WorldWideScience

Sample records for angle spinning nmr

  1. Magic-angle-spinning NMR studies of zeolite SAPO-5

    Science.gov (United States)

    Freude, D.; Ernst, H.; Hunger, M.; Pfeifer, H.; Jahn, E.

    1988-01-01

    SAPO-5 was synthesized using triethylamine as template. Magic-angle-spinning (MAS) NMR of 1H, 27Al, 29Si and 31P was used to study the silicon incorporation into the framework and the nature of the Brønsted sites. 1H MAS NMR shows two types of bridging hydroxyl groups. 29Si MAS NMR indicates that silicon substitutes mostly for phosphorus and that there is a small amount of crystalline SiO 2 in the zeolite powder.

  2. Characterization of zeolites by magic-angle-spinning NMR

    International Nuclear Information System (INIS)

    Magic-angle-spinning nuclear magnetic resonance (MAS NMR) has been used to study structure defects in TPA/ZSM-5, the dealumination process caused by hydrothermal treatment and acid leaching of zeolites, the influence of Lewis sites upon water as a probe molecule, the boron incorporation into the ZSM-5 framework, and the acid sites and structure defects in SAPO-5. The nuclei under study are 1H, 11B, 27Al, 29Si, and 31P. 24 refs.; 7 figs.; 1 table

  3. Magic-angle-spinning NMR (MAS-NMR) spectroscopy and the structure of zeolites

    International Nuclear Information System (INIS)

    After outlining the chemical features and properties which make zeolites such an important group of catalysts and sorbents, the article explains how high-resolution solid-state NMR with magic-angle spinning reveals numerous new insights into their structure. 29Si-MAS-NMR readily and quantitatively identifies five distinct Si(OAl)sub(n)(OSi)sub(4-n) structural groups in zeolitic frameworks (n=0,1,...4), corresponding to the first tetrahedral coordination shell of a silicon atom. Many catalytic and other chemical properties of zeolites are governed by the short-range Si, Al order, the nature of which is greatly clarified by 29Si-MAS-NMR. (orig./EF)

  4. Effective Floquet Hamiltonian for spin = 1 in magic angle spinning NMR using contact transformation

    Indian Academy of Sciences (India)

    Manoj Kumar Pandey; Mangala Sunder Krishnan

    2007-09-01

    Contact transformation is an operator transformation method in time-independent perturbation theory which is used successfully in molecular spectroscopy to obtain an effective Hamiltonian. Floquet theory is used to transform the periodic time-dependent Hamiltonian, to a time-independent Floquet Hamiltonian. In this article contact transformation method has been used to get the analytical representation of Floquet Hamiltonian for quadrupolar nuclei with spin = 1 in the presence of an RF field and first order quadrupolar interaction in magic angle spinning NMR experiments. The eigenvalues of contact transformed Hamiltonian as well as Floquet Hamiltonian have been calculated and a comparison is made between the eigenvalues obtained using the two Hamiltonians.

  5. High-resolution NMR of anisotropic samples with spinning away from the magic angle

    Energy Technology Data Exchange (ETDEWEB)

    Sakellariou, Dimitris; Meriles, Carlos A.; Martin, Rachel W.; Pines, Alexander

    2003-03-31

    High-resolution NMR of samples in the solid state is typically performed under mechanical sample spinning around an axis that makes an angle, called the magic angle, of 54.7 degrees with the static magnetic field. There are many cases in which geometrical and engineering constraints prevent spinning at this specific angle. Implementations of in-situ and ex-situ magic angle field spinning might be extremely demanding because of the power requirements or an inconvenient sample size or geometry. Here we present a methodology based on switched angle spinning between two angles, none of which is the magic angle, which provide both isotropic and anisotropic information. Using this method, named Projected Magic Angle Spinning, we were able to obtain resolved isotropic chemical shifts in spinning samples where the broadening is mostly inhomogeneous.

  6. High-resolution NMR spectroscopy of biological tissues usingprojected Magic Angle Spinning

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Rachel W.; Jachmann, Rebecca C.; Sakellariou, Dimitris; Nielsen, Ulla Gro; Pines, Alexander

    2005-01-27

    High-resolution NMR spectra of materials subject toanisotropic broadening are usually obtained by rotating the sample aboutthe magic angle, which is 54.7 degrees to the static magnetic field. Inprojected Magic Angle Spinning (p-MAS), the sample is spun about twoangles, neither of which is the magic angle. This provides a method ofobtaining isotropic spectra while spinning at shallow angles. The p-MASexperiment may be used in situations where spinning the sample at themagic angle is not possible due to geometric or other constraints,allowing the choice of spinning angle to be determined by factors such asthe shape of the sample, rather than by the spin physics. The applicationof this technique to bovine tissue samples is demonstrated as a proof ofprinciple for future biological or medical applications.

  7. Microfabricated inserts for magic angle coil spinning (MACS wireless NMR spectroscopy.

    Directory of Open Access Journals (Sweden)

    Vlad Badilita

    Full Text Available This article describes the development and testing of the first automatically microfabricated probes to be used in conjunction with the magic angle coil spinning (MACS NMR technique. NMR spectroscopy is a versatile technique for a large range of applications, but its intrinsically low sensitivity poses significant difficulties in analyzing mass- and volume-limited samples. The combination of microfabrication technology and MACS addresses several well-known NMR issues in a concerted manner for the first time: (i reproducible wafer-scale fabrication of the first-in-kind on-chip LC microresonator for inductive coupling of the NMR signal and reliable exploitation of MACS capabilities; (ii improving the sensitivity and the spectral resolution by simultaneous spinning the detection microcoil together with the sample at the "magic angle" of 54.74° with respect to the direction of the magnetic field (magic angle spinning - MAS, accompanied by the wireless signal transmission between the microcoil and the primary circuit of the NMR spectrometer; (iii given the high spinning rates (tens of kHz involved in the MAS methodology, the microfabricated inserts exhibit a clear kinematic advantage over their previously demonstrated counterparts due to the inherent capability to produce small radius cylindrical geometries, thus tremendously reducing the mechanical stress and tearing forces on the sample. In order to demonstrate the versatility of the microfabrication technology, we have designed MACS probes for various Larmor frequencies (194, 500 and 700 MHz testing several samples such as water, Drosophila pupae, adamantane solid and LiCl at different magic angle spinning speeds.

  8. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues.

    Science.gov (United States)

    Beckonert, Olaf; Coen, Muireann; Keun, Hector C; Wang, Yulan; Ebbels, Timothy M D; Holmes, Elaine; Lindon, John C; Nicholson, Jeremy K

    2010-06-01

    Metabolic profiling, metabolomic and metabonomic studies require robust study protocols for any large-scale comparisons and evaluations. Detailed methods for solution-state NMR spectroscopy have been summarized in an earlier protocol. This protocol details the analysis of intact tissue samples by means of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy and we provide a detailed description of sample collection, preparation and analysis. Described here are (1)H NMR spectroscopic techniques such as the standard one-dimensional, relaxation-edited, diffusion-edited and two-dimensional J-resolved pulse experiments, as well as one-dimensional (31)P NMR spectroscopy. These are used to monitor different groups of metabolites, e.g., sugars, amino acids and osmolytes as well as larger molecules such as lipids, non-invasively. Through the use of NMR-based diffusion coefficient and relaxation times measurements, information on molecular compartmentation and mobility can be gleaned. The NMR methods are often combined with statistical analysis for further metabonomics analysis and biomarker identification. The standard acquisition time per sample is 8-10 min for a simple one-dimensional (1)H NMR spectrum, giving access to metabolite information while retaining tissue integrity and hence allowing direct comparison with histopathology and MRI/MRS findings or the evaluation together with biofluid metabolic-profiling data. PMID:20539278

  9. μHigh resolution-magic-angle spinning NMR spectroscopy for metabolic phenotyping of Caenorhabditis elegans.

    Science.gov (United States)

    Wong, Alan; Li, Xiaonan; Molin, Laurent; Solari, Florence; Elena-Herrmann, Bénédicte; Sakellariou, Dimitris

    2014-06-17

    Analysis of model organisms, such as the submillimeter-size Caenorhabditis elegans, plays a central role in understanding biological functions across species and in characterizing phenotypes associated with genetic mutations. In recent years, metabolic phenotyping studies of C. elegans based on (1)H high-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy have relied on the observation of large populations of nematodes, requiring labor-intensive sample preparation that considerably limits high-throughput characterization of C. elegans. In this work, we open new platforms for metabolic phenotyping of C. elegans mutants. We determine rich metabolic profiles (31 metabolites identified) from samples of 12 individuals using a (1)H NMR microprobe featuring high-resolution magic-angle coil spinning (HR-MACS), a simple conversion of a standard HR-MAS probe to μHR-MAS. In addition, we characterize the metabolic variations between two different strains of C. elegans (wild-type vs slcf-1 mutant). We also acquire a NMR spectrum of a single C. elegans worm at 23.5 T. This study represents the first example of a metabolomic investigation carried out on a small number of submillimeter-size organisms, demonstrating the potential of NMR microtechnologies for metabolomics screening of small model organisms. PMID:24897622

  10. Magic angle spinning carbon-13 NMR of tobacco mosaic virus. An application of the high-resolution solid-state NMR spectroscopy to very large biological systems.

    OpenAIRE

    Hemminga, M A; Veeman, W.S.; Hilhorst, H.W.M.; Schaafsma, T J

    1981-01-01

    Magic angle spinning 13C NMR was used to study tobacco mosaic virus (TMV) in solution. Well-resolved 13C NMR spectra were obtained, in which several carbon resonances of amino acids of the TMV coat protein subunits that are not observable by conventional high-resolution NMR spectroscopy can be designed. RNA resonance were absent, however, in the magic angle spinning 13C NMR spectra. Since three different binding sites are available for each nucleotide of the RNA, this is probably due to a lin...

  11. Modulation of cross polarization in motionally averaged solids by Variable Angle Spinning NMR

    OpenAIRE

    Espinosa, Catalina A.; Thureau, Pierre; Shapiro, Rebecca A.; Litvak, Ilya M.; Martin, Rachel W.

    2011-01-01

    In systems where the dipolar couplings are partially averaged by molecular motion, cross-polarization is modulated by sample spinning. The cross-polariation efficiency in Variable Angle Spinning (VAS) and Switched Angle Spinning (SAS) experiments on mobile samples is therefore strongly dependent on the spinning angle. We describe simulations and experimental measurements of these effects over a range of spinning angles from 0° to 90°.

  12. Magic-angle-spinning solid-state NMR of membrane proteins.

    Science.gov (United States)

    Baker, Lindsay A; Folkers, Gert E; Sinnige, Tessa; Houben, Klaartje; Kaplan, Mohammed; van der Cruijsen, Elwin A W; Baldus, Marc

    2015-01-01

    Solid-state NMR spectroscopy (ssNMR) provides increasing possibilities to examine membrane proteins in different molecular settings, ranging from synthetic bilayers to whole cells. This flexibility often enables ssNMR experiments to be directly correlated with membrane protein function. In this contribution, we discuss experimental aspects of such studies starting with protein expression and labeling, leading to membrane protein isolation or to membrane proteins in a cellular environment. We show that optimized procedures can depend on aspects such as the achieved levels of expression, the stability of the protein during purification or proper refolding. Dealing with native membrane samples, such as isolated cellular membranes, can alleviate or entirely remove such biochemical challenges. Subsequently, we outline ssNMR experiments that involve the use of magic-angle-spinning and can be used to study membrane protein structure and their functional aspects. We pay specific attention to spectroscopic issues such as sensitivity and spectral resolution. The latter aspect can be controlled using a combination of tailored preparation procedures with solid-state NMR experiments that simplify the spectral analysis using specific filtering and correlation methods. Such approaches have already provided access to obtain structural views of membrane proteins and study their function in lipid bilayers. Ongoing developments in sample preparation and NMR methodology, in particular in using hyperpolarization or proton-detection schemes, offer additional opportunities to study membrane proteins close to their cellular function. These considerations suggest a further increase in the potential of using solid-state NMR in the context of prokaryotic or eukaryotic membrane protein systems in the near future. PMID:25950971

  13. Hydrogen and deuterium NMR of solids by magic-angle spinning

    International Nuclear Information System (INIS)

    The nuclear magnetic resonance of solids has long been characterized by very large specral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, β/sub m/ = Arccos (3/sup -1/2/), with respect to the direction of the external magnetic field. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of β. A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H/sub D/ was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal motion. In the general case of large H/sub D/, isotropic spectra were obtained by dilution of 1H with 2H combined with magic angle rotation. The resolution obtained represents the practical limit for proton NMR of solids

  14. Probing structure and dynamics of protein assemblies by magic angle spinning NMR spectroscopy.

    Science.gov (United States)

    Yan, Si; Suiter, Christopher L; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2013-09-17

    In living organisms, biological molecules often organize into multicomponent complexes. Such assemblies consist of various proteins and carry out essential functions, ranging from cell division, transport, and energy transduction to catalysis, signaling, and viral infectivity. To understand the biological functions of these assemblies, in both healthy and disease states, researchers need to study their three-dimensional architecture and molecular dynamics. To date, the large size, the lack of inherent long-range order, and insolubility have made atomic resolution studies of many protein assemblies challenging or impractical using traditional structural biology methods such as X-ray diffraction and solution NMR spectroscopy. In the past 10 years, we have focused our work on the development and application of magic angle spinning solid-state NMR (MAS NMR) methods to characterize large protein assemblies at atomic-level resolution. In this Account, we discuss the rapid progress in the field of MAS NMR spectroscopy, citing work from our laboratory and others on methodological developments that have facilitated the in-depth analysis of biologically important protein assemblies. We emphasize techniques that yield enhanced sensitivity and resolution, such as fast MAS (spinning frequencies of 40 kHz and above) and nonuniform sampling protocols for data acquisition and processing. We also discuss the experiments for gaining distance restraints and for recoupling anisotropic tensorial interactions under fast MAS conditions. We give an overview of sample preparation approaches when working with protein assemblies. Following the overview of contemporary MAS NMR methods, we present case studies into the structure and dynamics of two classes of biological systems under investigation in our laboratory. We will first turn our attention to cytoskeletal microtubule motor proteins including mammalian dynactin and dynein light chain 8. We will then discuss protein assemblies from the

  15. Direct detection of solanesol in tobacco by 1H and 13C magic angle spinning NMR

    International Nuclear Information System (INIS)

    1H and 13C NMR have been used to detect solanesol directly in tobacco without destroying or modifying the sample. Magic angle sample spinning was employed to remove the resonance line broadening due to variations of magnetic susceptibility within the sample. 13C line widths of ca . 10 Hz were obtained. The 1H MAS spectrum of tobacco allows the solanesol signals to be resolved from the broad signal of exchangeable protons. 13C spin-lattice relaxation times (T3) and nuclear Overhauser enhancements (NOE) of solanesol in chloroform solution, in intact tobacco, and as nest oil indicate that the polyisoprene chain motion in tobacco is restricted relative to the motion in solution but still sufficient to average out the dipolar couplings between protons and carbons. (author)

  16. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning.

    Science.gov (United States)

    Shmyreva, Anna A; Safdari, Majid; Furó, István; Dvinskikh, Sergey V

    2016-06-14

    Orders of magnitude decrease of (207)Pb and (199)Hg NMR longitudinal relaxation times T1 upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX2 (Me = Pb, Hg and X = Cl, Br, I). In lead(ii) halides, the most dramatic decrease of T1 relative to that in a static sample is in PbI2, while it is smaller but still significant in PbBr2, and not detectable in PbCl2. The effect is magnetic-field dependent but independent of the spinning speed in the range 200-15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time. PMID:27306000

  17. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning

    Science.gov (United States)

    Shmyreva, Anna A.; Safdari, Majid; Furó, István; Dvinskikh, Sergey V.

    2016-06-01

    Orders of magnitude decrease of 207Pb and 199Hg NMR longitudinal relaxation times T1 upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX2 (Me = Pb, Hg and X = Cl, Br, I). In lead(ii) halides, the most dramatic decrease of T1 relative to that in a static sample is in PbI2, while it is smaller but still significant in PbBr2, and not detectable in PbCl2. The effect is magnetic-field dependent but independent of the spinning speed in the range 200-15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  18. Magic-angle spinning NMR of intact bacteriophages: Insights into the capsid, DNA and their interface

    Science.gov (United States)

    Abramov, Gili; Morag, Omry; Goldbourt, Amir

    2015-04-01

    Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses.

  19. 13C magic angle spinning NMR study of CO adsorption on Ru-exchanged zeolite Y

    International Nuclear Information System (INIS)

    Three types of adsorbed carbon monoxide are observed on Ru-Y zeolite by 13C magic angle spinning NMR: linear, bridged, and dicarbonyl CO. Samples exposed to CO at room temperature exhibit only linear and dicarbonyl species. At higher adsorption temperature bridged species are formed and a relative increase in dicarbonyl adsorption is observed. A smaller percentage of linear species is produced at high temperature. The electronic environments of linearly bonded CO are more diverse than those of bridging and dicarbonyl moieties. CO2 is formed over Ru-Y zeolite upon initial exposure of the catalyst to CO at room temperature, apparently through reaction with unreduced metal oxide. 20 references, 2 figures, 1 table

  20. Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts

    KAUST Repository

    Li, Jianping

    2013-06-05

    Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number of long-range distance restraints using dipolar coupling based spectra hamper the process of structure determination of proteins in solid-state NMR. In this study it is shown that high-resolution structure of proteins in solid phase can be determined without the use of traditional dipolar-dipolar coupling based distance restraints by combining the measurements of pseudocontact shifts (PCSs) with Rosetta calculations. The PCSs were generated by chelating exogenous paramagnetic metal ions to a tag 4-mercaptomethyl-dipicolinic acid, which is covalently attached to different residue sites in a 56-residue immunoglobulin-binding domain of protein G (GB1). The long-range structural restraints with metal-nucleus distance of up to ∼20 Å are quantitatively extracted from experimentally observed PCSs, and these are in good agreement with the distances back-calculated using an X-ray structure model. Moreover, we demonstrate that using several paramagnetic ions with varied paramagnetic susceptibilities as well as the introduction of paramagnetic labels at different sites can dramatically increase the number of long-range restraints and cover different regions of the protein. The structure generated from solid-state NMR PCSs restraints combined with Rosetta calculations has 0.7 Å root-mean-square deviation relative to X-ray structure. © 2013 American Chemical Society.

  1. Characterization of lithium coordination sites with magic-angle spinning NMR

    Science.gov (United States)

    Haimovich, A.; Goldbourt, A.

    2015-05-01

    Lithium, in the form of lithium carbonate, is one of the most common drugs for bipolar disorder. Lithium is also considered to have an effect on many other cellular processes hence it possesses additional therapeutic as well as side effects. In order to quantitatively characterize the binding mode of lithium, it is required to identify the interacting species and measure their distances from the metal center. Here we use magic-angle spinning (MAS) solid-state NMR to study the binding site of lithium in complex with glycine and water (LiGlyW). Such a compound is a good enzyme mimetic since lithium is four-coordinated to one water molecule and three carboxylic groups. Distance measurements to carbons are performed using a 2D transferred echo double resonance (TEDOR) MAS solid-state NMR experiment, and water binding is probed by heteronuclear high-resolution proton-lithium and proton-carbon correlation (wPMLG-HETCOR) experiments. Both HETCOR experiments separate the main complex from impurities and non-specifically bound lithium species, demonstrating the sensitivity of the method to probe the species in the binding site. Optimizations of the TEDOR pulse scheme in the case of a quadrupolar nucleus with a small quadrupole coupling constant show that it is most efficient when pulses are positioned on the spin-1/2 (carbon-13) nucleus. Since the intensity of the TEDOR signal is not normalized, careful data analysis that considers both intensity and dipolar oscillations has to be performed. Nevertheless we show that accurate distances can be extracted for both carbons of the bound glycine and that these distances are consistent with the X-ray data and with lithium in a tetrahedral environment. The lithium environment in the complex is very similar to the binding site in inositol monophosphatase, an enzyme associated with bipolar disorder and the putative target for lithium therapy. A 2D TEDOR experiment applied to the bacterial SuhB gene product of this enzyme was designed

  2. Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Kanmi [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-γ nuclei (e.g., 13C and 15N) via the sensitive high-{gamma} nuclei (e.g., 1H and 19F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for 1H-1H homonuclear decoupling. Also presented is a simple new strategy for optimization of 1H-1H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in 1H detected 2D 1H{l_brace}13C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional 13C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear 1H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5m$\\bar{x}$, PMLG5mm$\\bar{x}$x and SAM3) were analyzed to maximize the performance of through-bond transfer based

  3. High-field magic-angle spinning 13C NMR spectroscopy of Co4(CO)12

    International Nuclear Information System (INIS)

    The high-field (68-MHz) 13C MAS NMR spectra of solid Co4(CO)12 is reported at three different spinning rates. The different spinning rates were required to allow the separation of sidebands from centerbands in the spectrum. This NMR study resulted in the observation of signal(s) due to bridging carbonyls as required by either a dynamic or static Co4(CO)12 structure. The failure to previously observe bridging carbonyl resonances at low field is thought to be most likely due to residual coupling to the quadrupolar cobalt nucleus and/or rapid and selective scalar relaxation of the carbonyl ligand by the cobalt cation. 22 refs., 3 figs

  4. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Thurber, Kent R., E-mail: thurberk@niddk.nih.gov; Tycko, Robert [Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520 (United States)

    2014-05-14

    We report solid state {sup 13}C and {sup 1}H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, {sup 1}H and cross-polarized {sup 13}C NMR signals from {sup 15}N,{sup 13}C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T{sub 1e} is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  5. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    International Nuclear Information System (INIS)

    We report solid state 13C and 1H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, 1H and cross-polarized 13C NMR signals from 15N,13C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations

  6. Microwave field distribution in a magic angle spinning dynamic nuclear polarization NMR probe

    OpenAIRE

    Nanni, Emilio A.; Barnes, Alexander B.; Matsuki, Yoh; Woskov, Paul P.; Corzilius, Björn; Griffin, Robert G.; Temkin, Richard J.

    2011-01-01

    We present a calculation of the microwave field distribution in a magic angle spinning (MAS) probe utilized in dynamic nuclear polarization (DNP) experiments. The microwave magnetic field (B[subscript 1S]) profile was obtained from simulations performed with the High Frequency Structure Simulator (HFSS) software suite, using a model that includes the launching antenna, the outer Kel-F stator housing coated with Ag, the RF coil, and the 4 mm diameter sapphire rotor containing the sample. The p...

  7. Multiple-quantum magic-angle spinning: high-resolution solid state NMR spectroscopy of half-integer quadrupolar nuclei

    International Nuclear Information System (INIS)

    Experimental and theoretical aspects of the multiple-quantum magic-angle spinning experiment (MQMAS) are discussed in this review. The significance of this experiment, introduced by Frydman and Harwood, is in its ability to provide high-resolution NMR spectra of half-integer quadrupolar nuclei (I /geq 3/2). This technique has proved to be useful in various systems ranging from inorganic materials to biological samples. This review addresses the development of various pulse schemes aimed at improving the signal-to-noise ratio and anisotropic lineshapes. Representative spectra are shown to underscore the importance and applications of the MQMAS experiment. Refs. 97 (author)

  8. High Resolution Magic Angle Spinning 1H-NMR Metabolic Profiling of Nanoliter Biological Tissues at High Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ju; Hu, Jian Z.; Burton, Sarah D.; Hoyt, David W.

    2013-03-05

    It is demonstrated that a high resolution magic angle spinning 1H-NMR spectrum of biological tissue samples with volumes as small as 150 nanoliters, or 0.15 mg in weight, can be acquired in a few minutes at 21.1 T magnetic field using a commercial 1.6 mm fast-MAS probe with minor modification of the MAS rotor. The strategies of sealing the samples inside the MAS rotor to avoid fluid leakage as well as the ways of optimizing the signal to noise are discussed.

  9. Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.

    Science.gov (United States)

    Kempgens, Pierre; Britton, Jonathan

    2016-05-01

    Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr  = 2 kHz for TiN, ZrN, and GaN; νr  = 1 kHz for InN) and 'high speed' (νr  = 15 kHz for TiN; νr  = 5 kHz for ZrN; νr  = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26687421

  10. Site-resolved multiple-quantum filtered correlations and distance measurements by magic-angle spinning NMR: Theory and applications to spins with weak to vanishing quadrupolar couplings

    International Nuclear Information System (INIS)

    We discuss and analyze four magic-angle spinning solid-state NMR methods that can be used to measure internuclear distances and to obtain correlation spectra between a spin I = 1/2 and a half-integer spin S > 1/2 having a small quadrupolar coupling constant. Three of the methods are based on the heteronuclear multiple-quantum and single-quantum correlation experiments, that is, high rank tensors that involve the half spin and the quadrupolar spin are generated. Here, both zero and single-quantum coherence of the half spins are allowed and various coherence orders of the quadrupolar spin are generated, and filtered, via active recoupling of the dipolar interaction. As a result of generating coherence orders larger than one, the spectral resolution for the quadrupolar nucleus increases linearly with the coherence order. Since the formation of high rank tensors is independent of the existence of a finite quadrupolar interaction, these experiments are also suitable to materials in which there is high symmetry around the quadrupolar spin. A fourth experiment is based on the initial quadrupolar-driven excitation of symmetric high order coherences (up to p = 2S, where S is the spin number) and subsequently generating by the heteronuclear dipolar interaction higher rank (l + 1 or higher) tensors that involve also the half spins. Due to the nature of this technique, it also provides information on the relative orientations of the quadrupolar and dipolar interaction tensors. For the ideal case in which the pulses are sufficiently strong with respect to other interactions, we derive analytical expressions for all experiments as well as for the transferred echo double resonance experiment involving a quadrupolar spin. We show by comparison of the fitting of simulations and the analytical expressions to experimental data that the analytical expressions are sufficiently accurate to provide experimental 7Li–13C distances in a complex of lithium, glycine, and water. Discussion

  11. Microwave field distribution in a magic angle spinning dynamic nuclear polarization NMR probe

    Science.gov (United States)

    Nanni, Emilio A.; Barnes, Alexander B.; Matsuki, Yoh; Woskov, Paul P.; Corzilius, Björn; Griffin, Robert G.; Temkin, Richard J.

    2011-05-01

    We present a calculation of the microwave field distribution in a magic angle spinning (MAS) probe utilized in dynamic nuclear polarization (DNP) experiments. The microwave magnetic field (B 1 S) profile was obtained from simulations performed with the High Frequency Structure Simulator (HFSS) software suite, using a model that includes the launching antenna, the outer Kel-F stator housing coated with Ag, the RF coil, and the 4 mm diameter sapphire rotor containing the sample. The predicted average B 1 S field is 13 μT/W 1/2, where S denotes the electron spin. For a routinely achievable input power of 5 W the corresponding value is γSB 1 S = 0.84 MHz. The calculations provide insights into the coupling of the microwave power to the sample, including reflections from the RF coil and diffraction of the power transmitted through the coil. The variation of enhancement with rotor wall thickness was also successfully simulated. A second, simplified calculation was performed using a single pass model based on Gaussian beam propagation and Fresnel diffraction. This model provided additional physical insight and was in good agreement with the full HFSS simulation. These calculations indicate approaches to increasing the coupling of the microwave power to the sample, including the use of a converging lens and fine adjustment of the spacing of the windings of the RF coil. The present results should prove useful in optimizing the coupling of microwave power to the sample in future DNP experiments. Finally, the results of the simulation were used to predict the cross effect DNP enhancement ( ɛ) vs. ω1 S/(2 π) for a sample of 13C-urea dissolved in a 60:40 glycerol/water mixture containing the polarizing agent TOTAPOL; very good agreement was obtained between theory and experiment.

  12. Selectively dispersed isotope labeling for protein structure determination by magic angle spinning NMR

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, Matthew T. [Massachusetts Institute of Technology, Department of Chemistry (United States); Belenky, Marina [Brandeis University, Department of Chemistry (United States); Sivertsen, Astrid C. [Massachusetts Institute of Technology, Francis Bitter Magnet Laboratory (United States); Griffin, Robert G. [Massachusetts Institute of Technology, Department of Chemistry (United States); Herzfeld, Judith, E-mail: herzfeld@brandeis.edu [Brandeis University, Department of Chemistry (United States)

    2013-10-15

    The power of nuclear magnetic resonance spectroscopy derives from its site-specific access to chemical, structural and dynamic information. However, the corresponding multiplicity of interactions can be difficult to tease apart. Complimentary approaches involve spectral editing on the one hand and selective isotope substitution on the other. Here we present a new 'redox' approach to the latter: acetate is chosen as the sole carbon source for the extreme oxidation numbers of its two carbons. Consistent with conventional anabolic pathways for the amino acids, [1-{sup 13}C] acetate does not label {alpha} carbons, labels other aliphatic carbons and the aromatic carbons very selectively, and labels the carboxyl carbons heavily. The benefits of this labeling scheme are exemplified by magic angle spinning spectra of microcrystalline immunoglobulin binding protein G (GB1): the elimination of most J-couplings and one- and two-bond dipolar couplings provides narrow signals and long-range, intra- and inter-residue, recoupling essential for distance constraints. Inverse redox labeling, from [2-{sup 13}C] acetate, is also expected to be useful: although it retains one-bond couplings in the sidechains, the removal of CA-CO coupling in the backbone should improve the resolution of NCACX spectra.

  13. A unified heteronuclear decoupling strategy for magic-angle-spinning solid-state NMR spectroscopy

    International Nuclear Information System (INIS)

    A unified strategy of two-pulse based heteronuclear decoupling for solid-state magic-angle spinning nuclear magnetic resonance is presented. The analysis presented here shows that different decoupling sequences like two-pulse phase-modulation (TPPM), X-inverse-X (XiX), and finite pulse refocused continuous wave (rCWA) are basically specific solutions of a more generalized decoupling scheme which incorporates the concept of time-modulation along with phase-modulation. A plethora of other good decoupling conditions apart from the standard, TPPM, XiX, and rCWA decoupling conditions are available from the unified decoupling approach. The importance of combined time- and phase-modulation in order to achieve the best decoupling conditions is delineated. The consequences of different indirect dipolar interactions arising from cross terms comprising of heteronuclear and homonuclear dipolar coupling terms and also those between heteronuclear dipolar coupling and chemical-shift anisotropy terms are presented in order to unfold the effects of anisotropic interactions under different decoupling conditions. Extensive numerical simulation results are corroborated with experiments on standard amino acids

  14. A unified heteronuclear decoupling strategy for magic-angle-spinning solid-state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Equbal, Asif; Bjerring, Morten; Nielsen, Niels Chr., E-mail: madhu@tifr.res.in, E-mail: ncn@inano.au.dk [Center for Insoluble Protein Structures, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C (Denmark); Madhu, P. K., E-mail: madhu@tifr.res.in, E-mail: ncn@inano.au.dk [Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075 (India)

    2015-05-14

    A unified strategy of two-pulse based heteronuclear decoupling for solid-state magic-angle spinning nuclear magnetic resonance is presented. The analysis presented here shows that different decoupling sequences like two-pulse phase-modulation (TPPM), X-inverse-X (XiX), and finite pulse refocused continuous wave (rCW{sup A}) are basically specific solutions of a more generalized decoupling scheme which incorporates the concept of time-modulation along with phase-modulation. A plethora of other good decoupling conditions apart from the standard, TPPM, XiX, and rCW{sup A} decoupling conditions are available from the unified decoupling approach. The importance of combined time- and phase-modulation in order to achieve the best decoupling conditions is delineated. The consequences of different indirect dipolar interactions arising from cross terms comprising of heteronuclear and homonuclear dipolar coupling terms and also those between heteronuclear dipolar coupling and chemical-shift anisotropy terms are presented in order to unfold the effects of anisotropic interactions under different decoupling conditions. Extensive numerical simulation results are corroborated with experiments on standard amino acids.

  15. Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning

    KAUST Repository

    Parthasarathy, Sudhakar

    2013-09-17

    Recent research in fast magic angle spinning (MAS) methods has drastically improved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarize recent and ongoing developments in this area by presenting (13)C and (1)H solid-state NMR (SSNMR) studies on paramagnetic systems and biomolecules under fast MAS from our laboratories. First, we describe how very fast MAS (VFMAS) at the spinning speed of at least 20 kHz allows us to overcome major difficulties in (1)H and (13)C high-resolution SSNMR of paramagnetic systems. As a result, we can enhance both sensitivity and resolution by up to a few orders of magnitude. Using fast recycling (∼ms/scan) with short (1)H T1 values, we can perform (1)H SSNMR microanalysis of paramagnetic systems on the microgram scale with greatly improved sensitivity over that observed for diamagnetic systems. Second, we discuss how VFMAS at a spinning speed greater than ∼40 kHz can enhance the sensitivity and resolution of (13)C biomolecular SSNMR measurements. Low-power (1)H decoupling schemes under VFMAS offer excellent spectral resolution for (13)C SSNMR by nominal (1)H RF irradiation at ∼10 kHz. By combining the VFMAS approach with enhanced (1)H T1 relaxation by paramagnetic doping, we can achieve extremely fast recycling in modern biomolecular SSNMR experiments. Experiments with (13)C-labeled ubiquitin doped with 10 mM Cu-EDTA demonstrate how effectively this new approach, called paramagnetic assisted condensed data collection (PACC), enhances the sensitivity. Lastly, we examine (13)C SSNMR measurements for biomolecules under faster MAS at a higher field. Our preliminary (13)C SSNMR data of Aβ amyloid fibrils and GB1 microcrystals acquired at (1)H NMR frequencies of 750-800 MHz suggest that the combined use of the PACC approach and ultrahigh fields could allow for routine multidimensional SSNMR analyses of proteins at the 50-200 nmol level. Also, we briefly discuss the

  16. Chemical profile of beans cultivars (Phaseolus vulgaris) by 1H NMR - high resolution magic angle spinning (HR-MAS);Perfil quimico de cultivares de feijao (Phaseolus vulgaris) pela tecnica de high resolution magic angle spinning (HR-MAS)

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Luciano Morais; Choze, Rafael; Cavalcante, Pedro Paulo Araujo; Santos, Suzana da Costa; Ferri, Pedro Henrique, E-mail: luciano@quimica.ufg.b [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio Gilberto [Universidade Federal de Sao Carlos (UFScar), SP (Brazil). Dept. de Quimica

    2010-07-01

    The application of one-dimensional proton high-resolution magic angle spinning ({sup 1}H HR-MAS) NMR combined with a typical advantages of solid and liquid-state NMR techniques was used as input variables for the multivariate statistical analysis. In this paper, different cultivars of beans (Phaseolus vulgaris) developed and in development by EMBRAPA - Arroz e Feijao were analyzed by {sup 1}H HR-MAS, which have been demonstrated to be a valuable tool in its differentiation according chemical composition and avoid the manipulation of the samples as used in other techniques. (author)

  17. Gel synthesis of magnesium silicates: A 29Si magic angle spinning NMR study

    Science.gov (United States)

    Hartman, J. Stephen; Millard, Roberta L.

    1990-01-01

    The formation of the magnesium silicate minerals forsterite, enstatite, and roedderite by heating of amorphous “protosilicate” gels precipitated from aqueous solution has been studied by 29Si MAS nmr. Gentle drying of the hydrogels at 110° C gives materials with broad nmr signals that do not differ appreciably with preparation conditions, but the minerals formed by heating at 750° C or higher are greatly dependent on the precipitation and washing conditions of the original gel. The rare mineral roedderite, best known from studies of unequilibrated enstatite chondrite meteorites, becomes a major species along with forsterite when the hydrogels are washed with sodium hydroxide solution before drying and heating to 750° C.

  18. Site-resolved multiple-quantum filtered correlations and distance measurements by magic-angle spinning NMR: Theory and applications to spins with weak to vanishing quadrupolar couplings

    Energy Technology Data Exchange (ETDEWEB)

    Eliav, U., E-mail: amirgo@tau.ac.il, E-mail: eliav@tau.ac.il; Haimovich, A.; Goldbourt, A., E-mail: amirgo@tau.ac.il, E-mail: eliav@tau.ac.il [School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv (Israel)

    2016-01-14

    We discuss and analyze four magic-angle spinning solid-state NMR methods that can be used to measure internuclear distances and to obtain correlation spectra between a spin I = 1/2 and a half-integer spin S > 1/2 having a small quadrupolar coupling constant. Three of the methods are based on the heteronuclear multiple-quantum and single-quantum correlation experiments, that is, high rank tensors that involve the half spin and the quadrupolar spin are generated. Here, both zero and single-quantum coherence of the half spins are allowed and various coherence orders of the quadrupolar spin are generated, and filtered, via active recoupling of the dipolar interaction. As a result of generating coherence orders larger than one, the spectral resolution for the quadrupolar nucleus increases linearly with the coherence order. Since the formation of high rank tensors is independent of the existence of a finite quadrupolar interaction, these experiments are also suitable to materials in which there is high symmetry around the quadrupolar spin. A fourth experiment is based on the initial quadrupolar-driven excitation of symmetric high order coherences (up to p = 2S, where S is the spin number) and subsequently generating by the heteronuclear dipolar interaction higher rank (l + 1 or higher) tensors that involve also the half spins. Due to the nature of this technique, it also provides information on the relative orientations of the quadrupolar and dipolar interaction tensors. For the ideal case in which the pulses are sufficiently strong with respect to other interactions, we derive analytical expressions for all experiments as well as for the transferred echo double resonance experiment involving a quadrupolar spin. We show by comparison of the fitting of simulations and the analytical expressions to experimental data that the analytical expressions are sufficiently accurate to provide experimental {sup 7}Li–{sup 13}C distances in a complex of lithium, glycine, and water

  19. Protein residue linking in a single spectrum for magic-angle spinning NMR assignment

    International Nuclear Information System (INIS)

    Here we introduce a new pulse sequence for resonance assignment that halves the number of data sets required for sequential linking by directly correlating sequential amide resonances in a single diagonal-free spectrum. The method is demonstrated with both microcrystalline and sedimented deuterated proteins spinning at 60 and 111 kHz, and a fully protonated microcrystalline protein spinning at 111 kHz, with as little as 0.5 mg protein sample. We find that amide signals have a low chance of ambiguous linkage, which is further improved by linking in both forward and backward directions. The spectra obtained are amenable to automated resonance assignment using general-purpose software such as UNIO-MATCH

  20. Application of High-Resolution Magic-Angle Spinning NMR Spectroscopy to Define the Cell Uptake of MRI Contrast Agents

    Science.gov (United States)

    Calabi, Luisella; Alfieri, Goffredo; Biondi, Luca; De Miranda, Mario; Paleari, Lino; Ghelli, Stefano

    2002-06-01

    A new method, based on proton high-resolution magic-angle spinning ( 1H HR-MAS) NMR spectroscopy, has been employed to study the cell uptake of magnetic resonance imaging contrast agents (MRI-CAs). The method was tested on human red blood cells (HRBC) and white blood cells (HWBC) by using three gadolinium complexes, widely used in diagnostics, Gd-BOPTA, Gd-DTPA, and Gd-DOTA, and the analogous complexes obtained by replacing Gd(III) with Dy(III), Nd(III), and Tb(III) (i.e., complexes isostructural to the ones of gadolinium but acting as shift agents). The method is based on the evaluation of the magnetic effects, line broadening, or induced lanthanide shift (LIS) caused by these complexes on NMR signals of intra- and extracellular water. Since magnetic effects are directly linked to permeability, this method is direct. In all the tests, these magnetic effects were detected for the extracellular water signal only, providing a direct proof that these complexes are not able to cross the cell membrane. Line broadening effects (i.e., the use of gadolinium complexes) only allow qualitative evaluations. On the contrary, LIS effects can be measured with high precision and they can be related to the concentration of the paramagnetic species in the cellular compartments. This is possible because the HR-MAS technique provides the complete elimination of bulk magnetic susceptibility (BMS) shift and the differentiation of extra- and intracellular water signals. Thus with this method, the rapid quantification of the MRI-CA amount inside and outside the cells is actually feasible.

  1. Systematic evaluation of heteronuclear spin decoupling in solid-state NMR at the rotary-resonance conditions in the regime of fast magic-angle spinning.

    Science.gov (United States)

    Sharma, Kshama; Madhu, P K; Agarwal, Vipin

    2016-09-01

    The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1=n·νr). Recently, two schemes, namely, PISSARRO and rCW(ApA), have been shown to be less affected by the problem of MAS and RF interference, specifically at the n=2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n=1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power (1)H irradiation of ca.195kHz. PMID:27472380

  2. Magic-angle spinning solid-state NMR spectroscopy of nanodisc-embedded human CYP3A4.

    Science.gov (United States)

    Kijac, Aleksandra Z; Li, Ying; Sligar, Stephen G; Rienstra, Chad M

    2007-12-01

    Cytochrome P450 (CYP) 3A4 contributes to the metabolism of approximately 50% of commercial drugs by oxidizing a large number of structurally diverse substrates. Like other endoplasmic reticulum-localized P450s, CYP3A4 contains a membrane-anchoring N-terminal helix and a significant number of hydrophobic domains, important for the interaction between CYP3A4 and the membrane. Although the membrane affects specificity of CYP3A4 ligand binding, the structural details of the interaction have not been revealed so far because X-ray crystallography studies are available only for the soluble domain of CYP3A4. Here we report sample preparation and initial magic-angle spinning (MAS) solid-state NMR (SSNMR) of CYP3A4 (Delta3-12) embedded in a nanoscale membrane bilayer, or Nanodisc. The growth protocol yields approximately 2.5 mg of the enzymatically active, uniformly 13C,15N-enriched CYP3A4 from 1 L of growth medium. Polyethylene glycol 3350-precipitated CYP3A4 in Nanodiscs yields spectra of high resolution and sensitivity, consistent with a folded, homogeneous protein. CYP3A4 in Nanodiscs remains enzymatically active throughout the precipitation protocol as monitored by bromocriptine binding. The 13C line widths measured from 13C-13C 2D chemical shift correlation spectra are approximately 0.5 ppm. The secondary structure distribution within several amino acid types determined from 13C chemical shifts is consistent with the ligand-free X-ray structures. These results demonstrate that MAS SSNMR can be performed on Nanodisc-embedded membrane proteins in a folded, active state. The combination of SSNMR and Nanodisc methodologies opens up new possibilities for obtaining structural information on CYP3A4 and other integral membrane proteins with full retention of functionality. PMID:17985934

  3. Studies of 29Si spin-lattice relaxation times and paramagnetic impurities in clay minerals by magic-angle spinning 29Si-NMR and EPR

    International Nuclear Information System (INIS)

    High-resolution solid state 29Si-NMR spectra and EPR spectra have been examined on twelve natural philosilicates. It has been found that presence of paramagnetic impurities is markedly effective in shortening the 29Si spin-lattice relaxation times (10 to 1000 ms), and in broadening the linewidths and is favorable for the use of solid state high-resolution 29Si NMR as a tool for structural studies of inorganic materials. (author)

  4. Structure of (NH4)3GaF6 investigated by multinuclear magic-angle spinning NMR spectroscopy in comparison with rietveld refinement.

    Science.gov (United States)

    Krahl, Thoralf; Ahrens, Mike; Scholz, Gudrun; Heidemann, Detlef; Kemnitz, Erhard

    2008-01-21

    The structure of ammonium gallium cryolite (NH(4))(3)GaF(6) was investigated by (19)F and (69,71)Ga magic-angle spinning (MAS) NMR in comparison with X-ray powder diffraction followed by Rietveld refinement. In agreement with previous thermodynamic measurements, NMR experiments on (NH(4))(3)GaF(6) support the model of rigid GaF(6) octahedra. At high spinning speeds (30 kHz), the scalar coupling between the six equivalent (19)F nuclei and (69,71)Ga can be directly observed in the powder spectra. The coupling constants are J(19)F(69)Ga = 197 Hz and J(19)F(71)Ga = 264 Hz. To explain the (71)Ga spectra recorded at 3 kHz a small distribution of quadrupolar frequencies has to be included. The spread of the spinning sidebands hints to a largest nu(Q) value of 28 kHz for (71)Ga. This can be explained by the occurrence of highly symmetric GaF(6) octahedra, which are tilted against the surrounding atoms. In addition, the incomplete motional excitation does not average out the quadrupolar effects. NMR findings are in discrepancy to those of Rietveld refinement. As result it appears that X-ray diffraction is not sensitive enough to deliver proper results. PMID:18069821

  5. Two-Dimensional NMR Study of a Liquid-Crystal Solution under Magic-Angle Spinning. Conformation of Carboxylic Ionophore Lasalocid A Dissolved in a Lyotropic Liquid Crystal

    Science.gov (United States)

    Kimura, Atsuomi; Kano, Tetsushi; Fujiwara, Hideaki

    1996-07-01

    The conformation of a carboxylic ionophore, lasalocid A, has been determined in a lyotropic liquid crystal by means of magic-angle spinning (MAS) and two-dimensional NMR experiments. The information extracted from ROESY spectra measured under MAS was analyzed according to the distance-geometry algorithm. The liquid crystal used for the solvent is cesium perfluorooctanoate dissolved in D2O, and the resulting structure of lasalocid A is a cyclic one, indicating cation complexation within a hydrophobic region of the liquid crystal. In this way, the two-dimensional MAS NMR experiment is proved to be a useful technique in conformational studies of complex molecules dissolved in lyotropic liquid crystal which may be regarded as offering a membrane-like environment.

  6. 1H High Resolution Magic-Angle Coil Spinning (HR-MACS) - NMR Metabolic Profiling of whole Saccharomyces cervisiae cells: A Demonstrative Study

    Science.gov (United States)

    Wong, Alan; Boutin, Celine; Aguiar, Pedro

    2014-06-01

    The low sensitivity of Nuclear Magnetic Resonance (NMR) is its prime shortcoming compared to other analytical methods for metabolomic studies. It relies on large sample volume (30-50 µl for HR-MAS) for rich metabolic profiling, hindering high-throughput screening especially when the sample requires a labor-intensive preparation or is a sacred specimen. This is indeed the case for some living organisms. This study evaluates a 1H HR-MAS approach for metabolic profiling of small volume (250 nl) whole bacterial cells, Saccharomyces cervisiae, using an emerging micro-NMR technology: high-resolution magic-angle coil spinning (HR-MACS). As a demonstrative study for whole cells, we perform two independent metabolomics studies identifying the significant metabolites associated with osmotic stress and aging.

  7. 1H High Resolution Magic-Angle Coil Spinning (HR-MACS µNMR Metabolic Profiling of whole Saccharomyces cervisiae cells: A Demonstrative Study

    Directory of Open Access Journals (Sweden)

    Alan eWong

    2014-06-01

    Full Text Available The low sensitivity of Nuclear Magnetic Resonance (NMR is its prime shortcoming compared to other analytical methods for metabolomic studies. It relies on large sample volume (30–50 µl for HR-MAS for rich metabolic profiling, hindering high-throughput screening especially when the sample requires a labor-intensive preparation or is a sacred specimen. This is indeed the case for some living organisms. This study evaluates a 1H HR-MAS approach for metabolic profiling of small volume (250 nl whole bacterial cells, Saccharomyces cervisiae, using an emerging micro-NMR technology: high-resolution magic-angle coil spinning (HR-MACS. As a demonstrative study for whole cells, we perform two independent metabolomics studies identifying the significant metabolites associated with osmotic stress and aging.

  8. Resolution enhancement by homonuclear J-decoupling: application to three-dimensional solid-state magic angle spinning NMR spectroscopy

    International Nuclear Information System (INIS)

    We describe a simple protocol to achieve homonuclear J-decoupling in the indirect dimensions of multidimensional experiments, and to enhance spectral resolution of the backbone Cα carbons in the 3D NCACX experiment. In the proposed protocol, the refocusing of the Cα-CO homonuclear J-couplings is achieved by applying an off-resonance selective π pulse to the CO spectral region in the middle of Cα chemical shift evolution. As is commonly used in solution NMR, a compensatory echo period is used to refocus the unwanted chemical shift evolution of Cα spins, which takes place during the off-resonance selective pulse. The experiments were carried out on the β1 immunoglobulin binding domain of protein G (GB1). In GB1, such implementation results in significantly reduced line widths, and leads to an overall sensitivity enhancement

  9. Applications of pulsed nuclear magnetic resonance to chemistry: multiple-pulse NMR, cross polarization, magic-angle spinning annd instrumental design

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, P.D.

    1979-07-01

    Pulsed Nuclear Magnetic Resonance (NMR) has been applied to: (1) Measurements of the prinicpal components of the proton shielding tensors of the hydrides of zirconium chloride and zirconium bromide. Multiple-Pulse techniques have been used to remove static homonuclear dipolar coupling. The anisotropies and isotropic shifts of these tensors have been used to infer the possible locations of the hydrogen within the sandwich-like layers of these unusual compounds. (2) Studies of the oscillatory transfer of magnetic polarization between /sup 1/H and /sup 29/Si in substituted silanes. The technique of J Cross Polarization has been used to enhance sensitivity. The /sup 29/Si NMR shifts of -Si-O- model compounds have been investigated as a possible probe for future studies of the environment of bound oxygen in coal-derived liquids. (3) Measurements of the aromatic fraction of /sup 13/C in whole coals. The techniques of /sup 1/H-/sup 13/C Cross Polarization and Magic-Angle Spinning have been used to enhance sensitivity and remove shift anisotropy. Additional topics described are: (4) Calculation and properties of the broadened lineshape of the shileding Powder Pattern. (5) Calculation of the oscillatory transfer of magnetic polarization for an I-S system. (6) Numerical convolution and its uses. (7) The technique of digital filtering applied in the frequency domain. (8) The designs and properties of four NMR probe-circuits. (9) The design of a single-coil double-resonance probe for combined Magic-Angle Spinning and Cross Polarization. (10) The designs of low Q and high Q rf power amplifiers with emphasis on the rf matching circuitry.

  10. Magic-angle-spinning NMR spectroscopy. January 1978-May 1988 (Citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Report for January 1978-May 1988

    International Nuclear Information System (INIS)

    This bibliography contains citations concerning the principles and applications of magic-angle spinning (MAS) nuclear magnetic resonance (NMR) in high-resolution spectra analysis of solids. Magic-angle spinning NMR is a very powerful spectrographic technique for the study of structures, dynamics, and reactivity of solids, and polcrystalline and amorphous solids. Studies of various materials are presented, including zeolites, organic compounds and polymers, liquid crystals, silicate and borate glasses, and alumina and oxide films. Applications in conductive polymers, biological systems, and organic matrixes of composite materials are presented. (Contains 89 citations fully indexed and including a title list.)

  11. The local physical structure of amorphous hydrogenated boron carbide: insights from magic angle spinning solid-state NMR spectroscopy.

    Science.gov (United States)

    Paquette, Michelle M; Li, Wenjing; Sky Driver, M; Karki, Sudarshan; Caruso, A N; Oyler, Nathan A

    2011-11-01

    Magic angle spinning solid-state nuclear magnetic resonance spectroscopy techniques are applied to the elucidation of the local physical structure of an intermediate product in the plasma-enhanced chemical vapour deposition of thin-film amorphous hydrogenated boron carbide (B(x)C:H(y)) from an orthocarborane precursor. Experimental chemical shifts are compared with theoretical shift predictions from ab initio calculations of model molecular compounds to assign atomic chemical environments, while Lee-Goldburg cross-polarization and heteronuclear recoupling experiments are used to confirm atomic connectivities. A model for the B(x)C:H(y) intermediate is proposed wherein the solid is dominated by predominantly hydrogenated carborane icosahedra that are lightly cross-linked via nonhydrogenated intraicosahedral B atoms, either directly through B-B bonds or through extraicosahedral hydrocarbon chains. While there is no clear evidence for extraicosahedral B aside from boron oxides, ∼40% of the C is found to exist as extraicosahedral hydrocarbon species that are intimately bound within the icosahedral network rather than in segregated phases. PMID:21959982

  12. The local physical structure of amorphous hydrogenated boron carbide: insights from magic angle spinning solid-state NMR spectroscopy

    International Nuclear Information System (INIS)

    Magic angle spinning solid-state nuclear magnetic resonance spectroscopy techniques are applied to the elucidation of the local physical structure of an intermediate product in the plasma-enhanced chemical vapour deposition of thin-film amorphous hydrogenated boron carbide (BxC:Hy) from an orthocarborane precursor. Experimental chemical shifts are compared with theoretical shift predictions from ab initio calculations of model molecular compounds to assign atomic chemical environments, while Lee-Goldburg cross-polarization and heteronuclear recoupling experiments are used to confirm atomic connectivities. A model for the BxC:Hy intermediate is proposed wherein the solid is dominated by predominantly hydrogenated carborane icosahedra that are lightly cross-linked via nonhydrogenated intraicosahedral B atoms, either directly through B-B bonds or through extraicosahedral hydrocarbon chains. While there is no clear evidence for extraicosahedral B aside from boron oxides, ∼40% of the C is found to exist as extraicosahedral hydrocarbon species that are intimately bound within the icosahedral network rather than in segregated phases. (paper)

  13. The local physical structure of amorphous hydrogenated boron carbide: insights from magic angle spinning solid-state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, Michelle M; Sky Driver, M; Karki, Sudarshan; Caruso, A N [Department of Physics, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Li Wenjing; Oyler, Nathan A, E-mail: oylern@umkc.edu [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States)

    2011-11-02

    Magic angle spinning solid-state nuclear magnetic resonance spectroscopy techniques are applied to the elucidation of the local physical structure of an intermediate product in the plasma-enhanced chemical vapour deposition of thin-film amorphous hydrogenated boron carbide (B{sub x}C:H{sub y}) from an orthocarborane precursor. Experimental chemical shifts are compared with theoretical shift predictions from ab initio calculations of model molecular compounds to assign atomic chemical environments, while Lee-Goldburg cross-polarization and heteronuclear recoupling experiments are used to confirm atomic connectivities. A model for the B{sub x}C:H{sub y} intermediate is proposed wherein the solid is dominated by predominantly hydrogenated carborane icosahedra that are lightly cross-linked via nonhydrogenated intraicosahedral B atoms, either directly through B-B bonds or through extraicosahedral hydrocarbon chains. While there is no clear evidence for extraicosahedral B aside from boron oxides, {approx}40% of the C is found to exist as extraicosahedral hydrocarbon species that are intimately bound within the icosahedral network rather than in segregated phases. (paper)

  14. Assessment of a 1H high-resolution magic angle spinning NMR spectroscopy procedure for free sugars quantification in intact plant tissue.

    Science.gov (United States)

    Delgado-Goñi, Teresa; Campo, Sonia; Martín-Sitjar, Juana; Cabañas, Miquel E; San Segundo, Blanca; Arús, Carles

    2013-08-01

    In most plants, sucrose is the primary product of photosynthesis, the transport form of assimilated carbon, and also one of the main factors determining sweetness in fresh fruits. Traditional methods for sugar quantification (mainly sucrose, glucose and fructose) require obtaining crude plant extracts, which sometimes involve substantial sample manipulation, making the process time-consuming and increasing the risk of sample degradation. Here, we describe and validate a fast method to determine sugar content in intact plant tissue by using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR). The HR-MAS NMR method was used for quantifying sucrose, glucose and fructose in mesocarp tissues from melon fruits (Cucumis melo var. reticulatus and Cucumis melo var. cantalupensis). The resulting sugar content varied among individual melons, ranging from 1.4 to 7.3 g of sucrose, 0.4-2.5 g of glucose; and 0.73-2.83 g of fructose (values per 100 g fw). These values were in agreement with those described in the literature for melon fruit tissue, and no significant differences were found when comparing them with those obtained using the traditional, enzymatic procedure, on melon tissue extracts. The HR-MAS NMR method offers a fast (usually <30 min) and sensitive method for sugar quantification in intact plant tissues, it requires a small amount of tissue (typically 50 mg fw) and avoids the interferences and risks associated with obtaining plant extracts. Furthermore, this method might also allow the quantification of additional metabolites detectable in the plant tissue NMR spectrum. PMID:23824526

  15. Study of the ferroelastic phase transition in the tetraethylammonium compound [N(C2H54]2ZnBr4 by magic-angle spinning and static NMR

    Directory of Open Access Journals (Sweden)

    Ae Ran Lim

    2016-03-01

    Full Text Available The ferroelastic phase transition of tetraethylammonium compound [N(C2H54]2ZnBr4 at the phase transition temperature (TC = 283 K was characterized by magic-angle spinning (MAS and static nuclear magnetic resonance (NMR, and confirmed by optical polarizing spectroscopy. The structural geometry near TC was studied in terms of the chemical shifts and the spin-lattice relaxation times T1ρ in the rotating frame for 1H MAS NMR and 13C cross-polarization (CP/MAS NMR. The two inequivalent ethyl groups were distinguishable in the 13C NMR spectrum, and the T1ρ results indicate that they undergo tumbling motion above TC in a coupled manner. From the 14N NMR results, the two nitrogen nuclei in the N(C2H54+ ions were distinguishable above TC, and the splitting in the spectra below TC was related to the ferroelastic domains with different orientations.

  16. Application of magic angle spinning NMR spectroscopy in study of metabolic processes in the anterior segment of the eye

    Czech Academy of Sciences Publication Activity Database

    Midelfart, A.; Risa, O.; Saether, O.; Löfgren, S.; Söderberg, P. G.; Krane, J.; Čejková, Jitka

    Tampere, 2002. s. 71. [Nordic Congress of Ophthalmology /35./. 23.08.2002-27.08.2002, Tampere - Finland] Institutional research plan: CEZ:AV0Z5039906 Keywords : NMR spectroscopy Subject RIV: FF - HEENT, Dentistry

  17. Magic Angle Spinning NMR Reveals Sequence-Dependent Structural Plasticity, Dynamics, and the Spacer Peptide 1 Conformation in HIV-1 Capsid Protein Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yun; Hou, Guangjin; Suiter, Christopher L.; Ahn, Jinwoo; Byeon, In-Ja L.; Lipton, Andrew S.; Burton, Sarah D.; Hung, Ivan; Gorkov, Peter L.; Gan, Zhehong; Brey, William W.; Rice, David M.; Gronenborn, Angela M.; Polenova, Tatyana E.

    2013-11-27

    Maturation of HIV-1 virus into an infectious virion requires cleavage of the Gag polyprotein into its constituent domains and formation of a conical capsid core that encloses viral RNA and a small complement of proteins for replication. The final step of this process is the cleavage of the SP1 peptide from the CA-SP1 maturation intermediate, which triggers the condensation of the CA protein into a conical capsid. The mechanism of this step, including the conformation of the SP1 peptide in CA-SP1, is under intense debate. In this report, we examine the tubular assemblies of CA and the CA-SP1 maturation intermediate using Magic Angle Spinning NMR spectroscopy. At the magnetic fields of 19.9 T and above, tubular CA and CA-SP1 assemblies yield outstanding-quality 2D and 3D MAS NMR spectra, which are amenable to resonance assignments and detailed structural characterization. Dipolar- and scalar-based correlation experiments unequivocally indicate that SP1 peptide is in a random coil conformation and mobile in the assembled CA-SP1. Analysis of two sequence variants reveals that remarkably, the conformation of SP1 tail, of the functionally important CypA loop, and of the loop preceding helix 8 are sequence dependent and modulated by the residue variations at distal sites. These findings challenge the role of SP1 as a conformational switch in the maturation process and establish sequence-dependent conformational plasticity in CA.

  18. Dynamic High-Resolution H-1 and P-31 NMR Spectroscopy and H-1 T-2 Measurements in Postmortem Rabbit Muscles Using Slow Magic Angle Spinning

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, Hanne Christine; Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.; Andersen, Henrik J.

