WorldWideScience

Sample records for angle spinning mas

  1. Fundamental Science Tools for Geologic Carbon Sequestration and Mineral Carbonation Chemistry: In Situ Magic Angle Spinning (MAS) Nuclear Magnetic Resonance

    Science.gov (United States)

    Hoyt, D. W.; Turcu, R. V.; Sears, J. A.; Rosso, K. M.; Burton, S. D.; Kwak, J.; Felmy, A. R.; Hu, J.

    2010-12-01

    GCS is one of the most promising ways of mitigating atmospheric greenhouse gases. Mineral carbonation reactions are potentially important to the long-term sealing effectiveness of caprock but remain poorly predictable, particularly reactions occurring in low-water supercritical CO2(scCO2)-dominated environments where the chemistry has not been adequately explored. In situ probes that provide molecular-level information is desirable for investigating mechanisms and rates of GCS mineral carbonation reactions. MAS-NMR is a powerful tool for obtaining detailed molecular structure and dynamics information of a system regardless whether the system is in a solid, a liquid, a gaseous, or a supercritical state, or a mixture thereof. However, MAS NMR under scCO2 conditions has never been realized due to the tremendous technical difficulties of achieving and maintaining high pressure within a fast spinning MAS rotor. In this work, we report development of a unique high pressure MAS NMR capability, and its application to mineral carbonation chemistry in scCO2 under geologically relevant temperatures and pressures. Our high pressure MAS rotor has successfully maintained scCO2 conditions with minimal leakage over a period of 72 hours. Mineral carbonation reactions of a model magnesium silicate (forsterite) reacted with 96 bars scCO2 containing varying amounts of H2O (both below and above saturation of the scCO2) were investigated at 50○C. Figure 1 shows typical in situ 13C MAS NMR spectra demonstrating that the peaks corresponding to the reactants, intermediates, and the magnesium carbonation products are all observed in a single spectrum. For example, the scCO2 peak is located at 126.1 ppm. Reaction intermediates include the aqueous species HCO3-(160 ppm), partially hydrated/hydroxylated magnesium carbonates(166-168 ppm), and can easily be distinguished from final product magnesite(170 ppm). The new capability and this model mineral carbonation process will be overviewed in

  2. Perfil químico de cultivares de feijão (phaseolus vulgaris pela técnica de high resolution magic angle spinning (HR-MAS Chemical profile of beans cultivars (phaseolus vulgaris by ¹h nmr - high resolution magic angle spinning (HR-MAS

    Directory of Open Access Journals (Sweden)

    Luciano Morais Lião

    2010-01-01

    Full Text Available The application of one-dimensional proton high-resolution magic angle spinning (¹H HR-MAS NMR combined with a typical advantages of solid and liquid-state NMR techniques was used as input variables for the multivariate statistical analysis. In this paper, different cultivars of beans (Phaseolus vulgaris developed and in development by Embrapa - Arroz e Feijão were analyzed by ¹H HR-MAS, which have been demonstrated to be a valuable tool in its differentiation according chemical composition and avoid the manipulation of the samples as used in other techniques.

  3. 1H high-resolution magic-angle spinning (HR-MAS) NMR analysis of ligand density on resins using a resin internal standard.

    Science.gov (United States)

    Lucas, Laura H; Cerny, Matthew A; Koen, Yakov M; Hanzlik, Robert P; Larive, Cynthia K

    2004-10-01

    We recently attempted to generate an affinity chromatography adsorbent to purify cytochrome P450 4A1 by coupling 11-(1'-imidazolyl)-3,6,9-trioxaundecanoic acid to Toyopearl AF-Amino 650 M resin. Variations in ligand density for several resin batches were quantified by high-resolution magic-angle spinning (HR-MAS) NMR spectroscopy using a novel resin internal standard. The uniquely designed ImQ internal resin standard yields its signature resonance in a transparent region of the analyte spectrum making suppression of the polymer background unnecessary. This method enabled us to target a reasonable ligand density for enzyme purification and provides an advantageous alternative to quantitation against soluble standards or protonated solvent.

  4. Identification of Streptococcus pneumoniae serotype 11E, serovariant 11Av and mixed populations by high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR spectroscopy and flow cytometric serotyping assay (FCSA.

    Directory of Open Access Journals (Sweden)

    Romina Camilli

    Full Text Available BACKGROUND: Recent studies have identified Streptococcus pneumoniae serotype 11E and serovariant 11Av among isolates previously typed as 11A by classical serotyping methods. Serotype 11E and serovariant 11Av differ from serotype 11A by having totally or partially inactive wcjE, a gene in cps locus coding for an O-acetyl transferase. Serotype 11E is rare among carriage isolates but common among invasive isolates suggesting that it survives better during invasion. Aim of this work was to investigate the epidemiology of serotype 11A in a pneumococcal collection using a new serotyping approach based on High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR spectroscopy to distinguish serotypes 11A and 11E. METHODS: A collection of 48 (34 invasive and 14 carriage S. pneumoniae isolates from Italy, previously identified as serotype 11A by the Quellung reaction, were investigated by wcjE sequencing, HR-MAS NMR spectroscopy and the reference flow cytometric serotyping assay (FCSA based on monoclonal antibodies. RESULTS: HR-MAS NMR spectra from serotypes 11A and 11E showed different NMR peaks indicating that HR-MAS NMR could be used to distinguish these serotypes, although HR-MAS NMR could not distinguish serotype 11Av from serotype 11E unambiguously. Thirty-eight isolates were confirmed to be serotype 11A, 8 isolates with a mutated wcjE were serotype 11E, 1 isolate belonged to serovariant 11Av, and 1 isolate was a mixed population 11A/11Av. All 11E isolates were identified among invasive isolates. CONCLUSIONS: We proved that HR-MAS NMR can be of potential use for pneumococcal serotyping. The detection of serotype 11E among invasive isolates in our collection, supports previous epidemiological studies suggesting that mutations in wcjE can represent a mechanism promoting pneumococcal survival during invasion. The discovery of a spectrum of immunochemical diversity within established serotypes should stimulate efforts to develop new

  5. High-temperature MAS-NMR at high spinning speeds.

    Science.gov (United States)

    Kirchhain, Holger; Holzinger, Julian; Mainka, Adrian; Spörhase, Andreas; Venkatachalam, Sabarinathan; Wixforth, Achim; van Wüllen, Leo

    2016-09-01

    A low cost version to enable high temperature MAS NMR experiments at temperatures of up to 700°C and spinning speeds of up to 10kHz is presented. The method relies on inductive heating using a metal coated rotor insert. The metal coating is accomplished via a two step process involving physical vapor deposition and galvanization.

  6. Slow-spinning low-sideband HR-MAS NMR spectroscopy: delicate analysis of biological samples

    Science.gov (United States)

    Renault, Marie; Shintu, Laetitia; Piotto, Martial; Caldarelli, Stefano

    2013-11-01

    High-Resolution Magic-Angle Spinning (HR-MAS) NMR spectroscopy has become an extremely versatile analytical tool to study heterogeneous systems endowed with liquid-like dynamics. Spinning frequencies of several kHz are however required to obtain NMR spectra, devoid of spinning sidebands, with a resolution approaching that of purely isotropic liquid samples. An important limitation of the method is the large centrifugal forces that can damage the structure of the sample. In this communication, we show that optimizing the sample preparation, particularly avoiding air bubbles, and the geometry of the sample chamber of the HR-MAS rotor leads to high-quality low-sideband NMR spectra even at very moderate spinning frequencies, thus allowing the use of well-established solution-state NMR procedures for the characterization of small and highly dynamic molecules in the most fragile samples, such as live cells and intact tissues.

  7. Magic angle spinning NMR of paramagnetic proteins.

    Science.gov (United States)

    Knight, Michael J; Felli, Isabella C; Pierattelli, Roberta; Emsley, Lyndon; Pintacuda, Guido

    2013-09-17

    Metal ions are ubiquitous in biochemical and cellular processes. Since many metal ions are paramagnetic due to the presence of unpaired electrons, paramagnetic molecules are an important class of targets for research in structural biology and related fields. Today, NMR spectroscopy plays a central role in the investigation of the structure and chemical properties of paramagnetic metalloproteins, linking the observed paramagnetic phenomena directly to electronic and molecular structure. A major step forward in the study of proteins by solid-state NMR came with the advent of ultrafast magic angle spinning (MAS) and the ability to use (1)H detection. Combined, these techniques have allowed investigators to observe nuclei that previously were invisible in highly paramagnetic metalloproteins. In addition, these techniques have enabled quantitative site-specific measurement of a variety of long-range paramagnetic effects. Instead of limiting solid-state NMR studies of biological systems, paramagnetism provides an information-rich phenomenon that can be exploited in these studies. This Account emphasizes state-of-the-art methods and applications of solid-state NMR in paramagnetic systems in biological chemistry. In particular, we discuss the use of ultrafast MAS and (1)H-detection in perdeuterated paramagnetic metalloproteins. Current methodology allows us to determine the structure and dynamics of metalloenzymes, and, as an example, we describe solid-state NMR studies of microcrystalline superoxide dismutase, a 32 kDa dimer. Data were acquired with remarkably short times, and these experiments required only a few milligrams of sample.

  8. Cross polarization from spins I=12 to spins S=1 in nuclear magnetic resonance with magic angle sample spinning.

    Science.gov (United States)

    Gopalakrishnan, Karthik; Bodenhausen, Geoffrey

    2006-05-21

    Spin locking of the nuclear magnetization of a spin with S=1 such as deuterium in the presence of a radio-frequency field under magic angle spinning (MAS) is described in terms of adiabatic modulations of the energy levels. In a brief initial period, part of the initial density operator nutates about the Hamiltonian and is dephased. The remaining spin-locked state undergoes persistent oscillatory transfer processes between various coherences with a periodicity given by the rotation of the sample. While all crystallites in the powder undergo such periodic transfer processes, the phases of the oscillations depend on the angle gamma of the crystallites. The angle gamma is the azimuthal angle defining the orientation of the unique axis of the quadrupolar interaction tensor in a rotor-fixed frame. The theory is extended to describe cross-polarization between spins S=1 and I=12 under MAS. There are four distinct Hartmann-Hahn matching conditions that correspond to four zero-quantum matching conditions, all of which are shifted and broadened compared to their spin S=12 counterparts. These matching conditions are further split into a family of sideband conditions separated by the spinning frequency. The theory allows the calculation of both shifts and broadening factors of the matching conditions, as verified by simulations and experiments.

  9. High-pressure magic angle spinning nuclear magnetic resonance

    Science.gov (United States)

    Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg 2SiO 4) reacted with supercritical CO 2 and H 2O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.

  10. High-pressure magic angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. Finally, as an application example, in situ13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg2SiO4) reacted with supercritical CO2 and H2O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.

  11. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  12. Impact on Spin Tune From Horizontal Orbital Angle Between Snakes and Orbital Angle Between Spin Rotators

    Energy Technology Data Exchange (ETDEWEB)

    Bai,M.; Ptitsyn, V.; Roser, T.

    2008-10-01

    To keep the spin tune in the spin depolarizing resonance free region is required for accelerating polarized protons to high energy. In RHIC, two snakes are located at the opposite side of each accelerator. They are configured to yield a spin tune of 1/2. Two pairs of spin rotators are located at either side of two detectors in each ring in RHIC to provide longitudinal polarization for the experiments. Since the spin rotation from vertical to longitudinal is localized between the two rotators, the spin rotators do not change the spin tune. However, due to the imperfection of the orbits around the snakes and rotators, the spin tune can be shifted. This note presents the impact of the horizontal orbital angle between the two snakes on the spin tune, as well as the effect of the vertical orbital angle between two rotators at either side of the collision point on the spin tune.

  13. Moderate positive spin Hall angle in uranium

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Simranjeet; Anguera, Marta; Barco, Enrique del, E-mail: delbarco@ucf.edu, E-mail: cwmsch@rit.edu [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Springell, Ross [H. H. Will Laboratory, University of Bristol, Bristol BS2 8BS (United Kingdom); Miller, Casey W., E-mail: delbarco@ucf.edu, E-mail: cwmsch@rit.edu [School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623 (United States)

    2015-12-07

    We report measurements of spin pumping and the inverse spin Hall effect in Ni{sub 80}Fe{sub 20}/uranium bilayers designed to study the efficiency of spin-charge interconversion in a super-heavy element. We employ broad-band ferromagnetic resonance on extended films to inject a spin current from the Ni{sub 80}Fe{sub 20} (permalloy) into the uranium layer, which is then converted into an electric field by the inverse spin Hall effect. Surprisingly, our results suggest a spin mixing conductance of order 2 × 10{sup 19} m{sup −2} and a positive spin Hall angle of 0.004, which are both merely comparable with those of several transition metals. These results thus support the idea that the electronic configuration may be at least as important as the atomic number in governing spin pumping across interfaces and subsequent spin Hall effects. In fact, given that both the magnitude and the sign are unexpected based on trends in d-electron systems, materials with unfilled f-electron orbitals may hold additional exploration avenues for spin physics.

  14. The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Mance, Deni; Baldus, Marc, E-mail: m.baldus@uu.nl [NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht (Netherlands); Gast, Peter; Huber, Martina [Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden (Netherlands); Ivanov, Konstantin L., E-mail: ivanov@tomo.nsc.ru [International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia and Novosibirsk State University, Pirogova 2, Novosibirsk 63009 (Russian Federation)

    2015-06-21

    We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between “bulk” and “core” nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei.

  15. Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR

    Science.gov (United States)

    Rosay, Melanie; Blank, Monica; Engelke, Frank

    2016-03-01

    Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100 K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered.

  16. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    Science.gov (United States)

    Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi

    2014-04-08

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  17. 1020MHz single-channel proton fast magic angle spinning solid-state NMR spectroscopy.

    Science.gov (United States)

    Pandey, Manoj Kumar; Zhang, Rongchun; Hashi, Kenjiro; Ohki, Shinobu; Nishijima, Gen; Matsumoto, Shinji; Noguchi, Takashi; Deguchi, Kenzo; Goto, Atsushi; Shimizu, Tadashi; Maeda, Hideaki; Takahashi, Masato; Yanagisawa, Yoshinori; Yamazaki, Toshio; Iguchi, Seiya; Tanaka, Ryoji; Nemoto, Takahiro; Miyamoto, Tetsuo; Suematsu, Hiroto; Saito, Kazuyoshi; Miki, Takashi; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-12-01

    This study reports a first successful demonstration of a single channel proton 3D and 2D high-throughput ultrafast magic angle spinning (MAS) solid-state NMR techniques in an ultra-high magnetic field (1020MHz) NMR spectrometer comprised of HTS/LTS magnet. High spectral resolution is well demonstrated.

  18. Determination of the position angle of stellar spin axes

    Science.gov (United States)

    Lesage, A.-L.; Wiedemann, G.

    2014-03-01

    Context. Measuring the stellar position angle provides valuable information on binary stellar formation or stellar spin axis evolution. Aims: We aim to develop a method for determining the absolute stellar position angle using spectro-astrometric analysis of high resolution long-slit spectra. The method has been designed in particular for slowly rotating stars. We investigate its applicability to existing dispersive long-slit spectrographs, identified here by their plate scale, and the size of the resulting stellar sample. Methods: The stellar rotation induces a tilt in the stellar lines whose angle depends on the stellar position angle and the orientation of the slit. We developed a rotation model to calculate and reproduce the effects of stellar rotation on unreduced high resolution stellar spectra. Then we retrieved the tilt amplitude using a spectro-astrometric extraction of the position of the photocentre of the spectrum. Finally we present two methods for analysing the position spectrum using either direct measurement of the tilt or a cross-correlation analysis. Results: For stars with large apparent diameter and using a spectrograph with a small plate scale, we show that it is possible to determine the stellar position angle directly within 10° with a signal-to-noise ratio of the order of 6. Under less favourable conditions, i.e. larger plate scale or smaller stellar diameter, the cross-correlation method yields comparable results. Conclusions: We show that with the currently existing instruments, it is possible to determine the stellar position angle of at least 50 stars precisely, mostly K-type giants with apparent diameter down to 5 milliarcseconds. If we consider errors of around 10° still acceptable, we may include stars with apparent diameter down to 2 mas in the sample that then comprises also some main sequence stars.

  19. Ultra fast magic angle spinning solid - state NMR spectroscopy of intact bone.

    Science.gov (United States)

    Singh, Chandan; Rai, Ratan Kumar; Kayastha, Arvind M; Sinha, Neeraj

    2016-02-01

    Ultra fast magic angle spinning (MAS) has been a potent method to significantly average out homogeneous/inhomogeneous line broadening in solid-state nuclear magnetic resonance (ssNMR) spectroscopy. It has given a new direction to ssNMR spectroscopy with its different applications. We present here the first and foremost application of ultra fast MAS (~60 kHz) for ssNMR spectroscopy of intact bone. This methodology helps to comprehend and elucidate the organic content in the intact bone matrix with resolution and sensitivity enhancement. At this MAS speed, amino protons from organic part of intact bone start to appear in (1) H NMR spectra. The experimental protocol of ultra-high speed MAS for intact bone has been entailed with an additional insight achieved at 60 kHz.

  20. Magnetic resonance imaging of DNP enhancements in a rotor spinning at the magic angle.

    Science.gov (United States)

    Perras, Frédéric A; Kobayashi, Takeshi; Pruski, Marek

    2016-03-01

    Simulations performed on model, static, samples have shown that the microwave power is non-uniformly distributed in the magic angle spinning (MAS) rotor when using conventional dynamic nuclear polarization (DNP) instrumentation. Here, we applied the stray-field magic angle spinning imaging (STRAFI-MAS) experiment to generate a spatial map of the DNP enhancements in a full rotor, which is spun at a low rate in a commercial DNP-MAS NMR system. Notably, we observed that the enhancement factors produced in the center of the rotor can be twice as large as those produced at the top of the rotor. Surprisingly, we observed that the largest enhancement factors are observed along the axis of the rotor as opposed to against its walls, which are most directly irradiated by the microwave beam. We lastly observed that the distribution of enhancement factors can be moderately improved by degassing the sample and increasing the microwave power. The inclusion of dielectric particles greatly amplifies the enhancement factors throughout the rotor. The STRAFI-MAS approach can provide useful guidance for optimizing the access of microwave power to the sample, and thereby lead to further increases in sensitivity of DNP-MAS NMR.

  1. Magic angle spinning nuclear magnetic resonance apparatus and process for high-resolution in situ investigations

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.

    2015-11-24

    A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.

  2. Dynamic nuclear polarization at 40 kHz magic angle spinning.

    Science.gov (United States)

    Chaudhari, Sachin R; Berruyer, Pierrick; Gajan, David; Reiter, Christian; Engelke, Frank; Silverio, Daniel L; Copéret, Christophe; Lelli, Moreno; Lesage, Anne; Emsley, Lyndon

    2016-04-21

    DNP-enhanced solid-state NMR spectroscopy under magic angle spinning (MAS) is rapidly developing into a powerful analytical tool to investigate the structure of a wide range of solid materials, because it provides unsurpassed sensitivity gains. Most developments and applications of DNP MAS NMR were so far reported at moderate spinning frequencies (up to 14 kHz using 3.2 mm rotors). Here, using a 1.3 mm MAS DNP probe operating at 18.8 T and ∼100 K, we show that signal amplification factors can be increased by up to a factor two when using smaller volume rotors as compared to 3.2 mm rotors, and report enhancements of around 60 over a range of sample spinning rates from 10 to 40 kHz. Spinning at 40 kHz is also shown to increase (29)Si coherence lifetimes by a factor three as compared to 10 kHz, substantially increasing sensitivity in CPMG type experiments. The contribution of quenching effects to the overall sensitivity gain at very fast MAS is evaluated, and applications are reported on a functionalised mesostructured organic-inorganic material.

  3. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2014-05-14

    We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  4. Ultrafast Magic-Angle Spinning: Benefits for the Acquisition of Ultrawide-Line NMR Spectra of Heavy Spin-1/2 Nuclei.

    Science.gov (United States)

    Pöppler, Ann-Christin; Demers, Jean-Philippe; Malon, Michal; Singh, Amit Pratap; Roesky, Herbert W; Nishiyama, Yusuke; Lange, Adam

    2016-03-16

    The benefits of the ultrafast magic-angle spinning (MAS) approach for the acquisition of ultrawide-line NMR spectra-spectral simplification, increased mass sensitivity allowing the fast study of small amounts of material, efficient excitation, and application to multiple heavy nuclei-are demonstrated for tin(II) oxide (SnO) and the tin complex [(LB)Sn(II) Cl](+) [Sn(II) Cl3 ](-) [LB=2,6-diacetylpyridinebis(2,6-diisopropylanil)] containing two distinct tin environments. The ultrafast MAS experiments provide optimal conditions for the extraction of the chemical-shift anisotropy tensor parameters, anisotropy, and asymmetry for heavy spin-1/2 nuclei.

  5. Forensic examination of electrical tapes using high resolution magic angle spinning ¹H NMR spectroscopy.

    Science.gov (United States)

    Schoenberger, Torsten; Simmross, Ulrich; Poppe, Christian

    2016-01-01

    The application of high resolution magic angle spinning (HR-MAS) (1)H NMR spectroscopy is ideally suited for the differentiation of plastics. In addition to the actual material composition, the different types of polymer architectures and tacticity provide characteristic signals in the fingerprint of the (1)H NMR spectra. The method facilitates forensic comparison, as even small amounts of insoluble but swellable plastic particles are utilized. The performance of HR-MAS NMR can be verified against other methods that were recently addressed in various articles about forensic tape comparison. In this study samples of the 90 electrical tapes already referenced by the FBI laboratory were used. The discrimination power of HR-MAS is demonstrated by the fact that more tape groups can be distinguished by NMR spectroscopy than by using the combined evaluation of several commonly used analytical techniques. An additional advantage of this robust and quick method is the very simple sample preparation.

  6. Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.

    Science.gov (United States)

    Barbet-Massin, Emeline; Pell, Andrew J; Retel, Joren S; Andreas, Loren B; Jaudzems, Kristaps; Franks, W Trent; Nieuwkoop, Andrew J; Hiller, Matthias; Higman, Victoria; Guerry, Paul; Bertarello, Andrea; Knight, Michael J; Felletti, Michele; Le Marchand, Tanguy; Kotelovica, Svetlana; Akopjana, Inara; Tars, Kaspars; Stoppini, Monica; Bellotti, Vittorio; Bolognesi, Martino; Ricagno, Stefano; Chou, James J; Griffin, Robert G; Oschkinat, Hartmut; Lesage, Anne; Emsley, Lyndon; Herrmann, Torsten; Pintacuda, Guido

    2014-09-03

    Using a set of six (1)H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5-30 kDa proteins. The approach relies on perdeuteration, amide (2)H/(1)H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary (13)C/(15)N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR.

  7. On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR.

    Science.gov (United States)

    Mandal, Abhishek; Boatz, Jennifer C; Wheeler, Travis B; van der Wel, Patrick C A

    2017-02-22

    A number of recent advances in the field of magic-angle-spinning (MAS) solid-state NMR have enabled its application to a range of biological systems of ever increasing complexity. To retain biological relevance, these samples are increasingly studied in a hydrated state. At the same time, experimental feasibility requires the sample preparation process to attain a high sample concentration within the final MAS rotor. We discuss these considerations, and how they have led to a number of different approaches to MAS NMR sample preparation. We describe our experience of how custom-made (or commercially available) ultracentrifugal devices can facilitate a simple, fast and reliable sample preparation process. A number of groups have since adopted such tools, in some cases to prepare samples for sedimentation-style MAS NMR experiments. Here we argue for a more widespread adoption of their use for routine MAS NMR sample preparation.

  8. Oxygen-17 NMR in solids by dynamic-angle spinning and double rotation

    Science.gov (United States)

    Chmelka, B. F.; Mueller, K. T.; Pines, A.; Stebbins, J.; Wu, Y.; Zwanziger, J. W.

    1989-05-01

    IT is widely lamented that despite its unqualified success with spin-1/2 nuclei such as 13C, 29Si and31P, the popular NMR technique of magic-angle spinning (MAS) has experienced a somewhat restricted applicability among quadrupolar nuclei such as 17O, 23Na and 27A1 (refs 1-3). The resolution in the central (1/2 lrarr-1/2) transition of these non-integer quadrupolar spins under MAS is thought to be limited primarily by second-order quadrupolar broadening. Such effects of second-order spatial anisotropy cannot be eliminated by rotation about a fixed axis or by multiple-pulse techniques4,5. More general mechanisms of sample reorientation (refs 6-8 and A. Samoson and A. Pines, manuscript in preparation) can, however, make high-resolution NMR of quadrupolar nuclei feasible. MAS is implemented by spinning a sample about a single axis so that second-rank spherical harmonics (which give rise to first-order broadening through anisotropy of electrical and magnetic interactions) are averaged away. But dynamic-angle-spinning (DAS) and double-rotation (DOR) NMR involve spinning around two axes, averaging away both the second- and fourth-rank spherical harmonics, which are responsible for second-order broadening. Here we present the application of these new techniques to 17O in two minerals, cristobalite (SiO2) and diopside (CaMgSi2O6). This work goes beyond previous results on 23Na (ref. 8) by showing the first experimental results using DAS and by demonstrating the application of DOR to the resolution of distinct oxygen sites in an important class of oxide materials.

  9. Systematic evaluation of heteronuclear spin decoupling in solid-state NMR at the rotary-resonance conditions in the regime of fast magic-angle spinning.

    Science.gov (United States)

    Sharma, Kshama; Madhu, P K; Agarwal, Vipin

    2016-09-01

    The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1=n·νr). Recently, two schemes, namely, PISSARRO and rCW(ApA), have been shown to be less affected by the problem of MAS and RF interference, specifically at the n=2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n=1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power (1)H irradiation of ca.195kHz.

