystallography experiments with focused x-ray free-electron laser radiation. Radiation damage is not spatially uniform and depends on the fluence associated with each specific region inside the crystal. To investigate the effects of uniform and non-uniform fluence distribution we have used two different spatial beam profiles, gaussian and flattop.

  6. X-ray scattering on layered silicates in polymeric matrices

    International Nuclear Information System (INIS)

    Nanocomposites based on polymeric matrices have been studied via small angle X-ray scattering with respect to the dispersion and the orientation of filler particles. Both natural and synthetic layered silicates were used as filler particles. For this purpose, a software was developed which allows to determine the size and the size distribution of nanoparticles with various geometries by analyzing small angle X-ray scattering data. In contrast to conventional software, the one developed and used here is based on free distribution functions, e.g. no particular size distribution is pre-supposed. By example of three different reference systems it could be shown that the software works reliably and accurately. Using the computer-based evaluation of scattering data, significantly more information can be obtained about the samples compared to classical analytical and numerical evaluation schemes. By means of this software, the inner structure of the microgel PVCUAAEM (Poly(N-Vinylcaprolactam- co-acetoacetoxyethylmethacrylat)) filled with a synthetic layered silicate was investigated as a function of temperature. For this temperature-sensitive microgelnanocomposite, the dispersion of the silicate layers was determined and a structural model was developed. It could be shown that with increasing temperature, the layers move closer together and, depending on the amount of filler content, the filler particles drift to the surface of the nanocomposites. Additionally, for higher filler contents the charged layered silicate prevents the typical reduction of the particle radius, which is otherwise observed with increasing temperature. For polyethylene filled with natural layered silicate, it could be shown that small angle X-ray scattering allows the quantitative evaluation of the orientation of platelet-shaped nanoparticles in a polymeric matrix. Based on spatially resolved measurements of injection-molded tensile bars, the degree of orientation could be determined quantitatively

  7. X-ray Fluorescence Particle Size and Scattering Angle Considerations Preparatory Experiments for the Calibration and Interpretation of C1XS Data

    OpenAIRE

    Weider, S.Z.; Gow, J.; Joy, K. H.; Crawford, I. A.; Smith, D R; Holland, A. D.; Swinyard, B. M.

    2008-01-01

    ISRO’s Chandrayaan-1 mission to the Moon is due to be launched in April 2008. Part of its payload is C1XS, a compact X-ray fluorescence (XRF) spectrometer which will provide high quality elemental mapping of the lunar surface [1]. In flight, the input source (solar X-ray spectrum) will be measured by the accompanying XSM payload [2]. An ‘in-house’ IDL XRF modelling code (referred to as the ‘C1XS XRF code’ [3]), which is based on the methods of [4], will be used to convert the C1XS data from X...

  8. New resonant inelastic X-ray scattering and coherent X-ray scattering station at UE49-SGM, BESSY II

    International Nuclear Information System (INIS)

    Soft x-ray scattering techniques are powerful probes for the understanding of nano- and atomic-scale phenomena, including magnetism, atomic motion and electronic structure. New beamline UE49-SGM and experimental stations are currently under construction, dedicated to the techniques of resonant inelastic x-ray scattering (RIXS) and coherent x-ray scattering (CXS). This facility will have the unique possibility to combine high-resolution spatial information studies with high-resolution chemically- and atomically-selective spectroscopy studies for a broad range of applications.

  9. Inelastic x-ray scattering at the National Synchrotron Light

    International Nuclear Information System (INIS)

    The research program at the inelastic x-ray scattering beamline at the National Synchrotron Light Source is focused on the study of elementary excitations in condensed matter with total energy resolution on the order of 0.1 eV to 1.0 eV. Results from selected experiments are reported to demonstrate the capability of the beamline as well as the information can be obtained from inelastic x- ray scattering experiments

  10. Multiple scattering approach to X-ray absorption spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper we present the state of the art of the theoretical background needed for analyzing X-ray absorption spectra in the whole energy range. The multiple-scattering (MS) theory is presented in detail with some applications on real systems. We also describe recent progress in performing geometrical fitting of the XANES (X-ray absorption near-edge structure) energy region and beyond using a full multiple-scattering approach.

  11. Coherent x-ray scattering from an optical grating

    International Nuclear Information System (INIS)

    X-ray speckles due to scattering of partially (transverse) coherent x rays from an optical reflection grating are observed. The speckles indicate the presence of surface inhomogeneities of the grating that are otherwise undetectable with either visible laser light or transversely incoherent x-ray scattering. Qualitative analysis of the speckle patterns provide information on the surface morphology of the grating. The underlying order due to the periodicity of the grating enhances the detection of the speckles. copyright 1998 American Institute of Physics

  12. A filter based analyzer for studies of X-ray Raman scattering

    CERN Document Server

    Seidler, G T

    2001-01-01

    Non-resonant X-ray Raman scattering (XRS) with hard X-rays holds the potential for measuring local structure and local electronic properties around low-Z atoms in environments where traditional soft X-ray techniques are inapplicable. However, the small cross-section for XRS requires that experiments must simultaneously achieve high detection efficiency, large collection solid angles, and good energy resolution. We report here that a simple X-ray analyzer consisting of an absorber and a point-focusing spatial filter can be used to study some X-ray Raman near-edge features. This apparatus has greater than 10% detection efficiency, has an energy resolution of 8 eV, and can be readily extended to collection angles of more than 1 sr. We present preliminary measurements of the XRS from the nitrogen 1 s shell in pyrolitic boron nitride.

  13. Magnetic X-ray scattering from samarium

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.L. (School of Physics and Space Research, Univ. of Birmingham (United Kingdom)); Forgan, E.M. (School of Physics and Space Research, Univ. of Birmingham (United Kingdom)); Shaikh, S.J. (School of Physics and Space Research, Univ. of Birmingham (United Kingdom)); Tang, C.C. (Dept. of Physics, Univ. of Keele (United Kingdom)); Stirling, W.G. (Dept. of Physics, Univ. of Keele (United Kingdom)); Langridge, S. (Dept. of Physics, Univ. of Keele (United Kingdom)); Rollason, A.J. (Dept. of Physics, Univ. of Keele (United Kingdom)); Costa, M.M.R. (Physics Dept., Univ. de Coimbra (Portugal)); Cooper, M.J. (Dept. of Physics, Univ. of Warwick, Coventry (United Kingdom)); Zukowski, E. (Dept. of Physics, Univ. of Warwick, Coventry (United Kingdom)); Forsyth, J.B. (Dept. of Physics, Univ. of Warwick, Coventry (United Kingdom)); Fort, D. (School of Metallurgy and Materials, Univ. of Birmingham (United Kingdom))

    1993-10-01

    X-ray diffraction studies have been made of the antiferromagnetic ordering in the rare earth metal samarium, at the Synchrotron Radiation Source, Daresbury Laboratory. We have observed diffraction peaks which reflect the magnetic order on the hexagonal sites in the lattice and which are in agreement with previous neutron measurements. We have also observed the energy dependence of the resonant enhancement at both the L[sub III] and L[sub II] absorption edges of Sm. (orig.)

  14. The Dust Scattering Model Can Not Explain The Shallow X-ray Decay in GRB Afterglows

    CERN Document Server

    Shen, Rong-Feng; Kumar, Pawan; O'Brien, Paul T; Evans, Phil A

    2008-01-01

    A dust scattering model was recently proposed to explain the shallow X-ray decay (plateau) observed prevalently in Gamma-Ray Burst (GRB) early afterglows. In this model the plateau is the scattered prompt X-ray emission by the dust located close (about 10 to a few hundred pc) to the GRB site. In this paper we carefully investigate the model and find that the scattered emission undergoes strong spectral softening with time, due to the model's essential ingredient that harder X-ray photons have smaller scattering angle thus arrive earlier, while softer photons suffer larger angle scattering and arrive later. The model predicts a significant change, i.e., $\\Delta \\beta \\sim 2 - 3$, in the X-ray spectral index from the beginning of the plateau toward the end of the plateau, while the observed data shows close to zero softening during the plateau and the plateau-to-normal transition phase. The scattering model predicts a big difference between the harder X-ray light curve and the softer X-ray light curve, i.e., th...

  15. Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source

    International Nuclear Information System (INIS)

    Tsinghua Thomson Scattering X-ray Source (TTX) is the first-of-its-kind dedicated hard X-ray source in China based on the Thomson scattering between a terawatt ultrashort laser and relativistic electron beams. In this paper, we report the experimental generation and characterization of the first hard X-ray pulses (51.7 keV) via head-on collision of an 800 nm laser and 46.7 MeV electron beams. The measured yield is 1.0 × 106 per pulse with an electron bunch charge of 200 pC and laser pulse energy of 300 mJ. The angular intensity distribution and energy spectra of the X-ray pulse are measured with an electron-multiplying charge-coupled device using a CsI scintillator and silicon attenuators. These measurements agree well with theoretical and simulation predictions. An imaging test using the X-ray pulse at the TTX is also presented.

  16. X-ray scattering from periodic arrays of quantum dots

    International Nuclear Information System (INIS)

    Three-dimensional periodic arrays of self-organized quantum dots in semiconductor multilayers are investigated by high-resolution x-ray scattering. We demonstrate that the statistical parameters of the dot array can be determined directly from the scattering data without performing a numerical simulation of the scattered intensity.

  17. Superhydrophobic surfaces allow probing of exosome self organization using X-ray scattering

    Science.gov (United States)

    Accardo, Angelo; Tirinato, Luca; Altamura, Davide; Sibillano, Teresa; Giannini, Cinzia; Riekel, Christian; di Fabrizio, Enzo

    2013-02-01

    Drops of exosome dispersions from healthy epithelial colon cell line and colorectal cancer cells were dried on a superhydrophobic PMMA substrate. The residues were studied by small- and wide-angle X-ray scattering using both a synchrotron radiation micrometric beam and a high-flux table-top X-ray source. Structural differences between healthy and cancerous cells were detected in the lamellar lattices of the exosome macro-aggregates.Drops of exosome dispersions from healthy epithelial colon cell line and colorectal cancer cells were dried on a superhydrophobic PMMA substrate. The residues were studied by small- and wide-angle X-ray scattering using both a synchrotron radiation micrometric beam and a high-flux table-top X-ray source. Structural differences between healthy and cancerous cells were detected in the lamellar lattices of the exosome macro-aggregates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr34032e

  18. Determination of the size and phase composition of silver nanoparticles in a gel film of bacterial cellulose by small-angle X-ray scattering, electron diffraction, and electron microscopy

    International Nuclear Information System (INIS)

    The nanoscale structural features in a composite (gel film of Acetobacter Xylinum cellulose with adsorbed silver nanoparticles, stabilized by N-polyvinylpyrrolidone) have been investigated by small-angle X-ray scattering. The size distributions of inhomogeneities in the porous structure of the cellulose matrix and the size distributions of silver nanoparticles in the composite have been determined. It is shown that the sizes of synthesized nanoparticles correlate with the sizes of inhomogeneities in the gel film. Particles of larger size (with radii up to 100 nm) have also been found. Electron microscopy of thin cross sections of a dried composite layer showed that large particles are located on the cellulose layer surface. Electron diffraction revealed a crystal structure of silver nanoparticles in the composite.

  19. Determination of the size and phase composition of silver nanoparticles in a gel film of bacterial cellulose by small-angle X-ray scattering, electron diffraction, and electron microscopy

    Science.gov (United States)

    Volkov, V. V.; Klechkovskaya, V. V.; Shtykova, E. V.; Dembo, K. A.; Arkharova, N. A.; Ivakin, G. I.; Smyslov, R. Yu.

    2009-03-01

    The nanoscale structural features in a composite (gel film of Acetobacter Xylinum cellulose with adsorbed silver nanoparticles, stabilized by N-polyvinylpyrrolidone) have been investigated by small-angle X-ray scattering. The size distributions of inhomogeneities in the porous structure of the cellulose matrix and the size distributions of silver nanoparticles in the composite have been determined. It is shown that the sizes of synthesized nanoparticles correlate with the sizes of inhomogeneities in the gel film. Particles of larger size (with radii up to 100 nm) have also been found. Electron microscopy of thin cross sections of a dried composite layer showed that large particles are located on the cellulose layer surface. Electron diffraction revealed a crystal structure of silver nanoparticles in the composite.

  20. Determination of the size and phase composition of silver nanoparticles in a gel film of bacterial cellulose by small-angle X-ray scattering, electron diffraction, and electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, V. V.; Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru; Shtykova, E. V.; Dembo, K. A.; Arkharova, N. A.; Ivakin, G. I. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Smyslov, R. Yu. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation)

    2009-03-15

    The nanoscale structural features in a composite (gel film of Acetobacter Xylinum cellulose with adsorbed silver nanoparticles, stabilized by N-polyvinylpyrrolidone) have been investigated by small-angle X-ray scattering. The size distributions of inhomogeneities in the porous structure of the cellulose matrix and the size distributions of silver nanoparticles in the composite have been determined. It is shown that the sizes of synthesized nanoparticles correlate with the sizes of inhomogeneities in the gel film. Particles of larger size (with radii up to 100 nm) have also been found. Electron microscopy of thin cross sections of a dried composite layer showed that large particles are located on the cellulose layer surface. Electron diffraction revealed a crystal structure of silver nanoparticles in the composite.

  1. Observation of the transient rotator phase of n-hexadecane in emulsified droplets with time-resolved two-dimensional small- and wide-angle X-ray scattering

    International Nuclear Information System (INIS)

    Crystallization of n-hexadecane in emulsion droplets was studied using time-resolved two-dimensional small- and wide-angle x-ray scattering with differential scanning calorimetry (2D-SAXS-WAXS-in situ DSC) which provides information about both nano- and subnanoscale structural change. n-hexadecane in droplets reproducibly crystallized into the stable triclinic phase via a transient-rotator phase. This is in contrast with previous results that the rotator phase of n-hexadecane was observed only occasionally for bulk samples. Thus we confirmed the existence of rotator phase in n-hexadecane, which is important for the study of crystallization of soft materials. We suggest that the rotator phase at the interface of oil and water plays a precursor role for bulk crystallization. This study demonstrates that 2D-SAXS-WAXS-in situ DSC is a powerful tool for the study of a transient phase

  2. Synchrotron Small Angle X-Ray Scattering Quantitatively Detects Angstrom Level Changes in the Average Radius of Taxol-Stabilized Microtubules Decorated with the Microtubule-Associated-Protein Tau

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myung Chul; Raviv, Uri; Needleman, Daniel J; Safinya, Cyrus R [Materials Department, University of California Santa Barbara, CA 93106 (United States); Li, Youli [Materials Research Laboratory, University of California Santa Barbara, CA 93106 (United States); Miller, Herbert P; Wilson, Leslie; Feinstein, Stuart C [Molecular, Cellular, and Developmental Biology Departments, University of California Santa Barbara, CA 93106 (United States); Kim, Mahn Won, E-mail: myungchul.choi@gmail.com, E-mail: safinya@mrl.ucsb.edu [Department of Physics, KAIST, Daejeon 305-701, S. Korea (Korea, Republic of)

    2011-01-01

    With the emerging proteomics era the scientific community is beginning the daunting task of understanding the structures and functions of a large number of self-assembling proteins. Here, our study was concerned with the effect of the microtubule-associated-protein (MAP) tau on the assembled structure of taxol-stabilized microtubules. Significantly, the synchrotron small angle x-ray scattering (SAXS) technique is able to quantitatively detect angstrom level changes in the average diameter of the microtubules modeled as a simple hollow nanotube with a fixed wall thickness. We show that the electrostatic binding of MAP tau isoforms to taxol-stabilized MTs leads to a controlled increase in the average radius of microtubules with increasing coverage of tau on the MT surface. The increase in the average diameter results from an increase in the distribution of protofilament numbers in MTs upon binding of MAP tau.

  3. Superhydrophobic surfaces allow probing of exosome self organization using X-ray scattering

    KAUST Repository

    Accardo, Angelo

    2013-01-01

    Drops of exosome dispersions from healthy epithelial colon cell line and colorectal cancer cells were dried on a superhydrophobic PMMA substrate. The residues were studied by small- and wide-angle X-ray scattering using both a synchrotron radiation micrometric beam and a high-flux table-top X-ray source. Structural differences between healthy and cancerous cells were detected in the lamellar lattices of the exosome macro-aggregates. © 2013 The Royal Society of Chemistry.

  4. X-ray diffraction at Bragg angles around π/2

    International Nuclear Information System (INIS)

    X-ray diffraction at Bragg angles around π/2 is studied from the theoretical and experimental points of view. The proposed corrections to the dynamical theory in the θβ ≅ π/2 cases, has been reviewed showing the equivalence between two formalisms leading to a corrected expression for the dependence of the angular parameter y with the angle of incidence. An expression for y valid in the conventional and θ β ≅ π/2 cases has been obtained. A general expression for Bragg law and for energy resolution after a Bragg diffraction was also deduced. (author)

  5. Sub-pixel porosity revealed by x-ray scatter dark field imaging

    Science.gov (United States)

    Revol, V.; Jerjen, I.; Kottler, C.; Schütz, P.; Kaufmann, R.; Lüthi, T.; Sennhauser, U.; Straumann, U.; Urban, C.

    2011-08-01

    X-ray scatter dark field imaging based on the Talbot-Lau interferometer allows for the measurement of ultra-small angle x-ray scattering. The latter is related to the variations in the electron density in the sample at the sub- and micron-scale. Therefore, information on features of the object below the detector resolution can be revealed. In this article, it is demonstrated that scatter dark field imaging is particularly adapted to the study of a material's porosity. An interferometer, optimized for x-ray energies around 50 keV, enables the investigation of aluminum welding with conventional laboratory x-ray tubes. The results show an unprecedented contrast between the pool and the aluminum workpiece. Our conclusions are confirmed due to micro-tomographic three-dimensional reconstructions of the same object with a microscopic resolution.

  6. Coherent X-ray scattering for identification of explosives

    International Nuclear Information System (INIS)

    Coherent X-ray scattering spectra of some explosives (black powder, TNT, etc.) and some non-explosives (sugar, milk powder, coffee, paper, etc.) have been measured using polychromatic X-rays (1.2-38.2 keV) at Beijing Synchrotron Radiation Facility of IHEP Beijing. The measured peak positions of X-ray diffraction spectra can be regarded as a 'fingerprint' of the explosives. Principally, peak positions and identification techniques of diffraction spectra can be used for the identification of explosives. (authors)

  7. Workshop report on new directions in x-ray scattering

    International Nuclear Information System (INIS)

    This report is a summary of the Workshop on New Directions in X-Ray Scattering held at the Asilomar Conference Center, Pacific Grove, California, April 2-5, 1985. The report primarily consists of the edited transcript of the final review session of the workshop, in which members of a panel summarized the proceedings. It is clear that we are close to achieving an accurate theory of scattering in independent particle approximation, but for edge regions, there is need to go beyond this approach. Much of what is experimentally interesting in scattering is occurring between the photoabsorption edge and the photoelectric threshold. Applications in condensed matter and biological and chemical material studies are expanding, exploiting higher intensity sources and faster time resolution as in magnetic scattering and surface studies. Storage rings are now conventional sources, and new high-intensity beam lines are under development; the free electron laser is one of the more speculative sources. Recent work in x-ray scattering has led to advances in x-ray optics, and conversely, advances in x-ray optics have benefitted our understanding of x-ray scattering

  8. Scattered x-rays in medical diagnostics

    Science.gov (United States)

    Kumakhov, M. A.; Gamaliy, A. F.; Vasiliev, V. N.; Zaytsev, M. Y.; Zaytseva, K. V.; Markelov, A. A.; Ozerov, Yu. V.