    2004-05-05

    Postmortem changes in rabbit muscle tissue with different glycogen status (normal vs low) were followed continuously from 13 min postmortem until 8 h postmortem and again 20 h postmortem using simultaneous magic angle spinning 1H and 31P NMR spectroscopy together with measurement of the transverse relaxation time, T2, of the muscle water. The 1H metabolite spectra were measured using the phase-altered spinning sidebands (PASS) technique at a spinning rate of 40 Hz. pH values calculated from the 31P NMR spectra using the chemical shifts of the C-6 line of histidine in the 1H spectra and the chemical shifts of inorganic phosphate in the 31P spectra confirmed the different muscle glycogen status in the tissues. High-resolution 1H spectra obtained from the PASS technique revealed the presence of a new resonance line at 6.8 ppm during the postmortem period, which were absent in muscles with low muscle glycogen content. This new resonance line may originate from the aminoprotons in creatine, and its appearance may be a result of a pH effect on the exchange rate between the amino and the water protons and thereby the NMR visibility. Alternatively, the new resonance line may originate from the aromatic protons in tyrosine, and its appearance may be a result of a pH-induced protein unfolding exposing hydrophobic amino acid residues to the aqueous environment. Further studies are needed to evaluate these hypotheses. Finally, distributed analysis of the water T2 relaxation data revealed three relaxation populations and an increase in the population believed to reflect extramyofibrillar water through the postmortem period. This increase was significantly reduced (p < 0.0001) in samples from animals with low muscle glycogen content, indicating that the pH is controlling the extent of postmortem expulsion of water from myofibrillar structures. The significance of the postmortem increase in the amount extramyofibrillar water on the water-holding capacity was verified by

  19. Magic-angle spinning solid-state NMR of a 144 kDa membrane protein complex: E. coli cytochrome bo3 oxidase

    International Nuclear Information System (INIS)

    Recent progress in magic-angle spinning (MAS) solid-state NMR (SSNMR) has enabled multidimensional studies of large, macroscopically unoriented membrane proteins with associated lipids, without the requirement of solubility that limits other structural techniques. Here we present initial sample preparation and SSNMR studies of a 144 kDa integral membrane protein, E. coli cytochrome bo3 oxidase. The optimized protocol for expression and purification yields ∼5 mg of the enzymatically active, uniformly 13C,15N-enriched membrane protein complex from each liter of growth medium. The preparation retains endogenous lipids and yields spectra of high sensitivity and resolution, consistent with a folded, homogenous protein. Line widths of isolated signals are less than 0.5 ppm, with a large number of individual resonances resolved in the 2D and 3D spectra. The 13C chemical shifts, assigned by amino acid type, are consistent with the secondary structure previously observed by diffraction methods. Although the structure is predominantly helical, the percentage of non-helical signals varies among residue types; these percentages agree well between the NMR and diffraction data. Samples show minimal evidence of degradation after several weeks of NMR data acquisition. Use of a triple resonance scroll resonator probe further improves sample stability and enables higher power decoupling, higher duty cycles and more advanced 3D experiments to be performed. These initial results in cytochrome bo3 oxidase demonstrate that multidimensional MAS SSNMR techniques have sufficient sensitivity and resolution to interrogate selected parts of a very large uniformly 13C,15N-labeled membrane protein

  20. Magic-angle spinning solid-state NMR of a 144 kDa membrane protein complex: E. coli cytochrome bo3 oxidase.

    Science.gov (United States)

    Frericks, Heather L; Zhou, Donghua H; Yap, Lai Lai; Gennis, Robert B; Rienstra, Chad M

    2006-09-01

    Recent progress in magic-angle spinning (MAS) solid-state NMR (SSNMR) has enabled multidimensional studies of large, macroscopically unoriented membrane proteins with associated lipids, without the requirement of solubility that limits other structural techniques. Here we present initial sample preparation and SSNMR studies of a 144 kDa integral membrane protein, E. coli cytochrome bo(3) oxidase. The optimized protocol for expression and purification yields approximately 5 mg of the enzymatically active, uniformly (13)C,(15)N-enriched membrane protein complex from each liter of growth medium. The preparation retains endogenous lipids and yields spectra of high sensitivity and resolution, consistent with a folded, homogenous protein. Line widths of isolated signals are less than 0.5 ppm, with a large number of individual resonances resolved in the 2D and 3D spectra. The (13)C chemical shifts, assigned by amino acid type, are consistent with the secondary structure previously observed by diffraction methods. Although the structure is predominantly helical, the percentage of non-helical signals varies among residue types; these percentages agree well between the NMR and diffraction data. Samples show minimal evidence of degradation after several weeks of NMR data acquisition. Use of a triple resonance scroll resonator probe further improves sample stability and enables higher power decoupling, higher duty cycles and more advanced 3D experiments to be performed. These initial results in cytochrome bo(3) oxidase demonstrate that multidimensional MAS SSNMR techniques have sufficient sensitivity and resolution to interrogate selected parts of a very large uniformly (13)C,(15)N-labeled membrane protein. PMID:16964530

  1. Selective excitation enables assignment of proton resonances and {sup 1}H-{sup 1}H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of {sup 1}H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as {sup 13}C or {sup 15}N. In this method, after the initial preparation of proton magnetization and cross-polarization to {sup 13}C nuclei, transverse magnetization of desired {sup 13}C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific {sup 13}C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of {sup 1}H-{sup 1}H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  2. Spinning angle optical calibration apparatus

    Science.gov (United States)

    Beer, Stephen K.; Pratt, II, Harold R.

    1991-01-01

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.

  3. Identification of NH…N hydrogen bonds by magic angle spinning solid state NMR in a double-stranded RNA associated with myotonic dystrophy

    Science.gov (United States)

    Leppert, Jörg; Urbinati, Carl R.; Häfner, Sabine; Ohlenschläger, Oliver; Swanson, Maurice S.; Görlach, Matthias; Ramachandran, Ramadurai

    2004-01-01

    RNA plays a central role in biological processes and exhibits a variety of secondary and tertiary structural features that are often stabilized via hydrogen bonds. The distance between the donor and acceptor nitrogen nuclei involved in NH…N hydrogen bonds in nucleic acid base pairs is typically in the range of 2.6–2.9 Å. Here, we show for the first time that such spatial proximity between 15N nitrogen nuclei can be conveniently monitored via magic angle spinning solid state NMR on a uniformly 15N-labelled RNA. The presence of NH…N hydrogen bonds is reflected as cross-peaks between the donor and acceptor nitrogen nuclei in 2D 15N dipolar chemical shift correlation spectra. The RNA selected for this experimental study was a CUG repeat expansion implicated in the neuromuscular disease myotonic dystrophy. The results presented provide direct evidence that the CUG repeat expansion adopts a double-stranded conformation. PMID:14973225

  4. Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach

    International Nuclear Information System (INIS)

    This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40–80 kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055–15058, 2015) combines the reverse 13C, 15N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of “highlighted” labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching 13CO or 15N signals for a pair of consecutively labeled residues by recoupling 13CO–15N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ∼15 % loss of signals for the highlighted residues while quenching as much as ∼90 % of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D 15N/13Cα correlation and 2D 13Cα/13CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60 kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and 1H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using 13C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (∼300 nmol), for which data collection required only 11 h. The HIGHLIGHT approach offers valuable means of signal assignments especially for larger proteins through reducing the

  5. Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Songlin; Matsuda, Isamu; Long, Fei; Ishii, Yoshitaka, E-mail: yishii@uic.edu [University of Illinois at Chicago, Department of Chemistry (United States)

    2016-02-15

    This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40–80 kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055–15058, 2015) combines the reverse {sup 13}C, {sup 15}N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of “highlighted” labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching {sup 13}CO or {sup 15}N signals for a pair of consecutively labeled residues by recoupling {sup 13}CO–{sup 15}N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ∼15 % loss of signals for the highlighted residues while quenching as much as ∼90 % of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D {sup 15}N/{sup 13}C{sub α} correlation and 2D {sup 13}C{sub α}/{sup 13}CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60 kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and {sup 1}H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using {sup 13}C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (∼300 nmol), for which data collection required only 11 h. The HIGHLIGHT approach offers valuable

  6. Multiple Acquisition of Magic Angle Spinning Solid-State NMR Experiments Using One Receiver: Application to Microcrystalline and Membrane Protein Preparations

    Science.gov (United States)

    Gopinath, T.; Veglia, Gianluigi

    2015-01-01

    Solid-State NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of experiments called Polarization Optimized Experiments (POE), in which we utilized the orphan spin operators that are discarded in classical multidimensional NMR experiments, recovering them to allow simultaneous acquisition of multiple 2D and 3D experiments, all while using conventional probes with spectrometers equipped with one receiver. POEs allow the concatenation of multiple 2D or 3D pulse sequences into a single experiment, thus potentially combining all of the aforementioned advances, boosting the capability of ssNMR spectrometers at least two-fold without the addition of any hardware. In this Perspective, we describe the first generation of POEs, such as dual acquisition MAS (or DUMAS) methods, and then illustrate the evolution of these experiments into MEIOSIS, a method that enables the simultaneous acquisition of multiple 2D and 3D spectra. Using these new pulse schemes for the solid-state NMR investigation of biopolymers makes it possible to obtain sequential resonance assignments, as well as distance restraints, in about half the experimental time. While designed for acquisition of heteronuclei, these new experiments can be easily implemented for proton detection and coupled with other recent advancements, such as dynamic polarization, to improve signal to noise. Finally, we illustrate the application of these methods to microcrystalline protein preparations as well as single and multi-span membrane proteins reconstituted in lipid membranes. PMID:25797011

  7. Spin-Exchange Pumped NMR Gyros

    CERN Document Server

    Walker, Thad G

    2016-01-01

    We present the basic theory governing spin-exchange pumped NMR gyros. We review the basic physics of spin-exchange collisions and relaxation as they pertain to precision NMR. We present a simple model of operation as an NMR oscillator and use it to analyze the dynamic response and noise properties of the oscillator. We discuss the primary systematic errors (differential alkali fields, quadrupole shifts, and offset drifts) that limit the bias stability, and discuss methods to minimize them. We give with a brief overview of a practical implementation and performance of an NMR gyro built by Northrop-Grumman Corporation, and conclude with some comments about future prospects.

  8. Correlating the P-31 NMR Chemical Shielding Tensor and the (2)J(P,C) Spin-Spin Coupling Constants with Torsion Angles zeta and alpha in the Backbone of Nucleic Acids

    Czech Academy of Sciences Publication Activity Database

    Benda, Ladislav; Sochorová Vokáčová, Zuzana; Straka, Michal; Sychrovský, Vladimír

    2012-01-01

    Roč. 116, č. 12 (2012), s. 3823-3833. ISSN 1520-6106 R&D Projects: GA ČR GAP205/10/0228; GA ČR GPP208/10/P398; GA ČR GA203/09/2037 Institutional research plan: CEZ:AV0Z40550506 Keywords : nucleic acids * phosphorus NMR * NMR calculations * cross-correlated relaxation * spin–spin coupling constants Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.607, year: 2012

  9. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Guangjin, E-mail: hou@udel.edu, E-mail: tpolenov@udel.edu; Lu, Xingyu, E-mail: luxingyu@udel.edu, E-mail: lexvega@comcast.net; Vega, Alexander J., E-mail: luxingyu@udel.edu, E-mail: lexvega@comcast.net; Polenova, Tatyana, E-mail: hou@udel.edu, E-mail: tpolenov@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, Pennsylvania 15261 (United States)

    2014-09-14

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear {sup 1}H-X (X = {sup 13}C, {sup 15}N, {sup 31}P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the {sup 1}H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the {sup 1}H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from {sup 1}H chemical shift anisotropy, while keeping the {sup 1}H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [{sup 15}N]-N-acetyl-valine and [U-{sup 13}C,{sup 15}N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate {sup 1}H-{sup 15}N dipolar couplings in the context of 3D experiments is presented on U-{sup 13}C,{sup 15}N-enriched dynein light chain protein LC8.

  10. Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination

    International Nuclear Information System (INIS)

    Several techniques for spectral editing of 2D 13C–13C correlation NMR of proteins are introduced. They greatly reduce the spectral overlap for five common amino acid types, thus simplifying spectral assignment and conformational analysis. The carboxyl (COO) signals of glutamate and aspartate are selected by suppressing the overlapping amide N–CO peaks through 13C–15N dipolar dephasing. The sidechain methine (CH) signals of valine, lecuine, and isoleucine are separated from the overlapping methylene (CH2) signals of long-chain amino acids using a multiple-quantum dipolar transfer technique. Both the COO and CH selection methods take advantage of improved dipolar dephasing by asymmetric rotational-echo double resonance (REDOR), where every other π-pulse is shifted from the center of a rotor period tr by about 0.15 tr. This asymmetry produces a deeper minimum in the REDOR dephasing curve and enables complete suppression of the undesired signals of immobile segments. Residual signals of mobile sidechains are positively identified by dynamics editing using recoupled 13C–1H dipolar dephasing. In all three experiments, the signals of carbons within a three-bond distance from the selected carbons are detected in the second spectral dimension via 13C spin exchange. The efficiencies of these spectral editing techniques range from 60 % for the COO and dynamic selection experiments to 25 % for the CH selection experiment, and are demonstrated on well-characterized model proteins GB1 and ubiquitin.

  11. Nuclear spin noise in NMR revisited

    Science.gov (United States)

    Ferrand, Guillaume; Huber, Gaspard; Luong, Michel; Desvaux, Hervé

    2015-09-01

    The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a "bump" or as a "dip" superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.

  12. Nuclear spin noise in NMR revisited

    CERN Document Server

    Ferrand, Guillaume; Luong, Michel; Desvaux, Hervé

    2015-01-01

    The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite, preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a "bump" or as a "dip" superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparison to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the Spin-Noise and Frequency-Shift Tuning Optima.

  13. Nuclear spin noise in NMR revisited

    Energy Technology Data Exchange (ETDEWEB)

    Ferrand, Guillaume; Luong, Michel [Laboratoire d’Ingénierie des Systèmes Accélérateurs et des Hyperfréquences, SACM, CEA, Université Paris-Saclay, CEA/Saclay, F-91191 Gif-sur-Yvette (France); Huber, Gaspard; Desvaux, Hervé, E-mail: herve.desvaux@cea.fr [Laboratoire Structure et Dynamique par Résonance Magnétique, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA/Saclay, F-91191 Gif-sur-Yvette (France)

    2015-09-07

    The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a “bump” or as a “dip” superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.

  14. Nuclear spin noise in NMR revisited

    International Nuclear Information System (INIS)

    The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a “bump” or as a “dip” superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima

  15. Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Rohr, K.; Fritzsching, K. J.; Liao, S. Y.; Hong Mei, E-mail: mhong@iastate.edu [Iowa State University, Department of Chemistry and Ames Laboratory (United States)

    2012-12-15

    Several techniques for spectral editing of 2D {sup 13}C-{sup 13}C correlation NMR of proteins are introduced. They greatly reduce the spectral overlap for five common amino acid types, thus simplifying spectral assignment and conformational analysis. The carboxyl (COO) signals of glutamate and aspartate are selected by suppressing the overlapping amide N-CO peaks through {sup 13}C-{sup 15}N dipolar dephasing. The sidechain methine (CH) signals of valine, lecuine, and isoleucine are separated from the overlapping methylene (CH{sub 2}) signals of long-chain amino acids using a multiple-quantum dipolar transfer technique. Both the COO and CH selection methods take advantage of improved dipolar dephasing by asymmetric rotational-echo double resonance (REDOR), where every other {pi}-pulse is shifted from the center of a rotor period t{sub r} by about 0.15 t{sub r}. This asymmetry produces a deeper minimum in the REDOR dephasing curve and enables complete suppression of the undesired signals of immobile segments. Residual signals of mobile sidechains are positively identified by dynamics editing using recoupled {sup 13}C-{sup 1}H dipolar dephasing. In all three experiments, the signals of carbons within a three-bond distance from the selected carbons are detected in the second spectral dimension via {sup 13}C spin exchange. The efficiencies of these spectral editing techniques range from 60 % for the COO and dynamic selection experiments to 25 % for the CH selection experiment, and are demonstrated on well-characterized model proteins GB1 and ubiquitin.

  16. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  17. A study of conformational stability of poly(L-alanine), poly(L-valine), and poly(L-alanine)/poly(L-valine) blends in the solid state by (13)C cross-polarization/magic angle spinning NMR.

    Science.gov (United States)

    Murata, Katsuyoshi; Kuroki, Shigeki; Kimura, Hideaki; Ando, Isao

    2002-06-01

    13C cross-polarization/magic angle spinning (CP/MAS) NMR and (1)H T(1rho) experiments of poly(L-alanine) (PLA), poly(L-valine) (PLV), and PLA/PLV blends have been carried out in order to elucidate the conformational stability of the polypeptides in the solid state. These were prepared by adding a trifluoroacetic acid (TFA) solution of the polymer with a 2.0 wt/wt % of sulfuric acid (H(2)SO(4)) to alkaline water. From these experimental results, it is clarified that the conformations of PLA and PLV in their blends are strongly influenced by intermolecular hydrogen-bonding interactions that cause their miscibility at the molecular level. PMID:11948439

  18. Mechanism of Solid-State Thermolysis of Ammonia Boraine: 15N NMR Study Using Fast Magic-Angle Spinning and Dynamic Nuclear Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Takeshi [Ames Laboratory; Gupta, Shalabh [Ames Laboratory; Caporini, Marc A [Bruker BioSpin Corporation; Pecharsky, Vitalij K [Ames Laboratory; Pruski, Marek [Ames Laboratory

    2014-08-28

    The solid-state thermolysis of ammonia borane (NH3BH3, AB) was explored using state-of-the-art 15N solid-state NMR spectroscopy, including 2D indirectly detected 1H{15N} heteronuclear correlation and dynamic nuclear polarization (DNP)-enhanced 15N{1H} cross-polarization experiments as well as 11B NMR. The complementary use of 15N and 11B NMR experiments, supported by density functional theory calculations of the chemical shift tensors, provided insights into the dehydrogenation mechanism of AB—insights that have not been available by 11B NMR alone. Specifically, highly branched polyaminoborane derivatives were shown to form from AB via oligomerization in the “head-to-tail” manner, which then transform directly into hexagonal boron nitride analog through the dehydrocyclization reaction, bypassing the formation of polyiminoborane.

  19. Chemical state of boron in coal fly ash investigated by focused-ion-beam time-of-flight secondary ion mass spectrometry (FIB-TOF-SIMS) and satellite-transition magic angle spinning nuclear magnetic resonance (STMAS NMR).

    Science.gov (United States)

    Hayashi, Shun-ichi; Takahashi, Takafumi; Kanehashi, Koji; Kubota, Naoyoshi; Mizuno, Kaoru; Kashiwakura, Shunsuke; Sakamoto, Tetsuo; Nagasaka, Tetsuya

    2010-08-01

    The chemical states of boron in coal fly ash, which may control its leaching into the environment, were investigated by focused-ion-beam time-of-flight secondary ion mass spectrometry (FIB-TOF-SIMS) and satellite-transition magic angle spinning nuclear magnetic resonance (STMAS NMR) spectroscopy. The distribution of boron on the surface and in the interior of micron-sized fly ash particles was directly observed by FIB-TOF-SIMS. Coordination numbers of boron and its bonding with different atoms from particles of bulk samples were investigated by STMAS NMR. Boron in coal fly ash with relatively poor leaching characteristics appears as trigonal BO(3) and coexists with Ca and Fe at the outer layer of every particle and inside CaO-MgO particles. In contrast, boron in coal fly ash with better leaching characteristics appears as CaO- or MgO-trigonal BO(3) and tetragonal BO(4), and it is distributed only on the outer surface of each ash particle without showing any correlation with a particular element. PMID:20570315

  20. A General Protocol for Temperature Calibration of MAS NMR Probes at Arbitrary Spinning Speeds

    OpenAIRE

    Guan, Xudong; Stark, Ruth E.

    2010-01-01

    A protocol using 207Pb NMR of solid lead nitrate was developed to determine the temperature of magic-angle spinning (MAS) NMR probes over a range of nominal set temperatures and spinning speeds. Using BioMAS and fastMAS probes with typical sample spinning rates of 8 and 35 kHz, respectively, empirical equations were devised to predict the respective sample temperatures. These procedures provide a straightforward recipe for temperature calibration of any MAS probe.

  1. Studying the Conformation of a Silaffin-Derived Pentalysine Peptide Embedded in Bioinspired Silica using Solution and Dynamic Nuclear Polarization Magic-Angle Spinning NMR.

    Science.gov (United States)

    Geiger, Yasmin; Gottlieb, Hugo E; Akbey, Ümit; Oschkinat, Hartmut; Goobes, Gil

    2016-05-01

    Smart materials are created in nature at interfaces between biomolecules and solid materials. The ability to probe the structure of functional peptides that engineer biogenic materials at this heterogeneous setting can be facilitated tremendously by use of DNP-enhanced solid-state NMR spectroscopy. This sensitive NMR technique allows simple and quick measurements, often without the need for isotope enrichment. Here, it is used to characterize a pentalysine peptide, derived from a diatom's silaffin protein. The peptide accelerates the formation of bioinspired silica and gets embedded inside the material as it is formed. Two-dimensional DNP MAS NMR of the silica-bound peptide and solution NMR of the free peptide are used to derive its secondary structure in the two states and to pinpoint some subtle conformational changes that the peptide undergoes in order to adapt to the silica environment. In addition, interactions between abundant lysine residues and silica surface are identified, and proximity of other side chains to silica and to neighboring peptide molecules is discussed. PMID:26451953

  2. High-resolution magic angle spinning (1)H NMR spectroscopy of metabolic changes in rabbit lens after treatment with dexamethasone combined with UVB exposure

    Czech Academy of Sciences Publication Activity Database

    Seather, O.; Risa, O.; Čejková, Jitka; Krane, J.; Midelfart, A.

    2004-01-01

    Roč. 242, - (2004), s. 1000-1007. ISSN 0721-832X R&D Projects: GA ČR GA304/03/0419 Institutional research plan: CEZ:AV0Z5008914 Keywords : HR-MAS 1H NMR Subject RIV: FF - HEENT, Dentistry Impact factor: 1.513, year: 2004

  3. Solution and cross-polarization/magic angle spinning NMR investigation of intramolecular coordination Sn-N in some organotin(IV) C,N-chelates

    Czech Academy of Sciences Publication Activity Database

    Růžička, A.; Jambor, R.; Brus, Jiří; Císařová, I.; Holeček, J.

    2001-01-01

    Roč. 323, 1-2 (2001), s. 163-170. ISSN 0020-1693 R&D Projects: GA ČR GA203/00/0920 Institutional research plan: CEZ:AV0Z4050913 Keywords : C,N-chelates * NMR spectroscopy * intramolecular interaction Subject RIV: CA - Inorganic Chemistry Impact factor: 1.394, year: 2001

  4. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    International Nuclear Information System (INIS)

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-1/2 nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids

  5. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  6. Effect of organochlorine pesticides exposure on the maize root metabolome assessed using high-resolution magic-angle spinning (1)H NMR spectroscopy.

    Science.gov (United States)

    Blondel, Claire; Khelalfa, Farid; Reynaud, Stéphane; Fauvelle, Florence; Raveton, Muriel

    2016-07-01

    (1)H-HRMAS NMR-based metabolomics was used to better understand the toxic effects on maize root tips of organochlorine pesticides (OCPs), namely lindane (γHCH) and chlordecone (CLD). Maize seedlings were exposed to 2.5 μM γHCH (mimicking basic environmental contaminations) for 7 days and compared to 2.5 μM CLD and 25 μM γHCH for 7 days (mimicking hot spot contaminations). The (1)H-HRMAS NMR-based metabolomic profiles provided details of the changes in carbohydrates, amino acids, tricarboxylic acid (TCA) cycle intermediates and fatty acids with a significant separation between the control and OCP-exposed root tips. First of all, alterations in the balance between glycolysis/gluconeogenesis were observed with sucrose depletion and with dose-dependent fluctuations in glucose content. Secondly, observations indicated that OCPs might inactivate the TCA cycle, with sizeable succinate and fumarate depletion. Thirdly, disturbances in the amino acid composition (GABA, glutamine/glutamate, asparagine, isoleucine) reflected a new distribution of internal nitrogen compounds under OCP stress. Finally, OCP exposure caused an increase in fatty acid content, concomitant with a marked rise in oxidized fatty acids which could indicate failures in cell integrity and vitality. Moreover, the accumulation of asparagine and oxidized fatty acids with the induction of LOX3 transcription levels under OCP exposure highlighted an induction of protein and lipid catabolism. The overall data indicated that the effect of OCPs on primary metabolism could have broader physiological consequences on root development. Therefore, (1)H-HRMAS NMR metabolomics is a sensitive tool for understanding molecular disturbances under OCP exposure and can be used to perform a rapid assessment of phytotoxicity. PMID:27131813

  7. 1H High Resolution Magic-Angle Coil Spinning (HR-MACS) µNMR Metabolic Profiling of whole Saccharomyces cervisiae cells: A Demonstrative Study

    OpenAIRE

    AlanWong

    2014-01-01

    The low sensitivity of Nuclear Magnetic Resonance (NMR) is its prime shortcoming compared to other analytical methods for metabolomic studies. It relies on large sample volume (30–50 µl for HR-MAS) for rich metabolic profiling, hindering high-throughput screening especially when the sample requires a labor-intensive preparation or is a sacred specimen. This is indeed the case for some living organisms. This study evaluates a 1H HR-MAS approach for metabolic profiling of small volume (250 nl) ...

  8. 二维双量子魔角旋转核磁共振技术在功能材料研究中的应用%Application of Two-dimensional Double Quantum Magic Angle Spinning NMR to Solid Functional Materials

    Institute of Scientific and Technical Information of China (English)

    喻志武; 郑安民; 王强; 邓风

    2011-01-01

    简要介绍了二维双量子魔角旋转核磁共振(DQ-MAS NMR)新技术的基本原理,详细综述了1H,19F,29Si,31P和27 Al DQ-MAS NMR技术在各种固体功能材料中的应用,并展望了该技术的应用前景.%Solid-state NMR spectroscopy has been developed into a powerful tool for obtaining detailed information about the structure, ordering, and dynamics in various kinds of inorganic organic, and biological materials. Two-dimensional double quantum magic angle spinning(DQ-MAS) NMR experiment is a useful method for probing spatial proximities or interactions between nuclei in various solid materials. During the past decade, the DQ-MAS NMR technique has been successfully applied not only to spin I = 1/2 nuclei, such as 1H, 19F, 29Si' 31p, but also to quadrupolar nuclei system, such as 27Al, 11B and 23Na. In this paper, we briefly introduce the principle of two-dimensional DQ-MAS NMR, and review the recent applications of DQ-MAS NMR technique(including 1H, 19F, 29Si, 31p and 27Al DQ-MAS NMR) to various solid functional materials. In addition, a perspective for the future of DQ-MAS NMR is also given.

  9. In Situ 13C and 23Na Magic Angle Spinning NMR Investigation of Supercritical CO2 Incorporation in Smectite-Natural Organic Matter Composites

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, Geoffrey M.; Hoyt, David W.; Burton, Sarah D.; Ferguson, Brennan O.; Varga, Tamas; Kirkpatrick, Robert J.

    2014-01-29

    This paper presents an in situ NMR study of clay-natural organic polymer systems (a hectoritehumic acid [HA] composite) under CO2 storage reservoir conditions (90 bars CO2 pressure, 50°C). The 13C and 23Na NMR data show that supercritical CO2 interacts more strongly with the composite than with the base clay and does not react to form other C-containing species over several days at elevated CO2. With and without organic matter, the data suggest that CO2 enters the interlayer space of Na-hectorite equilibrated at 43% relative humidity. The presence of supercritical CO2 also leads to increased 23Na signal intensity, reduced line width at half height, increased basal width, more rapid 23Na T1 relaxation rates, and a shift to more positive resonance frequencies. Larger changes are observed for the hectorite-HA composite than for the base clay. In light of recently reported MD simulations of other polymer-Na-smectite composites, we interpret the observed changes as an increase in the rate of Na+ site hopping in the presence of supercritical CO2, the presence of potential new Na+ sorption sites when the humic acid is present, and perhaps an accompanying increase in the number of Na+ ions actively involved in site hopping. The results suggest that the presence of organic material either in clay interlayers or on external particle surfaces can significantly affect the behavior of supercritical CO2 and the mobility of metal ions in reservoir rocks.

  10. Application of 1H and 23Na magic angle spinning NMR spectroscopy to define the HRBC up-taking of MRI contrast agents

    Science.gov (United States)

    Calabi, Luisella; Paleari, Lino; Biondi, Luca; Linati, Laura; De Miranda, Mario; Ghelli, Stefano

    2003-09-01

    The up-take of Gd(III) complexes of BOPTA, DTPA, DOTA, EDTP, HPDO3A, and DOTP in HRBC has been evaluated by measuring the lanthanide induced shift (LIS) produced by the corresponding dysprosium complexes (DC) on the MAS-NMR resonances of water protons and free sodium ions. These complexes are important in their use as MRI contrast agents (MRI-CA) in diagnostics. 1H and 23Na MAS-NMR spectra of HRBC suspension, collected at 9.395 T, show only one signal due to extra- and intra-cellular water (or sodium). In MAS spectra, the presence of DC in a cellular compartment produces the LIS of only the nuclei (water proton or sodium) in that cellular compartment and this LIS can be related to the DC concentrations (by the experimental curves of LIS vs. DC concentrations) collected in the physiological solution. To obtain correct results about LIS, the use of MAS technique is mandatory, because it guarantees the only the nuclei staying in the same cellular compartment where the LC is present show the LIS. In all the cases considered, the addition of the DC to HRBC (100% hematocrit) produced a shift of only the extra-cellular water (or sodium) signal and the gradient of concentration ( GC) between extra- and intra-cellular compartments resulted greater than 100:1, when calculated by means of sodium signals. These high values of GC are direct proofs that none of the tested dysprosium complexes crosses the HRBC membrane. Since the DC are iso-structural to the gadolinium complexes the corresponding gadolinium ones (MRI-CA) do not cross the HRBC membrane and, consequently, they are not up-taken in HRBC. The GC values calculated by means of water proton signals resulted much lower than those obtained by sodium signals. This proves that the choice of the isotope is a crucial step in order to use this method in the best way. In fact, GC value depends on the lowest detectable LIS which, in turn, depends on the nature of the LC (lanthanide complex) and the observed isotopes.

  11. Moderate positive spin Hall angle in uranium

    Science.gov (United States)

    Singh, Simranjeet; Anguera, Marta; del Barco, Enrique; Springell, Ross; Miller, Casey W.

    2015-12-01

    We report measurements of spin pumping and the inverse spin Hall effect in Ni80Fe20/uranium bilayers designed to study the efficiency of spin-charge interconversion in a super-heavy element. We employ broad-band ferromagnetic resonance on extended films to inject a spin current from the Ni80Fe20 (permalloy) into the uranium layer, which is then converted into an electric field by the inverse spin Hall effect. Surprisingly, our results suggest a spin mixing conductance of order 2 × 1019 m-2 and a positive spin Hall angle of 0.004, which are both merely comparable with those of several transition metals. These results thus support the idea that the electronic configuration may be at least as important as the atomic number in governing spin pumping across interfaces and subsequent spin Hall effects. In fact, given that both the magnitude and the sign are unexpected based on trends in d-electron systems, materials with unfilled f-electron orbitals may hold additional exploration avenues for spin physics.

  12. Moderate positive spin Hall angle in uranium

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Simranjeet; Anguera, Marta; Barco, Enrique del, E-mail: delbarco@ucf.edu, E-mail: cwmsch@rit.edu [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Springell, Ross [H. H. Will Laboratory, University of Bristol, Bristol BS2 8BS (United Kingdom); Miller, Casey W., E-mail: delbarco@ucf.edu, E-mail: cwmsch@rit.edu [School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623 (United States)

    2015-12-07

    We report measurements of spin pumping and the inverse spin Hall effect in Ni{sub 80}Fe{sub 20}/uranium bilayers designed to study the efficiency of spin-charge interconversion in a super-heavy element. We employ broad-band ferromagnetic resonance on extended films to inject a spin current from the Ni{sub 80}Fe{sub 20} (permalloy) into the uranium layer, which is then converted into an electric field by the inverse spin Hall effect. Surprisingly, our results suggest a spin mixing conductance of order 2 × 10{sup 19} m{sup −2} and a positive spin Hall angle of 0.004, which are both merely comparable with those of several transition metals. These results thus support the idea that the electronic configuration may be at least as important as the atomic number in governing spin pumping across interfaces and subsequent spin Hall effects. In fact, given that both the magnitude and the sign are unexpected based on trends in d-electron systems, materials with unfilled f-electron orbitals may hold additional exploration avenues for spin physics.

  13. Moderate positive spin Hall angle in uranium

    International Nuclear Information System (INIS)

    We report measurements of spin pumping and the inverse spin Hall effect in Ni80Fe20/uranium bilayers designed to study the efficiency of spin-charge interconversion in a super-heavy element. We employ broad-band ferromagnetic resonance on extended films to inject a spin current from the Ni80Fe20 (permalloy) into the uranium layer, which is then converted into an electric field by the inverse spin Hall effect. Surprisingly, our results suggest a spin mixing conductance of order 2 × 1019 m−2 and a positive spin Hall angle of 0.004, which are both merely comparable with those of several transition metals. These results thus support the idea that the electronic configuration may be at least as important as the atomic number in governing spin pumping across interfaces and subsequent spin Hall effects. In fact, given that both the magnitude and the sign are unexpected based on trends in d-electron systems, materials with unfilled f-electron orbitals may hold additional exploration avenues for spin physics

  14. Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling

    KAUST Repository

    Wang, Songlin

    2015-04-09

    We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems.

  15. Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.

    Science.gov (United States)

    Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva

    2015-09-01

    Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea-eb-n} during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This

  16. Rotational Doppler Effect and Barnett Field in Spinning NMR

    Science.gov (United States)

    Chudo, Hiroyuki; Harii, Kazuya; Matsuo, Mamoru; Ieda, Jun'ichi; Ono, Masao; Maekawa, Sadamichi; Saitoh, Eiji

    2015-04-01

    We report the observation of the rotational Doppler effect using nuclear magnetic resonance (NMR). We have developed a coil-spinning technique that enables measurements by rotating a detector and fixing a sample. We found that the rotational Doppler effect gives rise to NMR frequency shifts equal to the rotation frequency. We formulate the rotational Doppler effect and the Barnett field using a vector model for the nuclear magnetic moment. This formulation reveals that, with just the sample rotating, both effects cancel each other, thereby explaining the absence of an NMR frequency shift in conventional sample-spinning NMR measurements.

  17. Quantum Computation Based on Magic-Angle-Spinning Solid State Nuclear Magnetic Resonance Spectroscopy

    OpenAIRE

    Ding, Shangwu; McDowell, Charles A.; Ye, Chaohui; Zhan, Mingsheng; Zhu, Xiwen; Gao, Kelin; Sun, Xianping; Mao, Xi-An; Liu, Maili

    2001-01-01

    Magic-angle spinning (MAS) solid state nuclear magnetic resonance (NMR) spectroscopy is shown to be a promising technique for implementing quantum computing. The theory underlying the principles of quantum computing with nuclear spin systems undergoing MAS is formulated in the framework of formalized quantum Floquet theory. The procedures for realizing state labeling, state transformation and coherence selection in Floquet space are given. It suggests that by this method, the largest number o...

  18. High-pressure magic angle spinning nuclear magnetic resonance.

    Science.gov (United States)

    Hoyt, David W; Turcu, Romulus V F; Sears, Jesse A; Rosso, Kevin M; Burton, Sarah D; Felmy, Andrew R; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ(13)C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg(2)SiO(4)) reacted with supercritical CO(2) and H(2)O at 150 bar and 50°C are reported, with relevance to geological sequestration of carbon dioxide. PMID:21862372

  19. High-pressure Magic Angle Spinning Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve to include micro-groves at the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal penetration loss of pressure for 72 hours. As an application example, in situ 13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg2SiO4) reacted with supercritical CO2 and H2O at 150 bar and 50 C are reported, with relevance to geological sequestration of carbon dioxide.

  20. Quantifying Spin Hall Angles from Spin Pumping: Experiments and Theory

    NARCIS (Netherlands)

    Mosendz, O.; Pearson, J.E.; Fradin, F.Y.; Bauer, G.E.W.; Bader, S.D.; Hoffmann, A.

    2010-01-01

    Spin Hall effects intermix spin and charge currents even in nonmagnetic materials and, therefore, ultimately may allow the use of spin transport without the need for ferromagnets. We show how spin Hall effects can be quantified by integrating Ni80Fe20|normal metal (N) bilayers into a coplanar wavegu

  1. NMR spin relaxation rates in the Heisenberg bilayer

    Science.gov (United States)

    Mendes, Tiago; Curro, Nicholas; Scalettar, Richard; Paiva, Thereza; Dos Santos, Raimundo R.

    One of the striking features of heavy fermions is the fact that in the vicinity of a quantum phase transition these systems exhibit the breakdown of Fermi-liquid behavior and superconductivity. Nuclear magnetic resonance (NMR) expirements play an important role in the study of these phenomena. Measurements of NMR spin relaxation rates and Knight shift, for instance, can be used to probe the electronic spin susceptibility of these systems. Here we studied the NMR response of the Heisenberg bilayer model. In this model, it is well known that the increase of the interplane coupling between the planes, Jperp, supresses the antiferromagnetic order at a quantum critical point (QCP). We use stochastic series expansion (SSE) and the maximum-entropy analytic continuation method to calculate the NMR spin lattice relaxation rate 1 /T1 and the spin echo decay 1 /T2 G as function of Jperp. The spin echo decay, T2 G increases for small Jperp, due to the increase of the order parameter, and then vanishes abruptly in the QCP. The effects of Jperp dilution disorder in the QCP and the relaxation rates are also discussed. This research was supported by the NNSA Grant Number DE-NA 0002908, and Ciência sem fronteiras program/CNPQ.

  2. NMR studies of selective population inversion and spin clustering

    International Nuclear Information System (INIS)

    This work describes the development and application of selective excitation techniques in Nuclear Magnetic Resonance. Composite pulses and multiple-quantum methods are used to accomplish various goals, such as broadband and narrowband excitation in liquids, and collective excitation of groups of spins in solids. These methods are applied to a variety of problems, including non-invasive spatial localization, spin cluster size characterization in disordered solids and solid state NMR imaging

  3. NMR studies of selective population inversion and spin clustering

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J.S.

    1986-02-01

    This work describes the development and application of selective excitation techniques in Nuclear Magnetic Resonance. Composite pulses and multiple-quantum methods are used to accomplish various goals, such as broadband and narrowband excitation in liquids, and collective excitation of groups of spins in solids. These methods are applied to a variety of problems, including non-invasive spatial localization, spin cluster size characterization in disordered solids and solid state NMR imaging.

  4. Studies of phospholipid hydration by high-resolution magic-angle spinning nuclear magnetic resonance.

    OpenAIRE

    Zhou, Z.; Sayer, B G; Hughes, D. W.; Stark, R E; Epand, R M

    1999-01-01

    A sample preparation method using spherical glass ampoules has been used to achieve 1.5-Hz resolution in 1H magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of aqueous multilamellar dispersions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), serving to differentiate between slowly exchanging interlamellar and bulk water and to reveal new molecular-level information about hydration phenomena in these model biolo...

  5. NMR spin-lattice relaxation in molecular rotor systems

    CERN Document Server

    Wzietek, P

    2015-01-01

    A general expression is derived for the dipolar NMR spin-lattice relaxation rate $1/T_1$ of a system exhibiting Brownian dynamics in a discrete and finite configuration space. It is shown that this approach can be particularly useful to model the proton relaxation rate in molecular rotors.

  6. Nonadiabatic Hannay's Angle of Spin One Half in Grassmannian Version and Invariant Angle Coherent States

    OpenAIRE

    Cherbal, Omar; Maamache, Mustapha; Drir, Mahrez

    2003-01-01

    We propose to determinate the nonadiabatic Hannay’s angle of spin one half in a varying external magnetic field, by using an averaged version of the variational principal. We also show how the evolution and this nonadiabatic Hannay’s angle is associated with the evolution of Grassmannian invariant-angle coherent states.

  7. A spin- and angle-resolving photoelectron spectrometer

    International Nuclear Information System (INIS)

    A new type of hemispherical electron energy analyzer that permits angle and spin resolved photoelectron spectroscopy has been developed. The analyzer permits standard angle resolved spectra to be recorded with a two-dimensional detector in parallel with spin detection using a mini-Mott polarimeter. General design considerations as well as technical solutions are discussed and test results from the Au(111) surface state are presented.

  8. Heterogeneous catalysis of NMR spectroscopy of spin 1/2 nuclei

    International Nuclear Information System (INIS)

    After a short review of nuclear magnetic resonance (NMR) studies on solid catalysts and heterogeneous catalytic reactions, various possibilities for a quantitative characterization of the acidity of ziolites and related catalysts by NMR methods are discussed. It is shown that proton magnetic resonance offers a unique method to determine quantitatively both the strength and concentration of Broensted acid sites by magic angle spinning (MAS) of evacuated samples. Two examples for an application of this novel method are given where the catalytic activity could be related quantitatively to the acidic properties of the catalytic activity could be related quantitatively to the acidic properties of the calalysts. In contrast, NMR methods fail until now to describe Lewis acidity of catalysts with a comparable success. (author). 41 refs.; 5 figs.; 2 tabs

  9. Rotor Design for High Pressure Magic Angle Spinning Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    High pressure magic angle spinning (MAS) nuclear magnetic resonance (NMR) with a sample spinning rate exceeding 2.1 kHz and pressure greater than 165 bar has never been realized. In this work, a new sample cell design is reported, suitable for constructing cells of different sizes. Using a 7.5 mm high pressure MAS rotor as an example, internal pressure as high as 200 bar at a sample spinning rate of 6 kHz is achieved. The new high pressure MAS rotor is re-usable and compatible with most commercial NMR set-ups, exhibiting low 1H and 13C NMR background and offering maximal NMR sensitivity. As an example of its many possible applications, this new capability is applied to determine reaction products associated with the carbonation reaction of a natural mineral, antigorite ((Mg,Fe2+)3Si2O5(OH)4), in contact with liquid water in water-saturated supercritical CO2 (scCO2) at 150 bar and 50 deg C. This mineral is relevant to the deep geologic disposal of CO2, but its iron content results in too many sample spinning sidebands at low spinning rate. Hence, this chemical system is a good case study to demonstrate the utility of the higher sample spinning rates that can be achieved by our new rotor design. We expect this new capability will be useful for exploring solid-state, including interfacial, chemistry at new levels of high-pressure in a wide variety of fields.

  10. Quantum Computation Based on Magic-Angle-Spinning Solid State Nuclear Magnetic Resonance Spectroscopy

    CERN Document Server

    Ding, S; Ye, C; Zhan, M S; Zhu, X; Gao, K; Sun, X; Mao, X A; Liu, M; Ding, Shangwu; Dowell, Charles A. Mc; Ye, Chaohui; Zhan, Mingsheng; Zhu, Xiwen; Gao, Kelin; Sun, Xianping; Mao, Xi-An; Liu, Maili

    2001-01-01

    Magic-angle spinning (MAS) solid state nuclear magnetic resonance (NMR) spectroscopy is shown to be a promising technique for implementing quantum computing. The theory underlying the principles of quantum computing with nuclear spin systems undergoing MAS is formulated in the framework of formalized quantum Floquet theory. The procedures for realizing state labeling, state transformation and coherence selection in Floquet space are given. It suggests that by this method, the largest number of qubits can easily surpass that achievable with other techniques. Unlike other modalities proposed for quantum computing, this method enables one to adjust the dimension of the working state space, meaning the number of qubits can be readily varied. The universality of quantum computing in Floquet space with solid state NMR is discussed and a demonstrative experimental implementation of Grover's search is given.

  11. Multiple acquisitions via sequential transfer of orphan spin polarization (MAeSTOSO): How far can we push residual spin polarization in solid-state NMR?

    Science.gov (United States)

    Gopinath, T.; Veglia, Gianluigi

    2016-06-01

    Conventional multidimensional magic angle spinning (MAS) solid-state NMR (ssNMR) experiments detect the signal arising from the decay of a single coherence transfer pathway (FID), resulting in one spectrum per acquisition time. Recently, we introduced two new strategies, namely DUMAS (DUal acquisition Magic Angle Spinning) and MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), that enable the simultaneous acquisitions of multidimensional ssNMR experiments using multiple coherence transfer pathways. Here, we combined the main elements of DUMAS and MEIOSIS to harness both orphan spin operators and residual polarization and increase the number of simultaneous acquisitions. We show that it is possible to acquire up to eight two-dimensional experiments using four acquisition periods per each scan. This new suite of pulse sequences, called MAeSTOSO for Multiple Acquisitions via Sequential Transfer of Orphan Spin pOlarization, relies on residual polarization of both 13C and 15N pathways and combines low- and high-sensitivity experiments into a single pulse sequence using one receiver and commercial ssNMR probes. The acquisition of multiple experiments does not affect the sensitivity of the main experiment; rather it recovers the lost coherences that are discarded, resulting in a significant gain in experimental time. Both merits and limitations of this approach are discussed.

  12. Exploration of non-spinning ^1H NMR Spectroscopy as a Tool for Determination and Monitoring of Gas Hydrate Formation and Dissociation Processes

    OpenAIRE

    Henrichsen, Magnus Rossmann

    2015-01-01

    Natural gas hydrates provide both a flow- assurance hazard and a potential fossil fuel source. In order to face the challenges presented by these scenarios, a greater understanding of the properties of hydrates in a range of environments is required. NMR spectroscopy provides a powerful tool for investigation of such properties; however, most previous studies have involved use of either deuterated components, ^13C NMR, magic angle spinning or a combination of these. Proton NMR of static natur...

  13. Magic angle spinning nuclear magnetic resonance apparatus and process for high-resolution in situ investigations

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.

    2015-11-24

    A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.

  14. Dynamic nuclear polarization at 40 kHz magic angle spinning.

    Science.gov (United States)

    Chaudhari, Sachin R; Berruyer, Pierrick; Gajan, David; Reiter, Christian; Engelke, Frank; Silverio, Daniel L; Copéret, Christophe; Lelli, Moreno; Lesage, Anne; Emsley, Lyndon

    2016-04-21

    DNP-enhanced solid-state NMR spectroscopy under magic angle spinning (MAS) is rapidly developing into a powerful analytical tool to investigate the structure of a wide range of solid materials, because it provides unsurpassed sensitivity gains. Most developments and applications of DNP MAS NMR were so far reported at moderate spinning frequencies (up to 14 kHz using 3.2 mm rotors). Here, using a 1.3 mm MAS DNP probe operating at 18.8 T and ∼100 K, we show that signal amplification factors can be increased by up to a factor two when using smaller volume rotors as compared to 3.2 mm rotors, and report enhancements of around 60 over a range of sample spinning rates from 10 to 40 kHz. Spinning at 40 kHz is also shown to increase (29)Si coherence lifetimes by a factor three as compared to 10 kHz, substantially increasing sensitivity in CPMG type experiments. The contribution of quenching effects to the overall sensitivity gain at very fast MAS is evaluated, and applications are reported on a functionalised mesostructured organic-inorganic material. PMID:27035630

  15. Spin-bowling in cricket re-visited: model trajectories for various spin-vector angles

    Science.gov (United States)

    Robinson, Garry; Robinson, Ian

    2016-08-01

    In this paper we investigate, via the calculation of model trajectories appropriate to slow bowling in cricket, the effects on the flight path of the ball before pitching due to changes in the angle of the spin-vector. This was accomplished by allowing the spin-vector to vary in three ways. Firstly, from off-spin, where the spin-vector points horizontally and directly down the pitch, to top-spin where it points horizontally towards the off-side of the pitch. Secondly, from off-spin to side-spin where, for side-spin, the spin-vector points vertically upwards. Thirdly, where the spin-vector points horizontally and at 45° to the pitch (in the general direction of ‘point’, as viewed by the bowler), and is varied towards the vertical, while maintaining the 45° angle in the horizontal plane. It is found that, as is well known, top-spin causes the ball to dip in flight, side-spin causes the ball to move side-ways in flight and, perhaps most importantly, off-spin can cause the ball to drift to the off-side of the pitch late in its flight as it begins to fall. At a more subtle level it is found that, if the total spin is kept constant and a small amount of top-spin is added to the ball at the expense of some off-spin, there is little change in the side-ways drift. However, a considerable reduction in the length at which the ball pitches occurs, ∼25 cm, an amount that batsmen can ignore at their peril. On the other hand, a small amount of side-spin introduced to a top-spin delivery does not alter the point of pitching significantly, but produces a considerable amount of side-ways drift, ∼10 cm or more. For pure side-spin the side-ways drift is up to ∼30 cm. When a side-spin component is added to the spin of a ball bowled with a mixture of off-spin and top-spin in equal proportions, significant movement occurs in both the side-ways direction and in the point of pitching, of the order of a few tens of centimetres.

  16. 27Al Magic Angle Spinning–Nuclear Magnetic Resonance (MAS-NMR) Analyses Applied to Historical Mortars

    Czech Academy of Sciences Publication Activity Database

    Hanzlíček, Tomáš; Perná, Ivana; Brus, Jiří

    2013-01-01

    Roč. 7, č. 2 (2013), s. 153-164. ISSN 1558-3058 R&D Projects: GA AV ČR IAA300460702 Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z40500505 Keywords : mortars * magic angle spinning –nuclear magnetic resonance (MAS-NMR) in solid state * alumina-silicates Subject RIV: DM - Solid Waste and Recycling Impact factor: 0.714, year: 2013 http://www.tandfonline.com/doi/abs/10.1080/15583058.2011.624253

  17. Magnetic resonance imaging of DNP enhancements in a rotor spinning at the magic angle

    Science.gov (United States)

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2016-03-01

    Simulations performed on model, static, samples have shown that the microwave power is non-uniformly distributed in the magic angle spinning (MAS) rotor when using conventional dynamic nuclear polarization (DNP) instrumentation. Here, we applied the stray-field magic angle spinning imaging (STRAFI-MAS) experiment to generate a spatial map of the DNP enhancements in a full rotor, which is spun at a low rate in a commercial DNP-MAS NMR system. Notably, we observed that the enhancement factors produced in the center of the rotor can be twice as large as those produced at the top of the rotor. Surprisingly, we observed that the largest enhancement factors are observed along the axis of the rotor as opposed to against its walls, which are most directly irradiated by the microwave beam. We lastly observed that the distribution of enhancement factors can be moderately improved by degassing the sample and increasing the microwave power. The inclusion of dielectric particles greatly amplifies the enhancement factors throughout the rotor. The STRAFI-MAS approach can provide useful guidance for optimizing the access of microwave power to the sample, and thereby lead to further increases in sensitivity of DNP-MAS NMR.

  18. Birefringent neutron prisms for spin echo scattering angle measurement

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, Roger, E-mail: rpynn@indiana.ed [Indiana University, Bloomington, IN (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Fitzsimmons, M.R. [Los Alamos National Laboratory, Los Alamos, NM (United States); Lee, W.T. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Stonaha, P.; Shah, V.R.; Washington, A.L. [Indiana University, Bloomington, IN (United States); Kirby, B.J.; Majkrzak, C.F.; Maranville, B.B. [National Institute of Standards and Technology (United States)

    2009-09-01

    In the first decade of the 19th century, an English chemist, William Wollaston, invented an arrangement of birefringent prisms that splits a beam of light into two spatially separated beams with orthogonal polarizations. We have constructed similar devices for neutrons using triangular cross-section solenoids and employed them for Spin Echo Scattering Angle Measurement (SESAME). A key difference between birefringent neutron prisms and their optical analogues is that it is hard to embed the former in a medium which has absolutely no birefringence because this implies the removal of all magnetic fields. We have overcome this problem by using the symmetry properties of the Wollaston neutron prisms and of the overall spin echo arrangement. These symmetries cause a cancellation of Larmor phase aberrations and provide robust coding of neutron scattering angles with simple equipment.

  19. Solid-state 13C NMR study of banana liquid crystals - 3: Alkyl-tail-group packing environments of an acute-angle bent-core molecule in the hexagonal columnar and cubic phases

    Science.gov (United States)

    Kurosu, Hiromichi; Endo, Yumi; Kimura, Saori; Hashimoto, Tomoko; Harada, Motoi; Lee, Eun-Woo; Sone, Masato; Watanabe, Junji; Kang, Sungmin

    2016-02-01

    Solid-state 13C nuclear magnetic resonance (NMR) measurements were performed on the hexagonal columnar and cubic phases of an acute-angle banana-shaped molecule, N(1,7)-S30. In the hexagonal columnar phase, three peaks appear at the NMR chemical shifts assigned to the internal methylene carbons of alkyl tails, indicating that the two alkyl tails have different packing structures, and one of the tails has two different conformations within a single molecule. Combined cross-polarization/magic-angle spinning and pulse saturation transfer/magic-angle spinning measurements show that one of the alkyl chains is located inside and the other is located outside the columnar structure. In the cubic phase, pulse saturation transfer/magic-angle spinning measurement shows that only one peak appears at the NMR chemical shifts assigned to the internal methylene carbons of alkyl tails, indicating that both of the alkyl chains are located outside the cubic structure.

  20. Heating of samples induced by fast magic-angle spinning

    Czech Academy of Sciences Publication Activity Database

    Brus, Jiří

    2001-01-01

    Roč. 16, č. 3 (2001), s. 151-160. ISSN 0926-2040 R&D Projects: GA ČR GA203/98/P290; GA MŠk VS97115; GA AV ČR KSK2050602 Institutional research plan: CEZ:AV0Z4050913 Keywords : heating * magic-angle spinning * nuclear magnetic resonance Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.295, year: 2001

  1. SCAM-STMAS: satellite-transition MAS NMR of quadrupolar nuclei with self-compensation for magic-angle misset

    Science.gov (United States)

    Ashbrook, Sharon E.; Wimperis, Stephen

    2003-06-01

    Several methods are available for the acquisition of high-resolution solid-state NMR spectra of quadrupolar nuclei with half-integer spin quantum number. Satellite-transition MAS (STMAS) offers an approach that employs only conventional MAS hardware and can yield substantial signal enhancements over the widely used multiple-quantum MAS (MQMAS) experiment. However, the presence of the first-order quadrupolar interaction in the satellite transitions imposes the requirement of a high degree of accuracy in the setting of the magic angle on the NMR probehead. The first-order quadrupolar interaction is only fully removed if the sample spinning angle, χ, equals cos-1(1/ 3) exactly and rotor synchronization is performed. The required level of accuracy is difficult to achieve experimentally, particularly when the quadrupolar interaction is large. If the magic angle is not set correctly, the first-order splitting is reintroduced and the spectral resolution is severely compromised. Recently, we have demonstrated a novel STMAS method (SCAM-STMAS) that is self-compensated for angle missets of up to ±1° via coherence transfer between the two different satellite transitions ST +( mI=+3/2↔+1/2) and ST -( mI=-1/2↔-3/2) midway through the t1 period. In this work we describe in more detail the implementation of SCAM-STMAS and demonstrate its wider utility through 23Na ( I=3/2), 87Rb ( I=3/2), 27Al ( I=5/2), and 59Co ( I=7/2) NMR. We discuss linewidths in SCAM-STMAS and the limits over which angle-misset compensation is achieved and we demonstrate that SCAM-STMAS is more tolerant of temporary spinning rate fluctuations than STMAS, resulting in less " t1 noise" in the two-dimensional spectrum. In addition, alternative correlation experiments, for example involving the use of double-quantum coherences, that similarly display self-compensation for angle misset are investigated. The use of SCAM-STMAS is also considered in systems where other high-order interactions, such as third

  2. Spin-rotation and NMR shielding constants in HCl

    International Nuclear Information System (INIS)

    The spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate experimental data. Our best estimates for the spin-rotation constants of 1H35Cl are CCl  = −53.914 kHz and CH  = 42.672 kHz (for the lowest rovibrational level). For the chlorine shielding constant, the ab initio value computed including the relativistic corrections, σ(Cl) = 976.202 ppm, provides a new absolute shielding scale; for hydrogen we find σ(H) = 31.403 ppm (both at 300 K). Combining the theoretical results with our new gas-phase NMR experimental data allows us to improve the accuracy of the magnetic dipole moments of both chlorine isotopes. For the hydrogen shielding constant, including relativistic effects yields better agreement between experimental and computed values

  3. High-pressure, high-temperature magic angle spinning nuclear magnetic resonance devices and processes for making and using same

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Hu, Mary Y.; Townsend, Mark R.; Lercher, Johannes A.; Peden, Charles H. F.

    2015-10-06

    Re-usable ceramic magic angle spinning (MAS) NMR rotors constructed of high-mechanic strength ceramics are detailed that include a sample compartment that maintains high pressures up to at least about 200 atmospheres (atm) and high temperatures up to about least about 300.degree. C. during operation. The rotor designs minimize pressure losses stemming from penetration over an extended period of time. The present invention makes possible a variety of in-situ high pressure, high temperature MAS NMR experiments not previously achieved in the prior art.

  4. Pulsar Binary Birthrates with Spin-Opening Angle Correlations

    CERN Document Server

    O'Shaughnessy, Richard

    2009-01-01

    Empirical birthrate estimates for pulsar binaries depend on the fraction of sky subtended by the pulsar beam: the pulsar beaming fraction. This fraction depends on both the pulsar's opening angle and the misalignment angle between its spin and magnetic axes. Previous estimates use the average value for only two pulsars, i.e. PSRs B1913+16 and B1534+12. We explore how birthrate predictions depend on assumptions about opening angle and alignment, using empirically-motivated distributions to define an effective beaming correction factor, f_{b,eff}. For most known pulsars, we expect f_{b,eff} to be less than 6. We also calculate f_{b,eff} for PSRs J0737-3039A and J1141-6545, applying the currently available constraints for their beam geometry. Our median posterior birthrate predictions for tight PSR-NS binaries, wide PSR-NS binaries, and tight PSR-WD binaries are 89/Myr, 0.84/Myr, and 34/Myr, respectively. For pulsars with spin period between 10 ms and 100 ms, we marginalized our posterior birthrate distribution ...

  5. The multiple quantum NMR dynamics in systems of equivalent spins with the dipolar ordered initial state

    CERN Document Server

    Doronin, S I; Zenchuk, A I

    2011-01-01

    The multiple quantum (MQ) NMR dynamics in the system of equivalent spins with the dipolar ordered initial state is considered. The high symmetry of the MQ Hamiltonian is used in order to develop the analytical and numerical methods for an investigation of the MQ NMR dynamics in the systems consisting of hundreds of spins from "the first principles". We obtain the dependence of the intensities of the MQ NMR coherences on their orders (profiles of the MQ NMR coherences) for the systems of $200 - 600$ spins. It is shown that these profiles may be well approximated by the exponential distribution functions. We also compare the MQ NMR dynamics in the systems of equivalent spins having two different initial states, namely the dipolar ordered state and the thermal equilibrium state in the strong external magnetic field.

  6. Field cycling NMR experiments with hyperpolarized multi-spin-systems

    International Nuclear Information System (INIS)

    FT-NMR experiments with scalar coupled multi-spin systems employing variation of the external magnetic field B are described, allowing one to discriminate interaction parameters because of their different dependence on B. The mayor part of the work deals with spin ensembles far away from their thermal equilibrium. In particular, hyper-polarization (HP) generated by means of chemically induced dynamic nuclear polarization (CIDNP), and T1-relaxation in liquids (fast motional regime) are studied. The techniques described are applied to the analysis of the photolysis of the aromatic amino acids tyrosine (NATyrOH) and tryptophan (NATrpH) at λ=308 nm in aqueous media. From the field dependence of CIDNP and its time dependence at high magnetic field (TR-CIDNP), the photo-physics and -chemistry is analyzed. The arising amino acid radicals are further investigated in the presence of different triplet sensitizers, e.g. 2,2'-dipyridyl (DP) and anthraquinone-2-sulfonic acid (AQ2S), yielding the same amino acid radicals in spin correlated triplet radical pairs with the radicals of the dyes. Various combinations of the amino acid and dye radicals allow a comparison of the Δg-values from several CIDNP field dependences. Because of their inter-dependence, each g-value is extracted from more than a single field-dependence, and values of higher accuracy are obtained for the radicals under study. The mechanisms for efficient CIDNP formation upon restriction of molecular mobility are investigated on the photolysis of cyclic ketones. The prospects of further applications of field dependent magnetic resonance techniques are discussed. (orig.)

  7. Correlation between spin Hall angle and spin diffusion length determined by means of spin torque ferromagnetic resonance technique

    International Nuclear Information System (INIS)

    Spin torque ferromagnetic resonance (ST-FMR) in ferromagnetic metal (FM)/nonmagnetic metal (NM) bilayer films is one of the powerful methods to determine the spin Hall angle (SHA), conversion yield between charge and spin currents. Here we describe how to estimate the SHA and the spin diffusion length (SDL) from ST-FMR spectra. Although these two are fundamental parameters to characterize the spin Hall effect (SHE), there is still a heavy debate regarding their magnitudes even for platinum, which is the standard SHE material; reported values of SHA and SDL using FM/NM bilayer films vary very widely and there seems to be no correlation among SHA, SDL, and resistivity. In this work, we relate the three important physical quantities, i.e., SHA, SDL and resistivity, from their temperature dependences. (author)

  8. Structural changes in C–S–H gel during dissolution: Small-angle neutron scattering and Si-NMR characterization

    Energy Technology Data Exchange (ETDEWEB)

    Trapote-Barreira, Ana, E-mail: anatrapotebarreira@gmail.com [Institute of Environmental Assessment and Water Research (IDAEA), Barcelona 08034, Catalonia (Spain); Porcar, Lionel [National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Large Scale Structure Group, Institut Laue Langevin, Grenoble (France); Cama, Jordi; Soler, Josep M. [Institute of Environmental Assessment and Water Research (IDAEA), Barcelona 08034, Catalonia (Spain); Allen, Andrew J. [National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States)

    2015-06-15

    Flow-through experiments were conducted to study the calcium–silicate–hydrate (C–S–H) gel dissolution kinetics. During C–S–H gel dissolution the initial aqueous Ca/Si ratio decreases to reach the stoichiometric value of the Ca/Si ratio of a tobermorite-like phase (Ca/Si = 0.83). As the Ca/Si ratio decreases, the solid C–S–H dissolution rate increases from (4.5 × 10{sup −} {sup 14} to 6.7 × 10{sup −} {sup 12}) mol m{sup −} {sup 2} s{sup −} {sup 1}. The changes in the microstructure of the dissolving C–S–H gel were characterized by small-angle neutron scattering (SANS) and {sup 29}Si magic-angle-spinning nuclear magnetic resonance ({sup 29}Si-MAS NMR). The SANS data were fitted using a fractal model. The SANS specific surface area tends to increase with time and the obtained fit parameters reflect the changes in the nanostructure of the dissolving solid C–S–H within the gel. The {sup 29}Si MAS NMR analyses show that with dissolution the solid C–S–H structure tends to a more ordered tobermorite structure, in agreement with the Ca/Si ratio evolution.

  9. A compact SEOP 3He neutron spin filter with AFP NMR

    Science.gov (United States)

    Ino, Takashi; Arimoto, Yasushi; Shimizu, Hirohiko M.; Sakaguchi, Yoshifumi; Sakai, Kenji; Kira, Hiroshi; Shinohara, Takenao; Oku, Takayuki; Suzuki, Jun-ichi; Kakurai, Kazuhisa; Chang, Lieh-Jeng

    2012-02-01

    We developed AFP NMR in an aluminum container for polarized noble gas nuclei. The radio frequency magnetic field inside the aluminum container was designed from computer simulations. The polarization loss by the AFP spin flip of 3He was measured to be as low as 3.8×10-4. With this technique, a compact in-situ polarizing 3He neutron spin filter with AFP NMR is demonstrated.