  10. Microfabricated inserts for magic angle coil spinning (MACS wireless NMR spectroscopy.

    Directory of Open Access Journals (Sweden)

    Vlad Badilita

    Full Text Available This article describes the development and testing of the first automatically microfabricated probes to be used in conjunction with the magic angle coil spinning (MACS NMR technique. NMR spectroscopy is a versatile technique for a large range of applications, but its intrinsically low sensitivity poses significant difficulties in analyzing mass- and volume-limited samples. The combination of microfabrication technology and MACS addresses several well-known NMR issues in a concerted manner for the first time: (i reproducible wafer-scale fabrication of the first-in-kind on-chip LC microresonator for inductive coupling of the NMR signal and reliable exploitation of MACS capabilities; (ii improving the sensitivity and the spectral resolution by simultaneous spinning the detection microcoil together with the sample at the "magic angle" of 54.74° with respect to the direction of the magnetic field (magic angle spinning - MAS, accompanied by the wireless signal transmission between the microcoil and the primary circuit of the NMR spectrometer; (iii given the high spinning rates (tens of kHz involved in the MAS methodology, the microfabricated inserts exhibit a clear kinematic advantage over their previously demonstrated counterparts due to the inherent capability to produce small radius cylindrical geometries, thus tremendously reducing the mechanical stress and tearing forces on the sample. In order to demonstrate the versatility of the microfabrication technology, we have designed MACS probes for various Larmor frequencies (194, 500 and 700 MHz testing several samples such as water, Drosophila pupae, adamantane solid and LiCl at different magic angle spinning speeds.

  11. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning.

    Science.gov (United States)

    Shmyreva, Anna A; Safdari, Majid; Furó, István; Dvinskikh, Sergey V

    2016-06-14

    Orders of magnitude decrease of (207)Pb and (199)Hg NMR longitudinal relaxation times T1 upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX2 (Me = Pb, Hg and X = Cl, Br, I). In lead(ii) halides, the most dramatic decrease of T1 relative to that in a static sample is in PbI2, while it is smaller but still significant in PbBr2, and not detectable in PbCl2. The effect is magnetic-field dependent but independent of the spinning speed in the range 200-15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  12. Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: the importance of level crossings.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2012-08-28

    We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.

  13. Rotor Design for High Pressure Magic Angle Spinning Nuclear Magnetic Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Turcu, Romulus VF; Hoyt, David W.; Rosso, Kevin M.; Sears, Jesse A.; Loring, John S.; Felmy, Andrew R.; Hu, Jian Z.

    2013-01-01

    High pressure magic angle spinning (MAS) nuclear magnetic resonance (NMR) with a sample spinning rate exceeding 2.1 kHz and pressure greater than 165 bar has never been realized. In this work, a new sample cell design is reported, suitable for constructing cells of different sizes. Using a 7.5 mm high pressure MAS rotor as an example, internal pressure as high as 200 bar at a sample spinning rate of 6 kHz is achieved. The new high pressure MAS rotor is re-usable and compatible with most commercial NMR set-ups, exhibiting low 1H and 13C NMR background and offering maximal NMR sensitivity. As an example of its many possible applications, this new capability is applied to determine reaction products associated with the carbonation reaction of a natural mineral, antigorite ((Mg,Fe2+)3Si2O5(OH)4), in contact with liquid water in water-saturated supercritical CO2 (scCO2) at 150 bar and 50 deg C. This mineral is relevant to the deep geologic disposal of CO2, but its iron content results in too many sample spinning sidebands at low spinning rate. Hence, this chemical system is a good case study to demonstrate the utility of the higher sample spinning rates that can be achieved by our new rotor design. We expect this new capability will be useful for exploring solid-state, including interfacial, chemistry at new levels of high-pressure in a wide variety of fields.

  14. Rotor design for high pressure magic angle spinning nuclear magnetic resonance

    Science.gov (United States)

    Turcu, Romulus V. F.; Hoyt, David W.; Rosso, Kevin M.; Sears, Jesse A.; Loring, John S.; Felmy, Andrew R.; Hu, Jian Zhi

    2013-01-01

    High pressure magic angle spinning (MAS) nuclear magnetic resonance (NMR) with a sample spinning rate exceeding 2.1 kHz and pressure greater than 165 bar has never been realized. In this work, a new sample cell design is reported, suitable for constructing cells of different sizes. Using a 7.5 mm high pressure MAS rotor as an example, internal pressure as high as 200 bar at a sample spinning rate of 6 kHz is achieved. The new high pressure MAS rotor is re-usable and compatible with most commercial NMR set-ups, exhibiting low 1H and 13C NMR background and offering maximal NMR sensitivity. As an example of its many possible applications, this new capability is applied to determine reaction products associated with the carbonation reaction of a natural mineral, antigorite ((Mg,Fe2+)3Si2O5(OH)4), in contact with liquid water in water-saturated supercritical CO2 (scCO2) at 150 bar and 50 °C. This mineral is relevant to the deep geologic disposal of CO2, but its iron content results in too many sample spinning sidebands at low spinning rate. Hence, this chemical system is a good case study to demonstrate the utility of the higher sample spinning rates that can be achieved by our new rotor design. We expect this new capability will be useful for exploring solid-state, including interfacial, chemistry at new levels of high-pressure in a wide variety of fields.

  15. A spin- and angle-resolving photoelectron spectrometer

    CERN Document Server

    Berntsen, M H; Leandersson, M; Hahlin, A; hlund, J \\AA; Wannberg, B; nsson, M M\\aa; Tjernberg, O

    2010-01-01

    A new type of hemispherical electron energy analyzer that permits angle and spin resolved photoelectron spectroscopy has been developed. The analyzer permits standard angle resolved spectra to be recorded with a two-dimensional detector in parallel with spin detection using a mini-Mott polarimeter. General design considerations as well as technical solutions are discussed and test results from the Au(111) surface state are presented.

  16. High-pressure, high-temperature magic angle spinning nuclear magnetic resonance devices and processes for making and using same

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Hu, Mary Y.; Townsend, Mark R.; Lercher, Johannes A.; Peden, Charles H. F.

    2015-10-06

    Re-usable ceramic magic angle spinning (MAS) NMR rotors constructed of high-mechanic strength ceramics are detailed that include a sample compartment that maintains high pressures up to at least about 200 atmospheres (atm) and high temperatures up to about least about 300.degree. C. during operation. The rotor designs minimize pressure losses stemming from penetration over an extended period of time. The present invention makes possible a variety of in-situ high pressure, high temperature MAS NMR experiments not previously achieved in the prior art.

  17. In Vivo Detection of the Cyclic Osmoregulated Periplasmic Glucan of Ralstonia solanacearum by High-Resolution Magic Angle Spinning NMR

    Science.gov (United States)

    Wieruszeski, J.-M.; Bohin, A.; Bohin, J.-P.; Lippens, G.

    2001-07-01

    We investigate the mobility of the osmoregulated periplasmic glucans of Ralstonia solanacearum in the bacterial periplasm through the use of high-resolution (HR) NMR spectroscopy under static and magic angle spinning (MAS) conditions. Because the nature of periplasm is far from an isotropic aqueous solution, the molecules could be freely diffusing or rather associated to a periplasmic protein, a membrane protein, a lipid, or the peptidoglycan. HR MAS NMR spectroscopy leads to more reproducible results and allows the in vivo detection and characterization of the complex molecule.

  18. High resolution MAS-NMR in combinatorial chemistry.

    Science.gov (United States)

    Shapiro, M J; Gounarides, J S

    High-resolution magic angle spinning (hr-MAS) NMR is a powerful tool for characterizing organic reactions on solid support. Because magic angle spinning reduces the line-broadening due to dipolar coupling and variations in bulk magnetic susceptibility, line widths approaching those obtained in solution-phase NMR can be obtained. The magic angle spinning method is amenable for use in conjunction with a variety of NMR-pulse sequences, making it possible to perform full-structure determinations and conformational analysis on compounds attached to a polymer support. Diffusion-weighted MAS-NMR methods such as SPEEDY (Spin-Echo-Enhanced Diffusion-Filtered Spectroscopy) can be used to remove unwanted signals from the solvent, residual reactants, and the polymer support from the MAS-NMR spectrum, leaving only those signals arising from the resin-bound product. This review will present the applications of high-resolution magic angle spinning NMR for use in combinatorial chemistry research.

  19. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  20. Spin-Echo Small-Angle Neutron Scattering Development

    NARCIS (Netherlands)

    Uca, O

    2003-01-01

    Spin-Echo Small-Angle Neutron Scattering (SESANS) instrument is a novel SANS technique which enables one to characterize distances from a few nanometers up to the micron range. The most striking difference between normal SANS and SESANS is that in SESANS one gets information in real space, whereas i

  1. Visibility of lipid resonances in HR-MAS spectra of brain biopsies subject to spinning rate variation.

    Science.gov (United States)

    Precht, C; Diserens, G; Oevermann, A; Vermathen, M; Lang, J; Boesch, C; Vermathen, P

    2015-12-01

    Lipid resonances from mobile lipids can be observed by ¹H NMR spectroscopy in multiple tissues and have also been associated with malignancy. In order to use lipid resonances as a marker for disease, a reference standard from a healthy tissue has to be established taking the influence of variable factors like the spinning rate into account. The purpose of our study was to investigate the effect of spinning rate variation on the HR-MAS pattern of lipid resonances in non-neoplastic brain biopsies from different regions and visualize polar and non-polar lipids by fluorescence microscopy using Nile Red staining. ¹H HR-MAS NMR spectroscopy demonstrated higher lipid peak intensities in normal sheep brain pure white matter biopsies compared to mixed white and gray matter biopsies and pure gray matter biopsies. High spinning rates increased the visibility particularly of the methyl resonances at 1.3 and the methylene resonance at 0.89 ppm in white matter biopsies stronger compared to thalamus and brainstem biopsies, and gray matter biopsies. The absence of lipid droplets and presence of a large number of myelin sheaths observed in white matter by Nile Red fluorescence microscopy suggest that the observed lipid resonances originate from the macromolecular pool of lipid protons of the myelin sheath's plasma membranes. When using lipid contents as a marker for disease, the variable behavior of lipid resonances in different neuroanatomical regions of the brain and at variable spinning rates should be considered. The findings may open up interesting possibilities for investigating lipids in myelin sheaths.

  2. Chemical shift powder spectra enhanced by multiple-contact cross-polarization under slow magic-angle spinning

    Science.gov (United States)

    Raya, Jésus; Perrone, Barbara; Hirschinger, Jérôme

    2013-02-01

    A simple multiple-contact cross-polarization (CP) scheme is applied to a powder sample of ferrocene and β-calcium formate under static and magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. We show that multiple equilibrations-re-equilibrations with the proton spin bath improves the polarization transfer efficiency at short contact times and provides higher signal enhancements than state-of-the art techniques such as adiabatic passage through the Hartmann-Hahn condition CP (APHH-CP) when MAS is applied. The resulting chemical shift powder spectra then are identical to the ones obtained by using ROtor-Directed Exchange of Orientations CP (APHH-RODEO-CP) with intensity gains of a factor 1.1-1.3.

  3. Chemical shift powder spectra enhanced by multiple-contact cross-polarization under slow magic-angle spinning.

    Science.gov (United States)

    Raya, Jésus; Perrone, Barbara; Hirschinger, Jérôme

    2013-02-01

    A simple multiple-contact cross-polarization (CP) scheme is applied to a powder sample of ferrocene and β-calcium formate under static and magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. We show that multiple equilibrations-re-equilibrations with the proton spin bath improves the polarization transfer efficiency at short contact times and provides higher signal enhancements than state-of-the art techniques such as adiabatic passage through the Hartmann-Hahn condition CP (APHH-CP) when MAS is applied. The resulting chemical shift powder spectra then are identical to the ones obtained by using ROtor-Directed Exchange of Orientations CP (APHH-RODEO-CP) with intensity gains of a factor 1.1-1.3.

  4. High resolution triple resonance micro magic angle spinning NMR spectroscopy of nanoliter sample volumes.

    Science.gov (United States)

    Brauckmann, J Ole; Janssen, J W G Hans; Kentgens, Arno P M

    2016-02-14

    To be able to study mass-limited samples and small single crystals, a triple resonance micro-magic angle spinningMAS) probehead for the application of high-resolution solid-state NMR of nanoliter samples was developed. Due to its excellent rf performance this allows us to explore the limits of proton NMR resolution in strongly coupled solids. Using homonuclear decoupling we obtain unprecedented (1)H linewidths for a single crystal of glycine (Δν(CH2) = 0.14 ppm) at high field (20 T) in a directly detected spectrum. The triple channel design allowed the recording of high-resolution μMAS (13)C-(15)N correlations of [U-(13)C-(15)N] arginine HCl and shows that the superior (1)H resolution opens the way for high-sensitivity inverse detection of heteronuclei even at moderate spinning speeds and rf-fields. Efficient decoupling leads to long coherence times which can be exploited in many correlation experiments.

  5. Structure of fully protonated proteins by proton-detected magic-angle spinning NMR.

    Science.gov (United States)

    Andreas, Loren B; Jaudzems, Kristaps; Stanek, Jan; Lalli, Daniela; Bertarello, Andrea; Le Marchand, Tanguy; Cala-De Paepe, Diane; Kotelovica, Svetlana; Akopjana, Inara; Knott, Benno; Wegner, Sebastian; Engelke, Frank; Lesage, Anne; Emsley, Lyndon; Tars, Kaspars; Herrmann, Torsten; Pintacuda, Guido

    2016-08-16

    Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on highly deuterated samples, in which only a small number of protons are introduced and observation of signals from side chains is extremely limited. Here, we show in two fully protonated proteins that, at 100-kHz MAS and above, spectral resolution is high enough to detect resolved correlations from amide and side-chain protons of all residue types, and to reliably measure a dense network of (1)H-(1)H proximities that define a protein structure. The high data quality allowed the correct identification of internuclear distance restraints encoded in 3D spectra with automated data analysis, resulting in accurate, unbiased, and fast structure determination. Additionally, we find that narrower proton resonance lines, longer coherence lifetimes, and improved magnetization transfer offset the reduced sample size at 100-kHz spinning and above. Less than 2 weeks of experiment time and a single 0.5-mg sample was sufficient for the acquisition of all data necessary for backbone and side-chain resonance assignment and unsupervised structure determination. We expect the technique to pave the way for atomic-resolution structure analysis applicable to a wide range of proteins.

  6. Mixture diffusion of adsorbed organic compounds in metal-organic frameworks as studied by magic-angle spinning pulsed-field gradient nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Gratz, Marcel; Hertel, Stefan; Wehring, Markus; Stallmach, Frank [Faculty of Physics and Earth Science, University of Leipzig, Linnestrasse 5, 04103 Leipzig (Germany); Galvosas, Petrik, E-mail: petrik.galvosas@vuw.ac.nz [MacDiarmid Institute for Advanced Materials and Nanotechnology, SCPS, Victoria University of Wellington, 6012 Wellington (New Zealand)

    2011-04-15

    The magic-angle spinning (MAS) and pulsed-field gradient nuclear magnetic resonance (PFG NMR) techniques have been combined using a commercially available microimaging system providing a gradient in the magic-angle direction of up to {+-}2.6 T m{sup -1}, together with a narrow bore MAS probe. By narrowing the spectral linewidths, detection of the single and mixed molecular species adsorbed in porous material and their respective mobilities becomes possible. Here, we report on protocols for MAS PFG NMR measurements, new methods for the indispensable sample alignment along the MAS rotational axis and gradient direction and first experimental results of diffusion studies on n-hexane and benzene adsorbed in the metal-organic framework MOF-5.

  7. Determination of the position angle of stellar spin axes

    CERN Document Server

    Lesage, Anna-Lea

    2014-01-01

    Measuring the stellar position angle provides valuable information on binary stellar formation or stellar spin axis evolution. We aim to develop a method for determining the absolute stellar position angle using spectro-astrometric analysis of high resolution long-slit spectra. The method has been designed in particular for slowly rotating stars. We investigate its applicability to existing dispersive long-slit spectrographs, identified here by their plate scale, and the size of the resulting stellar sample. The stellar rotation induces a tilt in the stellar lines whose angle depends on the stellar position angle and the orientation of the slit. We developed a rotation model to calculate and reproduce the effects of stellar rotation on unreduced high resolution stellar spectra. Then we retrieved the tilt amplitude using a spectro-astrometric extraction of the position of the photocentre of the spectrum. Finally we present two methods for analysing the position spectrum using either direct measurement of the t...

  8. MAS NMR of HIV-1 protein assemblies

    Science.gov (United States)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  9. Spin-locking and cross-polarization under magic-angle spinning of uniformly labeled solids.

    Science.gov (United States)

    Hung, Ivan; Gan, Zhehong

    2015-07-01

    Spin-locking and cross-polarization under magic-angle spinning are investigated for uniformly (13)C and (15)N labeled solids. In particular, the interferences from chemical shift anisotropy, and (1)H heteronuclear and (13)C homonuclear dipolar couplings are identified. The physical origin of these interferences provides guidelines for selecting the best (13)C and (15)N polarization transfer rf fields. Optimal settings for both the zero- and double-quantum cross-polarization transfer mechanisms are recommended.

  10. Evaluation of cartilage composition and degradation by high-resolution magic-angle spinning nuclear magnetic resonance.

    Science.gov (United States)

    Schiller, Jürgen; Huster, Daniel; Fuchs, Beate; Naji, Lama; Kaufmann, Jörn; Arnold, Klaus

    2004-01-01

    Rheumatic diseases are accompanied by a progressive destruction of the cartilage layers of the joints. Although the number of patients suffering from rheumatic diseases is steadily increasing, degradation mechanisms of cartilage are not yet understood, and methods for early diagnosis are not available. Although some information on pathogenesis could be obtained from the nuclear magnetic resonance (NMR) spectra of degradation products in the supernatants of cartilage specimens incubated with degradation-causing agents, the most direct information on degradation processes would come from the native cartilage as such. To obtain highly resolved NMR spectra of cartilage, application of the recently developed high-resolution magic-angle spinning (HR-MAS) NMR technique is advisable to obtain small line-widths of individual cartilage resonances. This technique is nowadays commercially available for most NMR spectrometers and has the considerable advantage that the same pulse sequences as in high-resolution NMR can be applied. Except for a MAS spinning equipment, no solid-state NMR hardware is required. Therefore, this method can be easily implemented. Here, we describe the most important requirements that are necessary to record HR-MAS NMR spectra. The capabilities of the HR-MAS technique are discussed for the 1H and 13C NMR spectra of cartilage.

  11. Fast magic-angle sample spinning solid-state NMR at 60-100kHz for natural abundance samples.

    Science.gov (United States)

    Nishiyama, Yusuke

    2016-09-01

    In spite of tremendous progress made in pulse sequence designs and sophisticated hardware developments, methods to improve sensitivity and resolution in solid-state NMR (ssNMR) are still emerging. The rate at which sample is spun at magic angle determines the extent to which sensitivity and resolution of NMR spectra are improved. To this end, the prime objective of this article is to give a comprehensive theoretical and experimental framework of fast magic angle spinning (MAS) technique. The engineering design of fast MAS rotors based on spinning rate, sample volume, and sensitivity is presented in detail. Besides, the benefits of fast MAS citing the recent progress in methodology, especially for natural abundance samples are also highlighted. The effect of the MAS rate on (1)H resolution, which is a key to the success of the (1)H inverse detection methods, is described by a simple mathematical factor named as the homogeneity factor k. A comparison between various (1)H inverse detection methods is also presented. Moreover, methods to reduce the number of spinning sidebands (SSBs) for the systems with huge anisotropies in combination with (1)H inverse detection at fast MAS are discussed.

  12. Mineral Carbonation in Wet Supercritical CO2: An in situ High-Pressure Magic Angle Spinning Nuclear Magnetic Resonance Study

    Science.gov (United States)

    Turcu, R. V.; Hoyt, D. H.; Sears, J. A.; Rosso, K. M.; Felmy, A. R.; Hu, J. Z.

    2011-12-01

    Understanding the mechanisms and kinetics of mineral carbonation reactions relevant to sequestering carbon dioxide as a supercritical fluid (scCO2) in geologic formations is crucial for accurately predicting long-term storage risks. In situ probes that provide molecular-level information at geologically relevant temperatures and pressures are highly desirable and challenging to develop. Magic angle spinning nuclear magnetic resonance (MAS NMR) is a powerful tool for obtaining detailed molecular structure and dynamics information of a system regardless whether the system is in a solid, a liquid, a gaseous, a supercritical state, or a mixture thereof. However, MAS NMR under scCO2 conditions has never been realized due to the tremendous technical difficulties of achieving and maintaining high pressure within a fast spinning MAS sample rotor. In this work, we report development of a unique high pressure MAS NMR capability capable of handling fluid pressure exceeding 170 bars and temperatures up to 80°C, and its application to mineral carbonation in scCO2 under geologically relevant temperatures and pressures. Mineral carbonation reactions of the magnesium silicate mineral forsterite and the magnesium hydroxide brucite reacted with scCO2 (up to 170 bar) and containing variable content of H2O (at, below, and above saturation in scCO2) were investigated at 50 to 70°C. In situ 13C MAS NMR spectra show peaks corresponding to the reactants, intermediates, and the magnesium carbonation products in a single spectrum. For example, Figure 1 shows the reaction dynamics, i.e., the formation and conversion of reaction intermediates, i.e., HCO3- and nesquehonite, to magnesite as a function of time at 70°C. This capability offers a significant advantage over traditional ex situ 13C MAS experiments on similar systems, where, for example, CO2 and HCO3- are not directly observable.

  13. Magic-angle spinning NMR of cold samples.

    Science.gov (United States)

    Concistrè, Maria; Johannessen, Ole G; Carignani, Elisa; Geppi, Marco; Levitt, Malcolm H

    2013-09-17

    Magic-angle-spinning solid-state NMR provides site-resolved structural and chemical information about molecules that complements many other physical techniques. Recent technical advances have made it possible to perform magic-angle-spinning NMR experiments at low temperatures, allowing researchers to trap reaction intermediates and to perform site-resolved studies of low-temperature physical phenomena such as quantum rotations, quantum tunneling, ortho-para conversion between spin isomers, and superconductivity. In examining biological molecules, the improved sensitivity provided by cryogenic NMR facilitates the study of protein assembly or membrane proteins. The combination of low-temperatures with dynamic nuclear polarization has the potential to boost sensitivity even further. Many research groups, including ours, have addressed the technical challenges and developed hardware for magic-angle-spinning of samples cooled down to a few tens of degrees Kelvin. In this Account, we briefly describe these hardware developments and review several recent activities of our group which involve low-temperature magic-angle-spinning NMR. Low-temperature operation allows us to trap intermediates that cannot be studied under ambient conditions by NMR because of their short lifetime. We have used low-temperature NMR to study the electronic structure of bathorhodopsin, the primary photoproduct of the light-sensitive membrane protein, rhodopsin. This project used a custom-built NMR probe that allows low-temperature NMR in the presence of illumination (the image shows the illuminated spinner module). We have also used this technique to study the behavior of molecules within a restricted environment. Small-molecule endofullerenes are interesting molecular systems in which molecular rotors are confined to a well-insulated, well-defined, and highly symmetric environment. We discuss how cryogenic solid state NMR can give information on the dynamics of ortho-water confined in a fullerene

  14. COMPOZER-based longitudinal cross-polarization via dipolar coupling under MAS.

    Science.gov (United States)

    Kamihara, Takayuki; Murakami, Miwa; Noda, Yasuto; Takeda, Kazuyuki; Takegoshi, K

    2014-08-01

    We propose a cross polarization (CP) sequence effective under magic-angle spinning (MAS) which is tolerant to RF field inhomogeneity and Hartmann-Hahn mismatch. Its key feature is that spin locking is not used, as CP occurs among the longitudinal (Z) magnetizations modulated by the combination of two pulses with the opposite phases. We show that, by changing the phases of the pulse pairs synchronized with MAS, the flip-flop term of the dipolar interaction is restored under MAS.

  15. Solid-state NMR spectra of lipid-anchored proteins under magic angle spinning.

    Science.gov (United States)

    Nomura, Kaoru; Harada, Erisa; Sugase, Kenji; Shimamoto, Keiko

    2014-03-01

    Solid-state NMR is a promising tool for elucidating membrane-related biological phenomena. We achieved the measurement of high-resolution solid-state NMR spectra for a lipid-anchored protein embedded in lipid bilayers under magic angle spinning (MAS). To date, solid-state NMR measurements of lipid-anchored proteins have not been accomplished due to the difficulty in supplying sufficient amount of stable isotope labeled samples in the overexpression of lipid-anchored proteins requiring complex posttranslational modification. We designed a pseudo lipid-anchored protein in which the protein component was expressed in E. coli and attached to a chemically synthesized lipid-anchor mimic. Using two types of membranes, liposomes and bicelles, we demonstrated different types of insertion procedures for lipid-anchored protein into membranes. In the liposome sample, we were able to observe the cross-polarization and the (13)C-(13)C chemical shift correlation spectra under MAS, indicating that the liposome sample can be used to analyze molecular interactions using dipolar-based NMR experiments. In contrast, the bicelle sample showed sufficient quality of spectra through scalar-based experiments. The relaxation times and protein-membrane interaction were capable of being analyzed in the bicelle sample. These results demonstrated the applicability of two types of sample system to elucidate the roles of lipid-anchors in regulating diverse biological phenomena.