    2005-07-01

    The VolumeScope, a prototype X-ray scanner based on Compton backscatter detection, is described. The device was designed for measurement of 3D electron density distribution of biological objects. General principles and technical parameters of the device are presented. A few test phantoms and biological objects were examined to evaluate an image quality of the device: a human forearm phantom, a CT calibration phantom and a young pig. 3D electron density distributions were reconstructed and represented as gray-scale sections and 3D surfaces of internal structures. Cartilages, bones, and other internal objects inside the pig head are well visible. Electron density contrast of bones in the objects is in qualitative agreement with real parameters of used tissue-equivalent materials. Some underestimation of the electron density was obtained in deep slices and most pronounced under the bones.

  9. Small-Angle X-ray and Neutron Scattering Study on Microphase Separation Induced by Non-Solvent in a Semi-Dilute Solution of an Ultra-High-Molecular-Weight Block Copolymer

    International Nuclear Information System (INIS)

    Full text: A block copolymer consists of immiscible different polymers covalently connected to each other and form micro domain structures such as lamellae, cylinders, spheres, gyroids, etc of the size of their own molecular size. Utilization of an ultra-high-molecular-weight block copolymer enables us to create micro domains on the order of several hundred nanometers. However, such large molecules have high viscosity due to the large number of entanglements per chain. Therefore the structures usually contain a lot of defects or distortion and are far from the equilibrated state. Here, We found a very interesting phenomenon that a microphase separation is induced by addition of a non-solvent into a semi dilute solution of an ultra-high-molecular-weight block copolymer. The solvent mixture of the common solvent and the non-solvent act as a highly selective solvent and are selectively introduced into one phase of the phase-separated state. We investigated the structures by the small-angle x-ray scattering (SAXS) technique using synchrotron radiation and the small-angle neutron scattering (SANS) technique. The results showed that micro domain structures were highly ordered and the grain size was gigantic because block copolymers in a semi dilute solution has high mobility due to the dilution effect by solvents. The SANS results showed there was not the composition fluctuation of constituent different solvent molecules in both phases. In other words, the results means the common good solvent was also selectively introduced into one phase. (author)

  10. Dense Plasma X-ray Scattering: Methods and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, S H; Lee, H J; Davis, P; Doppner, T; Falcone, R W; Fortmann, C; Hammel, B A; Kritcher, A L; Landen, O L; Lee, R W; Munro, D H; Redmer, R; Weber, S

    2009-08-19

    We have developed accurate x-ray scattering techniques to measure the physical properties of dense plasmas. Temperature and density are inferred from inelastic x-ray scattering data whose interpretation is model-independent for low to moderately coupled systems. Specifically, the spectral shape of the non-collective Compton scattering spectrum directly reflects the electron velocity distribution. In partially Fermi degenerate systems that have been investigated experimentally in laser shock-compressed beryllium, the Compton scattering spectrum provides the Fermi energy and hence the electron density. We show that forward scattering spectra that observe collective plasmon oscillations yield densities in agreement with Compton scattering. In addition, electron temperatures inferred from the dispersion of the plasmon feature are consistent with the ion temperature sensitive elastic scattering feature. Hence, theoretical models of the static ion-ion structure factor and consequently the equation of state of dense matter can be directly tested.

  11. Magnetism in heterogeneous thin film systems: Resonant X-ray scattering studies

    CERN Document Server

    Kortright, J B; Bader, S D; Hellwig, O; Marguiles, D T; Fullerton, E E

    2003-01-01

    Magnetic and chemical heterogeneity are common in a broad range of magnetic thin film systems. Emerging resonant soft X-ray scattering techniques are well suited to resolve such heterogeneity at relevant length scales. Resonant X-ray magneto-optical Kerr effect measurements laterally average over heterogeneity but can provide depth resolution in different ways, as illustrated in measurements resolving reversible and irreversible changes in different layers of exchange-spring heterostructures. Resonant small-angle scattering measures in-plane heterogeneity and can resolve magnetic and chemical scattering sources in different ways, as illustrated in measurements of granular alloy recording media.

  12. Modeling the amorphous structure of mechanically alloyed Ti{sub 50}Ni{sub 25}Cu{sub 25} using anomalous wide-angle x-ray scattering and reverse Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lima, J.C. de, E-mail: fsc1jcd@fisica.ufsc.br [Departamento de Física, Universidade Federal de Santa Catarina, Campus Universitário Trindade, S/N, C.P. 476, 88040-900 Florianópolis, Santa Catarina (Brazil); Poffo, C.M. [Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, Campus Universitário Trindade, S/N, C.P. 476, 88040-900 Florianópolis, Santa Catarina (Brazil); Departamento de Física, Universidade Federal do Amazonas, 3000 Japiim, 69077-000 Manaus, Amazonas (Brazil); Souza, S.M. [Departamento de Física, Universidade Federal do Amazonas, 3000 Japiim, 69077-000 Manaus, Amazonas (Brazil); Machado, K.D. [Departamento de Física, Centro Politécnico, Universidade Federal do Paraná, 81531-990 Curitiba, Paraná (Brazil); Trichês, D.M. [Departamento de Física, Universidade Federal do Amazonas, 3000 Japiim, 69077-000 Manaus, Amazonas (Brazil); Grandi, T.A. [Departamento de Física, Universidade Federal de Santa Catarina, Campus Universitário Trindade, S/N, C.P. 476, 88040-900 Florianópolis, Santa Catarina (Brazil); Biasi, R.S. de [Seção de Engenharia Mecânica e de Materiais, Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ (Brazil)

    2013-09-01

    An amorphous Ti{sub 50}Ni{sub 25}Cu{sub 25} alloy was produced by 19 h of mechanical alloying. Anomalous wide angle x-ray scattering data were collected at six energies and six total scattering factors were obtained. By considering the data collected at two energies close to the Ni and Cu K edges, two differential anomalous scattering factors about the Ni and Cu atoms were obtained, showing that the chemical environments around these atoms are different. Eight factors were used as input data to the reverse Monte Carlo method used to compute the partial structure factors S{sub Ti3Ti}(K), S{sub Ti–Cu}(K), S{sub Ti–Ni}(K), S{sub Cu3Cu}(K), S{sub Cu–Ni}(K) and S{sub Ni–Ni}(K) and the partial pair distribution functions G{sub Ti3Ti}(r), G{sub Ti–Cu}(r), G{sub Ti–Ni}(r), G{sub Cu3Cu}(r), G{sub Cu–Ni}(r) and G{sub Ni–Ni}(r). From the RMC final atomic configuration and G{sub ij}(r) functions, the coordination numbers and interatomic atomic distances for the first neighbors were determined.

  13. Authentication of vegetable oils by confocal X-ray scattering analysis with coherent/incoherent scattered X-rays.

    Science.gov (United States)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi

    2016-11-01

    This paper presents an alternative analytical method based on the Rayleigh to Compton scattering intensity ratio and effective atomic number for non-destructive identification of vegetable oils using confocal energy dispersive X-ray fluorescence and scattering spectrometry. A calibration curve for the Rayleigh to Compton scattering intensity ratio and effective atomic number was constructed on the basis of a reliable physical model for X-ray scattering. The content of light elements, which are "invisible" using X-ray fluorescence, can be calculated "by difference" from the calibration curve. In this work, we demonstrated the use of this proposed approach to identify complex organic matrices in different vegetable oils with high precision and accuracy. PMID:27211668

  14. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    International Nuclear Information System (INIS)

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  15. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gamboa, E.J. [University of Michigan; Huntington, C.M. [University of Michigan; Trantham, M.R. [University of Michigan; Keiter, P.A [University of Michigan; Drake, R.P. [University of Michigan; Montgomery, David [Los Alamos National Laboratory; Benage, John F. [Los Alamos National Laboratory; Letzring, Samuel A. [Los Alamos National Laboratory

    2012-05-04

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  16. Structural and magnetic properties of inverse opal photonic crystals studied by x-ray diffraction, scanning electron microscopy, and small-angle neutron scattering

    NARCIS (Netherlands)

    Grigoriev, S.V.; Napolskii, K.S.; Grigoryeva, N.A.; Vasilieva, A.V.; Mistonov, A.A.; Chernyshov, D.Y.; Petukhov, A.V.; Belov, D.V.; Eliseev, A.A.; Lukashin, A.V.; Tretyakov, Y.D.; Sinitskii, A.S.; Eckerlebe, H.

    2009-01-01

    The structural and magnetic properties of nickel inverse opal photonic crystal have been studied by complementary experimental techniques, including scanning electron microscopy, wide-angle and small-angle diffraction of synchrotron radiation, and polarized neutrons. The sample was fabricated by ele

  17. Scanning Small- and Wide-Angle X-ray Scattering Microscopy Selectively Probes HA Content in Gelatin/Hydroxyapatite Scaffolds for Osteochondral Defect Repair.

    Science.gov (United States)

    Altamura, Davide; Pastore, Stella G; Raucci, Maria G; Siliqi, Dritan; De Pascalis, Fabio; Nacucchi, Michele; Ambrosio, Luigi; Giannini, Cinzia

    2016-04-01

    This study is aimed at investigating the structure of a scaffold made of bovine gelatin and hydroxyapatite for bone tissue engineering purposes. In particular, the detailed characterization of such a material has a great relevance because of its application in the healing process of the osteochondral defect that consists of a damage of cartilage and injury of the adjacent subchondral bone, significantly compromising millions of patient's quality of life. Two different techniques exploiting X-ray radiation, with table-top setups, are used: microtomography (micro-CT) and microdiffraction. Micro-CT characterizes the microstructure in the three dimensions at the micrometer scale spatial resolution, whereas microdiffraction provides combined structural/morphological information at the atomic and nanoscale, in two dimensional microscopy images with a hundred micrometer spatial resolution. The combination of these two techniques allowed an appropriate structural characterization for the purpose of validating the engineering approach used for the realization of the hydroxyapatite gradient across the scaffold, with properties close to the natural model. PMID:27020229

  18. X-rays from synchrotron: new challenge for neutron scattering

    International Nuclear Information System (INIS)

    A brief review is given of current developments in x-ray scattering techniques at synchrotron radiation facilities. Highly collimated, intense white radiations open up new areas of research in condensed matter physics and challenge the traditional domains of neutron scattering. These include energy dispersive scattering, the use of anomalous dispersion, magnetic diffraction and direct energy analysis by backscattering. The relative merits of x-ray and neutron scattering techniques will be discussed. The unique advantage of neutron scattering is the capability of performing polarization analysis. We will discuss in some detail the current developments at Brookhaven in inelastic scattering of polarized neutrons. In addition, we will also discuss special technical problems associated with the search for phasons utilizing a high resolution triple axis spectrometer

  19. Electronic Structure of Dense Plasmas by X-Ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, G; Glenzer, S H; Rogers, F J; Pollaine, S M; Froula, D H; Blancard, C; Faussurier, G; Renaudin, P; Kuhlbrodt, S; Redmer, R; Landen, O L

    2003-10-07

    We present an improved analytical expression for the x-ray dynamic structure factor from a dense plasma which includes the effects of weakly bound electrons. This result can be applied to describe scattering from low to moderate Z plasmas, and it covers the entire range of plasma conditions that can be found in inertial confinement fusion experiments, from ideal to degenerate up to moderately coupled systems. We use our theory to interpret x-ray scattering experiments from solid density carbon plasma and to extract accurate measurements of electron temperature, electron density and charge state. We use our experimental results to validate various equation-of-state models for carbon plasmas.

  20. Warm, Dense Plasma Characterization by X-ray Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O L; Glenzer, S H; Cauble, R C; Lee, R W; Edwards, J E; Degroot, J S

    2000-07-18

    We describe how the powerful technique of spectrally resolved Thomson scattering can be extended to the x-ray regime, for direct measurements of the ionization state, density, temperature, and the microscopic behavior of dense cool plasmas. Such a direct measurement of microscopic parameters of solid density plasmas could eventually be used to properly interpret laboratory measurements of material properties such as thermal and electrical conductivity, EUS and opacity. In addition, x-ray Thomson scattering will provide new information on the characteristics of rarely and hitherto difficult to diagnose Fermi degenerate and strongly coupled plasmas.

  1. Dynamic angle selection in X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Dabravolski, Andrei, E-mail: andrei.dabravolski@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Batenburg, Kees Joost, E-mail: joost.batenburg@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Centrum Wiskunde and Informatica (CWI), Science Park 123, 1098 XG Amsterdam (Netherlands); Sijbers, Jan, E-mail: jan.sijbers@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium)

    2014-04-01

    Highlights: • We propose the dynamic angle selection algorithm for CT scanning. • The approach is based on the concept of information gain over a set of solutions. • Projection angles are selected based on the already available projection data. • The approach can lead to more accurate results from fewer projections. - Abstract: In X-ray tomography, a number of radiographs (projections) are recorded from which a tomogram is then reconstructed. Conventionally, these projections are acquired equiangularly, resulting in an unbiased sampling of the Radon space. However, especially in case when only a limited number of projections can be acquired, the selection of the angles has a large impact on the quality of the reconstructed image. In this paper, a dynamic algorithm is proposed, in which new projection angles are selected by maximizing the information gain about the object, given the set of possible new angles. Experiments show that this approach can select projection angles for which the accuracy of the reconstructed image is significantly higher compared to the standard angle selections schemes.

  2. X-ray scattering intensities of water at extreme pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, N; Fried, L E

    2007-01-03

    We have calculated the coherent x-ray scattering intensity of several phases of water at 1500 and 2000 K under high pressure, using ab initio Density Functional Theory (DFT). Our calculations span the molecular liquid, ice VII, and superionic solid phases, including the recently predicted symmetrically hydrogen bonded region of the superionic phase. We show that wide angle x-ray scattering intensity could be used to determine phase boundaries between these high pressure phases, and we compare the results for ice VII and superionic water. We compute simulated spectra and provide new atomic scattering form factors for water at extreme conditions, which take into account frequently neglected changes in ionic charge and electron delocalization. We show that our modifed atomic form factors allow for a nearly exact comaprison to the total x-ray scattering intensities calculated from DFT. Finally, we analyze the effect our new form factors have on determination of the oxygen-oxygen radial distribution function.

  3. Structural studies using X-ray absorption and scattering techniques

    International Nuclear Information System (INIS)

    The thesis presents extended X-ray absorption fine structure, EXAFS, and large angle X-ray scattering, LAXS, techniques; instrumentation, data collection and reduction, and applications. These techniques have been used to determine the structures of magnesium halides and organomagnesium halides in diethyl ether and tetrahydrofuran solution. The iodides were used for the LAXS measurements and Br K edge EXAFS data were collected for the corresponding bromides. Two different complexes are present in the diethyl ether solution of magnesium iodide; a polymeric chain-type structure where magnesium is tetrahedrally coordinated, as well as dimeric complex with octahedrally coordinated magnesium. Solvated MgI+ is the dominating species in tetrahydrofuran solution. The organomagnesium halides are present in diethyl ether solution as both solvated monomeric and dimeric complexes. Magnesium coordinates a halide ion, an alkyl or aryl group and four solvent molecules octahedrally in the monomeric complex. In the dimeric complex magnesium is octahedrally coordinated by two bridging halide ions, an alkyl or aryl group and three solvent molecules. The distribution of monomeric and dimeric complexes in various solutions are given by a dimerisation constant, Kdl. The results indicate that the Schlenk equilibrium is present in these solutions, however, in an extended form. In diethyl ether solution, where MgX2 does not dissociate, no MgX2 complex and thereby no Schlenk equilibrium has been observed. In tetrahydrofuran solution MgI2 has dissociated into mainly MgI+ and I-. This indicates that the concentration of MgI2 is low and that the Schlenk equilibrium should be expanded even further to include the dissociation equilibrium of the magnesium halide. In the thesis Fe K edge EXAFS data collected for the semireduced form of protein A of methane monooxygenase from Methylococcus capsulatus, are also presented. (139 refs.)

  4. Cosmological X-ray Scattering from Intergalactic Dust

    CERN Document Server

    Corrales, Lia

    2012-01-01

    High resolution X-ray imaging offers a unique opportunity to probe the nature of dust in the z ~< 2 universe. Dust grains 0.1- 1 um in size will scatter soft X-rays, producing a diffuse "halo" image around an X-ray point source, with a brightness ~ few % confined to an arcminute-sized region. We derive the formulae for scattering in a cosmological context and calculate the surface brightness of the scattering halo due to (i) an IGM uniformly enriched (Omega_ d ~ 10^-5) by a power-law distribution of grain sizes, and (ii) a DLA-type (N_H ~ 10^21 cm^-2) dust screen at cosmological distances. The morphology of the surface brightness profile can distinguish between the two scenarios above, place size constraints on dusty clumps, and constrain the homogeneity of the IGM. Thus X-ray scattering can gauge the relative contribution of the first stars, dwarf galaxies, and galactic outflows to the cosmic metallicity budget and cosmic history of dust. We show that, because the amount of intergalactic scattering is ove...

  5. Small-angle X-ray scattering from blends of PE and SBS. Observation of a novel kind of deviation from Porod's law

    International Nuclear Information System (INIS)

    In a study of technical blends from poly(ethylene) and poly(styrene)-poly(butadiene) star block copolymers, reproducibility of the blending process and of the structural analysis is tested. A peculiar and reproducible deviation in the angular interval of the scattering curve is observed, which is governed by a decay according to Porod's law. The notion of a faint electron-density undulation in space with a wavelength of 5 nm, an amplitude of 1 e.u. nm-3 and a range of 40 nm could explain the triangular peak observed in a plot which otherwise linearizes the scattering curve in the Porod regime. (orig.)