  10. Determination of the bond-angle distribution in vitreous B2O3 by 11B double rotation (DOR) NMR spectroscopy

    International Nuclear Information System (INIS)

    The B-O-B bond angle distributions for both ring and non-ring boron sites in vitreous B2O3 have been determined by 11B double rotation (DOR) NMR and multiple-quantum (MQ) DOR NMR. The [B3O6] boroxol rings are observed to have a mean internal B-O-B angle of 120.0±0.7 deg. with a small standard deviation, σR=3.2±0.4 deg., indicating that the rings are near-perfect planar, hexagonal structures. The rings are linked predominantly by non-ring [BO3] units, which share oxygens with the boroxol ring, with a mean Bring-O-Bnon-ring angle of 135.1±0.6 deg. and σNR=6.7±0.4 deg. In addition, the fraction of boron atoms, f, which reside in the boroxol rings has been measured for this sample as f=0.73±0.01. - Graphical abstract: Connectivities and B-O-B bond angle distributions of ring and non-ring boron atoms in v-B2O3 have been determined by 11B double rotation (DOR) NMR, multiple-quantum (MQ) DOR NMR and spin-diffusion DOR. Near-perfect planar, hexagonal [B3O6] boroxol rings are shown to be present. Display Omitted

  11. On the NMR structure determination of a 44n RNA pseudoknot: Assignment strategies and derivation of torsion angle restraints

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, Michael H. [University of Nijmegen, Toernooiveld, NSR Center for Molecular Structure, Design and Synthesis, Laboratory of Biophysical Chemistry (Netherlands); Wijmenga, Sybren S. [University of Umea, Department of Medical Biochemistry and Biophysics (Sweden); Heus, Hans A.; Hilbers, Cornelis W. [University of Nijmegen, Toernooiveld, NSR Center for Molecular Structure, Design and Synthesis, Laboratory of Biophysical Chemistry (Netherlands)

    1998-10-15

    The complete T- and pseudoknotted acceptor arm of the tRNA-like structure of turnip yellow mosaic virus (TYMV) genomic RNA has been studied by NMR spectroscopy. Resonance assignment and the gathering of restraints of the 44-mer are impeded by spectral complexity as well as by line broadening. The latter is caused by local dynamical effects in the pseudoknot domain in the molecule. These specific problems could be solved by using different field strengths and selectively {sup 13}C/{sup 15} labeled samples. Experiments for assigning the sugar spin systems were adjusted to satisfy the requirements of this system. Furthermore, the quality of the structure could be improved by determining the backbone torsion angles {beta}, {gamma} and {epsilon}, using new approaches that were tailored for use in large RNA molecules.

  12. Solid effect in magic angle spinning dynamic nuclear polarization

    Science.gov (United States)

    Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.

    2012-08-01

    For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω _0 ^{ - 2} field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect.

  13. A many-body analysis of NMR in spin-1/2 system

    International Nuclear Information System (INIS)

    The NMR absorption in a spin-1/2 system at finite temperature has been analysed by using the linear response theory and calculating the finite-temperature retarted spin Green's function. In this calculations, the Drone-Fermion representation for the spin operators has been used. A model spin-lattice interaction which is linear in phonon and Fermion operators has been considered, and its effect on a mutually non-interacting spin system has been calculated using the diagrammatic expansions technique. It is found that the complete summing up of a particular class of diagrams yields the Lorentzian shape of the resonance line. (author)

  14. Refinement of the protein backbone angle {psi} in NMR structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sprangers, R.; Bottomley, M.J.; Linge, J.P.; Schultz, J.; Nilges, M.; Sattler, M. [European Molecular Biology Laboratory (Germany)

    2000-01-15

    Cross-correlated relaxation rates involving the C{sup {alpha}}-H{sup {alpha}} dipolar interaction and the carbonyl (C') chemical shift anisotropy (CSA) have been measured using two complementary 3D experiments. We show that the protein backbone angle {psi} can be directly refined against such cross-correlated relaxation rates ({gamma}{sup H{alpha}}{sup C{alpha}}{sup ,C'}) and the three-bond H/D isotope effect on the C{sup {alpha}} chemical shifts ({sup 3}{delta}C{sup {alpha}}{sub (ND)}). By simultaneously using both experimental parameters as restraints during NMR structure calculations, a unique value for the backbone angle {psi} is defined. We have applied the new refinement method to the {alpha}-Spectrin SH3 domain (a {beta}-sheet protein) and to the Sgs1p HRDC domain (an {alpha}-helical protein) and show that the quality of the NMR structures is substantially improved, judging from the atomic coordinate precision and the Ramachandran map. In addition, the {psi}-refined NMR structures of the SH3 domain deviate less from the 1.8 A crystal structure, suggesting an improved accuracy. The proposed refinement method can be used to significantly improve the quality of NMR structures and will be applicable to larger proteins.

  15. A spin-spin relaxation rate investigation of the gelatin ferrous sulphate NMR dosimeter

    International Nuclear Information System (INIS)

    Spin-spin NMR relaxation rate in the ferrous sulphate gelatin dosimeter has been studied in terms of pH, gelatin concentration, the addition of benzoic acid, and sample size. It is demonstrated that R2 is more sensitive to changes in Fe3+ ion concentration than R1 when measuring at frequencies of 64 and 100 MHz. pH has an important effect on dose response curves, and oxygen depletion occurs significantly more rapidly in FeSO4 gelatin than in the liquid FeSO4, resulting in a saturation dose of ∼ 80 Gy at depths greater than ∼ 3 mm in phantom. The concentration of gelatin can be increased to 12% by weight, and the dosimeter will continue to exhibit a linear dose response. Sensitivity is maintained at higher gel concentrations by pH compensation. Addition of low-concentration benzoic acid to the system does not alter the dose response of the gelatin FeSO4 system. Finally, spontaneous oxidation of Fe2+ ions does not significantly alter the shape of dose response curves but does result in increases in R2 by up to 4% per day. (author)

  16. Spin Choreography: Basic Steps in High Resolution NMR (by Ray Freeman)

    Science.gov (United States)

    Minch, Michael J.

    1998-02-01

    There are three orientations that NMR courses may take. The traditional molecular structure course focuses on the interpretation of spectra and the use of chemical shifts, coupling constants, and nuclear Overhauser effects (NOE) to sort out subtle details of structure and stereochemistry. Courses can also focus on the fundamental quantum mechanics of observable NMR parameters and processes such a spin-spin splitting and relaxation. More recently there are courses devoted to the manipulation of nuclear spins and the basic steps of one- and two-dimensional NMR experiments. Freeman's book is directed towards the latter audience. Modern NMR methods offer a myriad ways to extract information about molecular structure and motion by observing the behavior of nuclear spins under a variety of conditions. In Freeman's words: "We can lead the spins through an intricate dance, carefully programmed in advance, to enhance, simplify, correlate, decouple, edit or assign NMR spectra." This is a carefully written, well-illustrated account of how this dance is choreographed by pulse programming, double resonance, and gradient effects. Although well written, this book is not an easy read; every word counts. It is recommended for graduate courses that emphasize the fundamentals of magnetic resonance. It is not a text on interpretation of spectra.

  17. Gaussian-approximation formalism for evaluating decay of NMR spin echoes

    Energy Technology Data Exchange (ETDEWEB)

    Recchia, C.H.; Gorny, K.; Pennington, C.H. [Department of Physics, The Ohio State University, 174 W. 18th Ave., Columbus, Ohio 43210 (United States)

    1996-08-01

    We present a formalism for evaluating the amplitude of the NMR spin echo and stimulated echo as a function of pulse spacings, for situations in which the nuclear spins experience an effective longitudinal magnetic field {ital h}{sub {ital z}}({ital t}) resulting from an arbitrary number of independent sources, each characterized by its own arbitrary time correlation function. The distribution of accumulated phase angles for the ensemble of nuclear spins at the time of the echo is approximated as a Gaussian. The development of the formalism is motivated by the need to understand the transverse relaxation of {sup 89}Y in YBa{sub 2}Cu{sub 3}O{sub 7}, in which the {sup 89}Y experiences {sup 63,65}Cu dipolar fields which fluctuate due to {sup 63,65}Cu {ital T}{sub 1} processes. The formalism is applied successfully to this example, and to the case of nuclei diffusing in a spatially varying magnetic field. Then we examine a situation in which the approximation fails{emdash}the classic problem of chemical exchange in dimethylformamide, where the methyl protons experience a chemical shift which fluctuates between two discrete values. In this case the Gaussian approximation yields a monotonic decay of the echo amplitude with increasing pulse spacing, while the exact solution yields distinct {open_quote}{open_quote}beats{close_quote}{close_quote} in the echo height, which we confirm experimentally. In light of this final example the limits of validity of the approximation are discussed. {copyright} {ital 1996 The American Physical Society.}

  18. Angles and Daemons: Spin Correlations at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Nhan V. [Johns Hopkins Univ., Baltimore, MD (United States)

    2011-09-01

    The Large Hadron Collider has recently started collecting data, opening a new energy regime. This will allow us to probe further than ever before many of the current mysteries of the field. New physics beyond the Standard Model, the field's current paradigm, could manifest itself via new particles. In addition, the Higgs boson, hypothesized as a consequence of electroweak symmetry breaking, remains undiscovered. At the time of discovery, the properties of such particles will be unknown. In order to understand the nature of any new physics, it will be important to understand the properties of that new particle. Methods are presented for measuring its spin, parity and coupling to the Standard Model particles. These methods are implemented at the Compact Muon Solenoid experiment and an analysis is presented with the data collected during 2010 and 2011 running at the Large Hadron Collider. An application of these techniques is used to make a measurement of the weak mixing angle. A current status of the search for the Higgs boson is also presented.

  19. NMR with generalized dynamics of spin and spatial coordinates

    International Nuclear Information System (INIS)

    This work is concerned with theoretical and experimental aspects of the generalized dynamics of nuclear spin and spatial coordinates under magnetic-field pulses and mechanical motions. The main text begins with an introduction to the concept of ''fictitious'' interactions. A systematic method for constructing fictitious spin-1/2 operators is given. The interaction of spins with a quantized-field is described. The concept of the fictitious interactions under the irradiation of multiple pulses is utilized to design sequences for selectively averaging linear and bilinear operators. Relations between the low-field sequences and high-field iterative schemes are clarified. These relations and the transformation properties of the spin operators are exploited to develop schemes for heteronuclear decoupling of multi-level systems. The resulting schemes are evaluated for heteronuclear decoupling of a dilute spin-1/2 from a spin-1 in liquid crystal samples and from a homonuclear spin-1/2 pair in liquids. A relation between the spin and the spatial variables is discussed. The transformation properties of the spin operators are applied to spatial coordinates and utilized to develop methods for removing the orientational dependence responsible for line broadening in a powder sample. Elimination of the second order quadrupole effects, as well as the first order anisotropies is discussed. It is shown that various sources of line broadening can effectively be eliminated by spinning and/or hopping the sample about judiciously chosen axes along with appropriate radio-frequency pulse sequences

  20. NMR with generalized dynamics of spin and spatial coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Jae

    1987-11-01

    This work is concerned with theoretical and experimental aspects of the generalized dynamics of nuclear spin and spatial coordinates under magnetic-field pulses and mechanical motions. The main text begins with an introduction to the concept of ''fictitious'' interactions. A systematic method for constructing fictitious spin-1/2 operators is given. The interaction of spins with a quantized-field is described. The concept of the fictitious interactions under the irradiation of multiple pulses is utilized to design sequences for selectively averaging linear and bilinear operators. Relations between the low-field sequences and high-field iterative schemes are clarified. These relations and the transformation properties of the spin operators are exploited to develop schemes for heteronuclear decoupling of multi-level systems. The resulting schemes are evaluated for heteronuclear decoupling of a dilute spin-1/2 from a spin-1 in liquid crystal samples and from a homonuclear spin-1/2 pair in liquids. A relation between the spin and the spatial variables is discussed. The transformation properties of the spin operators are applied to spatial coordinates and utilized to develop methods for removing the orientational dependence responsible for line broadening in a powder sample. Elimination of the second order quadrupole effects, as well as the first order anisotropies is discussed. It is shown that various sources of line broadening can effectively be eliminated by spinning and/or hopping the sample about judiciously chosen axes along with appropriate radio-frequency pulse sequences.

  1. Solid-state proton NMR of paramagnetic metal complexes: DANTE spin echoes for selective excitation in inhomogeneously broadened lines

    Science.gov (United States)

    Carnevale, Diego; Perez Linde, A. J.; Bauer, Gerald; Bodenhausen, Geoffrey

    2013-08-01

    The paramagnetic complex bis(oxazolinylphenyl)amine-Fe(III)Cl2 is investigated by means of solid-state proton NMR at 18.8 T (800 MHz) using magic-angle spinning at 65 kHz. Spin echoes that are excited and refocused by combs of rotor-synchronized pulses in the manner of 'Delays Alternating with Nutation for Tailored Excitation' (DANTE) allow one to characterize different chemical environments that severely overlap in conventional MAS spectra. Such sequences combine two apparently contradictory features: an overall bandwidth exceeding several MHz, and very selective irradiation of a few kHz within inhomogeneously broadened sidebands. The experimental hyperfine interactions correlate well with DFT calculations.

  2. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    International Nuclear Information System (INIS)

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (φ, ψ) torsion angles of ca 12º. TALOS-N also reports sidechain χ1 rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts

  3. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2013-07-15

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, {>=}90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed ({phi}, {psi}) torsion angles of ca 12 Masculine-Ordinal-Indicator . TALOS-N also reports sidechain {chi}{sup 1} rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.

  4. Spin-orbit-induced photoelectron spin polarization in angle-resolved photoemission from both atomic and condensed matter targets

    International Nuclear Information System (INIS)

    The existence of highly spin polarized photoelectrons emitted from non-magnetic solids as well as from unpolarized atoms and molecules has been found to be very common in many studies over the past 40 years. This so-called Fano effect is based upon the influence of the spin-orbit interaction in the photoionization or the photoemission process. In a non-angle-resolved photoemission experiment, circularly polarized radiation has to be used to create spin polarized photoelectrons, while in angle-resolved photoemission even unpolarized or linearly polarized radiation is sufficient to get a high spin polarization. In past years the Rashba effect has become very important in the angle-resolved photoemission of solid surfaces, also with an observed high photoelectron spin polarization. It is the purpose of the present topical review to cross-compare the spin polarization experimentally found in angle-resolved photoelectron emission spectroscopy of condensed matter with that of free atoms, to compare it with the Rashba effect and topological insulators to describe the influence and the importance of the spin-orbit interaction and to show and disentangle the matrix element and phase shift effects therein. The relationship between the energy dispersion of these phase shifts and the emission delay of photoelectron emission in attosecond-resolved photoemission is also discussed. Furthermore the influence of chiral structures of the photo-effect target on the spin polarization, the interferences of different spin components in coherent superpositions in photoemission and a cross-comparison of spin polarization in photoemission from non-magnetic solids with XMCD on magnetic materials are presented; these are all based upon the influence of the spin-orbit interaction in angle-resolved photoemission. (topical review)

  5. Heteronuclear spin decoupling sequences with frequency sweep in solid-state NMR spectroscopy

    OpenAIRE

    Chandrasekharan Nair, Vinod Chandran

    2011-01-01

    Solid-state Nuclear Magnetic Resonance (NMR) plays an increasingly important role in characterization of technologically relevant materials, such as ceramics, catalysts and glasses, primarily because of its capability to selectively probe the local environment of atomic nuclei. A major concern in NMR is spectral resolution, which may dramatically be improved by the application of heteronuclear spin decoupling, i.e. irradiation of a abundant nuclei (e.g. 1H, 19F) coupled to the observed rar...

  6. Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning.

    Science.gov (United States)

    Thurber, Kent; Tycko, Robert

    2016-03-01

    We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264GHz with 1.5W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized (13)C NMR signals in the 100-200 range are demonstrated with DNP at 25K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30K can be achieved with helium consumption rates below 1.3l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states. PMID:26920835

  7. Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning

    Science.gov (United States)

    Thurber, Kent; Tycko, Robert

    2016-03-01

    We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized 13C NMR signals in the 100-200 range are demonstrated with DNP at 25 K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30 K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states.

  8. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K

    Science.gov (United States)

    Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids.

  9. Exact NMR simulation of protein-size spin systems using tensor train formalism

    CERN Document Server

    Savostyanov, D V; Werner, J M; Kuprov, Ilya

    2014-01-01

    We introduce a new method, based on alternating optimization, for compact representation of spin Hamiltonian, and solution of linear systems in the tensor train format. We demonstrate its utility by simulating, without significant approximations, a 15N NMR spectrum of ubiquitin --- protein containing several hundred interacting nuclear spins. Existing simulation algorithms for the spin system and the NMR experiment in question either require significant approximations or scale exponentially with the system size. We compare the proposed method to the Spinach package that uses heuristic restricted state space (RSS) techniques to achieve polynomial complexity scaling. When the spin system topology is close to a linear chain (e.g. for backbone of a protein), the tensor train representation of a Hamiltonian is more compact and can be computed faster than the sparse representation using the RSS.

  10. Proton NMR spin grouping and exchange in dentin.

    OpenAIRE

    Schreiner, L J; Cameron, I G; Funduk, N; Miljković, L; Pintar, M. M.; Kydon, D N

    1991-01-01

    The nuclear magnetic resonance spin-grouping technique has been applied to dentin from human donors of different ages. The apparent T2, T1, and T1 rho have been determined for natural dentin, for dentin which has been dried in vacuum, and for dried dentin which has been rehydrated in an atmosphere with 75% relative humidity. All apparent spin relaxation has been analyzed for exchange between the spin groups in which the dentin protons exist; the analyses incorporate the results of selective i...

  11. Influence of the external torques in the angle between the spin axis and the Sun direction for spin stabilized satellite

    Science.gov (United States)

    Motta, G. B.; Zanardi, M. C.

    2015-10-01

    The goal of this paper is the study of the influence of the environmental torques in the angle between the spin axis and the Sun direction (solar aspect angle) for spin stabilized satellite. The theory uses a cylindrical satellite in an illumined orbit, considering the gravity gradient, aerodynamic, solar radiation, residual magnetic and eddy current torques. The mathematic model for each torque is shown. The dynamic equations are represented in a reference system fixed in the satellite and described by spin velocity and the right ascension and declination angles of the spin axis. An analytical solution for the spin velocity and the attitude angles is used to study the behavior of the solar aspect angle. The theory is applied for the real data of the Brazilian Satellite of Data Collection - SCD1 and SCD2. Two approaches are presented. The results agree with the real satellite behavior for specific time simulation. Then the theory has consistency and can be applied to predict the behavior of the solar aspect angle.

  12. Spin fluctuations in iron based superconductors probed by NMR relaxation rate

    Energy Technology Data Exchange (ETDEWEB)

    Graefe, Uwe; Kuehne, Tim; Wurmehl, Sabine; Buechner, Bernd; Grafe, Hans-Joachim [IFW Dresden, Institute for Solid State Research, PF 270116, 01171 Dresden (Germany); Hammerath, Franziska [IFW Dresden, Institute for Solid State Research, PF 270116, 01171 Dresden (Germany); Department of Physics ' ' A. Volta' ' , University of Pavia-CNISM, I-27100 Pavia (Italy); Lang, Guillaume [3LPEM-UPR5, CNRS, ESPCI Paris Tech, 10 Rue Vauquelin, 75005 Paris (France)

    2013-07-01

    We present {sup 75}As nuclear magnetic resonance (NMR) results in F doped LaOFeAs iron pnictides. In the underdoped superconducting samples, pronounced spin fluctuations lead to a peak in the NMR spin lattice relaxation rate, (T{sub 1}T){sup -1}. The peak shows a typical field dependence that indicates a critical slowing of spin fluctuations: it is reduced in height and shifted to higher temperatures. In contrast, a similar peak in the underdoped magnetic samples at the ordering temperature of the spin density wave does not show such a field dependence. Furthermore, the peak is absent in optimally and overdoped samples, suggesting the absence of strong spin fluctuations. Our results indicate a glassy magnetic ordering in the underdoped samples that is in contrast to the often reported Curie Weiss like increase of spin fluctuations towards T{sub c}. Additional measurements of the linewidth and the spin spin relaxation rate are in agreement with such a glassy magnetic ordering that is most likely competing with superconductivity. Our results will be compared to Co doped BaFe{sub 2}As{sub 2}, where a similar peak in (T{sub 1}T){sup -1} has been observed.

  13. Spin fluctuations in iron based superconductors probed by NMR relaxation rate

    International Nuclear Information System (INIS)

    We present 75As nuclear magnetic resonance (NMR) results in F doped LaOFeAs iron pnictides. In the underdoped superconducting samples, pronounced spin fluctuations lead to a peak in the NMR spin lattice relaxation rate, (T1T)-1. The peak shows a typical field dependence that indicates a critical slowing of spin fluctuations: it is reduced in height and shifted to higher temperatures. In contrast, a similar peak in the underdoped magnetic samples at the ordering temperature of the spin density wave does not show such a field dependence. Furthermore, the peak is absent in optimally and overdoped samples, suggesting the absence of strong spin fluctuations. Our results indicate a glassy magnetic ordering in the underdoped samples that is in contrast to the often reported Curie Weiss like increase of spin fluctuations towards Tc. Additional measurements of the linewidth and the spin spin relaxation rate are in agreement with such a glassy magnetic ordering that is most likely competing with superconductivity. Our results will be compared to Co doped BaFe2As2, where a similar peak in (T1T)-1 has been observed.

  14. Slow Manifold and Hannay Angle in the Spinning Top

    Science.gov (United States)

    Berry, M. V.; Shukla, P.

    2011-01-01

    The spin of a top can be regarded as a fast variable, coupled to the motion of the axis which is slow. In pure precession, the rotation of the axis round a cone (without nutation), can be considered as the result of a reaction from the fast spin. The resulting restriction of the total state space of the top is an illustrative example, at…

  15. Local Isotropic Diffusion Approximation for Coupled Internal and Overall Molecular Motions in NMR Spin Relaxation

    OpenAIRE

    Gill, Michelle L.; Palmer, Arthur G.

    2014-01-01

    The present work demonstrates that NMR spin relaxation rate constants for molecules interconverting between states with different diffusion tensors can be modeled theoretically by combining orientational correlation functions for exchanging spherical molecules with locally isotropic approximations for the diffusion anisotropic tensors. The resulting expressions are validated by comparison with correlation functions obtained by Monte Carlo simulations and are accurate for moderate degrees of d...

  16. Effects of instrumental artifacts on triple quantum filtered NMR spectra for spin I = 3/2

    Science.gov (United States)

    Sun, Cheng; Wang, Xuefeng; Wang, Zhixiao

    2016-07-01

    In this work, the effects of various instrumental artifacts on the triple quantum filtered NMR spectra for spin I = 3/2 nuclei are investigated. The studied artifacts include finite pulse widths, phase errors, radio frequency field inhomogeneity and pulse transients, which are commonly encountered in practice. The triple quantum filtered spectra are numerically simulated, based on the evolution of the spin density operator under the Hamiltonian for the artifacts. The results show that the presence of the artifacts introduces a shape distortion in the spectrum as well as a variation in the peak intensity, compared with the spectrum without any artifacts. This work indicates that the existence of the instrumental artifacts may cause a misunderstanding of the triple quantum filtered NMR spectra in experiments. The results suggest that one be aware of the instrumental artifacts when performing the triple quantum filtered NMR experiments.

  17. Single shot NMR on single, dark nuclear spins

    CERN Document Server

    Waldherr, G; Steiner, M; Neumann, P; Gali, A; Jelezko, F; Wrachtrup, J

    2010-01-01

    The electron and nuclear spins associated with the nitrogen-vacancy (NV) center in diamond are supposed to be building blocks for quantum computing devices and nanometer scale magnetometry operating under ambient conditions. For every such building block precise knowledge of the involved quantum states is crucial. Especially for solid state systems the corresponding hilbert space can be large. Here, we experimentally show that under usual operating conditions the NV color center exists in an equilibrium of two charge states (i.e. 70% in the usually used negative (NV-) and 30% in the neutral one (NV0)). Projective quantum non-demolition measurement of the nitrogen nuclear spin enables the detection even of the additional, optically inactive state. It turns out that the nuclear spin can be coherently driven also in NV0. However, its T1 ~ 90 ms and T2 ~ 6micro-s times are much shorter than in NV-, supposedly because of the dynamic Jahn-Teller effect.

  18. Dynamical Decoupling of Spin-Clusters using Solid State NMR

    CERN Document Server

    Shukla, Abhishek

    2011-01-01

    In this work we experimentally study the efficiency of various dynamical decoupling sequences for suppressing decoherence of single as well as multiple quantum coherences on large spin-clusters. The system involves crystallites of a powdered sample containing a large number of molecular protons interacting via long-range dipole-dipole interaction. The multiple quantum coherences are prepared by progressively creating correlations in the spin lattice using standard pulse sequences implementing two-quantum average Hamiltonian. The spin system is then subjected to various dynamical decoupling sequences, followed by conversion into observable single quantum coherence by using time-reversal sequence. The experiments reveal superior performance of the recently introduced RUDD sequences in suppressing the decoherence.

  19. Heating of samples induced by high speed magic angle spinning

    Czech Academy of Sciences Publication Activity Database

    Brus, Jiří

    Leipzig: University of Leipzig, 2000. s. 38. [European Experimental NMR Conference /15./. 12.06.2000-17.06.2000, Leipzig] R&D Projects: GA ČR GA203/98/P290 Subject RIV: CD - Macromolecular Chemistry http://eenc.uni-leipzig.de

  20. SPINS: Standardized ProteIn NMR Storage. A data dictionary and object-oriented relational database for archiving protein NMR spectra

    International Nuclear Information System (INIS)

    Modern protein NMR spectroscopy laboratories have a rapidly growing need for an easily queried local archival system of raw experimental NMR datasets. SPINS (Standardized ProteIn Nmr Storage) is an object-oriented relational database that provides facilities for high-volume NMR data archival, organization of analyses, and dissemination of results to the public domain by automatic preparation of the header files required for submission of data to the BioMagResBank (BMRB). The current version of SPINS coordinates the process from data collection to BMRB deposition of raw NMR data by standardizing and integrating the storage and retrieval of these data in a local laboratory file system. Additional facilities include a data mining query tool, graphical database administration tools, and a NMRStar v2.1.1 file generator. SPINS also includes a user-friendly internet-based graphical user interface, which is optionally integrated with Varian VNMR NMR data collection software. This paper provides an overview of the data model underlying the SPINS database system, a description of its implementation in Oracle, and an outline of future plans for the SPINS project

  1. Crystalline phase of sodium germanate system determined by x-ray diffraction and 23Na magic angle spinning nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Crystalline products of sodium germanate glasses system with composition from 10 mol% to 50 mol% Na2O have been investigated using 23Na magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and x-ray diffraction (XRD). Fitting of the 23Na NMR spectra of the crystalline phases concerning different crystallographically sodium atom in sodium germanate system are reasonably reproducible as observed by the spectra obtained. The line shape simulations of the 23Na NMR spectra yielded NMR quadrupolar parameters such as nuclear quadrupole coupling constants (CQ), asymmetry parameters (η), and isotropic chemical shifts (δi). 23Na NMR isotropic chemical shift may also provide further information on the structural environment of the sodium atom. A simple correlation between structure and NMR parameters to be tested can be used to probe the structure of sodium germanate glasses. The experimental 23Na chemical shifts correlate well with an empirical shift parameter based on the total oxygen-cation bond valence and Na-O distances of all oxygen atoms in the first coordination sphere of the sodium cation. In this study the different phases in the sodium germanate system were identified. These results show that 23Na NMR can provide examples of the types of structural information for sodium germanate system. (Author)

  2. Multiple quantum NMR of spin-carrying molecules in nanopores: high order corrections to the two-spin/two-quantum Hamiltonian

    CERN Document Server

    Doronina, Sergei I; Fel’dmana, Edward B; Zenchuka, Alexander I

    2010-01-01

    This paper is devoted to the multiple-quantum (MQ) NMR spectroscopy in nanopores filled by a gas of spin-carrying molecules (s=1/2) in the strong external magnetic field. It turned out that the high symmetry of the spin system in nanopores yields a possibility to overcome the problem of the exponential growth of the Hilbert space dimension with an increase in a number of spins and to investigate MQ NMR dynamics in systems consisting of several hundreds of spins. We investigate the dependence of the MQ coherence intensities on their order (the profile of the MQ coherence intensities) for the spin system governed by the standard MQ NMR Hamiltonian (the nonsecular two-quantum/two-spin Hamiltonian) together with the second order correction of the average Hamiltonian theory. It is shown that the profile depends on the value of this correction and varies from the exponential to the logarithmic one.

  3. Dephasing in photoinduced large-angle spin precession of confined ferromagnetic structures

    Science.gov (United States)

    Lee, Kyeong-Dong; Ryu, Kwang-Su; Kim, Ji-Wan; Song, Hyon-Seok; Jeong, Jae-Woo; Shin, Sung-Chul

    2010-10-01

    Spin precessions in the stripes of α-MnAs films prepared on GaAs(001) are investigated using an all-optical pump-probe method. We find that a large-angle spin precession appears while the stripe width decreases. In addition, the large-angle precession considerably changes the resonance frequency, resulting in a significant decrease in the relaxation time. These changes in the precessional motion are mainly ascribed to the dephasing of the nonuniform spin waves existing at the large-angle precession, as experimentally confirmed by varying the precession angle via tuning pump fluence. Micromagnetic simulations using a single Gilbert damping constant well predict the experimental observations, which verifies the interpretation of the change in the precessional motion.

  4. NMR Investigation of Optical Polarization of Nuclear Spins in GaAs

    Science.gov (United States)

    Paravastu, Anant; Hayes, Sophia; Schwickert, Birgit; Reimer, Jeffrey; Dinh, Long; Balooch, Mehdi

    2003-03-01

    Light-induced nuclear spin alignments have been measured in GaAs as a function of photon energy, irradiation time, and sample temperature using NMR spectroscopy at 9.4 Tesla and 10 to 50 K. Significant optical enhancements were observed at a range of photon energies, starting just below the band gap and persisting through 100 meV above the gap. Irradiation above the band gap resulted in thermally activated NMR signal enhancements while sub band gap irradiation did not. Short and long irradiation time dependencies revealed insights into the nature of cross relaxation between electronic nuclear spins, contradicting mechanisms based on either localized electron-nuclear contact at defect sites or cross relaxation between nuclei and free electrons. We propose that the presence of a mobile or delocalized enabling electronic species characterized by a long electron-nuclear correlation time, such as an exciton, is necessary in any mechanism which explains the data.

  5. Impurity effects in a S=1/2 Heisenberg spin chain probed by {sup 63}Cu NMR

    Energy Technology Data Exchange (ETDEWEB)

    Utz, Yannic; Bruening, Eva Maria; Hammerath, Franziska; Rudisch, Christian; Grafe, Hans-Joachim; Mohan, Ashwin; Hess, Christian; Nishimoto, Satoshi; Drechsler, Stefan-Ludwig; Buechner, Bernd [IFW Dresden (Germany); Saint-Martin, Romuald; Revcolevschi, Alexandre [LPCES, Orsay (France)

    2013-07-01

    We present {sup 63}Cu NMR measurements on undoped, Ni doped and Mg doped SrCuO{sub 2} single crystals. SrCuO{sub 2} is a good realization of a one-dimensional S=1/2 Heisenberg spin chain. This is confirmed by the theoretically-expected temperature independent NMR spin-lattice relaxation rate T{sup -1}{sub 1}. Doping with Ni, which can be regarded as a S=1 impurity, has a major impact on the magnetic properties of the spin chains. On the one hand, this is manifested by unusual features in the NMR spectra below 100 K, revealing the existence of an impurity-induced local alternating magnetisation. On the other hand, exponentially decaying spin lattice relaxation rates towards low temperatures indicate the opening of a spin gap similar to Ca doped SrCuO{sub 2}. Mg doping (S=0) has, however, no influence on the magnetic properties of the spin chains. Neither the NMR spectra nor the spin lattice relaxation rates differ from those measured on pure SrCuO{sub 2}. While the different impact of Ni and Mg doping on the spin chains could be explained by their different impurity spins, the opening of a spin gap in case of Ni doping is totally unexpected and not yet understood.

  6. Correlation between the spin Hall angle and the structural phases of early 5d transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun; Ohkubo, Tadakatsu; Mitani, Seiji; Hono, Kazuhiro; Hayashi, Masamitsu, E-mail: hayashi.masamitsu@nimsgo.jp [National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2015-12-07

    We have studied the relationship between the structure and the spin Hall angle of the early 5d transition metals in X/CoFeB/MgO (X = Hf, Ta, W, and Re) heterostructures. Spin Hall magnetoresistance (SMR) is used to characterize the spin Hall angle of the heavy metals. Transmission electron microscopy images show that all underlayers are amorphous-like when their thicknesses are small, however, crystalline phases emerge as the thickness is increased for certain elements. We find that the heavy metal layer thickness dependence of the SMR reflects these changes in structure. The largest spin Hall angle |θ{sub SH}| of Hf, Ta, W, and Re (∼0.11, 0.10, 0.23, and 0.07, respectively) is found when the dominant phase is amorphous-like. We find that the amorphous-like phase not only possesses large resistivity but also exhibits sizeable spin Hall conductivity, which both contribute to the emergence of the large spin Hall angle.

  7. Correlation between the spin Hall angle and the structural phases of early 5d transition metals

    International Nuclear Information System (INIS)

    We have studied the relationship between the structure and the spin Hall angle of the early 5d transition metals in X/CoFeB/MgO (X = Hf, Ta, W, and Re) heterostructures. Spin Hall magnetoresistance (SMR) is used to characterize the spin Hall angle of the heavy metals. Transmission electron microscopy images show that all underlayers are amorphous-like when their thicknesses are small, however, crystalline phases emerge as the thickness is increased for certain elements. We find that the heavy metal layer thickness dependence of the SMR reflects these changes in structure. The largest spin Hall angle |θSH| of Hf, Ta, W, and Re (∼0.11, 0.10, 0.23, and 0.07, respectively) is found when the dominant phase is amorphous-like. We find that the amorphous-like phase not only possesses large resistivity but also exhibits sizeable spin Hall conductivity, which both contribute to the emergence of the large spin Hall angle

  8. Mixture diffusion of adsorbed organic compounds in metal-organic frameworks as studied by magic-angle spinning pulsed-field gradient nuclear magnetic resonance

    International Nuclear Information System (INIS)

    The magic-angle spinning (MAS) and pulsed-field gradient nuclear magnetic resonance (PFG NMR) techniques have been combined using a commercially available microimaging system providing a gradient in the magic-angle direction of up to ±2.6 T m-1, together with a narrow bore MAS probe. By narrowing the spectral linewidths, detection of the single and mixed molecular species adsorbed in porous material and their respective mobilities becomes possible. Here, we report on protocols for MAS PFG NMR measurements, new methods for the indispensable sample alignment along the MAS rotational axis and gradient direction and first experimental results of diffusion studies on n-hexane and benzene adsorbed in the metal-organic framework MOF-5.

  9. Strong spin-orbit coupling and Zeeman spin splitting in angle dependent magnetoresistance of Bi2Te3

    International Nuclear Information System (INIS)

    We have studied angle dependent magnetoresistance of Bi2Te3 thin film with field up to 9 T over 2–20 K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance, we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.

  10. The electronic structure of spintronic materials as seen by spin-polarized angle-resolved photoemission

    International Nuclear Information System (INIS)

    Highlights: •Introduction of spin-dependent effects in modern angle-resolved photoemission from the point of view of potential applications in spintronics. •Review on modern spin-polarimeters, including the historical development of the field. •Several examples to illustrate the application of spin-polarized photoemission to ferromagnetic and non-ferromagnetic sample systems. -- Abstract: The key quantity in spintronic devices is the spin polarization of the current flowing through the various device components, which in turn is closely determined by the components’ electronic structure. Modern spin- and angle-resolved photoemission spectroscopy (spin-ARPES) can map the details of the spin-polarized electronic structure in many novel material systems – both magnetic and nonmagnetic. In order to separate close-lying electronic states, however, an improvement in energy and angular resolution as well as information depth is still mandatory. We review several types of modern photoemission spectrometers capable of spin analysis and discuss the application of the technique for several physical systems including ferromagnetic thin films and topological insulators

  11. Exploring the Structure of a DNA Hairpin with the Help of NMR Spin-Spin Coupling Constants: An Experimental and Quantum Chemical Investigation

    Czech Academy of Sciences Publication Activity Database

    Sychrovský, Vladimír; Vacek, Jaroslav; Hobza, Pavel; Žídek, L.; Sklenář, V.; Cremer, D.

    2002-01-01

    Roč. 106, - (2002), s. 10242-10250. ISSN 1089-5639 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : DNA * help of NMR spin-spin coupling constants * quantum chemical investigation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.765, year: 2002

  12. Investigation of Sodium Distribution in Phosphate Glasses Using Spin-Echo {sup 23}Na NMR

    Energy Technology Data Exchange (ETDEWEB)

    ALAM, TODD M.; BOYLE, TIMOTHY J.; BROW, RICHARD K.; CLICK, CAROL C.; CONZONE, SAM; McLAUGHLIN, JAY; ZWANZIGER, JOE

    1999-09-16

    The spatial arrangement of sodium cations for a series of sodium phosphate glasses, xNa{sub 2}O(100-x)P{sub 2}O{sub 5} (x<55), were investigated using {sup 23}Na spin-echo NMR spectroscopy. The spin-echo decay rate is a function of the Na-Na homonuclear dipolar coupling and is related to the spatial proximity of neighboring Na nuclei. The spin-echo decay rate in these sodium phosphate glasses increases non-linearly with higher sodium number density, and thus provides a measure of the Na-Na extended range order. The results of these {sup 23}Na NMR experiments are discussed within the context of several structural models, including a decimated crystal lattice model, cubic dilation lattice model, a hard sphere (HS) random distribution model and a pair-wise cluster hard sphere model. While the experimental {sup 23}Na spin-echo M{sub 2} are described adequately by both the decimated lattice and the random HS model, it is demonstrated that the slight non-linear behavior of M{sub 2} as a function of sodium number density is more correctly described by the random distribution in the HS model. At low sodium number densities the experimental M{sub 2} is inconsistent with models incorporating Na-Na clustering. The ability to distinguish between Na-Na clusters and non-clustered distributions becomes more difficult at higher sodium concentrations.

  13. Cooling overall spin temperature: Protein NMR experiments optimized for longitudinal relaxation effects

    Science.gov (United States)

    Deschamps, Michaël; Campbell, Iain D.

    2006-02-01

    In experiments performed on protonated proteins at high fields, 80% of the NMR spectrometer time is spent waiting for the 1H atoms to recover their polarization after recording the free induction decay. Selective excitation of a fraction of the protons in a large molecule has previously been shown to lead to faster longitudinal relaxation for the selected protons [K. Pervushin, B. Vögeli, A. Eletsky, Longitudinal 1H relaxation optimization in TROSY NMR spectroscopy, J. Am. Chem. Soc. 124 (2002) 12898-12902; P. Schanda, B. Brutscher, Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds, J. Am. Chem. Soc. 127 (2005) 8014-8015; H.S. Attreya, T. Szyperski, G-matrix Fourier transform NMR spectroscopy for complete protein resonance assignment, Proc. Natl. Acad. Sci. USA 101 (2004) 9642-9647]. The pool of non-selected protons acts as a "thermal bath" and spin-diffusion processes ("flip-flop" transitions) channel the excess energy from the excited pool to the non-selected protons in regions of the molecule where other relaxation processes can dissipate the excess energy. We present here a sensitivity enhanced HSQC sequence (COST-HSQC), based on one selective E-BURP pulse, which can be used on protonated 15N enriched proteins (with or without 13C isotopic enrichment). This experiment is compared to a gradient sensitivity enhanced HSQC with a water flip-back pulse (the water flip-back pulse quenches the spin diffusion between 1H N and 1H α spins). This experiment is shown to have significant advantages in some circumstances. Some observed limitations, namely sample overheating with short recovery delays and complex longitudinal relaxation behaviour are discussed and analysed.

  14. Application Of Density Matrix Methods To Quadrupolar Spins In Solid State Nmr And Nqr

    CERN Document Server

    Ageev, S Z

    1997-01-01

    Spin dynamics in solid state NMR and NQR are studied using spin density matrix theory. First, the response of spin 7/2 subject to the first order quadrupolar interaction, excited by one and two pulse sequences is examined. Specific pulse sequences with appropriate phase cycling designed for detection of MQ coherences developed during the first pulse are calculated analytically. The results are applied to the determination of quadrupolar parameters and true chemical shifts utilizing a 1D nutation experiment. Solomon echoes under soft pulse excitation are also considered for spin 7/2. Second, analytical solutions of off-resonance nutation line intensities for spin 3/2 are presented. The first order quadrupolar interaction is retained during the pulse. The third case puts forward a new theory of composite pulses in NQR. Shaped pulses are also considered. The calculation is valid for a non-zero asymmetry parameter and arbitrary orientation of the rf field. The results are generalized for half integer spins of mag...

  15. Structure and dynamics of the RNA backbone resolved with NMR spin-spin couplings

    Czech Academy of Sciences Publication Activity Database

    Vokáčová, Zuzana; Buděšínský, Miloš; Rosenberg, Ivan; Schneider, Bohdan; Šponer, Jiří; Sychrovský, Vladimír

    Helsinki : University of Helsinki, 2009 - (J. Polvi and H. Ristolainen). s. 320-320 ISBN 978-952-10-5618-5. [International Congress of Quantum Chemistry ICQC /13./. 22.06.2009-27-06.2009, Helsinki] R&D Projects: GA AV ČR IAA400550701 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50040507 Keywords : NMR * nucleic acid backbone * ab initio calculations Subject RIV: CF - Physical ; Theoretical Chemistry

  16. Entanglement in a 3-spin Heisenberg-XY chain with nearest-neighbor interactions, simulated in an NMR quantum simulator

    OpenAIRE

    Rao, K. Rama Koteswara; Kumar, Anil

    2011-01-01

    The evolution of entanglement in a 3-spin chain with nearest-neighbor Heisenberg-XY interactions for different initial states is investigated here. In an NMR experimental implementation, we generate multipartite entangled states starting from initial separable pseudo-pure states by simulating nearest-neighbor XY interactions in a 3-spin linear chain of nuclear spin qubits. For simulating XY interactions, we follow algebraic method of Zhang et al. [Phys. Rev. A 72, 012331 (2005)]. Bell state b...

  17. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Baltisberger, J.H.

    1993-06-01

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the {sup 87}Rb and {sup 85}Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem.

  18. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    International Nuclear Information System (INIS)

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the 87Rb and 85Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem

  19. Phosphorus-doped thin silica films characterized by magic-angle spinning nuclear magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Jacobsen, H.J.; Skibsted, J.; Kristensen, Martin;

    2001-01-01

    Magic-angle spinning nuclear magnetic resonance spectra of 31P and 29Si have been achieved for a thin silica film doped with only 1.8% 31P and deposited by plasma enhanced chemical vapor deposition on a pure silicon wafer. The observation of a symmetric 31P chemical shift tensor is consistent...

  20. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    Science.gov (United States)

    Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi

    2014-04-08

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  1. NMR evidence for spin fluctuations in underdoped LaO1-xFxFeAs

    International Nuclear Information System (INIS)

    We present 75As Nuclear Magnetic Resonance (NMR) measurements on the iron-based superconductor LaO1-xFxFeAs with 0 ≤ x ≤ 0.1, covering a broad range of the phase diagram from magnetically-ordered to optimally-doped superconducting samples. For underdoped samples (x=0.05,x=0.075) the 75As NMR spin-lattice relaxation rate (T1T)-1 shows a Curie-Weiss-like increase at intermediate temperatures, indicating the slowing down of spin fluctuations. However, a simple Curie-Weiss fit fails to describe (T1T)-1(T) above 250 K and the occurrence of a peak in (T1T)-1 slightly above Tc. Instead, the data can be well described by considering a BPP-model for fluctuating magnetic fields in combination with a doping-independent linear temperature dependence at high temperature. At optimal doping (x=0.1) spin fluctuations are suppressed and only the linear contribution to (T1T)-1 is left. This stands in contrast to other pnictides, such as Ba(Fe1-xCoxAs)2 and Ba(FeAs1-xPx)2. Our analysis is consistent with charge carrier localization in underdoped LaO1-xFxFeAs as seen by means of resistivity measurements.

  2. NMR system and method having a permanent magnet providing a rotating magnetic field

    Science.gov (United States)

    Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

    2009-05-19

    Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

  3. Spin-Orbit angle distribution and the origin of (mis)aligned hot Jupiters

    CERN Document Server

    Crida, Aurélien

    2014-01-01

    For 61 transiting hot Jupiters, the projection of the angle between the orbital plane and the stellar equator (called the spin-orbit angle) has been measured. For about half of them, a significant misalignment is detected, and retrograde planets have been observed. This challenges scenarios of the formation of hot Jupiters. In order to better constrain formation models, we relate the distribution of the real spin-orbit angle $\\Psi$ to the projected one $\\beta$. Then, a comparison with the observations is relevant. We analyse the geometry of the problem to link analytically the projected angle $\\beta$ to the real spin-orbit angle $\\Psi$. The distribution of $\\Psi$ expected in various models is taken from the literature, or derived with a simplified model and Monte-Carlo simulations in the case of the disk-torquing mechanism. An easy formula to compute the probability density function (PDF) of $\\beta$ knowing the PDF of $\\Psi$ is provided. All models tested here look compatible with the observed distribution be...

  4. Resonances in field-cycling NMR on molecular crystals. (reversible) Spin dynamics or (irreversible) relaxation?

    International Nuclear Information System (INIS)

    Multi spin systems with spin 1/2 nuclei and dipolar coupled quadrupolar nuclei can show so called ''quadrupolar dips''. There are two main reasons for this behavior: polarization transfer and relaxation. They look quite alike and without additional research cannot be differentiated easily in most cases. These two phenomena have quite different physical and theoretical backgrounds. For no or very slow dynamics, polarization transfer will take place, which is energy conserving inside the spin system. This effect can entirely be described using quantum mechanics on the spin system. Detailed knowledge about the crystallography is needed, because this affects the relevant hamiltonians directly. For systems with fast enough dynamics, relaxation takes over, and the energy flows from the spin system to the lattice; thus a more complex theoretical description is needed. This description has to include a dynamic model, usually in the form of a spectral density function. Both models should include detailed modelling of the complete spin system. A software library was developed to be able to model complex spin systems. It allows to simulate polarization transfer or relaxation effects. NMR measurements were performed on the protonic conductor K3H(SO4)2. A single crystal shows sharp quadrupolar dips at room temperature. Dynamics could be excluded using relaxation measurements and literature values. Thus, a polarization transfer analysis was used to describe those dips with good agreement. As a second system, imidazolium based molecular crystals were analyzed. The quadrupolar dips were expected to be caused by polarization transfer; this was carefully analyzed and found not to be true. A relaxation based analysis shows good agreement with the measured data in the high temperature area. It leverages a two step spectral density function, which indicates two distinct dynamic processes happening in this system.

  5. The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning

    International Nuclear Information System (INIS)

    We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between “bulk” and “core” nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei

  6. Local isotropic diffusion approximation for coupled internal and overall molecular motions in NMR spin relaxation.

    Science.gov (United States)

    Gill, Michelle L; Palmer, Arthur G

    2014-09-25

    The present work demonstrates that NMR spin relaxation rate constants for molecules interconverting between states with different diffusion tensors can be modeled theoretically by combining orientational correlation functions for exchanging spherical molecules with locally isotropic approximations for the diffusion anisotropic tensors. The resulting expressions are validated by comparison with correlation functions obtained by Monte Carlo simulations and are accurate for moderate degrees of diffusion anisotropy typically encountered in investigations of globular proteins. The results are complementary to an elegant, but more complex, formalism that is accurate for all degrees of diffusion anisotropy [Ryabov, Y.; Clore, G. M.; Schwieters, C. D. J. Chem. Phys. 2012, 136, 034108]. PMID:25167331

  7. Spin-injection optical pumping of molten cesium salt and its NMR diagnosis

    International Nuclear Information System (INIS)

    Nuclear spin polarization of cesium ions in the salt was enhanced during optical pumping of cesium vapor at high magnetic field. Significant motional narrowing and frequency shift of NMR signals were observed by intense laser heating of the salt. When the hyperpolarized salt was cooled by blocking the heating laser, the signal width and frequency changed during cooling and presented the phase transition from liquid to solid. Hence, we find that the signal enhancement is mostly due to the molten salt and nuclear spin polarization is injected into the salt efficiently in the liquid phase. We also show that optical pumping similarly induces line narrowing in the solid phase. The use of powdered salt provided an increase in effective surface area and signal amplitude without glass wool in the glass cells

  8. Spin Liquid State in the 3D Frustrated Antiferromagnet PbCuTe2 O6 : NMR and Muon Spin Relaxation Studies

    Science.gov (United States)

    Khuntia, P.; Bert, F.; Mendels, P.; Koteswararao, B.; Mahajan, A. V.; Baenitz, M.; Chou, F. C.; Baines, C.; Amato, A.; Furukawa, Y.

    2016-03-01

    PbCuTe2O6 is a rare example of a spin liquid candidate featuring a three-dimensional magnetic lattice. Strong geometric frustration arises from the dominant antiferromagnetic interaction that generates a hyperkagome network of Cu2 + ions although additional interactions enhance the magnetic lattice connectivity. Through a combination of magnetization measurements and local probe investigations by NMR and muon spin relaxation down to 20 mK, we provide robust evidence for the absence of magnetic freezing in the ground state. The local spin susceptibility probed by the NMR shift hardly deviates from the macroscopic one down to 1 K pointing to a homogeneous magnetic system with a low defect concentration. The saturation of the NMR shift and the sublinear power law temperature (T ) evolution of the 1 /T1 NMR relaxation rate at low T point to a nonsinglet ground state favoring a gapless fermionic description of the magnetic excitations. Below 1 K a pronounced slowing down of the spin dynamics is witnessed, which may signal a reconstruction of spinon Fermi surface. Nonetheless, the compound remains in a fluctuating spin liquid state down to the lowest temperature of the present investigation.

  9. Spin Liquid State in the 3D Frustrated Antiferromagnet PbCuTe_{2}O_{6}: NMR and Muon Spin Relaxation Studies.

    Science.gov (United States)

    Khuntia, P; Bert, F; Mendels, P; Koteswararao, B; Mahajan, A V; Baenitz, M; Chou, F C; Baines, C; Amato, A; Furukawa, Y

    2016-03-11

    PbCuTe_{2}O_{6} is a rare example of a spin liquid candidate featuring a three-dimensional magnetic lattice. Strong geometric frustration arises from the dominant antiferromagnetic interaction that generates a hyperkagome network of Cu^{2+} ions although additional interactions enhance the magnetic lattice connectivity. Through a combination of magnetization measurements and local probe investigations by NMR and muon spin relaxation down to 20 mK, we provide robust evidence for the absence of magnetic freezing in the ground state. The local spin susceptibility probed by the NMR shift hardly deviates from the macroscopic one down to 1 K pointing to a homogeneous magnetic system with a low defect concentration. The saturation of the NMR shift and the sublinear power law temperature (T) evolution of the 1/T_{1} NMR relaxation rate at low T point to a nonsinglet ground state favoring a gapless fermionic description of the magnetic excitations. Below 1 K a pronounced slowing down of the spin dynamics is witnessed, which may signal a reconstruction of spinon Fermi surface. Nonetheless, the compound remains in a fluctuating spin liquid state down to the lowest temperature of the present investigation. PMID:27015508

  10. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    International Nuclear Information System (INIS)

    We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation in the DALTON program, at the density functional theory level with the B3LYP functional employing also the Dalton program and at the level of coupled cluster singles and doubles (CCSD) theory employing the implementation in the CFOUR program. Specialized coupling constant basis sets, aug-cc-pVTZ-J, have been employed in the calculations. We find that on average the SOPPA results for both the equilibrium geometry values and the zero-point vibrational corrections are in better agreement with the CCSD results than the corresponding B3LYP results. Furthermore we observed that the vibrational corrections are in the order of 5 Hz for the one-bond carbon-hydrogen couplings and about 1 Hz or smaller for the other couplings apart from the one-bond carbon-carbon coupling (11 Hz) and the two-bond carbon-hydrogen coupling (4 Hz) in ethyne. However, not for all couplings lead the inclusion of zero-point vibrational corrections to better agreement with experiment

  11. Angle dependence of signal intensity of a bovine tendon at spin echo sequence

    International Nuclear Information System (INIS)

    It has been reported that the signal intensity of dense collagen fibers markedly increases in some tissues on MRI, when collagen fibers are oriented at about 55deg against the static magnetic field. This angle is sometimes called the magic angle. The magic angle phenomenon is caused by magnetic dipolar-dipolar interaction between water protons. As this phenomenon has been reported to be related to the T2 relaxation rate only, the signal intensity may be influenced by the T2 relaxation rate at the spin echo (SE) sequence if other parameters are fixed. Information regarding the increasing ratio of signal intensity depending on the angle may be clinically important. A bovine tendon was rotated horizontally in a static magnetic field and images were obtained with SE or fast spin echo (FSE) sequences as follows: (a) SE (TR/TE=2000/15, 30, 45, 60), (b) SE (TR/TE=300, 500, 700/14), (c) FSE (TR/TE=3000/15, 105 eff., echo train length=14). By comparing the theoretical curves and data, it was confirmed that the signal intensity was related to the second power of the local magnetic field strength. The increasing ratio of signal intensity of the bovine tendon at 55deg (magic angle) compared with 0deg was about 3 times (TE=30). The most influential TE was about 20-40 msec. The increasing ratio of signal intensity did not depend on TR change or the FSE technique. (author)

  12. NMR investigations of surfaces and interfaces using spin-polarized xenon

    Energy Technology Data Exchange (ETDEWEB)

    Gaede, H C [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1995-07-01

    {sup 129}Xe NMR is potentially useful for the investigation of material surfaces, but has been limited to high surface area samples in which sufficient xenon can be loaded to achieve acceptable signal to noise ratios. In Chapter 2 conventional {sup 129}Xe NMR is used to study a high surface area polymer, a catalyst, and a confined liquid crystal to determine the topology of these systems. Further information about the spatial proximity of different sites of the catalyst and liquid crystal systems is determined through two dimensional exchange NMR in Chapter 3. Lower surface area systems may be investigated with spin-polarized xenon, which may be achieved through optical pumping and spin exchange. Optically polarized xenon can be up to 10{sup 5} times more sensitive than thermally polarized xenon. In Chapter 4 highly polarized xenon is used to examine the surface of poly(acrylonitrile) and the formation of xenon clathrate hydrates. An attractive use of polarized xenon is as a magnetization source in cross polarization experiments. Cross polarization from adsorbed polarized xenon may allow detection of surface nuclei with drastic enhancements. A non-selective low field thermal mixing technique is used to enhance the {sup 13}C signal of CO{sub 2} of xenon occluded in solid CO{sub 2} by a factor of 200. High-field cross polarization from xenon to proton on the surface of high surface area polymers has enabled signal enhancements of {approximately}1,000. These studies, together with investigations of the efficiency of the cross polarization process from polarized xenon, are discussed in Chapter 5. Another use of polarized xenon is as an imaging contrast agent in systems that are not compatible with traditional contrast agents. The resolution attainable with this method is determined through images of structured phantoms in Chapter 6.

  13. NMR investigations of surfaces and interfaces using spin-polarized xenon

    International Nuclear Information System (INIS)

    129Xe NMR is potentially useful for the investigation of material surfaces, but has been limited to high surface area samples in which sufficient xenon can be loaded to achieve acceptable signal to noise ratios. In Chapter 2 conventional 129Xe NMR is used to study a high surface area polymer, a catalyst, and a confined liquid crystal to determine the topology of these systems. Further information about the spatial proximity of different sites of the catalyst and liquid crystal systems is determined through two dimensional exchange NMR in Chapter 3. Lower surface area systems may be investigated with spin-polarized xenon, which may be achieved through optical pumping and spin exchange. Optically polarized xenon can be up to 105 times more sensitive than thermally polarized xenon. In Chapter 4 highly polarized xenon is used to examine the surface of poly(acrylonitrile) and the formation of xenon clathrate hydrates. An attractive use of polarized xenon is as a magnetization source in cross polarization experiments. Cross polarization from adsorbed polarized xenon may allow detection of surface nuclei with drastic enhancements. A non-selective low field thermal mixing technique is used to enhance the 13C signal of CO2 of xenon occluded in solid CO2 by a factor of 200. High-field cross polarization from xenon to proton on the surface of high surface area polymers has enabled signal enhancements of ∼1,000. These studies, together with investigations of the efficiency of the cross polarization process from polarized xenon, are discussed in Chapter 5. Another use of polarized xenon is as an imaging contrast agent in systems that are not compatible with traditional contrast agents. The resolution attainable with this method is determined through images of structured phantoms in Chapter 6

  14. NMR spectroscopy of organic compounds of selenium and tellurium. Communication 8. Constants of spin-spin interaction of 125Te-1o3C in nmr spectra of unsaturated organtellurides

    International Nuclear Information System (INIS)

    On the basis of 13C NMR spectra of a series of unsaturated and aromatic tellurium compounds the constants of spin-spin interaction (SSIC) [sup(1.2)J(Te, C)] are measured. A reliable linear relation between 1J(Te, C) and s-character of a carbon orbitale forming bond with tellurium is found. Correlation of straight SSIC of carbon with selenium and tellurium in isological compounds is established

  15. Effects of Phase Cycling on Quantum Coherence Pathways in Satellite Transition Magic Angle Spinning Experiments

    OpenAIRE

    Malavé, Peter

    2014-01-01

    Multiple quantum experiments are used to resolve broad peaks in nuclear magnetic resonance spectra of quadrupolar nuclei. In this work, we study phase cycling of radio frequency pulses in a single quantum satellite transition magic angle spinning experiment. The particular pulse sequence is a shifted echo sequence where phases of the pulses are varied in accordance with coherence selection rules. Experiments were performed on a $^{17}$O enriched sample of SiO$_2$. Results show that certain ph...

  16. Effects of Refocusing Flip Angle Modulation and View Ordering in 3D Fast Spin Echo

    OpenAIRE

    Busse, Reed F.; Brau, Anja C.S.; Vu, Anthony; Michelich, Charles R.; Bayram, Ersin; Kijowski, Richard; Reeder, Scott B; Howard A Rowley

    2008-01-01

    Recent advances have reduced scan time in three-dimensional fast spin echo (3D-FSE) imaging, including very long echo trains through refocusing flip angle (FA) modulation and 2D-accelerated parallel imaging. This work describes a method to modulate refocusing FAs that produces sharp point spread functions (PSFs) from very long echo trains while exercising direct control over minimum, center-k-space, and maximum FAs in order to accommodate the presence of flow and motion, SNR requirements, and...

  17. Multichannel spin polarimeter for energy- and angle-dispersive photoemission measurements

    International Nuclear Information System (INIS)

    Spin polarization measurements of free electrons remain challenging since their first realization by Mott. The relevant quantity of a spin polarimeter is its figure of merit, FoM=S2I/I0, with the asymmetry function S and the ratio between scattered and primary intensity I/I0. State-of-the-art devices are based on single-channel scattering (spin-orbit or exchange interaction) which is characterized by FoM ≅10-4. On the other hand, modern hemispherical analyzers feature an efficient multichannel detection of spin-integral intensity with more than 104 data points simultaneously. In comparison between spin-resolved and spin-integral electron spectroscopy we are thus faced with a difference in counting efficiency by 8 orders of magnitude. The present work concentrates on the development and investigation of a novel technique for increasing the efficiency in spin-resolved electron spectroscopy by multichannel detection. The spin detector was integrated in a μ-metal shielded UHV-chamber and mounted behind a conventional hemispherical analyzer. The electrostatic lens system's geometry was determined by electron-optical simulations. The basic concept is the k parallel -conserving elastic scattering of the (0,0)-beam on a W(100) scattering crystal under 45 impact angle. It could be demonstrated that app. 960 data points (15 energy and 64 angular points) could be displayed simultaneously on a delayline detector in an energy interval of ≅3 eV. This leads to a two-dimensional figure of merit of FoM2D=1.7. Compared to conventional spin detectors, the new type is thus characterized by a gain in efficiency of 4 orders of magnitude. The operational reliability of the new spin polarimeter could be proven by measurements with a Fe/MgO(100) and O p(1 x 1)/Fe(100)-sample, where results from the literature were reproduced with strongly decreased measuring time. Due to the high intensity it becomes possible, to investigate strongly reactive samples in a short time. This advantage

  18. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    International Nuclear Information System (INIS)

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission

  19. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), Sede di Perugia, c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, I-06123 Perugia (Italy); Montoncello, F.; Giovannini, L. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via G. Saragat 1, I-44122 Ferrara (Italy); Madami, M.; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Ding, J.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-06-29

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.