  16. High-resolution NMR of anisotropic samples with spinning away from the magic angle

    Energy Technology Data Exchange (ETDEWEB)

    Sakellariou, Dimitris; Meriles, Carlos A.; Martin, Rachel W.; Pines, Alexander

    2003-03-31

    High-resolution NMR of samples in the solid state is typically performed under mechanical sample spinning around an axis that makes an angle, called the magic angle, of 54.7 degrees with the static magnetic field. There are many cases in which geometrical and engineering constraints prevent spinning at this specific angle. Implementations of in-situ and ex-situ magic angle field spinning might be extremely demanding because of the power requirements or an inconvenient sample size or geometry. Here we present a methodology based on switched angle spinning between two angles, none of which is the magic angle, which provide both isotropic and anisotropic information. Using this method, named Projected Magic Angle Spinning, we were able to obtain resolved isotropic chemical shifts in spinning samples where the broadening is mostly inhomogeneous.

  17. The interaction of small molecules with phospholipid membranes studied by 1H NOESY NMR under magic-angle spinning1

    Institute of Scientific and Technical Information of China (English)

    Holger A SCHEIDT; Daniel HUSTER

    2008-01-01

    The interaction of small molecules with lipid membranes and the exact knowledge of their binding site and bilayer distribution is of great pharmacological impor-tance and represents an active field of current biophysical research. Over the last decade, a highly resolved 1H solid-state NMR method has been developed that allows measuring localization and distribution of small molecules in membranes. The classical solution 1H NMR NOESY technique is applied to lipid membrane samples under magic-angle spinning (MAS) and NOESY cross-relaxation rates are determined quantitatively. These rates are proportional to the contact probability between molecular segments and therefore an ideal tool to study intermolecular interactions in membranes. Here, we review recent 1H MAS NOESY applications that were carried out to study lateral lipid organization in mixed membranes and the interaction of membranes with water, ethanol, small aromatic compounds, peptides, fluorescence labels, and lipophilic nucleosides.

  18. Hexameric Capsules Studied by Magic Angle Spinning Solid-State NMR Spectroscopy: Identifying Solvent Molecules in Pyrogallol[4]arene Capsules.

    Science.gov (United States)

    Avram, Liat; Goldbourt, Amir; Cohen, Yoram

    2016-01-18

    Powders of pyrogallol[4]arene hexamers were produced by evaporation from organic solvents and were studied, for the first time, by magic angle spinning solid-state NMR (MAS ssNMR). Evaporation selectively removed non-encapsulated solvent molecules leaving stable hexameric capsules encapsulating solvent molecules. After exposure of the powder to solvent vapors, (1)H/(13)C heteronuclear correlation MAS ssNMR experiments were used to assign the signals of the external and encapsulated solvent molecules. The formed capsules were stable for months and the process of solvent encapsulation was reversible. According to the ssNMR experiments, the encapsulated solvent molecules occupy different sites and those sites differ in their mobility. The presented approach paves the way for studying guest exchange, guest affinity, and gas storage in hexamers of this type in the solid state.

  19. Investigating hard sphere interactions through spin echo scattering angle measurement

    Science.gov (United States)

    Washington, Adam

    Spin Echo Scattering Angle Measurement (SESAME) allows neutron scattering instruments to perform real space measurements on large micron scale samples by encoding the scattering angle into the neutron's spin state via Larmor precession. I have built a SESAME instrument at the Low Energy Neutron Source. I have also assisted in the construction of a modular SESAME instrument on the ASTERIX beamline at Los Alamos National lab. The ability to tune these instruments has been proved mathematically and optimized and automated experimentally. Practical limits of the SESAME technique with respect to polarization analyzers, neutron spectra, Larmor elements, and data analysis were investigated. The SESAME technique was used to examine the interaction of hard spheres under depletion. Poly(methyl methacrylate) spheres suspended in decalin had previously been studied as a hard sphere solution. The interparticle correlations between the spheres were found to match the Percus-Yevick closure, as had been previously seen in dynamical light scattering experiments. To expand beyond pure hard spheres, 900kDa polystyrene was added to the solution in concentrations of less than 1% by mass. The steric effects of the polystyrene were expected to produce a short-range, attractive, "sticky" potential. Experiment showed, however, that the "sticky" potential was not a stable state and that the spheres would eventually form long range aggregates.

  20. Effective Floquet Hamiltonian for spin = 1 in magic angle spinning NMR using contact transformation

    Indian Academy of Sciences (India)

    Manoj Kumar Pandey; Mangala Sunder Krishnan

    2007-09-01

    Contact transformation is an operator transformation method in time-independent perturbation theory which is used successfully in molecular spectroscopy to obtain an effective Hamiltonian. Floquet theory is used to transform the periodic time-dependent Hamiltonian, to a time-independent Floquet Hamiltonian. In this article contact transformation method has been used to get the analytical representation of Floquet Hamiltonian for quadrupolar nuclei with spin = 1 in the presence of an RF field and first order quadrupolar interaction in magic angle spinning NMR experiments. The eigenvalues of contact transformed Hamiltonian as well as Floquet Hamiltonian have been calculated and a comparison is made between the eigenvalues obtained using the two Hamiltonians.

  1. Fluid flow dynamics in MAS systems.

    Science.gov (United States)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  2. Direct determination of phosphate sugars in biological material by (1)H high-resolution magic-angle-spinning NMR spectroscopy.

    Science.gov (United States)

    Diserens, Gaëlle; Vermathen, Martina; Gjuroski, Ilche; Eggimann, Sandra; Precht, Christina; Boesch, Chris; Vermathen, Peter

    2016-08-01

    The study aim was to unambiguously assign nucleotide sugars, mainly UDP-X that are known to be important in glycosylation processes as sugar donors, and glucose-phosphates that are important intermediate metabolites for storage and transfer of energy directly in spectra of intact cells, as well as in skeletal muscle biopsies by (1)H high-resolution magic-angle-spinning (HR-MAS) NMR. The results demonstrate that sugar phosphates can be determined quickly and non-destructively in cells and biopsies by HR-MAS, which may prove valuable considering the importance of phosphate sugars in cell metabolism for nucleic acid synthesis. As proof of principle, an example of phosphate-sugar reaction and degradation kinetics after unfreezing the sample is shown for a cardiac muscle, suggesting the possibility to follow by HR-MAS NMR some metabolic pathways. Graphical abstract Glucose-phosphate sugars (Glc-1P and Glc-6P) detected in muscle by 1H HR-MAS NMR.

  3. Processing of high resolution magic angle spinning spectra of breast cancer cells by the filter diagonalization method.

    Science.gov (United States)

    Maria, Roberta Manzano; Moraes, Tiago Bueno; Magon, Claudio José; Venâncio, Tiago; Altei, Wanessa Fernanda; Andricopulo, Adriano Defini; Colnago, Luiz Alberto

    2012-10-01

    Proton nuclear magnetic resonance ((1)H NMR) spectroscopy for detection of biochemical changes in biological samples is a successful technique. However, the achieved NMR resolution is not sufficiently high when the analysis is performed with intact cells. To improve spectral resolution, high resolution magic angle spinning (HR-MAS) is used and the broad signals are separated by a T(2) filter based on the CPMG pulse sequence. Additionally, HR-MAS experiments with a T(2) filter are preceded by a water suppression procedure. The goal of this work is to demonstrate that the experimental procedures of water suppression and T(2) or diffusing filters are unnecessary steps when the filter diagonalization method (FDM) is used to process the time domain HR-MAS signals. Manipulation of the FDM results, represented as a tabular list of peak positions, widths, amplitudes and phases, allows the removal of water signals without the disturbing overlapping or nearby signals. Additionally, the FDM can also be used for phase correction and noise suppression, and to discriminate between sharp and broad lines. Results demonstrate the applicability of the FDM post-acquisition processing to obtain high quality HR-MAS spectra of heterogeneous biological materials.

  4. Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning

    KAUST Repository

    Parthasarathy, Sudhakar

    2013-09-17

    Recent research in fast magic angle spinning (MAS) methods has drastically improved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarize recent and ongoing developments in this area by presenting (13)C and (1)H solid-state NMR (SSNMR) studies on paramagnetic systems and biomolecules under fast MAS from our laboratories. First, we describe how very fast MAS (VFMAS) at the spinning speed of at least 20 kHz allows us to overcome major difficulties in (1)H and (13)C high-resolution SSNMR of paramagnetic systems. As a result, we can enhance both sensitivity and resolution by up to a few orders of magnitude. Using fast recycling (∼ms/scan) with short (1)H T1 values, we can perform (1)H SSNMR microanalysis of paramagnetic systems on the microgram scale with greatly improved sensitivity over that observed for diamagnetic systems. Second, we discuss how VFMAS at a spinning speed greater than ∼40 kHz can enhance the sensitivity and resolution of (13)C biomolecular SSNMR measurements. Low-power (1)H decoupling schemes under VFMAS offer excellent spectral resolution for (13)C SSNMR by nominal (1)H RF irradiation at ∼10 kHz. By combining the VFMAS approach with enhanced (1)H T1 relaxation by paramagnetic doping, we can achieve extremely fast recycling in modern biomolecular SSNMR experiments. Experiments with (13)C-labeled ubiquitin doped with 10 mM Cu-EDTA demonstrate how effectively this new approach, called paramagnetic assisted condensed data collection (PACC), enhances the sensitivity. Lastly, we examine (13)C SSNMR measurements for biomolecules under faster MAS at a higher field. Our preliminary (13)C SSNMR data of Aβ amyloid fibrils and GB1 microcrystals acquired at (1)H NMR frequencies of 750-800 MHz suggest that the combined use of the PACC approach and ultrahigh fields could allow for routine multidimensional SSNMR analyses of proteins at the 50-200 nmol level. Also, we briefly discuss the

  5. HYDROGEN AND DEUTERIUM NMR OF SOLIDS BY MAGIC ANGLE SPINNING

    Energy Technology Data Exchange (ETDEWEB)

    Eckman, R.R.

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large spectral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. For example, the homonuclear dipolar broadening, HD, for hydrogen is usually several tens of kilohertz. For deuterium, HD is relatively small; however, the quadrupole interaction causes a broadening which can be hundreds of kilohertz in polycrystalline or amorphous solids. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, {beta}{sub m} = Arccos(3{sup -1/2}), with respect to the direction of the external magnetic field. Two approaches have been developed for each nucleus. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of {beta}. A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H{sub D} was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal

  6. Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.

    Science.gov (United States)

    Kempgens, Pierre; Britton, Jonathan

    2016-05-01

    Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr  = 2 kHz for TiN, ZrN, and GaN; νr  = 1 kHz for InN) and 'high speed' (νr  = 15 kHz for TiN; νr  = 5 kHz for ZrN; νr  = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied.

  7. Principles of spin-echo modulation by J-couplings in magic-angle-spinning solid-state NMR.

    Science.gov (United States)

    Duma, Luminita; Lai, Wai Cheu; Carravetta, Marina; Emsley, Lyndon; Brown, Steven P; Levitt, Malcolm H

    2004-06-21

    In magic-angle-spinning solid-state NMR, the homonuclear J-couplings between pairs of spin-1/2 nuclei may be determined by studying the modulation of the spin echo induced by a pi-pulse, as a function of the echo duration. We present the theory of J-induced spin-echo modulation in magic-angle-spinning solids, and derive a set of modulation regimes which apply under different experimental conditions. In most cases, the dominant spin-echo modulation frequency is exactly equal to the J-coupling. Somewhat surprisingly, the chemical shift anisotropies and dipole-dipole couplings tend to stabilise--rather than abscure--the J-modulation. The theoretical conclusions are supported by numerical simulations and experimental results obtained for three representative samples containing 13C spin pairs.

  8. Angles and Daemons: Spin Correlations at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Nhan V. [Johns Hopkins Univ., Baltimore, MD (United States)

    2011-09-01

    The Large Hadron Collider has recently started collecting data, opening a new energy regime. This will allow us to probe further than ever before many of the current mysteries of the field. New physics beyond the Standard Model, the field's current paradigm, could manifest itself via new particles. In addition, the Higgs boson, hypothesized as a consequence of electroweak symmetry breaking, remains undiscovered. At the time of discovery, the properties of such particles will be unknown. In order to understand the nature of any new physics, it will be important to understand the properties of that new particle. Methods are presented for measuring its spin, parity and coupling to the Standard Model particles. These methods are implemented at the Compact Muon Solenoid experiment and an analysis is presented with the data collected during 2010 and 2011 running at the Large Hadron Collider. An application of these techniques is used to make a measurement of the weak mixing angle. A current status of the search for the Higgs boson is also presented.

  9. Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning.

    Science.gov (United States)

    Thurber, Kent; Tycko, Robert

    2016-03-01

    We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized (13)C NMR signals in the 100-200 range are demonstrated with DNP at 25K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states.

  10. Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning

    Science.gov (United States)

    Thurber, Kent; Tycko, Robert

    2016-03-01

    We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized 13C NMR signals in the 100-200 range are demonstrated with DNP at 25 K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30 K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states.

  11. Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Kanmi [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-γ nuclei (e.g., 13C and 15N) via the sensitive high-{gamma} nuclei (e.g., 1H and 19F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for 1H-1H homonuclear decoupling. Also presented is a simple new strategy for optimization of 1H-1H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in 1H detected 2D 1H{l_brace}13C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional 13C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear 1H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5m$\\bar{x}$, PMLG5mm$\\bar{x}$x and SAM3) were analyzed to maximize the performance of through-bond transfer based

  12. High-resolution magic angle spinning (1) H NMR measurement of ligand concentration in solvent-saturated chromatographic beads.

    Science.gov (United States)

    Elwinger, Fredrik; Furó, István

    2016-04-01

    A method based on (1) H high-resolution magic angle spinning NMR has been developed for measuring concentration accurately in heterogeneous materials like that of ligands in chromatography media. Ligand concentration is obtained by relating the peak integrals for a butyl ligand in the spectrum of a water-saturated chromatography medium to the integral of the added internal reference. The method is fast, with capacity of 10 min total sample preparation and analysis time per sample; precise, with a reproducibility expressed as 1.7% relative standard deviation; and accurate, as indicated by the excellent agreement of derived concentration with that obtained previously by (13) C single-pulse excitation MAS NMR. The effects of radiofrequency field inhomogeneity, spin rate, temperature increase due to spinning, and distribution and re-distribution of medium and reference solvent both inside the rotor during spinning and between bulk solvent and pore space are discussed in detail. © 2016 The Authors Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  13. Metabolic Profiling of Intact Arabidopsis thaliana Leaves during Circadian Cycle Using 1H High Resolution Magic Angle Spinning NMR.

    Science.gov (United States)

    Augustijn, D; Roy, U; van Schadewijk, R; de Groot, H J M; Alia, A

    Arabidopsis thaliana is the most widely used model organism for research in plant biology. While significant advances in understanding plant growth and development have been made by focusing on the molecular genetics of Arabidopsis, extracting and understanding the functional framework of metabolism is challenging, both from a technical perspective due to losses and modification during extraction of metabolites from the leaves, and from the biological perspective, due to random variation obscuring how well the function is performed. The purpose of this work is to establish the in vivo metabolic profile directly from the Arabidopsis thaliana leaves without metabolite extraction, to reduce the complexity of the results by multivariate analysis, and to unravel the mitigation of cellular complexity by predominant functional periodicity. To achieve this, we use the circadian cycle that strongly influences metabolic and physiological processes and exerts control over the photosynthetic machinery. High resolution-magic angle spinning nuclear magnetic resonance (HR-MAS NMR) was applied to obtain the metabolic profile directly from intact Arabidopsis leaves. Combining one- and two-dimensional 1H HR-MAS NMR allowed the identification of several metabolites including sugars and amino acids in intact leaves. Multivariate analysis on HR-MAS NMR spectra of leaves throughout the circadian cycle revealed modules of primary metabolites with significant and consistent variations of their molecular components at different time points of the circadian cycle. Since robust photosynthetic performance in plants relies on the functional periodicity of the circadian rhythm, our results show that HR-MAS NMR promises to be an important non-invasive method that can be used for metabolomics of the Arabidopsis thaliana mutants with altered physiology and photosynthetic efficiency.

  14. Metabolic Profiling of Intact Arabidopsis thaliana Leaves during Circadian Cycle Using 1H High Resolution Magic Angle Spinning NMR

    Science.gov (United States)

    van Schadewijk, R.; de Groot, H. J. M.; Alia, A.

    2016-01-01

    Arabidopsis thaliana is the most widely used model organism for research in plant biology. While significant advances in understanding plant growth and development have been made by focusing on the molecular genetics of Arabidopsis, extracting and understanding the functional framework of metabolism is challenging, both from a technical perspective due to losses and modification during extraction of metabolites from the leaves, and from the biological perspective, due to random variation obscuring how well the function is performed. The purpose of this work is to establish the in vivo metabolic profile directly from the Arabidopsis thaliana leaves without metabolite extraction, to reduce the complexity of the results by multivariate analysis, and to unravel the mitigation of cellular complexity by predominant functional periodicity. To achieve this, we use the circadian cycle that strongly influences metabolic and physiological processes and exerts control over the photosynthetic machinery. High resolution-magic angle spinning nuclear magnetic resonance (HR-MAS NMR) was applied to obtain the metabolic profile directly from intact Arabidopsis leaves. Combining one- and two-dimensional 1H HR-MAS NMR allowed the identification of several metabolites including sugars and amino acids in intact leaves. Multivariate analysis on HR-MAS NMR spectra of leaves throughout the circadian cycle revealed modules of primary metabolites with significant and consistent variations of their molecular components at different time points of the circadian cycle. Since robust photosynthetic performance in plants relies on the functional periodicity of the circadian rhythm, our results show that HR-MAS NMR promises to be an important non-invasive method that can be used for metabolomics of the Arabidopsis thaliana mutants with altered physiology and photosynthetic efficiency. PMID:27662620

  15. Ultra-low temperature MAS-DNP

    Science.gov (United States)

    Lee, Daniel; Bouleau, Eric; Saint-Bonnet, Pierre; Hediger, Sabine; De Paëpe, Gaël

    2016-03-01

    Since the infancy of NMR spectroscopy, sensitivity and resolution have been the limiting factors of the technique. Regular essential developments on this front have led to the widely applicable, versatile, and powerful spectroscopy that we know today. However, the Holy Grail of ultimate sensitivity and resolution is not yet reached, and technical improvements are still ongoing. Hence, high-field dynamic nuclear polarization (DNP) making use of high-frequency, high-power microwave irradiation of electron spins has become very promising in combination with magic angle sample spinning (MAS) solid-state NMR experiments. This is because it leads to a transfer of the much larger polarization of these electron spins under suitable irradiation to surrounding nuclei, greatly increasing NMR sensitivity. Currently, this boom in MAS-DNP is mainly performed at minimum sample temperatures of about 100 K, using cold nitrogen gas to pneumatically spin and cool the sample. This Perspective deals with the desire to improve further the sensitivity and resolution by providing "ultra"-low temperatures for MAS-DNP, using cryogenic helium gas. Different designs on how this technological challenge has been overcome are described. It is shown that stable and fast spinning can be attained for sample temperatures down to 30 K using a large cryostat developed in our laboratory. Using this cryostat to cool a closed-loop of helium gas brings the additional advantage of sample spinning frequencies that can greatly surpass those achievable with nitrogen gas, due to the differing fluidic properties of these two gases. It is shown that using ultra-low temperatures for MAS-DNP results in substantial experimental sensitivity enhancements and according time-savings. Access to this temperature range is demonstrated to be both viable and highly pertinent.

  16. Slow Manifold and Hannay Angle in the Spinning Top

    Science.gov (United States)

    Berry, M. V.; Shukla, P.

    2011-01-01

    The spin of a top can be regarded as a fast variable, coupled to the motion of the axis which is slow. In pure precession, the rotation of the axis round a cone (without nutation), can be considered as the result of a reaction from the fast spin. The resulting restriction of the total state space of the top is an illustrative example, at…

  17. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies.

    Science.gov (United States)

    Mote, Kaustubh R; Madhu, Perunthiruthy K

    2015-12-01

    (1)H-detection offers a substitute to the sensitivity-starved experiments often used to characterize biomolecular samples using magic-angle spinning solid-state NMR spectroscopy (MAS-ssNMR). To mitigate the effects of the strong (1)H-(1)H dipolar coupled network that would otherwise severely broaden resonances, high MAS frequencies (>40kHz) are often employed. Here, we have explored the alternative of stroboscopic (1)H-detection at moderate MAS frequencies of 5-30kHz using windowed version of supercycled-phase-modulated Lee-Goldburg homonuclear decoupling. We show that improved resolution in the (1)H dimension, comparable to that obtainable at high spinning frequencies of 40-60kHz without homonuclear decoupling, can be obtained in these experiments for fully protonated proteins. Along with detailed analysis of the performance of the method on the standard tri-peptide f-MLF, experiments on micro-crystalline GB1 and amyloid-β aggregates are used to demonstrate the applicability of these pulse-sequences to challenging biomolecular systems. With only two parameters to optimize, broadbanded performance of the homonuclear decoupling sequence, linear dependence of the chemical-shift scaling factor on resonance offset and a straightforward implementation under experimental conditions currently used for many biomolecular studies (viz. spinning frequencies and radio-frequency amplitudes), we expect these experiments to complement the current (13)C-detection based methods in assignments and characterization through chemical-shift mapping.

  18. Structural Analysis of Human Cofilin 2/Filamentous Actin Assemblies: Atomic-Resolution Insights from Magic Angle Spinning NMR Spectroscopy

    Science.gov (United States)

    Yehl, Jenna; Kudryashova, Elena; Reisler, Emil; Kudryashov, Dmitri; Polenova, Tatyana

    2017-01-01

    Cellular actin dynamics is an essential element of numerous cellular processes, such as cell motility, cell division and endocytosis. Actin’s involvement in these processes is mediated by many actin-binding proteins, among which the cofilin family plays unique and essential role in accelerating actin treadmilling in filamentous actin (F-actin) in a nucleotide-state dependent manner. Cofilin preferentially interacts with older filaments by recognizing time-dependent changes in F-actin structure associated with the hydrolysis of ATP and release of inorganic phosphate (Pi) from the nucleotide cleft of actin. The structure of cofilin on F-actin and the details of the intermolecular interface remain poorly understood at atomic resolution. Here we report atomic-level characterization by magic angle spinning (MAS) NMR of the muscle isoform of human cofilin 2 (CFL2) bound to F-actin. We demonstrate that resonance assignments for the majority of atoms are readily accomplished and we derive the intermolecular interface between CFL2 and F-actin. The MAS NMR approach reported here establishes the foundation for atomic-resolution characterization of a broad range of actin-associated proteins bound to F-actin. PMID:28303963

  19. Two-dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs.

    Science.gov (United States)

    Edén, Mattias

    2010-05-01

    Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t(2) domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t(1)) dimension. We employ experimental (23)Na and (27)Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl(2)O(5)), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations.

  20. Crocus sativus Petals: Waste or Valuable Resource? The Answer of High-Resolution and High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance.

    Science.gov (United States)

    Righi, Valeria; Parenti, Francesca; Tugnoli, Vitaliano; Schenetti, Luisa; Mucci, Adele

    2015-09-30

    Intact Crocus sativus petals were studied for the first time by high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy, revealing the presence of kinsenoside (2) and goodyeroside A (3), together with 3-hydroxy-γ-butyrolactone (4). These findings were confirmed by HR-NMR analysis of the ethanol extract of fresh petals and showed that, even though carried out rapidly, partial hydrolysis of glucopyranosyloxybutanolides occurs during extraction. On the other hand, kaempferol 3-O-sophoroside (1), which is "NMR-silent" in intact petals, is present in extracts. These results suggest to evaluate the utilization of saffron petals for phytopharmaceutical and nutraceutical purposes to exploit a waste product of massive production of commercial saffron and point to the application of HR-MAS NMR for monitoring bioactive compounds directly on intact petals, avoiding the extraction procedure and the consequent hydrolysis reaction.

  1. Low-power broadband homonuclear dipolar recoupling without decoupling: Double-quantum 13C NMR correlations at very fast magic-angle spinning

    Science.gov (United States)

    Teymoori, Gholamhasan; Pahari, Bholanath; Stevensson, Baltzar; Edén, Mattias

    2012-09-01

    We report novel symmetry-based radio-frequency (rf) pulse sequences for efficient excitation of double-quantum (2Q) coherences under very fast (>60 kHz) magic-angle spinning (MAS) conditions. The recursively generated pulse-scheme series, R22p1R22p-1(p=1,2,3,…), offers broadband 13C-13C recoupling in organic solids at a very low rf power. No proton decoupling is required. A high-order average Hamiltonian theory analysis reveals a progressively enhanced resonance-offset compensation for increasing p, as verified both by numerical simulations and 2Q filtration NMR experiments on 13C2-glycine, [2,3-13C2]alanine, and [U-13C]tyrosine at 14.1 T and 66 kHz MAS, where the pulse schemes with p⩾3 compare favorably to current state-of-the-art recoupling options.

  2. 1H High Resolution Magic-Angle Coil Spinning (HR-MACS) - NMR Metabolic Profiling of whole Saccharomyces cervisiae cells: A Demonstrative Study

    Science.gov (United States)

    Wong, Alan; Boutin, Celine; Aguiar, Pedro

    2014-06-01

    The low sensitivity of Nuclear Magnetic Resonance (NMR) is its prime shortcoming compared to other analytical methods for metabolomic studies. It relies on large sample volume (30-50 µl for HR-MAS) for rich metabolic profiling, hindering high-throughput screening especially when the sample requires a labor-intensive preparation or is a sacred specimen. This is indeed the case for some living organisms. This study evaluates a 1H HR-MAS approach for metabolic profiling of small volume (250 nl) whole bacterial cells, Saccharomyces cervisiae, using an emerging micro-NMR technology: high-resolution magic-angle coil spinning (HR-MACS). As a demonstrative study for whole cells, we perform two independent metabolomics studies identifying the significant metabolites associated with osmotic stress and aging.