  6. Multiple-scattering calculations of x-ray-absorption spectra

    International Nuclear Information System (INIS)

    A high-order multiple-scattering (MS) approach to the calculation of polarized x-ray-absorption spectra, which includes both x-ray-absorption fine structure and x-ray-absorption near-edge structure, is presented. Efficient calculations in arbitrary systems are carried out by using a curved-wave MS path formalism that ignores negligible paths, and has an energy-dependent self-energy and MS Debye-Waller factors. Embedded-atom background absorption calculations on an absolute energy scale are included. The theory is illustrated for metallic Cu, Cd, and Pt. For these cases the MS expansion is found to converge to within typical experimental accuracy, both to experiment and to full MS theories (e.g., band structure), by using only a few dozen important paths, which are primarily single-scattering, focusing, linear, and triangular

  7. Self-similarity during growth of the Au/TiO2(110) model catalyst as seen by the scattering of x-rays at grazing-angle incidence

    Science.gov (United States)

    Lazzari, Rémi; Renaud, Gilles; Jupille, Jacques; Leroy, Frédéric

    2007-09-01

    The growth of gold nanoparticles on TiO2(110) was investigated in situ by grazing incidence x-ray scattering techniques. The in-plane diffraction showed complex epitaxial relationships with a preferential alignment of dense gold direction along the bridging oxygen rows of TiO2(110) ([11¯0]Au‖[001]TiO2) with a low lattice mismatch. Whatever the growth temperature (T=300,600K) , two nearly equiproportional epitaxial planes, i.e., (111)Au‖(110)TiO2 and (112¯)Au‖(110)TiO2 , were observed. The small angle scattering from the nanoparticles was analyzed using a truncated sphere shape with models [R. Lazzari, F. Leroy, and G. Renaud, Phys. Rev. B 76, 125411 (2007)] that account for (i) multiple scattering effects due to the graded profile of refraction index in the normal direction and (ii) the correlation between the particle spacing and sizes. At the beginning of the growth, gold particles are pinned on defects and grow through a diffusion-limited mechanism. However, coalescence does not occur via a static mechanism. It rather involves surface diffusion of clusters. It proceeds through a self-similar mechanism, not only on the size distribution but also on the spatial ordering. Particle locations, which are no longer controlled by the randomness of nucleation centers, become dominated by the correlation between the particle size and its influence area. A strong link between island height and radius indicates that particles are close to equilibrium. Indeed, the value derived for contact angle (adhesion energy) compares well with tabulated data. In addition, the cluster size before the onset of coalescence compares with that of the gold particles at the maximum of catalytic activity for the oxidation of CO.

  8. Self-similarity during growth of the Au/TiO2(110) model catalyst as seen by the scattering of x-rays at grazing-angle incidence

    International Nuclear Information System (INIS)

    The growth of gold nanoparticles on TiO2(110) was investigated in situ by grazing incidence x-ray scattering techniques. The in-plane diffraction showed complex epitaxial relationships with a preferential alignment of dense gold direction along the bridging oxygen rows of TiO2(110) ([110]Au parallel [001]TiO2) with a low lattice mismatch. Whatever the growth temperature (T=300,600 K), two nearly equiproportional epitaxial planes, i.e., (111)Au parallel (110)TiO2 and (112)Au parallel (110)TiO2, were observed. The small angle scattering from the nanoparticles was analyzed using a truncated sphere shape with models [R. Lazzari, F. Leroy, and G. Renaud, Phys. Rev. B 76, 125411 (2007)] that account for (i) multiple scattering effects due to the graded profile of refraction index in the normal direction and (ii) the correlation between the particle spacing and sizes. At the beginning of the growth, gold particles are pinned on defects and grow through a diffusion-limited mechanism. However, coalescence does not occur via a static mechanism. It rather involves surface diffusion of clusters. It proceeds through a self-similar mechanism, not only on the size distribution but also on the spatial ordering. Particle locations, which are no longer controlled by the randomness of nucleation centers, become dominated by the correlation between the particle size and its influence area. A strong link between island height and radius indicates that particles are close to equilibrium. Indeed, the value derived for contact angle (adhesion energy) compares well with tabulated data. In addition, the cluster size before the onset of coalescence compares with that of the gold particles at the maximum of catalytic activity for the oxidation of CO

  9. Small-angle X-ray scattering studies of metastable intermediates of beta-lactoglobulin isolated after heat-induced aggregation

    DEFF Research Database (Denmark)

    Carrotta, R.; Arleth, L.; Pedersen, J.S.;

    2003-01-01

    distance distribution functions for the two intermediate fractions as well as for the native protein have been obtained by indirect Fourier transformation. In addition, the scattering intensity data for samples of the native protein at different concentrations were fitted using a combination of monomer and...

  10. Small-angle X-ray scattering analysis reveals the ATP-bound monomeric state of the ATPase domain from the homodimeric MutL endonuclease, a GHKL phosphotransferase superfamily protein.

    Science.gov (United States)

    Iino, Hitoshi; Hikima, Takaaki; Nishida, Yuya; Yamamoto, Masaki; Kuramitsu, Seiki; Fukui, Kenji

    2015-05-01

    DNA mismatch repair is an excision system that removes mismatched bases chiefly generated by replication errors. In this system, MutL endonucleases direct the excision reaction to the error-containing strand of the duplex by specifically incising the newly synthesized strand. Both bacterial homodimeric and eukaryotic heterodimeric MutL proteins belong to the GHKL ATPase/kinase superfamily that comprises the N-terminal ATPase and C-terminal dimerization regions. Generally, the GHKL proteins show large ATPase cycle-dependent conformational changes, including dimerization-coupled ATP binding of the N-terminal domain. Interestingly, the ATPase domain of human PMS2, a subunit of the MutL heterodimer, binds ATP without dimerization. The monomeric ATP-bound state of the domain has been thought to be characteristic of heterodimeric GHKL proteins. In this study, we characterized the ATP-bound state of the ATPase domain from the Aquifex aeolicus MutL endonuclease, which is a homodimeric GHKL protein unlike the eukaryotic MutL. Gel filtration, dynamic light scattering, and small-angle X-ray scattering analyses clearly showed that the domain binds ATP in a monomeric form despite its homodimeric nature. This indicates that the uncoupling of dimerization and ATP binding is a common feature among bacterial and eukaryotic MutL endonucleases, which we suggest is closely related to the molecular mechanisms underlying mismatch repair. PMID:25809295

  11. Dietary iron-loaded rat liver haemosiderin and ferritin: in situ measurement of iron core nanoparticle size and cluster structure using anomalous small-angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bovell, Eliza; Buckley, Craig E.; Chua-anusorn, Wanida; Cookson, David; Kirby, Nigel; Saunders, Martin; St. Pierre, Timothy G. ((UWA)); ((Curtin U.)); ((ASRP))

    2009-03-16

    The morphology, particle size distribution and cluster structure of the hydrated iron(III) oxyhydroxide particles associated with haemosiderin and ferritin in dietary iron-loaded rat liver tissue have been investigated using transmission electron microscopy (TEM) and anomalous small-angle x-ray scattering (ASAXS). Rat liver tissue was removed from a series of female Porton rats which had been fed an iron-rich diet until sacrifice at various ages from 2-24 months. Hepatic iron concentrations ranged from 1 to 65 mg Fe g{sup -1} dry tissue. TEM studies showed both dispersed and clustered iron-containing nanoparticles. The dispersed particles were found to have mean sizes ({+-}standard deviation) of 54 {+-} 8 {angstrom} for the iron-loaded animals and 55 {+-} 7 {angstrom} for the controls. Superposition of particles in TEM images prevented direct measurement of nanoparticulate size in the clusters. The ASAXS data were modelled to provide a quantitative estimate of both the size and spacing of iron oxyhydroxide particles in the bulk samples. The modelling yielded close-packed particles with sizes of 60 to 78 {angstrom} which when corrected for anomalous scattering suggests sizes from 54 to 70 {angstrom}. Particle size distributions are of particular importance since they determine the surface iron to core iron ratios, which in turn are expected to be related to the molar toxicity of iron deposits in cells.

  12. Nucleation and crystal growth in a suspension of charged colloidal silica spheres with bi-modal size distribution studied by time-resolved ultra-small-angle X-ray scattering.

    Science.gov (United States)

    Hornfeck, Wolfgang; Menke, Dirk; Forthaus, Martin; Subatzus, Sebastian; Franke, Markus; Schöpe, Hans-Joachim; Palberg, Thomas; Perlich, Jan; Herlach, Dieter

    2014-12-01

    A suspension of charged colloidal silica spheres exhibiting a bi-modal size distribution of particles, thereby mimicking a binary mixture, was studied using time-resolved ultra-small-angle synchrotron X-ray scattering (USAXS). The sample, consisting of particles of diameters d(A) = (104.7 ± 9.0) nm and d(B) = (88.1 ± 7.8) nm (d(A)/d(B) ≈ 1.2), and with an estimated composition A(0.6(1))B(0.4(1)), was studied with respect to its phase behaviour in dependance of particle number density and interaction, of which the latter was modulated by varying amounts of added base (NaOH). Moreover, its short-range order in the fluid state and its eventual solidification into a long-range ordered colloidal crystal were observed in situ, allowing the measurement of the associated kinetics of nucleation and crystal growth. Key parameters of the nucleation kinetics such as crystallinity, crystallite number density, and nucleation rate density were extracted from the time-resolved scattering curves. By this means an estimate on the interfacial energy for the interface between the icosahedral short-range ordered fluid and a body-centered cubic colloidal crystal was obtained, comparable to previously determined values for single-component colloidal systems. PMID:25481168

  13. X-ray Scattering Techniques for Characterization of Nanosystems in Lifescience

    Energy Technology Data Exchange (ETDEWEB)

    Saw, C K

    2005-04-11

    The intent of this chapter is to provide the basics of using x-ray diffraction techniques in order to obtain information on the structure and morphology of the nanosystems, and also to point out some of its strengths and weaknesses when compare to other characterization techniques. X-ray scattering examines over a wide range of density domains from a tenth to a thousandth angstrom. Essentially, this covers a whole range of condensed matter, including the structure and morphology of nanosystems, particularly useful for examining nanostructures in lifescience. This range of domain size requires both the wide-angle x-ray scattering (WAXS) and small-angle (SAXS) x-ray scattering techniques. Roughly WAXS covers from 2 nm down, and SAXS covers from .5 nm to 100 nm and possibly 1,000 nm for a finely tuned instrument. Brief theoretical description of both WAXS and SAXS will be given in this chapter. WAXS, by itself is a powerful technique in providing information on the crystallographic structure or lack of structure, atomic positions and sizes in a unit cell, to some extend, chemical compositions and as well as chemical stoichiometry. Examples of such experiments will also be given. In order to be able to describe the technique of x-ray scattering, some historical and theoretical background will be given in the hope of making this subject interesting and simple.

  14. Anomalous x-ray scattering: Relativistic effects in x-ray dispersion analysis

    International Nuclear Information System (INIS)

    Rayleigh scattering by bound electrons is reduced from the free-electron Thomson value at x-ray wavelengths by relativistic effects. To first order this arises from the relativistic increase in mass of the core electrons. The reduction is overestimated by more than a factor of 2 by the commonly used dipole approximation. Inclusion of higher multipole and retardation terms in dispersion analysis resolves reported conflicts between values of the anomalous scattering factor as measured interferometrically and as calculated from attenuation measurements. These considerations further imply that several scattering-factor tabulations in current use for diffraction studies require revision to take relativity fully into account. This correction is particularly significant in regions of anomalous dispersion and at low energies, where the scattering factor is small relative to the atomic number

  15. Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure

    International Nuclear Information System (INIS)

    The double-differential scattering cross-section for the inelastic scattering of x-ray photons from electrons is typically orders of magnitude smaller than that of elastic scattering. With samples 10-100 μm size in a diamond anvil cell at high pressure, the inelastic x-ray scattering signals from samples are obscured by scattering from the cell gasket and diamonds. One major experimental challenge is to measure a clean inelastic signal from the sample in a diamond anvil cell. Among the many strategies for doing this, we have used a focusing polycapillary as a post-sample optic, which allows essentially only scattered photons within its input field of view to be refocused and transmitted to the backscattering energy analyzer of the spectrometer. We describe the modified inelastic x-ray spectrometer and its alignment. With a focused incident beam which matches the sample size and the field of view of polycapillary, at relatively large scattering angles, the polycapillary effectively reduces parasitic scattering from the diamond anvil cell gasket and diamonds. Raw data collected from the helium exciton measured by x-ray inelastic scattering at high pressure using the polycapillary method are compared with those using conventional post-sample slit collimation

  16. Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Chow, P., E-mail: pchow@carnegiescience.edu; Xiao, Y. M.; Rod, E.; Bai, L. G.; Shen, G. Y.; Sinogeikin, S. [HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Gao, N. [Center for X-Ray Optics, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA and X-Ray Optical Systems, Inc., 90 Fuller Road, Albany, New York 12205 (United States); Ding, Y. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Mao, H.-K. [Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, District of Columbia 20015 (United States)

    2015-07-15

    The double-differential scattering cross-section for the inelastic scattering of x-ray photons from electrons is typically orders of magnitude smaller than that of elastic scattering. With samples 10-100 μm size in a diamond anvil cell at high pressure, the inelastic x-ray scattering signals from samples are obscured by scattering from the cell gasket and diamonds. One major experimental challenge is to measure a clean inelastic signal from the sample in a diamond anvil cell. Among the many strategies for doing this, we have used a focusing polycapillary as a post-sample optic, which allows essentially only scattered photons within its input field of view to be refocused and transmitted to the backscattering energy analyzer of the spectrometer. We describe the modified inelastic x-ray spectrometer and its alignment. With a focused incident beam which matches the sample size and the field of view of polycapillary, at relatively large scattering angles, the polycapillary effectively reduces parasitic scattering from the diamond anvil cell gasket and diamonds. Raw data collected from the helium exciton measured by x-ray inelastic scattering at high pressure using the polycapillary method are compared with those using conventional post-sample slit collimation.

  17. Time resolved X-ray scattering of protein loaded lipid nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Angelov, Borislav; Angelova, A.; Filippov, Sergey K.; Drechsler, M.; Štěpánek, Petr; Lesieur, S.

    Sofia : Bulgarian Crystallographic Society, 2014. s. 27. [National Crystallographic Symposium /5./ - NCS2014. 25.09.2014-27.09.2014, Sofia] R&D Projects: GA ČR GAP208/10/1600 Institutional support: RVO:61389013 Keywords : time resolved small angle X-ray scattering * protein * lipid Subject RIV: CF - Physical ; Theoretical Chemistry

  18. Diffuse X-Ray Scattering from Several Platinum Chain Compounds

    DEFF Research Database (Denmark)

    Braude, A.; Lindegaard-Andersen, Asger; Carneiro, K.; Petersen, A. S.

    1980-01-01

    Values of the Fermi wavevector for several platinum based one-dimensional conductors were determined from diffuse X-ray scattering measurements. The values were compared with those expected from the chemical compositions. The importance of conclusive values of this parameter is stressed and the...

  19. X-ray holography with an atomic scatterer.

    Science.gov (United States)

    Mityureva, A A; Smirnov, V V

    2016-08-01

    X-ray holography scheme with reference scatterer consisting of heavy atom as reference center and its link to an object consisting of several light atoms and using controlled variation of the alignment is represented. The scheme can reproduce an object in three dimensions with atomic resolution. The distorting factors of reconstruction are considered. PMID:27137096

  20. X-Ray Form Factor, Attenuation and Scattering Tables

    Science.gov (United States)

    SRD 66 X-Ray Form Factor, Attenuation and Scattering Tables (Web, free access)   This database collects tables and graphs of the form factors, the photoabsorption cross section, and the total attenuation coefficient for any element (Z <= 92).

  1. Operational properties of fluctuation X-ray scattering data

    Directory of Open Access Journals (Sweden)

    Erik Malmerberg

    2015-05-01

    Full Text Available X-ray scattering images collected on timescales shorter than rotation diffusion times using a (partially coherent beam result in a significant increase in information content in the scattered data. These measurements, named fluctuation X-ray scattering (FXS, are typically performed on an X-ray free-electron laser (XFEL and can provide fundamental insights into the structure of biological molecules, engineered nanoparticles or energy-related mesoscopic materials beyond what can be obtained with standard X-ray scattering techniques. In order to understand, use and validate experimental FXS data, the availability of basic data characteristics and operational properties is essential, but has been absent up to this point. In this communication, an intuitive view of the nature of FXS data and their properties is provided, the effect of FXS data on the derived structural models is highlighted, and generalizations of the Guinier and Porod laws that can ultimately be used to plan experiments and assess the quality of experimental data are presented.

  2. The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy

    DEFF Research Database (Denmark)

    Langkilde, Annette Eva; Morris, Kyle L; Serpell, Louise C;

    2015-01-01

    GNNQQNY peptide fragment of a yeast prion protein. Data from small-angle X-ray solution scattering, fibre diffraction and electron microscopy are combined with existing high-resolution X-ray crystallographic structures to investigate the fibrillation process and the hierarchical fibril structure of the...

  3. Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser

    DEFF Research Database (Denmark)

    Arnlund, David; Johansson, Linda C.; Wickstrand, Cecilia; Barty, Anton; Williams, Garth J.; Malmerberg, Erik; Davidsson, Jan; Milathianaki, Despina; DePonte, Daniel P.; Shoeman, Robert L.; Wang, Dingjie; James, Daniel; Katona, Gergely; Westenhoff, Sebastian; White, Thomas A.; Aquila, Andrew; Bari, Sadia; Berntsen, Peter; Bogan, Mike; Brandt van Driel, Tim; Doak, R. Bruce; Kjær, Kasper Skov; Frank, Matthias; Fromme, Raimund; Grotjohann, Ingo; Henning, Robert; Hunter, Mark S.; Kirian, Richard A.; Kosheleva, Irina; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V.; Nielsen, Martin Meedom; Messerschmidt, Marc; Seibert, M. Marvin; Sjohamn, Jennie; Stellato, Francesco; Weierstall, Uwe; Zatsepin, Nadia A.; Spence, John C. H.; Fromme, Petra; Schlichting, Ilme; Boutet, Sebastien; Groenhof, Gerrit; Chapman, Henry N.; Neutze, Richard

    2014-01-01

    We describe a method to measure ultrafast protein structural changes using time-resolved wide-angle X-ray scattering at an X-ray free-electron laser. We demonstrated this approach using multiphoton excitation of the Blastochloris viridis photosynthetic reaction center, observing an ultrafast glob...

  4. Decoherence phenomenon in X-ray diffraction and scattering from rough multilayers

    Science.gov (United States)

    Chernov, V. A.; Kondratiev, V. I.; Kovalenko, N. V.; Mytnichenko, S. V.; Zolotarev, K. V.