  20. Two-dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs.

    Science.gov (United States)

    Edén, Mattias

    2010-05-01

    Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t(2) domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t(1)) dimension. We employ experimental (23)Na and (27)Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl(2)O(5)), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations. PMID:20202872

  1. Low flip-angle spin-echo imaging of the liver

    International Nuclear Information System (INIS)

    Dependence on T1 contrast can be reduced by changing the excitation flip angle. Low flip-angle spin-echo imaging can reduce imaging time because repetition time (TR) is reduced. The authors assessed the efficacy of low flip-angle spin-echo images in phantoms and in the liver. MR phantoms made from polyvinyl alcohol gel to model the properties of the normal liver, hepatocellular carcinoma (HCC), and hemangioma were scanned with various flip angles of TR 2400 and 1200 msec. Measured signal intensities fitted well with theoretical values. The T1 contrast of signal intensity decreased as the flip angle was reduced, accompanied by a decrease in signal-to-noise ratio (S/N). Thirty patients with hepatic space-occupying lesions (23 with HCC, 3 with metastases and 4 with hemangioma) were studied by conventional SE (CSE) at 2400/60/2 (TR/TE/NEX[number of excitations])(10 min 46 sec imaging time) and low flip-angle SE (LFSE) at 1200/60/30deg/2 (TR/TE/FA/NEX)(5:20) and/or 1200/60/30deg/4 (10:18). The sensitivity of CSE in detecting lesions was 93%. It was 92% for LFSE with two NEX and 94% for LFSE with four NEX pulse sequences. The contrast-to-noise ratio (C/N) for images (HCC/liver, hemangioma/liver) obtained by LFSE with four NEX was significantly higher than for those obtained by CSE. Although the C/N (lesion/liver) for LFSE with two NEX sequences was lower than that of CSE for any type of lesion (3.0 vs 3.5 for HCC; 5.1 vs 6.3 for metastases; 8.3 vs 9.7 for hemangioma), the difference was not significant. Although reducing the flip angle from 90deg to 30deg with two NEX resulted in a decrease in S/N (10.7 to 8.9 for HCC; 15.3 to 11.9 for metastases; 20.0 to 18.1 for hemangioma; 7.4 to 6.3 for normal liver; 10.7 to 10.1 for spleen), the difference was not significant. For hepatic space-occupying lesions, low flip-angle spin-echo imaging is useful to obtain T2-weighted images in a shorter imaging time without sacrificing lesion detectability. (author)

  2. Glucose transport in human erythrocytes measured using 13C NMR spin transfer

    International Nuclear Information System (INIS)

    The authors present the results of a new NMR-based procedure for measuring the fast transmembrane exchange of D-[1-13C]glucose in human erythrocytes. The method relies on different rates of exchange between the α- and β-anomers of glucose inside and outside the cells; the rate outside the cells is greatly increased by the addition of mutarotase to the suspension. Theory is developed to describe nuclear-spin transfer in the present system and is used to analyse the data to yield estimates of transmembrane-exchange rate constants and their statistical uncertainties. For a total glucose concentration of 25.5 mmol/l at 400C the first order efflux rate constants for the α- and β-anomers were 1.20 ± 0.40 s-1 and 0.71 ± 0.30 s-1, respectively. 17 refs.; 4 figs

  3. Structural characterization of supramolecular assemblies by {sup 13}C spin dilution and 3D solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Habenstein, Birgit; Loquet, Antoine; Giller, Karin; Becker, Stefan; Lange, Adam, E-mail: adla@nmr.mpibpc.mpg.de [Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology (Germany)

    2013-01-15

    {sup 13}C spin diluted protein samples can be produced using [1-{sup 13}C] and [2-{sup 13}C]-glucose (Glc) carbon sources in the bacterial growth medium. The {sup 13}C spin dilution results in favorable {sup 13}C spectral resolution and polarization transfer behavior. We recently reported the combined use of [1-{sup 13}C]- and [2-{sup 13}C]-Glc labeling to facilitate the structural analysis of insoluble and non-crystalline biological systems by solid-state NMR (ssNMR), including sequential assignment, detection of long-range contacts and structure determination of macromolecular assemblies. In solution NMR the beneficial properties of sparsely labeled samples using [2-{sup 13}C]-glycerol ({sup 13}C labeled C{alpha} sites on a {sup 12}C diluted background) have recently been exploited to provide a bi-directional assignment method (Takeuchi et al. in J Biomol NMR 49(1):17-26, 2011 ). Inspired by this approach and our own recent results using [2-{sup 13}C]-Glc as carbon sources for the simplification of ssNMR spectra, we present a strategy for a bi-directional sequential assignment of solid-state NMR resonances and additionally the detection of long-range contacts using the combination of {sup 13}C spin dilution and 3D NMR spectroscopy. We illustrate our results with the sequential assignment and the collection of distance restraints on an insoluble and non-crystalline supramolecular assembly, the Salmonella typhimurium type III secretion system needle.

  4. Equivalence between Euler angle conventions for the description of tensorial interactions in liquid NMR: application to different software programs

    International Nuclear Information System (INIS)

    Long-range orientational restraints derived from alignment or rotational diffusion tensors have greatly contributed to the expansion of applications in biomolecular NMR. The orientation of the principal axis system of these tensors is usually described by the so-called Euler angles. However, no clear consensus has emerged concerning the convention of the associated orthogonal rotations. As a result, the different programs that derive or predict them have adopted different conventions, which make comparison between their results difficult. Moreover, the rotation schemes are seldom completely described. Here, we summarize the different conventions, determine which ones are adopted by commonly used software packages, and establish the formal equivalencies between the different calculated Euler angles

  5. Proton NMR study of spin dynamics in the magnetic organic chains M (hfac)3 NITEt (M =Eu3 +,Gd3 + )

    Science.gov (United States)

    Mariani, M.; Lascialfari, A.; Caneschi, A.; Ammannato, L.; Gatteschi, D.; Rettori, A.; Pini, M. G.; Cucci, C.; Borsa, F.

    2016-04-01

    In this work, we present a nuclear magnetic resonance (NMR) study of the spin dynamics in the rare-earth-based low-dimensional molecular magnetic chains Eu (hfac) 3NITEt and Gd (hfac) 3NITEt (in short, Eu-Et and Gd-Et). Although both samples are based on the same chemical building block, [(hfac) 3NITEt ] , their magnetic properties change dramatically when the Eu3 + ion, which is nonmagnetic at low temperatures, is substituted by the magnetic Gd3 + ion. The present proton NMR investigation shows that, down to the lowest investigated temperature (T =1.5 K for Gd-Et and T =3 K for Eu-Et), the Eu-Et chain behaves as a one-dimensional Heisenberg model with antiferromagnetic exchange coupling (J =-20 K) between s =1 /2 organic radicals, and has a T -independent exchange frequency (ωe=2.6 ×1012 rad/s). In the Gd-Et chain, in contrast, a competition arises between nearest-neighbor ferromagnetic coupling and next-nearest-neighbor antiferromagnetic coupling; moreover, two phase transitions have previously been found, in agreement with Villain's conjecture: a first transition, at T0=2.2 K, from a high temperature paramagnetic phase to a chiral spin liquid phase, and a second transition, at TN=1.9 K, to a three-dimensional helical spin solid phase. Contrary to the Eu-Et chain (whose three-dimensional ordering temperature is estimated to insurge at very low, TN≈0.3 K), critical spin dynamics effects have been measured in the Gd-Et chain on approaching TN=1.9 K: namely, a divergence of the proton nuclear spin-lattice relaxation rate 1 /T1 , which in turn produces a sudden wipe-out of the NMR signal in a very narrow (Δ T ˜0.04 K) temperature range above TN. Below TN, an inhomogeneous broadening of the NMR line indicates a complete spin freezing. At T0=2.2 K, instead, such critical effects are not observed because NMR measurements probe the two-spin correlation function, while the chiral spin liquid phase transition is associated with a divergence of the four-spin

  6. Spin-orbit angle of Kepler-13Ab from gravity-darkened transit light curves

    Science.gov (United States)

    Masuda, Kento

    2015-08-01

    A rotating star is fainter at its equator than its pole due to the reduction of the effective surface gravity, which is a phenomenon known as the gravity darkening. Analysis of the transit light curve deformed by this effect provides a unique opportunity to photometrically measure both components of the stellar obliquity ψ, the sky-projected spin-orbit angle λ and inclination of the stellar spin axis i*. We apply the method to Kepler-13A, a transiting hot Jupiter system found with the Kepler space telescope. Previously, Barnes et al. (2011) reported λ=24°± 4° and i* =45° ± 4° (assuming the host-star mass of 1.83M⊙) with the gravity-darkening method, while the Doppler tomography by Johnson et al. (2014) indicated λ = 58.6° ± 2.0°, in clear disagreement with the previous estimate. In this study, we find that the spin-orbit angle obtained from the gravity-darkening method is sensitive to the adopted limb-darkening profile of the host star. Indeed, the joint solution that satisfies the constraint λ = 58.6° ± 2.0° can be obtained if both of the two parameters in the quadratic limb-darkening law are fitted. The new solution indicates that the star is rather close to an equator-on configuration with i* = 81° ± 5° and ψ = 60° ± 2°, and the resulting stellar rotation period 24 ± 2 hr better agrees with the estimate by Szabo et al. (2012, 2014). We also report the temporal variation in the orbital inclination of Kepler-13Ab, d |cos iorb|/dt = (-7.0 ± 0.4) × 10-6 day-1, which further supports the spin-orbit precession scenario proposed by Szabo et al. (2012). By fitting the precession model to the time series of iorb, λ, and i⋆ obtained with the gravity-darkened model, we constrain the stellar quadrupole moment J2 = (6.1 ± 0.3) × 10-5 for our joint solution, which is several times smaller than J2 = (1.66 ± 0.08) × 10-4 obtained for the same solution as found by Barnes et al. (2011). The difference in the spin-orbit angle evolutions

  7. NMRbot: Python scripts enable high-throughput data collection on current Bruker BioSpin NMR spectrometers.

    Science.gov (United States)

    Clos, Lawrence J; Jofre, M Fransisca; Ellinger, James J; Westler, William M; Markley, John L

    2013-06-01

    To facilitate the high-throughput acquisition of nuclear magnetic resonance (NMR) experimental data on large sets of samples, we have developed a simple and straightforward automated methodology that capitalizes on recent advances in Bruker BioSpin NMR spectrometer hardware and software. Given the daunting challenge for non-NMR experts to collect quality spectra, our goal was to increase user accessibility, provide customized functionality, and improve the consistency and reliability of resultant data. This methodology, NMRbot, is encoded in a set of scripts written in the Python programming language accessible within the Bruker BioSpin TopSpin™ software. NMRbot improves automated data acquisition and offers novel tools for use in optimizing experimental parameters on the fly. This automated procedure has been successfully implemented for investigations in metabolomics, small-molecule library profiling, and protein-ligand titrations on four Bruker BioSpin NMR spectrometers at the National Magnetic Resonance Facility at Madison. The investigators reported benefits from ease of setup, improved spectral quality, convenient customizations, and overall time savings. PMID:23678341

  8. Metabolomics by Proton High-Resolution Magic-Angle-Spinning Nuclear Magnetic Resonance of Tomato Plants Treated with Two Secondary Metabolites Isolated from Trichoderma.

    Science.gov (United States)

    Mazzei, Pierluigi; Vinale, Francesco; Woo, Sheridan Lois; Pascale, Alberto; Lorito, Matteo; Piccolo, Alessandro

    2016-05-11

    Trichoderma fungi release 6-pentyl-2H-pyran-2-one (1) and harzianic acid (2) secondary metabolites to improve plant growth and health protection. We isolated metabolites 1 and 2 from Trichoderma strains, whose different concentrations were used to treat seeds of Solanum lycopersicum. The metabolic profile in the resulting 15 day old tomato leaves was studied by high-resolution magic-angle-spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy directly on the whole samples without any preliminary extraction. Principal component analysis (PCA) of HRMAS NMR showed significantly enhanced acetylcholine and γ-aminobutyric acid (GABA) content accompanied by variable amount of amino acids in samples treated with both Trichoderma secondary metabolites. Seed germination rates, seedling fresh weight, and the metabolome of tomato leaves were also dependent upon doses of metabolites 1 and 2 treatments. HRMAS NMR spectroscopy was proven to represent a rapid and reliable technique for evaluating specific changes in the metabolome of plant leaves and calibrating the best concentration of bioactive compounds required to stimulate plant growth. PMID:27088924

  9. The influence of heme ruffling on spin densities in ferricytochromes c probed by heme core 13C NMR

    OpenAIRE

    Kleingardner, Jesse G.; Bowman, Sarah E. J.; Bren, Kara L.

    2013-01-01

    The heme in cytochromes c undergoes a conserved out-of-plane distortion known as ruffling. For cytochromes c from the bacteria Hydrogenobacter thermophilus and Pseudomonas aeruginosa, NMR and EPR spectra have been shown to be sensitive to the extent of heme ruffling and to provide insights into the effect of ruffling on electronic structure. Using mutants of each of these cytochromes that differ in the amount of heme ruffling, NMR characterization of the low-spin (S=1/2) ferric proteins has c...

  10. Wavelength-independent constant period spin-echo modulated small angle neutron scattering

    Science.gov (United States)

    Sales, Morten; Plomp, Jeroen; Habicht, Klaus; Tremsin, Anton; Bouwman, Wim; Strobl, Markus

    2016-06-01

    Spin-Echo Modulated Small Angle Neutron Scattering (SEMSANS) in Time-of-Flight (ToF) mode has been shown to be a promising technique for measuring (very) small angle neutron scattering (SANS) signals and performing quantitative Dark-Field Imaging (DFI), i.e., SANS with 2D spatial resolution. However, the wavelength dependence of the modulation period in the ToF spin-echo mode has so far limited the useful modulation periods to those resolvable with the limited spatial resolution of the detectors available. Here we present our results of an approach to keep the period of the induced modulation constant for the wavelengths utilised in ToF. This is achieved by ramping the magnetic fields in the coils responsible for creating the spatially modulated beam in synchronisation with the neutron pulse, thus keeping the modulation period constant for all wavelengths. Such a setup enables the decoupling of the spatial detector resolution from the resolution of the modulation period by the use of slits or gratings in analogy to the approach in grating-based neutron DFI.

  11. Fingerprints of entangled spin and orbital physics in itinerant ferromagnets via angle-resolved resonant photoemission

    Science.gov (United States)

    Da Pieve, F.

    2016-01-01

    A method for mapping the local spin and orbital nature of the ground state of a system via corresponding flip excitations is proposed based on angle-resolved resonant photoemission and related diffraction patterns, obtained here via an ab initio modified one-step theory of photoemission. The analysis is done on the paradigmatic weak itinerant ferromagnet bcc Fe, whose magnetism, a correlation phenomenon given by the coexistence of localized moments and itinerant electrons, and the observed non-Fermi-Liquid behavior at extreme conditions both remain unclear. The combined analysis of energy spectra and diffraction patterns offers a mapping of local pure spin-flip, entangled spin-flip-orbital-flip excitations and chiral transitions with vortexlike wave fronts of photoelectrons, depending on the valence orbital symmetry and the direction of the local magnetic moment. Such effects, mediated by the hole polarization, make resonant photoemission a promising tool to perform a full tomography of the local magnetic properties even in itinerant ferromagnets or macroscopically nonmagnetic systems.

  12. Advanced NMR characterization of zeolite catalysts

    Science.gov (United States)

    Welsh, L. B.

    1985-04-01

    The program discussed in this report is a two-year two-phase joint UOP-University of Illinois study of the application of improved high resolution solid state nuclear magnetic resonance (NMR) techniques to the characterization of zeolite catalysts. During the first phase of this program very pure, and in some cases isotopically enriched faujasites will be prepared and studied by magic angle sample spinning NMR (MASS NMR) and variable engine sample spinning NMR (VASS NMR) on 500 and 360 MHz (proton frequency) NMR spectrometers. The NMR techniques that will be emphasized are the measurement and analysis of the (17)O NMR properties, (27)Al NMR intensity quantitation, and (27)Al and (29)Si NMR relaxation rates. During the second phase of this program these NMR techniques will be used to study the effects of impurity concentration, dealumination treatments and cation exchange on the NMR properties of faujasites. The initial emphasis of this program during Phase I is on the preparation and measurement of the NMR properties of (17)O enriched Na-Y faujasties.

  13. Spin liquid state in the disordered triangular lattice Sc2Ga2CuO7 revealed by NMR

    Science.gov (United States)

    Khuntia, P.; Kumar, R.; Mahajan, A. V.; Baenitz, M.; Furukawa, Y.

    2016-04-01

    We present microscopic magnetic properties of a two-dimensional triangular lattice Sc2Ga2CuO7 , consisting of single and double triangular Cu planes. An antiferromagnetic (AFM) exchange interaction J /kB≈35 K between Cu2 + (S =1 /2 ) spins in the triangular biplane is obtained from the analysis of intrinsic magnetic susceptibility data. The intrinsic magnetic susceptibility, extracted from 71Ga NMR shift data, displays the presence of AFM short range spin correlations and remains finite down to 50 mK, suggesting a nonsinglet ground state. The nuclear spin-lattice relaxation rate (1 /T1 ) reveals a slowing down of Cu2 + spin fluctuations with decreasing T down to 100 mK. Magnetic specific heat (Cm) and 1 /T1 exhibit power law behavior at low temperatures, implying the gapless nature of the spin excitation spectrum. The absence of long range magnetic ordering down to ˜J /700 , nonzero spin susceptibility at low T , and the power law behavior of Cm and 1 /T1 suggest a gapless quantum spin liquid (QSL) state. Our results demonstrate that persistent spin dynamics induced by frustration maintain a quantum-disordered state at T →0 in this triangular lattice antiferromagnet. This suggests that the low energy modes are dominated by spinon excitations in the QSL state due to randomness engendered by disorder and frustration.

  14. Resonances in field-cycling NMR on molecular crystals. (reversible) Spin dynamics or (irreversible) relaxation?; Resonanzen in Field-Cycling-NMR an Molekuelkristallen. (reversible) Spindynamik oder (irreversible) Relaxation?

    Energy Technology Data Exchange (ETDEWEB)

    Tacke, Christian

    2015-07-01

    Multi spin systems with spin 1/2 nuclei and dipolar coupled quadrupolar nuclei can show so called ''quadrupolar dips''. There are two main reasons for this behavior: polarization transfer and relaxation. They look quite alike and without additional research cannot be differentiated easily in most cases. These two phenomena have quite different physical and theoretical backgrounds. For no or very slow dynamics, polarization transfer will take place, which is energy conserving inside the spin system. This effect can entirely be described using quantum mechanics on the spin system. Detailed knowledge about the crystallography is needed, because this affects the relevant hamiltonians directly. For systems with fast enough dynamics, relaxation takes over, and the energy flows from the spin system to the lattice; thus a more complex theoretical description is needed. This description has to include a dynamic model, usually in the form of a spectral density function. Both models should include detailed modelling of the complete spin system. A software library was developed to be able to model complex spin systems. It allows to simulate polarization transfer or relaxation effects. NMR measurements were performed on the protonic conductor K{sub 3}H(SO{sub 4}){sub 2}. A single crystal shows sharp quadrupolar dips at room temperature. Dynamics could be excluded using relaxation measurements and literature values. Thus, a polarization transfer analysis was used to describe those dips with good agreement. As a second system, imidazolium based molecular crystals were analyzed. The quadrupolar dips were expected to be caused by polarization transfer; this was carefully analyzed and found not to be true. A relaxation based analysis shows good agreement with the measured data in the high temperature area. It leverages a two step spectral density function, which indicates two distinct dynamic processes happening in this system.

  15. 1H high resolution magic angle spinning NMR spectroscopy of rabbit cornea

    Czech Academy of Sciences Publication Activity Database

    Saether, O.; Risa, O.; Čejková, Jitka; Krane, J.; Midelfart, A.

    Prague: organizing committee, 2002. s. 38. [International Symposium on Cornea and Contact Lenses.. 07.12.2002-10.12.2002, Prague] Institutional research plan: CEZ:AV0Z5039906 Keywords : cornea Subject RIV: FF - HEENT, Dentistry

  16. Spin- and angle-resolved photoemission on the topological Kondo insulator candidate: SmB6

    Science.gov (United States)

    Xu, Nan; Ding, Hong; Shi, Ming

    2016-09-01

    Topological Kondo insulators are a new class of topological insulators in which metallic surface states protected by topological invariants reside in the bulk band gap at low temperatures. Unlike other 3D topological insulators, a truly insulating bulk state, which is critical for potential applications in next-generation electronic devices, is guaranteed by many-body effects in the topological Kondo insulator. Furthermore, the system has strong electron correlations that can serve as a testbed for interacting topological theories. This topical review focuses on recent advances in the study of SmB6, the most promising candidate for a topological Kondo insulator, from the perspective of spin- and angle-resolved photoemission spectroscopy with highlights of some important transport results.

  17. Spin- and angle-resolved photoemission on the topological Kondo insulator candidate: SmB6.

    Science.gov (United States)

    Xu, Nan; Ding, Hong; Shi, Ming

    2016-09-14

    Topological Kondo insulators are a new class of topological insulators in which metallic surface states protected by topological invariants reside in the bulk band gap at low temperatures. Unlike other 3D topological insulators, a truly insulating bulk state, which is critical for potential applications in next-generation electronic devices, is guaranteed by many-body effects in the topological Kondo insulator. Furthermore, the system has strong electron correlations that can serve as a testbed for interacting topological theories. This topical review focuses on recent advances in the study of SmB6, the most promising candidate for a topological Kondo insulator, from the perspective of spin- and angle-resolved photoemission spectroscopy with highlights of some important transport results. PMID:27391865

  18. Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy

    International Nuclear Information System (INIS)

    Long-range structural information derived from paramagnetic relaxation enhancement observed in the presence of a paramagnetic nitroxide radical is highly useful for structural characterization of globular, modular and intrinsically disordered proteins, as well as protein–protein and protein-DNA complexes. Here we characterized the conformation of a spin-label attached to the homodimeric protein CylR2 using a combination of X-ray crystallography, electron paramagnetic resonance (EPR) and NMR spectroscopy. Close agreement was found between the conformation of the spin label observed in the crystal structure with interspin distances measured by EPR and signal broadening in NMR spectra, suggesting that the conformation seen in the crystal structure is also preferred in solution. In contrast, conformations of the spin label observed in crystal structures of T4 lysozyme are not in agreement with the paramagnetic relaxation enhancement observed for spin-labeled CylR2 in solution. Our data demonstrate that accurate positioning of the paramagnetic center is essential for high-resolution structure determination.

  19. Spin waves in full-polarized state of Dzyaloshinskii-Moriya helimagnets: Small-angle neutron scattering study

    Science.gov (United States)

    Grigoriev, S. V.; Sukhanov, A. S.; Altynbaev, E. V.; Siegfried, S.-A.; Heinemann, A.; Kizhe, P.; Maleyev, S. V.

    2015-12-01

    We develop the technique to study the spin-wave dynamics of the full-polarized state of the Dzyaloshinskii-Moriya helimagnets by polarized small-angle neutron scattering. We have experimentally proven that the spin-waves dispersion in this state has the anisotropic form. We show that the neutron scattering image displays a circle with a certain radius which is centered at the momentum transfer corresponding to the helix wave vector in helimagnetic phase ks, which is oriented along the applied magnetic field H . The radius of this circle is directly related to the spin-wave stiffness of this system. This scattering depends on the neutron polarization showing the one-handed nature of the spin waves in Dzyaloshinskii-Moriya helimagnets in the full-polarized phase. We show that the spin-wave stiffness A for MnSi helimagnet decreased twice as the temperature increases from zero to the critical temperature Tc.

  20. Spin-polarized surface bands of a three-dimensional topological insulator studied by high-resolution spin- and angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    The spin-polarized surface band structure of the three-dimensional (3D) quantum spin Hall phase of Bi1-xSbx (x=0.12-0.13) was studied by spin- and angle-resolved photoemission spectroscopy (SARPES) using a high-yield spin polarimeter equipped with a high-resolution electron spectrometer. The spin-integrated spectra were also measured and compared to those of Bi1-xSbx with x=0.04. Band dispersions of the edge states were fully elucidated between the two time-reversal-invariant points, Γ-bar and M-bar, of the (111) surface Brillouin zone. The observed spin-polarized band dispersions at x=0.12-0.13 indicate an odd number of the band crossing at the Fermi energy, giving unambiguous evidence that this system is a 3D strong topological insulator, and determine the 'mirror chirality' to be -1, which excludes the existence of a Dirac point in the middle of the Γ-bar-M-bar line. The present research demonstrates that the SARPES measurement with energy resolution ≤50 meV is one of the critical techniques for complementing the topological band theory for spins and spin currents.

  1. Strong spin-orbit coupling and Zeeman spin splitting in angle dependent magnetoresistance of Bi{sub 2}Te{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Rik, E-mail: rikdey@utexas.edu; Pramanik, Tanmoy; Roy, Anupam; Rai, Amritesh; Guchhait, Samaresh; Sonde, Sushant; Movva, Hema C. P.; Register, Leonard F.; Banerjee, Sanjay K. [Microelectronics Research Center, University of Texas at Austin, Austin, Texas 78758 (United States); Colombo, Luigi [Texas Instruments, Dallas, Texas 75243 (United States)

    2014-06-02

    We have studied angle dependent magnetoresistance of Bi{sub 2}Te{sub 3} thin film with field up to 9 T over 2–20 K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance, we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.

  2. Study of local environment and cation distribution in Al(III) oxides by 27Al-NMR with sample rotation at a ''magic'' angle

    International Nuclear Information System (INIS)

    The possible use of the 27Al-NMR method with sample rotation at a ''magic'' angle to study the local environment and cation distribution of Al(III) ions in the oxide lattice are exemplified by γ-, eta-, chi-, α-Al2O3 and commercial A-1 Al(III) oxide. (author)

  3. Post-mortem changes in porcine M. longissimus studied by solid-state 13C cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Bertram, Hanne Christine; Jakobsen, Hans Jørgen; Andersen, Henrik Jørgen; Karlsson, Anders Hans; Engelsen, Søren Balling

    2003-03-26

    Solid-state (13)C cross-polarization (CP) magic-angle spinning (MAS) nuclear magnetic resonance (NMR) experiments are carried out for the first time on rapidly frozen muscle biopsies taken in M. longissimus in vivo and at 1 min, 45 min, and 24 h post-mortem from three pigs. Two of the pigs were CO(2)-stunned (control animals), and one was pre-slaughter-stressed (treadmill exercise) followed by electrical stunning to induce difference in metabolism post-mortem. (13)C resonance signals from saturated and unsaturated carbons in fatty acids, carboxylic carbons, and carbons in lactate and glycogen are identified in the solid-state NMR spectra. The (13)C CP MAS spectra obtained for post-mortem samples of the stressed, electrically stunned pig differ significantly from the post-mortem control samples, as the intensity of a resonance line appearing at 30 ppm, assigned to carbons of the methylene chains, is reduced for the stressed pig. This spectral difference is probably due to changes in lipid mobility and indicates altered membrane properties in the muscle of the stressed/electrically stunned animal when compared with the control animals already 1 min post-mortem. In addition, the post-mortem period changes in glycogen carbons can be estimated from the (13)C CP MAS spectra, yielding a correlation of r = 0.74 to subsequent biochemical determination of the glycogen content. PMID:12643674

  4. Evidence for the opening of a spin gap in the Ca-doped S=1/2 spin chain compound SrCuO2 probed by NMR

    International Nuclear Information System (INIS)

    We present 63Cu Nuclear Magnetic Resonance (NMR) measurements on undoped SrCuO2 and Ca-doped Sr0.9Ca0.1CuO2 single crystals. The crystal structure contains one dimensional CuO2 double chains that are magnetically decoupled due to frustration. For SrCuO2 the spin lattice relaxation rate T1-1 is temperature independent as it is expected for a one dimensional S=1/2 Heisenberg spin chain. Doping with nonmagnetic, isovalent Ca takes place on the Sr sites outside the spin chains, and should not affect the magnetic properties of the compound. It is therefore very surprising that we do observe a decrease of T1-1 in the Ca-doped sample for temperatures below 80K that clearly evidences the opening of a gap in the spin excitation spectrum. Density Matrix Renormalization Group (DMRG) calculations are presented to discuss the origin of this spin gap.

  5. NMR Artifacts Caused by Decoupling of Multiple-Spin Coherences: Application to Slap Experiment

    Czech Academy of Sciences Publication Activity Database

    Blechta, Vratislav; Schraml, Jan

    Brno : Stuare, 2014 - (Novotný, J.; Foroutan -Nejad, C.; Marek, R.), C-15 ISBN 978-80-86441-45-0. [NMR Valtice /29./. Valtice (CZ), 27.04.2014-30.04.2014] Institutional support: RVO:67985858 Keywords : slap experiment * nmr spectrometer * phase cycles Subject RIV: CF - Physical ; Theoretical Chemistry

  6. NMR spin-lattice relaxation time T(1) of thin films obtained by magnetic resonance force microscopy.

    Science.gov (United States)

    Saun, Seung-Bo; Won, Soonho; Kwon, Sungmin; Lee, Soonchil

    2015-05-01

    We obtained the NMR spectrum and the spin-lattice relaxation time (T1) for thin film samples by magnetic resonance force microscopy (MRFM). The samples were CaF2 thin films which were 50 nm and 150 nm thick. T1 was measured at 18 K using a cyclic adiabatic inversion method at a fixed frequency. A comparison of the bulk and two thin films showed that T1 becomes shorter as the film thickness decreases. To make the comparison as accurate as possible, all three samples were loaded onto different beams of a multi-cantilever array and measured in the same experimental environment. PMID:25828244

  7. NMR spin-lattice relaxation time T1 of thin films obtained by magnetic resonance force microscopy

    Science.gov (United States)

    Saun, Seung-Bo; Won, Soonho; Kwon, Sungmin; Lee, Soonchil

    2015-05-01

    We obtained the NMR spectrum and the spin-lattice relaxation time (T1) for thin film samples by magnetic resonance force microscopy (MRFM). The samples were CaF2 thin films which were 50 nm and 150 nm thick. T1 was measured at 18 K using a cyclic adiabatic inversion method at a fixed frequency. A comparison of the bulk and two thin films showed that T1 becomes shorter as the film thickness decreases. To make the comparison as accurate as possible, all three samples were loaded onto different beams of a multi-cantilever array and measured in the same experimental environment.

  8. Nearly critical spin and charge fluctuations in KFe2As2 observed by high-pressure NMR

    Science.gov (United States)

    Wang, P. S.; Zhou, P.; Dai, J.; Zhang, J.; Ding, X. X.; Lin, H.; Wen, H. H.; Normand, B.; Yu, R.; Yu, Weiqiang

    2016-02-01

    We report a high-pressure 75As NMR study on the heavily hole-doped iron pnictide superconductor KFe2As2 (Tc≈3.8 K). The low-energy spin fluctuations are found to decrease with applied pressure up to 2 GPa, but then to increase again, changing in lockstep with the pressure-induced evolution of Tc. Their diverging nature suggests close proximity to a magnetic quantum critical point at a negative pressure of P ≃-0.6 GPa. Above 2.2 GPa, the 75As satellite spectra split below 40 K, indicating a breaking of As site symmetry and an incipient charge order. These pressure-controlled phenomena demonstrate the presence of nearly critical fluctuations in both spin and charge, providing essential input for the origin of superconductivity.

  9. HYPER: A hierarchical algorithm for automatic determination of protein dihedral-angle constraints and stereospecific CβH2 resonance assignments from NMR data

    International Nuclear Information System (INIS)

    A new computer program, HYPER, has been developed for automated analysis of protein dihedral angle values and CβH2 stereospecific assignments from NMR data. HYPER uses a hierarchical grid-search algorithm to determine allowed values of φ, Ψ, and χ1 dihedral angles and CβH2 stereospecific assignments based on a set of NMR-derived distance and/or scalar-coupling constraints. Dihedral-angle constraints are valuable for restricting conformational space and improving convergence in three-dimensional structure calculations. HYPER computes the set of φ, Ψ, and χ1dihedral angles and CβH2 stereospecific assignments that are consistent with up to nine intraresidue and sequential distance bounds, two pairs of relative distance bounds, thirteen homo- and heteronuclear scalar coupling bounds, and two pairs of relative scalar coupling constant bounds. The program is designed to be very flexible, and provides for simple user modification of Karplus equations and standard polypeptide geometries, allowing it to accommodate recent and future improved calibrations of Karplus curves. The C code has been optimized to execute rapidly (0.3-1.5 CPU-sec residue-1 using a 5 deg. grid) on Silicon Graphics R8000, R10000 and Intel Pentium CPUs, making it useful for interactive evaluation of inconsistent experimental constraints. The HYPER program has been tested for internal consistency and reliability using both simulated and real protein NMR data sets

  10. First solid-state NMR analysis of uniformly ¹³C-enriched major light-harvesting complexes from Chlamydomonas reinhardtii and identification of protein and cofactor spin clusters.

    Science.gov (United States)

    Pandit, Anjali; Morosinotto, Tomas; Reus, Michael; Holzwarth, Alfred R; Bassi, Roberto; de Groot, Huub J M

    2011-04-01

    The light-harvesting complex II (LHCII) is the main component of the antenna system of plants and green algae and plays a major role in the capture of sun light for photosynthesis. The LHCII complexes have also been proposed to play a key role in the optimization of photosynthetic efficiency through the process of state 1-state 2 transitions and are involved in down-regulation of photosynthesis under excess light by energy dissipation through non-photochemical quenching (NPQ). We present here the first solid-state magic-angle spinning (MAS) NMR data of the major light-harvesting complex (LHCII) of Chlamydomonas reinhardtii, a eukaryotic green alga. We are able to identify nuclear spin clusters of the protein and of its associated chlorophyll pigments in ¹³C-¹³C dipolar homonuclear correlation spectra on a uniformly ¹³C-labeled sample. In particular, we were able to resolve several chlorophyll 13¹ carbon resonances that are sensitive to hydrogen bonding to the 13¹-keto carbonyl group. The data show that ¹³C NMR signals of the pigments and protein sites are well resolved, thus paving the way to study possible structural reorganization processes involved in light-harvesting regulation through MAS solid-state NMR. PMID:21276419

  11. Proton NMR investigation of heme and surrounding proton in low-spin cyanide-ligated bacterial hemoglobin from Vitreoscilla

    Institute of Scientific and Technical Information of China (English)

    夏佑林; 吴季辉; 光寿红; 张海阳; 梁山; 施蕴渝

    2000-01-01

    1H NMR spectra of low-spin cyanide-ligated bacterial hemoglobin from Vitreoscilla (VtHb-CN) are reported. The assignments of the 1H NMR spectra of VtHb-CN have been made through MCOSY, NOESY, 1D TOE and SUPERWEFT experiments. Almost all resonance peaks of heme and ligated His85 are identified. The spin-lattice relaxation time T1’s and the variation relationships of chemical shifts of these peaks with temperature have been acquired, from which the distances between the measured protons and Fe3+, and the diamagnetic chemical shifts have been acquired, respectively. The ionization constants of pKa’s of ligated His85 are determined through pH titration of chemical shift, which is 4.95 for ligated His85 C2H proton. The lower pKa is attributed to the influence of the Fe3+ of carrying positive charge and the coordination of His85 and Fe3+ of heme.

  12. Study of the gel films of Acetobacter Xylinum cellulose and its modified samples by 1H NMR cryoporometry and small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Gel films of Acetobacter Xylinum cellulose and its modified samples have been investigated by 1H nuclear magnetic resonance (NMR) cryoporometry and small-angle X-ray scattering. The joint use of these two methods made it possible to characterize the sizes of aqueous pores in gel films and estimate the sizes of structural inhomogeneities before and after the sorption of polyvinylpyrrolidone and Se0 nanoparticles (stabilized by polyvinylpyrrolidone) into the films. According to small-angle X-ray scattering data, the sizes of inhomogeneities in a gel film change only slightly upon the sorption of polyvinylpyrrolidone and nanoparticles. The impregnated material is sorbed into water-filled cavities that are present in the gel film. 1H NMR cryoporometry allowed us to reveal the details of changes in the sizes of small aqueous pores during modifications.

  13. Mess: a small-angle high resolution neutron spin echo spectrometer installed on a neutron guide of the Orphee reactor

    International Nuclear Information System (INIS)

    A new small-angle, high resolution Neutron Spin Echo (NSE) spectrometer, MESS*, has been built using both novel devices and new developments such as - a conceptually new velocity-selector, a polarizer which intercepts a large solid angle and operates in transmission geometry, an XY-position sensitive detector, and the Maximum Entropy Method of Data Analysis. A gain of 4 in the spectral resolution as well as a gain of 2 in the spatial one is expected over the IN11 spectrometer at the Institut Laue Langevin. First tests have been successfully carried out and NSE echoes were obtained

  14. Properties of mixtures of cholesterol with phosphatidylcholine or with phosphatidylserine studied by (13)C magic angle spinning nuclear magnetic resonance.

    OpenAIRE

    Epand, Richard M.; Bain, Alex D; Sayer, Brian G; Bach, Diana; Wachtel, Ellen

    2002-01-01

    The behavior of cholesterol is different in mixtures with phosphatidylcholine as compared with phosphatidylserine. In (13)C cross polarization/magic angle spinning nuclear magnetic resonance spectra, resonance peaks of the vinylic carbons of cholesterol are a doublet in samples containing 0.3 or 0.5 mol fraction cholesterol with 1-palmitoyl-2-oleoyl phosphatidylserine (POPS) or in cholesterol monohydrate crystals, but a singlet with mixtures of cholesterol and 1-palmitoyl-2-oleoyl phosphatidy...

  15. Multichannel spin polarimeter for energy- and angle-dispersive photoemission measurements; Vielkanal-Spinpolarimeter fuer energie- und winkeldispersive Photoemissionsmessungen

    Energy Technology Data Exchange (ETDEWEB)

    Kolbe, Michaela

    2011-09-09

    Spin polarization measurements of free electrons remain challenging since their first realization by Mott. The relevant quantity of a spin polarimeter is its figure of merit, FoM=S{sup 2}I/I{sub 0}, with the asymmetry function S and the ratio between scattered and primary intensity I/I{sub 0}. State-of-the-art devices are based on single-channel scattering (spin-orbit or exchange interaction) which is characterized by FoM {approx_equal}10{sup -4}. On the other hand, modern hemispherical analyzers feature an efficient multichannel detection of spin-integral intensity with more than 10{sup 4} data points simultaneously. In comparison between spin-resolved and spin-integral electron spectroscopy we are thus faced with a difference in counting efficiency by 8 orders of magnitude. The present work concentrates on the development and investigation of a novel technique for increasing the efficiency in spin-resolved electron spectroscopy by multichannel detection. The spin detector was integrated in a {mu}-metal shielded UHV-chamber and mounted behind a conventional hemispherical analyzer. The electrostatic lens system's geometry was determined by electron-optical simulations. The basic concept is the k {sub parallel} -conserving elastic scattering of the (0,0)-beam on a W(100) scattering crystal under 45 impact angle. It could be demonstrated that app. 960 data points (15 energy and 64 angular points) could be displayed simultaneously on a delayline detector in an energy interval of {approx_equal}3 eV. This leads to a two-dimensional figure of merit of FoM{sub 2D}=1.7. Compared to conventional spin detectors, the new type is thus characterized by a gain in efficiency of 4 orders of magnitude. The operational reliability of the new spin polarimeter could be proven by measurements with a Fe/MgO(100) and O p(1 x 1)/Fe(100)-sample, where results from the literature were reproduced with strongly decreased measuring time. Due to the high intensity it becomes possible, to

  16. Coherent transfer of nuclear spin polarization in field-cycling NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L., E-mail: ivanov@tomo.nsc.ru [International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova 2, Novosibirsk 630090 (Russian Federation); Vieth, Hans-Martin [Institut für Experimental Physik, Freie Universität Berlin, Arnimallee 14, Berlin 14195 (Germany)

    2013-12-28

    Coherent polarization transfer effects in a coupled spin network have been studied over a wide field range. The transfer mechanism is based on exciting zero-quantum coherences between the nuclear spin states by means of non-adiabatic field jump from high to low magnetic field. Subsequent evolution of these coherences enables conversion of spin order in the system, which is monitored after field jump back to high field. Such processes are most efficient when the spin system passes through an avoided level crossing during the field variation. The polarization transfer effects have been demonstrated for N-acetyl histidine, which has five scalar coupled protons; the initial spin order has been prepared by applying RF-pulses at high magnetic field. The observed oscillatory transfer kinetics is taken as a clear indication of a coherent mechanism; level crossing effects have also been demonstrated. The experimental data are in very good agreement with the theoretical model of coherent polarization transfer. The method suggested is also valid for other types of initial polarization in the spin system, most notably, for spin hyperpolarization.

  17. Spectral editing of weakly coupled spins using variable flip angles in PRESS constant echo time difference spectroscopy: Application to GABA

    Science.gov (United States)

    Snyder, Jeff; Hanstock, Chris C.; Wilman, Alan H.

    2009-10-01

    A general in vivo magnetic resonance spectroscopy editing technique is presented to detect weakly coupled spin systems through subtraction, while preserving singlets through addition, and is applied to the specific brain metabolite γ-aminobutyric acid (GABA) at 4.7 T. The new method uses double spin echo localization (PRESS) and is based on a constant echo time difference spectroscopy approach employing subtraction of two asymmetric echo timings, which is normally only applicable to strongly coupled spin systems. By utilizing flip angle reduction of one of the two refocusing pulses in the PRESS sequence, we demonstrate that this difference method may be extended to weakly coupled systems, thereby providing a very simple yet effective editing process. The difference method is first illustrated analytically using a simple two spin weakly coupled spin system. The technique was then demonstrated for the 3.01 ppm resonance of GABA, which is obscured by the strong singlet peak of creatine in vivo. Full numerical simulations, as well as phantom and in vivo experiments were performed. The difference method used two asymmetric PRESS timings with a constant total echo time of 131 ms and a reduced 120° final pulse, providing 25% GABA yield upon subtraction compared to two short echo standard PRESS experiments. Phantom and in vivo results from human brain demonstrate efficacy of this method in agreement with numerical simulations.

  18. High-resolution three-dimensional spin- and angle-resolved photoelectron spectrometer using vacuum ultraviolet laser light

    Science.gov (United States)

    Yaji, Koichiro; Harasawa, Ayumi; Kuroda, Kenta; Toyohisa, Sogen; Nakayama, Mitsuhiro; Ishida, Yukiaki; Fukushima, Akiko; Watanabe, Shuntaro; Chen, Chuangtian; Komori, Fumio; Shin, Shik

    2016-05-01

    We describe a spin- and angle-resolved photoelectron spectroscopy (SARPES) apparatus with a vacuum-ultraviolet (VUV) laser (hν = 6.994 eV) developed at the Laser and Synchrotron Research Center at the Institute for Solid State Physics, The University of Tokyo. The spectrometer consists of a hemispherical photoelectron analyzer equipped with an electron deflector function and twin very-low-energy-electron-diffraction-type spin detectors, which allows us to analyze the spin vector of a photoelectron three-dimensionally with both high energy and angular resolutions. The combination of the high-performance spectrometer and the high-photon-flux VUV laser can achieve an energy resolution of 1.7 meV for SARPES. We demonstrate that the present laser-SARPES machine realizes a quick SARPES on the spin-split band structure of a Bi(111) film even with 7 meV energy and 0.7∘ angular resolutions along the entrance-slit direction. This laser-SARPES machine is applicable to the investigation of spin-dependent electronic states on an energy scale of a few meV.

  19. Indirect spin-spin coupling constants in CH4, SiH4 and GeH4 - Gas-phase NMR experiment and ab initio calculations

    International Nuclear Information System (INIS)

    New values of the indirect spin-spin coupling constants in CH4, SiH4 and GeH4, derived from experiment and ab initio calculations, are reported. The new experimental values of 1J(CH), 1J(SiH) and 1J(GeH) are obtained from gas-phase NMR spectra. The dependence of the measured one-bond coupling constants on the density is analysed and the results are extrapolated to zero-density point to eliminate the effects due to intermolecular forces. In the calculation of the coupling constants, at the nonrelativistic level coupled cluster singles and doubles (CCSD) perturbation theory is used and the basis set convergence of the results is discussed. The relativistic corrections are estimated from Dirac-Hartree-Fock (DHF) calculations. The final theoretical values are obtained adding available estimates of the vibrational and temperature corrections. The agreement of the calculated and experimental 1J(XH), X = C, Si, Ge, constants is very satisfying, the differences are approximately 1-3%

  20. NMR water-proton spin-lattice relaxation time of human red blood cells and red blood cell suspensions

    International Nuclear Information System (INIS)

    NMR water-proton spin-lattice relaxation times were studied as probes of water structure in human red blood cells and red blood cell suspensions. Normal saline had a relaxation time of about 3000 ms while packed red blood cells had a relaxation time of about 500 ms. The relaxation time of a red blood cell suspension at 50% hematocrit was about 750 ms showing that surface charges and polar groups of the red cell membrane effectively structure extracellular water. Incubation of red cells in hypotonic saline increases relaxation time whereas hypertonic saline decreases relaxation time. Relaxation times varied independently of mean corpuscular volume and mean corpuscular hemoglobin concentration in a sample population. Studies with lysates and resealed membrane ghosts show that hemoglobin is very effective in lowering water-proton relaxation time whereas resealed membrane ghosts in the absence of hemoglobin are less effective than intact red cells. 9 refs.; 3 figs.; 1 table

  1. Lectures on pulsed NMR

    International Nuclear Information System (INIS)

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs

  2. Lectures on pulsed NMR

    International Nuclear Information System (INIS)

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs

  3. Some experimental problems resulting from high speed magic angle spinning of samples

    Czech Academy of Sciences Publication Activity Database

    Brus, Jiří

    Brno: Central European NMR discussion groups, Masarykova univerzita, 2000. s. 38. ISBN 80-210-2309-0. [Spektroskopická konference /15./. 26.04.2000-28.04.2000, Valtice] R&D Projects: GA ČR GA203/98/P290 Subject RIV: CD - Macromolecular Chemistry

  4. Off-resonance rotating frame spin-lattice NMR relaxation studies of phosphorus metabolite rotational diffusion in bovine lens homogenates

    International Nuclear Information System (INIS)

    The rotational diffusion behavior of phosphorus metabolites present in calf lens cortical and nuclear homogenates was investigated by the NMR technique of 31P off-resonance rotating frame spin-lattice relaxation as a means of assessing the occurrence and extent of phosphorus metabolite-lens protein interactions. 31P NMR spectra of calf lens homogenates were obtained at 10 and 18 degree C at 7.05 T. Effective rotational correlation times (τ0,eff) for the major phosphorus metabolites present in cortical and nuclear bovine calf lens homogenates were derived from nonlinear least-squares analysis of R vs ωe data with the assumption of isotropic reorientational motion. Intramolecular dipole-dipole (1H-31P, 31P-31P), chemical shift anisotropy (CSA), and solvent (water) translational intermolecular dipole-dipole (1H-31P) relaxation contributions were assumed in the analyses. A fast-exchange model between free and bound forms, was employed in the analysis of the metabolite R vs ωe curves to yield the fraction of free (unbound) metabolite (Θfree). The results of this study establish the occurrence of significant temperature-dependent (above and below the cold cataract phase transition temperature) binding of ATP (cortex) and PME (nucleus) and pi (nucleus) in calf lens

  5. Observation of the vortex lattice melting by NMR spin-lattice relaxation in the mixed state

    International Nuclear Information System (INIS)

    For anisotropic layered superconductors the effect of moving vortices on the nuclear spin magnetization is calculated. Current is supposed to flow along layers, and applied magnetic field is tilted with respect to c-axis. In the solid phase the motion of the vortex lattice produces an alternating magnetic field perpendicular to the applied field which causes the decay of the spin-echo amplitude. This decay rate will display an array of peaks as a function of frequency. In the liquid phase this alternating field contribute to the longitudinal relaxation rate W1 which has a single peak

  6. Magnetic Resonance Microscopy Contribution to Interpret High-Resolution Magic Angle Spinning Metabolomic Data of Human Tumor Tissue

    Directory of Open Access Journals (Sweden)

    M. Carmen Martínez-Bisbal

    2011-01-01

    Full Text Available HRMAS NMR is considered a valuable technique to obtain detailed metabolic profile of unprocessed tissues. To properly interpret the HRMAS metabolomic results, detailed information of the actual state of the sample inside the rotor is needed. MRM (Magnetic Resonance Microscopy was applied for obtaining structural and spatially localized metabolic information of the samples inside the HRMAS rotors. The tissue was observed stuck to the rotor wall under the effect of HRMAS spinning. MRM spectroscopy showed a transference of metabolites from the tissue to the medium. The sample shape and the metabolite transfer after HRMAS indicated that tissue had undergone alterations and it can not be strictly considered as intact. This must be considered when HRMAS is used for metabolic tissue characterization, and it is expected to be highly dependent on the manipulation of the sample. The localized spectroscopic information of MRM reveals the biochemical compartmentalization on tissue samples hidden in the HRMAS spectrum.

  7. Combining NMR and small angle X-ray and neutron scattering in the structural analysis of a ternary protein-RNA complex

    International Nuclear Information System (INIS)

    Many processes in the regulation of gene expression and signaling involve the formation of protein complexes involving multi-domain proteins. Individual domains that mediate protein-protein and protein-nucleic acid interactions are typically connected by flexible linkers, which contribute to conformational dynamics and enable the formation of complexes with distinct binding partners. Solution techniques are therefore required for structural analysis and to characterize potential conformational dynamics. Nuclear magnetic resonance spectroscopy (NMR) provides such information but often only sparse data are obtained with increasing molecular weight of the complexes. It is therefore beneficial to combine NMR data with additional structural restraints from complementary solution techniques. Small angle X-ray/neutron scattering (SAXS/SANS) data can be efficiently combined with NMR-derived information, either for validation or by providing additional restraints for structural analysis. Here, we show that the combination of SAXS and SANS data can help to refine structural models obtained from data-driven docking using HADDOCK based on sparse NMR data. The approach is demonstrated with the ternary protein-protein-RNA complex involving two RNA recognition motif (RRM) domains of Sex-lethal, the N-terminal cold shock domain of Upstream-to-N-Ras, and msl-2 mRNA. Based on chemical shift perturbations we have mapped protein-protein and protein-RNA interfaces and complemented this NMR-derived information with SAXS data, as well as SANS measurements on subunit-selectively deuterated samples of the ternary complex. Our results show that, while the use of SAXS data is beneficial, the additional combination with contrast variation in SANS data resolves remaining ambiguities and improves the docking based on chemical shift perturbations of the ternary protein-RNA complex.

  8. Combining NMR and small angle X-ray and neutron scattering in the structural analysis of a ternary protein-RNA complex

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Janosch; Wang, Iren; Sonntag, Miriam [Institute of Structural Biology, Helmholtz Zentrum Muenchen (Germany); Gabel, Frank [Extremophiles and Large Molecular Assemblies Group (ELMA), Institut de Biologie Structurale (IBS) CEA-CNRS-UJF (France); Sattler, Michael, E-mail: sattler@helmholtz-muenchen.de [Institute of Structural Biology, Helmholtz Zentrum Muenchen (Germany)

    2013-05-15

    Many processes in the regulation of gene expression and signaling involve the formation of protein complexes involving multi-domain proteins. Individual domains that mediate protein-protein and protein-nucleic acid interactions are typically connected by flexible linkers, which contribute to conformational dynamics and enable the formation of complexes with distinct binding partners. Solution techniques are therefore required for structural analysis and to characterize potential conformational dynamics. Nuclear magnetic resonance spectroscopy (NMR) provides such information but often only sparse data are obtained with increasing molecular weight of the complexes. It is therefore beneficial to combine NMR data with additional structural restraints from complementary solution techniques. Small angle X-ray/neutron scattering (SAXS/SANS) data can be efficiently combined with NMR-derived information, either for validation or by providing additional restraints for structural analysis. Here, we show that the combination of SAXS and SANS data can help to refine structural models obtained from data-driven docking using HADDOCK based on sparse NMR data. The approach is demonstrated with the ternary protein-protein-RNA complex involving two RNA recognition motif (RRM) domains of Sex-lethal, the N-terminal cold shock domain of Upstream-to-N-Ras, and msl-2 mRNA. Based on chemical shift perturbations we have mapped protein-protein and protein-RNA interfaces and complemented this NMR-derived information with SAXS data, as well as SANS measurements on subunit-selectively deuterated samples of the ternary complex. Our results show that, while the use of SAXS data is beneficial, the additional combination with contrast variation in SANS data resolves remaining ambiguities and improves the docking based on chemical shift perturbations of the ternary protein-RNA complex.

  9. On shape of NMR absorption spectra and cross-relaxation in hetero nuclear spin system

    CERN Document Server

    Zobov, V E; Rodionova, O E

    2001-01-01

    The dynamic theory of the heteronuclear spin systems in solid bodies at high temperatures is developed. The system of the nonlinear integral equations is obtained for the time spin correlation functions in the approximation of the self-consistent fluctuating local field. The corrections, originating due to the fluctuating local fields correlations, existing in the real lattices, are accounted for thereby. The theory is applied to describing available experimental data for the LiF crystal (with two nuclei kinds). The free precession signals for the Li and F nuclei, as well as, the harmonic cross-relaxation spectra, the sup 6 Li isotope cross-polarization and the sup 8 Li isotope depolarization are calculated by the magnetic field orientations along the basic crystallographic axes. Good agreement between theory and experiment is achieved

  10. Numerical calculation of spin echo amplitude in pulsed NMR: effects of quadrupole interaction

    International Nuclear Information System (INIS)

    The spin echo obtained by nuclear magnetic resonance, in systems which atomic nuclei interact with magnetic fields and electric field gradients, present oscillations in function of the time interval between two excitations pulses. Using the density matrix formalism, the amplitudes of these echo is calculated, analytically. In this work, echo amplitudes obtained under different excitation conditions for nuclei of different nuclear spin values are calculated. The numerical results are compared with disposable analytical solutions. Applications of this method to the case of electric field gradient without axial symmetry were studied. Within the used approximation limits, an expression for attnuation of oscillatory behaviour of echo amplitude in function of the time interval between experimentally observed pulses was obtained. (M.C.K.)

  11. Solid-state NMR spectroscopy of molecular hydrogen trapped inside an open-cage fullerene

    OpenAIRE

    Carravetta, M.; Murata, Y; Murata, M.; Heinmaa, I.; Stern, R.; Tontcheva, A.; Samoson, A.; Y. Rubin; Komatsu, K.; Levitt, M.H.

    2004-01-01

    Solid-state 1H experiments were performed an open-cage fullerene hosting molecular hydrogen. The anisotropy of the molecular hydrogen rotation was studied by double-quantum magic-angle-spinning NMR. The time scale of the molecular hydrogen rotation was estimated by spin-lattice relaxation measurements as a function of temperature.

  12. Spin Dynamics and Quantum Tunneling in Fe8 Nanomagnet and in AFM Rings by NMR

    International Nuclear Information System (INIS)

    In this thesis, our main interest has been to investigate the spin dynamics and quantum tunneling in single molecule magnets (SMMs), For this we have selected two different classes of SMMs: a ferrimagnetic total high spin S = 10 cluster Fe8 and antiferromagnetic (AFM) ring-type clusters. For Fe8, our efforts have been devoted to the investigation of the quantum tunneling of magnetization in the very low temperature region. The most remarkable experimental finding in Fe8 is that the nuclear spin-lattice relaxation rate (1/Tl) at low temperatures takes place via strong collision mechanism, and thus it allows to measure directly the tunneling rate vs T and H for the first time. For AFM rings, we have shown that 1/Tl probes the thermal fluctuations of the magnetization in the intermediate temperature range. We find that the fluctuations are dominated by a single characteristic frequency which has a power law T-dependence indicative of fluctuations due to electron-acoustic phonon interactions

  13. An automated framework for NMR resonance assignment through simultaneous slice picking and spin system forming

    KAUST Repository

    Abbas, Ahmed

    2014-04-19

    Despite significant advances in automated nuclear magnetic resonance-based protein structure determination, the high numbers of false positives and false negatives among the peaks selected by fully automated methods remain a problem. These false positives and negatives impair the performance of resonance assignment methods. One of the main reasons for this problem is that the computational research community often considers peak picking and resonance assignment to be two separate problems, whereas spectroscopists use expert knowledge to pick peaks and assign their resonances at the same time. We propose a novel framework that simultaneously conducts slice picking and spin system forming, an essential step in resonance assignment. Our framework then employs a genetic algorithm, directed by both connectivity information and amino acid typing information from the spin systems, to assign the spin systems to residues. The inputs to our framework can be as few as two commonly used spectra, i.e., CBCA(CO)NH and HNCACB. Different from the existing peak picking and resonance assignment methods that treat peaks as the units, our method is based on \\'slices\\', which are one-dimensional vectors in three-dimensional spectra that correspond to certain (N, H) values. Experimental results on both benchmark simulated data sets and four real protein data sets demonstrate that our method significantly outperforms the state-of-the-art methods while using a less number of spectra than those methods. Our method is freely available at http://sfb.kaust.edu.sa/Pages/Software.aspx. © 2014 Springer Science+Business Media.

  14. Magnetic structure and spin dynamics of the ground state of the molecular cluster Mn12O12 acetate studied by 55Mn NMR

    International Nuclear Information System (INIS)

    55Mn nuclear magnetic resonance (NMR) measurements have been carried out in an oriented powder sample of Mn12 acetate at low temperature (1.4--3 K) in order to investigate locally the static and dynamic magnetic properties of the molecule in its high-spin S=10 ground state. We report the observation of three 55MnNMR lines under zero external magnetic field. From the resonance frequency and the width of the lines we derive the internal hyperfine field and the quadrupole coupling constant at each of the three nonequivalent Mn ion sites. From the field dependence of the spectrum we obtain a direct confirmation of the standard picture, in which spin moments of Mn4+ ions (S=3/2) of the inner tetrahedron are polarized antiparallel to that of Mn3+ ions (S=2) of the outer ring with no measurable canting from the easy axis up to an applied field of 6 T. It is found that the splitting of the 55Mn-NMR lines when a magnetic field is applied at low temperature allows one to monitor the off-equilibrium population of the molecules in the different low lying magnetic states. The measured nuclear spin-lattice relaxation time T1 strongly depends on temperature and magnetic field. The behavior could be fitted well by considering the local-field fluctuations at the nuclear 55Mn site due to the thermal reorientation of the total S=10 spin of the molecule. From the fit of the data one can derive the product of the spin-phonon coupling constant times the mean-square value of the fluctuating hyperfine field. The two constants could be estimated separately by making some assumptions. The comparison of the mean-square fluctuation from relaxation with the static hyperfine field from the spectrum suggests that nonuniform terms (q≠0) are important in describing the spin dynamics of the local Mn moments in the ground state

  15. NMR study of spin fluctuations and superconductivity in LaFeAsO1-xHx

    Science.gov (United States)

    Fujiwara, Naoki; Sakurai, Ryosuke; Iimura, Soushi; Matsuishi, Satoru; Hosono, Hideo; Yamakawa, Yoichi; Kontani, Hiroshi

    2013-03-01

    We have performed NMR measurements in LaFeAsO1-xHx, an isomorphic compound of LaFeAsO1-xFx. LaFeAsO1-xHx is most recently known for having double superconducting (SC) domes on H doping. LaFeAsO1-xHx is an electron- doped system, and protons act as H-1 as well as F-1. The first SC dome is very similar between F and H doping, suggesting that H doping supplies the same amount of electrons as F doping. Interestingly, an excess amount of H up to x=0.5 can be replaced with O2-. In the H-overdoped regime (x > 0 . 2), LaFeAsO1-xHx undergoes the second superconducting state. We measured the relaxation rate of LaFeAsO1-xHx for x=0.2 and 0.4, and fond an anomalous electronic state; spin fluctuations measured from 1 /T1 T is enhanced with increasing the doping level from x = 0 . 2 to 0.4. The enhancement of spin fluctuations with increasing carrier doping is a new phenomenon that has not observed in LaFeAsO1-xFx in which the upper limit of the doping level is at most x = 0 . 2 . We will discuss the phenomenon in relation to superconductivity. Grant (KAKENHI 23340101) from the Ministry of Education, Sports and Science, Japan

  16. Porosity of silica Stöber particles determined by spin-echo small angle neutron scattering.

    Science.gov (United States)

    Parnell, S R; Washington, A L; Parnell, A J; Walsh, A; Dalgliesh, R M; Li, F; Hamilton, W A; Prevost, S; Fairclough, J P A; Pynn, R

    2016-05-25

    Stöber silica particles are used in a diverse range of applications. Despite their widespread industrial and scientific uses, information on the internal structure of the particles is non-trivial to obtain and is not often reported. In this work we have used spin-echo small angle neutron scattering (SESANS) in conjunction with ultra small angle X-ray scattering (USAXS) and pycnometry to study an aqueous dispersion of Stöber particles. Our results are in agreement with models which propose that Stöber particles have a porous core, with a significant fraction of the pores inaccessible to solvent. For samples prepared from the same master sample in a range of H2O : D2O ratio solutions we were able to model the SESANS results for the solution series assuming monodisperse, smooth surfaced spheres of radius 83 nm with an internal open pore volume fraction of 32% and a closed pore fraction of 10%. Our results are consistent with USAXS measurements. The protocol developed and discussed here shows that the SESANS technique is a powerful way to investigate particles much larger than those studied using conventional small angle scattering methods. PMID:27021920

  17. NMR evidence for localized spins on Cu(2) sites from Cu NMR in YBa2Cu3O7 and YBa2Cu3O/sub 6.75/ single crystals

    International Nuclear Information System (INIS)

    We report /sup 63,65/Cu NMR spectra and nuclear spin-lattice relaxation data for YBa2Cu3O7(T/sub c/ = 91 K) and YBa2Cu3O/sub 6.75/(T/sub c/ = 57 K) single crystals between 45 and 300 K. An analysis of the spin-lattice relaxation rates gives evidence for localized electronic spins on the planar Cu(2) sites. In YBa2Cu3O/sub 6.75/ both fourfold and twofold oxygen-coordinated Cu(1) are observed; the latter experience the same quadrupolar coupling (ν/sub Q/≅31.5 MHz) as the Cu(2) sites but a nearly zero magnetic hyperfine shift and a much slower relaxation rate (d/sup 10/ configuration)

  18. Probing the hydration of composite cement pastes containing fly ash and silica fume by proton NMR spin-lattice relaxation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Proton NMR spin-lattice relaxation (T1) was used as a prober for observing the hydration process of composite cement pastes blending fly ash and silica fume during the early age.The distribution at initial time,evolution curves and signals intensity of T1 were shown in this paper.Results demonstrate that the T1 distribution curves at initial time exhibit two peaks,which are regarded as two different water phases in the pastes.The evolution curves of T1 are in good agreement with the hydration process of composite pastes and could be roughly divided into four stages:initial period,dormant period,acceleration period and steady period.The hydration mechanism for each stage was discussed.The hydration of the composite cement pastes was retarded by the addition of fly ash and silica fume when compared to that of pure cement.However,the hydration degree of the cement in the blends was promoted.