  3. 1H High Resolution Magic-Angle Coil Spinning (HR-MACS µNMR Metabolic Profiling of whole Saccharomyces cervisiae cells: A Demonstrative Study

    Directory of Open Access Journals (Sweden)

    Alan eWong

    2014-06-01

    Full Text Available The low sensitivity of Nuclear Magnetic Resonance (NMR is its prime shortcoming compared to other analytical methods for metabolomic studies. It relies on large sample volume (30–50 µl for HR-MAS for rich metabolic profiling, hindering high-throughput screening especially when the sample requires a labor-intensive preparation or is a sacred specimen. This is indeed the case for some living organisms. This study evaluates a 1H HR-MAS approach for metabolic profiling of small volume (250 nl whole bacterial cells, Saccharomyces cervisiae, using an emerging micro-NMR technology: high-resolution magic-angle coil spinning (HR-MACS. As a demonstrative study for whole cells, we perform two independent metabolomics studies identifying the significant metabolites associated with osmotic stress and aging.

  4. IN SITU MAGIC ANGLE SPINNING NMR FOR STUDYING GEOLOGICAL CO(2) SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, David W.; Turcu, Romulus VF; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Kwak, Ja Hun; Felmy, Andrew R.; Hu, Jian Z.

    2011-03-27

    Geological carbon sequestration (GCS) is one of the most promising ways of mitigating atmospheric greenhouse gases (1-3). Mineral carbonation reactions are potentially important to the long-term sealing effectiveness of caprock but remain poorly predictable, particularly in low-water supercritical CO2 (scCO2)-dominated environments where the chemistry has not been adequately explored. In situ probes that provide molecular-level information is desirable for investigating mechanisms and rates of GCS mineral carbonation reactions. MAS-NMR is a powerful tool for obtaining detailed molecular structure and dynamics information of a system regardless whether the system is in a solid, a liquid, a gaseous, or a supercritical state, or a mixture thereof (4,5). However, MAS NMR under scCO2 conditions has never been realized due to the tremendous technical difficulties of achieving and maintaining high pressure within a fast spinning MAS rotor (6,7), where non-metal materials must be used. In this work, we report development of a unique high pressure MAS NMR capability, and its application to mineral carbonation chemistry in scCO2 under geologically relevant temperatures and pressures.

  5. Structural biology applications of solid state MAS DNP NMR

    Science.gov (United States)

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance.

  6. Floquet-Magnus expansion for general N-coupled spins systems in magic-angle spinning nuclear magnetic resonance spectra

    Science.gov (United States)

    Mananga, Eugene Stephane; Charpentier, Thibault

    2015-04-01

    In this paper we present a theoretical perturbative approach for describing the NMR spectrum of strongly dipolar-coupled spin systems under fast magic-angle spinning. Our treatment is based on two approaches: the Floquet approach and the Floquet-Magnus expansion. The Floquet approach is well known in the NMR community as a perturbative approach to get analytical approximations. Numerical procedures are based on step-by-step numerical integration of the corresponding differential equations. The Floquet-Magnus expansion is a perturbative approach of the Floquet theory. Furthermore, we address the " γ -encoding" effect using the Floquet-Magnus expansion approach. We show that the average over " γ " angle can be performed for any Hamiltonian with γ symmetry.

  7. Sensitivity and resolution of proton detected spectra of a deuterated protein at 40 and 60 kHz magic-angle-spinning

    Energy Technology Data Exchange (ETDEWEB)

    Nieuwkoop, Andrew J.; Franks, W. Trent; Rehbein, Kristina; Diehl, Anne; Akbey, Ümit [Leibniz-Institut für Molekulare Pharmakologie (FMP) (Germany); Engelke, Frank [Bruker Biospin GmbH (Germany); Emsley, Lyndon; Pintacuda, Guido [Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), Centre de RMN à très haus champs (France); Oschkinat, Hartmut, E-mail: oschkinat@fmp-berlin.de [Leibniz-Institut für Molekulare Pharmakologie (FMP) (Germany)

    2015-02-15

    The use of small rotors capable of very fast magic-angle spinning (MAS) in conjunction with proton dilution by perdeuteration and partial reprotonation at exchangeable sites has enabled the acquisition of resolved, proton detected, solid-state NMR spectra on samples of biological macromolecules. The ability to detect the high-gamma protons, instead of carbons or nitrogens, increases sensitivity. In order to achieve sufficient resolution of the amide proton signals, rotors must be spun at the maximum rate possible given their size and the proton back-exchange percentage tuned. Here we investigate the optimal proton back-exchange ratio for triply labeled SH3 at 40 kHz MAS. We find that spectra acquired on 60 % back-exchanged samples in 1.9 mm rotors have similar resolution at 40 kHz MAS as spectra of 100 % back-exchanged samples in 1.3 mm rotors spinning at 60 kHz MAS, and for (H)NH 2D and (H)CNH 3D spectra, show 10–20 % higher sensitivity. For 100 % back-exchanged samples, the sensitivity in 1.9 mm rotors is superior by a factor of 1.9 in (H)NH and 1.8 in (H)CNH spectra but at lower resolution. For (H)C(C)NH experiments with a carbon–carbon mixing period, this sensitivity gain is lost due to shorter relaxation times and less efficient transfer steps. We present a detailed study on the sensitivity of these types of experiments for both types of rotors, which should enable experimentalists to make an informed decision about which type of rotor is best for specific applications.

  8. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Baltisberger, J.H.

    1993-06-01

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the {sup 87}Rb and {sup 85}Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem.

  9. Spin-Echo Small Angle Neutron Scattering analysis of liposomes and bacteria

    NARCIS (Netherlands)

    Van Heijkamp, L.F., et al.

    2010-01-01

    Two types of liposomes, commonly used in drug delivery studies, and E. coli bacteria, all prepared in H2O, were resuspended in D2O and measured with Small Angle Spin-Echo Neutron Scattering (SESANS). Modeling was performed using correlation functions for solid spheres and hollow spheres. The signal

  10. Phosphorus-doped thin silica films characterized by magic-angle spinning nuclear magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Jacobsen, H.J.; Skibsted, J.; Kristensen, Martin

    2001-01-01

    Magic-angle spinning nuclear magnetic resonance spectra of 31P and 29Si have been achieved for a thin silica film doped with only 1.8% 31P and deposited by plasma enhanced chemical vapor deposition on a pure silicon wafer. The observation of a symmetric 31P chemical shift tensor is consistent...

  11. Application of High-Resolution Magic-Angle Spinning NMR Spectroscopy to Define the Cell Uptake of MRI Contrast Agents

    Science.gov (United States)

    Calabi, Luisella; Alfieri, Goffredo; Biondi, Luca; De Miranda, Mario; Paleari, Lino; Ghelli, Stefano

    2002-06-01

    A new method, based on proton high-resolution magic-angle spinning ( 1H HR-MAS) NMR spectroscopy, has been employed to study the cell uptake of magnetic resonance imaging contrast agents (MRI-CAs). The method was tested on human red blood cells (HRBC) and white blood cells (HWBC) by using three gadolinium complexes, widely used in diagnostics, Gd-BOPTA, Gd-DTPA, and Gd-DOTA, and the analogous complexes obtained by replacing Gd(III) with Dy(III), Nd(III), and Tb(III) (i.e., complexes isostructural to the ones of gadolinium but acting as shift agents). The method is based on the evaluation of the magnetic effects, line broadening, or induced lanthanide shift (LIS) caused by these complexes on NMR signals of intra- and extracellular water. Since magnetic effects are directly linked to permeability, this method is direct. In all the tests, these magnetic effects were detected for the extracellular water signal only, providing a direct proof that these complexes are not able to cross the cell membrane. Line broadening effects (i.e., the use of gadolinium complexes) only allow qualitative evaluations. On the contrary, LIS effects can be measured with high precision and they can be related to the concentration of the paramagnetic species in the cellular compartments. This is possible because the HR-MAS technique provides the complete elimination of bulk magnetic susceptibility (BMS) shift and the differentiation of extra- and intracellular water signals. Thus with this method, the rapid quantification of the MRI-CA amount inside and outside the cells is actually feasible.

  12. Surface Interactions and Confinement of Methane: A High Pressure Magic Angle Spinning NMR and Computational Chemistry Study

    Energy Technology Data Exchange (ETDEWEB)

    Ok, Salim; Hoyt, David W.; Andersen, Amity; Sheets, Julie; Welch, Susan A.; Cole, David R.; Mueller, Karl T.; Washton, Nancy M.

    2017-01-18

    Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nano-porous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) were observed with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed non-porous, 12 nm particle size silica and a mesoporous silica with 200 nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. For pure methane, no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2 bar, 32.6 bar, 56.4 bar, 65.1 bar, 112.7 bar, and 130.3 bar). However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.

  13. Alterations in creatine metabolism observed in experimental autoimmune myocarditis using ex vivo proton magic angle spinning MRS.

    Science.gov (United States)

    Muench, Frédéric; Retel, Joren; Jeuthe, Sarah; O h-Ici, Darach; van Rossum, Barth; Wassilew, Katharina; Schmerler, Patrick; Kuehne, Titus; Berger, Felix; Oschkinat, Hartmut; Messroghli, Daniel R

    2015-12-01

    Experimental autoimmune myocarditis (EAM) in rodents is an accepted model of myocarditis and dilated cardiomyopathy (DCM). Altered metabolism is thought to play an important role in the pathogenesis of DCM and heart failure (HF). Study of the metabolism may provide new diagnostic information and insights into the mechanisms of myocarditis and HF. Proton MRS ((1)H-MRS) has not yet been used to study the changes occurring in myocarditis and subsequent HF. We aimed to explore the changes in creatine metabolism using this model and compare them with the findings in healthy animals. Myocardial function of male young Lewis rats with EAM was quantified by performing left ventricular ejection fraction (LVEF) analysis in short-axis cine images throughout the whole heart. Inflammatory cellular infiltrate was assessed by immunohistochemistry. Myocardial tissue was analyzed using ex vivo proton magic angle spinning MRS ((1)H-MAS-MRS). Myocarditis was confirmed histologically by the presence of an inflammatory cellular infiltrate and CD68 positive staining. A significant increase in the metabolic ratio of Tau/tCr (taurine/total creatine) obtained by (1)H-MAS-MRS was observed in myocarditis compared with healthy controls (21 d acute EAM, 4.38 (±0.23); 21 d control, 2.84 (±0.08); 35 d chronic EAM, 4.47 (±0.83); 35 d control, 2.59 (±0.38); P myocarditis. Myocardial Tau/tCr ratio as detected by (1)H-MRS correlates with LVEF and is able to differentiate between healthy myocardium and myocardium from rats with EAM.

  14. Recent advancements of wide-angle polarization analysis with 3He neutron spin filters

    Science.gov (United States)

    Chen, W. C.; Gentile, T. R.; Ye, Q.; Kirchhoff, A.; Watson, S. M.; Rodriguez-Rivera, J. A.; Qiu, Y.; Broholm, C.

    2016-09-01

    Wide-angle polarization analysis with polarized 3He based neutron spin filters (NSFs) has recently been employed on the Multi-Axis Crystal Spectrometer (MACS) at the National Institute of Standards and Technology Center for Neutron Research (NCNR). Over the past several years, the apparatus has undergone many upgrades to address the fundamental requirements for wide angle polarization analysis using spin exchange optical pumping based 3He NSFs. In this paper, we report substantial improvements in the on-beam-line performance of the apparatus and progress toward routine user capability. We discuss new standard samples used for 3He NSF characterization and the flipping ratio measurement on MACS. We further discuss the management of stray magnetic fields produced by operation of superconducting magnets on the MACS instrument, which can significantly reduce the 3He polarization relaxation time. Finally, we present the results of recent development of horseshoe-shaped wide angle cells.

  15. Phase-resolved detection of the spin Hall angle by optical ferromagnetic resonance in perpendicularly magnetized thin films

    Science.gov (United States)

    Capua, Amir; Wang, Tianyu; Yang, See-Hun; Rettner, Charles; Phung, Timothy; Parkin, Stuart S. P.

    2017-02-01

    The conversion of charge current to spin current by the spin Hall effect is of considerable current interest from both fundamental and technological perspectives. Measurement of the spin Hall angle, especially for atomically thin systems with large magnetic anisotropies, is not straightforward. Here we demonstrate a hybrid phase-resolved optical-electrical ferromagnetic resonance method that we show can robustly determine the spin Hall angle in heavy-metal/ferromagnet bilayer systems with large perpendicular magnetic anisotropy. We present an analytical model of the ferromagnetic resonance spectrum in the presence of the spin Hall effect, in which the spin Hall angle can be directly determined from the changes in the amplitude response as a function of the spin current that is generated from a dc charge current passing through the heavy-metal layer. Increased sensitivity to the spin current is achieved by operation under conditions for which the magnetic potential is shallowest at the "Smit point." Study of the phase response reveals that the spin Hall angle can be reliably extracted from a simplified measurement that does not require scanning over time or magnetic field but rather only on the dc current. The method is applied to the Pt-Co/Ni/Co system whose spin Hall angle was to date characterized only indirectly and that is especially relevant for spin-orbit torque devices.

  16. Characterization of metabolic profile of intact non-tumor and tumor breast cells by high-resolution magic angle spinning nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Maria, Roberta M; Altei, Wanessa F; Andricopulo, Adriano D; Becceneri, Amanda B; Cominetti, Márcia R; Venâncio, Tiago; Colnago, Luiz A

    2015-11-01

    (1)H high-resolution magic angle spinning nuclear magnetic resonance ((1)H HR-MAS NMR) spectroscopy was used to analyze the metabolic profile of an intact non-tumor breast cell line (MCF-10A) and intact breast tumor cell lines (MCF-7 and MDA-MB-231). In the spectra of MCF-10A cells, six metabolites were assigned, with glucose and ethanol in higher concentrations. Fifteen metabolites were assigned in MCF-7 and MDA-MB-231 (1)H HR-MAS NMR spectra. They did not show glucose and ethanol, and the major component in both tumor cells was phosphocholine (higher in MDA-MB-231 than in MCF-7), which can be considered as a tumor biomarker of breast cancer malignant transformation. These tumor cells also show acetone signal that was higher in MDA-MB-231 cells than in MCF-7 cells. The high acetone level may be an indication of high demand for energy in MDA-MB-231 to maintain cell proliferation. The higher acetone and phosphocholine levels in MDA-MB-231 cells indicate the higher malignance of the cell line. Therefore, HR-MAS is a rapid reproducible method to study the metabolic profile of intact breast cells, with minimal sample preparation and contamination, which are critical in the analyses of slow-growth cells.

  17. Sign determination of dipolar couplings in field-oriented bicelles by variable angle sample spinning (VASS)

    Energy Technology Data Exchange (ETDEWEB)

    Tian, F.; Losonczi, J.A.; Fischer, M.W.F.; Prestegard, J.H. [University of Georgia, Complex Carbohydrate Research Center (United States)

    1999-10-15

    Residual dipolar couplings are being increasingly used as structural constraints for NMR studies of biomolecules. A problem arises when dipolar coupling contributions are larger than scalar contributions for a given spin pair, as is commonly observed in solid state NMR studies, in that signs of dipolar couplings cannot easily be determined. Here the sign ambiguities of dipolar couplings in field-oriented bicelles are resolved by variable angle sample spinning (VASS) techniques. The director behavior of field-oriented bicelles (DMPC/DHPC, DMPC/CHAPSO) in VASS is studied by {sup 31}P NMR. A stable configuration occurs when the spinning angle is smaller than the magic angle, 54.7 deg., and the director (or bicelle normal) of the disks is mainly distributed in a plane perpendicular to the rotation axis. Since the dipolar couplings depend on how the bicelles are oriented with respect to the magnetic field, it is shown that the dipolar interaction can be scaled to the same order as the J-coupling by moving the spinning axis from 0 deg. toward 54.7 deg. Thus the relative sign of dipolar and scalar couplings can be determined.

  18. Phytochrome as molecular machine: revealing chromophore action during the Pfr --> Pr photoconversion by magic-angle spinning NMR spectroscopy.

    Science.gov (United States)

    Rohmer, Thierry; Lang, Christina; Bongards, Christian; Gupta, Karthick Babu Sai Sankar; Neugebauer, Johannes; Hughes, Jon; Gärtner, Wolfgang; Matysik, Jörg

    2010-03-31

    The cyanobacterial phytochrome Cph1 can be photoconverted between two thermally stable states, Pr and Pfr. The photochemically induced Pfr --> Pr back-reaction has been followed at low temperature by magic-angle spinning (MAS) NMR spectroscopy, allowing two intermediates, Lumi-F and Meta-F, to be trapped. Employing uniformly (13)C- and (15)N-labeled open-chain tetrapyrrole chromophores, all four states-Pfr, Lumi-F, Meta-F, and Pr-have been structurally characterized. In the first step, the double bond photoisomerization forming Lumi-F occurs. The second step, the transformation to Meta-F, is driven by the release of the mechanical tension. This process leads to the break of the hydrogen bond of the ring D nitrogen to Asp-207 and triggers signaling. The third step is protonically driven allowing the hydrogen-bonding interaction of the ring D nitrogen to be restored. Compared to the forward reaction, the order of events is changed, probably caused by the different properties of the hydrogen bonding partners of N24, leading to the directionality of the photocycle.

  19. The effect of Hartmann-Hahn mismatching on polarization inversion spin exchange at the magic angle.

    Science.gov (United States)

    Fu, Riqiang; Tian, Changlin; Kim, Hyeongnam; Smith, Scott A; Cross, Timothy A

    2002-12-01

    The effect of the Hartmann-Hahn mismatch delta = omega(eff)-omega(1S) during polarization inversion spin exchange at the magic angle (PISEMA) has been investigated, where omega(eff) and omega(1S) represent the amplitudes of the 1H effective spin-locking field at the magic angle and the 15N RF spin-locking field, respectively. During the PISEMA evolution period, the exact Hartmann-Hahn match condition (i.e., delta = 0) yields a maximum dipolar scaling factor of 0.816 for PISEMA experiments, while any mismatch results in two different effective fields for the first and second half of each frequency switched Lee-Goldburg (FSLG) cycle. The mismatch effect on the scaling factor depends strongly on the transition angle from one effective field to the other within each FSLG cycle as well as on the cycle time. At low RF spin-lock amplitudes in which the FSLG cycle time is relatively long, the scaling factor rapidly becomes smaller as omega(1S) becomes greater than omega(eff). On the other hand, when omega(1S) lock amplitudes result in a relatively small variation for the scaling factor. Furthermore, ramped amplitude of the 15N RF spin-lock field in synchronization with the flip-flop of the FSLG sequence minimizes the transition angle between the two effective fields within the FSLG cycle. It is shown experimentally that such a ramped amplitude not only gives rise to the same scaling factor but also results in a narrower dipolar line-width in comparison with the rectangular amplitude.

  20. Characterization of divalent metal metavanadates by 51V magic-angle spinning NMR spectroscopy of the central and satellite transitions.

    Science.gov (United States)

    Nielsen, U G; Jakobsen, H J; Skibsted, J

    2000-05-15

    51V quadrupole coupling and chemical shielding tensors have been determined from 51V magic-angle spinning (MAS) NMR spectra at a magnetic field of 14.1 T for nine divalent metal metavanadates: Mg(VO3)2, Ca(VO3)2, Ca(VO3)(2).4H2O, alpha-Sr(VO3)2, Zn(VO3)2, alpha- and beta-Cd(VO3)2. The manifold of spinning sidebands (ssbs) from the central and satellite transitions, observed in the 15V MAS NMR spectra, have been analyzed using least-squares fitting and numerical error analysis. This has led to a precise determination of the eight NMR parameters characterizing the magnitudes and relative orientations of the quadrupole coupling and chemical shielding tensors. The optimized data show strong similarities between the NMR parameters for the isostructural groups of divalent metal metavanadates. This demonstrates that different types of metavanadates can easily be distinguished by their anisotropic NMR parameters. The brannerite type of divalent metal metavanadates exhibits very strong 51V quadrupole couplings (i.e., CQ = 6.46-7.50 MHz), which reflect the highly distorted octahedral environments for the V5+ ion in these phases. Linear correlations between the principal tensor elements for the 51V quadrupole coupling tensors and electric field gradient tensor elements, estimated from point-monopole calculations, are reported for the divalent metal metavanadates. These correlations are used in the assignment of the NMR parameters for the different crystallographic 51V sites of Ca(VO3)(2).4H2O, Pb(VO3)2, and Ba(VO3)2. For alpha-Sr(VO3)2, with an unknown crystal structure, the 51V NMR data strongly suggest that this metavanadate is isostructural with Ba(VO3)2, for which the crystal structure has been reported. Finally, the chemical shielding parameters for orthovanadates and mono- and divalent metal metavanadates are compared.

  1. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), Sede di Perugia, c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, I-06123 Perugia (Italy); Montoncello, F.; Giovannini, L. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via G. Saragat 1, I-44122 Ferrara (Italy); Madami, M.; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Ding, J.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-06-29

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.

  2. High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HRMAS NMR) for Studies of Reactive Fabrics

    Science.gov (United States)

    2015-11-01

    Magnetic Resonance (HRMAS NMR) for Studies of Reactive Fabrics 5a. CONTRACT NUMBER W911SR-11-C-0047 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...ECBC-TR-1326 HIGH RESOLUTION MAGIC ANGLE SPINNING NUCLEAR MAGNETIC RESONANCE (HRMAS NMR) FOR STUDIES OF REACTIVE FABRICS David J. McGarvey...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT An analytical chemistry method is described for measuring the reactivity and permeation of

  3. High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance of Intact Zebrafish Embryos Detects Metabolic Changes Following Exposure to Teratogenic Polymethoxyalkenes from Algae.

    Science.gov (United States)

    Berry, John P; Roy, Upasana; Jaja-Chimedza, Asha; Sanchez, Kristel; Matysik, Joerg; Alia, A

    2016-10-01

    Techniques based on nuclear magnetic resonance (NMR) for imaging and chemical analyses of in vivo, or otherwise intact, biological systems are rapidly emerging and finding diverse applications within a wide range of fields. Very recently, several NMR-based techniques have been developed for the zebrafish as a model animal system. In the current study, the novel application of high-resolution magic angle spinning (HR-MAS) NMR is presented as a means of metabolic profiling of intact zebrafish embryos. Toward investigating the utility of HR-MAS NMR as a toxicological tool, these studies specifically examined metabolic changes of embryos exposed to polymethoxy-1-alkenes (PMAs)-a recently identified family of teratogenic compounds from freshwater algae-as emerging environmental contaminants. One-dimensional and two-dimensional HR-MAS NMR analyses were able to effectively identify and quantify diverse metabolites in early-stage (≤36 h postfertilization) embryos. Subsequent comparison of the metabolic profiles between PMA-exposed and control embryos identified several statistically significant metabolic changes associated with subacute exposure to the teratogen, including (1) elevated inositol as a recognized component of signaling pathways involved in embryo development; (2) increases in several metabolites, including inositol, phosphoryl choline, fatty acids, and cholesterol, which are associated with lipid composition of cell membranes; (3) concomitant increase in glucose and decrease in lactate; and (4) decreases in several biochemically related metabolites associated with central nervous system development and function, including γ-aminobutyric acid, glycine, glutamate, and glutamine. A potentially unifying model/hypothesis of PMA teratogenicity based on the data is presented. These findings, taken together, demonstrate that HR-MAS NMR is a promising tool for metabolic profiling in the zebrafish embryo, including toxicological applications.

  4. High resolution magic angle spinning NMR spectroscopy reveals that pectoralis muscle dystrophy in chicken is associated with reduced muscle content of anserine and carnosine.

    Science.gov (United States)

    Sundekilde, Ulrik K; Rasmussen, Martin K; Young, Jette F; Bertram, Hanne Christine

    2017-02-15

    Increased incidences of pectoralis muscle dystrophy are observed in commercial chicken products, but the muscle physiological causes for the condition remain to be identified. In the present study a high-resolution magic angle spinning (HR-MAS) proton ((1)H) NMR spectroscopic examination of intact pectoralis muscle samples (n=77) were conducted to explore metabolite perturbations associated with the muscle dystrophy condition for the very first time. Both in chicken with an age of 21 and 31days, respectively, pectoralis muscle dystrophy was associated with a significantly lower content of anserine (p=0.034), carnosine (p=0.019) and creatine (p=0.049). These findings must be considered intriguing as they corroborate that characteristic muscle di-peptides composed of β-alanine and histidine derivatives such as anserine are extremely important in homeostasis of contractile muscles as a results of their role as buffering, anti-oxidative, and anti-glycation capacities.

  5. Two-particle scattering on the lattice: Phase shifts, spin-orbit coupling, and mixing angles

    CERN Document Server

    Borasoy, Bugra; Krebs, Hermann; Lee, Dean; Meißner, Ulf-G

    2007-01-01

    We determine two-particle scattering phase shifts and mixing angles for quantum theories defined with lattice regularization. The method is suitable for any nonrelativistic effective theory of point particles on the lattice. In the center-of-mass frame of the two-particle system we impose a hard spherical wall at some fixed large radius. For channels without partial-wave mixing the partial-wave phase shifts are determined from the energies of the nearly-spherical standing waves. For channels with partial-wave mixing further information is extracted by decomposing the standing wave at the wall boundary into spherical harmonics, and we solve coupled-channels equations to extract the phase shifts and mixing angles. The method is illustrated and tested by computing phase shifts and mixing angles on the lattice for spin-1/2 particles with an attractive Gaussian potential containing both central and tensor force parts.