    2005-02-01

    High-resolution X-ray diffractometry was used to study the diffuse scattering from a series of rough multilayers. Reciprocal-space maps were obtained around the small- and wide-angle Bragg reflections using SR from the VEPP-3 storage ring. The data obtained reveal well-known quasi-Bragg diffuse-scattering sheets caused by conformal behavior of interfacial roughness as well as amplification of diffuse scattering when the incoming or outgoing angle is nearly equal to the Bragg angle (incoming and outgoing Bragg scattering) and when incoming and outgoing angles are nearly equal (quasi-specular diffuse scattering). The observed domination in intensity of the incoming Bragg features over outgoing ones, which demonstrates the breakdown of the reciprocity principle, is shown to reflect the decay rate of the coherent X-ray field through the diffuse-scattering channel, which becomes predominant as the spatial coherence of the incident X-ray beam increases. This diffuse-scattering behavior can be considered as a decoherence phenomenon inherent to open quantum systems.

  5. Decoherence phenomenon in X-ray diffraction and scattering from rough multilayers

    International Nuclear Information System (INIS)

    High-resolution X-ray diffractometry was used to study the diffuse scattering from a series of rough multilayers. Reciprocal-space maps were obtained around the small- and wide-angle Bragg reflections using SR from the VEPP-3 storage ring. The data obtained reveal well-known quasi-Bragg diffuse-scattering sheets caused by conformal behavior of interfacial roughness as well as amplification of diffuse scattering when the incoming or outgoing angle is nearly equal to the Bragg angle (incoming and outgoing Bragg scattering) and when incoming and outgoing angles are nearly equal (quasi-specular diffuse scattering). The observed domination in intensity of the incoming Bragg features over outgoing ones, which demonstrates the breakdown of the reciprocity principle, is shown to reflect the decay rate of the coherent X-ray field through the diffuse-scattering channel, which becomes predominant as the spatial coherence of the incident X-ray beam increases. This diffuse-scattering behavior can be considered as a decoherence phenomenon inherent to open quantum systems

  6. Mapping transitions between healthy and pathological lesions in human breast tissues by diffraction enhanced imaging computed tomography (DEI-CT) and small angle x-ray scattering (SAXS)

    International Nuclear Information System (INIS)

    In this work we have combined the DEI-CT and SAXS technique to study the transition between healthy and pathological breast tissues, which include benign and malignant lesions. The ability of DEI-CT to enhance the contrast between soft tissues was used to localize the tumor region in the sample. Then, the tumor region and its surroundings were scanned by SAXS in order to map the changes promoted by the neoplasias at nano-level. It was clearly observed that pathological tissues present distinguishable SAXS scattering profiles from those of normal tissue. These differences are mainly related to changes in arrangement and diameter of collagen fibrils, evaluated by the higher order of reflection peaks of these fibrils. Differences related to the peak intensities and the total scattered intensity were found by comparing the healthy and pathological regions. The 2nd order of collagen reflection arises only in the healthy region neighboring the benign lesion. A broader peak at q=0.16 nm−1 seems to characterize the malignant lesions. Finally, based on this information, the transition between healthy and pathological human breast tissues was mapped which allowed to get insights into the changes promoted by tumors during growth and progression. - Highlights: ► We map the transition from healthy to pathological breast tissues. ► The ability of DEI-CT in enhancing the contrast was used to localize the tumor region. ► SAXS technique was applied to observe the changes at nano-level due to tumor growth. ► Collagen reflections and total scattering intensity allow to distinguishing the tissues

  7. Resonance magnetic x-ray scattering study of erbium

    DEFF Research Database (Denmark)

    Sanyal, M.K.; Gibbs, D.; Bohr, J.;

    1994-01-01

    of this magnetic scattering and analyzed it using a simple model based on electric dipole and quadrupole transitions among atomic orbitals. The line shapes can be fitted to a magnetic structure combining both c-axis-modulated and basal-plane components. Below 18 K, we have observed unusual behavior......The magnetic phases of erbium have been studied by resonance x-ray-scattering techniques. When the incident x-ray energy is tuned near the L(III) absorption edge, large resonant enhancements of the magnetic scattering are observed above 18 K. We have measured the energy and polarization dependence...... of the magnetic scattering as a function of energy, whose origin is not understood....

  8. Mapping transitions between healthy and pathological lesions in human breast tissues by diffraction enhanced imaging computed tomography (DEI-CT) and small angle x-ray scattering (SAXS)

    Science.gov (United States)

    Conceição, A. L. C.; Antoniassi, M.; Geraldelli, W.; Poletti, M. E.

    2014-02-01

    In this work we have combined the DEI-CT and SAXS technique to study the transition between healthy and pathological breast tissues, which include benign and malignant lesions. The ability of DEI-CT to enhance the contrast between soft tissues was used to localize the tumor region in the sample. Then, the tumor region and its surroundings were scanned by SAXS in order to map the changes promoted by the neoplasias at nano-level.It was clearly observed that pathological tissues present distinguishable SAXS scattering profiles from those of normal tissue. These differences are mainly related to changes in arrangement and diameter of collagen fibrils, evaluated by the higher order of reflection peaks of these fibrils. Differences related to the peak intensities and the total scattered intensity were found by comparing the healthy and pathological regions. The 2nd order of collagen reflection arises only in the healthy region neighboring the benign lesion. A broader peak at q=0.16 nm-1 seems to characterize the malignant lesions. Finally, based on this information, the transition between healthy and pathological human breast tissues was mapped which allowed to get insights into the changes promoted by tumors during growth and progression.

  9. Inelastic x-ray scattering from phonons under multibeam conditions

    International Nuclear Information System (INIS)

    We report on an experimental observation of a previously neglected multibeam contribution to the inelastic x-ray scattering cross section. Its manifestation is a substantial modification of the apparent phonon selection rules when two (or more) reciprocal lattice points are simultaneously intercepted by the Ewald sphere. The observed multibeam contributions can be treated semi-quantitatively in the frame of Renninger's 'simplest approach'. A few corollaries, relevant for experimental work on inelastic scattering from phonons, are presented

  10. Determination of X-ray anomalous scattering in silicon

    International Nuclear Information System (INIS)

    The linear attenuation coeficient for X-ray in silicon was measured with approximately 0,1% accuracy, for 6 diferent wavelenghts of caracteristic radiation. From these result the imaginary parts of the atomic scattering factors, for silicon and for those wavelenghts, were obtained with the same accuracy. The results are compared with the most recent published values. The proposed method to avoid Rayleigh scattering can be used for any type of ''perfect'' crystal. (author)

  11. Delineating the First Few Seconds of Supramolecular Self-Assembly of Mesostructured Titanium Oxide Thin Films through Time-Resolved Small Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Luca, Vittorio; Bertram, Willem K.; Sizgek, G. Devlet; Yang, Bin; Cookson, David (Aust. Synch.); (ANSTO)

    2009-01-15

    The early stages of evaporation induced self-assembly of titanium oxide mesophases from a precursor solution containing TiCl{sub 4} and the Pluronic triblock copolymer F-127 in HCl-water-ethanol solution have been studied using time-resolved SAXS techniques. Two experimental protocols were used to conduct these experiments. In one of these, the precursor solution was pumped around a closed loop as solvent was allowed to evaporate at a constant humidity-controlled rate. In the second protocol, a film of precursor solution was measured periodically as it dried completely to a residue under a stream of dry air. This permitted the detailed monitoring of changes in solution chemistry as a function of the elimination of volatile components followed by the actual drying process itself. The SAXS data were modeled in terms of two Guinier radii for soft nanoparticles while a broad Gaussian feature in the scatter profiles was accounted for by particle-article scattering interference due to close packing. For the initial precursor solution, one Guinier radius was found to be about 17 {angstrom} while the other ranged from 4 to 11 {angstrom}. Changing the rate of evaporation affected the two radii differently with a more pronounced effect on the smaller particle size range. Analysis gave an interparticle distance in the range 55--80 {angstrom} for the initial precursor solution which decreased steadily at both of the humidities investigated as evaporation proceeded and the particle packing increased. These results represent the first attempts to monitor in a precise fashion the growth of nano building blocks during the initial stages of the self-assembly process of a titanium oxide mesophase.

  12. Contribution of Coulomb explosion to form factors and mosaicity spread in single particle X-ray scattering.

    Science.gov (United States)

    Debnarova, Andrea; Techert, Simone; Schmatz, Stefan

    2014-01-14

    The Coulomb explosion of the octamer water cluster has been studied employing time-dependent density functional theory explicitly accounting for the laser field and thus not imposing any constraint on the interaction between the laser pulse and the cluster. We focus on the effects of electron density changes in the system under high-intensity (10(16) and 10(15) W cm(-2)) soft X-ray laser pulses and their fingerprint in the reciprocal space, namely the ultrafast changes in X-ray diffuse scattering signals in k-space (in the investigated k-space range from 10(-3) up to 10 Å(-1)). The present simulations indicate that diffusional components in X-ray intensity changes propagate from low reciprocal resolution (resembling the small-angle X-ray scattering regime) to very high resolution (the wide-angle X-ray scattering regime) during the Coulomb explosion process. PMID:24276436

  13. Crystal defect studies using x-ray diffuse scattering

    International Nuclear Information System (INIS)

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above

  14. Crystal defect studies using x-ray diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.

  15. Theory of inelastic scattering and absorption of X-rays

    CERN Document Server

    Veenendaal, Michel van

    2015-01-01

    This comprehensive, self-contained guide to X-ray spectroscopy will equip you with everything you need to begin extracting the maximum amount of information available from X-ray spectra. Key topics such as the interaction between X-rays and matter, the basic theory of spectroscopy, and selection and sum rules, are introduced from the ground up, providing a solid theoretical grounding. The book also introduces core underlying concepts such as atomic structure, solid-state effects, the fundamentals of tensor algebra and group theory, many-body interactions, scattering theory, and response functions, placing spectroscopy within a broader conceptual framework, and encouraging a deep understanding of this essential theoretical background. Suitable for graduate students, researchers, materials scientists and optical engineers, this is the definitive guide to the theory behind this powerful and widely used technique.

  16. Ultra-high resolution small-angle x-ray diffractometry: measurements of very large periods in biological fibres

    International Nuclear Information System (INIS)

    The technique of small-angle x-ray scattering using a synchrotron source is described. Improved instrumentation is shown, using multiple-reflection crystal monoliths as high-quality collimators. A small-angle diffraction pattern from frog Sartorius muscle, using the improved apparatus, is shown. (U.K.)

  17. X-ray and Neutron Scattering of Water.

    Science.gov (United States)

    Amann-Winkel, Katrin; Bellissent-Funel, Marie-Claire; Bove, Livia E; Loerting, Thomas; Nilsson, Anders; Paciaroni, Alessandro; Schlesinger, Daniel; Skinner, Lawrie

    2016-07-13

    This review article focuses on the most recent advances in X-ray and neutron scattering studies of water structure, from ambient temperature to the deeply supercooled and amorphous states, and of water diffusive and collective dynamics, in disparate thermodynamic conditions and environments. In particular, the ability to measure X-ray and neutron diffraction of water with unprecedented high accuracy in an extended range of momentum transfers has allowed the derivation of detailed O-O pair correlation functions. A panorama of the diffusive dynamics of water in a wide range of temperatures (from 400 K down to supercooled water) and pressures (from ambient up to multiple gigapascals) is presented. The recent results obtained by quasi-elastic neutron scattering under high pressure are compared with the existing data from nuclear magnetic resonance, dielectric and infrared measurements, and modeling. A detailed description of the vibrational dynamics of water as measured by inelastic neutron scattering is presented. The dependence of the water vibrational density of states on temperature and pressure, and in the presence of biological molecules, is discussed. Results about the collective dynamics of water and its dispersion curves as measured by coherent inelastic neutron scattering and inelastic X-ray scattering in different thermodynamic conditions are reported. PMID:27195477

  18. Structural dynamics and ssDNA binding activity of the three N-terminal domains of the large subunit of Replication Protein A from small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pretto, Dalyir I.; Tsutakawa, Susan; Brosey, Chris A.; Castillo, Amalchi; Chagot, Marie-Eve; Smith, Jarrod A.; Tainer, John A.; Chazin, Walter J.

    2010-03-11

    Replication Protein A (RPA) is the primary eukaryotic ssDNA binding protein utilized in diverse DNA transactions in the cell. RPA is a heterotrimeric protein with seven globular domains connected by flexible linkers, which enable substantial inter-domain motion that is essential to its function. Small angle X-ray scattering (SAXS) experiments on two multi-domain constructs from the N-terminus of the large subunit (RPA70) were used to examine the structural dynamics of these domains and their response to the binding of ssDNA. The SAXS data combined with molecular dynamics simulations reveal substantial interdomain flexibility for both RPA70AB (the tandem high affinity ssDNA binding domains A and B connected by a 10-residue linker) and RPA70NAB (RPA70AB extended by a 70-residue linker to the RPA70N protein interaction domain). Binding of ssDNA to RPA70NAB reduces the interdomain flexibility between the A and B domains, but has no effect on RPA70N. These studies provide the first direct measurements of changes in orientation of these three RPA domains upon binding ssDNA. The results support a model in which RPA70N remains structurally independent of RPA70AB in the DNA bound state and therefore freely available to serve as a protein recruitment module.

  19. X-ray scattering in X-ray fluorescence spectra with X-ray tube excitation - Modelling, experiment, and Monte-Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hodoroaba, V.-D., E-mail: Dan.Hodoroaba@bam.d [BAM Federal Institute for Materials Research and Testing, Division VI.4 Surface Technologies, D-12200 Berlin (Germany); Radtke, M. [BAM Federal Institute for Materials Research and Testing, Division I.3 Structure Analysis, Polymer Analysis, D-12200 Berlin (Germany); Vincze, L. [Ghent University, Department of Analytical Chemistry, B-9000 Ghent (Belgium); Rackwitz, V.; Reuter, D. [BAM Federal Institute for Materials Research and Testing, Division VI.4 Surface Technologies, D-12200 Berlin (Germany)

    2010-12-15

    X-ray scattering may contribute significantly to the spectral background of X-ray fluorescence (XRF) spectra. Based on metrological measurements carried out with a scanning electron microscope (SEM) having attached a well characterised X-ray source (polychromatic X-ray tube) and a calibrated energy dispersive X-ray spectrometer (EDS) the accuracy of a physical model for X-ray scattering is systematically evaluated for representative samples. The knowledge of the X-ray spectrometer efficiency, but also of the spectrometer response functions makes it possible to define a physical spectral background of XRF spectra. Background subtraction relying on purely mathematical procedures is state-of-the-art. The results produced by the analytical model are at least as reliable as those obtained by Monte-Carlo simulations, even without considering the very challenging contribution of multiple scattering. Special attention has been paid to Compton broadening. Relevant applications of the implementation of the analytical model presented in this paper are the prediction of the limits of detection for particular cases or the determination of the transmission of X-ray polycapillary lenses.

  20. X-ray scattering in X-ray fluorescence spectra with X-ray tube excitation - Modelling, experiment, and Monte-Carlo simulation

    International Nuclear Information System (INIS)

    X-ray scattering may contribute significantly to the spectral background of X-ray fluorescence (XRF) spectra. Based on metrological measurements carried out with a scanning electron microscope (SEM) having attached a well characterised X-ray source (polychromatic X-ray tube) and a calibrated energy dispersive X-ray spectrometer (EDS) the accuracy of a physical model for X-ray scattering is systematically evaluated for representative samples. The knowledge of the X-ray spectrometer efficiency, but also of the spectrometer response functions makes it possible to define a physical spectral background of XRF spectra. Background subtraction relying on purely mathematical procedures is state-of-the-art. The results produced by the analytical model are at least as reliable as those obtained by Monte-Carlo simulations, even without considering the very challenging contribution of multiple scattering. Special attention has been paid to Compton broadening. Relevant applications of the implementation of the analytical model presented in this paper are the prediction of the limits of detection for particular cases or the determination of the transmission of X-ray polycapillary lenses.

  1. Photocreation of a quantum domain and its detection by inelastic X-ray scattering and X-ray CARS

    International Nuclear Information System (INIS)

    We briefly argue the concept of a quantum domain and propose its detection using X-ray inelastic scattering and X-ray coherent anti-Stokes Raman scattering (CARS). The quantum domain is defined as a spatial region of which the phase state is converted to a different one from that in the background. In a case where photoinduced phase transitions are allowed to exhibit, such a domain has a relatively low excitation energy and is expected to be detected experimentally. Especially the X-ray inelastic scattering and the CARS are attractive methods, since they can give information of both the momentum and the energy.

  2. Electron dynamics of copper oxide superconductors studied by soft X-ray, hard X-ray and neutron inelastic scattering

    International Nuclear Information System (INIS)

    We combine soft X-ray, hard X-ray, and neutron inelastic scattering measurements to study both spin and charge excitations in electron-doped copper oxide superconductors. Thanks to the recent development of beam sources and related experimental techniques, accessible energy range of the inelastic scattering measurements overlaps each other and it enables us to investigate spin and charge dynamics in the important but unexplored energy-momentum space of the cuprate superconductors. Our study demonstrates that complementary use of X-ray and neutron has become effective in inelastic scattering for studying electron dynamics of materials. (author)

  3. Modeling X-Ray Scattering Process and Applications of the Scattering Model

    Science.gov (United States)

    Al-Jundi, Taher Lutfi

    1995-01-01

    Computer modeling of nondestructive inspections with x-rays is proving to be a very useful tool for enhancing the performance of these techniques. Two x-ray based inspection techniques are considered in this study. The first is "Radiographic Inspection", where an existing simulation model has been improved to account for scattered radiation effects. The second technique is "Inspection with Compton backscattering", where a new simulation model has been developed. The effect of scattered radiation on a simulated radiographic image can be insignificant, equally important, or more important than the effect of the uncollided flux. Techniques to account for the scattered radiation effects include Monte Carlo techniques, and solving the particle transport equation for photons. However, these two techniques although accurate, are computationally expensive and hence inappropriate for use in computer simulation of radiography. A less accurate approach but computationally efficient is the principle of buildup factors. Traditionally, buildup factors are defined for monoenergetic photons of energies typical of a nuclear reactor. In this work I have expanded the definition of buildup factors to include a bremsstrahlung spectrum of photons with energies typically used in radiography (keV's instead of MeV's). This expansion of the definition relies on an intensive experimental work to measure buildup factors for a white spectrum of x-rays. I have also developed a monte carlo code to reproduce the measured buildup factors. The code was then converted to a parallel code and distributed on a network of workstations to reduce the execution time. The second inspection technique is based on Compton backscattering, where photons are scattered at large angles, more than 90 degrees. The importance of this technique arises when the inspected object is very large, or when access is limited to only one side of the specimen. The downside of detecting photons from backscattering is the low

  4. Resonant magnetic scattering of polarized soft x rays

    Energy Technology Data Exchange (ETDEWEB)

    Sacchi, M. [Centre Universitaire Paris-Sud, Orsay (France); Hague, C.F. [Universite Pierre et Marie Curie, Paris (France); Gullikson, E.M.; Underwood, J. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of the first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.