  19. 1H, 13C and 13N chemical shifts and 1H-15N and 13C-15N heteronuclear spin-spin coupling constants n the NMR spectra of 5-substituted furfural oximes

    International Nuclear Information System (INIS)

    The 1H, 13C, and 15N NMR spectra of 15N-enriched 5-substituted furfural oximes were investigated. It was shown that the chemical shifts of the ring atoms and the oxime group correlate satisfactorily with the F and R substituent constants, whereas their sensitivity to the effect of the substituents is lower than in monosubstituted furan derivatives. The constants of spin-spin coupling between the ring protons and the oxime group were determined. An analysis of the 1H-1H spin-spin coupling constants (SSCC) on the basis of their stereospecificity indicates that the E isomers have primarily an s-trans conformation in polar dimethyl sulfoxide, whereas the Z isomers, on the other hand, have an s-cis conformation. The signs of the direct and geminal 13C-15N SSCC were determined for 5-trimethylsilylfurfural oxime

  20. MERA: a webserver for evaluating backbone torsion angle distributions in dynamic and disordered proteins from NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Mantsyzov, Alexey B. [M.V. Lomonosov Moscow State University, Faculty of Fundamental Medicine (Russian Federation); Shen, Yang; Lee, Jung Ho [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Hummer, Gerhard [Max Planck Institute of Biophysics (Germany); Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2015-09-15

    MERA (Maximum Entropy Ramachandran map Analysis from NMR data) is a new webserver that generates residue-by-residue Ramachandran map distributions for disordered proteins or disordered regions in proteins on the basis of experimental NMR parameters. As input data, the program currently utilizes up to 12 different parameters. These include three different types of short-range NOEs, three types of backbone chemical shifts ({sup 15}N, {sup 13}C{sup α}, and {sup 13}C′), six types of J couplings ({sup 3}J{sub HNHα}, {sup 3}J{sub C′C′}, {sup 3}J{sub C′Hα}, {sup 1}J{sub HαCα}, {sup 2}J{sub CαN} and {sup 1}J{sub CαN}), as well as the {sup 15}N-relaxation derived J(0) spectral density. The Ramachandran map distributions are reported in terms of populations of their 15° × 15° voxels, and an adjustable maximum entropy weight factor is available to ensure that the obtained distributions will not deviate more from a newly derived coil library distribution than required to account for the experimental data. MERA output includes the agreement between each input parameter and its distribution-derived value. As an application, we demonstrate performance of the program for several residues in the intrinsically disordered protein α-synuclein, as well as for several static and dynamic residues in the folded protein GB3.

  1. MERA: a webserver for evaluating backbone torsion angle distributions in dynamic and disordered proteins from NMR data

    International Nuclear Information System (INIS)

    MERA (Maximum Entropy Ramachandran map Analysis from NMR data) is a new webserver that generates residue-by-residue Ramachandran map distributions for disordered proteins or disordered regions in proteins on the basis of experimental NMR parameters. As input data, the program currently utilizes up to 12 different parameters. These include three different types of short-range NOEs, three types of backbone chemical shifts (15N, 13Cα, and 13C′), six types of J couplings (3JHNHα, 3JC′C′, 3JC′Hα, 1JHαCα, 2JCαN and 1JCαN), as well as the 15N-relaxation derived J(0) spectral density. The Ramachandran map distributions are reported in terms of populations of their 15° × 15° voxels, and an adjustable maximum entropy weight factor is available to ensure that the obtained distributions will not deviate more from a newly derived coil library distribution than required to account for the experimental data. MERA output includes the agreement between each input parameter and its distribution-derived value. As an application, we demonstrate performance of the program for several residues in the intrinsically disordered protein α-synuclein, as well as for several static and dynamic residues in the folded protein GB3

  2. Determination of water self-diffusion coefficient in complex food products by low field 1H PFG-NMR: Comparison between the standard spin-echo sequence and the T1-weighted spin-echo sequence

    OpenAIRE

    Métais, A.; Mariette, F.

    2003-01-01

    In 1990, Van Den Enden et al. proposed a method for the determination of water droplet size distributions in emulsions using a pulsed field gradient nuclear magnetic resonance (PFG-NMR) T1-weighted stimulated-echo technique. This paper describes both the T1-weighted spin-echo sequence, an improved method based on this earlier work, and, the standard PFG spin-echo sequence. These two methods were compared for water self-diffusion coefficient measurement in the fatty protein concentrate sample ...

  3. Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    CERN Document Server

    Armstrong, D S; Asaturyan, R; Averett, T; Bailey, S L; Batigne, G; Beck, D H; Beise, E J; Benesch, J; Bimbot, L; Birchall, J; Biselli, A; Bosted, P; Boukobza, E; Breuer, H; Carlini, R; Carr, R; Chant, N; Chao, Y C; Chattopadhyay, S; Clark, R; Covrig, S; Cowley, A; Dale, D; Davis, C; Falk, W; Finn, J M; Forest, T; Franklin, G; Furget, C; Gaskell, D; Grames, J; Griffioen, K A; Grimm, K; Guillon, B; Guler, H; Hannelius, L; Hasty, R; Hawthorne Allen, A; Horn, T; Johnston, K; Jones, M; Kammel, P; Kazimi, R; King, P M; Kolarkar, A; Korkmaz, E; Korsch, W; Kox, S; Kühn, J; Lachniet, J; Lee, L; Lenoble, J; Liatard, E; Liu, J; Loupias, B; Lung, A; Marchand, D; Martin, J W; McFarlane, K W; McKee, D W; McKeown, R D; Merchez, F; Mkrtchyan, H; Moffit, B; Morlet, M; Nakagawa, I; Nakahara, K; Neveling, R; Niccolai, S; Ong, S; Page, S; Papavassiliou, V; Pate, S F; Phillips, S K; Pitt, M L; Poelker, M; Porcelli, T A; Quéméner, G; Quinn, B; Ramsay, W D; Rauf, A W; Real, J S; Roche, J; Roos, P; Rutledge, G A; Secrest, J; Simicevic, N; Smith, G R; Spayde, D T; Stepanyan, S; Stutzman, M; Sulkosky, V; Tadevosyan, V; Tieulent, R; Van de Wiele, J; Van Oers, W T H; Voutier, E; Vulcan, W; Warren, G; Wells, S P; Williamson, S E; Wood, S A; Yan, C; Yun, J; Zeps, V

    2007-01-01

    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 values of 0.15 and 0.25 (GeV/c)^2 with results of A_n = -4.06 +- 0.99 (stat) +- 0.63 (syst) and A_n = -4.82 +- 1.87 (stat) +- 0.98 (syst) ppm. These results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the 2-gamma exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

  4. Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; Robert Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; Charles Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; Richard HASTY; Alice Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; Jianglai Liu; Berenice Loupias; Allison Lung; Dominique Marchand; Jeffery Martin; Kenneth McFarlane; David McKee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; Gregory Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vince Sulkosky; Vincent Sulkosky; Vince Sulkosky; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; Glen Warren; Steven Wells; Steven Williamson; Stephen Wood; Chen Yan; Junho Yun; Valdis Zeps

    2007-08-01

    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 values of 0.15 and 0.25 (GeV/c)^2 with results of A_n = -4.06 +- 0.99(stat) +- 0.63(syst) and A_n = -4.82 +- 1.87(stat) +- 0.98(syst) ppm. These results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the two-photon exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

  5. Mesostructure anisotropy of bacterial cellulose-polyacrylamide hydrogels as studied by spin-echo small-angle neutron scattering

    CERN Document Server

    Velichko, E V; Chetverikov, Yu O; Duif, C P; Bouwman, W G; Smyslov, R Yu

    2016-01-01

    The submicron- and micron-scale structures of composite hydrogels based on bacterial cellulose (BC) and polyacrylamide were studied by spin-echo small-angle neutron scattering (SESANS). These hydrogels were synthesized via free-radical polymerization of acrylamide carried out in pellicle of BC swollen in the reaction solution. No neutron scattering was observed for the samples swollen in heavy water to the equilibrium state, but a SESANS signal appeared when TbCl$_{3}$ salt was added to the solvent. The SESANS dependences obtained for these samples revealed the anisotropy of mesostructure for the hydrogels under investigation. Density inhomogeneities on the characteristic scale of 11.5 $\\pm$ 0.5 $\\mu$m were detected in one specific orientation of the sample, i.e. with growth plane of BC parallel to plane formed by neutron beam and spin-echo length. The uniaxial anisotropy revealed agrees with the proposed model, which attributes this behavior to the existence of the tunnel-like oriented structures inside BC.

  6. Zero-field NMR study on a spin glass: iron-doped 2H-niobium diselenide

    International Nuclear Information System (INIS)

    Spin echoes are used to study the 93Nb NQR in 2H-NbSe2Fe/sub x/. Measured are (intensity) x (temperature), and T/sub 1P/ (spin-lattice relaxation parameter) and T2 (spin-spin relaxation time) as a function of temperature. Data reveal dramatic differences between non-spin glass samples (x = 0, 0.25%, 1% and 5%) and spin glass samples (x = 8%, 10% and 12%). All of the NQR results and the model calculation of the correlation times of Fe spins are best described by the phase transition picture of spin glasses

  7. Thermal decomposition of 10-molybdo-2-vanadosilicic heteropolyacid: sup(29)Si and sup(51)V-NMR study

    International Nuclear Information System (INIS)

    Thermal decomposition of 10-molybdo-2-vanadosilicic heteropolyacid was studied by sup(29)Si and sup(51)V-NMR method. sup(29)Si-NMR magic angle spinning spectra of solid samples indicate that the heteropolyacid begins to decompose at T < 300 deg C and the decomposition is completed at 300-400 deg C. According to sup(51)V-NMR data, SiOsub(2)-supported samples reach thermal stability at a significantly lower temperature. (author)

  8. Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology

    OpenAIRE

    Gelis, Ioannis; Vitzthum, Veronika; Dhimole, Neha; Caporini, Marc A.; Schedlbauer, Andreas; Carnevale, Diego; Connell, Sean R.; Fucini, Paola; Bodenhausen, Geoffrey

    2013-01-01

    The impact of Nuclear Magnetic Resonance (NMR) on studies of large macromolecular complexes hinges on improvements in sensitivity and resolution. Dynamic nuclear polarization (DNP) in the solid state can offer improved sensitivity, provided sample preparation is optimized to preserve spectral resolution. For a few nanomoles of intact ribosomes and an 800 kDa ribosomal complex we demonstrate that the combination of DNP and magic-angle spinning NMR (MAS-NMR) allows one to overcome current sensi...

  9. Liquid structure of acetic acid-water and trifluoroacetic acid-water mixtures studied by large-angle X-ray scattering and NMR.

    Science.gov (United States)

    Takamuku, Toshiyuki; Kyoshoin, Yasuhiro; Noguchi, Hiroshi; Kusano, Shoji; Yamaguchi, Toshio

    2007-08-01

    The structures of acetic acid (AA), trifluoroacetic acid (TFA), and their aqueous mixtures over the entire range of acid mole fraction xA have been investigated by using large-angle X-ray scattering (LAXS) and NMR techniques. The results from the LAXS experiments have shown that acetic acid molecules mainly form a chain structure via hydrogen bonding in the pure liquid. In acetic acid-water mixtures hydrogen bonds of acetic acid-water and water-water gradually increase with decreasing xA, while the chain structure of acetic acid molecules is moderately ruptured. Hydrogen bonds among water molecules are remarkably formed in acetic acid-water mixtures at xATFA molecules form not a chain structure but cyclic dimers through hydrogen bonding in the pure liquid. In TFA-water mixtures O...O hydrogen bonds among water molecules gradually increase when xA decreases, and hydrogen bonds among water molecules are significantly formed in the mixtures at xATFA molecules are considerably dissociated to hydrogen ions and trifluoroacetate in the mixtures. 1H, 13C, and 19F NMR chemical shifts of acetic acid and TFA molecules for acetic acid-water and TFA-water mixtures have indicated strong relationships between a structural change of the mixtures and the acid mole fraction. On the basis of both LAXS and NMR results, the structural changes of acetic acid-water and TFA-water mixtures with decreasing acid mole fraction and the effects of fluorination of the methyl group on the structure are discussed at the molecular level. PMID:17628099

  10. Beam Normal Single Spin Asymmetry in Forward Angle Inelastic Electron-Proton Scattering using the Q-Weak Apparatus

    Energy Technology Data Exchange (ETDEWEB)

    ., Nuruzzaman [Hampton Univ., Hampton, VA (United States)

    2014-12-01

    The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (B_n) on H_2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic B_n is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of B_n background studies, we made the first measurement of B_n in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be B_n = 42.82 ± 2.45 (stat) ± 16.07 (sys) ppm at beam energy E_beam = 1.155 GeV, scattering angle theta = 8.3 deg, and missing mass W = 1.2 GeV. B_n from electron-nucleon scattering is a unique tool to study the gamma^* Delta Delta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ~10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system

  11. Structural biology applications of solid state MAS DNP NMR

    Science.gov (United States)

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance.

  12. Nonadiabatic Geometric Angle in Nuclear Magnetic Resonance Connection

    OpenAIRE

    Cherbal, Omar; Maamache, Mustapha; Drir, Mahrez

    2005-01-01

    By using the Grassmannian invariant-angle coherents states approach, the classical analogue of the Aharonov-Anandan nonadiabatic geometrical phase is found for a spin one-half in Nuclear Magnetic Resonance (NMR). In the adiabatic limit, the semi-classical relation between the adiabatic Berry’s phase and Hannay’s angle gives exactly the experimental result observed by Suter et al[12].

  13. IN-SITU MAGIC ANGLE SPINNING NMR INVESTIGATIONS ON CATALYTIC CONVERSION OF BIOGENIC MOLECULES IN THE PRESENCE OF AQUEOUS WATER

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Mary Y.; Feng, Ju; Camaioni, Donald M.; Turcu, Romulus VF; Peden, Charles HF; Lercher, Johannes A.; Hu, Jian Z.

    2012-09-01

    The catalyzed conversion of biomass to hydrocarbon energy carriers requires a cascade of reactions that deconstruct and reduce the polymeric, highly oxofunctionalized biomass material. While lignin is the most intractable component of lignocellulose, its conversion to useful products is key in this catalytic chemistry, because the carbon in lignin is the most reduced one in lignocellulose. This chemistry faces steep challenges, as most of the reactions have to be performed in an aqueous environment under conditions that are highly corrosive towards catalysts. The anticipated scale of the transformations demands that the complex catalysts involved be highly efficient, stable, regenerable, and economically viable catalysts. Currently, none of the known heterogeneous solid catalysts meets these requirements. In order to develop new catalysts satisfying these requirements, a fundamental understanding of the active centers, reaction intermediates and reaction dynamics/kinetics associated with the multi-step conversion of biomass/biomass components, or biomass related polar molecules, i.e., the precursor molecules to fuels, on multifunctional catalytic surfaces is critically needed.

  14. Magic-Angle Spinning Solid-State NMR Spectroscopy of Nanodisc– Embedded Human CYP3A4†

    OpenAIRE

    Kijac, Aleksandra; Li, Ying; Sligar, Stephen G.; Rienstra, Chad M.

    2007-01-01

    Cytochrome P450 (CYP) 3A4 contributes to the metabolism of approximately 50% of commercial drugs by oxidizing a large number of structurally diverse substrates. Like other endoplasmic reticulum-localized P450s, CYP3A4 contains a membrane-anchoring N-terminal helix and a significant number of hydrophobic domains, important for the interaction between CYP3A4 and the membrane. Although the membrane affects specificity of CYP3A4 ligand binding, the structural details of the interaction have not b...

  15. On turbulence driven by axial precession and tidal evolution of the spin-orbit angle of close-in giant planets

    Science.gov (United States)

    Barker, Adrian J.

    2016-08-01

    The spin axis of a rotationally deformed planet is forced to precess about its orbital angular momentum vector, due to the tidal gravity of its host star, if these directions are misaligned. This induces internal fluid motions inside the planet that are subject to a hydrodynamic instability. We study the turbulent damping of precessional fluid motions, as a result of this instability, in the simplest local computational model of a giant planet (or star), with and without a weak internal magnetic field. Our aim is to determine the outcome of this instability, and its importance in driving tidal evolution of the spin-orbit angle in precessing planets (and stars). We find that this instability produces turbulent dissipation that is sufficiently strong that it could drive significant tidal evolution of the spin-orbit angle for hot Jupiters with orbital periods shorter than about 10-18 d. If this mechanism acts in isolation, this evolution would be towards alignment or anti-alignment, depending on the initial angle, but the ultimate evolution (if other tidal mechanisms also contribute) is expected to be towards alignment. The turbulent dissipation is proportional to the cube of the precession frequency, so it leads to much slower damping of stellar spin-orbit angles, implying that this instability is unlikely to drive evolution of the spin-orbit angle in stars (either in planetary or close binary systems). We also find that the instability-driven flow can act as a system-scale dynamo, which may play a role in producing magnetic fields in short-period planets.

  16. On turbulence driven by axial precession and tidal evolution of the spin-orbit angle of close-in giant planets

    Science.gov (United States)

    Barker, Adrian J.

    2016-08-01

    The spin axis of a rotationally deformed planet is forced to precess about its orbital angular momentum vector, due to the tidal gravity of its host star, if these directions are misaligned. This induces internal fluid motions inside the planet that are subject to a hydrodynamic instability. We study the turbulent damping of precessional fluid motions, as a result of this instability, in the simplest local computational model of a giant planet (or star), with and without a weak internal magnetic field. Our aim is to determine the outcome of this instability, and its importance in driving tidal evolution of the spin-orbit angle in precessing planets (and stars). We find that this instability produces turbulent dissipation that is sufficiently strong that it could drive significant tidal evolution of the spin-orbit angle for hot Jupiters with orbital periods shorter than about 10-18 days. If this mechanism acts in isolation, this evolution would be towards alignment or anti-alignment, depending on the initial angle, but the ultimate evolution (if other tidal mechanisms also contribute) is expected to be towards alignment. The turbulent dissipation is proportional to the cube of the precession frequency, so it leads to much slower damping of stellar spin-orbit angles, implying that this instability is unlikely to drive evolution of the spin-orbit angle in stars (either in planetary or close binary systems). We also find that the instability-driven flow can act as a system-scale dynamo, which may play a role in producing magnetic fields in short-period planets.

  17. Solid state NMR study calcium phosphate ceramics

    International Nuclear Information System (INIS)

    High-resolution 31P and 1H NMR spectra at 40 and 121 MHz 31P and 300 MHz 1H of synthetic and biological samples of calcium phosphates have been obtained by magic angle spinning (MAS) at spinning speeds up to 6.5 kHz, and high power proton decoupling. The samples include crystalline hydroxyapatite, a deficient hydroxyapatite characterized by a Ca/P atomic ratio of 1.5, a poorly crystallized hydroxyapatite, monetite, brushite, octacalcium phosphate, β-tricalcium phosphate and rabbit femoral bone. The interactions between nuclei in unlike structures and the mobility of acid protons are discussed. (author). 11 refs.; 2 figs.; 1 tab

  18. Heteronuclear two-and three-dimensional NMR studies on the R1-R2-R3 domain of Drosophila melanogaster c-myb protein: spin system identifications

    International Nuclear Information System (INIS)

    Advantages of heteronuclear two- and three-dimensional NMR experiments in obtaining better dispersion of peaks in spectra of large protein molecules have been described. The basic experimental techniques have been qualitatively presented and their application to a protein of 160 amino acid residues has been described. Several residue-type specific signals have been identified. The analysis of three-dimensional 13C resolved 1H-1H TOCSY (total correlated spectroscopy) spectra for spin system identifications has been described in some detail. (author). 42 refs., 9 figs

  19. Analysis of local molecular motions of aromatic sidechains in proteins by 2D and 3D fast MAS NMR spectroscopy and quantum mechanical calculations

    Czech Academy of Sciences Publication Activity Database

    Paluch, P.; Pawlak, T.; Jeziorna, A.; Trébosc, J.; Hou, G.; Vega, A. J.; Amoureux, J. P.; Dračínský, Martin; Polenova, T.; Potrzebowski, M. J.

    2015-01-01

    Roč. 17, č. 43 (2015), s. 28789-28801. ISSN 1463-9076 R&D Projects: GA ČR GA15-11223S Institutional support: RVO:61388963 Keywords : solid-state NMR * angle spinning NMR * NMR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.493, year: 2014 http://pubs.rsc.org/en/content/articlepdf/2015/cp/c5cp04475h

  20. Dynamic nuclear polarization enhanced NMR at 187 GHz/284 MHz using an extended interaction Klystron amplifier

    OpenAIRE

    Watts, A; Kemp, T; Dannatt, HRW; Barrow, NS; Brown, SP; Newton, ME; Dupree, R.

    2016-01-01

    A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer which uses a 187 GHz (corresponding to 1H NMR frequency of 284 MHz) Extended Interaction Klystron (EIK) amplifier as the microwave source is briefly described. Its performance is demonstrated for a biomolecule (bacteriorhodopsin), a pharmaceutical, and surface functionalised silica. The EIK is very compact and easily incorporated into an existing spectrometer. The bandwidth of the amplifier i...

  1. High resolution nuclear magnetic resonance spectroscopy (NMR) studies on meat components: potentialities and prospects

    OpenAIRE

    Antonio Sacco; Gino Vonghia; Francesco Giannico; Daniela Sacco; Vincenzo di Martino; Anna Caputi Jambrenghi; Maria Antonietta Brescia

    2010-01-01

    In recent years, increasing application of nuclear magnetic resonance (NMR) spectroscopy in the study of the agricultur-  al food products has been remarked, thanks to the advantages of this technique over other conventional analytical tech-  niques. This preliminary work presents, for the first time, the application of an innovative NMR technique, the  proton  high resolution magic angle spinning (1H HR-MAS), for studying meat features. It stresses that this method makes ...

  2. Intratumoral Agreement of High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopic Profiles in the Metabolic Characterization of Breast Cancer

    Science.gov (United States)

    Park, Vivian Youngjean; Yoon, Dahye; Koo, Ja Seung; Kim, Eun-Kyung; Kim, Seung Il; Choi, Ji Soo; Park, Seho; Park, Hyung Seok; Kim, Suhkmann; Kim, Min Jung

    2016-01-01

    Abstract High-resolution magic angle spinning (HR-MAS) magnetic resonance (MR) spectroscopy data may serve as a biomarker for breast cancer, with only a small volume of tissue sample required for assessment. However, previous studies utilized only a single tissue sample from each patient. The aim of this study was to investigate whether intratumoral location and biospecimen type affected the metabolic characterization of breast cancer assessed by HR-MAS MR spectroscopy This prospective study was approved by the institutional review board and informed consent was obtained. Preoperative core-needle biopsies (CNBs), central, and peripheral surgical tumor specimens were prospectively collected under ultrasound (US) guidance in 31 patients with invasive breast cancer. Specimens were assessed with HR-MAS MR spectroscopy. The reliability of metabolite concentrations was evaluated and multivariate analysis was performed according to intratumoral location and biospecimen type. There was a moderate or higher agreement between the relative concentrations of 94.3% (33 of 35) of metabolites in the center and periphery, 80.0% (28 of 35) of metabolites in the CNB and central surgical specimens, and 82.9% (29 of 35) of metabolites between all 3 specimen types. However, there was no significant agreement between the concentrations of phosphocholine (PC) and phosphoethanolamine (PE) in the center and periphery. The concentrations of several metabolites (adipate, arginine, fumarate, glutamate, PC, and PE) had no significant agreement between the CNB and central surgical specimens. In conclusion, most HR-MAS MR spectroscopic data do not differ based on intratumoral location or biospecimen type. However, some metabolites may be affected by specimen-related variables, and caution is recommended in decision-making based solely on metabolite concentrations, particularly PC and PE. Further validation through future studies is needed for the clinical implementation of these biomarkers based

  3. Spin supercurrent

    International Nuclear Information System (INIS)

    We review the main properties of spin waves condensation to a coherent quantum state, named homogeneously precessing domain (HPD). We describe the long range coherent transport of magnetization by spin supercurrent in antiferromagnetic superfluid He3. This quantum phenomenon was discovered 20 years ago. Since then, many magnetic extensions of superconductivity and superfluidity have been observed: spin Josephson phenomena, spin-current vortices, spin phase slippage, long distance magnetization transport by spin supercurrents, etc. Several new supercurrent phenomena have been discovered, like magnetically excited coherent quantum states, NMR in the molecular Landau field, spin-current turbulence, formation of stable non-topological solitons, etc

  4. Frozen concentration fluctuations in a poly(N-isopropyl acrylamide) gel studied by neutron spin echo and small-angle neutron scattering

    International Nuclear Information System (INIS)

    By employing neutron spin echo and small-angle neutron scattering, we determined the structure factor of the frozen concentration fluctuations on nano-length scales in a swollen poly(N-isopropyl acrylamide) gel. The frozen contribution, showing a plateau at the low scattering wavenumber q (-1) and a rapid decrease close to q-4 at high q (>0.02 A-1), is intimately related to the abnormal butterfly scattering pattern appearing at low q under deformation. (orig.)

  5. Nanoparticle dispersion in polymer nanocomposites by spin-diffusion-averaged paramagnetic enhanced NMR relaxometry: scaling relations and applications.

    Science.gov (United States)

    Xu, Bo; Leisen, Johannes; Beckham, Haskell W

    2014-08-21

    Scaling relationships are identified between NMR longitudinal relaxation times and clay dispersion quality in polymer-paramagnetic clay nanocomposites. Derived from a previously published analytical relationship developed from a lamella-based model, the scaling relationships are based on the enhancement of NMR relaxation rates with increasing exfoliation and dispersion homogeneity. The paramagnetic contribution to the NMR relaxation rate is inversely proportional to the square of the clay interparticle spacing, and directly proportional to the square of the clay weight fraction. These scaling relationships allow the prediction of relative exfoliation of clay particles for a given series of polymer-clay nanocomposites. With independent knowledge of clay exfoliation in a single sample (e.g., from transmission electron microscopy), NMR relaxometry data may be converted into absolute measures of exfoliation. These scaling relations are confirmed with samples of fully exfoliated poly(vinyl alcohol)-montmorillonite nanocomposites, and then used to reveal exfoliation and dispersion quality in a series of nylon-6-montmorillonite nanocomposites. This characterization route is advantageous because NMR relaxometry can more rapidly provide clay dispersion information that is averaged over larger sample volumes than transmission electron microscopy. PMID:25000915

  6. Determining the depth of insertion of dynamically invisible membrane peptides by gel-phase {sup 1}H spin diffusion heteronuclear correlation NMR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.; Yao, H.; Hong, M., E-mail: mhong@iastate.edu [Iowa State University, Department of Chemistry (United States)

    2013-06-15

    Solid-state NMR determination of the depth of insertion of membrane peptides and proteins has so far utilized {sup 1}H spin diffusion and paramagnetic relaxation enhancement experiments, which are typically conducted in the liquid-crystalline phase of the lipid bilayer. For membrane proteins or peptide assemblies that undergo intermediate-timescale motion in the liquid-crystalline membrane, these approaches are no longer applicable because the protein signals are broadened beyond detection. Here we show that the rigid-solid HETCOR experiment, with an additional spin diffusion period, can be used to determine the depth of proteins in gel-phase lipid membranes, where the proteins are immobilized to give high-intensity solid-state NMR spectra. Demonstration on two membrane peptides with known insertion depths shows that well-inserted peptides give rise to high lipid cross peak intensities and low water cross peaks within a modest spin diffusion mixing time, while surface-bound peptides have higher water than lipid cross peaks. Furthermore, well-inserted membrane peptides have nearly identical {sup 1}H cross sections as the lipid chains, indicating equilibration of the peptide and lipid magnetization. Using this approach, we measured the membrane topology of the {alpha}-helical fusion peptide of the paramyxovirus, PIV5, in the anionic POPC/POPG membrane, in which the peptide undergoes intermediate-timescale motion at physiological temperature. The gel-phase HETCOR spectra indicate that the {alpha}-helical fusion peptide is well inserted into the POPC/POPG bilayer, spanning both leaflets. This insertion motif gives insight into the functional role of the {alpha}-helical PIV5 fusion peptide in virus-cell membrane fusion.

  7. 13C NMR investigation of local motions involved in secondary relaxation of polymers

    Science.gov (United States)

    Monnerie, Lucien

    The 13C NMR methods which can be used to study the local dynamics of solid samples through the cross-polarization and magic angle spinning technique are briefly reviewed. We present results obtained on solid polycycloalkyl methacrylates, polybutylene terephtalate, polystyrene and substituted polystyrenes and compare them with mechanical relaxation measurements.

  8. Low flip-angle spin-echo imaging of the liver; Basic study and its application to hepatic space-occupying lesions

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Kiyoshi; Sugimura, Kazuro (Shimane Medical Univ., Izumo (Japan))

    1991-09-01

    Dependence on T{sub 1} contrast can be reduced by changing the excitation flip angle. Low flip-angle spin-echo imaging can reduce imaging time because repetition time (TR) is reduced. The authors assessed the efficacy of low flip-angle spin-echo images in phantoms and in the liver. MR phantoms made from polyvinyl alcohol gel to model the properties of the normal liver, hepatocellular carcinoma (HCC), and hemangioma were scanned with various flip angles of TR 2400 and 1200 msec. Measured signal intensities fitted well with theoretical values. The T{sub 1} contrast of signal intensity decreased as the flip angle was reduced, accompanied by a decrease in signal-to-noise ratio (S/N). Thirty patients with hepatic space-occupying lesions (23 with HCC, 3 with metastases and 4 with hemangioma) were studied by conventional SE (CSE) at 2400/60/2 (TR/TE/NEX(number of excitations))(10 min 46 sec imaging time) and low flip-angle SE (LFSE) at 1200/60/30deg/2 (TR/TE/FA/NEX)(5:20) and/or 1200/60/30deg/4 (10:18). The sensitivity of CSE in detecting lesions was 93%. It was 92% for LFSE with two NEX and 94% for LFSE with four NEX pulse sequences. The contrast-to-noise ratio (C/N) for images (HCC/liver, hemangioma/liver) obtained by LFSE with four NEX was significantly higher than for those obtained by CSE. Although the C/N (lesion/liver) for LFSE with two NEX sequences was lower than that of CSE for any type of lesion (3.0 vs 3.5 for HCC; 5.1 vs 6.3 for metastases; 8.3 vs 9.7 for hemangioma), the difference was not significant. Although reducing the flip angle from 90deg to 30deg with two NEX resulted in a decrease in S/N (10.7 to 8.9 for HCC; 15.3 to 11.9 for metastases; 20.0 to 18.1 for hemangioma; 7.4 to 6.3 for normal liver; 10.7 to 10.1 for spleen), the difference was not significant. For hepatic space-occupying lesions, low flip-angle spin-echo imaging is useful to obtain T{sub 2}-weighted images in a shorter imaging time without sacrificing lesion detectability. (author).

  9. On turbulence driven by axial precession and tidal evolution of the spin-orbit angle of close-in giant planets

    CERN Document Server

    Barker, Adrian J

    2016-01-01

    The spin axis of a rotationally deformed planet is forced to precess about its orbital angular momentum vector, due to the tidal gravity of its host star, if these directions are misaligned. This induces internal fluid motions inside the planet that are subject to a hydrodynamic instability. We study the turbulent damping of precessional fluid motions, as a result of this instability, in the simplest local computational model of a giant planet (or star), with and without a weak internal magnetic field. Our aim is to determine the outcome of this instability, and its importance in driving tidal evolution of the spin-orbit angle in precessing planets (and stars). We find that this instability produces turbulent dissipation that is sufficiently strong that it could drive significant tidal evolution of the spin-orbit angle for hot Jupiters with orbital periods shorter than about 10-18 days. If this mechanism acts in isolation, this evolution would be towards alignment or anti-alignment, depending on the initial a...

  10. In situ NMR analysis of fluids contained in sedimentary rock

    Science.gov (United States)

    de Swiet TM; Tomaselli; Hurlimann; Pines

    1998-08-01

    Limitations of resolution and absorption in standard chemical spectroscopic techniques have made it difficult to study fluids in sedimentary rocks. In this paper, we show that a chemical characterization of pore fluids may be obtained in situ by magic angle spinning (MAS) nuclear magnetic resonance (NMR), which is normally used for solid samples. 1H MAS-NMR spectra of water and crude oil in Berea sandstone show sufficient chemical shift resolution for a straightforward determination of the oil/water ratio. Copyright 1998 Academic Press. PMID:9716484

  11. 19F-decoupling of half-integer spin quadrupolar nuclei in solid-state NMR: application of frequency-swept decoupling methods.

    Science.gov (United States)

    Chandran, C Vinod; Hempel, Günter; Bräuniger, Thomas

    2011-09-01

    In solid-state NMR studies of minerals and ion conductors, quadrupolar nuclei like (7)Li, (23)Na or (133)Cs are frequently situated in close proximity to fluorine, so that application of (19)F decoupling is beneficial for spectral resolution. Here, we compare the decoupling efficiency of various multi-pulse decoupling sequences by acquiring (19)F-decoupled (23)Na-NMR spectra of cryolite (Na(3)AlF(6)). Whereas the MAS spectrum is only marginally affected by application of (19)F decoupling, the 3Q-filtered (23)Na signal is very sensitive to it, as the de-phasing caused by the dipolar interaction between sodium and fluorine is three-fold magnified. Experimentally, we find that at moderate MAS speeds, the decoupling efficiencies of the frequency-swept decoupling schemes SW(f)-TPPM and SW(f)-SPINAL are significantly better than the conventional TPPM and SPINAL sequences. The frequency-swept sequences are therefore the methods of choice for efficient decoupling of quadrupolar nuclei with half-integer spin from fluorine. PMID:21856132

  12. Solid-state NMR spin-echo investigation of the metalloproteins parvalbumin, concanavalin A, and pea and lentil lectins, substituted with cadmium-113

    Science.gov (United States)

    Marchetti, Paul S.; Bhattacharyya, Lokesh; Ellis, Paul D.; Brewer, C. Fred

    Solid-state 113Cd NMR spectroscopy of static powder samples of 113Cd-substituted metalloproteins, parvalbumin, concanavalin A, and pea and lentil lectins, was carried out. Cross polarization followed by application of a train of uniformly spaced π pulses was employed to investigate the origin of residual cadmium NMR linewidths observed previously in these proteins. Fourier transformation of the resulting spin-echo train yielded spectra consisting of uniformly spaced lines having linewidths of the order of 1-2 ppm. The observed linewidths were not influenced by temperature as low as -50°C or by extent of protein hydration. Since the echo-train pulse sequence is able to eliminate inhomogeneous but not homogeneous contributions to the linewidths, there is a predominant inhomogeneous contribution to cadmium linewidths in the protein CP/MAS spectra. However, significant changes in spectral intensities were observed with change in temperature and extent of protein hydration. These intensity changes are attributed for parvalbumin and concanavalin A to changes in cross-polarization efficiency with temperature and hydration. For pea and lentil lectins, this effect is attributed to the elimination of static disorder at the pea and lentil S2 metal-ion sites due to sugar binding.

  13. Investigation of the Structure and Active Sites of TiO2 Nanorod Supported VOx Catalysts by High-Field and Fast-Spinning 51V MAS NMR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Z.; Xu, Suochang; Li, Weizhen; Hu, Mary Y.; Deng, Xuchu; Dixon, David A.; Vasiliu, Monica; Craciun, Raluca; Wang, Yong; Bao, Xinhe; Peden, Charles HF

    2015-07-02

    Supported VOx/TiO2-Rod catalysts were studied by 51V MAS NMR at high field using a sample spinning rate of 55 kHz. The superior spectral resolution allows for the observation of at least five vanadate species. The assignment of these vanadate species was carried out by quantum mechanical calculations of 51V NMR chemical shifts of model V-surface structures. Methanol oxidative dehydrogenation (ODH) was used to establish the correlation between the reaction rate and the various surface V-sites. It is found that monomeric V-species dominated the catalyst at low vanadium loadings with two peaks observed at about -502 and -529 ppm. V-dimers with two bridged oxygen appeare at about -555 ppm. Vanadate dimers and polyvanadates connected by one bridged oxygen atom between two adjacent V atoms resonate at about -630 ppm. A positive correlation is found between the V-dimers related to the -555 ppm peak and the ODH rate while a better correlation is obtained by including monomeric contributions. This result indicates that surface V-dimers related to the -555 ppm peak are the major active sites for ODH reaction despite mono-V species are more catalytic active but their relative ratios are decreased dramatically at high V-loadings. Furthermore, a portion of the V-species is found invisible. In particular, the level of such invisibility increases with decreased level of V-loading, suggesting the existence of paramagnetic V-species at the surface.

  14. Studies of vanadium-phosphorus-oxygen selective oxidation catalysts by sup 31 P and sup 51 V NMR spin-echo and volume susceptibility measurements

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan.

    1991-10-01

    The purpose of this work is to characterize the vanadium-phosphorous oxide (V-P-O) catalysts for the selective oxidation of n-butane and 1-butene to maleic anhydride. The utility of solid state nuclear magnetic resonance as an analytical tool in this investigation lies in its sensitivity to the electronic environment surrounding the phosphorous and vanadium nuclei, and proximity of paramagnetic species. Spin-echo mapping NMR of {sup 31}p and {sup 51}v and volume magnetic susceptibility measurements were used as local microscopic probes of the presence of V{sup 5+}, V{sup 4+}, V{sup 3+} species in the model compounds: {beta}-VOPO{sub 4}, {beta}-VOPO{sub 4} treated with n-butane/1-butene, (VO){sub 2}P{sub 2}O{sub 7} treated with n-butane/1-butene; and industrial catalysts with P/V (phosphorus to vanadium) ratio of 0.9, 1.0 and 1.1, before and after treatment with n-butane and 1-butene. The NMR spectra provide a picture of how the oxidation states of vanadium are distributed in these catalysts. 73 refs., 32 figs., 8 tabs.

  15. 13C solid-state NMR of gramicidin A in a lipid membrane.

    OpenAIRE

    Quist, P O

    1998-01-01

    The natural-abundance 13C NMR spectrum of gramicidin A in a lipid membrane was acquired under magic-angle spinning conditions. With fast sample spinning (15 kHz) at approximately 65 degrees C the peaks from several of the aliphatic, beta-, alpha-, aromatic, and carbonyl carbons in the peptide could be resolved. The resolution in the 13C spectrum was superior that observed with 1H NMR under similar conditions. The 13C linewidths were in the range 30-100 Hz, except for the alpha- and beta-carbo...

  16. Decoherence of many-spin systems in NMR: From molecular characterization to an environmentally induced quantum dynamical phase transition

    CERN Document Server

    Alvarez, Gonzalo A

    2007-01-01

    The control of open quantum systems has a fundamental relevance for fields ranging from quantum information processing to nanotechnology. Typically, the system whose coherent dynamics one wants to manipulate, interacts with an environment that smoothly degrades its quantum dynamics. Thus, a precise understanding of the inner mechanisms of this process, called "decoherence", is critical to develop strategies to control the quantum dynamics. In this thesis we solved the generalized Liouville-von Neumann quantum master equation to obtain the dynamics of many-spin systems interacting with a spin bath. We also solve the spin dynamics within the Keldysh formalism. Both methods lead to identical solutions and together gave us the possibility to obtain numerous physical predictions that contrast well with Nuclear Magnetic Resonance experiments. We applied these tools for molecular characterizations, development of new numerical methodologies and the control of quantum dynamics in experimental implementations. But, mo...

  17. Density functional theory (DFT) calculations of the proton nuclear magnetic resonance (NMR) spin-Hamiltonian parameters for serine

    International Nuclear Information System (INIS)

    1H nuclear magnetic resonance spin-Hamiltonian parameters: chemical shifts δ and indirect spin–spin coupling constants J, have been calculated for serine, a brain metabolite. Serine molecules in the gas-phase as well as in solution in water have been investigated using density functional theory. Solvent and conformer effects as well as zero-point vibrational corrections have been taken into account. For the non-vibrating molecule, the best agreement is obtained when solvent and conformer effects are included. Zero-point vibrational corrections improve the agreement with experimental values, leading to a root mean square deviation of 0.05 ppm for chemical shifts and 0.7 Hz for spin–spin coupling constants

  18. Canonical Angles In A Compact Binary Star System With Spinning Components: Approximative Solution Through Next-To-Leading-Order Spin-Orbit Interaction for Circular Orbits

    CERN Document Server

    Tessmer, Manuel; Schäfer, Gerhard

    2013-01-01

    This publication will deal with an explicit determination of the time evolution of the spin orientation axes and the evolution of the orbital phase in the case of circular orbits under next-to-leading order spin-orbit interactions. We modify the method of Schneider and Cui proposed in ["Theoreme \\"uber Bewegungsintegrale und ihre Anwendungen in Bahntheorien", Verlag der Bayerischen Akademie der Wissenschaften, volume 212, 2005.] to iteratively remove oscillatory terms in the equations of motion for different masses that were not present in the case of equal masses. Our smallness parameter is chosen to be the difference of the symmetric mass ratio to the value 1/4. Before the first Lie transformation, the set of conserved quantities consists of the total angular momentum, the amplitudes of the orbital angular momentum and of the spins, $L, S_1,$ and $S_2$. In contrary, the magnitude of the total spin $S=|S_1+S_2|$ is not conserved and we wish to shift its non-conservation to higher orders of the smallness para...

  19. Solid State NMR Study of Polystyrene Nanolatex Particles(I) 13C Spin-Lattice Relaxation Time

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    13C spin-lattice relaxtion times for polystyrene nanolatex particles have been investigated. It was found that the dramatic increase at 80℃ annealing temperature is well below the Tg temperature of bulk polystyrene, the increase of relaxation time of aromatic carbons is larger than that of for aliphatic carbons at transition annealing temperature.

  20. High-speed magic angle spinning solid-state 1H nuclear magnetic resonance study of the conformation of gramicidin A in lipid bilayers.

    OpenAIRE

    Bouchard, M.; Davis, J H; Auger, M.

    1995-01-01

    One- and two-dimensional solid-state 1H nuclear magnetic resonance spectra of gramicidin A incorporated in a dimyristoylphosphatidylcholine membrane have been obtained with use of high-speed magic angle spinning. By rotating the sample at 13 kHz, it is possible to observe signals in the 1H spectra between 6.0 and 9.0 ppm attributable to the aromatic protons of the tryptophan residues and the formyl group proton of gramicidin A. Two-dimensional solid-state COSY spectra provided information for...

  1. Aspects of solid state 13C CPMAS NMR spectroscopy in coals from the Balkan peninsula

    Directory of Open Access Journals (Sweden)

    ANDREAS GEORGAKOPOULOS

    2003-09-01

    Full Text Available The cross-polarized magic-angle-spinning NMR (CPMAS-NMR technique was used in this work to assess the carbon distribution in coals of different rank (peat, lignite, xylite, sub-bituminous coal from important deposits in Greece and Bulgaria. The technique is assumed to be only semiquantitative, due to a number of interferences, such as spinning side bands (SSB in the spectra, paramagnetic species in the samples, and low or remote protonation of aromatic carbons. The Bulgarian sub-bituminous coal shows the greatest amounts of aromatic structures. The lignite sample from the Drama basin, Northern Greece, is relatively unaltered and largely unweathered, and shows the greatest amounts of aliphatic groups. The 13C-NMR spectra of Pliocene lignites from endemic areas in Serbia and Montenegro and Bosnia, taken from published papers, show significantly more intense resonances for methoxyl, phenolic, and polysaccharide moieties compared to the Drama lignite NMR spectrum. Xylite reveals high contents of carbohydrates.

  2. (1)H NMR spectroscopic elucidation in solution of the kinetics and thermodynamics of spin crossover for an exceptionally robust Fe(2+) complex.

    Science.gov (United States)

    Petzold, Holm; Djomgoue, Paul; Hörner, Gerald; Speck, J Matthäus; Rüffer, Tobias; Schaarschmidt, Dieter

    2016-09-21

    A series of Fe(2+) spin crossover (SCO) complexes [Fe(5/6)](2+) employing hexadentate ligands (5/6) with cis/trans-1,2-diamino cyclohexanes (4) as central building blocks were synthesised. The ligands were obtained by reductive amination of 4 with 2,2'-bipyridyl-6-carbaldehyde or 1,10-phenanthroline-2-carbaldehyde 3. The chelating effect and the rigid structure of the ligands 5/6 lead to exceptionally robust Fe(2+) and Zn(2+) complexes conserving their structure even in coordinating solvents like dmso at high temperatures. Their solution behavior was investigated using variable temperature (VT) (1)H NMR spectroscopy and VT Vis spectroscopy. SCO behavior was found for all Fe(2+) complexes in this series centred around and far above room temperature. For the first time we have demonstrated that the thermodynamics as well as kinetics for SCO can be deduced by using VT (1)H NMR spectroscopy. An alternative scheme using a linear correction term C(1) to model chemical shifts for Fe(2+) SCO complexes is presented. The rate constant for the SCO of [Fe(rac-trans-5)](2+) obtained by VT (1)H NMR was validated by Laser Flash Photolysis (LFP), with excellent agreement (1/(kHL + kLH) = 33.7/35.8 ns for NMR/LFP). The solvent dependence of the transition temperature T1/2 and the solvatochromism of complex [Fe(rac-trans-5)](2+) were ascribed to hydrogen bond formation of the secondary amine to the solvent. Enantiomerically pure complexes can be prepared starting with R,R- or S,S-1,2-diaminocyclohexane (R,R-trans-4 or S,S-trans-4). The high robustness of the complexes reduces a possible ligand scrambling and allows preparation of quasiracemic crystals of [Zn(R,R-5)][Fe(S,S-5)](ClO4)4·(CH3CN) composed of a 1 : 1 mixture of the Zn and Fe complexes with inverse chirality. PMID:27506162

  3. Measurement of the weak mixing angle and the spin of the gluon from angular distributions in the reaction pp→ Z/γ*+X→μ+μ-+X with ATLAS

    International Nuclear Information System (INIS)

    The measurement of the effective weak mixing angle with the ATLAS experiment at the LHC is presented. It is extracted from the forward-backward asymmetry in the polar angle distribution of the muons originating from Z boson decays in the reaction pp→Z/γ*+X→ μ+μ-+X. In total 4.7 fb-1 of proton-proton collisions at √(s)=7 TeV are analysed. In addition, the full polar and azimuthal angular distributions are measured as a function of the transverse momentum of the Z/γ* system and are compared to several simulations as well as recent results obtained in p anti p collisions. Finally, the angular distributions are used to confirm the spin of the gluon using the Lam-Tung relation.

  4. De novo fragment-based design of inhibitors of DXS guided by spin-diffusion-based NMR spectroscopy.

    OpenAIRE

    Masini, T.; Pilger, J.; Kroezen, B.; Illarionov, B.; Lottmann, P.; Fischer, M.; Griesinger, C.; Hirsch, A.

    2014-01-01

    We applied for the first time an innovative ligand-based NMR methodology (STI) to a medicinal-chemistry project aimed at the development of inhibitors for the enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS). DXS is the first enzyme of the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway, present in most bacteria (and not in humans) and responsible for the synthesis of the essential isoprenoid precursors. We designed de novo a first generation of fragments, using Deinococcus radiodurans D...

  5. How to Measure the Black Hole's Mass, Spin Parameter and Inclination Angle in Kerr Lens Effect 1: Principle and Formalism

    CERN Document Server

    Saida, Hiromi

    2016-01-01

    We propose the principle of measuring the Kerr BH's mass, spin parameter and the direction of the spin axis through observing two quantities of the spinning strong gravitational lens effect of the BH. Those observable quantities are generated by two rays emitted at the same time by a source near the BH; the primary and secondary rays which reach a distant observer, respectively, earliest and secondary temporally. The time delay between detection times and the ratio of observed specific fluxes of those rays are the observable quantities. Our numerical estimations imply a good detectability of those observable quantities by the present or near future telescope capability, and our proposal may be realizable in the near future. Also, the details of formulas for calculating the observable quantities are explained so that readers having interest in this paper can check our proposal quantitatively.

  6. Molecular interactions in the ionic liquid emim acetate and water binary mixtures probed via NMR spin relaxation and exchange spectroscopy.

    Science.gov (United States)

    Allen, Jesse J; Bowser, Sage R; Damodaran, Krishnan

    2014-05-01

    Interactions of ionic liquids (ILs) with water are of great interest for many potential IL applications. 1-Ethyl-3-methylimidazolium (emim) acetate, in particular, has shown interesting interactions with water including hydrogen bonding and even chemical exchange. Previous studies have shown the unusual behavior of emim acetate when in the presence of 0.43 mole fraction of water, and a combination of NMR techniques is used herein to investigate the emim acetate-water system and the unusual behavior at 0.43 mole fraction of water. NMR relaxometry techniques are used to describe the effects of water on the molecular motion and interactions of emim acetate with water. A discontinuity is seen in nuclear relaxation behavior at the concentration of 0.43 mole fraction of water, and this is attributed to the formation of a hydrogen bonded network. EXSY measurements are used to determine the exchange rates between the H2 emim proton and water, which show a complex dependence on the concentration of the mixture. The findings support and expand our previous results, which suggested the presence of an extended hydrogen bonding network in the emim acetate-water system at concentrations close to 0.50 mole fraction of H2O. PMID:24654003

  7. Proton NMR study of spin density wave thermal fluctuations in (TMTSF)2PF6, where TMTSF is tetramethyltetraselenafulvalene

    International Nuclear Information System (INIS)

    Measurements of the proton spin-lattice relaxation rate (1/T1) at a pressure of 1 bar in a single crystal of (TMTSF)2PF6 (TMTSF is tetramethyltetraselenafulvalene) are reported for the magnetic field in the range 0.25-1.48 T aligned along the b'- and c*-axes over the temperature range 2-30 K. The methyl group rotation contribution to 1/T1 is subtracted to obtain the spin density wave (SDW) contribution. Through measurements of 1/T1 below and above the spin flop transition it is determined that phason fluctuations of the SDW are responsible for most of the relaxation. Depinning the SDW's by an electric field leaves 1/T1 nearly unchanged, which indicates that the SDW and its fluctuation rate near 108 rad/s persist when the SDW is sliding. Analysis of the peak in 1/T1 near 3 K on the applied magnetic field suggests that it represents a slowing of thermally activated fluctuations with an activation energy Δ/kB = 18.3 ± 4.0 K, which is close to the single particle gap for this material. The contribution of critical fluctuations to 1/T1 is consistent with the transition being weakly first order. Unlike the relaxation in the ordered phase, the contribution of the critical fluctuations is isotropic and has little, if any dependence on magnetic field. (orig.)

  8. Decoherence of many-spin systems in NMR: From molecular characterization to an environmentally induced quantum dynamical phase transition

    Science.gov (United States)

    Alvarez, Gonzalo A.

    2007-05-01

    The control of open quantum systems has a fundamental relevance for fields ranging from quantum information processing to nanotechnology. Typically, the system whose coherent dynamics one wants to manipulate, interacts with an environment that smoothly degrades its quantum dynamics. Thus, a precise understanding of the inner mechanisms of this process, called "decoherence", is critical to develop strategies to control the quantum dynamics. In this thesis we solved the generalized Liouville-von Neumann quantum master equation to obtain the dynamics of many-spin systems interacting with a spin bath. We also solve the spin dynamics within the Keldysh formalism. Both methods lead to identical solutions and together gave us the possibility to obtain numerous physical predictions that contrast well with Nuclear Magnetic Resonance experiments. We applied these tools for molecular characterizations, development of new numerical methodologies and the control of quantum dynamics in experimental implementations. But, more important, these results contributed to fundamental physical interpretations of how quantum dynamics behaves in open systems. In particular, we found a manifestation of an environmentally induced quantum dynamical phase transition.

  9. Refocused continuous-wave decoupling: A new approach to heteronuclear dipolar decoupling in solid-state NMR spectroscopy

    DEFF Research Database (Denmark)

    Vinther, Joachim Møllesøe; Nielsen, Anders B.; Bjerring, Morten;

    2012-01-01

    A novel strategy for heteronuclear dipolar decoupling in magic-angle spinning solid-state NMR spectroscopy is presented, which eliminates residual static high-order terms in the effective Hamiltonian originating from interactions between oscillating dipolar and anisotropic shielding tensors. The ...

  10. An explanation for the high stability of polycarboxythiophenes in photovoltaic devices—A solid-state NMR dipolar recoupling study

    DEFF Research Database (Denmark)

    Bierring, M.; Nielsen, J.S.; Siu, Ana;

    2008-01-01

    acid carbon atoms were measured by C-13 solid-state magic-angle-spinning (MAS) NMR using symmetry-based double-quantum (2Q) dipolar recoupling. This revealed the presence of C-13-C-13 distances of 3.85 angstrom, which correspond to the C-C distance in hydrogen-bonded carboxylic acid dimers. In spite of...

  11. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1969-01-01

    High Resolution NMR: Theory and Chemical Applications focuses on the applications of nuclear magnetic resonance (NMR), as well as chemical shifts, lattices, and couplings. The book first offers information on the theory of NMR, including nuclear spin and magnetic moment, spin lattice relaxation, line widths, saturation, quantum mechanical description of NMR, and ringing. The text then ponders on instrumentation and techniques and chemical shifts. Discussions focus on the origin of chemical shifts, reference compounds, empirical correlations of chemical shifts, modulation and phase detection,

  12. 1H NMR and small-angle neutron scattering investigation of the structure and solubilization behavior of three-layer nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Kříž, Jaroslav; Pleštil, Josef; Pospíšil, Herman; Kadlec, Petr; Koňák, Čestmír; Almásy, L.; Kuklin, A. I.

    2004-01-01

    Roč. 20, č. 25 (2004), s. 11255-11263. ISSN 0743-7463 R&D Projects: GA ČR GA203/03/0600 Institutional research plan: CEZ:AV0Z4050913 Keywords : nanoparticles * polymer micelles * NMR Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.295, year: 2004

  13. NMR Studies of Quantum Rotors Confined in Zeolite

    Science.gov (United States)

    Ji, Yu; Hamida, J. A.; Sullivan, N. S.

    2010-02-01

    We report the results of NMR studies of methane trapped in zeolite at low temperatures. Samples were prepared to contain 1.0±0.2 molecules per α-sodalite cage of zeolite-13X. The NMR spin-spin and spin-lattice relaxation times were measured for 4NMR spin-spin relaxation is seen at this “melting” transition.

  14. The effect of low-temperature dynamics of the dimethylammonium group in [(CH3)2NH2]3Sb2Cl9 on proton spin-lattice relaxation and narrowing of the proton NMR line.

    Science.gov (United States)

    Latanowicz, L; Medycki, W; Jakubas, R

    2005-04-14

    This paper reports the temperature dependence of the relaxation time T1 (55.2 and 90 MHz) and the second moment of the NMR line for protons in a polycrystalline sample of [NH2(CH3)2]3Sb2Cl9 (DMACA). The fundamental aspects of molecular dynamics from quantum tunneling at low temperatures to thermally activated reorientation at elevated temperatures have been studied. The experimentally observed spin-lattice relaxation rate is a consequence of dipolar interactions between the spin pairs inside the methyl group (1/T(1AE) contribution) as well as the spins belonging to neighboring methyl groups and pairs, methyl spin-outer methyl spin (1/T(1EE) contribution). These contributions are considered separately. Two methyl groups in the dimethylammonium (DMA) cations are dynamically inequivalent. The values of the tunnel splitting of separate methyl groups are obtained from the T1 (55.2 MHz) experiment. The tunneling dynamics taking place below the characteristic temperatures 74 and 42 K for separate methyl groups are discussed in terms of the Schrödinger equation. These temperatures point to the one at which thermal energy C(p)T and potential barrier take the same value. It is established that the second moment of the proton NMR line below 74 K up to liquid helium temperature is much lower than the rigid lattice value, which is due to a tunneling stochastic process of the methyl groups. PMID:16833635

  15. Structural Investigations of Portland Cement Components, Hydration, and Effects of Admixtures by Solid-State NMR Spectroscopy

    DEFF Research Database (Denmark)

    Skibsted, Jørgen Bengaard; Andersen, Morten D.; Jakobsen, Hans Jørgen

    2006-01-01

    Solid-state, magic-angle spinning (MAS) NMR spectroscopy represents a valuable tool for structural investigations on the nanoscale of the most important phases in anhydrous and hydrated Portland cements and of various admixtures. This is primarily due to the fact that the method reflects the first...... have been investigated in detail by 29Si and 27Al MAS NMR where the combination of the results for these spin-nuclei provides important information on the degree of Al-incorporation in the C-S-H structure and of the average chain lengths of tetrahedral SiO4 and AlO4 units. This presentation will...

  16. Bulk carbohydrate grain filling of barley ß-glucan mutants studied by 1H HR MAS NMR

    DEFF Research Database (Denmark)

    Seefeldt, Helene Fast; Larsen, Flemming Hofmann; Viereck, Nanna;

    2008-01-01

    Temporal and genotypic differences in bulk carbohydrate accumulation in three barley genotypes differing in the content of mixed linkage β-(1→3),(1→4)-D-glucan (β-glucan) and starch were investigated using proton high-resolution, magic angle spinning, nuclear magnetic resonance (1H HR MAS NMR......) during grain filling. For the first time, 1H HR MAS NMR spectra of flour from immature barley seeds are analyzed. Spectral assignments are made using two-dimensional (2D) NMR methods. Both α- and β-glucan biosynthesis were characterized by inspection of the spectra as well as by calibration to the...

  17. Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra

    Energy Technology Data Exchange (ETDEWEB)

    Emami, Sanaz; Fan Ying; Munro, Rachel; Ladizhansky, Vladimir; Brown, Leonid S., E-mail: lebrown@uoguelph.ca [University of Guelph, Departments of Physics, and Biophysics Interdepartmental Group (Canada)

    2013-02-15

    One of the biggest challenges in solid-state NMR studies of membrane proteins is to obtain a homogeneous natively folded sample giving high spectral resolution sufficient for structural studies. Eukaryotic membrane proteins are especially difficult and expensive targets in this respect. Methylotrophic yeast Pichia pastoris is a reliable producer of eukaryotic membrane proteins for crystallography and a promising economical source of isotopically labeled proteins for NMR. We show that eukaryotic membrane protein human aquaporin 1 can be doubly ({sup 13}C/{sup 15}N) isotopically labeled in this system and functionally reconstituted into phospholipids, giving excellent resolution of solid-state magic angle spinning NMR spectra.

  18. Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra

    International Nuclear Information System (INIS)

    One of the biggest challenges in solid-state NMR studies of membrane proteins is to obtain a homogeneous natively folded sample giving high spectral resolution sufficient for structural studies. Eukaryotic membrane proteins are especially difficult and expensive targets in this respect. Methylotrophic yeast Pichia pastoris is a reliable producer of eukaryotic membrane proteins for crystallography and a promising economical source of isotopically labeled proteins for NMR. We show that eukaryotic membrane protein human aquaporin 1 can be doubly (13C/15N) isotopically labeled in this system and functionally reconstituted into phospholipids, giving excellent resolution of solid-state magic angle spinning NMR spectra.

  19. An Improved NMR Study of Liposomes Using 1-Palmitoyl-2-oleoyl-sn-glycero-3-phospatidylcholine as Model

    Directory of Open Access Journals (Sweden)

    AnnaLaura Segre

    2006-05-01

    Full Text Available In this paper we report a comparative characterization of Small UnilamellarVesicles (SUVs, Large Unilamellar Vesicles (LUVs and Multilamellar Vesicles (MLVsprepared from 1-palmitoyl-2-oleoyl-sn-glycero-3-phospatidylcholine (POPC, carried outusing two NMR techniques, namely High Resolution NMR in solution and HighResolution–Magic Angle Spinning (HR-MAS. The size and size distributions of thesevesicles were investigated using the dynamic light scattering technique. An improvedassignment of the 1H-NMR spectrum of MLVs is also reported.

  20. Application of High-Resolution 1H MAS NMR Spectroscopy to the Analysis of Intact Bones from Mice Exposed to Gamma Radiation

    OpenAIRE

    Zhang, QiBin; Hu, Jian Zhi; Rommereim, Donald N.; Murphy, Mark K; Phipps, Richard P.; HUSO, DAVID L.; Dicello, John F

    2009-01-01

    Herein we demonstrate that high-resolution magic angle spinning (MAS) 1H NMR can be used to profile the pathology of bone marrow rapidly and with minimal sample preparation. The spectral resolution obtained allows several metabolites to be analyzed quantitatively. The level of NMR-detectable metabolites in the epiphysis + metaphysis sections of mouse femur were significantly higher than that observed in the diaphysis of the same femur. The major metabolite damage to bone marrow resulting from...

  1. A 1H NMR pulse gradient spin-echo (PGSE) study of the mass transport of dimethyl oxalate and ethylene glycol: new fuels for the DOFC

    International Nuclear Information System (INIS)

    Direct oxidation fuel cell (DOFC) based on proton conducting membranes (PCM's) represents a promising energy technology, with the vast majority of efforts devoted to methanol as the fuel. The most commonly used PCM is Nafion. However, because of high production cost, high fuel crossover, and sensitivity to metal-ion impurities, alternative materials are being developed. Methanol presents several limitations including low boiling point (∼65 deg. C), and reduced cell efficiency due to fuel crossover. We present here a measure of the mass transport represented by the self-diffusion coefficients (D) of methanol, and two alternative fuels--ethylene glycol (EG) and dimethyl oxalate (DMO) in new low-cost nanoporous (NP) PCM's. The NP-PCM's are based on commercial poly(vinylidene fluoride), with variable pore size determined by the addition of nanoscale SiO2 or TiO2 particles. Proton NMR pulsed gradient spin-echo (PGSE) self-diffusion measurements were conducted on aqueous solutions of 2 M fuel in 3 M H2SO4 and also on five NP-PCM equilibrated in the aqueous solutions over the temperature range of 30-90 deg. C. Here the fuel molecular mobility is indicated by the D values of the methyl and methylene peaks. Results indicate that both DMO and EG solutions have lower fuel molecular mobility than methanol. Results for the various NP-PCM also reveal reduced fuel permeability for DMO and EG compared with methanol

  2. Magnetic field angle dependence of out-of-plane precession in spin torque oscillators having an in-plane magnetized free layer and a perpendicularly magnetized reference layer

    Science.gov (United States)

    Hiramatsu, Ryo; Kubota, Hitoshi; Tsunegi, Sumito; Tamaru, Shingo; Yakushiji, Kay; Fukushima, Akio; Matsumoto, Rie; Imamura, Hiroshi; Yuasa, Shinji

    2016-05-01

    Out-of-plane (OP) precession in spin torque oscillators having an in-plane (IP) magnetized free layer and a perpendicularly magnetized reference layer was studied. The bias voltage (V B) and magnetic field angle (θ) dependence of the OP precession were investigated. The absolute values of the critical magnetic fields (H\\text{B}\\text{c - } and H\\text{B}\\text{c + }) between which OP precession is excited increased as V B increased and as θ changed from the IP to the OP direction. The IP components of H\\text{B}\\text{c +/- } converged to a constant value regardless of θ. This result indicates that excitation of OP precession is suppressed entirely by the IP component of the magnetic field, and the contribution of the OP component can be ignored. The experimentally observed precession behavior was successfully modeled by macrospin simulations.