  6. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance.

    Science.gov (United States)

    Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H; Ernst, Matthias

    2016-09-01

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.

  7. 1H HR-MAS NMR and S180 cells: metabolite assignment and evaluation of pulse sequence

    OpenAIRE

    Oliveira, Aline L.; Martinelli,Bruno César B.; Lião,Luciano M.; Pereira,Flávia C.; Silveira-Lacerda,Elisangela P.; Alcantara,Glaucia B.

    2014-01-01

    High resolution magic angle spinning ¹H nuclear magnetic resonance spectroscopy (HR-MAS NMR) is a useful technique for evaluation of intact cells and tissues. However, optimal NMR parameters are crucial in obtaining reliable results. To identify the key steps for the optimization of HR-MAS NMR parameters, we assessed different pulse sequences and NMR parameters using sarcoma 180 (S180) cells. A complete assignment of the metabolites of S180 is given to assist future studies.

  8. Spin- and angle-resolved photoemission spectroscopy study of the Au(1 1 1) Shockley surface state

    Energy Technology Data Exchange (ETDEWEB)

    Muntwiler, Matthias E-mail: m.muntwiler@physik.unizh.ch; Hoesch, Moritz; Petrov, Vladimir N.; Hengsberger, Matthias; Patthey, Luc; Shi Ming; Falub, Mihaela; Greber, Thomas; Osterwalder, Juerg

    2004-07-01

    The spin character of the splitting of the Shockley surface state on Au(111) is directly verified by measurements of the in-plane and out-of-plane spin polarizations in angle-resolved photoemission spectra. The two parabolic sub-bands that are momentum-shifted with respect to each other, reveal a distinct, opposite spin polarization that within the errors lies in the surface plane. The measured in-plane orientation of the spin vectors is consistent with the simple spin structure expected from a nearly-free-electron model, where the polarization axis is tangential to the Fermi surface of the surface state.

  9. Angle and Spin Resolved Auger Emission Theory and Applications to Atoms and Molecules

    CERN Document Server

    Lohmann, Bernd

    2009-01-01

    The Auger effect must be interpreted as the radiationless counterpart of photoionization and is usually described within a two-step model. Angle and spin resolved Auger emission physics deals with the theoretical and numerical description, analysis and interpretation of such types of experiments on free atoms and molecules. This monograph derives the general theory applying the density matrix formalism and, in terms of irreducible tensorial sets, so called state multipoles and order parameters, for parameterizing the atomic and molecular systems, respectively. Propensity rules and non-linear dependencies between the angular distribution and spin polarization parameters are included in the discussion. The numerical approaches utilizing relativistic distorted wave (RDWA), multiconfigurational Dirac-Fock (MCDF), and Greens operator methods are described. These methods are discussed and applied to theoretical predictions, numerical results and experimental data for a variety of atomic systems, especially the rare...

  10. Efficient dipolar double quantum filtering under magic angle spinning without a (1)H decoupling field.

    Science.gov (United States)

    Courtney, Joseph M; Rienstra, Chad M

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately.

  11. Characterisation of hydrogen bonding networks in RNAs via magic angle spinning solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Kerstin; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai [Institut fuer Molekulare Biotechnologie, Abteilung Molekulare Biophysik/NMR-Spektroskopie (Germany)], E-mail: raman@imb-jena.de

    2005-04-15

    It is demonstrated that the spatial proximity of {sup 1}H nuclei in hydrogen bonded base-pairs in RNAs can be conveniently mapped via magic angle spinning solid state NMR experiments involving proton spin diffusion driven chemical shift correlation of low gamma nuclei such as the imino and amino nitrogens of nucleic acid bases. As different canonical and non-canonical base-pairing schemes encountered in nucleic acids are characterised by topologically different networks of proton dipolar couplings, different base-pairing schemes lead to characteristic cross-peak intensity patterns in such correlation spectra. The method was employed in a study of a 100 kDa RNA composed of 97 CUG repeats, or (CUG){sub 97} that has been implicated in the neuromuscular disease myotonic dystrophy. {sup 15}N-{sup 15}N chemical shift correlation studies confirm the presence of Watson-Crick GC base pairs in (CUG){sub 97}.

  12. Rapid spin-lattice relaxation time mapping incorporating flip angle calibration in quantitative magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Zhongliang Zu; Qi Liu; Yanming Yu; Song Gao; Shanglian Bao

    2008-01-01

    Driven equilibrium single pulse observation of T1(DESPOT1)is a rapid spin-lattice relaxation constant(T1)mapping technique in magnetic resonance imaging(MRI).However,DESPOT1 is very sensitive to flip angle(FA)inhomogeneity,resulting in T1 inaccuracy.Here,a five-point DESPOTl method is proposed to reduce the sensitivity to FA inhomogeneity through FA measurement and calibra-tion.Phantom and in vivo experiments are performed to validate the technique.As a result.a rapid and accurate T1 mapping is acquired by using the proposed five-point DESPOT1 method.

  13. Hydrogen and deuterium NMR of solids by magic-angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Eckman, R.R.

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large specral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, ..beta../sub m/ = Arccos (3/sup -1/2/), with respect to the direction of the external magnetic field. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of ..beta... A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H/sub D/ was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal motion. In the general case of large H/sub D/, isotropic spectra were obtained by dilution of /sup 1/H with /sup 2/H combined with magic angle rotation. The resolution obtained represents the practical limit for proton NMR of solids.

  14. Magic-angle spinning NMR of intact bacteriophages: Insights into the capsid, DNA and their interface

    Science.gov (United States)

    Abramov, Gili; Morag, Omry; Goldbourt, Amir

    2015-04-01

    Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses.

  15. Driven isotropic Heisenberg spin chain with arbitrary boundary twisting angle: exact results.

    Science.gov (United States)

    Popkov, V; Karevski, D; Schütz, G M

    2013-12-01

    We consider an open isotropic Heisenberg quantum spin chain, coupled at the ends to boundary reservoirs polarized in different directions, which sets up a twisting gradient across the chain. Using a matrix product ansatz, we calculate the exact magnetization profiles and magnetization currents in the nonequilibrium steady state of a chain with N sites. The magnetization profiles are harmonic functions with a frequency proportional to the twisting angle θ. The currents of the magnetization components lying in the twisting plane and in the orthogonal direction behave qualitatively differently: In-plane steady-state currents scale as 1/N^{2} for fixed and sufficiently large boundary coupling, and vanish as the coupling increases, while the transversal current increases with the coupling and saturates to 2θ/N.

  16. Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach.

    Science.gov (United States)

    Wang, Songlin; Matsuda, Isamu; Long, Fei; Ishii, Yoshitaka

    2016-02-01

    This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40-80 kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055-15058, 2015) combines the reverse (13)C, (15)N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of "highlighted" labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching (13)CO or (15)N signals for a pair of consecutively labeled residues by recoupling (13)CO-(15)N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ~15% loss of signals for the highlighted residues while quenching as much as ~90% of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D (15)N/(13)Cα correlation and 2D (13)Cα/(13)CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60 kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and (1)H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using (13)C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (~300 nmol), for which data collection required only 11 h. The HIGHLIGHT approach offers valuable means of signal assignments especially for larger proteins through reducing the

  17. Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Songlin; Matsuda, Isamu; Long, Fei; Ishii, Yoshitaka, E-mail: yishii@uic.edu [University of Illinois at Chicago, Department of Chemistry (United States)

    2016-02-15

    This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40–80 kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055–15058, 2015) combines the reverse {sup 13}C, {sup 15}N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of “highlighted” labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching {sup 13}CO or {sup 15}N signals for a pair of consecutively labeled residues by recoupling {sup 13}CO–{sup 15}N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ∼15 % loss of signals for the highlighted residues while quenching as much as ∼90 % of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D {sup 15}N/{sup 13}C{sub α} correlation and 2D {sup 13}C{sub α}/{sup 13}CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60 kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and {sup 1}H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using {sup 13}C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (∼300 nmol), for which data collection required only 11 h. The HIGHLIGHT approach offers valuable

  18. Solid-phase enolate chemistry investigated using HR-MAS NMR spectroscopy.

    Science.gov (United States)

    Fruchart, Jean-Sébastien; Lippens, Guy; Kuhn, Cyrille; Gras-Masse, Hélène; Melnyk, Oleg

    2002-01-25

    Supported P4-t-Bu enolate chemistry of phenylacetyloxymethyl polystyrene (PS) resin was investigated using high-resolution magic angle spinning (HR-MAS) NMR spectroscopy. Direct analysis of the crude reaction suspensions through the use of a diffusion filter (DF) allowed a rapid selection of the optimal experimental conditions, but also the characterization of the enolate on the solid phase. Comparison with solution experiments and literature data allowed us to address partially the structure of the enolate. HR-MAS NMR spectra of the enolate revealed also a tight interaction of P4-t-Bu base with the polymer matrix.

  19. Evolution of CPMAS under fast magic-angle-spinning at 100 kHz and beyond.

    Science.gov (United States)

    Wickramasinghe, Ayesha; Wang, Songlin; Matsuda, Isamu; Nishiyama, Yusuke; Nemoto, Takahiro; Endo, Yuki; Ishii, Yoshitaka

    2015-11-01

    This article describes recent trends of high-field solid-state NMR (SSNMR) experiments for small organic molecules and biomolecules using (13)C and (15)N CPMAS under ultra-fast MAS at a spinning speed (νR) of 80-100kHz. First, we illustrate major differences between a modern low-power RF scheme using UFMAS in an ultra-high field and a traditional CPMAS scheme using a moderate sample spinning in a lower field. Features and sensitivity advantage of a low-power RF scheme using UFMAS and a small sample coil are summarized for CPMAS-based experiments. Our 1D (13)C CPMAS experiments for uniformly (13)C- and (15)N-labeled alanine demonstrated that the sensitivity per given sample amount obtained at νR of 100kHz and a (1)H NMR frequency (νH) of 750.1MHz is ~10 fold higher than that of a traditional CPMAS experiment obtained at νR of 20kHz and νH of 400.2MHz. A comparison of different (1)H-decoupling schemes in CPMAS at νR of 100kHz for the same sample demonstrated that low-power WALTZ-16 decoupling unexpectedly displayed superior performance over traditional low-power schemes designed for SSNMR such as TPPM and XiX in a range of decoupling field strengths of 5-20kHz. Excellent (1)H decoupling performance of WALTZ-16 was confirmed on a protein microcrystal sample of GB1 at νR of 80kHz. We also discuss the feasibility of a SSNMR microanalysis of a GB1 protein sample in a scale of 1nmol to 80nmol by (1)H-detected 2D (15)N/(1)H SSNMR by a synergetic use of a high field, a low-power RF scheme, a paramagnetic-assisted condensed data collection (PACC), and UFMAS.

  20. Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary

    Science.gov (United States)

    Ma, Yujing; Diaz, Horacio Coy; Avila, José; Chen, Chaoyu; Kalappattil, Vijaysankar; Das, Raja; Phan, Manh-Huong; Čadež, Tilen; Carmelo, José M. P.; Asensio, Maria C.; Batzill, Matthias

    2017-02-01

    Material line defects are one-dimensional structures but the search and proof of electron behaviour consistent with the reduced dimension of such defects has been so far unsuccessful. Here we show using angle resolved photoemission spectroscopy that twin-grain boundaries in the layered semiconductor MoSe2 exhibit parabolic metallic bands. The one-dimensional nature is evident from a charge density wave transition, whose periodicity is given by kF/π, consistent with scanning tunnelling microscopy and angle resolved photoemission measurements. Most importantly, we provide evidence for spin- and charge-separation, the hallmark of one-dimensional quantum liquids. Our studies show that the spectral line splits into distinctive spinon and holon excitations whose dispersions exactly follow the energy-momentum dependence calculated by a Hubbard model with suitable finite-range interactions. Our results also imply that quantum wires and junctions can be isolated in line defects of other transition metal dichalcogenides, which may enable quantum transport measurements and devices.

  1. Size-exclusion chromatographic NMR under HR-MAS.

    Science.gov (United States)

    Lucena Alcalde, Guillermo; Anderson, Natalie; Day, Iain J

    2016-06-15

    The addition of stationary phases or sample modifiers can be used to modify the separation achievable in the diffusion domain of diffusion NMR experiments or provide information on the nature of the analyte-sample modifier interaction. Unfortunately, the addition of insoluble chromatographic stationary phases can lead to line broadening and degradation in spectral resolution, largely because of differences in magnetic susceptibility between the sample and the stationary phase. High-resolution magic angle spinning (HR-MAS) techniques can be used to remove this broadening. Here, we attempt the application of HR-MAS to size-exclusion chromatographic NMR with limited success. Observed diffusion coefficients for polymer molecular weight reference standards are shown to be larger than those obtained on static samples. Further investigation reveals that under HR-MAS it is possible to obtain reasonably accurate estimates of diffusion coefficients, using either full rotor synchronisation or sophisticated pulse sequences. The requirement for restricting the sample to the centre of the MAS rotor to ensure homogeneous magnetic and RF fields is also tested. Copyright © 2016 John Wiley & Sons, Ltd.

  2. 1H MAS and 1H --> 31P CP/MAS NMR study of human bone mineral.

    Science.gov (United States)

    Kaflak-Hachulska, A; Samoson, A; Kolodziejski, W

    2003-11-01

    Chemical structure of human bone mineral was studied by solid-state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS). Trabecular and cortical bone samples from adult subjects were compared with mineral standards: hydroxyapatite (HA), hydrated and calcined, carbonatoapatite of type B with 9 wt% of CO3(2-) (CHA-B), brushite (BRU) and mixtures of HA with BRU. Proton spectra were acquired with excellent spectral resolution provided by ultra-high speed MAS at 40 kHz. 2D 1H-31P NMR heteronuclear correlation was achieved by cross-polarization (CP) under fast MAS at 12 kHz. 31P NMR was applied with CP from protons under slow MAS at 1 kHz. Appearance of 31P rotational sidebands together with their CP kinetics were analyzed. It was suggested that the sidebands of CP spectra are particularly suitable for monitoring the state of apatite crystal surfaces. The bone samples appeared to be deficient in structural hydroxyl groups analogous to those in HA. We found no direct evidence that the HPO4(2-) brushite-like ions are present in bone mineral. The latter problem is extensively discussed in the literature. The study proves there is a similarity between CHA-B and bone mineral expressed by their similar NMR behavior.

  3. Insights into atomic-level interaction between mefenamic acid and eudragit EPO in a supersaturated solution by high-resolution magic-angle spinning NMR spectroscopy.

    Science.gov (United States)

    Higashi, Kenjirou; Yamamoto, Kazutoshi; Pandey, Manoj Kumar; Mroue, Kamal H; Moribe, Kunikazu; Yamamoto, Keiji; Ramamoorthy, Ayyalusamy

    2014-01-06

    The intermolecular interaction between mefenamic acid (MFA), a poorly water-soluble nonsteroidal anti-inflammatory drug, and Eudragit EPO (EPO), a water-soluble polymer, is investigated in their supersaturated solution using high-resolution magic-angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy. The stable supersaturated solution with a high MFA concentration of 3.0 mg/mL is prepared by dispersing the amorphous solid dispersion into a d-acetate buffer at pH 5.5 and 37 °C. By virtue of MAS at 2.7 kHz, the extremely broad and unresolved (1)H resonances of MFA in one-dimensional (1)H NMR spectrum of the supersaturated solution are well-resolved, thus enabling the complete assignment of MFA (1)H resonances in the aqueous solution. Two-dimensional (2D) (1)H/(1)H nuclear Overhauser effect spectroscopy (NOESY) and radio frequency-driven recoupling (RFDR) under MAS conditions reveal the interaction of MFA with EPO in the supersaturated solution at an atomic level. The strong cross-correlations observed in the 2D (1)H/(1)H NMR spectra indicate a hydrophobic interaction between the aromatic group of MFA and the backbone of EPO. Furthermore, the aminoalkyl group in the side chain of EPO forms a hydrophilic interaction, which can be either electrostatic or hydrogen bonding, with the carboxyl group of MFA. We believe these hydrophobic and hydrophilic interactions between MFA and EPO molecules play a key role in the formation of this extremely stable supersaturated solution. In addition, 2D (1)H/(1)H RFDR demonstrates that the molecular MFA-EPO interaction is quite flexible and dynamic.

  4. Indirect detection of infinite-speed MAS solid-state NMR spectra

    Science.gov (United States)

    Perras, Frédéric A.; Venkatesh, Amrit; Hanrahan, Michael P.; Goh, Tian Wei; Huang, Wenyu; Rossini, Aaron J.; Pruski, Marek

    2017-03-01

    Heavy spin-1/2 nuclides are known to possess very large chemical shift anisotropies that can challenge even the most advanced magic-angle-spinning (MAS) techniques. Wide manifolds of overlapping spinning sidebands and insufficient excitation bandwidths often obfuscate meaningful spectral information and force the use of static, low-resolution solid-state (SS)NMR methods for the characterization of materials. To address these issues, we have merged fast-magic-angle-turning (MAT) and dipolar heteronuclear multiple-quantum coherence (D-HMQC) experiments to obtain D-HMQC-MAT pulse sequences which enable the rapid acquisition of 2D SSNMR spectra that correlate isotropic 1H chemical shifts to the indirectly detected isotropic "infinite-MAS" spectra of heavy spin-1/2 nuclides. For these nuclides, the combination of fast MAS and 1H detection provides a high sensitivity, which rivals the DNP-enhanced ultra-wideline SSNMR. The new pulse sequences were used to determine the Pt coordination environments in a complex mixture of decomposition products of transplatin and in a metal-organic framework with Pt ions coordinated to the linker ligands.

  5. 29Si,27Al Magic—Angle—Spinning Nuclear Magnetic Resonance(MAS NMR) Studies of Kaolinite and Its Thermal Transformation Products

    Institute of Scientific and Technical Information of China (English)

    何宏平; 胡澄; 等

    1995-01-01

    27Al,29Si MAS NMR studies of kaolinite and its thermal transformation products show that in the kaolinite-mullite reaction series there is an extensive segregation of Al2O3 and SiO2 and the reaction of Al2O3 with SiO2 to form mullite is the main path of mullite formation.At about 850°C,the peak intensity of Al(V) reaches its maximum and with the further rise of temperature the Al(V)signal completely disappears.At about 950°C,γ-Al2O3 accounts for about 71%of the material phases containing Al atoms.In the series there is no obvious presence of Al-Si spinel.The 27Al and 29Si MAS NMR spectra show that there is an obvious difference between the temperature points for Al-O2(OH)4 octahedral sheet collapsing and Si-O4 tetrahedral sheet breaking down.

  6. A unified heteronuclear decoupling strategy for magic-angle-spinning solid-state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Equbal, Asif; Bjerring, Morten; Nielsen, Niels Chr., E-mail: madhu@tifr.res.in, E-mail: ncn@inano.au.dk [Center for Insoluble Protein Structures, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C (Denmark); Madhu, P. K., E-mail: madhu@tifr.res.in, E-mail: ncn@inano.au.dk [Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075 (India)

    2015-05-14

    A unified strategy of two-pulse based heteronuclear decoupling for solid-state magic-angle spinning nuclear magnetic resonance is presented. The analysis presented here shows that different decoupling sequences like two-pulse phase-modulation (TPPM), X-inverse-X (XiX), and finite pulse refocused continuous wave (rCW{sup A}) are basically specific solutions of a more generalized decoupling scheme which incorporates the concept of time-modulation along with phase-modulation. A plethora of other good decoupling conditions apart from the standard, TPPM, XiX, and rCW{sup A} decoupling conditions are available from the unified decoupling approach. The importance of combined time- and phase-modulation in order to achieve the best decoupling conditions is delineated. The consequences of different indirect dipolar interactions arising from cross terms comprising of heteronuclear and homonuclear dipolar coupling terms and also those between heteronuclear dipolar coupling and chemical-shift anisotropy terms are presented in order to unfold the effects of anisotropic interactions under different decoupling conditions. Extensive numerical simulation results are corroborated with experiments on standard amino acids.

  7. Spin-Echo Small Angle Neutron Scattering analysis of liposomes and bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Heijkamp, Leon F van; Sevcenco, Ana-Maria; Abou, Diane; Luik, Remko van; Krijger, Gerard C; Schepper, Ignatz M de; Wolterbeek, Bert; Bouwman, Wim G [Faculty of Applied Sciences, Department of Radiation, Radionuclides and Reactors, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Hagedoorn, Peter-Leon [Faculty of Applied Sciences, Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands); Koning, Gerben A, E-mail: l.f.vanheijkamp@tudelft.n, E-mail: w.g.bouwman@tudelft.n [Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus Medical Center, POBox 1738, 3000 DR Rotterdam (Netherlands)

    2010-10-01

    Two types of liposomes, commonly used in drug delivery studies, and E. coli bacteria, all prepared in H{sub 2}O, were resuspended in D{sub 2}O and measured with Small Angle Spin-Echo Neutron Scattering (SESANS). Modeling was performed using correlation functions for solid spheres and hollow spheres. The signal strength and curve shape were more indicative of hollow particles, indicating that the H{sub 2}O-D{sub 2}O exchange occurred too fast to be observed with the available time resolution. Fitting the particle diameter and membrane thickness of the hollow sphere model to the data, gave results which were in good agreement with Dynamic Light Scattering (DLS) data and literature, showing as a proof-of-principle that SESANS is able to investigate such systems. SESANS may become a good alternative to conventional tritium studies or a tool with which to study intracellular vesicle transport phenomena, with possible in vivo applications. Calculations show that a substantial change in numbers of a mixed system of small and large biological particles should be observable. A possible application is the destruction by external means of great numbers of liposomes in the presence of tumor cells for triggered drug release in cancer treatment. Since SESANS is both non-invasive and non-destructive and can handle relatively thick samples, it could be a useful addition to more conventional techniques.

  8. Selectively dispersed isotope labeling for protein structure determination by magic angle spinning NMR

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, Matthew T. [Massachusetts Institute of Technology, Department of Chemistry (United States); Belenky, Marina [Brandeis University, Department of Chemistry (United States); Sivertsen, Astrid C. [Massachusetts Institute of Technology, Francis Bitter Magnet Laboratory (United States); Griffin, Robert G. [Massachusetts Institute of Technology, Department of Chemistry (United States); Herzfeld, Judith, E-mail: herzfeld@brandeis.edu [Brandeis University, Department of Chemistry (United States)

    2013-10-15

    The power of nuclear magnetic resonance spectroscopy derives from its site-specific access to chemical, structural and dynamic information. However, the corresponding multiplicity of interactions can be difficult to tease apart. Complimentary approaches involve spectral editing on the one hand and selective isotope substitution on the other. Here we present a new 'redox' approach to the latter: acetate is chosen as the sole carbon source for the extreme oxidation numbers of its two carbons. Consistent with conventional anabolic pathways for the amino acids, [1-{sup 13}C] acetate does not label {alpha} carbons, labels other aliphatic carbons and the aromatic carbons very selectively, and labels the carboxyl carbons heavily. The benefits of this labeling scheme are exemplified by magic angle spinning spectra of microcrystalline immunoglobulin binding protein G (GB1): the elimination of most J-couplings and one- and two-bond dipolar couplings provides narrow signals and long-range, intra- and inter-residue, recoupling essential for distance constraints. Inverse redox labeling, from [2-{sup 13}C] acetate, is also expected to be useful: although it retains one-bond couplings in the sidechains, the removal of CA-CO coupling in the backbone should improve the resolution of NCACX spectra.

  9. Insight into Hydrogen Bonding of Uranyl Hydroxide Layers and Capsules by Use of 1H Magic-Angle Spinning NMR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Organic Material Science; Liao, Zuolei [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry and Materials; Nyman, May [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry and Materials; Yates, Jonathan [Univ. of Oxford (United Kingdom). Dept. of Materials

    2016-04-27

    In this paper, solid-state 1H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO2(OH)2] (α-UOH) and hydrated uranyl hydroxide [(UO2)4O(OH)6·5H2O (metaschoepite). For the metaschoepite material, proton resonances of the μ2-OH hydroxyl and interlayer waters were resolved, with two-dimensional (2D) double-quantum (DQ) 1H–1H NMR correlation experiments revealing strong dipolar interactions between these different proton species. The experimental NMR results were combined with first-principles CASTEP GIPAW (gauge including projector-augmented wave) chemical shift calculations to develop correlations between hydrogen-bond strength and observed 1H NMR chemical shifts. Finally, these NMR correlations allowed characterization of local hydrogen-bond environments in uranyl U24 capsules and of changes in hydrogen bonding that occurred during thermal dehydration of metaschoepite.

  10. Probing molecular dynamics in chromatographic systems using high-resolution 1H magic-angle-spinning NMR spectroscopy: interaction between p-Xylene and C18-bonded silica.

    Science.gov (United States)

    Coen, Muireann; Wilson, Ian D; Nicholson, Jeremy K; Tang, Huiru; Lindon, John C

    2004-06-01

    The exact nature of the interaction between small molecules and chromatographic solid phases has been the subject of much research, but detailed understanding of the molecular dynamics in such systems remains elusive. High-resolution (1)H magic-angle-spinning (MAS) NMR spectroscopy has been applied to the investigation of C18-bonded silica material as used in chromatographic separation techniques together with an adsorbed model analyte, p-xylene. Two distinct p-xylene and water environments were identified within the C18-bonded silica through the measurement of (1)H NMR chemical shifts, T(1) and T(2) relaxation times and diffusion coefficients, including their temperature dependence. The results have been analyzed in terms of two environments, p-xylene within the C18 chains, in slow exchange on the NMR time scale with p-xylene in a more mobile state adsorbed as a layer in close proximity to the C18 particles, but which is distinct from free liquid p-xylene. The techniques used here could have more general applications, including the study of drug molecules bound into phospholipid membranes in micelles or vesicles.