  5. Neutron and Synchrotron X-Ray Scattering Studies of Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada,J.M.

    2008-09-01

    Superconductors hold the promise for a more stable and efficient electrical grid, but new isotropic, high-temperature superconductors are needed in order to reduce cable manufacturing costs. The effort to understand high-temperature superconductivity, especially in the layered cuprates, provides guidance to the search for new superconductors. Neutron scattering has long provided an important probe of the collective excitations that are involved in the pairing mechanism. For the cuprates, neutron and x-ray diffraction techniques also provide information on competing types of order, such as charge and spin stripes, that appear to be closely connected to the superconductivity. Recently, inelastic x-ray scattering has become competitive for studying phonons and may soon provide valuable information on electronic excitations. Examples of how these techniques contribute to our understanding of superconductivity are presented.

  6. Inelastic x-ray scattering from shocked liquid deuterium.

    Science.gov (United States)

    Regan, S P; Falk, K; Gregori, G; Radha, P B; Hu, S X; Boehly, T R; Crowley, B J B; Glenzer, S H; Landen, O L; Gericke, D O; Döppner, T; Meyerhofer, D D; Murphy, C D; Sangster, T C; Vorberger, J

    2012-12-28

    The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation-driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Ly(α) line emission at 2.96 keV. These first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5  eV, an electron density of 2.2(±0.5)×10(23)  cm(-3), and an ionization of 0.8 (-0.25, +0.15). Two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results. PMID:23368573

  7. Revealing inner shell dynamics with inelastic X-ray scattering

    International Nuclear Information System (INIS)

    One of the many opportunities provided by the Advanced Photon Source (APS) is to extend the study of intra-atomic dynamics. As a means of testing dynamic response, inelastic x-ray scattering is particularly promising since it allows us to independently vary the period of the exciting field in both space and time. As an example of this type of work, the author presents experiments performed at the Cornell High Energy Synchrotron Source (CHESS) laboratory, a prototype for the APS. This was inner shell inelastic scattering with a twist: in order to explore a new distance scale an x-ray fluorescence trigger was employed. Aside for the atomic insight gained, the experiment taught them the importance of the time structure of the synchrotron beam for coincidence experiments which are dominated by accidental events

  8. X-ray scattering on liquid-gas interfaces

    International Nuclear Information System (INIS)

    In the framework of this thesis two different theme-fields were studied with dhe methods of the elastic, surface sensitive X-ray scattering. In the first part of the thesis the liquid-gas interfaces water-propane and glycerol-isobutane were studied concerning the structure formation on these interfaces. The system water-propane served for the study of the gas hydrate formation on the water-gas interface. Studies on this interface could give no hints on the formation of propane hydrates or propane-hydrate fragments. However the adsorption of molecularly thin propane films on the water surface was observed. The adsorption behaviour of gases on liquid surfaces was studied by further experiments on the glycerol-isobutane interface. In the second part of the thesis the surfaces of aqueous salt solutions and water were studied. The lateralstructure of these liquid-gas interfaces was studied by the method of the diffuse X-ray scattering.

  9. Characterization of angle – dependent Focal spot in a miniature X-ray tube

    International Nuclear Information System (INIS)

    Miniature x-ray tube can be used to obtain important images easily due to its small size and movability. Because the miniature x-ray tube discussed in this paper is a transmission type, it can emit x-rays in all directions, making it possible to take angle-dependent images. Focal spot is essential in an x-ray tube because it affects the quality of images taken by the x-ray tube. The size of the focal spot is equivalent to that of the x-ray generation region located at the x-ray tube target. If the size of focal spot is too large, images produced will be blurry. In other words, smaller focal spots produce clearer images. Currently common x-ray tubes have a relatively thick target, causing them to emit x-rays in one direction with uniform focal spot size. This type of x-ray produced is called reflection x-ray. However, unlike the conventional, miniature x-ray tubes, that this paper focuses on, have thin beryllium targets, allowing for both reflection x-ray and transmission x-ray to be generated at the targets. And since both types can affect the size of focal spots, these miniature x-ray tubes can emit x-rays, which is a crucial property when taking angle-dependent images. By measuring the physical characteristics of the focal spots, methods of improving the qualities of angle-dependent images can be determined. Thus, this experiment, which deals with measuring these physical characteristics will substantially help in the improvement of the qualities of angle-dependent images. The result was obtained by analyzing the image with procedure provided by EN-12543-5 Focal spots increase with increase in angle from 0 degree to 90 degrees

  10. X-ray scattering in X-ray fluorescence spectra with X-ray monochromatic, polarised excitation - Modelling, experiment, and Monte-Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hodoroaba, V.-D., E-mail: Dan.Hodoroaba@bam.de [BAM Federal Institute for Materials Research and Testing, Division 6.4 Surface Technologies, D-12200 Berlin (Germany); Radtke, M.; Reinholz, U.; Riesemeier, H. [BAM Federal Institute for Materials Research and Testing, Division 1.3 Structure Analysis, Polymer Analysis, D-12200 Berlin (Germany); Vincze, L. [Ghent University, Department of Analytical Chemistry, B-9000 Ghent (Belgium); Reuter, D. [BAM Federal Institute for Materials Research and Testing, Division 6.4 Surface Technologies, D-12200 Berlin (Germany)

    2011-07-01

    A systematic series of measurements has been carried out with monochromatic X-ray excitation with synchrotron radiation in order to check a physical model on X-ray scattering. The model has recently been successfully tested for the case of polychromatic, unpolarised excitation emitted by an X-ray tube. Our main purpose is the modelling of a physical background in X-ray fluorescence spectra, so that improved quantitative results can be achieved especially for strongly scattering specimens. The model includes single Rayleigh and Compton scattering in the specimen, the effect of bound electrons, the challenging Compton broadening and the polarisation degree. Representative specimens, measurement geometries and excitation energies have been selected with synchrotron monochromatic light at BAMline/BESSY II. Monte-Carlo simulations have been also carried out in order to evaluate the quality of the results achieved with the model.

  11. X-ray scattering in X-ray fluorescence spectra with X-ray monochromatic, polarised excitation - Modelling, experiment, and Monte-Carlo simulation

    International Nuclear Information System (INIS)

    A systematic series of measurements has been carried out with monochromatic X-ray excitation with synchrotron radiation in order to check a physical model on X-ray scattering. The model has recently been successfully tested for the case of polychromatic, unpolarised excitation emitted by an X-ray tube. Our main purpose is the modelling of a physical background in X-ray fluorescence spectra, so that improved quantitative results can be achieved especially for strongly scattering specimens. The model includes single Rayleigh and Compton scattering in the specimen, the effect of bound electrons, the challenging Compton broadening and the polarisation degree. Representative specimens, measurement geometries and excitation energies have been selected with synchrotron monochromatic light at BAMline/BESSY II. Monte-Carlo simulations have been also carried out in order to evaluate the quality of the results achieved with the model.

  12. CHEMICAL APPLICATIONS OF INELASTIC X-RAY SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    HAYASHI,H.; UDAGAWA,Y.; GILLET,J.M.; CALIEBE,W.A.; KAO,C.C.

    2001-08-01

    Inelastic x-ray scattering (IXS), complementary to other more established inelastic scattering probes, such as light scattering, electron scattering, and neutron scattering, is becoming an important experimental technique in the study of elementary excitations in condensed matters. Over the past decade, IXS with total energy resolution of few meV has been achieved, and is being used routinely in the study of phonon dispersions in solids and liquids as well as dynamics in disordered and biological systems. In the study of electronic excitations, IXS with total energy resolution on the order of 100 meV to 1 eV is gaining wider applications also. For example, IXS has been used to study collective excitations of valence electrons, single electron excitations of valence electrons, as well as core electron excitations. In comparison with the alternative scattering techniques mentioned above, IXS has several advantages. First, IXS probes the full momentum transfer range of the dielectric response of the sample, whereas light scattering is limited to very small momentum transfers, and electron scattering suffers the effects of multiple scattering at large momentum transfers. Second, since IXS measures the bulk properties of the sample it is not surface sensitive, therefore it does not require special preparation of the sample. The greater flexibility in sample conditions and environments makes IXS an ideal probe in the study of liquids and samples under extreme temperature, pressure, and magnetic field. Third, the tunability of synchrotron radiation sources enables IXS to exploit element specificity and resonant enhancement of scattering cross sections. Fourth, IXS is unique in the study of dynamics of liquids and amorphous solids because it can probe the particular region of energy-momentum transfer phase space, which is inaccessible to inelastic neutron scattering. On the other hand, the main disadvantages of IXS are the small cross sections and the strong absorption of

  13. Dense Matter Characterization by X-ray Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O L; Glenzer, S H; Edwards, M J; Lee, R W; Collins, G W; Cauble, R C; Hsing, W W; Hammel, B A

    2000-12-29

    We discuss the extension of the powerful technique of Thomson scattering to the x-ray regime for providing an independent measure of plasma parameters for dense plasmas. By spectrally-resolving the scattering, the coherent (Rayleigh) unshifted scattering component can be separated from the incoherent Thomson component, which is both Compton and Doppler shifted. The free electron density and temperature can then be inferred from the spectral shape of the high frequency Thomson scattering component. In addition, as the plasma temperature is decreased, the electron velocity distribution as measured by incoherent Thomson scattering will make a transition from the traditional Gaussian Boltzmann distribution to a density-dependent parabolic Fermi distribution to. We also present a discussion for a proof-of-principle experiment appropriate for a high energy laser facility.

  14. Inelastic x-ray scattering from phonons under multibeam conditions

    Science.gov (United States)

    Bosak, Alexey; Krisch, Michael

    2007-03-01

    We report on an experimental observation of a previously neglected multibeam contribution to the inelastic x-ray scattering cross section. Its manifestation is a substantial modification of the apparent phonon selection rules when two (or more) reciprocal lattice points are simultaneously intercepted by the Ewald sphere. The observed multibeam contributions can be treated semi-quantitatively in the frame of Renninger’s “simplest approach.” A few corollaries, relevant for experimental work on inelastic scattering from phonons, are presented.

  15. Small-angle x-ray scattering studies of calmodulin mutants with deletions in the linker region of the central helix indicate that the linker region retains a predominantly. alpha. -helical conformation

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Mikio; Engelman, D.M. (Yale Univ., New Haven, CT (USA)); Head, J.F. (Boston Univ., MA (USA)); Persechini, A.; Kretsinger, R.H. (Univ. of Virginia, Charlottesville (USA))

    1991-02-05

    Two mutant forms of calmodulin were examined by small-angle X-ray scattering in solution and compared with the wild-type protein. Each mutant has deletions in the linker region of the central helix: one lacks residues Glu-83 and Glu-84 (Des2) and the other lacks residues Ser-81 through Glu-84 (Des4). The deletions change both the radii of gyration and the maximum dimensions of the molecules. In the presence of Ca{sup 2+}, the observed radii of gyration are 22.4 {angstrom} for wild-type bacterially expressed calmodulin, 19.5 {angstrom} for Des2 calmodulin, and 20.3 {angstrom} for Des4 calmodulin. A reduction in the radius of gyration by 1-2 {angstrom} on removal of calcium, previously observed in the native protein, was also found in the wild type and the Des4 mutant; however, no significant size change was observed in the Des2 mutant. The large calcium-dependent conformational change in calmodulin induced by the binding of melittin was observed in all the bacterially expressed proteins. Each protein appears to undergo a transition from a dumbbell shape to a more globular conformation on binding melittin in the presence of calcium, although quantitatively the changes in the wild-type and Des4 proteins greatly exceed those in Des2. Modeling shows that the structural properties of the deletion mutants are well described by modifications of an {alpha} helix in the central linker region of the molecule. Thus, the structure of the linker region is stable enough to maintain the average orientation and separation of the lobes yet flexible enough to permit the lobes to approach each other upon binding a peptide.

  16. Small-angle x-ray scattering studies of calmodulin mutants with deletions in the linker region of the central helix indicate that the linker region retains a predominantly α-helical conformation

    International Nuclear Information System (INIS)

    Two mutant forms of calmodulin were examined by small-angle X-ray scattering in solution and compared with the wild-type protein. Each mutant has deletions in the linker region of the central helix: one lacks residues Glu-83 and Glu-84 (Des2) and the other lacks residues Ser-81 through Glu-84 (Des4). The deletions change both the radii of gyration and the maximum dimensions of the molecules. In the presence of Ca2+, the observed radii of gyration are 22.4 angstrom for wild-type bacterially expressed calmodulin, 19.5 angstrom for Des2 calmodulin, and 20.3 angstrom for Des4 calmodulin. A reduction in the radius of gyration by 1-2 angstrom on removal of calcium, previously observed in the native protein, was also found in the wild type and the Des4 mutant; however, no significant size change was observed in the Des2 mutant. The large calcium-dependent conformational change in calmodulin induced by the binding of melittin was observed in all the bacterially expressed proteins. Each protein appears to undergo a transition from a dumbbell shape to a more globular conformation on binding melittin in the presence of calcium, although quantitatively the changes in the wild-type and Des4 proteins greatly exceed those in Des2. Modeling shows that the structural properties of the deletion mutants are well described by modifications of an α helix in the central linker region of the molecule. Thus, the structure of the linker region is stable enough to maintain the average orientation and separation of the lobes yet flexible enough to permit the lobes to approach each other upon binding a peptide

  17. INELASTIC X-RAY SCATTERING AT ULTRAHIGH PRESSURES

    International Nuclear Information System (INIS)

    Inelastic x-ray scattering (IXS) provides high-pressure research with an arsenal of analytical capabilities for key measurements that were previously unattainable, and high pressure research provides IXS with numerous applications where the technique has unique advantages over other methods. High-pressure investigations can now be conducted using non-resonant IXS, resonant IXS, nuclear resonant IXS, and x-ray emission spectroscopy with energy resolutions of 100 meV to 1 eV for electronic transitions and 1 to 10 meV for phonon studies. By pressure-tuning materials over a wide range, we are able to investigate fundamental physics of electron gases, strongly correlated electron systems, high-energy electronic excitations, and phonons in energy and momentum space. The results will have a profound influence on materials applications as well as providing basic information for understanding the deep interior of the Earth and other planets

  18. INELASTIC X-RAY SCATTERING AT ULTRAHIGH PRESSURES.

    Energy Technology Data Exchange (ETDEWEB)

    MAO, H.K.; HEMLEY, J.; KAO, C.C.

    2000-08-28

    Inelastic x-ray scattering (IXS) provides high-pressure research with an arsenal of analytical capabilities for key measurements that were previously unattainable, and high pressure research provides IXS with numerous applications where the technique has unique advantages over other methods. High-pressure investigations can now be conducted using non-resonant IXS, resonant IXS, nuclear resonant IXS, and x-ray emission spectroscopy with energy resolutions of 100 meV to 1 eV for electronic transitions and 1 to 10 meV for phonon studies. By pressure-tuning materials over a wide range, we are able to investigate fundamental physics of electron gases, strongly correlated electron systems, high-energy electronic excitations, and phonons in energy and momentum space. The results will have a profound influence on materials applications as well as providing basic information for understanding the deep interior of the Earth and other planets.

  19. Resonant soft x-ray scattering studies of buried interfaces

    International Nuclear Information System (INIS)

    Resonant soft x-ray scattering (RSXS) is a unique experimental tool to access the electronic properties of buried interfaces in heterostructures that contain transition metal oxides. In this contribution, studies of SrTiO3/LaAlO3, SrTiO3/(La,Ca)MnO3 and NdGaO3/(La,Ca)MnO3 interfaces are presented. Specifically, RSXS was employed to examine the electronic reconstruction of Ti 3d and O 2p valence states at the interfaces of SrTiO3/LaAlO3 superlattices. Similarly, we used resonant soft x-ray reflectivity to investigate the electronic structure at the interfaces of SrTiO3/(La,Ca)MnO3 and NdGaO3/(La,Ca)MnO3 thin film systems.

  20. Femtosecond x-ray diffuse scattering measurements of semiconductor ablation dynamics

    Science.gov (United States)

    Lindenberg, A. M.; Engemann, S.; Gaffney, K. J.; Sokolowski-Tinten, K.; Larsson, J.; Reis, D.; Lorazo, P.; Hastings, J. B.

    2008-05-01

    Femtosecond time-resolved small and wide-angle x-ray diffuse scattering techniques are applied to investigate the ultrafast nucleation processes that occur during the ablation process in semiconducting materials. Following intense optical excitation, a transient liquid state of high compressibility characterized by large-amplitude density fluctuations is observed and the build-up of these fluctuations is measured in real-time. Small-angle scattering measurements reveal the first steps in the nucleation of nanoscale voids below the surface of the semiconductor and support MD simulations of the ablation process.

  1. Structure of liposome encapsulating proteins characterized by X-ray scattering and shell-modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Mitsuhiro, E-mail: mhirai@gunma-u.ac.jp; Kimura, Ryota; Takeuchi, Kazuki; Hagiwara, Yoshihiko [Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510 (Japan); Kawai-Hirai, Rika [Gunma University, 3-39-15 Shouwa, Maebashi 371-8512 (Japan); Ohta, Noboru [JASRI, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Igarashi, Noriyuki; Shimuzu, Nobutaka [KEK-PF, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2013-11-01

    Wide-angle X-ray scattering data using a third-generation synchrotron radiation source are presented. Lipid liposomes are promising drug delivery systems because they have superior curative effects owing to their high adaptability to a living body. Lipid liposomes encapsulating proteins were constructed and the structures examined using synchrotron radiation small- and wide-angle X-ray scattering (SR-SWAXS). The liposomes were prepared by a sequential combination of natural swelling, ultrasonic dispersion, freeze-throw, extrusion and spin-filtration. The liposomes were composed of acidic glycosphingolipid (ganglioside), cholesterol and phospholipids. By using shell-modeling methods, the asymmetric bilayer structure of the liposome and the encapsulation efficiency of proteins were determined. As well as other analytical techniques, SR-SWAXS and shell-modeling methods are shown to be a powerful tool for characterizing in situ structures of lipid liposomes as an important candidate of drug delivery systems.

  2. Structure of liposome encapsulating proteins characterized by X-ray scattering and shell-modeling

    International Nuclear Information System (INIS)

    Wide-angle X-ray scattering data using a third-generation synchrotron radiation source are presented. Lipid liposomes are promising drug delivery systems because they have superior curative effects owing to their high adaptability to a living body. Lipid liposomes encapsulating proteins were constructed and the structures examined using synchrotron radiation small- and wide-angle X-ray scattering (SR-SWAXS). The liposomes were prepared by a sequential combination of natural swelling, ultrasonic dispersion, freeze-throw, extrusion and spin-filtration. The liposomes were composed of acidic glycosphingolipid (ganglioside), cholesterol and phospholipids. By using shell-modeling methods, the asymmetric bilayer structure of the liposome and the encapsulation efficiency of proteins were determined. As well as other analytical techniques, SR-SWAXS and shell-modeling methods are shown to be a powerful tool for characterizing in situ structures of lipid liposomes as an important candidate of drug delivery systems

  3. Maximum-likelihood estimation of scatter components algorithm for x-ray coherent scatter computed tomography of the breast

    Science.gov (United States)

    Ghammraoui, Bahaa; Badal, Andreu; Popescu, Lucretiu M.