  3. Towards real-time metabolic profiling of a biopsy specimen during a surgical operation by 1H high resolution magic angle spinning nuclear magnetic resonance: a case report

    Directory of Open Access Journals (Sweden)

    Piotto Martial

    2012-01-01

    Full Text Available Abstract Introduction Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Case presentation Biopsy specimens (n = 9 originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Conclusions Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample. Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater.

  4. Non-contrast-enhanced 4D MR angiography with STAR spin labeling and variable flip angle sampling: a feasibility study for the assessment of Dural Arteriovenous Fistula

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jinhee; Kim, Bom-yi; Choi, Hyun Seok; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-soo [The Catholic University of Korea, Department of Radiology, Seoul St. Mary' s Hospital, College of Medicine, Seoul (Korea, Republic of); Schmitt, Peter [Siemens AG, Healthcare Sector, Erlangen (Germany); Kim, Inseong; Paek, Munyoung [Siemens AG, Healthcare, Seoul (Korea, Republic of)

    2014-04-15

    This study aimed to evaluate the feasibility of non-contrast-enhanced 4D magnetic resonance angiography (NCE 4D MRA) with signal targeting with alternative radiofrequency (STAR) spin labeling and variable flip angle (VFA) sampling in the assessment of dural arteriovenous fistula (DAVF) in the transverse sinus. Nine patients underwent NCE 4D MRA for the evaluation of DAVF in the transverse sinus at 3 T. One patient was examined twice, once before and once after the interventional treatment. All patients also underwent digital subtraction angiography (DSA) and/or contrast-enhanced magnetic resonance angiography (CEMRA). For the acquisition of NCE 4D MRA, a STAR spin tagging method was used, and a VFA sampling was applied in the data readout module instead of a constant flip angle. Two readers evaluated the NCE 4D MRA data for the diagnosis of DAVF and its type with consensus. The results were compared with those from DSA and/or CEMRA. All patients underwent NCE 4D MRA without any difficulty. Among seven patients with patent DAVFs, all cases showed an early visualization of the transverse sinus on NCE 4D MRA. Except for one case, the type of DAVF of NCE 4D MRA was agreed with that of reference standard study. Cortical venous reflux (CVR) was demonstrated in two cases out of three patients with CVR. NCE 4D MRA with STAR tagging and VFA sampling is technically and clinically feasible and represents a promising technique for assessment of DAVF in the transverse sinus. Further technical developments should aim at improvements of spatial and temporal coverage. (orig.)

  5. Non-contrast-enhanced 4D MR angiography with STAR spin labeling and variable flip angle sampling: a feasibility study for the assessment of Dural Arteriovenous Fistula

    International Nuclear Information System (INIS)

    This study aimed to evaluate the feasibility of non-contrast-enhanced 4D magnetic resonance angiography (NCE 4D MRA) with signal targeting with alternative radiofrequency (STAR) spin labeling and variable flip angle (VFA) sampling in the assessment of dural arteriovenous fistula (DAVF) in the transverse sinus. Nine patients underwent NCE 4D MRA for the evaluation of DAVF in the transverse sinus at 3 T. One patient was examined twice, once before and once after the interventional treatment. All patients also underwent digital subtraction angiography (DSA) and/or contrast-enhanced magnetic resonance angiography (CEMRA). For the acquisition of NCE 4D MRA, a STAR spin tagging method was used, and a VFA sampling was applied in the data readout module instead of a constant flip angle. Two readers evaluated the NCE 4D MRA data for the diagnosis of DAVF and its type with consensus. The results were compared with those from DSA and/or CEMRA. All patients underwent NCE 4D MRA without any difficulty. Among seven patients with patent DAVFs, all cases showed an early visualization of the transverse sinus on NCE 4D MRA. Except for one case, the type of DAVF of NCE 4D MRA was agreed with that of reference standard study. Cortical venous reflux (CVR) was demonstrated in two cases out of three patients with CVR. NCE 4D MRA with STAR tagging and VFA sampling is technically and clinically feasible and represents a promising technique for assessment of DAVF in the transverse sinus. Further technical developments should aim at improvements of spatial and temporal coverage. (orig.)

  6. Discrete analysis of stochastic NMR.II

    Science.gov (United States)

    Wong, S. T. S.; Rods, M. S.; Newmark, R. D.; Budinger, T. F.

    Stochastic NMR is an efficient technique for high-field in vivo imaging and spectroscopic studies where the peak RF power required may be prohibitively high for conventional pulsed NMR techniques. A stochastic NMR experiment excites the spin system with a sequence of RF pulses where the flip angles or the phases of the pulses are samples of a discrete stochastic process. In a previous paper the stochastic experiment was analyzed and analytic expressions for the input-output cross-correlations, average signal power, and signal spectral density were obtained for a general stochastic RF excitation. In this paper specific cases of excitation with random phase, fixed flip angle, and excitation with two random components in quadrature are analyzed. The input-output cross-correlation for these two types of excitations is shown to be Lorentzian. Line broadening is the only spectral distortion as the RF excitation power is increased. The systematic noise power is inversely proportional to the number of data points N used in the spectral reconstruction. The use of a complete maximum length sequence (MLS) may improve the signal-to-systematic-noise ratio by 20 dB relative to random binary excitation, but peculiar features in the higher-order autocorrelations of MLS cause noise-like distortion in the reconstructed spectra when the excitation power is high. The amount of noise-like distortion depends on the choice of the MLS generator.

  7. Spin orbit splitting in the valence bands of ZrSxSe2−x: Angle resolved photoemission and density functional theory

    International Nuclear Information System (INIS)

    Highlights: ► We performed high resolution ARPES on 1T–ZrSxSe2−x. ► A characteristic splitting of the chalcogen p-derived VB along high symmetry directions was observed. ► The splitting size at the A point of the BZ is found to increase from 0.06 to 0.31 eV from ZrS2 towards ZrSe2. ► Electronic structure calculations based on the DFT were performed using the model of TB–MBJ. ► The calculations show that the splitting is due to SO coupling of the valence bands. -- Abstract: Angle-resolved photoelectron spectroscopy using synchrotron radiation has been performed on 1T–ZrSxSe2−x, where x varies from 0 to 2, in order to study the influence of the spin-orbit interaction in the valence bands. The crystals were grown by chemical vapour transport technique using Iodine as transport agent. A characteristic splitting of the chalcogen p-derived valence bands along high symmetry directions has been observed experimentally. The size of the splitting increases with the increase of the atomic number of the chalcogenide, e.g. at the A point of the Brillouin zone from 0.06 eV to 0.31 eV with an almost linear dependence with x, as progressing from ZrS2 towards ZrSe2, respectively. Electronic structure calculations based on the density functional theory have been performed using the model of Tran–Blaha [1] and the modified version of the exchange potential proposed by Becke and Johnson [2] (TB–MBJ) both with and without spin-orbit (SO) coupling. The calculations show that the splitting is mainly due to spin-orbit coupling and the degeneracy of the valance bands is lifted

  8. (13) C-TmDOTA as versatile thermometer compound for solid-state NMR of hydrated lipid bilayer membranes.

    Science.gov (United States)

    Umegawa, Yuichi; Tanaka, Yuya; Nobuaki, Matsumori; Murata, Michio

    2016-03-01

    Recent advances in solid-state nuclear magnetic resonance (NMR) techniques, such as magic angle spinning and high-power decoupling, have dramatically increased the sensitivity and resolution of NMR. However, these NMR techniques generate extra heat, causing a temperature difference between the sample in the rotor and the variable temperature gas. This extra heating is a particularly crucial problem for hydrated lipid membrane samples. Thus, to develop an NMR thermometer that is suitable for hydrated lipid samples, thulium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (TmDOTA) was synthesized and labeled with (13) C (i.e., (13) C-TmDOTA) to increase the NMR sensitivity. The complex was mixed with a hydrated lipid membrane, and the system was subjected to solid-state NMR and differential scanning calorimetric analyses. The physical properties of the lipid bilayer and the quality of the NMR spectra of the membrane were negligibly affected by the presence of (13) C-TmDOTA, and the (13) C chemical shift of the complex exhibited a large-temperature dependence. The results demonstrated that (13) C-TmDOTA could be successfully used as a thermometer to accurately monitor temperature changes induced by (1) H decoupling pulses and/or by magic angle spinning and the temperature distribution of the sample inside the rotor. Thus, (13) C-TmDOTA was shown to be a versatile thermometer for hydrated lipid assemblies. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26460094

  9. Relation between magnetization and Faraday angles produced by ultrafast spin-flip processes within the three-level Λ-type system

    International Nuclear Information System (INIS)

    Ultrafast magneto-optical (MO) experiments constitute a powerful tool to explore the magnetization dynamics of diverse materials. Over the last decade, there have been many theoretical and experimental developments on this subject. However, the relation between the magnetization dynamics and the transient MO response still remains unclear. In this work, we calculate the magnetization of a material, as well as the magneto-optical rotation and ellipticity angles measured in a single-beam experiment. Then, we compare the magnetization to the MO response. The magnetic material is modeled by a three-level Λ-type system, which represents a simple model to describe MO effects induced by an ultrafast laser pulse. Our calculations use the density matrix formalism, while the dynamics of the system is obtained by solving the Lindblad equation taking into account population relaxation and dephasing processes. Furthermore, we consider the Faraday rotation of the optical waves that simultaneously causes spin-flip. We show that the Faraday angles remain proportional to the magnetization only if the system has reached the equilibrium-state, and that this proportionality is directly related to the population and coherence decay rates. For the non-equilibrium situation, the previous proportionality relation is no longer valid. We show that our model is able to interpret some recent experimental results obtained in a single-pulse experiment. We further show that, after a critical pulse duration, the decrease of the ellipticity as a function of the absorbed energy is a characteristic of the system

  10. Intracranial cerebrospinal fluid spaces imaging using a pulse-triggered three-dimensional turbo spin echo MR sequence with variable flip-angle distribution

    International Nuclear Information System (INIS)

    To assess the three-dimensional turbo spin echo with variable flip-angle distribution magnetic resonance sequence (SPACE: Sampling Perfection with Application optimised Contrast using different flip-angle Evolution) for the imaging of intracranial cerebrospinal fluid (CSF) spaces. We prospectively investigated 18 healthy volunteers and 25 patients, 20 with communicating hydrocephalus (CH), five with non-communicating hydrocephalus (NCH), using the SPACE sequence at 1.5T. Volume rendering views of both intracranial and ventricular CSF were obtained for all patients and volunteers. The subarachnoid CSF distribution was qualitatively evaluated on volume rendering views using a four-point scale. The CSF volumes within total, ventricular and subarachnoid spaces were calculated as well as the ratio between ventricular and subarachnoid CSF volumes. Three different patterns of subarachnoid CSF distribution were observed. In healthy volunteers we found narrowed CSF spaces within the occipital aera. A diffuse narrowing of the subarachnoid CSF spaces was observed in patients with NCH whereas patients with CH exhibited narrowed CSF spaces within the high midline convexity. The ratios between ventricular and subarachnoid CSF volumes were significantly different among the volunteers, patients with CH and patients with NCH. The assessment of CSF spaces volume and distribution may help to characterise hydrocephalus. (orig.)

  11. Relation between magnetization and Faraday angles produced by ultrafast spin-flip processes within the three-level Λ-type system

    Energy Technology Data Exchange (ETDEWEB)

    Hinschberger, Y. [Departamento de Física e Astronomia, Instituto de Física dos Materiais da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Lavoine, J. P. [Departement of Ultrafast Optics and Nanophotonics, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, CNRS, Université de Strasbourg, 23, Rue du Loess, BP 43, 67034 Strasbourg-Cedex 2 (France)

    2015-08-07

    Ultrafast magneto-optical (MO) experiments constitute a powerful tool to explore the magnetization dynamics of diverse materials. Over the last decade, there have been many theoretical and experimental developments on this subject. However, the relation between the magnetization dynamics and the transient MO response still remains unclear. In this work, we calculate the magnetization of a material, as well as the magneto-optical rotation and ellipticity angles measured in a single-beam experiment. Then, we compare the magnetization to the MO response. The magnetic material is modeled by a three-level Λ-type system, which represents a simple model to describe MO effects induced by an ultrafast laser pulse. Our calculations use the density matrix formalism, while the dynamics of the system is obtained by solving the Lindblad equation taking into account population relaxation and dephasing processes. Furthermore, we consider the Faraday rotation of the optical waves that simultaneously causes spin-flip. We show that the Faraday angles remain proportional to the magnetization only if the system has reached the equilibrium-state, and that this proportionality is directly related to the population and coherence decay rates. For the non-equilibrium situation, the previous proportionality relation is no longer valid. We show that our model is able to interpret some recent experimental results obtained in a single-pulse experiment. We further show that, after a critical pulse duration, the decrease of the ellipticity as a function of the absorbed energy is a characteristic of the system.

  12. Solid-state NMR determination of sugar ring pucker in (13)C-labeled 2'-deoxynucleosides.

    OpenAIRE

    van Dam, Lorens; Ouwerkerk, Niels; Brinkmann, Andreas; Raap, Jan; Levitt, Malcolm H.

    2002-01-01

    The H3'-C3'-C4'-H4' torsional angles of two microcrystalline 2'-deoxynucleosides, thymidine and 2'-deoxycytidine.HCl, doubly (13)C-labeled at the C3' and C4' positions of the sugar ring, have been measured by solid-state magic-angle-spinning nuclear magnetic resonance (NMR). A double-quantum heteronuclear local field experiment with frequency-switched Lee-Goldberg homonuclear decoupling was used. The H3'-C3'-C4'-H4' torsional angles were obtained by comparing the experimental curves with nume...

  13. A software framework for analysing solid-state MAS NMR data

    International Nuclear Information System (INIS)

    Solid-state magic-angle-spinning (MAS) NMR of proteins has undergone many rapid methodological developments in recent years, enabling detailed studies of protein structure, function and dynamics. Software development, however, has not kept pace with these advances and data analysis is mostly performed using tools developed for solution NMR which do not directly address solid-state specific issues. Here we present additions to the CcpNmr Analysis software package which enable easier identification of spinning side bands, straightforward analysis of double quantum spectra, automatic consideration of non-uniform labelling schemes, as well as extension of other existing features to the needs of solid-state MAS data. To underpin this, we have updated and extended the CCPN data model and experiment descriptions to include transfer types and nomenclature appropriate for solid-state NMR experiments, as well as a set of experiment prototypes covering the experiments commonly employed by solid-sate MAS protein NMR spectroscopists. This work not only improves solid-state MAS NMR data analysis but provides a platform for anyone who uses the CCPN data model for programming, data transfer, or data archival involving solid-state MAS NMR data.

  14. A software framework for analysing solid-state MAS NMR data.

    Science.gov (United States)

    Stevens, Tim J; Fogh, Rasmus H; Boucher, Wayne; Higman, Victoria A; Eisenmenger, Frank; Bardiaux, Benjamin; van Rossum, Barth-Jan; Oschkinat, Hartmut; Laue, Ernest D

    2011-12-01

    Solid-state magic-angle-spinning (MAS) NMR of proteins has undergone many rapid methodological developments in recent years, enabling detailed studies of protein structure, function and dynamics. Software development, however, has not kept pace with these advances and data analysis is mostly performed using tools developed for solution NMR which do not directly address solid-state specific issues. Here we present additions to the CcpNmr Analysis software package which enable easier identification of spinning side bands, straightforward analysis of double quantum spectra, automatic consideration of non-uniform labelling schemes, as well as extension of other existing features to the needs of solid-state MAS data. To underpin this, we have updated and extended the CCPN data model and experiment descriptions to include transfer types and nomenclature appropriate for solid-state NMR experiments, as well as a set of experiment prototypes covering the experiments commonly employed by solid-sate MAS protein NMR spectroscopists. This work not only improves solid-state MAS NMR data analysis but provides a platform for anyone who uses the CCPN data model for programming, data transfer, or data archival involving solid-state MAS NMR data. PMID:21953355

  15. A software framework for analysing solid-state MAS NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Tim J.; Fogh, Rasmus H.; Boucher, Wayne [University of Cambridge, Department of Biochemistry (United Kingdom); Higman, Victoria A. [University of Oxford, Department of Biochemistry (United Kingdom); Eisenmenger, Frank; Bardiaux, Benjamin; Rossum, Barth-Jan van; Oschkinat, Hartmut [Leibniz-Institut fuer Molekulare Pharmakologie, Department of Structural Biology (Germany); Laue, Ernest D., E-mail: e.d.laue@bioc.cam.ac.uk [University of Cambridge, Department of Biochemistry (United Kingdom)

    2011-12-15

    Solid-state magic-angle-spinning (MAS) NMR of proteins has undergone many rapid methodological developments in recent years, enabling detailed studies of protein structure, function and dynamics. Software development, however, has not kept pace with these advances and data analysis is mostly performed using tools developed for solution NMR which do not directly address solid-state specific issues. Here we present additions to the CcpNmr Analysis software package which enable easier identification of spinning side bands, straightforward analysis of double quantum spectra, automatic consideration of non-uniform labelling schemes, as well as extension of other existing features to the needs of solid-state MAS data. To underpin this, we have updated and extended the CCPN data model and experiment descriptions to include transfer types and nomenclature appropriate for solid-state NMR experiments, as well as a set of experiment prototypes covering the experiments commonly employed by solid-sate MAS protein NMR spectroscopists. This work not only improves solid-state MAS NMR data analysis but provides a platform for anyone who uses the CCPN data model for programming, data transfer, or data archival involving solid-state MAS NMR data.

  16. Evaluating pyrolysis-GC/MS and 13C CPMAS NMR in conjunction with a molecular mixing model of the Penido Vello peat deposit, NW Spain

    NARCIS (Netherlands)

    Kaal, J.; Baldock, J.A.; Buurman, P.; Nierop, K.G.J.; Pontevedra-Pombal, X.; Martínez-Cortizas, A.

    2007-01-01

    We performed solid state 13C cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy and pyrolysis¿gas chromatography/mass spectrometry (Py¿GC/MS) on the Penido Vello peat deposit located in Galicia, NW Spain. Often regarded as complementary techniques, solid st

  17. Faster pediatric 3-T abdominal magnetic resonance imaging: comparison between conventional and variable refocusing flip-angle single-shot fast spin-echo sequences

    International Nuclear Information System (INIS)

    Single-shot fast spin echo (SSFSE) is particularly appealing in pediatric patients because of its motion robustness. However radiofrequency energy deposition at 3 tesla forces long pauses between slices, leading to longer scans, longer breath-holds and more between-slice motion. We sought to learn whether modulation of the SSFSE refocusing flip-angle train could reduce radiofrequency energy deposition without degrading image quality, thereby reducing inter-slice pauses and overall scan times. We modulated the refocusing flip-angle train for SSFSE to minimize energy deposition while minimizing blurring and motion-related signal loss. In a cohort of 50 consecutive patients (25 boys, mean age 5.5 years, range 1 month to 17 years) referred for abdominal MRI we obtained standard SSFSE and variable refocusing flip-angle (vrfSSFSE) images and recorded sequence scan times. Two readers independently scored the images in blinded, randomized order for noise, tissue contrast, sharpness, artifacts and left lobe hepatic signal uniformity on a four-point scale. The null hypothesis of no difference between SSFSE and vrfSSFSE image-quality was assessed with a Mann-Whitney U test, and the null hypothesis of no scan time difference was assessed with the paired t-test. SSFSE and vrfSSFSE mean acquisition times were 54.3 and 26.2 s, respectively (P-value <0.0001). For each reader, SSFSE and vrfSSFSE noise, tissue contrast, sharpness and artifacts were not significantly different (P-values 0.18-0.86). However, SSFSE had better left lobe hepatic signal uniformity (P < 0.01, both readers). vrfSSFSE is twice as fast as SSFSE, with equivalent image quality with the exception of left hepatic lobe signal heterogeneity. (orig.)

  18. Faster pediatric 3-T abdominal magnetic resonance imaging: comparison between conventional and variable refocusing flip-angle single-shot fast spin-echo sequences

    Energy Technology Data Exchange (ETDEWEB)

    Ruangwattanapaisarn, Nichanan [Mahidol University, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Bangkok (Thailand); Stanford University, LPCH Department of Radiology, Stanford, CA (United States); Loening, Andreas M.; Saranathan, Manojkumar; Vasanawala, Shreyas S. [Stanford University, LPCH Department of Radiology, Stanford, CA (United States); Litwiller, Daniel V. [GE Healthcare, Rochester, MN (United States)

    2015-06-15

    Single-shot fast spin echo (SSFSE) is particularly appealing in pediatric patients because of its motion robustness. However radiofrequency energy deposition at 3 tesla forces long pauses between slices, leading to longer scans, longer breath-holds and more between-slice motion. We sought to learn whether modulation of the SSFSE refocusing flip-angle train could reduce radiofrequency energy deposition without degrading image quality, thereby reducing inter-slice pauses and overall scan times. We modulated the refocusing flip-angle train for SSFSE to minimize energy deposition while minimizing blurring and motion-related signal loss. In a cohort of 50 consecutive patients (25 boys, mean age 5.5 years, range 1 month to 17 years) referred for abdominal MRI we obtained standard SSFSE and variable refocusing flip-angle (vrfSSFSE) images and recorded sequence scan times. Two readers independently scored the images in blinded, randomized order for noise, tissue contrast, sharpness, artifacts and left lobe hepatic signal uniformity on a four-point scale. The null hypothesis of no difference between SSFSE and vrfSSFSE image-quality was assessed with a Mann-Whitney U test, and the null hypothesis of no scan time difference was assessed with the paired t-test. SSFSE and vrfSSFSE mean acquisition times were 54.3 and 26.2 s, respectively (P-value <0.0001). For each reader, SSFSE and vrfSSFSE noise, tissue contrast, sharpness and artifacts were not significantly different (P-values 0.18-0.86). However, SSFSE had better left lobe hepatic signal uniformity (P < 0.01, both readers). vrfSSFSE is twice as fast as SSFSE, with equivalent image quality with the exception of left hepatic lobe signal heterogeneity. (orig.)

  19. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mote, Kaustubh R. [University of Minnesota, Department of Chemistry (United States); Gopinath, T. [University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics (United States); Veglia, Gianluigi, E-mail: vegli001@umn.edu [University of Minnesota, Department of Chemistry (United States)

    2013-10-15

    The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD {approx}0.44 A, a tilt angle of 24 Degree-Sign {+-} 1 Degree-Sign , and an azimuthal angle of 55 Degree-Sign {+-} 6 Degree-Sign . This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR.

  20. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy

    International Nuclear Information System (INIS)

    The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD ∼0.44 Å, a tilt angle of 24° ± 1°, and an azimuthal angle of 55° ± 6°. This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR

  1. Characteristic properties of high- and low-spin-state five-coordinate σ-bonded aryl-, alkyl-, and perfluoroaryliron(III) porphyrins: 1H NMR, ESR, Moessbauer, and magnetic studies

    International Nuclear Information System (INIS)

    The magnetic behavior of σ-alkyliron(III) (or σ-aryliron(III)) porphyrins is studied in solution and in solution and in solid state by various spectroscopic methods: 1H NMR, ESR, and 57Fe Moessbauer spectroscopies. Variable-temperature magnetic susceptibility measurements were also performed on these complexes. The iron(III) atom of these compounds is present in different spin states. These are high (S = 5/2) or low spin (S = 1/2) at room temperature. Several factors can affect the spin state, the major parameter being the nature of the axial ligand. The perfluoroaryl axial groups (C6F4H, C6F5) lead to complexes in a pure high-spin state whatever the temperature. In contrast, the (P)Fe(R(Ar)) complexes where R = CH3, Ar = C6H5 and p-MeC6H4, and P = OEP, TPP, T(m-Me)PP, T(p-Me)PP, T(p-Et2N)PP, and (β-CN)4TPP behave differently and are in a low-spin state at room temperature. However, for the latter compounds in frozen solution or in the solid state, some high-spin sites are observed by ESR spectroscopy. The amount is critically dependent on the nature of the axial and porphyrin ligands. Moreover, the solvent matrix appears very important. In the solid state and on the basis of ESR data, the spin mixture could be slightly modified by grinding of the crystalline sample, leading to high-spin entity increase. The effect of these parameters is examined with respect to the nature of the metal-porphyrin and metal-ligand bond. Correlations between stereochemistry, spin state, and the nature of ligands are discussed. 64 refs., 9 figs., 8 tabs

  2. 10B and 11B high-resolution NMR studies on boron-doped diamond

    Science.gov (United States)

    Murakami, M.; Shimizu, T.; Tansho, M.; Takano, Y.; Ishii, S.; Ekimov, E. A.; Sidorov, V. A.; Takegoshi, K.

    2010-12-01

    11B magic-angle spinning (MAS) NMR experiments are applied to B-doped diamond samples prepared by high-pressure and high-temperature methods. From the spectrum, we show that there are at least four boron signal components and the one at 28.5 ppm is ascribed to the substitutional boron in the diamond structure providing the carriers responsible for conductivity. We further apply two-dimensional (2D) NMR to examine 1H dipolar broadening and 11B-11B boron spin diffusion, and candidates purported so far for the excess boron, that is, a boron + hydrogen complex and -B-B- and/or -B-C-B- clusters are negated. Furthermore, we show that 10B MAS NMR is useful to selectively observe the substitutional boron in the diamond structure appearing at 28.5 ppm, whose quadrupolar coupling is much smaller than that of the excess boron at 65.5 ppm.

  3. Structural nature of 7Li and 11B sites in the nonlinear optical material LiB3O5 using static NMR and MAS NMR

    International Nuclear Information System (INIS)

    The structural nature of the nonlinear optical properties of LiB3O5 is analyzed using single-crystal nuclear magnetic resonance (NMR) and magic angle spinning (MAS) NMR. The 3-coordinated trigonal [B(1) and B(2)] and 4-coordinated tetragonal [B(3)] sites are distinguished using the spectrum and the spin-lattice relaxation time in rotating frame T1ρ, which was obtained from the 11B MAS NMR. Moreover, the T1 and T1ρ values for 7Li and 11B are compared, and the activation energies were obtained. The T1ρ values of the boron nuclei in LiB3O5 show no significant changes. These results may be closely related to the largest second-order nonlinear optical coefficient. - Highlights: • The structural nature of the nonlinear optical properties of LiB3O5. • Single-crystal NMR and MAS NMR. • The 3-coordnated trigonal and 4-coordinated tetragonal. • The spin-lattice relaxation time in rotating frame T1ρ

  4. Relaxation-compensated difference spin diffusion NMR for detecting 13C–13C long-range correlations in proteins and polysaccharides

    International Nuclear Information System (INIS)

    The measurement of long-range distances remains a challenge in solid-state NMR structure determination of biological macromolecules. In 2D and 3D correlation spectra of uniformly 13C-labeled biomolecules, inter-residue, inter-segmental, and intermolecular 13C–13C cross peaks that provide important long-range distance constraints for three-dimensional structures often overlap with short-range cross peaks that only reflect the covalent structure of the molecule. It is therefore desirable to develop new approaches to obtain spectra containing only long-range cross peaks. Here we show that a relaxation-compensated modification of the commonly used 2D 1H-driven spin diffusion (PDSD) experiment allows the clean detection of such long-range cross peaks. By adding a z-filter to keep the total z-period of the experiment constant, we compensate for 13C T1 relaxation. As a result, the difference spectrum between a long- and a scaled short-mixing time spectrum show only long-range correlation signals. We show that one- and two-bond cross peaks equalize within a few tens of milliseconds. Within ∼200 ms, the intensity equilibrates within an amino acid residue and a monosaccharide to a value that reflects the number of spins in the local network. With T1 relaxation compensation, at longer mixing times, inter-residue and inter-segmental cross peaks increase in intensity whereas intra-segmental cross-peak intensities remain unchanged relative to each other and can all be subtracted out. Without relaxation compensation, the difference 2D spectra exhibit both negative and positive intensities due to heterogeneous T1 relaxation in most biomolecules, which can cause peak cancellation. We demonstrate this relaxation-compensated difference PDSD approach on amino acids, monosaccharides, a crystalline model peptide, a membrane-bound peptide and a plant cell wall sample. The resulting difference spectra yield clean multi-bond, inter-residue and intermolecular correlation peaks, which

  5. Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology.

    Science.gov (United States)

    Gelis, Ioannis; Vitzthum, Veronika; Dhimole, Neha; Caporini, Marc A; Schedlbauer, Andreas; Carnevale, Diego; Connell, Sean R; Fucini, Paola; Bodenhausen, Geoffrey

    2013-06-01

    The impact of Nuclear Magnetic Resonance (NMR) on studies of large macromolecular complexes hinges on improvements in sensitivity and resolution. Dynamic nuclear polarization (DNP) in the solid state can offer improved sensitivity, provided sample preparation is optimized to preserve spectral resolution. For a few nanomoles of intact ribosomes and an 800 kDa ribosomal complex we demonstrate that the combination of DNP and magic-angle spinning NMR (MAS-NMR) allows one to overcome current sensitivity limitations so that homo- and heteronuclear (13)C and (15)N NMR correlation spectra can be recorded. Ribosome particles, directly pelleted and frozen into an NMR rotor, yield DNP signal enhancements on the order of ~25-fold and spectra that exhibit narrow linewidths, suitable for obtaining site-specific information. We anticipate that the same approach is applicable to other high molecular weight complexes. PMID:23689811

  6. Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology

    International Nuclear Information System (INIS)

    The impact of Nuclear Magnetic Resonance (NMR) on studies of large macromolecular complexes hinges on improvements in sensitivity and resolution. Dynamic nuclear polarization (DNP) in the solid state can offer improved sensitivity, provided sample preparation is optimized to preserve spectral resolution. For a few nanomoles of intact ribosomes and an 800 kDa ribosomal complex we demonstrate that the combination of DNP and magic-angle spinning NMR (MAS-NMR) allows one to overcome current sensitivity limitations so that homo- and heteronuclear 13C and 15N NMR correlation spectra can be recorded. Ribosome particles, directly pelleted and frozen into an NMR rotor, yield DNP signal enhancements on the order of ∼25-fold and spectra that exhibit narrow linewidths, suitable for obtaining site-specific information. We anticipate that the same approach is applicable to other high molecular weight complexes.

  7. Nuclear spin noise imaging

    OpenAIRE

    Müller, Norbert; Jerschow, Alexej

    2006-01-01

    NMR images were obtained from the proton spin noise signals of a water-containing phantom, which was placed in the highly tuned, low-noise resonant circuit of a cryogenically cooled NMR probe in the presence of systematically varied magnetic field gradients. The spatially resolved proton spin density was obtained from the raw signal by a modified projection–reconstruction protocol. Although spin noise imaging is inherently less sensitive than conventional magnetic resonance imaging, it afford...

  8. NMR evidence for localized spins on Cu(2) sites from Cu NMR in YBa/sub 2/Cu/sub 3/O/sub 7/ and YBa/sub 2/Cu/sub 3/O/sub 6. 75/ single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Horvatic, M.; Segransan, P.; Berthier, C.; Berthier, Y.; Butaud, P.; Henry, J.Y.; Couach, M.; Chaminade, J.P.

    1989-04-01

    We report /sup 63,65/Cu NMR spectra and nuclear spin-lattice relaxation data for YBa/sub 2/Cu/sub 3/O/sub 7/(T/sub c/ = 91 K) and YBa/sub 2/Cu/sub 3/O/sub 6.75/(T/sub c/ = 5/sub 7/ K) single crystals between 45 and 300 K. An analysis of the spin-lattice relaxation rates gives evidence for localized electronic spins on the planar Cu(2) sites. In YBa/sub 2/Cu/sub 3/O/sub 6.75/ both fourfold and twofold oxygen-coordinated Cu(1) are observed; the latter experience the same quadrupolar coupling (..nu../sub Q/approx. =31.5 MHz) as the Cu(2) sites but a nearly zero magnetic hyperfine shift and a much slower relaxation rate (d/sup 10/ configuration).

  9. Solid state nuclear magnetic resonance: investigating the spins of nuclear related materials

    International Nuclear Information System (INIS)

    The author reviews his successive research works: his research thesis work on the Multiple Quantum Magic Angle Spinning (MQMAS) which is a quadric-polar nucleus multi-quanta correlation spectroscopy method, the modelling of NMR spectra of disordered materials, the application to materials of interest for the nuclear industry (notably the glasses used for nuclear waste containment). He presents the various research projects in which he is involved: storing glasses, nuclear magnetic resonance in paramagnetism, solid hydrogen storing matrices, methodological and instrument developments in high magnetic field and high resolution solid NMR, long range distance measurement by solid state Tritium NMR (observing the structure and dynamics of biological complex systems at work)

  10. An NMR Investigation of Phase Structure and Chain Dynamics in the Polyethylene/Montmorillonite Nano composites

    International Nuclear Information System (INIS)

    Novel exfoliated and interacted polyethylene (PE)/montmorillonite (MMT) nano composites prepared by in situ polymerization were characterized by solid-state nuclear magnetic resonance (NMR). The phase structure and molecular mobility were investigated by proton and carbon NMR under static and magic-angle spinning (MAS) conditions. The results showed that incorporation of MMT layer enhanced the polyethylene crystallinity behavior. The chain mobility of crystalline phase, interphase and amorphous phase was hindered in the nano composites. The phase structure and chain dynamics were also investigated upon changing the temperature. The orthorhombic and monoclinic phases were detected according to the 13CP/MAS NMR. Quantitative characterization of the phase structure was also conducted by 13C DP/MAS upon changing the temperature. Finally, the difference in the phase structure and chain dynamics in each phase of PE/nano composites was compared based on the NMR results when fiber filler was introduced

  11. Metabolic mapping by use of high-resolution magic angle spinning 1H MR spectroscopy for assessment of apoptosis in cervical carcinomas

    Directory of Open Access Journals (Sweden)

    Sundfør Kolbein

    2007-01-01

    Full Text Available Abstract Background High-resolution magic angle proton magnetic resonance spectroscopy (HR 1H MAS MRS provides a broad metabolic mapping of intact tumor samples and allows for microscopy investigations of the samples after spectra acquisition. Experimental studies have suggested that the method can be used for detection of apoptosis, but this has not been investigated in a clinical setting so far. We have explored this hypothesis in cervical cancers by searching for metabolites associated with apoptosis that were not influenced by other histopathological parameters like tumor load and tumor cell density. Methods Biopsies (n = 44 taken before and during radiotherapy in 23 patients were subjected to HR MAS MRS. A standard pulse-acquire spectrum provided information about lipids, and a spin-echo spectrum enabled detection of non-lipid metabolites in the lipid region of the spectra. Apoptotic cell density, tumor cell fraction, and tumor cell density were determined by histopathological analysis after spectra acquisition. Results The apoptotic cell density correlated with the standard pulse-acquire spectra (p 2 to CH3 (p = 0.02. In contrast, the spin-echo spectra contained the main information on tumor cell fraction and tumor cell density (p p = 0.001 and between tumor cell density and glycerophosphocholine (GPC concentration (p = 0.024 and ratio of GPC to choline (p Conclusion Our findings indicate that the apoptotic activity of cervical cancers can be assessed from the lipid metabolites in HR MAS MR spectra and that the HR MAS data may reveal novel information on the metabolic changes characteristic of apoptosis. These changes differed from those associated with tumor load and tumor cell density, suggesting an application of the method to explore the role of apoptosis in the course of the disease.

  12. 29Si and 27Al MAS NMR spectra of mullites from different kaolinites.

    Science.gov (United States)

    He, Hongping; Guo, Jiugao; Zhu, Jianxi; Yuan, Peng; Hu, Cheng

    2004-04-01

    Mullites synthesized from four kaolinites with different random defect densities have been studied by 27Al and 29Si magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) and X-ray diffraction (XRD). All these mullites show the same XRD pattern. However, 29Si and 27Al MAS NMR spectra reveal that the mullites derived from kaolinites with high defect densities, have a sillimanite-type Al/Si ordering scheme and are low in silica, whereas those mullites derived from kaolinites with low defect densities, consist of both sillimanite- and mullite-type Al/Si ordering schemes and are rich in silica. PMID:15084323

  13. Phosphorus 31 solid state NMR characterization of oligonucleotides covalently bound to a solid support.

    OpenAIRE

    Macdonald, P M; Damha, M J; Ganeshan, K; Braich, R; Zabarylo, S V

    1996-01-01

    31P cross polarization (CP) magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra were acquired for various linear and branched di- and tri-nucleotides attached to a controlled pore glass (CPG) solid support. The technique readily distinguishes the oxidation state of the phosphorus atom (phosphate versus phosphate), the presence or absence of a protecting group attached directly to phosphorus (cyanoethyl), and other large changes in the phosphorus chemistry (phosphate versus pho...

  14. Structure, organization and dynamics of functional supramolecular materials studied by solid-state NMR

    OpenAIRE

    Akbey, Ü.

    2008-01-01

    Functional materials have great importance due to their many important applications. The characterization of supramolecular architectures which are held together by non-covalent interactions is of most importance to understand their properties. Solid-state NMR methods have recently been proven to be able to unravel such structure-property relations with the help of fast magic-angle spinning and advanced pulse sequences. The aim of the current work is to understand the structure and dynami...

  15. Spin orbit splitting in the valence bands of ZrS{sub x}Se{sub 2−x}: Angle resolved photoemission and density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Moustafa, Mohamed, E-mail: moustafa@physik.hu-berlin.de [Institut für Physik, Humboldt Universität zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Faculty of Engineering, Pharos University in Alexandria, Canal El Mahmoudia Str., Alexandria (Egypt); Ghafari, Aliakbar; Paulheim, Alexander; Janowitz, Christoph; Manzke, Recardo [Institut für Physik, Humboldt Universität zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany)

    2013-08-15

    Highlights: ► We performed high resolution ARPES on 1T–ZrS{sub x}Se{sub 2−x}. ► A characteristic splitting of the chalcogen p-derived VB along high symmetry directions was observed. ► The splitting size at the A point of the BZ is found to increase from 0.06 to 0.31 eV from ZrS{sub 2} towards ZrSe{sub 2}. ► Electronic structure calculations based on the DFT were performed using the model of TB–MBJ. ► The calculations show that the splitting is due to SO coupling of the valence bands. -- Abstract: Angle-resolved photoelectron spectroscopy using synchrotron radiation has been performed on 1T–ZrS{sub x}Se{sub 2−x}, where x varies from 0 to 2, in order to study the influence of the spin-orbit interaction in the valence bands. The crystals were grown by chemical vapour transport technique using Iodine as transport agent. A characteristic splitting of the chalcogen p-derived valence bands along high symmetry directions has been observed experimentally. The size of the splitting increases with the increase of the atomic number of the chalcogenide, e.g. at the A point of the Brillouin zone from 0.06 eV to 0.31 eV with an almost linear dependence with x, as progressing from ZrS{sub 2} towards ZrSe{sub 2}, respectively. Electronic structure calculations based on the density functional theory have been performed using the model of Tran–Blaha [1] and the modified version of the exchange potential proposed by Becke and Johnson [2] (TB–MBJ) both with and without spin-orbit (SO) coupling. The calculations show that the splitting is mainly due to spin-orbit coupling and the degeneracy of the valance bands is lifted.

  16. Metabolic mapping by use of high-resolution magic angle spinning 1H MR spectroscopy for assessment of apoptosis in cervical carcinomas

    International Nuclear Information System (INIS)

    High-resolution magic angle proton magnetic resonance spectroscopy (HR 1H MAS MRS) provides a broad metabolic mapping of intact tumor samples and allows for microscopy investigations of the samples after spectra acquisition. Experimental studies have suggested that the method can be used for detection of apoptosis, but this has not been investigated in a clinical setting so far. We have explored this hypothesis in cervical cancers by searching for metabolites associated with apoptosis that were not influenced by other histopathological parameters like tumor load and tumor cell density. Biopsies (n = 44) taken before and during radiotherapy in 23 patients were subjected to HR MAS MRS. A standard pulse-acquire spectrum provided information about lipids, and a spin-echo spectrum enabled detection of non-lipid metabolites in the lipid region of the spectra. Apoptotic cell density, tumor cell fraction, and tumor cell density were determined by histopathological analysis after spectra acquisition. The apoptotic cell density correlated with the standard pulse-acquire spectra (p < 0.001), but not with the spin-echo spectra, showing that the lipid metabolites were most important. The combined information of all lipids contributed to the correlation, with a major contribution from the ratio of fatty acid -CH2 to CH3 (p = 0.02). In contrast, the spin-echo spectra contained the main information on tumor cell fraction and tumor cell density (p < 0.001), for which cholines, creatine, taurine, glucose, and lactate were most important. Significant correlations were found between tumor cell fraction and glucose concentration (p = 0.001) and between tumor cell density and glycerophosphocholine (GPC) concentration (p = 0.024) and ratio of GPC to choline (p < 0.001). Our findings indicate that the apoptotic activity of cervical cancers can be assessed from the lipid metabolites in HR MAS MR spectra and that the HR MAS data may reveal novel information on the metabolic changes

  17. Solid state NMR studies of gels derived from low molecular mass gelators.

    Science.gov (United States)

    Nonappa; Kolehmainen, E

    2016-07-13

    Since its invention more than six decades ago, nuclear magnetic resonance (NMR) spectroscopy has evolved as an inevitable part of chemical as well as structural analysis of small molecules, polymers, biomaterials and hybrid materials. In the solution state, due to the increased viscosity of complex viscoelastic fluids such as gels, liquid crystals and other soft materials, the rate of molecular tumbling is reduced, which in turn affects the chemical shift anisotropy, dipolar and quadrupolar interactions. As a consequence the solution state NMR spectra show broad lines, and therefore, extracting detailed structural information is a challenging task. In this context, solid state (SS) NMR has the ability to distinguish between a minute amount of polymorphic forms, conformational changes, and the number of non-equivalent molecules in an asymmetric unit of a crystal lattice, and to provide both qualitative as well as quantitative analytical data with a short-range order. Therefore, SS NMR has continued to evolve as an indispensable tool for structural analysis and gave birth to a new field called NMR crystallography. Solid state cross polarization (CP) and high resolution (HR) magic angle spinning (MAS) NMR spectroscopy has been used to study weak interactions in polymer gels. However, the application of SS NMR spectroscopy to study gels derived from low molecular weight gelators has been limited until recently. In this review, we will focus on the importance of solid state NMR spectroscopy in understanding and elucidating the structure of supramolecular gels derived from low molecular weight gelators with selected examples. PMID:27374054

  18. Nuclear spins of surfaces

    International Nuclear Information System (INIS)

    Nuclear spin polarized atomic probes (alkali atoms) can be used to investigate the microscopic properties of solid surfaces. NMR and relaxation studies are discussed for nuclear spin polarized alkali atoms chemisorbed on hot metal surfaces. The use of nuclear spin-polarized radioactive nuclei, which allows the extension of this method to cold surfaces, is mentioned briefly. (orig.)

  19. MRI of the regions of inner ear and cerebellopontine angle using a 3D T2-weighted turbo spin-echo sequence. Comparison with conventional 2D T2-weighted turbo spin-echo sequences and T1-weighted spin-echo sequences

    International Nuclear Information System (INIS)

    Purpose: To assess the value of a three-dimensional (3D) T2-weighted turbo spin-echo sequence (3D T2-TSE) in comparison to conventional two-dimensional (2D) T2-weighted TSE and unenhanced and enhanced T1-weighted spin-echo sequences (SE) in imaging anatomic structures and pathologic changes of the inner ear and cerebellopontine angle. Patients and methods: The inner ear and cerebellopotine angle were investigated by MRI in three healthy volunteers and 18 patients performing a 2D T2-weighted turbo spin-echo sequence and a 3D T2-TSE in the axial plane. In the patient study, 2D T1-weighted SE sequences both before and after the i.v. injection of gadopentate dimeglumine in both the axial and coronal plane were performed in addition. Results: Only the 3D T2-TSE enabled an accurate imaging of the anatomic structures. In cases of pathology, the 3D T2-TSE provided additional information to the performed 2D sequences. The combination of the 3D T2-TSE with unenhanced and enhanced 2D T1-weighted SE enabled the most accurate diagnosis in case of pathology. Conclusions: Accurate depiction of anatomic structures of the inner ear and cerebellopontine angle could be obtained by 3D T2-TSE only. The most accurate diagnosis in cases of pathology was provided by the combination of the 3D T2-TSE with unenhanced and enhanced 2D T1-weighted spin-echo sequences. (orig.)

  20. Evaluation of Tissue Metabolites with High Resolution Magic Angle Spinning MR Spectroscopy Human Prostate Samples After Three-Year Storage at -80ºC

    Directory of Open Access Journals (Sweden)

    Kate W. Jordan

    2007-01-01

    Full Text Available Accurate interpretation and correlation of tissue spectroscopy with pathological conditions requires disease specific tissue metabolite databases; however, specimens for research are often kept in frozen storage for various lengths of time. Whether such frozen storage results in alterations to the measured metabolites is a critical but largely unknown issue. In this study, human prostate tissues from specimens that had been stored at –80 ºC for 32 months were analyzed with high resolution magic angle spinning (HRMAS magnetic resonance (MR spectroscopy, and compared with the initial measurements of the adjacent specimens from the same cases when snap frozen in the operation room and kept frozen for less than 24 hours. Results of the current study indicate that that the storage-induced metabolite alterations are below the limits that tissue MR spectroscopy can discriminate. Furthermore, quantitative pathology evaluations suggest the observed alterations in metabolite profi les measured from the adjacent specimens of the same prostates may be accounted for by tissue pathological heterogeneities and are not a result of storage conditions. Hence, these results indicate that long-term frozen storage of prostate specimens can be quantitatively analyzed by HRMAS MR spectroscopy without concerns regarding significant metabolic degradation or alteration.

  1. Determination of NH proton chemical shift anisotropy with 14N-1H heteronuclear decoupling using ultrafast magic angle spinning solid-state NMR

    Science.gov (United States)

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-12-01

    The extraction of chemical shift anisotropy (CSA) tensors of protons either directly bonded to 14N nuclei (I = 1) or lying in their vicinity using rotor-synchronous recoupling pulse sequence is always fraught with difficulty due to simultaneous recoupling of 14N-1H heteronuclear dipolar couplings and the lack of methods to efficiently decouple these interactions. This difficulty mainly arises from the presence of large 14N quadrupolar interactions in comparison to the rf field that can practically be achieved. In the present work it is demonstrated that the application of on-resonance 14N-1H decoupling with rf field strength ∼30 times weaker than the 14N quadrupolar coupling during 1H CSA recoupling under ultrafast MAS (90 kHz) results in CSA lineshapes that are free from any distortions from recoupled 14N-1H interactions. With the use of extensive numerical simulations we have shown the applicability of our proposed method on a naturally abundant L-Histidine HCl·H2O sample.

  2. Application of Multivariete Analysis on High-Resolution Magic Angle Spinning (HR-MAS) 1H NMR Spectra of Rabbit Cornea

    Czech Academy of Sciences Publication Activity Database

    Tessem, M. B.; Bathen, T. F.; Čejková, Jitka; Midelfart, A.

    Basel: Karger, 2004. s. 67. ISSN 0030-3747. [EVER 2004 (European Association for Vision and Eye Research). 24.09.2004-27.09.2004, Vilamoura] R&D Projects: GA ČR GA304/03/0419 Keywords : rabbit cornea Subject RIV: FF - HEENT, Dentistry

  3. Pulsed NMR experiments in superfluid 3He confined in aerogel

    International Nuclear Information System (INIS)

    Pulsed NMR experiments have been performed in both B and supercooled A phases of superfluid 3He in aerogel. Dependencies of spin precession frequency on tipping angle in B-phase of superfluid 3He in aerogel are found to be different for pure 3He and for the cell preplated with 4He. A sharp increase of the frequency for tipping angles greater than 104 deg. was observed in low temperature superfluid phase of 3He in 4He preplated aerogel as it is expected for the B-phase structure of the order parameter. Dependencies of the frequency on the tipping angle in supercooled A-phase are similar for both pure 3He and 4He preplated aerogel

  4. Rhodopsin-lipid interactions studied by NMR.

    Science.gov (United States)

    Soubias, Olivier; Gawrisch, Klaus

    2013-01-01

    The biophysical properties of the lipid matrix are known to influence function of integral membrane proteins. We report on a sample preparation method for reconstitution of membrane proteins which uses porous anodic aluminum oxide (AAO) filters with 200-nm-wide pores of high density. The substrate permits formation of tubular, single membranes that line the inner surface of pores. One square centimeter of filter with a thickness of 60μm yields on the order of 500cm(2) of solid-supported single bilayer surface, sufficient for NMR studies. The tubular bilayers are free of detergent, fully hydrated, and accessible for ligands from one side of the membrane. The use of AAO filters greatly improves reproducibility of the reconstitution process such that the influence of protein on lipid order parameters can be studied with high resolution. As an example, results for the G protein-coupled receptor of class A, bovine rhodopsin, are shown. By (2)H NMR order parameter measurements, it is detected that rhodopsin insertion elastically deforms membranes near the protein. Furthermore, by (1)H saturation-transfer NMR under conditions of magic angle spinning, we demonstrate detection of preferences in interactions of rhodopsin with particular lipid species. It is assumed that function of integral membrane proteins depends on both protein-induced elastic deformations of the lipid matrix and preferences for interaction of the protein with particular lipid species in the first layer of lipids surrounding the protein. PMID:23374188

  5. NMR methodologies for studying mitochondrial bioenergetics.

    Science.gov (United States)

    Alves, Tiago C; Jarak, Ivana; Carvalho, Rui A

    2012-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is a technique with an increasing importance in the study of metabolic diseases. Its initial important role in the determination of chemical structures (1, 2) has been considerably overcome by its potential for the in vivo study of metabolism (3-5). The main characteristic that makes this technique so attractive is its noninvasiveness. Only nuclei capable of transitioning between energy states, in the presence of an intense and constant magnetic field, are studied. This includes abundant nuclei such as proton ((1)H) and phosphorous ((31)P), as well as stable isotopes such as deuterium ((2)H) and carbon 13 ((13)C). This allows a wide range of applications that vary from the determination of water distribution in tissues (as obtained in a magnetic resonance imaging scan) to the calculation of metabolic fluxes under ex vivo and in vivo conditions without the need to use radioactive tracers or tissue biopsies (as in a magnetic resonance spectroscopy (MRS) scan). In this chapter, some technical aspects of the methodology of an NMR/MRS experiment as well as how it can be used to study mitochondrial bioenergetics are overviewed. Advantages and disadvantages of in vivo MRS versus high-resolution NMR using proton high rotation magic angle spinning (HRMAS) of tissue biopsies and tissue extracts are also discussed. PMID:22057574

  6. Principles of high resolution NMR in solids

    CERN Document Server

    Mehring, Michael

    1983-01-01

    The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure­ less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-polarization, two-dimen­ sional and multiple-quantum spectroscopy and other techniques during the last decade it became possible to resolve finer details of nuclear spin interactions in solids. I have felt that graduate students, researchers and others beginning to get involved with these techniques needed a book which trea...

  7. Polymorphism of thio and seleniumthio organic phosphorus compounds on the base of high-resolution NMR spectroscopy in solid state; Polimorfizm polaczen tio- i selenotiofosforoorganicznych na podstawie wysokorozdzielczej spektroskopii MRJ

    Energy Technology Data Exchange (ETDEWEB)

    Potrzebowski, M.; Knopik, P. [Centrum Badan Molekularnych i Makromolekularnych, Polska Akademia Nauk, Lodz (Poland); Grassmann, G. [Technische Univ., Dresden (Germany); Wieczorek, M.; Blaszczyk, J. [Politechnika Lodzka, Lodz (Poland)

    1994-12-31

    Molecule structure and dynamics have been studied for thio and seleniumthio organic phosphorus compounds. The Cross Polarization Magic Angle Spinning (CPMAS) high resolution NMR technique for {sup 13}C and {sup 31}P as well as {sup 77}Se nuclei have been used. 9 refs, 5 figs.

  8. MRI of intracranial vertebral artery dissection: evaluation of intramural haematoma using a black blood, variable-flip-angle 3D turbo spin-echo sequence

    International Nuclear Information System (INIS)

    We investigated the efficacy of three-dimensional black blood T1-weighted imaging (3D-BB-T1WI) using a variable refocusing flip angle turbo spin-echo sequence in the diagnosis of intracranial vertebral artery dissection (VAD). Sixteen consecutive patients diagnosed with intracranial VAD underwent magnetic resonance imaging that included 3D time-of-flight-MRA, axial spin-echo T1-weighted images (SE-T1WI) and oblique coronal 3D-BB-T1WI sequences. The visualization, morphology and extent of intramural haematomas were assessed and compared among the sequences. Results obtained by digital subtraction angiography (DSA), 3D-angiography and/or 3D-CT angiography (CTA) were used as standards of reference. 3D-BB-T1WI revealed intramural haematomas in all cases, whereas SE-T1WI and magnetic resonance angiography (MRA) failed to reveal a haematoma in one case and three cases, respectively. The mean visualization grading score for the intramural haematoma was the highest for 3D-BB-T1WI, and there was a statistically significant difference among the sequences (p < 0.001). At least a portion of the intramural haematoma was distinguishable from the lumen on 3D-BB-T1WI, whereas the haematomas were entirely indistinguishable from intraluminal signals on MRA in two cases (12.5 %) and on SE-T1WI in one case (6.3 %). 3D-BB-T1WI revealed the characteristic crescent shape of the intramural haematoma in 14 cases (87.5 %), whereas SE-T1WI and MRA revealed a crescent shape in only 7 cases (43.8 %) and 8 cases (50 %), respectively. In a consensus reading, 3D-BB-T1WI was considered the most consistent sequence in representing the extent and morphology of the lesion in 14 cases (87.5 %), compared to DSA and CTA. 3D-BB-T1WI is a promising method to evaluate intramural haematoma in patients with suspected intracranial VAD. (orig.)

  9. Renal transplant NMR

    International Nuclear Information System (INIS)

    The preliminary results of NMR evaluation of renal transplants (Txs) are reported including correlation with nuclear medicine (NM) and ultrasound (US). Thirteen Txs (8 cadaver (Cd), 5 living related doner (LRD) in 13 patients (6M, 7F) ranging in age from 25-47 (x 35) were evaluated by NM (32), NMR (15) and US (5). Clinical diagnoses included: rejection (8), ATN (2), infarction (1), and normal (2). Of the 8 patients with rejection (5) Cd; 3 LRD) pathologic proof was obtained in 3. An experimental 0.12 T resistive magnet (GE) was used with a partial saturation technique with repetition time (TR) of 143 and 286 msec to provide T1 weighting. T2 weighted information was obtained with a spin echo technique with echo times (TE) of 20, 40, 60 and 80 msec. The NMR appearance of normal Txs consisted of a uniform signal intensity (Tx> pelvic musculature), well-defined internal architecture with good cortical medullary differentiation and normal appearing vessels. The NMR appearance of abnormal transplants consisted of a heterogeneous or overall decrease in signal intensity (kidney muscle) with poor cortical medullary differentiation with or without a halo of decreased signal intensity. Although NMR was able to differentiate normal from abnormal, it was unable to clearly discriminate between ATN and rejection. Advantages of NMR included the ability to demonstrate regional anatomy, vasculature, post operative fluid collections and hematomas, and associated avascular necrosis of the hips

  10. NMR molecular photography

    OpenAIRE

    Khitrin, Anatoly K.; Ermakov, Vladimir L.; Fung, B M

    2002-01-01

    A procedure is described for storing a 2D pattern consisting of 32x32 = 1024 bits in a spin state of a molecular system and then retrieving the stored information as a stack of NMR spectra. The system used is a nematic liquid crystal, the protons of which act as spin clusters with strong intramolecular interactions. The technique used is a programmable multi-frequency irradiation with low amplitude. When it is applied to the liquid crystal, a large number of coherent long-lived 1H response si...

  11. Beyond simple point sets to the indistinguishable point-set tensorial limits of R-W algebras: multiple G-invariants and the carrier-map-based quantal-basis completeness of uniform NMR spin systems

    International Nuclear Information System (INIS)

    Augmented quasiparticle (QP) mappings, as applied to indistinguishable point sets of (Liouvillian) democratic-recoupled (DR) tensors, provide for a 1:1 invariant labelling of the underlying (disjoint) dual projective map carrier subspaces, where the Liouville pattern basis set is defined via superboson unit-tensor actions on a null space, | )). The co-operative-action Liouville algebras described here imply parallel limitations to Jucys graph recoupling and its related Racah-Wigner (R-W) algebras once DR indistinguishable point tensorial sets are involved, as in non-SR Sn,n>=4 dominant (NMR) spin symmetry. The importance of Sn G-invariants, as labels for disjoint carrier subspaces in such automorphic spin symmetries, arises from their essential role in defining the quantal-completeness of indistinguishable point sets. From the established properties of augmented-QPs as super-bosons (Temme 2002 Int. J. Quantum Chem. 89 429) (i.e., beyond the earlier Hilbert-space-based Louck and Biedenharn boson pattern views), insight into Atiyah and Sutcliffe's (A-S) assertions (Atiyah and Sutcliffe 2002 Proc. R. Soc. A 458 1089) on the limitations of graph recoupling theory to distinct point sets is obtained. This clarifies the wider analytic intractible of automorphic DR spin systems-beyond the Levi-Civita cyclic-commutation (R-W) approach (Levy-Leblond and Levy-Nahas 1965 J. Math. Phys. 6 1372) which holds for a mono-invariant problem. For (rotating-frame) density matrix approaches to [A]n, [A]n(X) and [AX]n(SU(2) x Sn) (dual) NMR systems, the focus is necessarily on the specialized nature of indistinguishable point sets within multiple invariant-theoretic-based, dynamical spin physics. Here, the GI(s) (GI-cardinality) constitute an important part of the dual irrep set, {Dk(U-tilde) x Γ-tilde[λ](v-tilde)(P)}, with combinatorics, as a central facet of invariant theory, playing a crucial role in the concept of 'quantal completeness' and the impact of A-S's assertion on the

  12. Solid-state NMR spectroscopy of protein complexes.

    Science.gov (United States)

    Sun, Shangjin; Han, Yun; Paramasivam, Sivakumar; Yan, Si; Siglin, Amanda E; Williams, John C; Byeon, In-Ja L; Ahn, Jinwoo; Gronenborn, Angela M; Polenova, Tatyana

    2012-01-01

    Protein-protein interactions are vital for many biological processes. These interactions often result in the formation of protein assemblies that are large in size, insoluble, and difficult to crystallize, and therefore are challenging to study by structure biology techniques, such as single crystal X-ray diffraction and solution NMR spectroscopy. Solid-state NMR (SSNMR) spectroscopy is emerging as a promising technique for studies of such protein assemblies because it is not limited by molecular size, solubility, or lack of long-range order. In the past several years, we have applied magic angle spinning SSNMR-based methods to study several protein complexes. In this chapter, we discuss the general SSNMR methodologies employed for structural and dynamics analyses of protein complexes with specific examples from our work on thioredoxin reassemblies, HIV-1 capsid protein assemblies, and microtubule-associated protein assemblies. We present protocols for sample preparation and characterization, pulse sequences, SSNMR spectra collection, and data analysis. PMID:22167681

  13. Solid state 13C NMR analysis of Brazilian cretaceous ambers

    International Nuclear Information System (INIS)

    13C cross polarization with magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectra have been obtained for the first time to three Cretaceous amber samples from South America. The samples were dated to Lower Cretaceous and collected in sediments from the Amazonas, Araripe and Reconcavo basins, Brazil. All samples have very similar spectra, consistent with a common paleobotanical source. Some aspects of the spectra suggest a relationship between Brazilian ambers and Araucariaceae family, such as intense resonances at 38-39 ppm. All samples are constituted by polylabdane structure associated to Class Ib resins, constituted by polymers of labdanoid diterpenes. Finally, information concerning some structural changes during maturation, such as isomerization of Δ8(17) and Δ12(13) unsaturations, were obtained by 13C NMR analyses. The results concerning botanical affinities are in accordance with previous results obtained by gas chromatography-mass spectrometry (GC-MS). (author)

  14. A large geometric distortion in the first photointermediate of rhodopsin, determined by double-quantum solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Concistre, Maria, E-mail: mariac@soton.ac.uk; Johannessen, Ole G.; McLean, Neville [University of Southampton, School of Chemistry (United Kingdom); Bovee-Geurts, Petra H. M. [Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences (Netherlands); Brown, Richard C. D. [University of Southampton, School of Chemistry (United Kingdom); DeGrip, Willem J. [Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences (Netherlands); Levitt, Malcolm H., E-mail: mhl@soton.ac.uk [University of Southampton, School of Chemistry (United Kingdom)

    2012-07-15

    Double-quantum magic-angle-spinning NMR experiments were performed on 11,12-{sup 13}C{sub 2}-retinylidene-rhodopsin under illumination at low temperature, in order to characterize torsional angle changes at the C11-C12 photoisomerization site. The sample was illuminated in the NMR rotor at low temperature ({approx}120 K) in order to trap the primary photointermediate, bathorhodopsin. The NMR data are consistent with a strong torsional twist of the HCCH moiety at the isomerization site. Although the HCCH torsional twist was determined to be at least 40 Degree-Sign , it was not possible to quantify it more closely. The presence of a strong twist is in agreement with previous Raman observations. The energetic implications of this geometric distortion are discussed.