  11. Multichannel spin polarimeter for energy- and angle-dispersive photoemission measurements; Vielkanal-Spinpolarimeter fuer energie- und winkeldispersive Photoemissionsmessungen

    Energy Technology Data Exchange (ETDEWEB)

    Kolbe, Michaela

    2011-09-09

    Spin polarization measurements of free electrons remain challenging since their first realization by Mott. The relevant quantity of a spin polarimeter is its figure of merit, FoM=S{sup 2}I/I{sub 0}, with the asymmetry function S and the ratio between scattered and primary intensity I/I{sub 0}. State-of-the-art devices are based on single-channel scattering (spin-orbit or exchange interaction) which is characterized by FoM {approx_equal}10{sup -4}. On the other hand, modern hemispherical analyzers feature an efficient multichannel detection of spin-integral intensity with more than 10{sup 4} data points simultaneously. In comparison between spin-resolved and spin-integral electron spectroscopy we are thus faced with a difference in counting efficiency by 8 orders of magnitude. The present work concentrates on the development and investigation of a novel technique for increasing the efficiency in spin-resolved electron spectroscopy by multichannel detection. The spin detector was integrated in a {mu}-metal shielded UHV-chamber and mounted behind a conventional hemispherical analyzer. The electrostatic lens system's geometry was determined by electron-optical simulations. The basic concept is the k {sub parallel} -conserving elastic scattering of the (0,0)-beam on a W(100) scattering crystal under 45 impact angle. It could be demonstrated that app. 960 data points (15 energy and 64 angular points) could be displayed simultaneously on a delayline detector in an energy interval of {approx_equal}3 eV. This leads to a two-dimensional figure of merit of FoM{sub 2D}=1.7. Compared to conventional spin detectors, the new type is thus characterized by a gain in efficiency of 4 orders of magnitude. The operational reliability of the new spin polarimeter could be proven by measurements with a Fe/MgO(100) and O p(1 x 1)/Fe(100)-sample, where results from the literature were reproduced with strongly decreased measuring time. Due to the high intensity it becomes possible, to

  12. Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts

    KAUST Repository

    Li, Jianping

    2013-06-05

    Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number of long-range distance restraints using dipolar coupling based spectra hamper the process of structure determination of proteins in solid-state NMR. In this study it is shown that high-resolution structure of proteins in solid phase can be determined without the use of traditional dipolar-dipolar coupling based distance restraints by combining the measurements of pseudocontact shifts (PCSs) with Rosetta calculations. The PCSs were generated by chelating exogenous paramagnetic metal ions to a tag 4-mercaptomethyl-dipicolinic acid, which is covalently attached to different residue sites in a 56-residue immunoglobulin-binding domain of protein G (GB1). The long-range structural restraints with metal-nucleus distance of up to ∼20 Å are quantitatively extracted from experimentally observed PCSs, and these are in good agreement with the distances back-calculated using an X-ray structure model. Moreover, we demonstrate that using several paramagnetic ions with varied paramagnetic susceptibilities as well as the introduction of paramagnetic labels at different sites can dramatically increase the number of long-range restraints and cover different regions of the protein. The structure generated from solid-state NMR PCSs restraints combined with Rosetta calculations has 0.7 Å root-mean-square deviation relative to X-ray structure. © 2013 American Chemical Society.

  13. Bulk carbohydrate grain filling of barley ß-glucan mutants studied by 1H HR MAS NMR

    DEFF Research Database (Denmark)

    Seefeldt, Helene Fast; Larsen, Flemming Hofmann; Viereck, Nanna;

    2008-01-01

    ) during grain filling. For the first time, 1H HR MAS NMR spectra of flour from immature barley seeds are analyzed. Spectral assignments are made using two-dimensional (2D) NMR methods. Both α- and β-glucan biosynthesis were characterized by inspection of the spectra as well as by calibration......Temporal and genotypic differences in bulk carbohydrate accumulation in three barley genotypes differing in the content of mixed linkage β-(1→3),(1→4)-D-glucan (β-glucan) and starch were investigated using proton high-resolution, magic angle spinning, nuclear magnetic resonance (1H HR MAS NMR...

  14. Spectral editing of weakly coupled spins using variable flip angles in PRESS constant echo time difference spectroscopy: Application to GABA

    Science.gov (United States)

    Snyder, Jeff; Hanstock, Chris C.; Wilman, Alan H.

    2009-10-01

    A general in vivo magnetic resonance spectroscopy editing technique is presented to detect weakly coupled spin systems through subtraction, while preserving singlets through addition, and is applied to the specific brain metabolite γ-aminobutyric acid (GABA) at 4.7 T. The new method uses double spin echo localization (PRESS) and is based on a constant echo time difference spectroscopy approach employing subtraction of two asymmetric echo timings, which is normally only applicable to strongly coupled spin systems. By utilizing flip angle reduction of one of the two refocusing pulses in the PRESS sequence, we demonstrate that this difference method may be extended to weakly coupled systems, thereby providing a very simple yet effective editing process. The difference method is first illustrated analytically using a simple two spin weakly coupled spin system. The technique was then demonstrated for the 3.01 ppm resonance of GABA, which is obscured by the strong singlet peak of creatine in vivo. Full numerical simulations, as well as phantom and in vivo experiments were performed. The difference method used two asymmetric PRESS timings with a constant total echo time of 131 ms and a reduced 120° final pulse, providing 25% GABA yield upon subtraction compared to two short echo standard PRESS experiments. Phantom and in vivo results from human brain demonstrate efficacy of this method in agreement with numerical simulations.

  15. Metabolomics of Breast Cancer Using High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopy: Correlations with 18F-FDG Positron Emission Tomography-Computed Tomography, Dynamic Contrast-Enhanced and Diffusion-Weighted Imaging MRI.

    Directory of Open Access Journals (Sweden)

    Haesung Yoon

    Full Text Available Our goal in this study was to find correlations between breast cancer metabolites and conventional quantitative imaging parameters using high-resolution magic angle spinning (HR-MAS magnetic resonance spectroscopy (MRS and to find breast cancer subgroups that show high correlations between metabolites and imaging parameters.Between August 2010 and December 2013, we included 53 female patients (mean age 49.6 years; age range 32-75 years with a total of 53 breast lesions assessed by the Breast Imaging Reporting and Data System. They were enrolled under the following criteria: breast lesions larger than 1 cm in diameter which 1 were suspicious for malignancy on mammography or ultrasound (US, 2 were pathologically confirmed to be breast cancer with US-guided core-needle biopsy (CNB 3 underwent 3 Tesla MRI with dynamic contrast-enhanced (DCE and diffusion-weighted imaging (DWI and positron emission tomography-computed tomography (PET-CT, and 4 had an attainable immunohistochemistry profile from CNB. We acquired spectral data by HR-MAS MRS with CNB specimens and expressed the data as relative metabolite concentrations. We compared the metabolites with the signal enhancement ratio (SER, maximum standardized FDG uptake value (SUV max, apparent diffusion coefficient (ADC, and histopathologic prognostic factors for correlation. We calculated Spearman correlations and performed a partial least squares-discriminant analysis (PLS-DA to further classify patient groups into subgroups to find correlation differences between HR-MAS spectroscopic values and conventional imaging parameters.In a multivariate analysis, the PLS-DA models built with HR-MAS MRS metabolic profiles showed visible discrimination between high and low SER, SUV, and ADC. In luminal subtype breast cancer, compared to all cases, high SER, ADV, and SUV were more closely clustered by visual assessment. Multiple metabolites were correlated with SER and SUV in all cases. Multiple metabolites

  16. Coherence Transfer in Dipolar-Coupled Homonuclear Spin Systems in Solids Rotating at the Magic Angle

    Science.gov (United States)

    Weintraub, O.; Vega, S.; Hoelger, C.; Limbach, H. H.

    Two routes for the exploitation of the t-SEDRA pulse scheme, which induces coherence transfer in dipolar-coupled homonuclear spin systems in rotating samples, are demonstrated and discussed. This sequence is utilized to deduce intramolecular connectivities by creating an initial coherence of one spin only, applying the t-SEDRA sequence, and monitoring the signal enhancement of the coupled spin. Probing the signal amplitude variations of the two spins and comparing them to simulations can also yield molecular distances. Using 2D spectroscopy, t-SEDRA can also be utilized to establish spin correlations. In this case, the t-SEDRA sequence is applied during the mixing time of a 2D dipolar-correlation experiment. These two approaches are demonstrated by performing 15N CPMAS NMR experiments on a 15N-doubly labeled sample of 3(5)-methyl-5(3)-phenylpyrazole.

  17. Synbeads porous-rigid methacrylic support: application to solid phase peptide synthesis and characterization of the polymeric matrix by FTIR microspectroscopy and high resolution magic angle spinning NMR.

    Science.gov (United States)

    Sinigoi, Loris; Bravin, Paola; Ebert, Cynthia; D'Amelio, Nicola; Vaccari, Lisa; Ciccarelli, Laura; Cantone, Sara; Basso, Alessandra; Gardossi, Lucia

    2009-01-01

    Porous and rigid methacrylic Synbeads were optimized and applied efficiently to the solid phase peptide synthesis with the objective of improving significantly volumetric yields (0.33 mol/L calculated on the basis of maximum chemical accessibility, i.e. the maximum number of functional groups that can be acylated by FmocCl) as compared to swelling commercial polymers (from 0.06 to 0.12 mol/L). The effects of the density of functional groups and spacer length were investigated obtaining a chemical accessibility of the functional groups up to 1 mmol/g(dry). High resolution magic angle spinning (HR-MAS) was exploited to evidence the presence of "solution-like" flexible linkers anchored on the rigid methacrylic backbone of Synbeads and to study the degree of functionalization by the Wang linker. To demonstrate the efficiency of the optimized Synbeads, the peptides Somatostatin and Terlipressin were synthesized. In the case of Somatostatin, final synthetic yields of 45 and 60% were achieved by following the HCTU/DIPEA and DIC/HOBt routes respectively, with the HPLC purity always higher than 83%. In the case of Terlipressin, the synthesis was carried out in parallel on Synbeads and also on TentaGel, ChemMatrix, and PS-DVB for comparison (DIC/HOBt route). The profiles describing the synthetic efficiency demonstrated that Synbeads leads to synthetic efficiency (86%) comparable to PS-DVB (96%) or ChemMatrix (84%). In order to gain a more precise picture of chemical and morphological features of Synbeads, their matrix was also characterized by exploiting innovative approaches based on FTIR microspectroscopy with a conventional source and with synchrotron radiation. A uniform distribution of the functional groups was evidenced through a detailed chemical mapping.

  18. Combination of {sup 15}N reverse labeling and afterglow spectroscopy for assigning membrane protein spectra by magic-angle-spinning solid-state NMR: application to the multidrug resistance protein EmrE

    Energy Technology Data Exchange (ETDEWEB)

    Banigan, James R.; Gayen, Anindita; Traaseth, Nathaniel J., E-mail: traaseth@nyu.edu [New York University, Department of Chemistry (United States)

    2013-04-15

    Magic-angle-spinning (MAS) solid-state NMR spectroscopy has emerged as a viable method to characterize membrane protein structure and dynamics. Nevertheless, the spectral resolution for uniformly labeled samples is often compromised by redundancy of the primary sequence and the presence of helical secondary structure that results in substantial resonance overlap. The ability to simplify the spectrum in order to obtain unambiguous site-specific assignments is a major bottleneck for structure determination. To address this problem, we used a combination of {sup 15}N reverse labeling, afterglow spectroscopic techniques, and frequency-selective dephasing experiments that dramatically improved the ability to resolve peaks in crowded spectra. This was demonstrated using the polytopic membrane protein EmrE, an efflux pump involved in multidrug resistance. Residues preceding the {sup 15}N reverse labeled amino acid were imaged using a 3D NCOCX afterglow experiment and those following were recorded using a frequency-selective dephasing experiment. Our approach reduced the spectral congestion and provided a sensitive way to obtain chemical shift assignments for a membrane protein where no high-resolution structure is available. This MAS methodology is widely applicable to the study of other polytopic membrane proteins in functional lipid bilayer environments.

  19. Cross polarization, magic-angle spinning /sup 13/C nuclear magnetic resonance spectroscopy of soil humic fractions

    Energy Technology Data Exchange (ETDEWEB)

    Saiz-Jimenez, C.; Hawkins, B.L.; Maciel, G.E.

    1986-01-01

    Cross polarization, magic-angle spinning /sup 13/C nuclear magnetic resonance spectroscopy was used to characterize humic fractions isolated from different soils. The humic acid fractions are more aromatic than the humin fractions, probably due to the higher polysaccharide content of humins. However, fulvic acid fractions are more aromatic than the corresponding humic acid and humin fractions. These results can be interpreted in terms of the isolation procedure, because the high affinity of Polyclar AT for phenols results in higher aromaticities as compared with other isolation methods (e.g. charcoal).

  20. Spin-orbit angle measurements for six southern transiting planets; New insights into the dynamical origins of hot Jupiters

    CERN Document Server

    Triaud, Amaury H M J; Queloz, Didier; Anderson, David R; Gillon, Michaël; Hebb, Leslie; Hellier, Coel; Loeillet, Benoît; Maxted, Pierre F; Mayor, Michel; Pepe, Francesco; Pollacco, Don; Ségransan, Damien; Smalley, Barry; Udry, Stéphane; West, Richard G; Wheatley, Peter J

    2010-01-01

    For transiting planets, the Rossiter-McLaughlin effect allows the measurement of the sky-projected angle beta between the stellar rotation axis and a planet's orbital axis. Using the HARPS spectrograph, we observed the Rossiter-McLaughlin effect for six transiting hot Jupiters found by the WASP consortium. We combine these with long term radial velocity measurements obtained with CORALIE. We found that three of our targets have a projected spin-orbit angle above 90 degrees: WASP-2b: beta = 153 (+11 -15), WASP-15b: beta = 139.6 (+5.2 -4.3) and WASP-17b: beta = 148.5 (+5.1 -4.2); the other three (WASP-4b, WASP-5b and WASP-18b) have angles compatible with 0 degrees. There is no dependence between the misaligned angle and planet mass nor with any other planetary parameter. All orbits are close to circular, with only one firm detection of eccentricity on WASP-18b with e = 0.00848 (+0.00085 -0.00095). No long term radial acceleration was detected for any of the targets. Combining all previous 20 measurements of bet...

  1. Sensitivity enhanced (14)N/(14)N correlations to probe inter-beta-sheet interactions using fast magic angle spinning solid-state NMR in biological solids.

    Science.gov (United States)

    Pandey, Manoj Kumar; Amoureux, Jean-Paul; Asakura, Tetsuo; Nishiyama, Yusuke

    2016-08-10

    (14)N/(14)N correlations are vital for structural studies of solid samples, especially those in which (15)N isotopic enrichment is challenging, time-consuming and expensive. Although (14)N nuclei have high isotopic abundance (99.6%), there are inherent difficulties in observing (14)N/(14)N correlations due to limited resolution and sensitivity related to: (i) low (14)N gyromagnetic ratio (γ), (ii) large (14)N quadrupolar couplings, (iii) integer (14)N spin quantum number (I = 1), and (iv) very weak (14)N-(14)N dipolar couplings. Previously, we demonstrated a proton-detected 3D (14)N/(14)N/(1)H correlation experiment at fast magic angle spinning (MAS) on l-histidine·HCl·H2O utilizing a through-bond (J) and residual dipolar-splitting (RDS) based heteronuclear multiple quantum correlation (J-HMQC) sequence mediated through (1)H/(1)H radio-frequency driven recoupling (RFDR). As an extension of our previous work, in this study we show the utility of dipolar-based HMQC (D-HMQC) in combination with (1)H/(1)H RFDR mixing to obtain sensitivity enhanced (14)N/(14)N correlations in more complex biological solids such as a glycyl-l-alanine (Gly-l-Ala) dipeptide, and parallel (P) and antiparallel (AP) β-strand alanine tripeptides (P-(Ala)3 and AP-(Ala)3, respectively). These systems highlight the mandatory necessity of 3D (14)N/(14)N/(1)H measurements to get (14)N/(14)N correlations when the amide proton resonances are overlapped. Moreover, the application of long selective (14)N pulses, instead of short hard ones, is shown to improve the sensitivity. Globally, we demonstrate that replacing J-scalar with dipolar interaction and hard- with selective-(14)N pulses allows gaining a factor of ca. 360 in experimental time. On the basis of intermolecular NH/NH distances and (14)N quadrupolar tensor orientations, (14)N/(14)N correlations are effectively utilized to make a clear distinction between the parallel and antiparallel arrangements of the β-strands in (Ala)3 through the

  2. Field-angle and DC-bias dependence of spin-torque diode in giant magnetoresistive microstripe

    Science.gov (United States)

    Li, X.; Zhou, Y.; Zheng, C.; Chan, P. H.; Chan, M.; Pong, Philip W. T.

    2016-11-01

    The spin torque diode effect in all metal spintronic devices has been proposed as a microwave detector with a high power limit and resistivity to breakdown. The previous works have revealed the field-angle dependence of the rectified DC voltage (VDC) in the ferromagnetic stripe. The giant magnetoresistive (GMR) microstripe exhibits higher sensitivity compared with the ferromagnetic stripe. However, the influence of the magnetic field direction and bias current in the spin rectification of GMR microstripe is not yet reported. In this work, the angular dependence and bias dependence of resonant frequency (fR) and VDC are investigated. A macrospin model concerning the contribution of magnetic field, shape anisotropy, and unidirectional anisotropy is engaged to interpret the experimental data. fR exhibits a |sin δH| dependence on the in-plane field angle (δH). VDC presents either |sin δH| or |sin2 δH cos δH | relation, depending on the magnitude of Hext. Optimized VDC of 24 μV is achieved under 4 mT magnetic field applied at δH = 170°. Under out-of-plane magnetic field, fR shows a cos 2θH reliance on the polar angle (θH), whereas VDC is sin θH dependent. The Oersted field of the DC bias current (IDC) modifies the effective field, resulting in shifted fR. Enhanced VDC with increasing IDC is attributed to the elevated contribution of spin-transfer torque. Maximum VDC of 35.2 μV is achieved, corresponding to 47% increase compared with the optimized value under zero bias. Higher IDC also results in enlarged damping parameter in the free layer, resulting in increased linewidth in the spin torque diode spectra. This work experimentally and analytically reveals the angular dependence of fR and VDC in the GMR microstripe. The results further demonstrate a highly tunable fR and optimized VDC by bias current without the external magnetic field. GMR microstripe holds promise for application as a high-power, frequency-tunable microwave detector that works under small

  3. Protein residue linking in a single spectrum for magic-angle spinning NMR assignment

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Loren B.; Stanek, Jan; Marchand, Tanguy Le; Bertarello, Andrea; Paepe, Diane Cala-De; Lalli, Daniela; Krejčíková, Magdaléna; Doyen, Camille; Öster, Carl [Université de Lyon, Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1) (France); Knott, Benno; Wegner, Sebastian; Engelke, Frank [Bruker Biospin (Germany); Felli, Isabella C.; Pierattelli, Roberta [University of Florence, Department of Chemistry “Ugo Schiff“and Magnetic Resonance Center (CERM) (Italy); Dixon, Nicholas E. [University of Wollongong, School of Chemistry (Australia); Emsley, Lyndon; Herrmann, Torsten; Pintacuda, Guido, E-mail: guido.pintacuda@ens-lyon.fr [Université de Lyon, Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1) (France)

    2015-07-15

    Here we introduce a new pulse sequence for resonance assignment that halves the number of data sets required for sequential linking by directly correlating sequential amide resonances in a single diagonal-free spectrum. The method is demonstrated with both microcrystalline and sedimented deuterated proteins spinning at 60 and 111 kHz, and a fully protonated microcrystalline protein spinning at 111 kHz, with as little as 0.5 mg protein sample. We find that amide signals have a low chance of ambiguous linkage, which is further improved by linking in both forward and backward directions. The spectra obtained are amenable to automated resonance assignment using general-purpose software such as UNIO-MATCH.

  4. Decomposition of adsorbed VX on activated carbons studied by 31P MAS NMR.

    Science.gov (United States)

    Columbus, Ishay; Waysbort, Daniel; Shmueli, Liora; Nir, Ido; Kaplan, Doron

    2006-06-15

    The fate of the persistent OP nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) on granular activated carbons that are used for gas filtration was studied by means of 31P magic angle spinning (MAS) NMR spectroscopy. VX as vapor or liquid was adsorbed on carbon granules, and MAS NMR spectra were recorded periodically. The results show that at least 90% of the adsorbed VX decomposes within 20 days or less to the nontoxic ethyl methylphosphonic acid (EMPA) and bis(S-2-diisopropylaminoethane) {(DES)2}. Decomposition occurred irrespective of the phase from which VX was loaded, the presence of metal impregnation on the carbon surface, and the water content of the carbon. Theoretical and practical aspects of the degradation are discussed.

  5. Decomposition of adsorbed VX on activated carbons studied by {sup 31}P MAS NMR

    Energy Technology Data Exchange (ETDEWEB)

    Ishay Columbus; Daniel Waysbort; Liora Shmueli; Ido Nir; Doron Kaplan [Israel Institute for Biological Research, Ness Ziona (Israel). Departments of Organic Chemistry and Physical Chemistry

    2006-06-15

    The fate of the persistent OP nerve agent O-ethyl S-(2-(diisopropylamino)ethyl) methylphosphonothioate (VX) on granular activated carbons that are used for gas filtration was studied by means of 31P magic angle spinning (MAS) NMR spectroscopy. Four types of activated carbon were used, including coal-based BPL. VX as vapor or liquid was adsorbed on carbon granules, and MAS NMR spectra were recorded periodically. The results show that at least 90% of the adsorbed VX decomposes within 20 days or less to the nontoxic ethyl methylphosphonic acid (EMPA) and bis(S-2-diisopropylaminoethane) ((DES){sub 2}). Decomposition occurred irrespective of the phase from which VX was loaded, the presence of metal impregnation on the carbon surface, and the water content of the carbon. Theoretical and practical aspects of the degradation are discussed. 17 refs., 6 figs., 3 tabs.

  6. Mesostructure anisotropy of bacterial cellulose-polyacrylamide hydrogels as studied by spin-echo small-angle neutron scattering

    CERN Document Server

    Velichko, E V; Chetverikov, Yu O; Duif, C P; Bouwman, W G; Smyslov, R Yu

    2016-01-01

    The submicron- and micron-scale structures of composite hydrogels based on bacterial cellulose (BC) and polyacrylamide were studied by spin-echo small-angle neutron scattering (SESANS). These hydrogels were synthesized via free-radical polymerization of acrylamide carried out in pellicle of BC swollen in the reaction solution. No neutron scattering was observed for the samples swollen in heavy water to the equilibrium state, but a SESANS signal appeared when TbCl$_{3}$ salt was added to the solvent. The SESANS dependences obtained for these samples revealed the anisotropy of mesostructure for the hydrogels under investigation. Density inhomogeneities on the characteristic scale of 11.5 $\\pm$ 0.5 $\\mu$m were detected in one specific orientation of the sample, i.e. with growth plane of BC parallel to plane formed by neutron beam and spin-echo length. The uniaxial anisotropy revealed agrees with the proposed model, which attributes this behavior to the existence of the tunnel-like oriented structures inside BC.

  7. Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    CERN Document Server

    Armstrong, D S; Asaturyan, R; Averett, T; Bailey, S L; Batigne, G; Beck, D H; Beise, E J; Benesch, J; Bimbot, L; Birchall, J; Biselli, A; Bosted, P; Boukobza, E; Breuer, H; Carlini, R; Carr, R; Chant, N; Chao, Y C; Chattopadhyay, S; Clark, R; Covrig, S; Cowley, A; Dale, D; Davis, C; Falk, W; Finn, J M; Forest, T; Franklin, G; Furget, C; Gaskell, D; Grames, J; Griffioen, K A; Grimm, K; Guillon, B; Guler, H; Hannelius, L; Hasty, R; Hawthorne Allen, A; Horn, T; Johnston, K; Jones, M; Kammel, P; Kazimi, R; King, P M; Kolarkar, A; Korkmaz, E; Korsch, W; Kox, S; Kühn, J; Lachniet, J; Lee, L; Lenoble, J; Liatard, E; Liu, J; Loupias, B; Lung, A; Marchand, D; Martin, J W; McFarlane, K W; McKee, D W; McKeown, R D; Merchez, F; Mkrtchyan, H; Moffit, B; Morlet, M; Nakagawa, I; Nakahara, K; Neveling, R; Niccolai, S; Ong, S; Page, S; Papavassiliou, V; Pate, S F; Phillips, S K; Pitt, M L; Poelker, M; Porcelli, T A; Quéméner, G; Quinn, B; Ramsay, W D; Rauf, A W; Real, J S; Roche, J; Roos, P; Rutledge, G A; Secrest, J; Simicevic, N; Smith, G R; Spayde, D T; Stepanyan, S; Stutzman, M; Sulkosky, V; Tadevosyan, V; Tieulent, R; Van de Wiele, J; Van Oers, W T H; Voutier, E; Vulcan, W; Warren, G; Wells, S P; Williamson, S E; Wood, S A; Yan, C; Yun, J; Zeps, V

    2007-01-01

    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 values of 0.15 and 0.25 (GeV/c)^2 with results of A_n = -4.06 +- 0.99 (stat) +- 0.63 (syst) and A_n = -4.82 +- 1.87 (stat) +- 0.98 (syst) ppm. These results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the 2-gamma exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

  8. Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; Robert Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; Charles Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; Richard HASTY; Alice Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; Jianglai Liu; Berenice Loupias; Allison Lung; Dominique Marchand; Jeffery Martin; Kenneth McFarlane; David McKee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; Gregory Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vince Sulkosky; Vincent Sulkosky; Vince Sulkosky; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; Glen Warren; Steven Wells; Steven Williamson; Stephen Wood; Chen Yan; Junho Yun; Valdis Zeps

    2007-08-01

    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 values of 0.15 and 0.25 (GeV/c)^2 with results of A_n = -4.06 +- 0.99(stat) +- 0.63(syst) and A_n = -4.82 +- 1.87(stat) +- 0.98(syst) ppm. These results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the two-photon exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

  9. Beam Normal Single Spin Asymmetry in Forward Angle Inelastic Electron-Proton Scattering using the Q-Weak Apparatus

    Energy Technology Data Exchange (ETDEWEB)

    ., Nuruzzaman [Hampton Univ., Hampton, VA (United States)

    2014-12-01

    The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (B_n) on H_2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic B_n is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of B_n background studies, we made the first measurement of B_n in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be B_n = 42.82 ± 2.45 (stat) ± 16.07 (sys) ppm at beam energy E_beam = 1.155 GeV, scattering angle theta = 8.3 deg, and missing mass W = 1.2 GeV. B_n from electron-nucleon scattering is a unique tool to study the gamma^* Delta Delta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ~10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system

  10. Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling

    KAUST Repository

    Wang, Songlin

    2015-04-09

    We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems.