    2016-04-01

    Coherent scatter computed tomography (CSCT) is a reconstructive x-ray imaging technique that yields the spatially resolved coherent-scatter cross section of the investigated object revealing structural information of tissue under investigation. In the original CSCT proposals the reconstruction of images from coherently scattered x-rays is done at each scattering angle separately using analytic reconstruction. In this work we develop a maximum likelihood estimation of scatter components algorithm (ML-ESCA) that iteratively reconstructs images using a few material component basis functions from coherent scatter projection data. The proposed algorithm combines the measured scatter data at different angles into one reconstruction equation with only a few component images. Also, it accounts for data acquisition statistics and physics, modeling effects such as polychromatic energy spectrum and detector response function. We test the algorithm with simulated projection data obtained with a pencil beam setup using a new version of MC-GPU code, a Graphical Processing Unit version of PENELOPE Monte Carlo particle transport simulation code, that incorporates an improved model of x-ray coherent scattering using experimentally measured molecular interference functions. The results obtained for breast imaging phantoms using adipose and glandular tissue cross sections show that the new algorithm can separate imaging data into basic adipose and water components at radiation doses comparable with Breast Computed Tomography. Simulation results also show the potential for imaging microcalcifications. Overall, the component images obtained with ML-ESCA algorithm have a less noisy appearance than the images obtained with the conventional filtered back projection algorithm for each individual scattering angle. An optimization study for x-ray energy range selection for breast CSCT is also presented.

  4. 2011 U.S. National School on Neutron and X-ray Scattering

    International Nuclear Information System (INIS)

    The 13th annual U.S. National School on Neutron and X-ray Scattering was held June 11 to 25, 2011, at both Oak Ridge and Argonne National Laboratories. This school brought together 65 early career graduate students from 56 different universities in the US and provided them with a broad introduction to the techniques available at the major large-scale neutron and synchrotron x-ray facilities. This school is focused primarily on techniques relevant to the physical sciences, but also touches on cross-disciplinary bio-related scattering measurements. During the school, students received lectures by over 30 researchers from academia, industry, and national laboratories and participated in a number of short demonstration experiments at Argonne's Advanced Photon Source (APS) and Oak Ridge's Spallation neutron Source (SNS) and High Flux Isotope Reactor (HFIR) facilities to get hands-on experience in using neutron and synchrotron sources. The first week of this year's school was held at Oak Ridge National Lab, where Lab director Thom Mason welcomed the students and provided a shitorical perspective of the neutron and x-ray facilities both at Oak Ridge and Argonne. The first few days of the school were dedicated to lectures laying out the basics of scattering theory and the differences and complementarity between the neutron and x-ray probes given by Sunil Sinha. Jack Carpenter provided an introduction into how neutrons are generated and detected. After this basic introduction, the students received lectures each morning on specific techniques and conducted demonstration experiments each afternoon on one of 15 different instruments at either the SNS or HFIR. Some of the topics covered during this week of the school included inelastic neutron scattering by Bruce Gaulin, x-ray and neutron reflectivity by Chuck Majkrazak, small-angle scattering by Volker Urban, powder diffraction by Ashfia Huq and diffuse scattering by Gene Ice.

  5. Small-Angle X-ray Study of the Three-Dimensional Collagen/Mineral Superstructure in Intramuscular Fish Bone

    International Nuclear Information System (INIS)

    Synchrotron small-angle X-ray scattering (SAXS) was conducted on native intramuscular shad/herring bone samples. Two-dimensional SAXS patterns were quantitatively analyzed with special consideration for preferred orientation effects, leading to new insights into the three-dimensional superstructure of mineralized collagen fibrils in shad/herring bone

  6. The Use of Small-Angle X-Ray Diffraction Studies for the Analysis of Structural Features in Archaeological Samples

    DEFF Research Database (Denmark)

    Wess, T. J.; Drakopoulos, M.; Snigirev, A.;

    2001-01-01

    X-ray diffraction or scattering analysis provides a powerful non-destructive technique capable of providing important information about the state of archaeological samples in the nanometer length scale. Small-angle diffraction facilities are usually found at synchrotron sources, although the...... capable of giving fundamental structural information as well as quantifying the remodelling of structures influenced by environmental factors....

  7. Resonant inelastic scattering at intermediate X-ray energies

    CERN Document Server

    Hague, C F; Journel, L; Gallet, J J; Rogalev, A; Krill, G; Kappler, J P

    2000-01-01

    We describe resonant inelastic X-ray scattering (RIXS) experiments and magnetic circular dichroism (MCD) in X-ray fluorescence performed in the 3-5 keV range. The examples chosen are X-ray fluorescence MCD of FeRh and RIXS experiments performed at the L/sub 3/ edge of Ce. Fe Rh is antiferromagnetic at room temperature but has a transition to the ferromagnetic state above 400 K. The Rh MCD signal is compared with an augmented spherical wave calculation. The experiment confirms the predicted spin polarization of the Rh 4d valence states. The RIXS measurements on Ce compounds and intermetallics address the problem of mixed valency especially in systems where degeneracy with the Fermi level remains small. Examples are taken from the 2p to (4f5d) /sup +1/ followed by 3d to 2p RIXS for a highly ionic compound CeF /sub 3/ and for almost gamma -like CeCuSi. (38 refs).

  8. Structural characterization of nanotube fibers by x-ray scattering.

    Science.gov (United States)

    Launois, P; Marucci, A; Vigolo, B; Bernier, P; Derré, A; Poulin, P

    2001-06-01

    Nanotube fibers with diameters ranging between 10 and 100 microns were produced by a simple spinning process. These fibers were studied by x-ray scattering--a technique that allows good visualization of the composition as well as the alignment of the constituents. The fibers were found to be composed of bundles of single wall carbon nanotubes, poly(vinyl alcohol) polymer chains, graphitic objects, and Ni-based particles. The nanotubes and poly(vinyl alcohol) chains were preferentially oriented along the fiber axis. PMID:12914040

  9. Scanning X-ray nanodiffraction: from the experimental approach towards spatially resolved scattering simulations

    OpenAIRE

    Dubslaff, Martin; Hanke, Michael; Patommel, Jens; Hoppe, Robert; Schroer, Christian G.; Schöder, Sebastian; Burghammer, Manfred

    2012-01-01

    An enhancement on the method of X-ray diffraction simulations for applications using nanofocused hard X-ray beams is presented. We combine finite element method, kinematical scattering calculations, and a spot profile of the X-ray beam to simulate the diffraction of definite parts of semiconductor nanostructures. The spot profile could be acquired experimentally by X-ray ptychography. Simulation results are discussed and compared with corresponding X-ray nanodiffraction experiments on single ...

  10. Modern approaches to investigation of thin films and monolayers: X-ray reflectivity, grazing-incidence X-ray scattering and X-ray standing waves

    International Nuclear Information System (INIS)

    The review concerns modern experimental methods of structure determination of thin films of different nature. The methods are based on total reflection of X-rays from the surface and include X-ray reflectivity, grazing-incidence X-ray scattering and X-ray standing waves. Their potential is exemplified by the investigations of various organic macromolecular systems that exhibit the properties of semiconductors and are thought to be promising as thin-film transistors, light-emitting diodes and photovoltaic cells. It is shown that combination of the title methods enable high-precision investigations of the structure of thin-film materials and structure formation in them, i.e., it is possible to obtain information necessary for improvement of the operating efficiency of elements of organic electronic devices. The bibliography includes 92 references

  11. The composite architecture of the wood cell wall. Nanostructure investigations with x-ray scattering

    International Nuclear Information System (INIS)

    The present thesis is concerned with the structure of the wood cell wall at nanometer level, in particular with the arrangement of the nano-sized cellulose fibrils that reinforce the cell wall. In this work, small-angle x-ray scattering (SAXS) and wide-angle x-ray diffraction were applied to investigate the tilt angle of the cellulose fibrils with respect to the longitudinal cell axis (microfibril angle) in the major part of the cell wall, the S2 layer. A comparative SAXS study on four native wood species (spruce, pine, oak and beech) revealed a decrease of microfibril angles from up to 40 o in the very first annual rings near the pith to about 0 o near the Bark in all species. This decrease is interpreted in terms of a mechanical optimization by structural adaptations. In addition to the laboratory x-ray investigations, synchrotron x-ray microdiffraction was used to study the local orientation of the cellulose fibrils with a position resolution of 2 gm. A new technique based on unusual scattering geometry with the sample in cross section was developed. Using this technique adjacent spruce wood cells were shown to exhibit exclusively right handed cellulose helices in the major part of the cell wall. Moreover, it was found that, within the experimental accuracy, the microfibril angle was constant across the whole S2 layer. Synchrotron microdiffraction on single cell walls near drying fissures in bordered pits showed that the fissure orientation roughly follows the cellulose fibrils in the S2 layer. Quite in contrast, the orientation of fissures in pits of different type, namely cross field pits, was found to be up to 25 o different from the fibril orientation determined by SAXS in the laboratory. (author)

  12. A semianalytic model to investigate the potential applications of x-ray scatter imaging.

    Science.gov (United States)

    Leclair, R J; Johns, P C

    1998-06-01

    Although x-ray scatter is generally regarded as a nuisance that reduces radiographic contrast (C) and the signal-to-noise ratio (SNR) in conventional images, many technologies have been devised to extract useful information from the scattered x rays. A systematic approach, however, for analyzing the potential applications of x-ray scatter imaging has been lacking. Therefore, we have formulated a simple but useful semianalytic model to investigate C and SNR in scatter images. Our model considers the imaging of a target object against a background material of the same dimensions when both are situated within a water phantom. We have selected biological materials (liver, fat, bone, muscle, blood, and brain matter) for which intermolecular form factors for coherent scattering were available. Analytic relationships between C and SNR were derived, and evaluated numerically as the target object thickness (0.01-40 mm) and photon energy (10-200 keV) were systematically varied. The fundamental limits of scatter imaging were assessed via calculations that assumed that all first-order scatter exiting the phantom, over 4 pi steradians, formed the signal. Calculations for a restricted detector solid angle were then performed. For the task of imaging white brain matter versus blood in a 15 cm thick water phantom, the maximum SNR, over all energies, for images based on the detection of all forward scatter within the angular range 2 degrees-12 degrees is greater than that of primary images for target object thicknesses < or = 23 mm. Use of the backscattered x rays within the range 158 degrees-178 degrees to image objects 3 cm below the surface of a 25 cm thick water phantom allows the liver to be distinguished from fat with a SNR superior to that of primary imaging when the objects are < or = 22 mm thick. Our analysis confirms the usefulness of scattered x rays, and provides simple methods for determining the regimes of medical interest in which x-ray scatter imaging could

  13. Estimation of liquids structural in narrow pores by small angle X ray radiography

    International Nuclear Information System (INIS)

    The method suggested for estimation of liquids structure in narrow pores is based on small angle X-ray radiography data. The investigation was carried out on porous carbon adsorbents with using a number of fluids. Additional small-angle scattering was observed during the filling of mesopores by organic fluids, which was not observed before. It was absent during the filling of micropores only. The additional radiography is a part of the diffraction pattern, which is an attribute of liquids and appears as one or several diffuse maxima in the range of wide angles. This diffraction pattern reflects an occurrence of the short-range order and shows similarity of the liquid structures in mesopores and in volume. The limiting value of pores inertia radius radiography is estimated, at which in liquids the short-range order is formed

  14. Femtosecond X-ray scattering in condensed matter

    International Nuclear Information System (INIS)

    This thesis investigates the manifold couplings between electronic and structural properties in crystalline Perovskite oxides and a polar molecular crystal. Ultrashort optical excitation changes the electronic structure and the dynamics of the connected reversible lattice rearrangement is imaged in real time by femtosecond X-ray scattering experiments. An epitaxially grown superlattice consisting of alternating nanolayers of metallic and ferromagnetic strontium ruthenate (SRO) and dielectric strontium titanate serves as a model system to study optically generated stress. In the ferromagnetic phase, phonon-mediated and magnetostrictive stress in SRO display similar sub-picosecond dynamics, similar strengths but opposite sign and different excitation spectra. The amplitude of the magnetic component follows the temperature dependent magnetization square, whereas the strength of phononic stress is determined by the amount of deposited energy only. The ultrafast, phonon-mediated stress in SRO compresses ferroelectric nanolayers of lead zirconate titanate in a further superlattice system. This change of tetragonal distortion of the ferroelectric layer reaches up to 2 percent within 1.5 picoseconds and couples to the ferroelectric soft mode, or ion displacement within the unit cell. As a result, the macroscopic polarization is reduced by up to 100 percent with a 500 femtosecond delay that is due to final elongation time of the two anharmonically coupled modes. Femtosecond photoexcitation of organic chromophores in a molecular, polar crystal induces strong changes of the electronic dipole moment via intramolecular charge transfer. Ultrafast changes of transmitted X-ray intensity evidence an angular rotation of molecules around excited dipoles following the 10 picosecond kinetics of the charge transfer reaction. Transient X-ray scattering is governed by solvation, masking changes of the chromophore's molecular structure. (orig.)

  15. Femtosecond X-ray scattering in condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    Korff Schmising, Clemens von

    2008-11-24

    This thesis investigates the manifold couplings between electronic and structural properties in crystalline Perovskite oxides and a polar molecular crystal. Ultrashort optical excitation changes the electronic structure and the dynamics of the connected reversible lattice rearrangement is imaged in real time by femtosecond X-ray scattering experiments. An epitaxially grown superlattice consisting of alternating nanolayers of metallic and ferromagnetic strontium ruthenate (SRO) and dielectric strontium titanate serves as a model system to study optically generated stress. In the ferromagnetic phase, phonon-mediated and magnetostrictive stress in SRO display similar sub-picosecond dynamics, similar strengths but opposite sign and different excitation spectra. The amplitude of the magnetic component follows the temperature dependent magnetization square, whereas the strength of phononic stress is determined by the amount of deposited energy only. The ultrafast, phonon-mediated stress in SRO compresses ferroelectric nanolayers of lead zirconate titanate in a further superlattice system. This change of tetragonal distortion of the ferroelectric layer reaches up to 2 percent within 1.5 picoseconds and couples to the ferroelectric soft mode, or ion displacement within the unit cell. As a result, the macroscopic polarization is reduced by up to 100 percent with a 500 femtosecond delay that is due to final elongation time of the two anharmonically coupled modes. Femtosecond photoexcitation of organic chromophores in a molecular, polar crystal induces strong changes of the electronic dipole moment via intramolecular charge transfer. Ultrafast changes of transmitted X-ray intensity evidence an angular rotation of molecules around excited dipoles following the 10 picosecond kinetics of the charge transfer reaction. Transient X-ray scattering is governed by solvation, masking changes of the chromophore's molecular structure. (orig.)

  16. Two-dimensional structure from random multiparticle X-ray scattering images using cross-correlations

    Science.gov (United States)

    Pedrini, B.; Menzel, A.; Guizar-Sicairos, M.; Guzenko, V. A.; Gorelick, S.; David, C.; Patterson, B. D.; Abela, R.

    2013-04-01

    Knowledge of the structure of biological macromolecules, especially in their native environment, is crucial because of the close structure-function relationship. X-ray small-angle scattering is used to determine the shape of particles in solution, but the achievable resolution is limited owing to averaging over particle orientations. In 1977, Kam proposed to obtain additional structural information from the cross-correlation of the scattering intensities. Here we develop the method in two dimensions, and give a procedure by which the single-particle diffraction pattern is extracted in a model-independent way from the correlations. We demonstrate its application to a large set of synchrotron X-ray scattering images on ensembles of identical, randomly oriented particles of 350 or 200 nm in size. The obtained 15 nm resolution in the reconstructed shape is independent of the number of scatterers. The results are discussed in view of proposed ‘snapshot’ scattering by molecules in the liquid phase at X-ray free-electron lasers.

  17. Simulation of X-ray scattering from multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, C. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-09-01

    This paper describes basic methods for the simulation of X-ray scattering from ideal and non-ideal multilayers. In the 1 D model the kinematical and dynamical calculation is made with several kinds of disturbances of the ideal structure of the multilayers. We shall discuss the influence of surface roughness, interdiffusion between layers and fluctuation of thickness in the multilayer. In the second part some ideas are given to get non-specular scattering simulations of disturbed multilayer structures in a 2 D model. Although this is a well-known subject and has been treated several times in the last years, it is really fruitful to do the basic steps for this topic, because it can give you a deep insight into the physics of a travelling wave inside a multilayer. (author) 26 figs., 1 tab., 4 refs.

  18. Simulation of X-ray scattering from multilayers

    International Nuclear Information System (INIS)

    This paper describes basic methods for the simulation of X-ray scattering from ideal and non-ideal multilayers. In the 1 D model the kinematical and dynamical calculation is made with several kinds of disturbances of the ideal structure of the multilayers. We shall discuss the influence of surface roughness, interdiffusion between layers and fluctuation of thickness in the multilayer. In the second part some ideas are given to get non-specular scattering simulations of disturbed multilayer structures in a 2 D model. Although this is a well-known subject and has been treated several times in the last years, it is really fruitful to do the basic steps for this topic, because it can give you a deep insight into the physics of a travelling wave inside a multilayer. (author) 26 figs., 1 tab., 4 refs

  19. Imaging Nonequilibrium Atomic Vibrations with X-ray Diffuse Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Trigo, M.; Chen, J.; Vishwanath, V.H.; /SLAC; Sheu, Y.M.; /Michigan U.; Graber, T.; Henning, R.; /U. Chicago; Reis, D; /SLAC /Stanford U., Appl. Phys. Dept.

    2011-03-03

    We use picosecond x-ray diffuse scattering to image the nonequilibrium vibrations of the lattice following ultrafast laser excitation. We present images of nonequilibrium phonons in InP and InSb throughout the Brillouin-zone which remain out of equilibrium up to nanoseconds. The results are analyzed using a Born model that helps identify the phonon branches contributing to the observed features in the time-resolved diffuse scattering. In InP this analysis shows a delayed increase in the transverse acoustic (TA) phonon population along high-symmetry directions accompanied by a decrease in the longitudinal acoustic (LA) phonons. In InSb the increase in TA phonon population is less directional.

  20. X-ray scattering by porous silicon modulated structures

    International Nuclear Information System (INIS)

    A multilayered porous structure formed as a result of the anodization of a Si(111)(Sb) substrate in an HF:C2H5OH (1: 2) solution with a periodically alternating current has been investigated by high-resolution X-ray diffraction. It is established that, despite 50% porosity, a thickness of 30 μm, and significant strain (4 × 10−3), the porous silicon structure consists mainly of coherent crystallites. A model of coherent scattering from a multilayered periodic porous structure is proposed within the dynamic theory of diffraction. It is shown that the presence of gradient strains of 5 × 10−4 or higher leads to phase loss upon scattering from porous superlattices and the suppression of characteristic satellites in rocking curves.