  15. Acidic properties of SSZ-33 and SSZ-35 novel zeolites: a complex infrared and MAS NMR study

    Czech Academy of Sciences Publication Activity Database

    Gil, B.; Zones, S. I.; Hwang, S.-J.; Voláková, Martina; Čejka, Jiří

    2008-01-01

    Roč. 112, č. 8 (2008), s. 2997-3007. ISSN 1932-7447 R&D Projects: GA ČR GA104/07/0383; GA AV ČR 1QS400400560 Institutional research plan: CEZ:AV0Z40400503 Keywords : nuclear magnetic resonance * adsorbed probe molecules * angle- spinning NMR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.396, year: 2008

  16. Genetic algorithm optimized triply compensated pulses in NMR spectroscopy.

    Science.gov (United States)

    Manu, V S; Veglia, Gianluigi

    2015-11-01

    Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed π and π/2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-(13)C, (15)N NAVL peptide as well as U-(13)C, (15)N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences. PMID:26473327

  17. High-resolution NMR of hydrogen in organic solids by DNP enhanced natural abundance deuterium spectroscopy

    Science.gov (United States)

    Rossini, Aaron J.; Schlagnitweit, Judith; Lesage, Anne; Emsley, Lyndon

    2015-10-01

    We demonstrate that high field (9.4 T) dynamic nuclear polarization (DNP) at cryogenic (∼100 K) sample temperatures enables the rapid acquisition of natural abundance 1H-2H cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra of organic solids. Spectra were obtained by impregnating substrates with a solution of the stable DNP polarizing agent TEKPol in tetrachloroethane. Tetrachloroethane is a non-solvent for the solids, and the unmodified substrates are then polarized through spin diffusion. High quality natural abundance 2H CPMAS spectra of histidine hydrochloride monohydrate, glycylglycine and theophylline were acquired in less than 2 h, providing direct access to hydrogen chemical shifts and quadrupolar couplings. The spectral resolution of the 2H solid-state NMR spectra is comparable to that of 1H spectra obtained with state of the art homonuclear decoupling techniques.

  18. Two dimensional solid state NMR

    International Nuclear Information System (INIS)

    This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs

  19. Discrimination of sugarcane according to cultivar by 1H NMR and chemometric analyses

    Energy Technology Data Exchange (ETDEWEB)

    Alves Filho, Elenilson G.; Silva, Lorena M.A.; Choze, Rafael; Liao, Luciano M. [Laboratorio de Ressonancia Magnetica Nuclear, Instituto de Quimica, Universidade Federal de Goias (UFG), Goiania, GO (Brazil); Honda, Neli K.; Alcantara, Glaucia B. [Departamento de Quimica, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil)

    2012-07-01

    Several technologies for the development of new sugarcane cultivars have mainly focused on the increase in productivity and greater disease resistance. Sugarcane cultivars are usually identified by the organography of the leaves and stems, the analysis of peroxidase and esterase isoenzyme activities and the total soluble protein as well as soluble solid content. Nuclear magnetic resonance (NMR) associated with chemometric analysis has proven to be a valuable tool for cultivar assessment. Thus, this article describes the potential of chemometric analysis applied to 1H high resolution magic angle spinning (HRMAS) and NMR in solution for the investigation of sugarcane cultivars. For this purpose, leaves from eight different cultivars of sugarcane were investigated by {sup 1}H NMR spectroscopy in combination with chemometric analysis. The approach shows to be a useful tool for the distinction and classification of different sugarcane cultivars as well as to access the differences on its chemical composition. (author)

  20. The EBLM Project I-Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the Brown Dwarf limit

    CERN Document Server

    Triaud, Amaury H M J; Anderson, David R; Cargile, Phill; Cameron, Andrew Collier; Doyle, Amanda P; Faedi, Francesca; Gillon, Michaël; Chew, Yilen Gomez Maqueo; Hellier, Coel; Jehin, Emmanuel; Maxted, Pierre; Naef, Dominique; Pepe, Francesco; Pollacco, Don; Queloz, Didier; Ségransan, Damien; Smalley, Barry; Stassun, Keivan; Udry, Stéphane; West, Richard G

    2012-01-01

    This paper introduces a series of papers aiming to study the dozens of low mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F, G, K+M eclipsing binaries through the Rossiter-McLaughlin effect. Here we report on the spin-orbit angle of WASP-30b, a transiting brown dwarf, and improve its orbital parameters. We also present the mass, radius, spin-orbit angle and orbital parameters of a new eclipsing binary, J1219-39b (1SWAPJ121921.03-395125.6, TYC 7760-484-1), which, with a mass of 95 +/- 2 Mjup, is close to the limit between brown dwarfs and stars. We find that both objects orbit in planes that appear aligned with their primaries' equatorial plane...

  1. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  2. Structure and dynamics of the ApA, ApC, CpA and CpC RNA dinucleoside monophosphates resolved with NMR scalar spin-spin couplings

    Czech Academy of Sciences Publication Activity Database

    Vokáčová, Zuzana; Buděšínský, Miloš; Rosenberg, Ivan; Schneider, Bohdan; Šponer, Jiří; Sychrovský, Vladimír

    2009-01-01

    Roč. 113, č. 4 (2009), s. 1182-1191. ISSN 1520-6106 R&D Projects: GA AV ČR IAA400550701 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50040507; CEZ:AV0Z50520701 Keywords : RNA * NMR * MD Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.471, year: 2009

  3. Structural properties of carbon nanotubes derived from 13C NMR

    KAUST Repository

    Abou-Hamad, E.

    2011-10-10

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled carbon nanotubes with diameters in the range from 0.7 to 100 nm and with number of walls from 1 to 90. We provide models on how diameter and the number of nanotube walls influence NMR linewidth and line position. Both models are supported by theoretical calculations. Increasing the diameter D, from the smallest investigated nanotube, which in our study corresponds to the inner nanotube of a double-walled tube to the largest studied diameter, corresponding to large multiwalled nanotubes, leads to a 23.5 ppm diamagnetic shift of the isotropic NMR line position δ. We show that the isotropic line follows the relation δ = 18.3/D + 102.5 ppm, where D is the diameter of the tube and NMR line position δ is relative to tetramethylsilane. The relation asymptotically tends to approach the line position expected in graphene. A characteristic broadening of the line shape is observed with the increasing number of walls. This feature can be rationalized by an isotropic shift distribution originating from different diamagnetic shielding of the encapsulated nanotubes together with a heterogeneity of the samples. Based on our results, NMR is shown to be a nondestructive spectroscopic method that can be used as a complementary method to, for example, transmission electron microscopy to obtain structural information for carbon nanotubes, especially bulk samples.

  4. Multiple Antiferromagnetic Spin Fluctuations and Novel Evolution of Tc in Iron-Based Superconductors LaFe(As1‑xPx)(O1‑yFy) Revealed by 31P-NMR Studies

    Science.gov (United States)

    Shiota, Takayoshi; Mukuda, Hidekazu; Uekubo, Masahiro; Engetsu, Fuko; Yashima, Mitsuharu; Kitaoka, Yoshio; Lai, Kwing To; Usui, Hidetomo; Kuroki, Kazuhiko; Miyasaka, Shigeki; Tajima, Setsuko

    2016-05-01

    We report on 31P-NMR studies of LaFe(As1‑xPx)(O1‑yFy) over wide compositions for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 0.14, which provide clear evidence that antiferromagnetic spin fluctuations (AFMSFs) are one of the indispensable elements for enhancing Tc. Systematic 31P-NMR measurements revealed two types of AFMSFs in the temperature evolution, that is, one is the AFMSFs that develop rapidly down to Tc with low-energy characteristics, and the other, with relatively higher energy than the former, develops gradually upon cooling from high temperature. The low-energy AFMSFs in low y (electron doping) over a wide x (pnictogen height suppression) range are associated with the two orbitals of dxz/yz, whereas the higher-energy ones for a wide y region around low x originate from the three orbitals of dxy and dxz/yz. We remark that the nonmonotonic variation of Tc as a function of x and y in LaFe(As1‑xPx)(O1‑yFy) is attributed to these multiple AFMSFs originating from degenerated multiple 3d orbitals inherent to Fe-pnictide superconductors.

  5. Sealed rotors for in situ high temperature high pressure MAS NMR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hu, Mary Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Zhenchao [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Souchang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vjunov, Aleksei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shi, Hui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Camaioni, Donald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Peden, Charles H. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lercher, Johannes A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-06

    Magic angle spinning (MAS) nuclear magnetic resonance (NMR) investigations on heterogeneous samples containing solids, semi-solids, liquid and gases or a mixture of them under non-conventional conditions of a combined high pressure and high temperature, or cold temperature suffer from the unavailability of a perfectly sealed rotor. Here, we report the design of reusable and perfectly-sealed all-zircornia MAS rotors. The rotors are easy to use and are suitable for operation temperatures from below 0 to 250 °C and pressures up to 100 bar. As an example of potential applications we performed in situ MAS NMR investigations of AlPO₄-5 molecular sieve crystallization, a kinetic study of the cyclohexanol dehydration reaction using 13C MAS NMR, and an investigation of the metabolomics of intact biological tissue at low temperature using 1H HR-MAS NMR spectroscopy. The in situ MAS NMR experiments performed using the reported rotors allowed reproduction of the results from traditional batch reactions, while offering more detailed quantitative information at the molecular level, as demonstrated for the molecular sieve synthesis and activation energy measurements for cyclohexanol dehydration. The perfectly sealed rotor also shows promising application for metabolomics studies using 1H HR-MAS NMR.

  6. Complex methyl groups dynamics in [(CH3)4P]3Sb2Br9 (PBA) from low to high temperatures by proton spin-lattice relaxation and narrowing of proton NMR spectrum.

    Science.gov (United States)

    Latanowicz, L; Medycki, W; Jakubas, R

    2009-11-01

    Molecular dynamics of a polycrystalline sample of [(CH(3))(4)P](3)Sb(2)Br(9) (PBA) has been studied on the basis of the T(1) (24.7 MHz) relaxation time measurement, the proton second moment of NMR and the earlier published T(1) (90 MHz) relaxation times. The study was performed in a wide range of temperatures (30-337 K). The tunnel splitting omega(T) of the methyl groups was estimated as of low frequency (from kHz to few MHz). The proton spin pairs of the methyl group are known to perform a complex internal motion being a resultant of four components. Three of them involve mass transportation over and through the potential barrier and are characterized by the correlation times tau(3) and tau(T)of the jumps over the barrier and tunnel jumps in the threefold potential of the methyl group and tau(iso) the correlation time of isotropic rotation of the whole TMP cation. For tau(3) and tau(iso) the Arrhenius temperature dependence was assumed, while for tau(T)--the Schrödinger one. The fourth motion causes fluctuations of the tunnel splitting frequency, omega(T), and it is related to the lifetime of the methyl spin at the energy level. The correlation function for this fourth motion (tau(omega) correlation time) has been proposed by Müller-Warmuth et al. In this paper a formula for the correlation function and spectral density of the complex motion made of the above-mentioned four components was derived and used in interpretation of the T(1) relaxation time. The second moment of proton NMR line at temperatures below 50K is four times lower than its value for the rigid structure. The three components of the internal motion characterized by tau(T), tau(H), and tau(iso) were proved to reduce the second moment of the NMR line. The tunnel jumps of the methyl group reduce M(2) at almost 0K, the classical jumps over the barrier reduce M(2) in the vicinity of 50K, while the isotropic motion near 150K. Results of the study on the dynamics of CH(3) groups of TMP cation based on

  7. A 3% Measurement of the Beam Normal Single Spin Asymmetry in Forward Angle Elastic Electron-Proton Scattering using the Qweak Setup

    Energy Technology Data Exchange (ETDEWEB)

    Waidyawansa, Dinayadura Buddhini [Ohio Univ., Athens, OH (United States)

    2013-08-01

    The beam normal single spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable of the imaginary part of the two-photon exchange process. Moreover, it is a potential source of false asymmetry in parity violating electron scattering experiments. The Q{sub weak} experiment uses parity violating electron scattering to make a direct measurement of the weak charge of the proton. The targeted 4% measurement of the weak charge of the proton probes for parity violating new physics beyond the Standard Model. The beam normal single spin asymmetry at Q{sub weak} kinematics is at least three orders of magnitude larger than 5 ppb precision of the parity violating asymmetry. To better understand this parity conserving background, the Q{sub weak} Collaboration has performed elastic scattering measurements with fully transversely polarized electron beam on the proton and aluminum. This dissertation presents the analysis of the 3% measurement (1.3% statistical and 2.6% systematic) of beam normal single spin asymmetry in electronproton scattering at a Q2 of 0.025 (GeV/c)2. It is the most precise existing measurement of beam normal single spin asymmetry available at the time. A measurement of this precision helps to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process.

  8. Exploring the conformational energy landscape of glassy disaccharides by cross polarization magic angle spinning 13C nuclear magnetic resonance and numerical simulations. II. Enhanced molecular flexibility in amorphous trehalose

    Science.gov (United States)

    Lefort, Ronan; Bordat, Patrice; Cesaro, Attilio; Descamps, Marc

    2007-01-01

    This paper uses chemical shift surfaces to simulate experimental C13 cross polarization magic angle spinning spectra for amorphous solid state disaccharides, paying particular attention to the glycosidic linkage atoms in trehalose, sucrose, and lactose. The combination of molecular mechanics with density functional theory/gauge invariant atomic orbital ab initio methods provides reliable structural information on the conformational distribution in the glass. The results are interpreted in terms of an enhanced flexibility that trehalose possesses in the amorphous solid state, at least on the time scale of C13 nuclear magnetic resonance measurements. Implications of these findings for the fragility of trehalose glass and bioprotectant action are discussed.

  9. Measurement of the weak mixing angle and the spin of the gluon from angular distributions in the reaction pp{yields} Z/{gamma}*+X{yields}{mu}{sup +}{mu}{sup -}+X with ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Schmieden, Kristof

    2013-04-15

    The measurement of the effective weak mixing angle with the ATLAS experiment at the LHC is presented. It is extracted from the forward-backward asymmetry in the polar angle distribution of the muons originating from Z boson decays in the reaction pp{yields}Z/{gamma}{sup *}+X{yields} {mu}{sup +}{mu}{sup -}+X. In total 4.7 fb{sup -1} of proton-proton collisions at {radical}(s)=7 TeV are analysed. In addition, the full polar and azimuthal angular distributions are measured as a function of the transverse momentum of the Z/{gamma}{sup *} system and are compared to several simulations as well as recent results obtained in p anti p collisions. Finally, the angular distributions are used to confirm the spin of the gluon using the Lam-Tung relation.

  10. Measurement of the angular distributions in the reaction pp → Z/γ* + X → μ+μ- + X and extraction of the weak mixing angle and the spin of the gluon

    International Nuclear Information System (INIS)

    The measurement of the effective weak mixing angle with the ATLAS experiment at the LHC is presented. It is extracted from the forward-backward asymmetry in the polar angle distribution of the muons originating from Z boson decays in the reaction pp → Z/γ* + X → μ+μ- + X. In total 4.7 fb-1 of proton-proton collisions at √(s) = 7 TeV are analysed. In addition, the full polar and azimuthal angular distributions are measured as a function of the transverse momentum of the Z/γ* system. The comparisons to several simulations as well as recent results obtained in p anti p collisions are presented. Finally, the angular distributions are used to confirm the spin of the gluon using the Lam-Tung relation.

  11. Structure and dynamics of the ApA, ApC, CpA and CpC RNA dinucleoside monophosphates resolved with NMR scalar spin-spin couplings

    Czech Academy of Sciences Publication Activity Database

    Vokáčová, Zuzana; Schneider, Bohdan; Buděšínský, Miloš; Rosenberg, Ivan; Šponer, Jiří; Sychrovský, Vladimír

    2009-01-01

    Roč. 16, 1a (2009), b52-b52. ISSN 1211-5894. [Meeting of the Czechoslovak and Slovak Biologists /7./. 12.03.2009-14.03.2009, Nové Hrady] R&D Projects: GA AV ČR IAA400550701 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50040507 Keywords : NMR * dinucleoside monophosphate Subject RIV: CF - Physical ; Theoretical Chemistry

  12. The stoichiometry of synthetic alunite as a function of hydrothermal aging investigated by solid-state NMR spectroscopy, powder X-ray diffraction and infrared spectroscopy

    DEFF Research Database (Denmark)

    Grube, Elisabeth; Nielsen, Ulla Gro

    2015-01-01

    angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The 1H MAS NMR spectra recorded at high magnetic field (21.1 T, 900 MHz) allowed for a clear separation of the different proton environments and for quantitative determination of the aluminum vacancy concentration as a function of time....... The concentration of structural defects determined from, i.e., aluminum vacancies was reduced from 4 to 1 %, as the reaction time was extended from one to 31 days based on 1H MAS NMR. This was further supported by an increase of the unit cell parameter c, which is indicative of the relative...... concentration of potassium defects present, from 17.261(1) to 17.324(5) Å. Solid-state 27Al MAS NMR revealed a decrease in the defect concentration as a function of time and showed the presence of 7-10 % impurities in the samples....

  13. HRMAS NMR Analysis of Algae and Identification of Molecules of Interest via Conventional 1D and 2D NMR: Sample Preparation and Optimization of Experimental Conditions.

    Science.gov (United States)

    Simon, Gaëlle; Kervarec, Nelly; Cérantola, Stéphane

    2015-01-01

    Nuclear magnetic resonance (NMR) has become an astounding tool for molecular characterization. Thanks to the development of probes and the increase of magnetic field, NMR has entered the field of biology and facilitated the identification of natural compounds. Indeed, this nondestructive NMR tool makes possible the complete characterization of less and less quantities of material via 1D and 2D sequences on many nuclei (e.g., (1)H, (13)C, (31)P, (15)N). More recently, the development of high-resolution magic-angle spinning (HRMAS) probes have permitted direct analysis of living tissue (e.g., a piece of algae) without prior extraction providing information on both the total content and the ratio of different molecules within the sample; thus HRMAS facilitates a wide range of analyses, such as species differentiation or studies of metabolomics according to various environmental or experimental conditions. This chapter describes the specific sample preparation, based on an algal sample or extract, required for all NMR analyses in order to optimize the NMR response and obtain the most valuable information. PMID:26108507

  14. Dynamic nuclear spin polarization

    International Nuclear Information System (INIS)

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs

  15. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  16. 1H HRMAS NMR spectroscopy and chemometrics for evaluation of metabolic changes in citrus sinensis Caused by Xanthomonas axonopodis pv. citri

    International Nuclear Information System (INIS)

    Xanthomonas axonopodis (Xac) bacterium causes one of the most feared and untreatable diseases in citriculture: citrus canker. To understand the response mechanisms of orange trees when attacked by Xac, leaves and fruits of Citrus sinensis were directly evaluated by HRMAS NMR (high resolution magic angle spinning nuclear magnetic resonance) spectroscopy. This technique allows the analysis of samples without laborious pre-treatments and also allows access to important information about chemical composition of samples. The orange tree leaves and fruit peels investigated in this study demonstrated the biochemical changes caused by Xac. Aided by chemometric analysis, the HRMAS NMR results show relevant changes in amino acids, carbohydrates, organic acids and terpenoids content. (author)

  17. Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy

    OpenAIRE

    Allan, Phoebe K.; Griffin, John M; Darwiche, Ali; Borkiewicz, Olaf J.; Wiaderek, Kamila M.; Chapman, Karena W.; Morris, Andrew J.; Chupas, Peter J.; Monconduit, Laure; Grey, Clare P.

    2016-01-01

    Operando pair distribution function (PDF) analysis and ex situ ??Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline Na?Sb phases from the total PDF, an approach constrained by chemical phase information gained from ??Na ssNMR in reference to relevant model compounds, leads to the identification of two previou...

  18. Hydration kinetics for the alite, belite, and calcium aluminate phase in Portland cements from 27Al and 29Si MAS NMR spectroscopy

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Jensen, Ole Mejlhede; Jakobsen, Hans Jørgen

    1997-01-01

    29Si magic-angle spinning (MAS) NMR spectroscopy is shown to be a valuable tool for obtaining the quantities of alite and belite in hydrated Portland cements. The hydration (1-180 days) of a white Portland cement with 10 wt.% silica fume added is investigated and the degrees of hydration for alit...... belite, and silica fume are determined. It is demonstrated that 27Al MAS NMR spectra of hydrated Portland cements can give quantitative information about the formation of ettringite and the conversion of this phase to monosulphate during hydration....

  19. A Simple Approach for Obtaining High Resolution, High Sensitivity ¹H NMR Metabolite Spectra of Biofluids with Limited Mass Supply

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.; Minard, Kevin R.; Sears, Jesse A.

    2006-11-01

    A simple approach is reported that yields high resolution, high sensitivity ¹H NMR spectra of biofluids with limited mass supply. This is achieved by spinning a capillary sample tube containing a biofluid at the magic angle at a frequency of about 80Hz. A 2D pulse sequence called ¹H PASS is then used to produce a high-resolution ¹H NMR spectrum that is free from magnetic susceptibility induced line broadening. With this new approach a high resolution ¹H NMR spectrum of biofluids with a volume less than 1.0 µl can be easily achieved at a magnetic field strength as low as 7.05T. Furthermore, the methodology facilitates easy sample handling, i.e., the samples can be directly collected into inexpensive and disposable capillary tubes at the site of collection and subsequently used for NMR measurements. In addition, slow magic angle spinning improves magnetic field shimming and is especially suitable for high throughput investigations. In this paper first results are shown obtained in a magnetic field of 7.05T on urine samples collected from mice using a modified commercial NMR probe.

  20. High-Resolution NMR of Quadrupolar Nuclei in the Solid State

    Energy Technology Data Exchange (ETDEWEB)

    Gann, Sheryl Lee

    1995-11-30

    This dissertation describes recent developments in solid state nuclear magnetic resonance (NMR), for the most part involving the use of dynamic-angle spinning (DAS) NMR to study quadrupolar nuclei. Chapter 1 introduces some of the basic concepts and theory that will be referred to in later chapters, such as the density operator, product operators, rotations, coherence transfer pathways, phase cycling, and the various nuclear spin interactions, including the quadrupolar interaction. Chapter 2 describes the theory behind motional averaging experiments, including DAS, which is a technique where a sample is spun sequentially about two axis oriented at different angles with respect to the external magnetic field such that the chemical shift and quadrupolar anisotropy are averaged to zero. Work done on various rubidium-87 salts is presented as a demonstration of DAS. Chapter 3 explains how to remove sidebands from DAS and magic-angle spinning (MAS) experiments, which result from the time-dependence of the Hamiltonian under sample spinning conditions, using rotor-synchronized {pi}-pulses. Data from these experiments, known as DAH-180 and MAH-180, respectively, are presented for both rubidium and lead salts. In addition, the applicability of this technique to double rotation (DOR) experiments is discussed. Chapter 4 concerns the addition of cross-polarization to DAS (CPDAS). The theory behind spin locking and cross polarizing quadrupolar nuclei is explained and a method of avoiding the resulting problems by performing cross polarization at 0{sup o} (parallel) with respect to the magnetic field is presented. Experimental results are shown for a sodium-23 compound, sodium pyruvate, and for oxygen-17 labeled L-akmine. In Chapter 5, a method for broadening the Hartmann-Hahn matching condition under MAS, called variable effective field cross-polarization (VEFCI?), is presented, along with experimental work on adamantane and polycarbonate.

  1. NMR studies of benzene mobility in microporous metal-organic framework MOF-5

    International Nuclear Information System (INIS)

    Microporous metal-organic frameworks (MOF) are crystalline coordination polymers with regular three dimensional pore networks. These pore networks enable adsorption and diffusion of guest molecules. Molecular Dynamics (MD) simulations show that benzene has a liquid-like mobility inside the pores of MOF-5. Nuclear Magnetic Resonance (NMR) methods allow experimental access to guest mobilities inside such pore networks. This report presents the results of pulsed field gradient NMR (PFG NMR) self-diffusion measurements of benzene adsorbed in MOF-5. In these experiments multi-exponential spin echo decays were observed, which are usually caused by different phases of self-diffusion. These different phases of benzene mobility were unexpected for diffusion of molecules inside an isotropic framework and have to originate in the host-guest and guest-guest interaction. By modern diffusion-relaxation correlation spectroscopy (DRCOSY) translational self-diffusion and microscopic relaxation behavior were correlated. Together with magic angle spinning (MAS) NMR spectroscopy these investigations reveal that the faster component of the diffusion coefficients can be assigned to diffusion inside the porous crystal structure of MOF-5.

  2. 31P MAS-NMR of human erythrocytes: independence of cell volume from angular velocity.

    Science.gov (United States)

    Kuchel, P W; Bubb, W A; Ramadan, S; Chapman, B E; Philp, D J; Coen, M; Gready, J E; Harvey, P J; McLean, A J; Hook, J

    2004-09-01

    31P magic angle spinning NMR (MAS-NMR) spectra were obtained from suspensions of human red blood cells (RBCs) that contained the cell-volume-sensitive probe molecule, dimethyl methylphosphonate (DMMP). A mathematical representation of the spectral-peak shape, including the separation and width-at-half-height in the 31P NMR spectra, as a function of rotor speed, enabled us to explore the extent to which a change in cell volume would be reflected in the spectra if it occurred. We concluded that a fractional volume change in excess of 3% would have been detected by our experiments. Thus, the experiments indicated that the mean cell volume did not change by this amount even at the highest spinning rate of 7 kHz. The mean cell volume and intracellular 31P line-width were independent of the packing density of the cells and of the initial cell volume. The relationship of these conclusions to other non-NMR studies of pressure effects on cells is noted. PMID:15334588

  3. NMR approaches for structural analysis of multidomain proteins and complexes in solution.

    Science.gov (United States)

    Göbl, Christoph; Madl, Tobias; Simon, Bernd; Sattler, Michael

    2014-07-01

    NMR spectroscopy is a key method for studying the structure and dynamics of (large) multidomain proteins and complexes in solution. It plays a unique role in integrated structural biology approaches as especially information about conformational dynamics can be readily obtained at residue resolution. Here, we review NMR techniques for such studies focusing on state-of-the-art tools and practical aspects. An efficient approach for determining the quaternary structure of multidomain complexes starts from the structures of individual domains or subunits. The arrangement of the domains/subunits within the complex is then defined based on NMR measurements that provide information about the domain interfaces combined with (long-range) distance and orientational restraints. Aspects discussed include sample preparation, specific isotope labeling and spin labeling; determination of binding interfaces and domain/subunit arrangements from chemical shift perturbations (CSP), nuclear Overhauser effects (NOEs), isotope editing/filtering, cross-saturation, and differential line broadening; and based on paramagnetic relaxation enhancements (PRE) using covalent and soluble spin labels. Finally, the utility of complementary methods such as small-angle X-ray or neutron scattering (SAXS, SANS), electron paramagnetic resonance (EPR) or fluorescence spectroscopy techniques is discussed. The applications of NMR techniques are illustrated with studies of challenging (high molecular weight) protein complexes. PMID:24924266

  4. Applications of 3He neutron spin filters at the NCNR

    International Nuclear Information System (INIS)

    At the NIST Center for Neutron Research (NCNR), we have applied 3He neutron spin filters (NSFs) to the instruments where 3He NSFs are advantageous, such as thermal triple-axis spectrometry, small-angle neutron scattering, and diffuse reflectometry. We present the status of our development and application of this method, including polarized gas production by spin-exchange optical pumping, magnetostatic cavities for storage of the polarized gas on the beam line, and nuclear magnetic resonance (NMR)-based, on-line monitoring and reversal of the 3He polarization. We present the status of developing user-friendly interfaces incorporated into the instrument software to handle these 3He neutron spin filters while taking data and performing data analysis. Finally we discuss the status of development of a polarization capability on the multi-axis crystal spectrometer, which requires polarization analysis over a 220 deg. angular range.

  5. Formation of p-cresol:piperazine complex in solution monitored by spin-lattice relaxation times and pulsed field gradient NMR diffusion measurements

    Science.gov (United States)

    de Carvalho, Erika Martins; Velloso, Marcia Helena Rodrigues; Tinoco, Luzineide Wanderley; Figueroa-Villar, José Daniel

    2003-10-01

    A study of the nature of the anthelmintic p-cresol:piperazine complex in chloroform solution has been conducted using different NMR techniques: self-diffusion coefficients using DOSY; NOE, NULL, and double-selective T1 measurements to determine inter-molecular distances; and selective and non-selective T1 measurements to determine correlation times. The experimental results in solution and CP-MAS were compared to literature X-ray diffraction data using molecular modeling. It was shown that the p-cresol:piperazine complex exists in solution in a very similar manner as it does in the solid state, with one p-cresol molecule hydrogen bonded through the hydroxyl hydrogen to each nitrogen atom of piperazine. The close correspondence between the X-ray diffraction data and the inter-proton distances obtained by NULL and double selective excitation techniques indicate that those methodologies can be used to determine inter-molecular distances in solution.

  6. Compact NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  7. Compact NMR

    International Nuclear Information System (INIS)

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  8. Variable angle correlation spectroscopy

    International Nuclear Information System (INIS)

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system

  9. Variable angle correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y K [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with {sup 13}C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.

  10. Two-dimensional NMR spectrometry

    International Nuclear Information System (INIS)

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t0; an evolution period, t1; and a detection period, t2

  11. NMR Evidence for the Topologically Nontrivial Nature in a Family of Half-Heusler Compounds

    KAUST Repository

    Zhang, Xiaoming

    2016-03-16

    Spin-orbit coupling (SOC) is expected to partly determine the topologically nontrivial electronic structure of heavy half-Heusler ternary compounds. However, to date, attempts to experimentally observe either the strength of SOC or how it modifies the bulk band structure have been unsuccessful. By using bulk-sensitive nuclear magnetic resonance (NMR) spectroscopy combined with first-principles calculations, we reveal that 209Bi NMR isotropic shifts scale with relativity in terms of the strength of SOC and average atomic numbers, indicating strong relativistic effects on NMR parameters. According to first-principles calculations, we further claim that nuclear magnetic shieldings from relativistic p1/2 states and paramagnetic contributions from low-lying unoccupied p3/2 states are both sensitive to the details of band structures tuned by relativity, which explains why the hidden relativistic effects on band structure can be revealed by 209Bi NMR isotropic shifts in topologically nontrivial half-Heusler compounds. Used in complement to surface-sensitive methods, such as angle resolved photon electron spectroscopy and scanning tunneling spectroscopy, NMR can provide valuable information on bulk electronic states.

  12. NMR Evidence for the Topologically Nontrivial Nature in a Family of Half-Heusler Compounds

    Science.gov (United States)

    Zhang, Xiaoming; Hou, Zhipeng; Wang, Yue; Xu, Guizhou; Shi, Chenglong; Liu, Enke; Xi, Xuekui; Wang, Wenhong; Wu, Guangheng; Zhang, Xi-Xiang

    2016-03-01

    Spin-orbit coupling (SOC) is expected to partly determine the topologically nontrivial electronic structure of heavy half-Heusler ternary compounds. However, to date, attempts to experimentally observe either the strength of SOC or how it modifies the bulk band structure have been unsuccessful. By using bulk-sensitive nuclear magnetic resonance (NMR) spectroscopy combined with first-principles calculations, we reveal that 209Bi NMR isotropic shifts scale with relativity in terms of the strength of SOC and average atomic numbers, indicating strong relativistic effects on NMR parameters. According to first-principles calculations, we further claim that nuclear magnetic shieldings from relativistic p1/2 states and paramagnetic contributions from low-lying unoccupied p3/2 states are both sensitive to the details of band structures tuned by relativity, which explains why the hidden relativistic effects on band structure can be revealed by 209Bi NMR isotropic shifts in topologically nontrivial half-Heusler compounds. Used in complement to surface-sensitive methods, such as angle resolved photon electron spectroscopy and scanning tunneling spectroscopy, NMR can provide valuable information on bulk electronic states.

  13. Characterization of polymers by nuclear magnetic resonance (NMR)

    International Nuclear Information System (INIS)

    After having recalled some generalities which are necessary for the obtention of a spectrum and the method to be chosen, the author considers the use of the hydrogen 1 and carbon 13 high resolution nuclear magnetic resonance (in liquid and solid phase) on some examples in the field of polymers. In the case of the polymers in solution, this technology seems to be limited to liquid or soluble polymers and to insoluble polymers which are inflatable in some solvents. The other polymers (infusible and non-inflatable) require the use of the CP-MAS solid phase NMR (cross polarization magic angle spinning nuclear magnetic resonance). For liquids, the NMR allows to better know the microstructure of these compounds and to better understand the reaction mechanisms (in the case of poly-condensation, polymerization, degradation..) which can control the polymerization. The CP-MAS solid phase NMR is a particularly interesting method for the determination of insoluble three-dimensional polymers structures and for the study of the conformations and configurations of the chain carbonated skeleton. (O.M.). 46 refs., 18 figs

  14. NMR studies on vortices in rotating 3He-A

    International Nuclear Information System (INIS)

    NMR measurements are reported on rotating 3He-A in a long cylindrical geometry of 5 mm diameter at a liquid pressure of 29.3 bar and in axial magnetic fields of 14.2, 28.4, and 56.9 mT. At 28.4 mT, NMR studies are also reported in fields inclined by 250 and 900 from the axis of rotation. The frequency shift, the width, and the intensity of the spin wavemodes localized on the soft vortex cores, as well as the additional broadening of the main NMR line during rotation, were measured as a function of temperature, angular velocity Ω, magnetic field intensity, and its inclination angle. Also observed were a critical angular velocity of vortex formation, hysteretic behavior in the number of vortices when comparing accelerating rotation to decelerating, and metastable vortex densities, presumably a vortex tangle after rapid oscillatory acceleration. The results can be understood in terms of the continuous 4π vortices first proposed by Seppaelae and Volovik

  15. Is solid-state NMR enhanced by dynamic nuclear polarization?

    Science.gov (United States)

    Lee, Daniel; Hediger, Sabine; De Paëpe, Gaël

    2015-01-01

    The recent trend of high-field (~5-20 T), low-temperature (~100 K) ssNMR combined with dynamic nuclear polarization (DNP) under magic angle spinning (MAS) conditions is analyzed. A brief overview of the current theory of hyperpolarization for so-called MAS-DNP experiments is given, along with various reasons why the DNP-enhancement, the ratio of the NMR signal intensities obtained in the presence and absence of microwave irradiation suitable for hyperpolarization, should not be used alone to gauge the value of performing MAS-DNP experiments relative to conventional ssNMR. This is demonstrated through a dissection of the current conditions required for MAS-DNP with particular attention to resulting absolute sensitivities and spectral resolution. Consequently, sample preparation methods specifically avoiding the surplus of glass-forming solvents so as to improve the absolute sensitivity and resolution are discussed, as are samples that are intrinsically pertinent for MAS-DNP studies (high surface area, amorphous, and porous). Owing to their pertinence, examples of recent applications on these types of samples where chemically-relevant information has been obtained that would have been impossible without the sensitivity increases bestowed by MAS-DNP are also detailed. Additionally, a promising further implementation for MAS-DNP is exampled, whereby the sensitivity improvements shown for (correlation) spectroscopy of nuclei at low natural isotopic abundance, facilitate internuclear distance measurements, especially for long distances (absence of dipolar truncation). Finally, we give some speculative perspectives for MAS-DNP. PMID:25779337

  16. (17)O NMR Investigation of Water Structure and Dynamics.

    Science.gov (United States)

    Keeler, Eric G; Michaelis, Vladimir K; Griffin, Robert G

    2016-08-18

    The structure and dynamics of the bound water in barium chlorate monohydrate were studied with (17)O nuclear magnetic resonance (NMR) spectroscopy in samples that are stationary and spinning at the magic-angle in magnetic fields ranging from 14.1 to 21.1 T. (17)O NMR parameters of the water were determined, and the effects of torsional oscillations of the water molecule on the (17)O quadrupolar coupling constant (CQ) were delineated with variable temperature MAS NMR. With decreasing temperature and reduction of the librational motion, we observe an increase in the experimentally measured CQ explaining the discrepancy between experiments and predictions from density functional theory. In addition, at low temperatures and in the absence of (1)H decoupling, we observe a well-resolved (1)H-(17)O dipole splitting in the spectra, which provides information on the structure of the H2O molecule. The splitting arises because of the homogeneous nature of the coupling between the two (1)H-(17)O dipoles and the (1)H-(1)H dipole. PMID:27454747

  17. 13C direct detected COCO-TOCSY: A tool for sequence specific assignment and structure determination in protonless NMR experiments

    Science.gov (United States)

    Balayssac, Stéphane; Jiménez, Beatriz; Piccioli, Mario

    2006-10-01

    A novel experiment is proposed to provide inter-residue sequential correlations among carbonyl spins in 13C detected, protonless NMR experiments. The COCO-TOCSY experiment connects, in proteins, two carbonyls separated from each other by three, four or even five bonds. The quantitative analysis provides structural information on backbone dihedral angles ϕ as well as on the side chain dihedral angles of Asx and Glx residues. This is the first dihedral angle constraint that can be obtained via a protonless approach. About 75% of backbone carbonyls in Calbindin D 9K, a 75 aminoacid dicalcium protein, could be sequentially connected via a COCO-TOCSY spectrum. 49 3J values were measured and related to backbone ϕ angles. Structural information can be extended to the side chain orientation of aminoacids containing carbonyl groups. Additionally, long range homonuclear coupling constants, 4JCC and 5JCC, could be measured. This constitutes an unprecedented case for proteins of medium and small size.

  18. Metabolic mapping by use of high-resolution magic angle spinning1H MR spectroscopy for assessment of apoptosis in cervical carcinomas

    OpenAIRE

    Sundfør Kolbein; Jensen Line R; Bathen Tone F; Sitter Beathe; Lyng Heidi; Kristensen Gunnar B; Gribbestad Ingrid S

    2007-01-01

    Background High-resolution magic angle proton magnetic resonance spectroscopy (HR1H MAS MRS) provides a broad metabolic mapping of intact tumor samples and allows for microscopy investigations of the samples after spectra acquisition. Experimental studies have suggested that the method can be used for detection of apoptosis, but this has not been investigated in a clinical setting so far. We have explored this hypothesis in cervical cancers by searching for metabolites asso...

  19. A carbon-13 NMR spin-lattice relaxation study of the molecular conformation of the nootropic drug 2-oxopyrrolidin-1-ylacetamide

    Science.gov (United States)

    Baldo, M.; Grassi, A.; Guidoni, L.; Nicolini, M.; Pappalardo, G. C.; Viti, V.

    The spin-lattice relaxation times ( T1) of carbon-13 resonances of the drug 2-oxopyrrolidin- 1-ylacetamide ( 2OPYAC) were determined in CDCl 3 + DMSO and H 2O solutions to investigate the internal conformational flexibility. The measured T1s for the hydrogen-bearing carbon atoms of the 2-pyrrolidone ring fragment were diagnostic of a rigid conformation with respect to the acetamide linked moiety. The model of anisotropic reorientation of a rigid body was used to analyse the measured relaxation data in terms of a single conformation. Owing to the small number of T1 data available the fitting procedure for each of the possible conformations failed. The structure corresponding to the rigid conformation was therefore considered to be the one that is strongly stabilized by internal hydrogen bonding as predicted on the basis of theoretical MO ab initio quantum chemical calculations.

  20. NMR spin-lattice relaxation study of 7Li and 93Nb nuclei in Ti- or Fe-doped LiNbO3:Mg single crystals

    Directory of Open Access Journals (Sweden)

    Tae Ho Yeom

    2016-04-01

    Full Text Available In this study, to understand the effects of paramagnetic impurities, we investigated the temperature dependent of the spin-lattice relaxation times of pure LiNbO3, LiNbO3:Mg, LiNbO3:Mg/Ti, LiNbO3:Mg/Fe, and LiNbO3:Mg/Fe (thermally treated at 500°C single crystals. The results for the LiNbO3:Mg single crystals doped with Fe3+ or Ti3+ are discussed with respect to the site distribution and atomic mobility of Li and Nb. In addition, the effects of a thermal treatment on LiNbO3:Mg/Fe single crystals were examined based on the T1 analysis of 7Li and 93Nb. It was found that the presence of impurities in the crystals induced systematic changes of activation energies concerning atomic mobility.

  1. 27Al magic-angle spinning nuclear magnetic resonance satellite transition spectroscopy of glasses in the system K2O-Al2O3-SiO2.

    Science.gov (United States)

    Mundus, C; Müller-Warmuth, W

    1995-10-01

    27Al magic-angle spinning nuclear magnetic resonance satellite transition spectroscopy at 78 MHz has been applied to determine (true) chemical shift and quadrupole coupling parameters of glasses in the system K2O-Al2O3-SiO2 with 60-80 mol% SiO2 and K2O concentrations between 0 and 24 mol%. The powdered crystalline aluminosilicates andalusite and sillimanite have also been examined. In the glasses, all Al appears to be tetrahedrally bound in the aluminosilicate network unless x = mol% K2O:mol% Al2O3 becomes extremely small. Upon decreasing x the distortion of the tetrahedral Al(OSi)4 units increases in steps, and possible explanations are discussed. Six-coordinated aluminum observed for x < 0.2 is connected with the occurrence of interstitial Al3+ ions which charge-compensate the AlO4 units in addition to K+. PMID:8748646

  2. Optical pumping and xenon NMR

    Energy Technology Data Exchange (ETDEWEB)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  3. Optical pumping and xenon NMR

    Energy Technology Data Exchange (ETDEWEB)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping {sup 129}Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the {sup 131}Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  4. Optical pumping and xenon NMR

    International Nuclear Information System (INIS)

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen

  5. Dynamic NMR of nano- and microstructured materials

    Energy Technology Data Exchange (ETDEWEB)

    Olaru, Maria Alexandra

    2013-07-01

    double quantum filtered SD experiments and including a series of bonds for and minimizing uncertainties in the estimation of essential parameters. Recently developed cement-in-polymer dispersions (c/p) with different compositions and cement to polymer ratios are investigated in Chapters 3 and 4, by a vast array of NMR techniques, that probe, on different length scales, the structure of the investigated specimens, as well as the dynamics of water transport inside the materials. Chapter 3 presents the results obtained using multinuclear solid state magic angle spinning NMR to probe, at nanometer level, the structure of cement-in-polymer dispersions. The hydration effects and crystallization of the inorganic matrix are probed by {sup 29}Si NMR while the chemical reactions of the organic phase are quantified by {sup 13}C cross-polarization; the results are correlated with data offered by other analysis techniques. The study of hydrated c/p is continued in Chapter 4, where proton NMR imaging is employed to obtain information about the microstructural changes which take place upon exposure to water at different temperatures. The water transport in the c/p matrix is monitored on line and the hydration phenomenon, together with information about the physical suffered by the samples are discussed with regard to polymer type, amount and curing conditions. A simple mathematical model of diffusion in a cylindrical system, involving time dependent diffusion coefficients and variable surface concentrations, is used to predict the manner in which the water amount inside the organic/cementitious pastes evolves in time. Further on, the effects of diffusive and advective transport in model and natural porous media are systematically investigated in Chapters 5 and 6. NMR exchange relaxometry is known as a very powerful tool for probing the structure and dynamics of fully or partially hydrated porous systems, but, until know, no information existed on how the effects of slow advective

  6. Solid state 13C NMR characterisation study on fourth generation Ziegler-Natta catalysts.

    Science.gov (United States)

    Heikkinen, Harri; Liitiä, Tiina; Virkkunen, Ville; Leinonen, Timo; Helaja, Tuulamari; Denifl, Peter

    2012-01-01

    In this study, solid state (13)C NMR spectroscopy was utilised to characterize and identify the metal-ester coordination in active fourth generation (phthalate) Ziegler-Natta catalysts. It is known that different donors affect the active species in ZN catalysts. However, there is still limited data available of detailed molecular information how the donors and the active species are interplaying. One of the main goals of this work was to get better insight into the interactions of donor and active species. Based on the anisotropy tensor values (δ(11), δ(22), δ(33)) from low magic-angle spinning (MAS) (13)C NMR spectra in combination with chemical shift anisotropy (CSA) calculations (δ(aniso) and η), both the coordinative metal (Mg/Ti) and the symmetry of this interaction between metal and the internal donor in the active catalyst (MgCl(2)/TiCl(4)/electron donor) system could be identified. PMID:22425229

  7. NMR to determine rates of motion and structures in metal-hydrides

    International Nuclear Information System (INIS)

    Measurements of nuclear magnetic resonance (NMR) relaxation times allow the rates of H and D atomic hopping in metal-hydrides to be determined. A first example compares the rates of H hopping in Mg65Sc35Pd2.4H220, a promising new battery electrode and storage alloy, to LaNi5Hx and to the end-members of the alloy system, ScH2 and MgH2. The motion of MgScH is more rapid than in the metallic ScH2 and the ionic MgH2, but slower than in LaNi5Hx. Magic-angle spinning (MAS) NMR of metal-deuterides is a newer method that can resolve inequivalent D atoms and measure the rate of diffusive exchange between the sites. Examples include the tetrahedral and octahedral sites in YD2+x and D in ZrNiDx

  8. High resolution nuclear magnetic resonance spectroscopy (NMR studies on meat components: potentialities and prospects

    Directory of Open Access Journals (Sweden)

    Antonio Sacco

    2010-01-01

    Full Text Available In recent years, increasing application of nuclear magnetic resonance (NMR spectroscopy in the study of the agricultur-  al food products has been remarked, thanks to the advantages of this technique over other conventional analytical tech-  niques. This preliminary work presents, for the first time, the application of an innovative NMR technique, the  proton  high resolution magic angle spinning (1H HR-MAS, for studying meat features. It stresses that this method makes it pos-  sible to acquire qualitative and quantitative information about chemical composition, both quickly and without any par-  ticular preparation of the sample to be analysed. Finally, the study highlights the potentiality of this method in defining  the origin of meat and the possibility of identifying meat adulteration. 

  9. Solid state {sup 13}C NMR analysis of Brazilian cretaceous ambers

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ricardo; Azevedo, Debora A., E-mail: ricardopereira@iq.ufrj.b, E-mail: debora@iq.ufrj.b [Universidade Federal do Rio de Janeiro (IQ/UFRJ), Rio de Janeiro, RJ (Brazil). Inst. de Quimica. Lab. de Geoquimica Organica Molecular e Ambiental; San Gil, Rosane A.S. [Universidade Federal do Rio de Janeiro (IQ/UFRJ), RJ (Brazil). Inst. de Quimica. Lab. de RMN de Solidos; Carvalho, Ismar S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Geociencias. Dept. de Geologia; Fernandes, Antonio Carlos S. [Museu Nacional (MN/UFRJ), RJ (Brazil). Dept. de Geologia e Paleontologia

    2011-07-01

    {sup 13}C cross polarization with magic angle spinning nuclear magnetic resonance ({sup 13}C CPMAS NMR) spectra have been obtained for the first time to three Cretaceous amber samples from South America. The samples were dated to Lower Cretaceous and collected in sediments from the Amazonas, Araripe and Reconcavo basins, Brazil. All samples have very similar spectra, consistent with a common paleobotanical source. Some aspects of the spectra suggest a relationship between Brazilian ambers and Araucariaceae family, such as intense resonances at 38-39 ppm. All samples are constituted by polylabdane structure associated to Class Ib resins, constituted by polymers of labdanoid diterpenes. Finally, information concerning some structural changes during maturation, such as isomerization of {Delta}{sup 8(17)} and {Delta}{sup 12(13)} unsaturations, were obtained by {sup 13}C NMR analyses. The results concerning botanical affinities are in accordance with previous results obtained by gas chromatography-mass spectrometry (GC-MS). (author)

  10. Solid-state NMR in the analysis of drugs and naturally occurring materials.

    Science.gov (United States)

    Paradowska, Katarzyna; Wawer, Iwona

    2014-05-01

    This article presents some of the solid-state NMR (SSNMR) techniques used in the pharmaceutical and biomedical research. Solid-state magic angle spinning (MAS) NMR provides structural information on powder amorphous solids for which single-crystal diffraction structures cannot be obtained. NMR is non-destructive; the powder sample may be used for further studies. Quantitative results can be obtained, although solid-state NMR spectra are not normally quantitative. As compared with other techniques, MAS NMR is insensitive and requires a significant amount of the powder sample (2-100mg) to fill the 1.3-7 mm ZrO2 rotor. This is its main drawback, since natural compounds isolated from plants, microorganisms or cell cultures are difficult to obtain in quantities higher than a few milligrams. Multinuclear MAS NMR routinely uses (1)H and (13)C nuclei, less frequently (15)N, (19)F, (31)P, (77)Se, (29)Si, (43)Ca or (23)Na. The article focuses on the pharmaceutical applications of SSNMR, the studies were aimed to control over manufacturing processes (e.g. crystallization and milling) investigation of chemical and physical stability of solid forms both as pure drug and in a formulated product. SSNMR is used in combination with some other analytical methods (DSC, XRD, FT-IR) and theoretical calculations of NMR parameters. Biologically active compounds, such as amino acids and small peptides, steroids and flavonoids were studied by SSNMR methods (part 4) providing valuable structural information. The SSNMR experiments performed on biopolymers and large natural products like proteins, cellulose and lipid layers are commented upon briefly in part 5. PMID:24173236

  11. Characterization of azobenzene polymer networks using in situ solid state NMR and temperature dependent photostriction

    International Nuclear Information System (INIS)

    Azobenzene liquid crystal polymer networks (azo-LCNs) undergo a complex light-driven molecular conformation change of the azobenzene chromophore which imparts a macroscopic shape change within a glassy polymer network. To better understand molecular conformational changes which underlie macroscopic polymer deformation, we have collected solid-state nuclear magnetic resonance (NMR) data on 19F fluorinated side-chain azo-LCNs using an in situ visible light (450–458 nm) LED light source. We illustrate measurable changes in 19F NMR lineshapes under light irradiation, indicating that conformational changes can be probed by NMR. The measured effects of light on NMR spectra are also found to be reversible upon removal of the light source. We further show that sample heating does not affect azobenzene isomerization through analysis of temperature-dependent magic-angle-spinning NMR lineshapes. These results illustrate a narrowing of the lineshapes, but no change in the NMR peak positions, indicating that heating from 30 and 60 ° C affects molecular dynamics but does not change the azobenzene conformation. In addition to NMR data, benchtop photomechanical uni-axial measurements are taken over a temperature range from 23 to 60 ° C. Samples with the fluorinated side-chain azo-LCNs are compared to samples composed only of non-fluorinated main-chain azo-LCN composition. Similar stress relaxation was observed in both compositions under high pre-stretch. The amount of stress relaxation was found to depend on the pre-stretch, the ambient temperature, and the polarization of light. (paper)

  12. NiFe/Pt薄膜中角度相关的逆自旋霍尔效应∗%Angle dep endent inverse spin Hall effect in NiFe/Pt thin film

    Institute of Scientific and Technical Information of China (English)

    韩方彬; 张文旭; 彭斌; 张万里

    2015-01-01

    In NiFe/Pt bilayer, when spin current originating from the magnetization procession of NiFe is inject into the adjacent Pt layer under ferromagnetic resonance (FMR), the direct current (DC) voltage VISHE generated by inverse spin Hall effect (ISHE) will be added to the voltage VSRE generated by spin rectification effect (SRE), therefore the measured voltage in experiment is the sum of VISHE and VSRE. It is crucial to separate these contributions, which has been often overlooked before, in order to make a reasonable comparison of the ISHE among different materials. The voltages having symmetric (Lorentz type) and anti-symmetric (dispersive type) components both vary with the static magnetic field strength. However, they have different static magnetic field angle dependences according to our theoretical analysis. In order to distinguish the contribution of ISHE from that of SRE, in this paper, we employ a method, in which the voltage across the sample is measured when the static magnetic field is applied to different directions, to analyze the voltage by varying magnetic field angle in a range from 0◦ to 360◦ in steps of 10◦, thereby separating the VISHE. The separation is carried out by fitting the angle dependent symmetric and anti-symmetric curves to different theoretical formulas of ISHE and SRE. The voltages of the two different contributions together with the phase angle of the microwave are obtained. At the same time, the FMR line width and the resonant field can be read out. The results show that the ferromagnetic resonance line width in NiFe(20 nm)/Pt(10 nm) sample is larger than that in NiFe(20 nm) sample due to the injection of spin current from NiFe to Pt in the bi-layer sample. We notice that in the curves of voltage vs. static magnetic field, the Lorentz symmetry components of the voltage from the bi-layer sample weight more than those from the single-layer sample. This is explained as a result of the existence of the ISHE in the bi-layer sample

  13. Benchmarking density-functional theory calculations of NMR shielding constants and spin-rotation constants using accurate coupled-cluster calculations

    Science.gov (United States)

    Teale, Andrew M.; Lutnæs, Ola B.; Helgaker, Trygve; Tozer, David J.; Gauss, Jürgen

    2013-01-01

    Accurate sets of benchmark nuclear-magnetic-resonance shielding constants and spin-rotation constants are calculated using coupled-cluster singles-doubles (CCSD) theory and coupled-cluster singles-doubles-perturbative-triples [CCSD(T)] theory, in a variety of basis sets consisting of (rotational) London atomic orbitals. The accuracy of the calculated coupled-cluster constants is established by a careful comparison with experimental data, taking into account zero-point vibrational corrections. Coupled-cluster basis-set convergence is analyzed and extrapolation techniques are employed to estimate basis-set-limit quantities, thereby establishing an accurate benchmark data set. Together with the set provided for rotational g-tensors and magnetizabilities in our previous work [O. B. Lutnæs, A. M. Teale, T. Helgaker, D. J. Tozer, K. Ruud, and J. Gauss, J. Chem. Phys. 131, 144104 (2009)], 10.1063/1.3242081, it provides a substantial source of consistently calculated high-accuracy data on second-order magnetic response properties. The utility of this benchmark data set is demonstrated by examining a wide variety of Kohn-Sham exchange-correlation functionals for the calculation of these properties. None of the existing approximate functionals provide an accuracy competitive with that provided by CCSD or CCSD(T) theory. The need for a careful consideration of vibrational effects is clearly illustrated. Finally, the pure coupled-cluster results are compared with the results of Kohn-Sham calculations constrained to give the same electronic density. Routes to future improvements are discussed in light of this comparison.

  14. NMR Investigation of the Quantum Piegonhole Effect

    OpenAIRE

    S., Anjusha V.; Hegde, Swathi S.; Mahesh, T. S.

    2015-01-01

    Quantum simulators based on nuclear spin-systems controlled by NMR techniques have been used for studying various quantum phenomena. In this work, using a four-qubit NMR quantum simulator, we investigate the recently postulated quantum pigeon-hole effect. In mathematics, the pigeonhole effect is described by a set of three objects being allocated with only two containers. Classically, one would expect at least one container to accommodate more than one object. However, recently it was predict...

  15. Neutron spin precession in samples of polarised nuclei and neutron spin phase imaging

    International Nuclear Information System (INIS)

    The doublet neutron-deuteron (nd) scattering length b2,d, which is at present only known with an accuracy of 5%, is particularly well suited to fix three-body forces in novel effective field theories at low energies. The understanding of such few-nucleon systems is essential, e.g. for predictions of element abundances in the big-bang and stellar fusion. b2,d can be obtained via a linear combination of the spin-independent nd scattering length bc,d and the spin-dependent one, bi,d. The aim of this thesis was to perform a high-accuracy measurement of the latter to improve the relative accuracy of b2,d below 1%. The experiment was performed at the fundamental neutron physics beam line FUNSPIN at the Paul Scherrer Institute in Switzerland. It utilises the effect that the spin of a neutron passing through a target with polarised nuclei performs a pseudomagnetic precession proportional to the spin-dependent scattering length of the nuclei. An ideal method to measure this precession angle very accurately is Ramsey's atomic beam technique, adapted to neutrons. The most crucial part of the experimental setup is the so-called frozen spin target, which consists of a specially designed dilution refrigerator and contains a sample with dynamically polarised nuclear spins. The polarisation of the sample is determined by nuclear magnetic resonance (NMR) techniques. It turned out that the relaxation of the nuclear spins during the necessary ''cross-calibration'' of the two employed NMR systems is ultimately limiting the achievable accuracy of bi,d. During the extensive use of the Ramsey resonance method in the neutron-deuteron experiment, an idea emerged that the applied technique could be exploited in a completely different context, namely polarised neutron radiography. Hence, the second part of the thesis covers the development of a novel neutron radiography technique, based on the spin-dependent interaction of the neutron with ferromagnetic samples and magnetic fields. For the

  16. Neutron spin precession in samples of polarised nuclei and neutron spin phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Piegsa, Florian Michael

    2009-07-09

    The doublet neutron-deuteron (nd) scattering length b{sub 2,d}, which is at present only known with an accuracy of 5%, is particularly well suited to fix three-body forces in novel effective field theories at low energies. The understanding of such few-nucleon systems is essential, e.g. for predictions of element abundances in the big-bang and stellar fusion. b{sub 2,d} can be obtained via a linear combination of the spin-independent nd scattering length b{sub c,d} and the spin-dependent one, b{sub i,d}. The aim of this thesis was to perform a high-accuracy measurement of the latter to improve the relative accuracy of b{sub 2,d} below 1%. The experiment was performed at the fundamental neutron physics beam line FUNSPIN at the Paul Scherrer Institute in Switzerland. It utilises the effect that the spin of a neutron passing through a target with polarised nuclei performs a pseudomagnetic precession proportional to the spin-dependent scattering length of the nuclei. An ideal method to measure this precession angle very accurately is Ramsey's atomic beam technique, adapted to neutrons. The most crucial part of the experimental setup is the so-called frozen spin target, which consists of a specially designed dilution refrigerator and contains a sample with dynamically polarised nuclear spins. The polarisation of the sample is determined by nuclear magnetic resonance (NMR) techniques. It turned out that the relaxation of the nuclear spins during the necessary ''cross-calibration'' of the two employed NMR systems is ultimately limiting the achievable accuracy of b{sub i,d}. During the extensive use of the Ramsey resonance method in the neutron-deuteron experiment, an idea emerged that the applied technique could be exploited in a completely different context, namely polarised neutron radiography. Hence, the second part of the thesis covers the development of a novel neutron radiography technique, based on the spin-dependent interaction of the

  17. Grid-free powder averages: on the applications of the Fokker-Planck equation to solid state NMR

    CERN Document Server

    Edwards, Luke J; Nevzorov, A A; Concistre, M; Pileio, G; Kuprov, Ilya

    2013-01-01

    We demonstrate that Fokker-Planck equations in which spatial coordinates are treated on the same conceptual level as spin coordinates yield a convenient formalism for treating magic angle spinning NMR experiments. In particular, time dependence disappears from the background Hamiltonian (sample spinning is treated as an interaction), spherical quadrature grids are avoided completely (coordinate distributions are a part of the formalism) and relaxation theory with any linear diffusion operator is easily adopted from the Stochastic Liouville Equation theory. The proposed formalism contains Floquet theory as a special case. The elimination of the spherical averaging grid comes at the cost of increased matrix dimensions, but we show that this can be mitigated by the use of state space restriction and tensor train techniques. It is also demonstrated that low correlation order basis sets apparently give accurate answers in powder-averaged MAS simulations, meaning that polynomially scaling simulation algorithms do e...

  18. Quantitative solid-state 13C NMR with signal enhancement by multiple cross polarization

    Science.gov (United States)

    Johnson, Robert L.; Schmidt-Rohr, Klaus

    2014-02-01

    A simple new method is presented that yields quantitative solid-state magic-angle spinning (MAS) 13C NMR spectra of organic materials with good signal-to-noise ratios. It achieves long (>10 ms) cross polarization (CP) from 1H without significant magnetization losses due to relaxation and with a moderate duty cycle of the radio-frequency irradiation, by multiple 1-ms CP periods alternating with 1H spin-lattice relaxation periods that repolarize the protons. The new method incorporates previous techniques that yield less distorted CP/MAS spectra, such as a linear variation (“ramp”) of the radio-frequency field strength, and it overcomes their main limitation, which is T1ρ relaxation of the spin-locked 1H magnetization. The ramp of the radio-frequency field strength and the asymptotic limit of cross polarization makes the spectral intensity quite insensitive to the exact field strengths used. The new multiCP pulse sequence is a “drop-in” replacement for previous CP methods and produces no additional data-processing burden. Compared to the only reliable quantitative 13C NMR method for unlabeled solids previously available, namely direct-polarization NMR, the measuring time is reduced by more than a factor of 50, enabling higher-throughput quantitative NMR studies. The new multiCP technique is validated with 14-kHz MAS on amino-acid derivatives, plant matter, a highly aromatic humic acid, and carbon materials made by low-temperature pyrolysis.

  19. Dynamic Nuclear Polarization enhanced NMR at 187 GHz/284 MHz using an Extended Interaction Klystron amplifier

    Science.gov (United States)

    Kemp, Thomas F.; Dannatt, Hugh R. W.; Barrow, Nathan S.; Watts, Anthony; Brown, Steven P.; Newton, Mark E.; Dupree, Ray

    2016-04-01

    A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer which uses a 187 GHz (corresponding to 1H NMR frequency of 284 MHz) Extended Interaction Klystron (EIK) amplifier as the microwave source is briefly described. Its performance is demonstrated for a biomolecule (bacteriorhodopsin), a pharmaceutical, and surface functionalised silica. The EIK is very compact and easily incorporated into an existing spectrometer. The bandwidth of the amplifier is sufficient that it obviates the need for a sweepable magnetic field, once set, for all commonly used radicals. The variable power (CW or pulsed) output from the EIK is transmitted to the DNP-NMR probe using a quasi-optic system with a high power isolator and a corrugated waveguide which feeds the microwaves into the DNP-NMR probe. Curved mirrors inside the probe project the microwaves down the axis of the MAS rotor, giving a very efficient system such that maximum DNP enhancement is achieved with less than 3 W output from the microwave source. The DNP-NMR probe operates with a sample temperature down to 90 K whilst spinning at 8 kHz. Significant enhancements, in excess of 100 for bacteriorhodopsin in purple membrane (bR in PM), are shown along with spectra which are enhanced by ≈25 with respect to room temperature, for both the pharmaceutical furosemide and surface functionalised silica. These enhancements allow hitherto prohibitively time consuming experiments to be undertaken. The power at which the DNP enhancement in bR in PM saturates does not change significantly between 90 K and 170 K even though the enhancement drops by a factor of ≈11. As the DNP build up time decreases by a factor 3 over this temperature range, the reduction in T1n is presumably a significant contribution to the drop in enhancement.