  11. Nano-mole scale side-chain signal assignment by 1H-detected protein solid-state NMR by ultra-fast magic-angle spinning and stereo-array isotope labeling.

    Directory of Open Access Journals (Sweden)

    Songlin Wang

    Full Text Available We present a general approach in 1H-detected 13C solid-state NMR (SSNMR for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS at ~80 kHz, and stereo-array-isotope-labeled (SAIL proteins [Kainosho M. et al., Nature 440, 52-57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg that was SAIL-labeled at seven isoleucine (Ile residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems.

  12. 1H MAS NMR spectra of hy- droxyl species on diatomite surface

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    High spinning speed 1H magic-angle spinning nuclear magnetic resonance (1H MAS NMR) was used to detect surface hydroxyl groups of diatomite, which include isolated hydroxyl groups and hydrogen-bonded hydroxyl groups, and water adsorbed on diatomite surface that include pore water and hydrogen-bonded water. The corresponding proton chemical shifts of above species are ca. 2.0, 6.0-7.1, 4.9 and 3.0 respectively. Accompanied by thermal treatment temperature ascending, the pore water and hydrogen-bonded water are desorbed successively. As a result, the relative intensities of the peaks assigned to protons of isolat-ed hydroxyl groups and hydrogen-bonded hydroxyl groups increase gradually and reach their maxima at 1000℃. After 1100℃ calcination, the hydroxyl groups that classified to strongly hydrogen-bonded ones and the isolated hydroxyl groups condense basically. But some weakly hydrogen-bonded hydroxyl groups may still persist in the micropores.

  13. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy.

    Science.gov (United States)

    Hou, Guangjin; Lu, Xingyu; Vega, Alexander J; Polenova, Tatyana

    2014-09-14

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear (1)H-X (X = (13)C, (15)N, (31)P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the (1)H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the (1)H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from (1)H chemical shift anisotropy, while keeping the (1)H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [(15)N]-N-acetyl-valine and [U-(13)C,(15)N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate (1)H-(15)N dipolar couplings in the context of 3D experiments is presented on U-(13)C,(15)N-enriched dynein light chain protein LC8.

  14. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Guangjin, E-mail: hou@udel.edu, E-mail: tpolenov@udel.edu; Lu, Xingyu, E-mail: luxingyu@udel.edu, E-mail: lexvega@comcast.net; Vega, Alexander J., E-mail: luxingyu@udel.edu, E-mail: lexvega@comcast.net; Polenova, Tatyana, E-mail: hou@udel.edu, E-mail: tpolenov@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, Pennsylvania 15261 (United States)

    2014-09-14

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear {sup 1}H-X (X = {sup 13}C, {sup 15}N, {sup 31}P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the {sup 1}H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the {sup 1}H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from {sup 1}H chemical shift anisotropy, while keeping the {sup 1}H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [{sup 15}N]-N-acetyl-valine and [U-{sup 13}C,{sup 15}N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate {sup 1}H-{sup 15}N dipolar couplings in the context of 3D experiments is presented on U-{sup 13}C,{sup 15}N-enriched dynein light chain protein LC8.

  15. Spin-wave dynamics in Invar Fe sub 6 sub 5 Ni sub 3 sub 5 alloy studied by small-angle polarized neutron scattering

    CERN Document Server

    Grigoriev, S V; Deriglazov, V V; Okorokov, A I; Dijk, N H V; Brück, E; Klaasse, J C P; Eckerlebe, H; Kozik, G

    2002-01-01

    Spin dynamics in Fe sub 6 sub 5 Ni sub 3 sub 5 Invar alloy has been studied by left-right asymmetry of small-angle polarized neutron scattering below T sub C =485 K in external magnetic fields of H=0.05-0.25 T inclined relative to the incident beam. The spin-wave stiffness D and the damping GAMMA were obtained by fitting the antisymmetrical contribution to the scattering. The spin-wave stiffness extrapolated by a (T/T sub C) sup 5 sup / sup 2 law to T=0 K is D sub 0 =117+-2 meVA sup 2 , which is somewhat smaller than the spin-wave stiffness obtained by triple-axis spectrometry. (orig.)

  16. Magnetic resonance imaging of lumbar spine. Comparison of multiple spin echo and low flip angle gradient echo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Takamichi; Fujita, Norihiko; Harada, Koushi; Kozuka, Takahiro (Osaka Univ. (Japan). Faculty of Medicine)

    1989-07-01

    Sixteen patients including 13 cases with disk herniation and 3 cases with spondylosis of lumbar spine were examined on a resistive MRI system operating at 0.1 T. All lesions were studied with both multiple spin echo (MSE) and low flip angle gradient echo (LF) techniques to evaluate which technique is more effective in detecting the disk degeneration and the indentation on subarachnoid space. MSE images were obtained with repetition time (TR) of 1100-1500 ms or cardiac gating, an echo time (TE) of 30, 60, 90, 120, 150, and 180 ms symmetrical 6 echoes, and total acquisition time of more than 281 sec. LF images were obtained with TR of 500, 250, and 100 ms, TE of 18 ms, a flip angle of 30 degree, and total acquisition time of 128 sec. Eleven lesions of spinal disk degeneration and 12 of indentation on subarachnoid space were detected with LF. On the other hand, 26 lesions of spinal disk degeneration and 38 of indentation on subarachnoid space were detected with MSE. Although the parameters of LF employed in this study were relatively effective to emphasize T2{sup *}-based contrast, the ability of LF in detection of spinal disk degeneration and indentation on subarachnoid space is less than that of MSE. Signal contrast to noise ratios for normal disk and degenerative disk, epidural-fat and disk herniated material, CSF and disk herniated material, and epidural-fat and CSF were less than 4 with LF, but more than 4 with MSE. This difference of contrast to noise ratio between MSE and LF was one of the main causes of the difference of the detection rate of spinal disk degeneration and indentation on subarachnoid space. (author).

  17. Combination of high-resolution magic angle spinning proton magnetic resonance spectroscopy and microscale genomics to type brain tumor biopsies.

    Science.gov (United States)

    Tzika, A Aria; Astrakas, Loukas; Cao, Haihui; Mintzopoulos, Dionyssios; Andronesi, Ovidiu C; Mindrinos, Michael; Zhang, Jiangwen; Rahme, Laurence G; Blekas, Konstantinos D; Likas, Aristidis C; Galatsanos, Nikolas P; Carroll, Rona S; Black, Peter M

    2007-08-01

    Advancements in the diagnosis and prognosis of brain tumor patients, and thus in their survival and quality of life, can be achieved using biomarkers that facilitate improved tumor typing. We introduce and implement a combinatorial metabolic and molecular approach that applies state-of-the-art, high-resolution magic angle spinning (HRMAS) proton (1H) MRS and gene transcriptome profiling to intact brain tumor biopsies, to identify unique biomarker profiles of brain tumors. Our results show that samples as small as 2 mg can be successfully processed, the HRMAS 1H MRS procedure does not result in mRNA degradation, and minute mRNA amounts yield high-quality genomic data. The MRS and genomic analyses demonstrate that CNS tumors have altered levels of specific 1H MRS metabolites that directly correspond to altered expression of Kennedy pathway genes; and exhibit rapid phospholipid turnover, which coincides with upregulation of cell proliferation genes. The data also suggest Sonic Hedgehog pathway (SHH) dysregulation may play a role in anaplastic ganglioglioma pathogenesis. That a strong correlation is seen between the HRMAS 1H MRS and genomic data cross-validates and further demonstrates the biological relevance of the MRS results. Our combined metabolic/molecular MRS/genomic approach provides insights into the biology of anaplastic ganglioglioma and a new potential tumor typing methodology that could aid neurologists and neurosurgeons to improve the diagnosis, treatment, and ongoing evaluation of brain tumor patients.

  18. The local physical structure of amorphous hydrogenated boron carbide: insights from magic angle spinning solid-state NMR spectroscopy.

    Science.gov (United States)

    Paquette, Michelle M; Li, Wenjing; Sky Driver, M; Karki, Sudarshan; Caruso, A N; Oyler, Nathan A

    2011-11-01

    Magic angle spinning solid-state nuclear magnetic resonance spectroscopy techniques are applied to the elucidation of the local physical structure of an intermediate product in the plasma-enhanced chemical vapour deposition of thin-film amorphous hydrogenated boron carbide (B(x)C:H(y)) from an orthocarborane precursor. Experimental chemical shifts are compared with theoretical shift predictions from ab initio calculations of model molecular compounds to assign atomic chemical environments, while Lee-Goldburg cross-polarization and heteronuclear recoupling experiments are used to confirm atomic connectivities. A model for the B(x)C:H(y) intermediate is proposed wherein the solid is dominated by predominantly hydrogenated carborane icosahedra that are lightly cross-linked via nonhydrogenated intraicosahedral B atoms, either directly through B-B bonds or through extraicosahedral hydrocarbon chains. While there is no clear evidence for extraicosahedral B aside from boron oxides, ∼40% of the C is found to exist as extraicosahedral hydrocarbon species that are intimately bound within the icosahedral network rather than in segregated phases.

  19. Evaluation of Cancer Metabolomics Using ex vivo High Resolution Magic Angle Spinning (HRMAS) Magnetic Resonance Spectroscopy (MRS).

    Science.gov (United States)

    Fuss, Taylor L; Cheng, Leo L

    2016-03-22

    According to World Health Organization (WHO) estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS) has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics.

  20. Polystyrene-supported organotin dichloride as a recyclable catalyst in lactone ring-opening polymerization: assessment and catalysis monitoring by high-resolution magic-angle-spinning NMR spectroscopy.

    Science.gov (United States)

    Deshayes, Gaëlle; Poelmans, Kevin; Verbruggen, Ingrid; Camacho-Camacho, Carlos; Degée, Philippe; Pinoie, Vanja; Martins, José C; Piotto, Martial; Biesemans, Monique; Willem, Rudolph; Dubois, Philippe

    2005-07-18

    Dialkyltin dichloride grafted to a cross-linked polystyrene, with the formula [P-H]((1-t))[P-(CH2)nSnBuCl2]t (P=[CH2CH(pC6H4)], t=the degree of functionalization, and n=6 or 11), is investigated as a recyclable catalyst in the ring-opening polymerization (ROP) of epsilon-caprolactone (CL). It is demonstrated that high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy is an invaluable tool to characterize completely the supported catalyst. The 2D 1H-13C HSQC HR-MAS spectrum, in particular, allowed extensive assignment of the 1H and 13C resonances, as well as accurate measurement of the (n)J((1)H-(117/119)Sn) and (n)J((13)C-(117/119)Sn) coupling constants. 1H and 119Sn HR-MAS NMR spectroscopy is presented as a monitoring tool for catalytic processes based on organotin compounds, particularly for the investigation of the extent to which polymerization residues are observable in situ in the material pores and for the assessment of the chemical integrity and recycling conditions of the grafted catalyst. From polymerization experiments with CL, initiated by n-propanol and with [P-H]((1-t))[P-(CH2)nSnBuCl2]t of various compositions as the supported catalyst, it appears that a partial 'burst' of the polystyrene support occurs when the length of the alkyl spacer is limited to n=6, as a result of polymer chains growing within the pores of the support. However, extension of the length of the aliphatic polymethylene spacer from 6 to 11 carbon atoms preserves the support integrity and allows the production of catalyst-deprived poly(epsilon-caprolactone) (PCL) oligomers. A preliminary attempt to recycle the heterogeneous catalyst has shown that very good reproducibility can be obtained, in terms of both catalyst activity and molecular-weight parameters of the as-recovered PCL polyester chains.

  1. Investigation on Acute Biochemical Effects of Ce(NO3)3 on Liver and Kidney Tissues by MAS 1H NMR Spectroscopic-Based Metabonomic Approach

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    High resolution magic angle spinning (MAS)-1 H nuclear magnetic resonance (NMR) spectroscopic-based metabonomic approach was applied to the investigation on the acute biochemical effects of Ce(NO3)3. Male Wistar rats were liver and kidney tissues were analyzed using principal component analysis to extract toxicity information. The biochemical effects of Ce(NO3)3 were characterized by the increase of triglycerides and lactate and the decrease of glycogen in rat liver tissue, together with an elevation of the triglyceride level and a depletion of glycerophosphocholine and betaine in kidney tissues. The target lesions of Ce(NO3)3 on liver and kidney were found by MAS NMR-based metabonomic method. This study demonstrates that the combination of MAS 1H NMR and pattern recognition analysis can be an effective method for studies of biochemical effects of rare earths.

  2. Frozen concentration fluctuations in a poly(N-isopropyl acrylamide) gel studied by neutron spin echo and small-angle neutron scattering

    CERN Document Server

    Koizumi, S; Richter, D; Schwahn, D; Faragó, B; Annaka, M

    2002-01-01

    By employing neutron spin echo and small-angle neutron scattering, we determined the structure factor of the frozen concentration fluctuations on nano-length scales in a swollen poly(N-isopropyl acrylamide) gel. The frozen contribution, showing a plateau at the low scattering wavenumber q (0.02 A sup - sup 1), is intimately related to the abnormal butterfly scattering pattern appearing at low q under deformation. (orig.)

  3. Effect of Salicylic Acid and 5-Sulfosalicylic Acid on UV-Vis Spectroscopic Characteristics, Morphology, and Contact Angles of Spin Coated Polyaniline and Poly(4-aminodiphenylaniline Thin Films

    Directory of Open Access Journals (Sweden)

    A. Sironi

    2015-01-01

    Full Text Available Polyaniline and poly(4-aminodiphenylaniline have been prepared following two different synthetic protocols (a traditional method and a “green” method. Both the polymers have been spin coated with salicylic acid and 5-sulfosalicylic acid as the dopants, in order to obtain them in form of thin films. These materials have been characterized, thereof achieving important information on their water contact angles and surface morphology.

  4. High-resolution (19)F MAS NMR spectroscopy: structural disorder and unusual J couplings in a fluorinated hydroxy-silicate.

    Science.gov (United States)

    Griffin, John M; Yates, Jonathan R; Berry, Andrew J; Wimperis, Stephen; Ashbrook, Sharon E

    2010-11-10

    High-resolution (19)F magic angle spinning (MAS) NMR spectroscopy is used to study disorder and bonding in a crystalline solid. (19)F MAS NMR reveals four distinct F sites in a 50% fluorine-substituted deuterated hydrous magnesium silicate (clinohumite, 4Mg(2)SiO(4)·Mg(OD(1-x)F(x))(2) with x = 0.5), indicating extensive structural disorder. The four (19)F peaks can be assigned using density functional theory (DFT) calculations of NMR parameters for a number of structural models with a range of possible local F environments generated by F(-)/OH(-) substitution. These assignments are supported by two-dimensional (19)F double-quantum MAS NMR experiments that correlate F sites based on either spatial proximity (via dipolar couplings) or through-bond connectivity (via scalar, or J, couplings). The observation of (19)F-(19)F J couplings is unexpected as the fluorines coordinate Mg atoms and the Mg-F interaction is normally considered to be ionic in character (i.e., there is no formal F-Mg-F covalent bonding arrangement). However, DFT calculations predict significant (19)F-(19)F J couplings, and these are in good agreement with the splittings observed in a (19)F J-resolved MAS NMR experiment. The existence of these J couplings is discussed in relation to both the nature of bonding in the solid state and the occurrence of so-called "through-space" (19)F-(19)F J couplings in solution. Finally, we note that we have found similar structural disorder and spin-spin interactions in both synthetic and naturally occurring clinohumite samples.

  5. Cross-Correlated Relaxation of Dipolar Coupling and Chemical-Shift Anisotropy in Magic-Angle Spinning R1ρ NMR Measurements: Application to Protein Backbone Dynamics Measurements.

    Science.gov (United States)

    Kurauskas, Vilius; Weber, Emmanuelle; Hessel, Audrey; Ayala, Isabel; Marion, Dominique; Schanda, Paul

    2016-09-01

    Transverse relaxation rate measurements in magic-angle spinning solid-state nuclear magnetic resonance provide information about molecular motions occurring on nanosecond-to-millisecond (ns-ms) time scales. The measurement of heteronuclear ((13)C, (15)N) relaxation rate constants in the presence of a spin-lock radiofrequency field (R1ρ relaxation) provides access to such motions, and an increasing number of studies involving R1ρ relaxation in proteins have been reported. However, two factors that influence the observed relaxation rate constants have so far been neglected, namely, (1) the role of CSA/dipolar cross-correlated relaxation (CCR) and (2) the impact of fast proton spin flips (i.e., proton spin diffusion and relaxation). We show that CSA/D CCR in R1ρ experiments is measurable and that the CCR rate constant depends on ns-ms motions; it can thus provide insight into dynamics. We find that proton spin diffusion attenuates this CCR due to its decoupling effect on the doublet components. For measurements of dynamics, the use of R1ρ rate constants has practical advantages over the use of CCR rates, and this article reveals factors that have so far been disregarded and which are important for accurate measurements and interpretation.

  6. Out-and-back {sup 13}C-{sup 13}C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS

    Energy Technology Data Exchange (ETDEWEB)

    Barbet-Massin, Emeline; Pell, Andrew J. [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France); Jaudzems, Kristaps [Latvian Institute of Organic Synthesis (Latvia); Franks, W. Trent; Retel, Joren S. [Leibniz-Institut fuer Molekulare Pharmakologie (Germany); Kotelovica, Svetlana; Akopjana, Inara; Tars, Kaspars [Biomedical Research and Study Center (Latvia); Emsley, Lyndon [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France); Oschkinat, Hartmut [Leibniz-Institut fuer Molekulare Pharmakologie (Germany); Lesage, Anne; Pintacuda, Guido, E-mail: guido.pintacuda@ens-lyon.fr [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France)

    2013-08-15

    We present here {sup 1}H-detected triple-resonance H/N/C experiments that incorporate CO-CA and CA-CB out-and-back scalar-transfer blocks optimized for robust resonance assignment in biosolids under ultra-fast magic-angle spinning (MAS). The first experiment, (H)(CO)CA(CO)NH, yields {sup 1}H-detected inter-residue correlations, in which we record the chemical shifts of the CA spins in the first indirect dimension while during the scalar-transfer delays the coherences are present only on the longer-lived CO spins. The second experiment, (H)(CA)CB(CA)NH, correlates the side-chain CB chemical shifts with the NH of the same residue. These high sensitivity experiments are demonstrated on both fully-protonated and 100 %-H{sup N} back-protonated perdeuterated microcrystalline samples of Acinetobacter phage 205 (AP205) capsids at 60 kHz MAS.

  7. Spin-locking of half-integer quadrupolar nuclei in nuclear magnetic resonance of solids: creation and evolution of coherences.

    Science.gov (United States)

    Ashbrook, Sharon E; Wimperis, Stephen

    2004-02-08

    Spin-locking of half-integer quadrupolar nuclei, such as 23Na (I=3/2) and 27Al (I=5/2), is of renewed interest owing to the development of variants of the multiple-quantum and satellite-transition magic angle spinning (MAS) nuclear magnetic resonance experiments that either utilize spin-locking directly or offer the possibility that spin-locked states may arise. However, the large magnitude and, under MAS, the time dependence of the quadrupolar interaction often result in complex spin-locking phenomena that are not widely understood. Here we show that, following the application of a spin-locking pulse, a variety of coherence transfer processes occur on a time scale of approximately 1/omegaQ before the spin system settles down into a spin-locked state which may itself be time dependent if MAS is performed. We show theoretically for both spin I=3/2 and 5/2 nuclei that the spin-locked state created by this initial rapid dephasing typically consists of a variety of single- and multiple-quantum coherences and nonequilibrium population states and we discuss the subsequent evolution of these under MAS. In contrast to previous work, we consider spin-locking using a wide range of radio frequency field strengths, i.e., a range that covers both the "strong-field" (omega1 > omegaQPAS and "weak-field" (omega1 spin-locking experiments on NaNO2, NaNO3, and Al(acac)3, under both static and MAS conditions, are used to illustrate and confirm the results of the theoretical discussion.

  8. Investigating the two inequivalent NH2(CH3)2 ions in [NH2(CH3)2]2CuCl4 using magic angle spinning nuclear magnetic resonance

    Science.gov (United States)

    Lim, Ae Ran; Paik, Younkee

    2017-03-01

    The structural change near the phase transition temperatures of [NH2(CH3)2]2CuCl4 is discussed in terms of the chemical shifts and the spin-lattice relaxation times T1ρ in the rotating frame for 1H MAS NMR and 13C CP/MAS NMR. The 1H T1ρ undergoes molecular motion near the phase-transition temperature (TC2 = 253 K). In addition, the two inequivalent [NH2(CH3)2] (1) and [NH2(CH3)2] (2) sites were distinguishable by the 13C chemical shift. And, the most significant change was observed at TC2 for the 13C CP/MAS NMR spectrum; this temperature corresponds to a ferroelastic phase transition with different orientations.

  9. sup 29 Si magic angle spinning NMR spectra of alkali metal, alkaline earth metal, and rare earth metal ion exchanged Y zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Kueijung; Chern, Jeryoung (Tsinghua Univ., Taiwan (China))

    1989-02-23

    The variation of the extraframework cation location in groups IA and IIA metals and rare earth metal (RE) Y zeolites as a function of the dehydration and the rehydration is monitored by {sup 29}Si MAS NMR. Unheated hydrated zeolites give similar {sup 29}Si spectra as they present the similar cation distributions. Upon dehydration a high-field shift is observed which correlates with the distortion of bond angles in silicon-oxygen tetrahedra. The line shapes of {sup 29}Si spectra depend on the nature and the location of the exchangeable cations and the occupancy of the different sites in dehydrated and rehydrated states. The correlation between the line shape of {sup 29}Si spectra and the migration of cations from the supercages to the sodalite cages after heating treatment was studied. The results of {sup 29}Si NMR agree with the known structure data.

  10. On turbulence driven by axial precession and tidal evolution of the spin-orbit angle of close-in giant planets

    CERN Document Server

    Barker, Adrian J

    2016-01-01

    The spin axis of a rotationally deformed planet is forced to precess about its orbital angular momentum vector, due to the tidal gravity of its host star, if these directions are misaligned. This induces internal fluid motions inside the planet that are subject to a hydrodynamic instability. We study the turbulent damping of precessional fluid motions, as a result of this instability, in the simplest local computational model of a giant planet (or star), with and without a weak internal magnetic field. Our aim is to determine the outcome of this instability, and its importance in driving tidal evolution of the spin-orbit angle in precessing planets (and stars). We find that this instability produces turbulent dissipation that is sufficiently strong that it could drive significant tidal evolution of the spin-orbit angle for hot Jupiters with orbital periods shorter than about 10-18 days. If this mechanism acts in isolation, this evolution would be towards alignment or anti-alignment, depending on the initial a...

  11. Surface Characterization of Some Novel Bonded Phase Packing Materials for HPLC Columns Using MAS-NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Jude Abia

    2015-03-01

    Full Text Available Information on the surface properties of three novel chemically bonded phase packing materials for High performance liquid chromatography (HPLC were obtained using spectra obtained by solid state cross-polarization (CP magic-angle spinning (MAS nuclear magnetic resonance (NMR spectroscopic experiments for the 29Si, and 13C nuclei. These packing materials were: Cogent bidentate C18 bonded to type-C silica, hybrid packing materials XTerra MS C18, and XBridge Prep. C18. The spectra obtained using cross-polarization magic angle spinning (CP-MAS on the Cogent bidentate C18 bonded to type-C silica show the surface to be densely populated with hydride groups (Si-H, with a relative surface coverage exceeding 80%. The hybrid packing materials XTerra and XBridge gave spectra that reveal the silicon atoms to be bonded to organic moieties embedded in the molecular structure of these materials with over 90% of the alkyl silicon atoms found within the completely condensed silicon environments. The hydrolytic stability of these materials were investigated in acidic aqueous solutions at pHs of 7.0 and 3.0, and it was found that while the samples of XTerra and XBridge were not affected by hydrolysis at this pH range, the sample of Cogent lost a significant proportion of its Si-H groups after five days of treatment in acidic aqueous solution.