  1. Note: Construction of x-ray scattering and x-ray absorption fine structure beamline at the Pohang Light Source

    International Nuclear Information System (INIS)

    A new hard x-ray beamline, 10B KIST-PAL beamline (BL10B), has been designed and constructed at the Pohang Light Source (PLS) in Korea. The beamline, operated by Pohang Accelerator Laboratory-Korean Institute of Science and Technology consortium, is dedicated to x-ray scattering (XRS) and x-ray absorption fine structure (XAFS) experiments. X rays with photon energies from 4.0 to 16.0 keV are delivered to the experimental station passing a collimating mirror, a fixed-exit double-crystal Si(111) monochromator, and a toroidal mirror. Basic experimental equipments for XAFS measurement, a high resolution diffractometry, an image plate detector system, and a hot stage have been prepared for the station. From our initial commissioning and performance testing of the beamline, it is observed that BL10B beamline can perform XRS and XAFS measurements successfully.

  2. SU-E-I-01: A Fast, Analytical Pencil Beam Based Method for First Order X-Ray Scatter Estimation of Kilovoltage Cone Beam X-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J; Bourland, J [Wake Forest University, Winston-salem, NC (United States)

    2014-06-01

    Purpose: To analytically estimate first-order x-ray scatter for kV cone beam x-ray imaging with high computational efficiency. Methods: In calculating first-order scatter using the Klein-Nishina formula, we found that by integrating the point-to-point scatter along an interaction line, a “pencil-beam” scatter kernel (BSK) can be approximated to a quartic expression when the imaging field is small. This BSK model for monoenergetic, 100keV x-rays has been verified on homogeneous cube and cylinder water phantoms by comparing with the exact implementation of KN formula. For heterogeneous medium, the water-equivalent length of a BSK was acquired with an improved Siddon's ray-tracing algorithm, which was also used in calculating pre- and post- scattering attenuation. To include the electron binding effect for scattering of low-kV photons, the mean corresponding scattering angle is determined from the effective point of scattered photons of a BSK. The behavior of polyenergetic x-rays was also investigated for 120kV x-rays incident to a sandwiched infinite heterogeneous slab phantom, with the electron binding effect incorporated. Exact computation and Monte Carlo simulations were performed for comparisons, using the EGSnrc code package. Results: By reducing the 3D volumetric target (o(n{sup 3})) to 2D pencil-beams (o(n{sup 2})), the computation expense can be generally lowered by n times, which our experience verifies. The scatter distribution on a flat detector shows high agreement between the analytic BSK model and exact calculations. The pixel-to-pixel differences are within (-2%, 2%) for the homogeneous cube and cylinder phantoms and within (0, 6%) for the heterogeneous slab phantom. However, the Monte Carlo simulation shows increased deviation of the BSK model toward detector periphery. Conclusion: The proposed BSK model, accommodating polyenergetic x-rays and electron binding effect at low kV, shows great potential in efficiently estimating the first

  3. 基于小角散射的柴油机排气颗粒的孔隙结构分析%Analysis of porosity structure of particles from diesel engine using small angle X-ray scattering

    Institute of Scientific and Technical Information of China (English)

    赵洋; 王忠; 李瑞那; 李铭迪; 王向丽

    2014-01-01

    Particles which contain soluble organic fraction (SOF), soot, and inorganic salt are mainly the result from an incomplete combustion or pyrolysis of fossil fuels and other organic materials. In a diesel engine, the poor mixing of fuel and air creates fuel-rich zones that support particle formation at high temperatures. Numerous studies show that they are harmful to human health when inhaled and may cause cancer. For that reason, it is important to reduce the formation or at least the emission of particles to the environment. Meanwhile, the strict regulations for particulate matter emission have been enforced in many developed countries. A diesel particulate filter (DPF) is currently the dominant diesel particulate emissions control technology to meet stringent air quality standards, however, the oxidation ability of particles is important to the regeneration of the filter bed in DPF. Temperature has a great influence on the oxidation process of particles. Many physical and chemical changes of particles happen at a high temperature, leading to porosity formation of particles during oxidation. The porosity structure of particles is important to the oxidation ability of particles. The micro-orifice uniform deposition impactor (MOUDI) is a favorable apparatus for obtaining the particle size distribution and collecting the particles in different size ranges after classification. Thermogravimetric analysis (TGA) has been widely used as an analytical method for investigating the relationship between the material weight and temperature under the condition of programming a temperature rise. The curve of the sample weight then can be obtained with the temperature. A derivative thermal gravimetry (DTG) curve, the first order differential to a TG curve, can reveal the features of mass variation with the temperature. Small-angle X-ray scattering (SAXS) is a widely used diffraction method for studying the structure of the sample. In this study, the micro-orifice uniform deposit

  4. X-ray Thomson scattering measurements of density and temperature in shock-compressed beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H J; Neumayer, P; Castor, J; Doppner, T; Falcone, R W; Fortmann, C; Hammel, B A; Kritcher, A L; Landen, O L; Lee, R W; Meyerhofer, D D; Munro, D H; Redmer, R; Regan, S P; Weber, S; Glenzer, S H

    2008-08-05

    We present the first x-ray scattering measurements of the state of compression and heating in laser irradiated solid beryllium. The scattered spectra at two different angles show Compton and plasmon features indicating a dense Fermi-degenerate plasma state with a Fermi energy above 30 eV and with temperatures in the range of 10 eV to 15 eV. These measurements indicate compression by a factor of three in agreement with Hugoniot data and detailed radiation hydrodynamic modeling.

  5. A new method to model x-ray scattering from random rough surfaces

    Science.gov (United States)

    Zhao, Ping; Van Speybroeck, Leon P.

    2003-03-01

    This paper presents a method for modeling the X-ray scattering from random rough surfaces. An actual rough surface is (incompletely) described by its Power Spectral Density (PSD). For a given PSD, model surfaces with the same roughness as the actual surface are constructed by preserving the PSD amplitudes and assigning a random phase to each spectral component. Rays representing the incident wave are reflected from the model surface and projected onto a flat plane, which approximates the model surface, as outgoing rays and corrected for phase delays. The projected outgoing rays are then corrected for wave densities and redistributed onto an uniform grid where the model surface is constructed. The scattering is then calculated by taking the Fast Fourier Transform (FFT) of the resulting distribution. This method is generally applicable and is not limited to small scattering angles. It provides the correct asymmetrical scattering profile for grazing incident radiation. We apply this method to the mirrors of the Chandra X-ray Observatory and show the results. We also expect this method to be useful for other X-ray telescope missions.

  6. Diffuse x-ray scattering from weakly metamict zircon

    International Nuclear Information System (INIS)

    Diffuse x-ray (Cu K1α) scattering from α-decay radiation-damaged natural zircon has been investigated at room temperature. Huang scattering around Bragg reflections was observed in samples with radiation doses between 0.06 and 2x1018 α-decay events g-1, but none in a highly crystalline natural zircon sample (18 α-decay events g-1). Huang scattering (∼q-2) dominates for small wavevectors, while Stokes-Wilson scattering (∼q-4) is observed at larger values of q from the Bragg reflection. The displacement field produced by α-decay radiation damage is shown to correspond to transverse shear waves. The unit-cell expansion observed in zircon is thus interpreted as originating as a consequence of the shear waves propagating in the crystal, rather than from simply longitudinal expansion waves. A cluster size between 70 and 140 A, depending on the degree of damage, characterizes the defect accumulation. (author)

  7. Inelastic x-ray scattering from polycrystalline materials

    International Nuclear Information System (INIS)

    Inelastic X-ray scattering (IXS) is a tool to determine the phonon dispersion along high symmetry directions in single crystals. However, novel materials and crystals under extreme conditions are often only available in form of polycrystalline samples. Thus the investigation is limited to orientation-averaged properties. To overcome these limitations, a methodology to extract the single crystal phonon dispersion from polycrystalline materials was developed. The approach consists of recording IXS spectra over a large momentum transfer region and confront them with a Born - von Karman model calculation. A least-square refinement of the model IXS spectra then provides the single crystal dispersion scheme. In this work the method is developed on the test case Be. Further studies were performed on more and more complex systems, in order to explore the limitations. This novel application of IXS promises to be a valuable tool in cases where single crystalline materials are not available. (author)

  8. X-ray thomson scattering in warm dense matter

    International Nuclear Information System (INIS)

    Warm dense matter exists throughout the universe, such as in the evolving surface layers of stars or in the inner cores of giant planets, and this state of matter influences our daily life deeply (as in the production and propagation of our Sun's light). This extreme state of matter cannot be explained by traditional condensed matter physics or plasma physics, since it lies between the classical and quantum states. Recently, with the fast development of high power lasers, it has become possible to conduct experiments and test theories of the warm dense state. The existing theory developed for the corona plasma does not work well in this regime, but X-ray Thomson scattering has recently been successfully used in its diagnostics. A new theory is also required to analyze the experimental data. (authors)

  9. Evolution of Elastic X-ray Scattering in Laser-Shocked Warm Dense Li

    Energy Technology Data Exchange (ETDEWEB)

    Kugland, N L; Gregori, G; Bandyopadhyay, S; Brenner, C; Brown, C; Constantin, C; Glenzer, S H; Khattak, F; Kritcher, A L; Niemann, C; Otten, A; Pasley, J; Pelka, A; Roth, M; Spindloe, C; Riley, D

    2009-06-02

    We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4 ns long laser pulses. Separate 1 ns long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-{alpha} photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120{sup o} using a HOPG crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state {bar Z}, and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

  10. Internal strain gradients quantified in bone under load using high-energy X-ray scattering.

    Energy Technology Data Exchange (ETDEWEB)

    Stock, S.R.; Yuan, F.; Brinson, L.C.; Almer, J.D. (X-Ray Science Division); (Northwestern University)

    2011-01-01

    High-energy synchrotron X-ray scattering (>60 keV) allows noninvasive quantification of internal strains within bone. In this proof-of-principle study, wide angle X-ray scattering maps internal strain vs position in cortical bone (murine tibia, bovine femur) under compression, specifically using the response of the mineral phase of carbonated hydroxyapatite. The technique relies on the response of the carbonated hydroxyapatite unit cells and their Debye cones (from nanocrystals correctly oriented for diffraction) to applied stress. Unstressed, the Debye cones produce circular rings on the two-dimensional X-ray detector while applied stress deforms the rings to ellipses centered on the transmitted beam. Ring ellipticity is then converted to strain via standard methods. Strain is measured repeatedly, at each specimen location for each applied stress. Experimental strains from wide angle X-ray scattering and an attached strain gage show bending of the rat tibia and agree qualitatively with results of a simplified finite element model. At their greatest, the apatite-derived strains approach 2500 {micro}{var_epsilon} on one side of the tibia and are near zero on the other. Strains maps around a hole in the femoral bone block demonstrate the effect of the stress concentrator as loading increased and agree qualitatively with the finite element model. Experimentally, residual strains of approximately 2000 {micro}{var_epsilon} are present initially, and strain rises to approximately 4500 {micro}{var_epsilon} at 95 MPa applied stress (about 1000 {micro}{var_epsilon} above the strain in the surrounding material). The experimental data suggest uneven loading which is reproduced qualitatively with finite element modeling.

  11. Application of relativistic scattering theory of x rays to diffraction anomalous fine structure in Cu

    OpenAIRE

    Arola, E.; Strange, Paul

    1998-01-01

    We apply our recent first-principles formalism of magnetic scattering of circularly polarized x rays to a single Cu crystal. We demonstrate the ability of our formalism to interpret the crystalline environment related near-edge fine structure features in the resonant x-ray scattering spectra at the Cu K absorption edge. We find good agreement between the computed and measured diffraction anomalous fine structure features of the x-ray scattering spectra.

  12. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    OpenAIRE

    Sorapong Aootaphao; Thongvigitmanee, Saowapak S.; Jartuwat Rajruangrabin; Chalinee Thanasupsombat; Tanapon Srivongsa; Pairash Thajchayapong

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter ...

  13. Densitometry and temperature measurement of combustion gas by X-ray Compton scattering

    Science.gov (United States)

    Sakurai, Hiroshi; Kawahara, Nobuyuki; Itou, Masayoshi; Tomita, Eiji; Suzuki, Kosuke; Sakurai, Yoshiharu

    2016-01-01

    Measurement of combustion gas by high-energy X-ray Compton scattering is reported. The intensity of Compton-scattered X-rays has shown a position dependence across the flame of the combustion gas, allowing us to estimate the temperature distribution of the combustion flame. The energy spectra of Compton-scattered X-rays have revealed a significant difference across the combustion reaction zone, which enables us to detect the combustion reaction. These results demonstrate that high-energy X-ray Compton scattering can be employed as an in situ technique to probe inside a combustion reaction. PMID:26917151

  14. Solid-Density Plasma characterization with X-ray scattering on the 200-J Janus Laser

    Energy Technology Data Exchange (ETDEWEB)

    Neumayer, P B; Gregori, G; Ravasio, A; Price, D; Bastea, M; Landen, O L; Glenzer, S H

    2006-04-25

    We present collective x-ray scattering (CXS) measurements using a Chlorine He-{alpha} x-ray source pumped with less than 200 J of laser energy. The experimental scattering spectra show plasmon resonances from shocked samples. These experiments use only 10{sup 12} x-ray photons at the sample of which 10{sup -5} have been scattered and detected with a highly efficient curved crystal spectrometer. Our results demonstrate that x-ray scattering is a viable technique on smaller laser facilities making CXS measurements accessible to a broad scientific community.

  15. Average-Atom Model for X-ray Scattering from Warm Dense Matter

    CERN Document Server

    Johnson, W R; Cheng, K T

    2012-01-01

    A scheme for analyzing Thomson scattering of x-rays by warm dense matter, based on the average-atom model, is developed. Emphasis is given to x-ray scattering by bound electrons. Contributions to the scattered x-ray spectrum from elastic scattering by electrons moving with the ions and from inelastic scattering by free and bound electrons are evaluated using parameters (chemical potential, average ionic charge, free electron density, bound and continuum wave functions, and occupation numbers) taken from the average-atom model. The resulting scheme provides a relatively simple diagnostic for use in connection with x-ray scattering measurements. Applications are given to dense hydrogen, beryllium, aluminum, titanium, and tin plasmas. At high momentum transfer, contributions from inelastic scattering by bound electrons are dominant features of the scattered x-ray spectrum for aluminum, titanium, and tin.

  16. Spectral Softening in the X-Ray Afterglow of GRB 130925A as Predicted by the Dust Scattering Model

    Science.gov (United States)

    Zhao, Yi-Nan; Shao, Lang

    2014-07-01

    Gamma-ray bursts (GRBs) usually occur in a dense star-forming region with a massive circumburst medium. The small-angle scattering of intense prompt X-ray emission off the surrounding dust grains will have observable consequences and sometimes can dominate the X-ray afterglow. In most of the previous studies, only the Rayleigh-Gans (RG) approximation is employed for describing the scattering process, which works accurately for the typical size of grains (with radius of a diffuse interstellar medium. When the size of the grains may significantly increase, as in a more dense region where GRBs would occur, the RG approximation may not be valid enough for modeling detailed observational data. In order to study the temporal and spectral properties of the scattered X-ray emission more accurately with potentially larger dust grains, we provide a practical approach using the series expansions of anomalous diffraction (AD) approximation based on the complicated Mie theory. We apply our calculations to understand the puzzling X-ray afterglow of recently observed GRB 130925A that showed a significant spectral softening. We find that the X-ray scattering scenarios with either AD or RG approximation adopted could well reproduce both the temporal and spectral profile simultaneously. Given the plateau present in the early X-ray light curve, a typical distribution of smaller grains as in the interstellar medium would be suggested for GRB 130925A.

  17. Resonant inelastic X-ray scattering of liquid water

    International Nuclear Information System (INIS)

    Highlights: ► Two peaks are observed in the lone pair region of the XES spectrum of water assigned to tetrahedral and distorted hydrogen bonding configurations. ► The isotope effect observed as different relative peak heights is due to spectral line shape differences. ► The two different hydrogen bonding environments can be related to local structures mimicking either low density water or high density water. -- Abstract: We review recent studies using resonant inelastic X-ray scattering (RIXS) or also here denoted X-ray emission spectroscopy (XES) on liquid water and the assignment of the two sharp peaks in the lone-pair region. Using the excitation energy dependence we connect the two peaks to specific features in the X-ray absorption (XAS) spectrum which have independently been assigned to molecules in tetrahedral or distorted configurations. The polarization dependence shows that both peaks are of 1b1 origin supporting an interpretation in terms of two structural species, tetrahedral or disordered, which is furthermore consistent with the temperature-dependence of the two peaks. We discuss effects of life-time vibrational interference and how this affects the two components differently and also leads to differences in the relative peak heights for H2O and D2O. We show furthermore that the inherent structure in molecular dynamics simulations contain the structural bimodality suggested by XES, but this is smeared out in the real structure when temperature is included. We present a discussion around alternative interpretations suggesting that the origin of the two peaks is related to ultrafast dissociation and show evidence that such a model is inconsistent with several experimental observations and theoretical concepts. We conclude that the peaks reflect a temperature-dependent balance in fluctuations between tetrahedral and disordered structures in the liquid. This is well-aligned with theories of water under supercooled conditions and higher pressures

  18. A high-field pulsed magnet system for x-ray scattering studies in Voigt geometry

    CERN Document Server

    Islam, Zahirul; Ruff, Jacob P C; Das, Ritesh K; Trakhtenberg, Emil; Nojiri, Hiroyuki; Narumi, Yasuo; Canfield, Paul C

    2011-01-01

    We present a new pulsed-magnet system that enables x-ray single-crystal diffraction in addition to powder and spectroscopic studies in Voigt geometry. The apparatus consists of a large-bore solenoid, cooled by liquid nitrogen. A second independent closed-cycle cryostat is used for cooling samples near liquid helium temperatures. Pulsed magnetic fields up to ~30 T with a minimum of ~6 ms in total duration are generated by discharging a 40 kJ capacitor bank into the magnet coil. The unique characteristic of this instrument is the preservation of maximum scattering angle (~23.6 deg.) through the magnet bore by virtue of a novel double-funnel insert. This instrument would facilitate x-ray diffraction and spectroscopic studies that are impractical, if not impossible, to perform using conventional split-pair magnets and offers a practical solution for preserving optical access in future higher-field pulsed magnets.