  20. Graphical programming for pulse automated NMR experiments

    International Nuclear Information System (INIS)

    We describe a software program designed to control a broadband pulse Nuclear Magnetic Resonance (NMR) spectrometer used in zero-field NMR studies of magnetic metals. The software is written in the graphical language LabVIEW. This type of programming allows modifications and the inclusion of new routines to be easily made by the non-specialist, without changing the basic structure of the program. The program corrects for differences in the gain of the two acquisition channels [U (phase) and V (quadrature)], and automatic baseline subtraction. We present examples of measurements of NMR spectra, spin-echo decay (T2), and quadrupolar oscillations, performed in magnetic intermetallic compounds. (author)

  1. Carbon-13 NMR studies of liquid crystals

    International Nuclear Information System (INIS)

    High resolution, proton decoupled 13C nmr are observed for a series of neat nematic liquid crystals, the p-alkoxyazoxybenzenes, and a smectic-A liquid crystal, diethylazoxydibenzoate in a magnetic field of 23 kG. The (uniaxial) order parameters S = less than P2(costheta) greater than are found to be about 0.4 and 0.9 for the nematic and smectic-A phase respectively at the clearing points. The order parameter increases with decreasing temperature in the nematic phase but is constant, or nearly so, with temperature in the smectic-A phase. In the nematic series studied, the ordering exhibits an even-odd alternation along the series and qualitative agreement with a recent theory due to Marcelja is found. In both phases, the spectra show that the molecule rotates rapidly about its long axis. Tentative conclusions about molecular conformational motion and 14N spin relaxation are presented for both nematic and smectic-A phases. In the smectic-A phase, the sample is rotated about an axis perpendicular to H0 and the resulting spectra are dicusssed. The theory of observed chemical shifts in liquid crystals is discussed and equations are derived which relate the nmr spectra of liquid-crystals to the order parameters. A model for the smectic-C phase due to Luz and Meiboom and Doane is described and lineshapes are determined on the basis of this model for special cases. The dependence of the order parameters on the molecular potential which give rise to the various degrees of order in the different liquid crystalline phases is examined. To a good approximation the functional dependence of the order parameters on the molecular potential is shown to be a simple one in the limit of small tilt angle in the smectic-C phase

  2. Scoliosis angle

    International Nuclear Information System (INIS)

    The most commonly used methods of assessing the scoliotic deviation measure angles that are not clearly defined in relation to the anatomy of the patient. In order to give an anatomic basis for such measurements it is proposed to define the scoliotic deviation as the deviation the vertebral column makes with the sagittal plane. Both the Cobb and the Ferguson angles may be based on this definition. The present methods of measurement are then attempts to measure these angles. If the plane of these angles is parallel to the film, the measurement will be correct. Errors in the measurements may be incurred by the projection. A hypothetical projection, called a 'rectified orthogonal projection', is presented, which correctly represents all scoliotic angles in accordance with these principles. It can be constructed in practice with the aid of a computer and by performing measurements on two projections of the vertebral column; a scoliotic curve can be represented independent of the kyphosis and lordosis. (Auth.)

  3. Spin Hall noise

    NARCIS (Netherlands)

    Kamra, A.; Witek, F.P.; Meyer, S.; Huebl, H.; Geprägs, S.; Gross, R.; Bauer, G.E.W.; Goennenwein, S.T.B.

    2014-01-01

    We measure the low-frequency thermal fluctuations of pure spin current in a platinum film deposited on yttrium iron garnet via the inverse spin Hall effect (ISHE)-mediated voltage noise as a function of the angle α between the magnetization and the transport direction. The results are consistent wit

  4. Spin Hall noise

    OpenAIRE

    Kamra, A.; Witek, F.P.; Meyer, S.; Huebl, H.; Geprägs, S.; Gross, R.; Bauer, G. E. W.; Goennenwein, S. T. B.

    2014-01-01

    We measure the low-frequency thermal fluctuations of pure spin current in a Platinum film deposited on yttrium iron garnet via the inverse spin Hall effect (ISHE)-mediated voltage noise as a function of the angle $\\alpha$ between the magnetization and the transport direction. The results are consistent with the fluctuation dissipation theorem in terms of the recently discovered spin Hall magnetoresistance (SMR). We present a microscopic description of the $\\alpha$ dependence of the voltage no...

  5. NMR in solid ionic and nanoionics

    International Nuclear Information System (INIS)

    Full text: Nuclear Magnetic Resonance (NMR) is a spectroscopic technique which employs magnetic nuclei to study, among others, the dynamics of condensed matter at the atomic level. Thus, NMR has been and still is a successful instrument in the research field of solid electrolytes also known as solid ionics. This paper presents the typical NMR experiments performed in solid ionics together with some examples from nanoionics. The experiments to be discussed comprise: (i) measurements of the diffusion coefficient employing the pulsed-field gradient and the static fringe-field method; (ii) the experimentally related NMR imaging; (iii) double resonance experiments like spin-echo double resonance (SEDOR) and two-dimensional Fourier transform NMR (2D-FT NMR); (iv) various types of nuclear relaxation, in particular spin-lattice relaxation. The NMR techniques yield information on topics like the following: type and number of mobile atoms and defects, diffusion pathways (e.g. dimensionality restrictions), atomic jump frequencies, activation energy and activation volume of these movements, diffusion coefficient with activation energy and prefactor, correlation effects in atomic movements, space correlation factor, cooperative phenomena, symmetry of atomic sites, behavior at phase transitions. These applications will be illustrated by giving examples from crystals, glasses, and polymers. (author)

  6. $\\beta$-NMR of copper isotopes in ionic liquids

    CERN Multimedia

    We propose to test the feasibility of spin-polarization and $\\beta$-NMR studies on several short-lived copper isotopes, $^{58}$ Cu, $^{74}$Cu and $^{75}$Cu in crystals and liquids. The motivation is given by biological studies of Cu with $\\beta$-NMR in liquid samples, since Cu is present in a large number of enzymes involved in electron transfer and activation of oxygen. The technique is based on spin-polarization via optical pumping in the new VITO beamline. We will use the existing lasers, NMR magnet and NMR chambers and we will prepare a new optical pumping system. The studies will be devoted to tests of achieved $\\beta$-asymmetry in solid hosts, the behaviour of asymmetry when increasing vacuum, and finally NMR scans in ionic liquids. The achieved spin polarization will be also relevant for the plans to measure with high precision the magnetic moments of neutron-rich Cu isotopes.

  7. Investigation on Acute Biochemical Effects of Ce(NO3)3 on Liver and Kidney Tissues by MAS 1H NMR Spectroscopic-Based Metabonomic Approach

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    High resolution magic angle spinning (MAS)-1 H nuclear magnetic resonance (NMR) spectroscopic-based metabonomic approach was applied to the investigation on the acute biochemical effects of Ce(NO3)3. Male Wistar rats were liver and kidney tissues were analyzed using principal component analysis to extract toxicity information. The biochemical effects of Ce(NO3)3 were characterized by the increase of triglycerides and lactate and the decrease of glycogen in rat liver tissue, together with an elevation of the triglyceride level and a depletion of glycerophosphocholine and betaine in kidney tissues. The target lesions of Ce(NO3)3 on liver and kidney were found by MAS NMR-based metabonomic method. This study demonstrates that the combination of MAS 1H NMR and pattern recognition analysis can be an effective method for studies of biochemical effects of rare earths.

  8. 1H MAS NMR spectra of hy- droxyl species on diatomite surface

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    High spinning speed 1H magic-angle spinning nuclear magnetic resonance (1H MAS NMR) was used to detect surface hydroxyl groups of diatomite, which include isolated hydroxyl groups and hydrogen-bonded hydroxyl groups, and water adsorbed on diatomite surface that include pore water and hydrogen-bonded water. The corresponding proton chemical shifts of above species are ca. 2.0, 6.0-7.1, 4.9 and 3.0 respectively. Accompanied by thermal treatment temperature ascending, the pore water and hydrogen-bonded water are desorbed successively. As a result, the relative intensities of the peaks assigned to protons of isolat-ed hydroxyl groups and hydrogen-bonded hydroxyl groups increase gradually and reach their maxima at 1000℃. After 1100℃ calcination, the hydroxyl groups that classified to strongly hydrogen-bonded ones and the isolated hydroxyl groups condense basically. But some weakly hydrogen-bonded hydroxyl groups may still persist in the micropores.

  9. NMR spectroscopy applied to the eye: Drugs and metabolic studies

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Oddbjoern

    2005-07-01

    NMR spectroscopy has been extensively applied in biomedical research during the last decades. It has proved to be an analytical tool of great value. From being mainly used in chemistry, technological developments have expanded the application of NMR spectroscopy to a great wealth of disciplines. With this method, biochemical information can be obtained by analysing tissue extracts. Moreover, NMR spectroscopy is increasingly employed for pharmacokinetic studies and analysis of biofluids. Technological progress has provided increased sensitivity and resolution in the spectra, which enable even more of the complexity of biological samples to be elucidated. With the implementation of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy in biomedicine, intact tissue samples or biopsies can be investigated. Thus, NMR spectroscopy has an ever-increasing impact in metabolic screening of human samples and in animal models, and methods are also increasingly realised in vivo. The present work, NMR spectroscopy applied to eye research, consists of two main parts. Firstly, the feasibility to monitor fluorinated ophthalmic drugs directly in the eye was assessed. Secondly, HR-MAS H1 NMR spectroscopy was applied for metabolic profiling of the anterior eye segment, specifically to analyse metabolic changes in intact corneal and lenticular samples after cataractogenic insults. This work included metabonomics with the application of pattern recognition methods to analyse HR-MAS spectra of eye tissues. Optimisation strategies were explored for F19 NMR detection of fluorinated drugs in a phantom eye. S/N gains in F19 NMR spectroscopy were achieved by implementing time-share H1 decoupling at 2.35 T. The method is advantageous for compounds displaying broad spectral coupling patterns, though detection of drugs at concentrations encountered in the anterior eye segment after topical application was not feasible. Higher magnetic fields and technological improvements could enable

  10. NMR spectroscopy applied to the eye: Drugs and metabolic studies

    International Nuclear Information System (INIS)

    NMR spectroscopy has been extensively applied in biomedical research during the last decades. It has proved to be an analytical tool of great value. From being mainly used in chemistry, technological developments have expanded the application of NMR spectroscopy to a great wealth of disciplines. With this method, biochemical information can be obtained by analysing tissue extracts. Moreover, NMR spectroscopy is increasingly employed for pharmacokinetic studies and analysis of biofluids. Technological progress has provided increased sensitivity and resolution in the spectra, which enable even more of the complexity of biological samples to be elucidated. With the implementation of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy in biomedicine, intact tissue samples or biopsies can be investigated. Thus, NMR spectroscopy has an ever-increasing impact in metabolic screening of human samples and in animal models, and methods are also increasingly realised in vivo. The present work, NMR spectroscopy applied to eye research, consists of two main parts. Firstly, the feasibility to monitor fluorinated ophthalmic drugs directly in the eye was assessed. Secondly, HR-MAS H1 NMR spectroscopy was applied for metabolic profiling of the anterior eye segment, specifically to analyse metabolic changes in intact corneal and lenticular samples after cataractogenic insults. This work included metabonomics with the application of pattern recognition methods to analyse HR-MAS spectra of eye tissues. Optimisation strategies were explored for F19 NMR detection of fluorinated drugs in a phantom eye. S/N gains in F19 NMR spectroscopy were achieved by implementing time-share H1 decoupling at 2.35 T. The method is advantageous for compounds displaying broad spectral coupling patterns, though detection of drugs at concentrations encountered in the anterior eye segment after topical application was not feasible. Higher magnetic fields and technological improvements could enable

  11. High-resolution /sup 113/Cd NMR of solids. Correlation of spectra with the molecular structure of a decanuclear cadmium(II) complex

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, P.D.; Stevens, W.C.; Cheung, T.T.P.; Lacelle, S.; Gerstein, B.C.; Kurtz, D.M. Jr.

    1981-07-29

    The usefulness of /sup 113/Cd NMR in solution as a structural and dynamic probe of macromolecular systems is hampered by fast exchange of Cd/sup 2 +/ with ligands and solvent. This paper demonstrates that recently developed techniques for attainment of high-resoluion NMR spectra in solids can overcome this problem. These spectra provide information about Cd/sup 2 +/ coordination environments which is unavailable in solution and which can be used to interpret NMR spectra in solution. By a combination of /sup 113/Cd-/sup 1/H cross polarization and spinning either at the magic angle or slightly off magic angle, the following solid-state /sup 113/Cd NMR data for each cadmium site in the decanuclear cation Cd/sub 10/(SCH/sub 2/CH/sub 2/OH)/sub 16//sup 4 +/ have been obtained: sigma, the isotropic value of the chemical shift; ..delta..sigma, the shielding anisotropy; and S, a symmetry factor which characterizes the uniformity of shielding with respect to an axially symmetric tensor. The values of sigma and ..delta..sigma are shown to accurately reproduce the static (nonspinning) NMR spectrum of the solid.

  12. NMR spectroscopy

    International Nuclear Information System (INIS)

    The book reviews the applications of NMR-spectroscopy in medicine and biology. The first chapter of about 40 pages summarizes the history of development and explains the chemical and physical fundamentals of this new and non-invasive method in an easily comprehensible manner. The other chapters summarize diagnostic results obtained with this method in organs and tissues, so that the reader will find a systematic overview of the available findings obtained in the various organ systems. It must be noted, however, that ongoing research work and new insight quite naturally will necessitate corrections to be done, as is the case here with some biochemical interpretations which would need adjustment to latest research results. NMR-spectroscopy is able to measure very fine energy differences on the molecular level, and thus offers insight into metabolic processes, with the advantage that there is no need of applying ionizing radiation in order to qualitatively or quantitatively analyse the metabolic processes in the various organ systems. (orig./DG) With 40 figs., 4 tabs

  13. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification.

    Science.gov (United States)

    Kotler, Samuel A; Brender, Jeffrey R; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M Banaszak; Marsh, E Neil G; Ramamoorthy, Ayyalusamy

    2015-01-01

    Alzheimer's disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling (1)H-(1)H NMR experiments to overcome many of these limitations. Using (1)H-(1)H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time (1)H-(1)H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils. PMID:26138908

  14. Quantitative solid state NMR analysis of residues from acid hydrolysis of loblolly pine wood.

    Science.gov (United States)

    Sievers, Carsten; Marzialetti, Teresita; Hoskins, Travis J C; Valenzuela Olarte, Mariefel B; Agrawal, Pradeep K; Jones, Christopher W

    2009-10-01

    The composition of solid residues from hydrolysis reactions of loblolly pine wood with dilute mineral acids is analyzed by (13)C Cross Polarization Magic Angle Spinning (CP MAS) NMR spectroscopy. Using this method, the carbohydrate and lignin fractions are quantified in less than 3h as compared to over a day using wet chemical methods. In addition to the quantitative information, (13)C CP MAS NMR spectroscopy provides information on the formation of additional extractives and pseudo lignin from the carbohydrates. Being a non-destructive technique, NMR spectroscopy provides unambiguous evidence of the presence of side reactions and products, which is a clear advantage over the wet chemical analytical methods. Quantitative results from NMR spectroscopy and proximate analysis are compared for the residues from hydrolysis of loblolly pine wood under 13 different conditions; samples were treated either at 150 degrees C or 200 degrees C in the presence of various acids (HCl, H(2)SO(4), H(3)PO(4), HNO(3) and TFA) or water. The lignin content determined by both methods differed on averaged by 2.9 wt% resulting in a standard deviation of 3.5 wt%. It is shown that solid degradation products are formed from saccharide precursors under harsh reaction conditions. These degradation reactions limit the total possible yield of monosaccharides from any subsequent reaction. PMID:19477123

  15. An ultra-low cost NMR device with arbitrary pulse programming

    Science.gov (United States)

    Chen, Hsueh-Ying; Kim, Yaewon; Nath, Pulak; Hilty, Christian

    2015-06-01

    Ultra-low cost, general purpose electronics boards featuring microprocessors or field programmable gate arrays (FPGA) are reaching capabilities sufficient for direct implementation of NMR spectrometers. We demonstrate a spectrometer based on such a board, implemented with a minimal need for the addition of custom electronics and external components. This feature allows such a spectrometer to be readily implemented using typical knowledge present in an NMR laboratory. With FPGA technology, digital tasks are performed with precise timing, without the limitation of predetermined hardware function. In this case, the FPGA is used for programming of arbitrarily timed pulse sequence events, and to digitally generate required frequencies. Data acquired from a 0.53 T permanent magnet serves as a demonstration of the flexibility of pulse programming for diverse experiments. Pulse sequences applied include a spin-lattice relaxation measurement using a pulse train with small-flip angle pulses, and a Carr-Purcell-Meiboom-Gill experiment with phase cycle. Mixing of NMR signals with a digitally generated, 4-step phase-cycled reference frequency is further implemented to achieve sequential quadrature detection. The flexibility in hardware implementation permits tailoring this type of spectrometer for applications such as relaxometry, polarimetry, diffusometry or NMR based magnetometry.

  16. Cryogenic temperature effects and resolution upon slow cooling of protein preparations in solid state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Arne H.; Franks, W. Trent; Akbey, Uemit; Lange, Sascha; Rossum, Barth-Jan van; Oschkinat, Hartmut, E-mail: oschkinat@fmp-berlin.de [Forschungsinstitut fuer Molekulare Pharmakologie (FMP) (Germany)

    2011-11-15

    X-ray crystallography using synchrotron radiation and the technique of dynamic nuclear polarization (DNP) in nuclear magnetic resonance (NMR) require samples to be kept at temperatures below 100 K. Protein dynamics are poorly understood below the freezing point of water and down to liquid nitrogen temperatures. Therefore, we investigate the {alpha}-spectrin SH3 domain by magic angle spinning (MAS) solid state NMR (ssNMR) at various temperatures while cooling slowly. Cooling down to 95 K, the NMR-signals of SH3 first broaden and at lower temperatures they separate into several peaks. The coalescence temperature differs depending on the individual residue. The broadening is shown to be inhomogeneous by hole-burning experiments. The coalescence behavior of 26 resolved signals (of 62) was compared to water proximity and crystal structure Debye-Waller factors (B-factors). Close proximity to the solvent and large B-factors (i.e. mobility) lead, generally, to a higher coalescence temperature. We interpret a high coalescence temperature as indicative of a large number of magnetically inequivalent populations at cryogenic temperature.

  17. Membrane structure and dynamics as viewed by solid-state NMR spectroscopy.

    Science.gov (United States)

    Auger, M

    1997-10-01

    The purpose of the present study is the investigation of the structure and dynamics of biological membranes using solid-state nuclear magnetic resonance (NMR) spectroscopy. Two approaches are used in our laboratory. The first involves the measurement of high-resolution 13C and 1H spectra obtained by the magic angle spinning (MAS) technique while the second approach involves the measurement of 31P and 2H powder spectra in static samples. This paper will present some recent results obtained by high-resolution solid-state 1H NMR on the conformation of gramicidin A incorporated in a phosphatidylcholine bilayers. More specifically, we were able to observe changes in the gramicidin spectra as a function of the cosolubilization solvent initially used to prepare the samples. The interaction between lipid bilayers and an anticancer drug derived from chloroethylurea was also investigated using proton NMR spectroscopy. Finally, we have studied the interaction between cardiotoxin, a toxic protein extracted from snake venom, and negatively charged lipid bilayers using 31P solid-state NMR spectroscopy. PMID:9468622

  18. Preferred conformation and dynamics of the glycerol backbone in phospholipids. An NMR and X-ray single-crystal analysis

    International Nuclear Information System (INIS)

    The conformation of the glycerol group of a number of diacyl and monoacyl (lyso) phospholipids differing in the chemical nature of the head group was studied by 1H high-resolution NMR and X-ray crystallography. The NMR measurements were carried out with solutions or micellar dispersions of the lipids in deuteriated organic solvents or 2H2O. Both solutions, in which the lipid is present as monomers, and lipid micelles give rise to good high-resolution NMR spectra exhibiting spin coupling hyperfine interactions. From 1H spin coupling it is concluded that there are two stable conformations about the glycerol C(2)-C(3) bond of phospholipids. By comparison of NMR and single-crystal X-ray data it is obvious that both conformations are minimum free energy conformations. Rotamer A is the conformation prevailing in phospholipid single-crystal structures. The conformation of rotamer B is also found in phospholipid single-crystal structures though to a lesser extent. NMR measurements indicate that in liquid crystals the diacylglycerol part of phospholipids fluctuates between the two stable staggered conformations of rotamers A and B. The transition between rotamers A and B is fast on the NMR time scale and must be accompanied by appropriate changes in the torsion angles β1 to β4 and γ1 to γ4 of the two fatty acyl chains. It is clear from the data presented that the parallel alignment of the hydrocarbon chains or chain stacking in phospholipid aggregates such as bilayers or micelles is the fundamental principle governing the conformation of the C(2)-C(3) glycerol bond

  19. Preparation of uniformly isotope labeled KcsA for solid state NMR: expression, purification, reconstitution into liposomes and functional assay.

    Science.gov (United States)

    Bhate, Manasi P; Wylie, Benjamin J; Thompson, Ameer; Tian, Lin; Nimigean, Crina; McDermott, Ann E

    2013-10-01

    We report the expression, purification, liposome reconstitution and functional validation of uniformly (13)C and (15)N isotope labeled KcsA, a bacterial potassium channel that has high homology with mammalian channels, for solid-state NMR studies. The expression and purification is optimized for an average yield of ∼35-40mg/L of M9 media in a time-efficient way. The protein purity is confirmed by gel electrophoresis and the protein concentration is quantified by UV-vis absorption spectroscopy. Protocols to efficiently reconstitute KcsA into liposomes are also presented. The presence of liposomes is confirmed by cryo-electron microscopy images and the effect of magic angle spinning on liposome packing is shown. High-resolution solid-state NMR spectra of uniformly isotope labeled KcsA in these liposomes reveal that our protocol yields to a very homogenous KcsA sample with high signal to noise and several well-resolved residues in NMR spectra. Electrophysiology of our samples before and after solid-state NMR show that channel function and selectivity remain intact after the solid-state NMR. PMID:23916531

  20. A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR

    OpenAIRE

    Martin, R A; Twyman, H.L.; Rees, G.J.; Smith, J M; Barney, E. R.; Smith, M E; Hanna, J. V.; Newport, Robert J.

    2012-01-01

    The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a simila...

  1. 1H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization

    Science.gov (United States)

    Ravera, Enrico; Cerofolini, Linda; Martelli, Tommaso; Louka, Alexandra; Fragai, Marco; Luchinat, Claudio

    2016-06-01

    Proton-detection in solid-state NMR, enabled by high magnetic fields (>18 T) and fast magic angle spinning (>50 kHz), allows for the acquisition of traditional 1H-15N experiments on systems that are too big to be observed in solution. Among those, proteins entrapped in a bioinspired silica matrix are an attractive target that is receiving a large share of attention. We demonstrate that 1H-detected SSNMR provides a novel approach to the rapid assessment of structural integrity in proteins entrapped in bioinspired silica.

  2. Nano-mole scale sequential signal assignment by 1 H-detected protein solid-state NMR

    KAUST Repository

    Wang, Songlin

    2015-01-01

    We present a 3D 1H-detected solid-state NMR (SSNMR) approach for main-chain signal assignments of 10-100 nmol of fully protonated proteins using ultra-fast magic-angle spinning (MAS) at ∼80 kHz by a novel spectral-editing method, which permits drastic spectral simplification. The approach offers ∼110 fold time saving over a traditional 3D 13C-detected SSNMR approach. This journal is © The Royal Society of Chemistry 2015.

  3. Synthesis, 89Y and 51V-NMR of Er-doped zircon-type YVO4 and LUVO4

    International Nuclear Information System (INIS)

    Y0.99Er0.01VO4 and Lu0.99Er0.01VO4 zircon-type compounds have been synthesized by solid-state reaction starting from the parent oxides. The obtained materials are single phase, well crystallized and homogeneous in the chemical composition. The magic angle spinning-NMR characterization points toward the substitutional nature of erbium on the rare earth site. The isotropic chemical shift of 89Y in an orthovanadate is reported for the first time

  4. Synthesis, 89Y and 51V-NMR of Er-doped zircon-type YVO 4 and LUVO 4

    Science.gov (United States)

    Amantea, R.; Ghigna, P.; Mustarelli, P.; Tartara, V.

    2005-05-01

    Y 0.99Er 0.01VO 4 and Lu 0.99Er 0.01VO 4 zircon-type compounds have been synthesized by solid-state reaction starting from the parent oxides. The obtained materials are single phase, well crystallized and homogeneous in the chemical composition. The magic angle spinning-NMR characterization points toward the substitutional nature of erbium on the rare earth site. The isotropic chemical shift of 89Y in an orthovanadate is reported for the first time.

  5. Studies on irradiation stability of polystyrene by NMR

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xin; SUN Wan-Fu; XIE Cheng-Xi

    2004-01-01

    The irradiation stability of polystyrene (PS) was studied by 13C and 1H NMR spectra, Nuclear Overhauser Relaxation (NOE) and 13C NMR spin-lattice relaxation time (T1). The results indicate that 13C and 1H NMR chemical shifts, NOE and T1 were almost invariant with the increase of irradiation dose. This shows that polystyrene is particularly stable within 2.5 kGy doses and the mechanism of its stability is discussed.

  6. Solid-State NMR Characterization of Mixed Phosphonic Acid Ligand Binding and Organization on Silica Nanoparticles.

    Science.gov (United States)

    Davidowski, Stephen K; Holland, Gregory P

    2016-04-01

    As ligand functionalization of nanomaterials becomes more complex, methods to characterize the organization of multiple ligands on surfaces is required. In an effort to further the understanding of ligand-surface interactions, a combination of multinuclear ((1)H, (29)Si, (31)P) and multidimensional solid-state nuclear magnetic resonance (NMR) techniques was utilized to characterize the phosphonic acid functionalization of fumed silica nanoparticles using methylphosphonic acid (MPA) and phenylphosphonic acid (PPA). (1)H → (29)Si cross-polarization (CP)-magic angle spinning (MAS) solid-state NMR was used to selectively detect silicon atoms near hydrogen atoms (primarily surface species); these results indicate that geminal silanols are preferentially depleted during the functionalization with phosphonic acids. (1)H → (31)P CP-MAS solid-state NMR measurements on the functionalized silica nanoparticles show three distinct resonances shifted upfield (lower ppm) and broadened compared to the resonances of the crystalline ligands. Quantitative (31)P MAS solid-state NMR measurements indicate that ligands favor a monodentate binding mode. When fumed silica nanoparticles were functionalized with an equal molar ratio of MPA and PPA, the MPA bound the nanoparticle surface preferentially. Cross-peaks apparent in the 2D (1)H exchange spectroscopy (EXSY) NMR measurements of the multiligand sample at short mixing times indicate that the MPA and PPA are spatially close (≤5 Å) on the surface of the nanostructure. Furthermore, (1)H-(1)H double quantum-single quantum (DQ-SQ) back-to-back (BABA) 2D NMR spectra further confirmed that MPA and PPA are strongly dipolar coupled with observation of DQ intermolecular contacts between the ligands. DQ experimental buildup curves and simulations indicate that the average distance between MPA and PPA is no further than 4.2 ± 0.2 Å. PMID:26914738

  7. Spin Pumping and Inverse Spin Hall Effect in Platinum: The Essential Role of Spin-Memory Loss at Metallic Interfaces

    OpenAIRE

    Rojas-Sánchez, J. -C.; Reyren, N.; Laczkowski, P.; Savero, W.; Attané, J. -P.; Deranlot, C.; Jamet, M.; George, J.-M.; Vila, L.; Jaffrès, H.

    2013-01-01

    Through combined ferromagnetic resonance, spin-pumping and inverse spin Hall effect experiments in Co|Pt bilayers and Co|Cu|Pt trilayers, we demonstrate consistent values of spin diffusion length $\\ell_{\\rm sf}^{\\rm Pt}=3.4\\pm0.4$ nm and of spin Hall angle $\\theta_{\\rm SHE}^{\\rm Pt}=0.051\\pm0.004$ for Pt. Our data and model emphasize on the partial depolarization of the spin current at each interface due to spin-memory loss. Our model reconciles the previously published spin Hall angle values...

  8. NMR investigation of cation distribution in HLW wasteform glass

    International Nuclear Information System (INIS)

    Magic-angle-spinning NMR has been used to establish the structural roles of various cations added to the borosilicate glass which is used for the vitrification of high-level nuclear waste (HLW). Representative surrogate oxides with nominal valencies of +1, +2 and +3 have been studied which span the range of oxides from modifier to intermediate and conditional glass former. NMR has been carried out on those nuclei which are accessible and the species observed have been correlated with the physical and chemical behaviour. The controlling factor is the manner in which the alkali cations partition between the various network groups, changing the distribution of silicon Qn species and the boron N4 ratio. Identifiable super-structural units are also present in these glasses. The aqueous corrosion rate increases with Q3 content, as does the weight loss due to evaporation from the melt. The activation energy for DC conduction scales with N4. Values of N4 obtained for these glasses deviate significantly from those predicted by the currently accepted model (Dell and Bray) and are strongly affected by the modifier or intermediate nature of the surrogate oxide and also by its effect on the distribution of non bridging oxygens between the silicate and borate polyhedra. (authors)

  9. NMR signal analysis to attribute the components to the solid/liquid phases present in mixes and ice creams

    OpenAIRE

    Mariette, F.; Lucas, T.

    2005-01-01

    The NMR relaxation signals from complex products like ice cream are hard to interpret because of the multi-exponential behaviour of the relaxation signal and the difficulty of attributing the NMR relaxation components to specific molecule fractions. An attribution of the NMR relaxation parameters is proposed, however, based on an approach that combines quantitative analysis of the spin-spin and spin-lattice relaxation times and the signal intensities with characterization of the ice cream com...

  10. Synthesis of LaF{sub 3} nanosheets with high fluorine mobility investigated by NMR relaxometry and diffusometry

    Energy Technology Data Exchange (ETDEWEB)

    Gulina, L. B.; Tolstoy, V. P.; Murin, I. V. [Institute of Chemistry of St. Petersburg State University 198504, Universitetsky pr., 26 Peterhof, St. Petersburg (Russian Federation); Schäfer, M.; Privalov, A. F. [Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt (Germany)

    2015-12-21

    Ionically conducting lanthanum fluoride (LaF{sub 3}), displaying a nanoscopic lamellar structure, has been synthesized at the surface of an aqueous solution of LaCl{sub 3} and HF. The structure and the chemical composition of the conductor have been analyzed by SEM, electron probe microanalysis, X-ray powder diffraction, FTIR, and {sup 19}F magic angle spinning nuclear magnetic resonance (NMR) spectroscopy. The fluorine dynamics have been studied by NMR diffusometry and relaxometry in a temperature range from room temperature up to 875 K. The fluorine self-diffusion coefficient of the nanostructured LaF{sub 3} is about two orders of magnitude larger than that of bulk LaF{sub 3}. This novel material is highly promising for many typical applications of fluorine ionic systems.

  11. NMR relaxation rates and Knight shifts in MgB2 and AlB2: theory versus experiments

    International Nuclear Information System (INIS)

    We have performed 11B NMR measurements in 11B enriched MgB2 powder sample in the normal phase. The Knight shift was accurately determined by using the magic angle spinning technique. Results for 11B and 27Al Knight shifts (K) and relaxation rates (1/T1) are also reported for AlB2. The data show a dramatic decrease of both K and 1/T1 for 11B in AlB2 with respect to MgB2. We compare experimental results with ab initio calculated NMR relaxation rates and Knight shifts. The experimental values for 1/T1 and K are in most cases in good agreement with the theoretical results. We show that the decrease of K and 1/T1 for 11B is consistent with a drastic drop of the density of states at the boron site in AlB2 with respect to MgB2

  12. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    Science.gov (United States)

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (γ), such as protons, to the less abundant 13C nuclei with low γ values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kögel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90° x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched

  13. NMR Study of the Dimerized State in CuIr2S4

    International Nuclear Information System (INIS)

    We have investigated the metal-insulator transition (MIT) of CuIr2S4 by a high resolution NMR measurement. The Cu-NMR spectrum below TMI is broadened and split into four Cu signals with sizable electric quadrupole interactions. The NMR results are consistent with the charge ordering of Ir3+ and Ir4+ and the spin dimerization of Ir4+ spins, as revealed by a recent X-ray study.

  14. Fully automated system for pulsed NMR measurements

    International Nuclear Information System (INIS)

    A system is described which places many of the complex, tedious operations for pulsed NMR experiments under computer control. It automatically optimizes the experiment parameters of pulse length and phase, and precision, accuracy, and measurement speed are improved. The hardware interface between the computer and the NMR instrument is described. Design features, justification of the choices made between alternative design strategies, and details of the implementation of design goals are presented. Software features common to all the available experiments are discussed. Optimization of pulse lengths and phases is performed via a sequential search technique called Uniplex. Measurements of the spin-lattice and spin-spin relaxation times and of diffusion constants are automatic. Options for expansion of the system are explored along with some of the limitations of the system

  15. NMR investigation of Ag nanoparticles

    Science.gov (United States)

    Son, Kwanghyo; Jang, Zeehoon

    2013-01-01

    109Ag nuclear magnetic resonance (NMR) and relaxation measurements have been performed on two powder samples of Ag nanoparticles with average sizes of 20 nm and 80 nm. The measurements have been done in an external field of 9.4 T and in the temperature range 10 K Knight shift ( K) and the nuclear spin-lattice relaxation rate (1/ T 1) are observed to be almost identical to the values reported for the bulk Ag metal, whereby the Korringa ratio R(= K 2 T 1 T/S) is found to be 2.0 for both samples in the investigated temperature range.

  16. Reciprocal spin Hall effects in conductors with strong spin-orbit coupling: a review.

    Science.gov (United States)

    Niimi, Yasuhiro; Otani, YoshiChika

    2015-12-01

    Spin Hall effect and its inverse provide essential means to convert charge to spin currents and vice versa, which serve as a primary function for spintronic phenomena such as the spin-torque ferromagnetic resonance and the spin Seebeck effect. These effects can oscillate magnetization or detect a thermally generated spin splitting in the chemical potential. Importantly this conversion process occurs via the spin-orbit interaction, and requires neither magnetic materials nor external magnetic fields. However, the spin Hall angle, i.e. the conversion yield between the charge and spin currents, depends severely on the experimental methods. Here we discuss the spin Hall angle and the spin diffusion length for a variety of materials including pure metals such as Pt and Ta, alloys and oxides determined by the spin absorption method in a lateral spin valve structure. PMID:26513299

  17. Study of correlations in molecular motion by multiple quantum NMR

    International Nuclear Information System (INIS)

    Nuclear magnetic resonance is a very useful tool for characterizing molecular configurations through the measurement of transition frequencies and dipolar couplings. The measurement of spectral lineshapes, spin-lattice relaxation times, and transverse relaxation times also provide us with valuable information about correlations in molecular motion. The new technique of multiple quantum nuclear magnetic resonance has numerous advantages over the conventional single quantum NMR techniques in obtaining information about static and dynamic interactions of coupled spin systems. In the first two chapters, the theoretical background of spin Hamiltonians and the density matrix formalism of multiple quantum NMR is discussed. The creation and detection of multiple quantum coherence by multiple pulse sequence are discussed. Prototype multiple quantum spectra of oriented benzene are presented. Redfield relaxation theory and the application of multiple quantum NMR to the study of correlations in fluctuations are presented. A specific example of an oriented methyl group relaxed by paramagnetic impurities is studied in detail. The study of possible correlated motion between two coupled methyl groups by multiple quantum NMR is presented. For a six spin system it is shown that the four-quantum spectrum is sensitive to two-body correlations, and serves a ready test of correlated motion. The study of the spin-lattice dynamics of orienting or tunneling methyl groups (CH3 and CD3) at low temperatures is presented. The anisotropic spin-lattice relaxation of deuterated hexamethylbenzene, caused by the sixfold reorientation of the molecules, is investigated, and the NMR spectrometers and other experimental details are discussed

  18. Probing molecular dynamics of metal borohydrides on the surface of mesoporous scaffolds by multinuclear high resolution solid state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Son-Jong, E-mail: Sonjong@cheme.caltech.edu [Division of Chemistry and Chemical Eng., California Institute of Technology, Pasadena, CA 91125 (United States); Lee, Hyun-Sook [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); To, Magnus [Division of Chemistry and Chemical Eng., California Institute of Technology, Pasadena, CA 91125 (United States); Lee, Young-Su; Cho, Young Whan [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Choi, Hyungkeun; Kim, Chul [Department of Chemistry, Hannam University, Daejeon 305-811 (Korea, Republic of)

    2015-10-05

    Graphical abstract: In situ variable temperature multinuclear solid state NMR allows to probe surface wetting, diffusivity, and confinement of metal borohydrides into nanopores. - Abstract: Understanding of surface interactions between borohydride molecules and the surfaces of porous supports have gained growing attention for successful development of nano-confinement engineering. By use of in situ variable temperature (VT) magic angle spinning (MAS) NMR, molecular mobility changes of LiBH{sub 4} crystalline solid has been investigated in the presence of silica based and carbonaceous surfaces. Spin–spin J-coupling of {sup 1}H–{sup 11}B in LiBH{sub 4} was monitored in series of VT NMR spectra to probe translational mobility of LiBH{sub 4} that appeared to be greatly enhanced upon surface contact. Such enhanced diffusivity was found to be effective in the formation of solid solution and co-confinement with other metal borohydrides. Co-confinement of LiBH{sub 4}–Ca(BH{sub 4}){sub 2} mixture was demonstrated at temperature as low as 100 °C, much lower than the reported bulk eutectic melting temperature. The discovery adds a novel property of LiBH{sub 4} that has been proven to be highly versatile in many energy related applications.

  19. Probing molecular dynamics of metal borohydrides on the surface of mesoporous scaffolds by multinuclear high resolution solid state NMR

    International Nuclear Information System (INIS)

    Graphical abstract: In situ variable temperature multinuclear solid state NMR allows to probe surface wetting, diffusivity, and confinement of metal borohydrides into nanopores. - Abstract: Understanding of surface interactions between borohydride molecules and the surfaces of porous supports have gained growing attention for successful development of nano-confinement engineering. By use of in situ variable temperature (VT) magic angle spinning (MAS) NMR, molecular mobility changes of LiBH4 crystalline solid has been investigated in the presence of silica based and carbonaceous surfaces. Spin–spin J-coupling of 1H–11B in LiBH4 was monitored in series of VT NMR spectra to probe translational mobility of LiBH4 that appeared to be greatly enhanced upon surface contact. Such enhanced diffusivity was found to be effective in the formation of solid solution and co-confinement with other metal borohydrides. Co-confinement of LiBH4–Ca(BH4)2 mixture was demonstrated at temperature as low as 100 °C, much lower than the reported bulk eutectic melting temperature. The discovery adds a novel property of LiBH4 that has been proven to be highly versatile in many energy related applications

  20. Stern-Gerlach Experiment with Higher Spins

    CERN Document Server

    Tekin, Bayram

    2015-01-01

    We analyze idealized sequential Stern-Gerlach experiments with higher spin particles. This analysis serves at least two purposes: The widely discussed spin-1/2 case leads to some misunderstandings which hopefully is removed by the higher spin discussion. Secondly, Wigner rotation matrices for generic spins become conceptually more transparent with this physical example. We also give compact formulas for the probabilities in terms of the angle between the sequential SG apparatuses for generic spins. We work out the spin-$1/2$, spin-$1$ and spin-$2$ cases explicitly. Since there are some confusing issues regarding the actual experiment, we also compile a "facts and fiction" section on the SG experiments.

  1. Impact of reduction on the properties of metal bisdithiolenes: multinuclear solid-state NMR and structural studies on Pt(tfd)2 and its reduced forms.

    Science.gov (United States)

    Tang, Joel A; Kogut, Elzbieta; Norton, Danielle; Lough, Alan J; McGarvey, Bruce R; Fekl, Ulrich; Schurko, Robert W

    2009-03-19

    Transition-metal dithiolene complexes have interesting structures and fascinating redox properties, making them promising candidates for a number of applications, including superconductors, photonic devices, chemical sensors, and catalysts. However, not enough is known about the molecular electronic origins of these properties. Multinuclear solid-state NMR spectroscopy and first-principles calculations are used to examine the molecular and electronic structures of the redox series [Pt(tfd)(2)](z-) (tfd = S(2)C(2)(CF(3))(2); z = 0, 1, 2; the anionic species have [NEt(4)](+) countercations). Single-crystal X-ray structures for the neutral (z = 0) and the fully reduced forms (z = 2) were obtained. The two species have very similar structures but differ slightly in their intraligand bond lengths. (19)F-(195)Pt CP/CPMG and (195)Pt magic-angle spinning (MAS) NMR experiments are used to probe the diamagnetic (z = 0, 2) species, revealing large platinum chemical shielding anisotropies (CSA) with distinct CS tensor properties, despite the very similar structural features of these species. Density functional theory (DFT) calculations are used to rationalize the large platinum CSAs and CS tensor orientations of the diamagnetic species using molecular orbital (MO) analysis, and are used to explain their distinct molecular electronic structures in the context of the NMR data. The paramagnetic species (z = 1) is examined using both EPR spectroscopy and (13)C and (19)F MAS NMR spectroscopy. Platinum g-tensor components were determined by using solid-state EPR experiments. The unpaired electron spin densities at (13)C and (19)F nuclei were measured by employing variable-temperature (13)C and (19)F NMR experiments. DFT and ab initio calculations are able to qualitatively reproduce the experimentally measured g-tensor components and spin densities. The combination of experimental and theoretical data confirm localization of unpaired electron density in the pi-system of the

  2. Assignment of amide proton signals by combined evaluation of HN, NN and HNCA MAS-NMR correlation spectra

    Energy Technology Data Exchange (ETDEWEB)

    Rossum, Barth-Jan van; Castellani, Federica [Forschungsinstitut fuer Molekulare Pharmakologie (FMP) (Germany); Pauli, Jutta [BAM (Germany); Rehbein, Kristina [Forschungsinstitut fuer Molekulare Pharmakologie (FMP) (Germany); Hollander, J.; Groot, Huub J.M. de [BAM (Germany); Oschkinat, Hartmut [Forschungsinstitut fuer Molekulare Pharmakologie (FMP) (Germany)], E-mail: Oschkinat@fmp-berlin.de

    2003-03-15

    In this paper, we present a strategy for the {sup 1}H{sup N} resonance assignment in solid-state magic-angle spinning (MAS) NMR, using the {alpha}-spectrin SH3 domain as an example. A novel 3D triple resonance experiment is presented that yields intraresidue H{sup N}-N-C{sup {alpha}} correlations, which was essential for the proton assignment. For the observable residues, 52 out of the 54 amide proton resonances were assigned from 2D ({sup 1}H-{sup 15}N) and 3D ({sup 1}H-{sup 15}N-{sup 13}C) heteronuclear correlation spectra. It is demonstrated that proton-driven spin diffusion (PDSD) experiments recorded with long mixing times (4 s) are helpful for confirming the assignment of the protein backbone {sup 15}N resonances and as an aid in the amide proton assignment.

  3. Development of a 3He nuclear spin flip system on an in-situ SEOP 3He spin filter and demonstration for a neutron reflectometer and magnetic imaging technique

    Science.gov (United States)

    Hayashida, H.; Oku, T.; Kira, H.; Sakai, K.; Hiroi, K.; Ino, T.; Shinohara, T.; Imagawa, T.; Ohkawara, M.; Ohoyama, K.; Kakurai, K.; Takeda, M.; Yamazaki, D.; Oikawa, K.; Harada, M.; Miyata, N.; Akutsu, K.; Mizusawa, M.; Parker, J. D.; Matsumoto, Y.; Zhang, S.; Suzuki, J.; Soyama, K.; Aizawa, K.; Arai, M.

    2016-04-01

    We have been developing a 3He neutron spin filter (NSF) using the spin exchange optical pumping (SEOP) technique. The 3He NSF provides a high-energy polarized neutron beam with large beam size. Moreover the 3He NSF can work as a π-flipper for a polarized neutron beam by flipping the 3He nuclear spin using a nuclear magnetic resonance (NMR) technique. For NMR with the in-situ SEOP technique, the polarization of the laser must be reversed simultaneously because a non-reversed laser reduces the polarization of the spin-flipped 3He. To change the polarity of the laser, a half-wavelength plate was installed. The rotation angle of the half-wavelength plate was optimized, and a polarization of 97% was obtained for the circularly polarized laser. The 3He polarization reached 70% and was stable over one week. A demonstration of the 3He nuclear spin flip system was performed at the polarized neutron reflectometer SHARAKU (BL17) and NOBORU (BL10) at J-PARC. Off-specular measurement from a magnetic Fe/Cr thin film and magnetic imaging of a magnetic steel sheet were performed at BL17 and BL10, respectively.

  4. Comprehensive multiphase NMR spectroscopy: Basic experimental approaches to differentiate phases in heterogeneous samples

    Science.gov (United States)

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G.; Simpson, Myrna J.; Maas, Werner E.; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J.; Hume, Alan; Simpson, André J.

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate 1H and 13C spectra for the different phases. In addition, 19F performance is also addressed. To illustrate the capability of 19F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state.

  5. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples

    Energy Technology Data Exchange (ETDEWEB)

    Gopinath, T. [University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics (United States); Mote, Kaustubh R. [University of Minnesota, Department of Chemistry (United States); Veglia, Gianluigi, E-mail: vegli001@umn.edu [University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics (United States)

    2015-05-15

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living {sup 15}N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through {sup 15}N–{sup 15}N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish {sup 15}N–{sup 15}N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI–HETCOR and 3D PISEMAI–HETCOR-mixing experiments.

  6. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples

    International Nuclear Information System (INIS)

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living 15N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through 15N–15N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish 15N–15N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI–HETCOR and 3D PISEMAI–HETCOR-mixing experiments

  7. Nuclear magnetic resonance (NMR): principles and applications

    International Nuclear Information System (INIS)

    The basis for the phenomenon of nuclear magnetic resonance (NMR) is the ability of certain nuclei possessing both intrinsic angular momentum or ''spin'' I and magnetic moment to absorb electromagnetic energy in the radio frequency range. In principle, there are approximately 200 nuclei which may be investigated using the NMR technique. The NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum provides a variety of qualitative and quantitative analytical applications. The most obvious applications consist of the measurements of nuclear properties, such as spin number and nuclear magnetic moment. In liquids, the fine structure of resonance spectra provides a tool for chemical identification and molecular structure analysis. Other applications include the measurements of self-diffusion coefficients, magnetic fields and field homogeneity, inter-nuclear distances, and, in some cases, the water content of biological materials. (author)

  8. Multinuclear high-resolution NMR study of compounds from the ternary system NaF-CaF2-AlF3: from determination to modeling of NMR parameters.

    Science.gov (United States)

    Martineau, C; Body, M; Legein, C; Silly, G; Buzaré, J-Y; Fayon, F

    2006-12-11

    27Al and 23Na NMR satellite transition spectroscopy and 3Q magic-angle-spinning spectra are recorded for three compounds from the ternary NaF-CaF2-AlF3 system. The quadrupolar frequency nuQ, asymmetry parameter etaQ, and isotropic chemical shift deltaiso are extracted from the spectrum reconstructions for five aluminum and four sodium sites. The quadrupolar parameters are calculated using the LAPW-based ab initio code WIEN2k. It is necessary to perform a structure optimization of all compounds to ensure a fine agreement between experimental and calculated parameters. By a comparison of experimental and calculated values, an attribution of all of the 27Al and 23Na NMR lines to the crystallographic sites is achieved. High-speed 19F NMR MAS spectra are recorded and reconstructed for the same compounds, leading to the determination of 18 isotropic chemical shifts. The superposition model developed by Bureau et al. is used, allowing a bijective assignment of the 19F NMR lines to the crystallographic sites. PMID:17140229

  9. NMR studies of metabolism

    International Nuclear Information System (INIS)

    In this paper, the authors present applications of NMR to the study of different aspects of metabolism. The authors begin with a brief outline of localization methods that are commonly used to obtain in vivo NMR spectra. The authors then describe in more detail metabolic information recently obtained by NMR of perfused organs, intact animals, and humans. Previous reviews have already covered the applications of NMR to the study of metabolism in microorganisms, isolated or cultivated cells, and tumors. NMR spectroscopy of the brain, and human in vivo NMR spectroscopy have also been reviewed

  10. Solid-state {sup 27}Al and {sup 29}Si NMR investigations on Si-substituted hydrogarnets

    Energy Technology Data Exchange (ETDEWEB)

    Rivas Mercury, J.M. [Instituto de Ceramica y Vidrio, CSIC, Kelsen, 5, 28049 Cantoblanco-Madrid (Spain); Pena, P. [Instituto de Ceramica y Vidrio, CSIC, Kelsen, 5, 28049 Cantoblanco-Madrid (Spain)]. E-mail: ppena@icv.csic.es; Aza, A.H. de [Instituto de Ceramica y Vidrio, CSIC, Kelsen, 5, 28049 Cantoblanco-Madrid (Spain); Turrillas, X. [Instituto de Ciencias de la Construccion Eduardo Torroja, CSIC, Serrano Galvache, 4, 28033 Madrid (Spain); Sobrados, I. [Instituto de Ciencia de Materiales, CSIC, Sor Juana Ines de la Cruz, 3, 28049 Cantoblanco-Madrid (Spain); Sanz, J. [Instituto de Ciencia de Materiales, CSIC, Sor Juana Ines de la Cruz, 3, 28049 Cantoblanco-Madrid (Spain)

    2007-02-15

    Partially deuterated Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub 3-x}(OH){sub 4x} hydrates prepared by a reaction in the presence of D{sub 2}O of synthetic tricalcium aluminate with different amounts of amorphous silica were characterized by {sup 29}Si and {sup 27}Al magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy. The {sup 29}Si NMR spectroscopy was used for quantifying the non-reacted silica and the resulting hydrated products. The incorporation of Si into Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub 3-x}(OH){sub 4x} was followed by {sup 27}Al NMR spectroscopy: Si:OH ratios were determined quantitatively from octahedral Al signals ascribed to Al(OH){sub 6} and Al(OSi)(OH){sub 5} environments. The NMR data obtained were consistent with the concentrations of the Al and Si species deduced from transmission electron microscopy energy-dispersive spectrometry and Rietveld analysis of both X-ray and neutron diffraction data.

  11. Solid state NMR method development and studies of biological and biomimetic nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yanyan

    2011-02-07

    . Meanwhile, we have developed new methods to achieve broadband high resolution NMR and improve the accuracy of inter-nuclear distance measurements involving quadrupolar spins. Broadband high resolution NMR of spin-1/2 nuclei has been accomplished by the adaptation of the magic angle turning (MAT) method to fast magic angle spinning, termed fast MAT, by solving technical problems such as off resonance effects. Fast MAT separates chemical shift anisotropy and isotropic chemical shifts over a spectral range of {approx}1.8 {gamma}B{sub 1} without significant distortions. Fast MAT {sup 125}Te NMR has been applied to study technologically important telluride materials with spectra spreading up to 190 kHz. The signal-to-noise ratio of the spectra is significantly improved by using echo-matched Gaussian filtering in offline data processing. The accuracy of the measured distances between spin-1/2 and quadrupolar nuclei with methods such as SPIDER and REAPDOR has been improved by compensating for the fast longitudinal quadrupolar relaxation on the sub-millisecond with a modified S{sub 0} pulse sequence. Also, the T1Q effect on the spin coherence and its spinning speed dependency has been explored and documented with analytical and numerical simulations as well as experimental measurements.

  12. Global Fold of Human Cannabinoid Type 2 Receptor Probed by Solid-State 13C-, 15N-MAS NMR and Molecular Dynamics Simulations

    OpenAIRE

    Kimura, Tomohiro; Vukoti, Krishna; Lynch, Diane L.; Hurst, Dow P.; Grossfield, Alan; Pitman, Michael C.; Reggio, Patricia H.; Yeliseev, Alexei A.; Gawrisch, Klaus

    2013-01-01

    The global fold of human cannabinoid type 2 (CB2) receptor in the agonist-bound active state in lipid bilayers was investigated by solid-state 13C- and 15N magic-angle spinning (MAS) NMR, in combination with chemical-shift prediction from a structural model of the receptor obtained by microsecond-long molecular dynamics (MD) simulations. Uniformly 13C-, and 15N-labeled CB2 receptor was expressed in milligram quantities by bacterial fermentation, purified, and functionally reconstituted into l...

  13. Quadrupolar-coupling-specific binomial pulse sequences for in vivo 23Na NMR and MRI.

    Science.gov (United States)

    Laustsen, Christoffer; Ringgaard, Steffen; Pedersen, Michael; Nielsen, Niels Chr

    2010-09-01

    Aimed at selective detection of (23)Na with specific quadrupolar couplings for in vitro NMR and MRI, we present a series of quadrupolar binomial pulse sequences offering high specificity with respect to the quadrupolar couplings of the excited species. It is demonstrated that pulse sequences with an increasing number of elements, e.g., 11, 121, 1331, 14641, and 15101051, with the units representing flip angles smaller than the 90 degrees pulses typically encountered in binomial spin-1/2 solvent suppression experiments, and different phase combinations may provide a high degree of flexibility with respect to quadrupolar coupling selectivity and robustness towards rf inhomogeneity. This may facilitate efficient separation of, for example, intra and extracellular (23)Na in tissues with efficient control of the excitation (or suppression) of central as well as satellite transitions through on- and off-resonance irradiation. The pulse sequences are described in terms of their analogy to binomial liquid-state NMR solvent suppression experiments and demonstrated numerically and experimentally through NMR and MRI experiments on a 7 T horizontal small-bore animal magnet system. PMID:20673642

  14. Solid state NMR study of quadrupolar nuclei at high magnetic fields

    CERN Document Server

    Padro, D

    2002-01-01

    Solid state sup 4 sup 7 sup , sup 4 sup 9 Ti NMR spectra have been obtained for a large number of titanium oxides at a field of 14.1 T. At this field a usable signal has been obtained in almost all Ti sup 4 sup + compounds investigated allowing reliable measurement of shifts and electric field gradients (EFG) up to 24 MHz. For samples where the efg was less than 5 MHz Magic Angle Spinning at 17 kHz gave extra resolution. The effects of chemical shift anisotropy (DELTA sub c sub s > 150 ppm) were detected and were measured in various cases. In order to investigate the potential of titanium NMR as a structural probe a number of compounds containing titanium in different coordination have been studied. The EFG at TiO sub 4 , TiO sub 5 and TiO sub 6 sites was found to correlate well with the shear strain independent of the structure. The chemical shift in perovskite and related structures varies by approx 160. Results for sup 4 sup 7 sup , sup 4 sup 9 Ti NMR in model compounds where titanium is in 4-fold and 5-fo...

  15. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. I. Pulse-field-gradient spin-echo NMR study of sodium salicylate diffusivity in swollen hydrogels with respect to polymer matrix physical structure.

    Science.gov (United States)

    Ferrero, Carmen; Massuelle, Danielle; Jeannerat, Damien; Doelker, Eric

    2008-05-22

    Cellulose ethers have been increasingly used in the formulation of controlled release dosage forms; among them, compressed hydrophilic matrices for the oral route of administration are of special importance. Much interest has also been expressed in the study of the drug release mechanism from such swellable systems, in particular, in trying to explain deviations from Fickian diffusion. Thus, swelling-controlled transport is often invoked without any rationale. It is the purpose of the present work to provide independently determined diffusivity data for elucidating the drug release mechanism from the water-soluble cellulose derivatives. In the first part of this work, pulsed-field-gradient spin-echo nuclear magnetic resonance (PFG-SE NMR) was used to investigate the self-diffusion of the model solute sodium salicylate and, incidentally, that of water, in hydrogels made of hydroxypropyl methylcellulose (HPMC), hydroxyethylcellulose (HEC) and hydroxypropylcellulose (HPC) of varying polymer weight fraction and molecular weight in D2O. In parallel, the extent of bound water in the gels was determined using differential scanning calorimetry (DSC), and the presence of liquid crystals in the gels was examined by polarized light microscopy, as these are the structural factors capable of affecting drug diffusion. Solute diffusivity was not significantly affected by the substitution type of the cellulose ether, and an exponential polymer weight fraction dependence of the solute's self-diffusion coefficient was observed, ascertaining the validity of the free-volume theory, with extrapolated self-diffusion coefficient values similar to those in pure solvent. This also indicates that diffusion also takes place in the so-called bound water (which represents about 40% of the hydrogel weight). This questions the existence of thermodynamically different classes of water. Slightly reduced solute diffusion was measured in the HPC hydrogel of the highest polymer concentration (45 wt

  16. A simple low-cost single-crystal NMR setup

    Science.gov (United States)

    Vinding, Mads S.; Kessler, Tommy O.; Vosegaard, Thomas

    2016-08-01

    A low-cost single-crystal NMR kit is presented along with a web-based post-processing software. The kit consists of a piezo-crystal motor and a goniometer for the crystal, both embedded in a standard wide-bore NMR probe with a 3D printed scaffold. The NMR pulse program controls the angle setting automatically, and the post-processing software incorporates a range of orientation-angle discrepancies present in the kit and other single-crystal setups. Results with a NaNO3 single-crystal show a high degree of reproducibility and excellent agreement with previous findings for the anisotropic quadrupolar interaction.

  17. 199Hg and 63,65Cu NMR studies of mercury based high-Tc superconductors

    International Nuclear Information System (INIS)

    Hg-oxide ceramic high temperature superconductors were studied with 199Hg- and 63,65Cu- NMR spectroscopy. Room temperature spectra, spin-spin and spin-lattice relaxation times of samples with different superconducting transition temperatures are presented. A spin-lattice relaxation time of T1 = 35 msec and a spin-spin relaxation time of T2 = 1.6 msec is found for the 199 Hg-NMR. All samples exhibit similar characteristic powder spectra caused by an axially symmetric 199Hg spin interaction. The isotropic value and the anisotropy of the tensor relative to solid HgCl2 as a standard substance is estimated. Furthermore results of 63,65Cu NMR at a temperature of 4.2 K are presented. Also this signal shows a powder line shape (for I = 3/2)

  18. Studies of Secondary Melanoma on C57BL/6J Mouse Liver Using 1H NMR Metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ju; Isern, Nancy G.; Burton, Sarah D.; Hu, Jian Z.

    2013-10-31

    NMR metabolomics, consisting of solid state high resolution (hr) magic angle spinning (MAS) 1H NMR (1H hr-MAS), liquid state high resolution 1H-NMR, and principal components analysis (PCA) has been used to study secondary metastatic B16-F10 melanoma in C57BL/6J mouse liver . The melanoma group can be differentiated from its control group by PCA analysis of the absolute concentrations or by the absolute peak intensities of metabolites from either 1H hr-MAS NMR data on intact liver tissues or liquid state 1H-NMR spectra on liver tissue extracts. In particular, we found that the absolute concentrations of alanine, glutamate, creatine, creatinine, fumarate and cholesterol are elevated in the melanoma group as compared to controls, while the absolute concentrations of succinate, glycine, glucose, and the family of linear lipids including long chain fatty acids, total choline and acylglycerol are decreased. The ratio of glycerophosphocholine to phosphocholine is increased by about 1.5 fold in the melanoma group, while the absolute concentration of total choline is actually lower in melanoma mice. These results suggest the following picture in secondary melanoma metastasis: Linear lipid levels are decreased by beta oxidation in the melanoma group, which contributes to an increase in the synthesis of cholesterol, and also provides an energy source input for TCA cycle. These findings suggest a link between lipid oxidation, the TCA cycle and the hypoxia-inducible factors (HIF) signal pathway in tumor metastases. Thus this study indicates that the metabolic profile derived from NMR analysis can provide a valuable bio-signature of malignancy and cell hypoxia in metastatic melanoma.

  19. Joint experimental and computational 17O solid state NMR study of Brownmillerite Ba2In2O5.

    Science.gov (United States)

    Dervişoğlu, Rıza; Middlemiss, Derek S; Blanc, Frédéric; Holmes, Lesley A; Lee, Yueh-Lin; Morgan, Dane; Grey, Clare P

    2014-02-14

    Structural characterization of Brownmillerite Ba2In2O5 was achieved by an approach combining experimental solid-state NMR spectroscopy, density functional theory (DFT) energetics, and GIPAW NMR calculations. While in the previous study of Ba2In2O5 by Adler et al. (S. B. Adler, J. A. Reimer, J. Baltisberger and U. Werner, J. Am. Chem. Soc., 1994, 116, 675-681), three oxygen resonances were observed in the (17)O NMR spectra and assigned to the three crystallographically unique O sites, the present high resolution (17)O NMR measurements under magic angle spinning (MAS) find only two resonances. The resonances have been assigned using first principles (17)O GIPAW NMR calculations to the combination of the O ions connecting the InO4 tetrahedra and the O ions in equatorial sites in octahedral InO6 coordination, and to the axial O ions linking the four- and six-fold coordinated In(3+) ions. Possible structural disorder was investigated in two ways: firstly, by inclusion of the high-energy structure also previously studied by Mohn et al. (C. E. Mohn, N. L. Allan, C. L. Freeman, P. Ravindran and S. Stølen, J. Solid State Chem., 2005, 178, 346-355), where the structural O vacancies are stacked rather than staggered as in Brownmillerite and, secondly, by exploring structures derived from the ground-state structure but with randomly perturbed atomic positions. There is no noticeable NMR evidence for any substantial occupancy of the high-energy structure at room temperature. PMID:24382459

  20. NMR analysis of biodiesel

    Science.gov (United States)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...