  19. Traveling-wave Thomson scattering and optical undulators for high-yield EUV and X-ray sources

    Science.gov (United States)

    Debus, A. D.; Bussmann, M.; Siebold, M.; Jochmann, A.; Schramm, U.; Cowan, T. E.; Sauerbrey, R.

    2010-07-01

    We present a novel high-yield Thomson scattering geometry that takes advantage of compact electron bunches, as available in advanced, low-emittance linear accelerators or laser wakefield accelerators. In order to avoid the restrictions on the X-ray photon yield imposed by the Rayleigh limit, we use ultrashort, pulse-front tilted laser pulses in a side-scattering geometry. Such a traveling-wave setup allows an overlap of electron and laser beams, even after propagating over distances much longer than the Rayleigh length. Experimental designs are discussed and optimized for different scattering angles. Specifically, to minimize group delay dispersion at large scattering angles >10°, we propose the use of varied-line spacing (VLS) gratings for spatio-temporal laser pulse shaping. Compared to head-on (180°) Thomson scattering, interaction lengths are in the centimeter to meter range and photon numbers for ultrashort X-ray pulses can increase by several orders of magnitudes.

  20. K-alpha conversion efficiency measurments for x-ray scattering in inertial confinement fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kritcher, A L; Neumayer, P; Urry, M K; Robey, H; Niemann, C; Landen, O L; Morse, E; Glenzer, S H

    2006-11-21

    The conversion efficiency of ultra short-pulse laser radiation to K-{alpha} x-rays has been measured for various chlorine-containing targets to be used as x-ray scattering probes of dense plasmas. The spectral and temporal properties of these sources will allow spectrally-resolved x-ray scattering probing with picosecond temporal resolution required for measuring the plasma conditions in inertial confinement fusion experiments. Simulations of x-ray scattering spectra from these plasmas show that fuel capsule density, capsule ablator density, and shock timing information may be inferred.

  1. Resource Letter on Stimulated Inelastic X-ray Scattering at an XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Bruce D.; /SLAC

    2010-09-02

    At sufficient X-ray intensity, stimulated effects in inelastic scattering will become important. These coherent, non-linear optical phenomena may be used to impulsively produce a high degree of collective excitation in, for example, correlated electron materials, suitable for performing ultrafast time-resolved spectroscopy. This Resource Letter collects information on fundamental aspects of stimulated X-ray scattering and evaluates the prospect for successful experiments at a present or future X-ray free electron laser (XFEL) facility.

  2. A synchrotron radiation camera and data acquisition system for time resolved x-ray scattering studies

    International Nuclear Information System (INIS)

    Until recently, time resolved measurements of x-ray scattering patterns have not been feasible because laboratory x-ray sources were too weak and detectors unavailable. Recent developments in both these fields have changed the situation, and it is now possible to follow changes in x-ray scattering patterns with a time resolution of a few ms. The apparatus used to achieve this is described and some examples from recent biological experiments are given. (author)

  3. Design Case Studies of Anti-scattering X-ray Grid by MCNP Code Simulation

    International Nuclear Information System (INIS)

    The scattered photon cannot but be projected to the detector pixel where it is initially headed. Therefore, reducing the scattered photon in x-ray imaging system is essential to decrease unwanted radiation exposure to patient and increase the accuracy of diagnosis. In order to reduce scattered photons, an anti-scattering X-ray grid, which consists of shielding material and penetration materials, is equipped in X-ray imaging system. The design case study of anti-scattering X-ray grid was performed for the three designs of square, honeycomb and circle type by MCNP simulation. The optimization of thickness of shielding material was conducted on three cases of the length of a side of hexagon of honeycomb type anti-scattering X-ray grid. It was understood that the performance of grid was not depend on the grid type in this fundamental approach

  4. Direct and bulk-scattered forward-shock emissions: sources of X-ray afterglow diversity

    OpenAIRE

    Panaitescu, A.

    2008-01-01

    I describe the modifications to the standard forward-shock model required to account for the X-ray light-curve features discovered by Swift in the early afterglow emission and propose that a delayed, pair-enriched, and highly relativistic outflow, which bulk-scatters the forward-shock synchrotron emission, yields sometimes a brighter X-ray emission, producing short-lived X-ray flares, X-ray light-curve plateaus ending with chromatic breaks, and fast post-plateau X-ray decays.

  5. High energy x-ray reflectivity and scattering study from spectrum-x-gamma flight mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Budtz-Jørgensen, Carl; Frederiksen, P. Kk;

    1993-01-01

    Line radiation from Fe K-alpha(1), Cu K-alpha(1), and Ag K-alpha(1) is used to study the high energy X-ray reflectivity and scattering behavior of flight-quality X-ray mirrors having various Al substrates. When both the specular and the scattered radiation are integrated, near theoretical...

  6. Angle-resolved x-ray circular and magnetic circular dichroisms: Definitions and applications

    OpenAIRE

    Tong, DSY; X Guo; Tobin, JG; Waddill, GD

    1996-01-01

    We introduce definitions of angle-resolved x-ray circular dichroism (ARXCD) and magnetic x-ray circular dichroism (ARMXCD). As defined, the much larger effect of circular dichroism (ARXCD) is separated from the smaller magnetic (ARMXCD) effect. In all materials, ARXCD is zero along mirror planes while nonzero elsewhere. ARMXCD is nonzero only in magnetic materials. The measurement and analysis of ARMXCD allow element specific surface magnetism and surface structure as well as their inter-rela...

  7. Development of energy dispersive X-ray scatter experimental platform for the application of detecting contraband

    International Nuclear Information System (INIS)

    We have developed an energy dispersive X-ray scatter experimental platform for detecting contraband. NaCl has been used as a standard sample to verify the accuracy, reliability and energy resolution of the equipment. The lattice constants of NaCl calculated from the energy dispersive curves obtained by the equipment are in accord with the standard X-ray diffraction data-PDF (Powder Diffraction File) issued by the International Centre for Diffraction Data. The equipment demonstrates a high energy resolution, where the primary peak of NaCl at 15.82 keV has a resolution of 0.348 keV (FWHM). The equipment was also used to detect common explosive (TNT) and common drug (heroin), where the characteristic energy dispersive patterns of the two kinds of materials have been acquired at different detecting angles. Among all the measured detecting angles, more diffraction peaks and higher intensities in those peaks are demonstrated at detecting angles of 10 degree and 12 degree. The results indicate that these two detecting angle are possibly more suitable for detecting TNT and heroin. (authors)

  8. Modeling small angle scattering data using FISH

    International Nuclear Information System (INIS)

    Full text: Small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS) are important techniques for the characterisation of samples on the nanometer scale. From the scattered intensity pattern information about the sample such as particle size distribution, concentration and particle interaction can be determined. Since the experimental data is in reciprocal space and information is needed about real space, modeling of the scattering data to obtain parameters is extremely important and several paradigms are available. The use of computer programs to analyze the data is imperative for a robust description of the sample to be obtained. This presentation gives an overview of the SAS process and describes the data-modeling program FISH, written by R. Heenan 1983-2000. The results of using FISH to obtain the particle size distribution of bubbles in the aluminum hydrogen system and other systems of interest are described. Copyright (2002) Australian X-ray Analytical Association Inc

  9. Time Resolved X-Ray Scattering of molecules in Solution

    DEFF Research Database (Denmark)

    Brandt van Driel, Tim

    bringing the data from measurement to analysis. Bridging the experimental design and challenges of the experiments from X-ray synchrotrons to the newly available X-ray Free Electron Laser sources (XFEL).LCLS in California is the first XFEL to come online and delivers intense 30fs X-ray pulses, orders of...... purpose built CSPAD detector is presented and applied to the data to highlight the relevance of this work. Thereby showing the ability to capture a molecular movie on the sub-ps time-scale....

  10. X-ray Thomson scattering for partially ionized plasmas including the effect of bound levels

    OpenAIRE

    Nilsen, J.; Johnson, W. R.; Cheng, K. T.

    2013-01-01

    X-ray Thomson scattering is being developed as a method to measure the temperature, electron density, and ionization state of high energy density plasmas such as those used in inertial confinement fusion. Most experiments are currently done at large laser facilities that can create bright X-ray sources, however the advent of the X-ray free electron laser (X-FEL) provides a new bright source to use in these experiments. One challenge with X-ray Thomson scattering experiments is understanding h...

  11. Azimuthal anisotropy of the scattered radiation in grazing incidence X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Das, Gangadhar, E-mail: gdas@rrcat.gov.in; Tiwari, M. K.; Singh, A. K.; Ghosh, Haranath [Indus Synchrotrons Utilisation Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India)

    2015-06-24

    The Compton and elastic scattering radiations are the major contributor to the spectral background of an x-ray fluorescence spectrum, which eventually limits the element detection sensitivities of the technique to µg/g (ppm) range. In the present work, we provide a detail mathematical descriptions and show that how polarization properties of the synchrotron radiation influence the spectral background in the x-ray fluorescence technique. We demonstrate our theoretical understandings through experimental observations using total x-ray fluorescence measurements on standard reference materials. Interestingly, the azimuthal anisotropy of the scattered radiation is shown to have a vital role on the significance of the x-ray fluorescence detection sensitivities.

  12. The AMPIX electrochemical cell. A versatile apparatus for in situ X-ray scattering and spectroscopic measurements

    International Nuclear Information System (INIS)

    This article presents a versatile easy-to-use electrochemical cell suitable for in operando, in situ measurements of battery materials during electrochemical cycling using a variety of X-ray techniques. Argonne's multi-purpose in situ X-ray (AMPIX) cell provides reliable electrochemical cycling over extended periods owing to the uniform stack pressure applied by rigid X-ray windows and the formation of a high-fidelity hermetic seal. The suitability of the AMPIX cell for a broad range of synchrotron-based X-ray scattering and spectroscopic measurements has been demonstrated with studies at eight Advanced Photon Source beamlines to date. Compatible techniques include pair distribution function analysis, high-resolution powder diffraction, small-angle scattering and X-ray absorption spectroscopy. These techniques probe a broad range of electronic, structural and morphological features relevant to battery materials. The AMPIX cell enables experiments providing greater insight into the complex processes that occur in operating batteries by allowing the electrochemical reactions to be probed at fine reaction intervals with greater consistency (within the charge-discharge cycle and between different methodologies) with potential for new time-dependent kinetic studies or studies of transient species. Representative X-ray and electrochemical data to demonstrate the functionality of the AMPIX cell are presented. (orig.)

  13. Small angle X-ray studies of protein-polymer interactions

    International Nuclear Information System (INIS)

    Full text: The interaction between biological macromolecules and non-adsorbing polymers is considered of utmost importance in the study of protein crystallization processes and in the study of a large number of protein-polymer systems or artificial surfaces used in medical procedures, in which polymeric materials are in contact with blood proteins. The structural information furnished by small angle X-ray scattering (SAXS) experiments can be used to describe protein-polymer interaction in solution mixtures considering the dispersion as a two-component system. In this work, two proteins, lysozyme and bovine serum albumin (BSA), were studied in the presence of Poly(ethylene oxide) (PEO), various EO/PO copolymers of varied composition and Poly(ethylene glycol) (PEG). Thermal stability of both lysozyme and BSA was studied in the presence of these polymers. X-ray scattering experiments were performed at the SAXS beamline of the Laboratorio Nacional de Luz Sincrotron, Campinas, SP, using the facility available for liquid dispersions under controlled temperature. Room temperature measurements were aimed at detecting possible polymer-protein interactions. Thermal denaturation processes were studied in some of these systems in order to check the stabilizing effect of some of the polymers used, at fixed temperatures of 25, 50, 60 and 70 deg C. At 80 deg C, using a real time data acquisition system, structural changes could be followed as a function of time in a sequence of frames that show denaturation and aggregation of the proteins. Real space analysis of the intensity functions was performed using a mathematical expression derived for the form factor of a system of particles of different shapes. The pair distance distribution functions of each component of the system could be calculated separately. The possibility of complex formation in the case of the proteins studied is not supported by our results. The presence of polymers may affect the protein-protein interaction

  14. Demonstration of X-ray Thomson Scattering on Shenguang-Ⅱ Laser Facility

    Institute of Scientific and Technical Information of China (English)

    胡广月; 张小丁; 郑坚; 雷安乐; 沈百飞; 徐至展; 张继彦; 杨家敏; 杨国洪; 韦敏习; 李军; 丁永坤

    2012-01-01

    X-ray Thomson scattering technique for diagnosing dense plasma was demonstrated on Shenguang-Ⅱ laser facility. Laser plasma x-ray source of titanium He-a lines (-4.75 keV), generated by laser beam (1.5 kJ/527 nm/2 ns) heated titanium thin foil, was used as x-ray probe beam. The x-ray probe was then scattered by cold CH foam column of 1 g/cm^3 density. The scattered radiation at 90° was diffracted by polyethylene terephthalate (PET) crystal and recorded on x-ray charge-coupled device. Well-defined scattering spectra were obtained with good signal to noise ratio.

  15. Demonstration of X-ray Thomson Scattering on Shenguang-II Laser Facility

    International Nuclear Information System (INIS)

    X-ray Thomson scattering technique for diagnosing dense plasma was demonstrated on Shenguang-II laser facility. Laser plasma x-ray source of titanium He-α lines (∼4.75 keV), generated by laser beam (1.5 kJ/527 nm/2 ns) heated titanium thin foil, was used as x-ray probe beam. The x-ray probe was then scattered by cold CH foam column of 1 g/cm3 density. The scattered radiation at 90° was diffracted by polyethylene terephthalate (PET) crystal and recorded on x-ray charge-coupled device. Well-defined scattering spectra were obtained with good signal to noise ratio. (cai awardee's article)

  16. X-ray, neutron, and electron scattering. Report of a materials sciences workshop

    Energy Technology Data Exchange (ETDEWEB)

    1977-08-01

    The ERDA Workshop on X-ray, Neutron, and Electron Scattering to assess needs and establish priorities for energy-related basic research on materials. The general goals of the Workshop were: (1) to review various energy technologies where x-ray, neutron, and electron scattering techniques might make significant contributions, (2) to identify present and future materials problems in the energy technologies and translate these problems into requirements for basic research by x-ray, neutron, and electron scattering techniques, (3) to recommend research areas utilizing these three scattering techniques that should be supported by the DPR Materials Sciences Program, and (4) to assign priorities to these research areas.

  17. X-ray, neutron, and electron scattering. Report of a materials sciences workshop

    International Nuclear Information System (INIS)

    The ERDA Workshop on X-ray, Neutron, and Electron Scattering to assess needs and establish priorities for energy-related basic research on materials. The general goals of the Workshop were: (1) to review various energy technologies where x-ray, neutron, and electron scattering techniques might make significant contributions, (2) to identify present and future materials problems in the energy technologies and translate these problems into requirements for basic research by x-ray, neutron, and electron scattering techniques, (3) to recommend research areas utilizing these three scattering techniques that should be supported by the DPR Materials Sciences Program, and (4) to assign priorities to these research areas

  18. A short-pulse X-ray beamline for spectroscopy and scattering.

    Science.gov (United States)

    Reininger, R; Dufresne, E M; Borland, M; Beno, M A; Young, L; Evans, P G

    2014-09-01

    Experimental facilities for picosecond X-ray spectroscopy and scattering based on RF deflection of stored electron beams face a series of optical design challenges. Beamlines designed around such a source enable time-resolved diffraction, spectroscopy and imaging studies in chemical, condensed matter and nanoscale materials science using few-picosecond-duration pulses possessing the stability, high repetition rate and spectral range of synchrotron light sources. The RF-deflected chirped electron beam produces a vertical fan of undulator radiation with a correlation between angle and time. The duration of the X-ray pulses delivered to experiments is selected by a vertical aperture. In addition to the radiation at the fundamental photon energy in the central cone, the undulator also emits the same photon energy in concentric rings around the central cone, which can potentially compromise the time resolution of experiments. A detailed analysis of this issue is presented for the proposed SPXSS beamline for the Advanced Photon Source. An optical design that minimizes the effects of off-axis radiation in lengthening the duration of pulses and provides variable X-ray pulse duration between 2.4 and 16 ps is presented. PMID:25178012

  19. Radiation damage in polymer films from grazing-incidence X-ray scattering measurements

    Energy Technology Data Exchange (ETDEWEB)

    Vaselabadi, Saeed Ahmadi [Department of Chemical and Biomolecular Engineering, University of Houston, Houston Texas 77204-4004; Shakarisaz, David [Department of Electrical and Computer Engineering, University of Houston, Houston Texas 77204-4005; Ruchhoeft, Paul [Department of Electrical and Computer Engineering, University of Houston, Houston Texas 77204-4005; Strzalka, Joseph [X-Ray Science Division, Argonne National Laboratory, Argonne Illinois 60439; Stein, Gila E. [Department of Chemical and Biomolecular Engineering, University of Houston, Houston Texas 77204-4004

    2016-02-16

    Grazing-incidence X-ray scattering (GIXS) is widely used to analyze the crystallinity and nanoscale structure in thin polymer lms. However, ionizing radiation will generate free radicals that initiate cross-linking and/or chain scission, and structural damage will impact the ordering kinetics, thermodynamics, and crystallinity in many polymers. We report a simple methodology to screen for beam damage that is based on lithographic principles: lms are exposed to patterns of x-ray radiation, and changes in polymer structure are revealed by immersing the lm in a solvent that dissolves the shortest chains. The experiments are implemented with high throughput using the standard beam line instrumentation and a typical GIXS configuration. The extent of damage (at a fixed radiation dose) depends on a range of intrinsic material properties and experimental variables, including the polymer chemistry and molecular weight, exposure environment, llm thickness, and angle of incidence. The solubility switch for common polymers is detected within 10-60 sec at ambient temperature, and we verified that this first indication of damage corresponds with the onset of network formation in glassy polystyrene and a loss of crystallinity in polyalkylthiophenes. Therefore, grazing-incidence x-ray patterning offers an efficient approach to determine the appropriate data acquisition times for any GIXS experiment.

  20. Experimental considerations for in situ X-ray scattering analysis of OMVPE growth

    International Nuclear Information System (INIS)

    We have recently performed a set of experiments using a chamber for growth of semiconductor single crystal films via organometallic vapor phase epitaxy (OMVPE) while simultaneously scattering X-rays from the growing crystal surface. Due to the special complications of OMVPE growth, such as near-atmospheric pressures, toxic and flammable gases, and high substrate temperatures, the chamber design includes many novel features. In this paper we will discuss the advantages of the z-axis diffractometer for such a chamber and the specific solutions to problems such as convective flow near the sample and film growth on the Be windows attached to the growth chamber. The X-rays enter the chamber through a 35-mm-diameter Be window mounted on a 2.75 in. UHV flange; they exit through a separate window which allows detection of X-rays from -5deg to 125deg in 2θ and take-off angles from the surface from -5deg to 45deg. Results from our experimental run on the PEP storage ring studying the growth of ZnSe on GaAs will be discussed. (orig.)