  12. Spin-dependent surface electronic structure of Gd(0001) near the Fermi-level: An angle-resolved (I)PE study

    Energy Technology Data Exchange (ETDEWEB)

    Budke, Michael; Wittkowski, Alexander; Correa, Juliet; Donath, Markus [Physikalisches Institut, WWU Muenster, Wilhelm-Klemm-Str. 10, 48149 Muenster (Germany)

    2008-07-01

    A widely accepted picture for the surface electronic structure of Gd(0001) comprises a spin-split surface state (SS) with its majority part 0.2 eV below E{sub F} and its minority part 0.5 eV above E{sub F} with a finite exchange splitting of 0.4 eV at T{sub C}. The discussion about this SS remains controversially because spin-resolved inverse photoemission identified a SS with both minority and majority components above E{sub F}. The reason for these conflicting results might be found in different sample conditions since the Gd films are usually grown on W(110), a material with considerably different lattice constant than Gd. To overcome this suspicion, we performed both, spin- and angle-resolved direct (PE) and inverse photoemission (IPE) on the same sample preparation of a 30 ML Gd film grown on Y(0001). We were able to identify two SSs with their minority and majority components well separated from E{sub F}. While the occupied SS shows spin-mixing behaviour as observed in other PE experiments, the unoccupied SS exhibits an exchange splitting of 250 meV that vanishes at T{sub C}. To identify the nature of the unexpected SS, we performed angular-resolved IPE measurements that support the interpretation as d-like SS above E{sub F} and reveal a variety of additional spectral features.

  13. Canonical Angles In A Compact Binary Star System With Spinning Components: Approximative Solution Through Next-To-Leading-Order Spin-Orbit Interaction for Circular Orbits

    CERN Document Server

    Tessmer, Manuel; Schäfer, Gerhard

    2013-01-01

    This publication will deal with an explicit determination of the time evolution of the spin orientation axes and the evolution of the orbital phase in the case of circular orbits under next-to-leading order spin-orbit interactions. We modify the method of Schneider and Cui proposed in ["Theoreme \\"uber Bewegungsintegrale und ihre Anwendungen in Bahntheorien", Verlag der Bayerischen Akademie der Wissenschaften, volume 212, 2005.] to iteratively remove oscillatory terms in the equations of motion for different masses that were not present in the case of equal masses. Our smallness parameter is chosen to be the difference of the symmetric mass ratio to the value 1/4. Before the first Lie transformation, the set of conserved quantities consists of the total angular momentum, the amplitudes of the orbital angular momentum and of the spins, $L, S_1,$ and $S_2$. In contrary, the magnitude of the total spin $S=|S_1+S_2|$ is not conserved and we wish to shift its non-conservation to higher orders of the smallness para...

  14. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy.

    Science.gov (United States)

    Mote, Kaustubh R; Gopinath, T; Veglia, Gianluigi

    2013-10-01

    The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD ~0.44 Å, a tilt angle of 24° ± 1°, and an azimuthal angle of 55° ± 6°. This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR.

  15. Assessing Heterogeneity of Osteolytic Lesions in Multiple Myeloma by 1H HR-MAS NMR Metabolomics

    Directory of Open Access Journals (Sweden)

    Laurette Tavel

    2016-10-01

    Full Text Available Multiple myeloma (MM is a malignancy of plasma cells characterized by multifocal osteolytic bone lesions. Macroscopic and genetic heterogeneity has been documented within MM lesions. Understanding the bases of such heterogeneity may unveil relevant features of MM pathobiology. To this aim, we deployed unbiased 1H high-resolution magic-angle spinning (HR-MAS nuclear magnetic resonance (NMR metabolomics to analyze multiple biopsy specimens of osteolytic lesions from one case of pathological fracture caused by MM. Multivariate analyses on normalized metabolite peak integrals allowed clusterization of samples in accordance with a posteriori histological findings. We investigated the relationship between morphological and NMR features by merging morphological data and metabolite profiling into a single correlation matrix. Data-merging addressed tissue heterogeneity, and greatly facilitated the mapping of lesions and nearby healthy tissues. Our proof-of-principle study reveals integrated metabolomics and histomorphology as a promising approach for the targeted study of osteolytic lesions.

  16. (13C-(13c homonuclear recoupling in solid-state nuclear magnetic resonance at a moderately high magic-angle-spinning frequency.

    Directory of Open Access Journals (Sweden)

    Venus Singh Mithu

    Full Text Available Two-dimensional (13C-(13C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of (13C-(13C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-shift difference and spatial distance between two carbons and amplitude of radio frequency on (1H channel on the magnetisation transfer efficiency of these schemes is discussed in detail.

  17. Polydisperse methyl β-cyclodextrin–epichlorohydrin polymers: variable contact time 13C CP-MAS solid-state NMR characterization

    Science.gov (United States)

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio

    2015-01-01

    Summary The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices. PMID:26877800

  18. Polydisperse methyl β-cyclodextrin–epichlorohydrin polymers: variable contact time 13C CP-MAS solid-state NMR characterization

    Directory of Open Access Journals (Sweden)

    Isabelle Mallard

    2015-12-01

    Full Text Available The polymerization of partially methylated β-cyclodextrin (CRYSMEB with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3 of imprinted polymers were obtained and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: TCH (the CP time constant and T1ρ (the proton spin-lattice relaxation time in the rotating frame. The results and the analysis presented in the paper pointed out that TCH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of TCH and T1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices.

  19. How to Measure the Black Hole's Mass, Spin Parameter and Inclination Angle in Kerr Lens Effect 1: Principle and Formalism

    CERN Document Server

    Saida, Hiromi

    2016-01-01

    We propose the principle of measuring the Kerr BH's mass, spin parameter and the direction of the spin axis through observing two quantities of the spinning strong gravitational lens effect of the BH. Those observable quantities are generated by two rays emitted at the same time by a source near the BH; the primary and secondary rays which reach a distant observer, respectively, earliest and secondary temporally. The time delay between detection times and the ratio of observed specific fluxes of those rays are the observable quantities. Our numerical estimations imply a good detectability of those observable quantities by the present or near future telescope capability, and our proposal may be realizable in the near future. Also, the details of formulas for calculating the observable quantities are explained so that readers having interest in this paper can check our proposal quantitatively.

  20. A suite of pulse sequences based on multiple sequential acquisitions at one and two radiofrequency channels for solid-state magic-angle spinning NMR studies of proteins.

    Science.gov (United States)

    Sharma, Kshama; Madhu, Perunthiruthy K; Mote, Kaustubh R

    2016-08-01

    One of the fundamental challenges in the application of solid-state NMR is its limited sensitivity, yet a majority of experiments do not make efficient use of the limited polarization available. The loss in polarization in a single acquisition experiment is mandated by the need to select out a single coherence pathway. In contrast, sequential acquisition strategies can encode more than one pathway in the same experiment or recover unused polarization to supplement a standard experiment. In this article, we present pulse sequences that implement sequential acquisition strategies on one and two radiofrequency channels with a combination of proton and carbon detection to record multiple experiments under magic-angle spinning. We show that complementary 2D experiments such as [Formula: see text] and [Formula: see text] or DARR and [Formula: see text], and 3D experiments such as [Formula: see text] and [Formula: see text], or [Formula: see text] and [Formula: see text]  can be combined in a single experiment to ensure time savings of at least 40 %. These experiments can be done under fast or slow-moderate magic-angle spinning frequencies aided by windowed [Formula: see text] acquisition and homonulcear decoupling. The pulse sequence suite is further expanded by including pathways that allow the recovery of residual polarization, the so-called 'afterglow' pathways, to encode a number of pulse sequences to aid in assignments and chemical-shift mapping.

  1. The EBLM project. I. Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the brown dwarf limit

    Science.gov (United States)

    Triaud, A. H. M. J.; Hebb, L.; Anderson, D. R.; Cargile, P.; Collier Cameron, A.; Doyle, A. P.; Faedi, F.; Gillon, M.; Gomez Maqueo Chew, Y.; Hellier, C.; Jehin, E.; Maxted, P.; Naef, D.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Stassun, K.; Udry, S.; West, R. G.

    2013-01-01

    This paper introduces a series of papers aiming to study the dozens of low-mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F, G, K+M eclipsing binaries through the Rossiter-McLaughlin effect. Here we report on the spin-orbit angle of WASP-30b, a transiting brown dwarf, and improve its orbital parameters. We also present the mass, radius, spin-orbit angle and orbital parameters of a new eclipsing binary, J1219-39b (1SWAPJ121921.03-395125.6, TYC 7760-484-1), which, with a mass of 95 ± 2 Mjup, is close to the limit between brown dwarfs and stars. We find that both objects have projected spin-orbit angles aligned with their primaries' rotation. Neither primaries are synchronous. J1219-39b has a modestly eccentric orbit and is in agreement with the theoretical mass-radius relationship, whereas WASP-30b lies above it. Using WASP-South photometric observations (Sutherland, South Africa) confirmed with radial velocity measurement from the CORALIE spectrograph, photometry from the EulerCam camera (both mounted on the Swiss 1.2 m Euler Telescope), radial velocities from the HARPS spectrograph on the ESO's 3.6 m Telescope (prog ID 085.C-0393), and photometry from the robotic 60 cm TRAPPIST telescope, all located at ESO, La Silla, Chile. The data is publicly available at the CDS Strasbourg and on demand to the main author.Tables A.1-A.3 are available in electronic form at http://www.aanda.orgPhotometry tables are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A18

  2. Elucidating connectivity and metal-binding structures of unlabeled paramagnetic complexes by 13C and 1H solid-state NMR under fast magic angle spinning.

    Science.gov (United States)

    Wickramasinghe, Nalinda P; Shaibat, Medhat A; Ishii, Yoshitaka

    2007-08-23

    Characterizing paramagnetic complexes in solids is an essential step toward understanding their molecular functions. However, methodologies to characterize chemical and electronic structures of paramagnetic systems at the molecular level have been notably limited, particularly for noncrystalline solids. We present an approach to obtain connectivities of chemical groups and metal-binding structures for unlabeled paramagnetic complexes by 13C and 1H high-resolution solid-state NMR (SSNMR) using very fast magic angle spinning (VFMAS, spinning speed >or=20 kHz). It is experimentally shown for unlabeled Cu(II)(Ala-Thr) that 2D 13C/1H correlation SSNMR under VFMAS provides the connectivity of chemical groups and assignments for the characterization of unlabeled paramagnetic systems in solids. We demonstrate that on the basis of the assignments provided by the VFMAS approach multiple 13C-metal distances can be simultaneously elucidated by a combination of measurements of 13C anisotropic hyperfine shifts and 13C T1 relaxation due to hyperfine interactions for this peptide-Cu(II) complex. It is also shown that an analysis of 1H anisotropic hyperfine shifts allows for the determination of electron-spin states in Fe(III)-chloroprotoporphyin-IX in solid states.

  3. The metabolic profile of lemon juice by proton HR-MAS NMR: the case of the PGI Interdonato Lemon of Messina.

    Science.gov (United States)

    Cicero, Nicola; Corsaro, Carmelo; Salvo, Andrea; Vasi, Sebastiano; Giofré, Salvatore V; Ferrantelli, Vincenzo; Di Stefano, Vita; Mallamace, Domenico; Dugo, Giacomo

    2015-01-01

    We have studied by means of High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) the metabolic profile of the famous Sicilian lemon known as 'Interdonato Lemon of Messina PGI'. The PGI Interdonato Lemon of Messina possesses high organoleptic and healthy properties and is recognised as one of the most nutrient fruits. In particular, some of its constituents are actively studied for their chemo-preventive and therapeutic properties. In this paper, we have determined by means of HR-MAS NMR spectroscopy the molar concentration of the main metabolites constituent the juice of PGI Interdonato Lemon of Messina in comparison with that of the not-PGI Interdonato Lemon of Turkey. Our aim is to develop an analytical technique, in order to determine a metabolic fingerprint able to reveal commercial frauds in national and international markets.

  4. Alterations in creatine metabolism observed in experimental autoimmune myocarditis using ex vivo proton magic angle spinning MRS

    DEFF Research Database (Denmark)

    Muench, Frédéric; Retel, Joren; Jeuthe, Sarah

    2015-01-01

    of male young Lewis rats with EAM was quantified by performing left ventricular ejection fraction (LVEF) analysis in short-axis cine images throughout the whole heart. Inflammatory cellular infiltrate was assessed by immunohistochemistry. Myocardial tissue was analyzed using ex vivo proton magic angle...

  5. Transport Properties of Ibuprofen Encapsulated in Cyclodextrin Nanosponge Hydrogels: A Proton HR-MAS NMR Spectroscopy Study.

    Science.gov (United States)

    Ferro, Monica; Castiglione, Franca; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco; Mele, Andrea

    2016-08-15

    The chemical cross-linking of β-cyclodextrin (β-CD) with ethylenediaminetetraacetic dianhydride (EDTA) led to branched polymers referred to as cyclodextrin nanosponges (CDNSEDTA). Two different preparations are described with 1:4 and 1:8 CD-EDTA molar ratios. The corresponding cross-linked polymers were contacted with 0.27 M aqueous solution of ibuprofen sodium salt (IP) leading to homogeneous, colorless, drug loaded hydrogels. The systems were characterized by high resolution magic angle spinning (HR-MAS) NMR spectroscopy. Pulsed field gradient spin echo (PGSE) NMR spectroscopy was used to determine the mean square displacement (MSD) of IP inside the polymeric gel at different observation times td. The data were further processed in order to study the time dependence of MSD: MSD = f(td). The proposed methodology is useful to characterize the different diffusion regimes that, in principle, the solute may experience inside the hydrogel, namely normal or anomalous diffusion. The full protocols including the polymer preparation and purification, the obtainment of drug-loaded hydrogels, the NMR sample preparation, the measurement of MSD by HR-MAS NMR spectroscopy and the final data processing to achieve the time dependence of MSD are here reported and discussed. The presented experiments represent a paradigmatic case and the data are discussed in terms of innovative approach to the characterization of the transport properties of an encapsulated guest within a polymeric host of potential application for drug delivery.

  6. Protein resonance assignment at MAS frequencies approaching 100 kHz: a quantitative comparison of J-coupling and dipolar-coupling-based transfer methods

    Energy Technology Data Exchange (ETDEWEB)

    Penzel, Susanne; Smith, Albert A.; Agarwal, Vipin; Hunkeler, Andreas [ETH Zürich, Physical Chemistry (Switzerland); Org, Mai-Liis; Samoson, Ago, E-mail: ago.samoson@ttu.ee [Tallinn University of Technology, NMR Instituut, Tartu Teadus, Tehnomeedikum (Estonia); Böckmann, Anja, E-mail: a.bockmann@ibcp.fr [UMR 5086 CNRS/Université de Lyon 1, Institut de Biologie et Chimie des Protéines (France); Ernst, Matthias, E-mail: maer@ethz.ch; Meier, Beat H., E-mail: beme@ethz.ch [ETH Zürich, Physical Chemistry (Switzerland)

    2015-10-15

    We discuss the optimum experimental conditions to obtain assignment spectra for solid proteins at magic-angle spinning (MAS) frequencies around 100 kHz. We present a systematic examination of the MAS dependence of the amide proton T{sub 2}′ times and a site-specific comparison of T{sub 2}′ at 93 kHz versus 60 kHz MAS frequency. A quantitative analysis of transfer efficiencies of building blocks, as they are used for typical 3D experiments, was performed. To do this, we compared dipolar-coupling and J-coupling based transfer steps. The building blocks were then combined into 3D experiments for sequential resonance assignment, where we evaluated signal-to-noise ratio and information content of the different 3D spectra in order to identify the best assignment strategy. Based on this comparison, six experiments were selected to optimally assign the model protein ubiquitin, solely using spectra acquired at 93 kHz MAS. Within 3 days of instrument time, the required spectra were recorded from which the backbone resonances have been assigned to over 96 %.

  7. High Tech M&As

    DEFF Research Database (Denmark)

    Toppenberg, Gustav

    2013-01-01

    of findings are not applicable to the high-tech industry; in fact this industry has many additional challenges. In this study, we aim to explore the process of M&A in the high-tech industry by drawing on extant literature and empirical field work. The paper outlines a research project in progress which...... intends to provide theoretical, empirical and practical contributions in answering the research question: what role does Operations and IT play in creating value in high-tech M&As? The research adds a needed perspective on M&A literature by unveiling unique challenges and opportunities faced by the M...

  8. Towards real-time metabolic profiling of a biopsy specimen during a surgical operation by 1H high resolution magic angle spinning nuclear magnetic resonance: a case report

    Directory of Open Access Journals (Sweden)

    Piotto Martial

    2012-01-01

    Full Text Available Abstract Introduction Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Case presentation Biopsy specimens (n = 9 originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Conclusions Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample. Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater.

  9. Temperature dependence of the spin Hall angle and switching current in the nc-W(O)/CoFeB/MgO system with perpendicular magnetic anisotropy

    Science.gov (United States)

    Neumann, L.; Meier, D.; Schmalhorst, J.; Rott, K.; Reiss, G.; Meinert, M.

    2016-10-01

    We investigated the temperature dependence of the switching current for a perpendicularly magnetized CoFeB film deposited on a nanocrystalline tungsten film with large oxygen content: nc-W(O). The effective spin Hall angle | ΘSH eff | ≈ 0.22 is independent of temperature, whereas the switching current increases strongly at low temperature. The increase indicates that the current induced switching itself is thermally activated, in agreement with a recent theoretical prediction. The dependence of the switching current on the in-plane assist field suggests the presence of an interfacial Dzyaloshinskii-Moriya interaction with D ≈ 0.23 mJ/m2, intermediate between the Pt/CoFe and Ta/CoFe systems. We show that the nc-W(O) is insensitive to annealing, which makes this system a good choice for the integration into magnetic memory or logic devices that require a high-temperature annealing process during fabrication.

  10. Spin rotation and birefringence effect for a particle in a high energy storage ring and measurement of the real part of the coherent elastic zero-angle scattering amplitude, electric and magnetic polarizabilities

    CERN Document Server

    Baryshevsky, V G

    2005-01-01

    In the present paper the equations for the spin evolution of a particle in a storage ring are analyzed considering contributions from the tensor electric and magnetic polarizabilities of the particle. Study of spin rotation and birefringence effect for a particle in a high energy storage ring provides for measurement as the real part of the coherent elastic zero-angle scattering amplitude as well as tensor electric and magnetic polarizabilities. We proposed the method for measurement the real part of the elastic coherent zero-angle scattering amplitude of particles and nuclei in a storage ring by the paramagnetic resonance in the periodical in time nuclear pseudoelectric and pseudomagnetic fields.

  11. Non-contrast-enhanced 4D MR angiography with STAR spin labeling and variable flip angle sampling: a feasibility study for the assessment of Dural Arteriovenous Fistula

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jinhee; Kim, Bom-yi; Choi, Hyun Seok; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-soo [The Catholic University of Korea, Department of Radiology, Seoul St. Mary' s Hospital, College of Medicine, Seoul (Korea, Republic of); Schmitt, Peter [Siemens AG, Healthcare Sector, Erlangen (Germany); Kim, Inseong; Paek, Munyoung [Siemens AG, Healthcare, Seoul (Korea, Republic of)

    2014-04-15

    This study aimed to evaluate the feasibility of non-contrast-enhanced 4D magnetic resonance angiography (NCE 4D MRA) with signal targeting with alternative radiofrequency (STAR) spin labeling and variable flip angle (VFA) sampling in the assessment of dural arteriovenous fistula (DAVF) in the transverse sinus. Nine patients underwent NCE 4D MRA for the evaluation of DAVF in the transverse sinus at 3 T. One patient was examined twice, once before and once after the interventional treatment. All patients also underwent digital subtraction angiography (DSA) and/or contrast-enhanced magnetic resonance angiography (CEMRA). For the acquisition of NCE 4D MRA, a STAR spin tagging method was used, and a VFA sampling was applied in the data readout module instead of a constant flip angle. Two readers evaluated the NCE 4D MRA data for the diagnosis of DAVF and its type with consensus. The results were compared with those from DSA and/or CEMRA. All patients underwent NCE 4D MRA without any difficulty. Among seven patients with patent DAVFs, all cases showed an early visualization of the transverse sinus on NCE 4D MRA. Except for one case, the type of DAVF of NCE 4D MRA was agreed with that of reference standard study. Cortical venous reflux (CVR) was demonstrated in two cases out of three patients with CVR. NCE 4D MRA with STAR tagging and VFA sampling is technically and clinically feasible and represents a promising technique for assessment of DAVF in the transverse sinus. Further technical developments should aim at improvements of spatial and temporal coverage. (orig.)

  12. High-resolution magic angle spinning 1H NMR spectroscopy and reverse transcription-PCR analysis of apoptosis in a rat glioma.

    Science.gov (United States)

    Griffin, Julian L; Blenkiron, Cherie; Valonen, Piia K; Caldas, Carlos; Kauppinen, Risto A

    2006-03-01

    The functional genomic approaches of transcriptomics, proteomics and metabolomics aim to measure the mRNA, protein or metabolite complement of a cell, tissue or organism. In this study we have investigated the compatibility of transcriptional analysis, using Reverse Transcription (RT)-PCR, and metabolite analysis, by high-resolution magic angle spinning (HRMAS) 1H NMR spectroscopy, in BT4C rat glioma following the induction of programmed cell death. The metabolite and transcriptional changes that accompanied apoptosis were examined at 0, 4 and 8 days of ganciclovir/thymidine kinase gene therapy. Despite the high spinning speeds employed during HRMAS 1H NMR spectroscopy of one-half of the tumor samples, RT-PCR analysis of the pro-apoptotic transcripts Bcl-2, BAK-1, caspase-9 and FAS was possible, producing similar results to those detected in the unspun half of the tumors. Furthermore, the expression of FAS was inversely correlated with some of the key metabolic changes across the time period examined including the increases CH=CH and CH=CHCH2 lipid resonances which accompany apoptosis. This study demonstrates how combined transcriptomic and metabolomic studies of tumors can be used to understand the molecular events that accompany well documented metabolic perturbations during cell death processes.

  13. Intracranial cerebrospinal fluid spaces imaging using a pulse-triggered three-dimensional turbo spin echo MR sequence with variable flip-angle distribution

    Energy Technology Data Exchange (ETDEWEB)

    Hodel, Jerome [Unite Analyse et Restauration du Mouvement, UMR-CNRS, 8005 LBM ParisTech Ensam, Paris (France); University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Neuroradiology, Creteil (France); Hopital Henri Mondor, Creteil (France); Silvera, Jonathan [University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Neuroradiology, Creteil (France); Bekaert, Olivier; Decq, Philippe [Unite Analyse et Restauration du Mouvement, UMR-CNRS, 8005 LBM ParisTech Ensam, Paris (France); University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Neurosurgery, Creteil (France); Rahmouni, Alain [University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Radiology, Creteil (France); Bastuji-Garin, Sylvie [University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Public Health, Creteil (France); Vignaud, Alexandre [Siemens Healthcare, Saint Denis (France); Petit, Eric; Durning, Bruno [Laboratoire Images Signaux et Systemes Intelligents, UPEC, Creteil (France)

    2011-02-15

    To assess the three-dimensional turbo spin echo with variable flip-angle distribution magnetic resonance sequence (SPACE: Sampling Perfection with Application optimised Contrast using different flip-angle Evolution) for the imaging of intracranial cerebrospinal fluid (CSF) spaces. We prospectively investigated 18 healthy volunteers and 25 patients, 20 with communicating hydrocephalus (CH), five with non-communicating hydrocephalus (NCH), using the SPACE sequence at 1.5T. Volume rendering views of both intracranial and ventricular CSF were obtained for all patients and volunteers. The subarachnoid CSF distribution was qualitatively evaluated on volume rendering views using a four-point scale. The CSF volumes within total, ventricular and subarachnoid spaces were calculated as well as the ratio between ventricular and subarachnoid CSF volumes. Three different patterns of subarachnoid CSF distribution were observed. In healthy volunteers we found narrowed CSF spaces within the occipital aera. A diffuse narrowing of the subarachnoid CSF spaces was observed in patients with NCH whereas patients with CH exhibited narrowed CSF spaces within the high midline convexity. The ratios between ventricular and subarachnoid CSF volumes were significantly different among the volunteers, patients with CH and patients with NCH. The assessment of CSF spaces volume and distribution may help to characterise hydrocephalus. (orig.)

  14. 1MAS NMR spectra of kao linite/formamide intercalation compound

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The high spinning speed 1H magic angle spinning nuclear magnetic resonance (1H MAS NMR) technique was employed to distinguish the two groups of surface hydroxyls of kaolinite and investigate the intercalation mechanism of kaolinite/formamide compound. The proton chemical shifts of the inner hydroxyl and inner surface hydroxyl of kaolinte are in the range of δ-1.3-0.9 and δ 2.4-3.0 respectively. After formamide intercalation three proton peaks were detected. The proton peak of the inner surface hydroxyls of the intercalation compound shifts to high-field with δ 2.3-2.7, which is assigned to the formation of the hydrogen bond between the inner surface hydroxyl and formamide carbonyl group. Whereas, the proton peak of the inner hydroxyl shifts to δ-0.3 toward low-field, that is attributed to van der Waal's effect between the inner hydroxyl proton and the amino group proton of the formamide which may be keyed into the ditrigonal hole of the kaolinite. The third peak, additional proton peak, is in the range of δ5.4-5.6, that is ascribed to the hydrogen bond formation between the amino group proton of formimide and SiO4 tetrahedral oxygen of the kaolinite.

  15. Characterizing crystal disorder of trospium chloride: a comprehensive,(13) C CP/MAS NMR, DSC, FTIR, and XRPD study.

    Science.gov (United States)

    Urbanova, Martina; Sturcova, Adriana; Brus, Jiri; Benes, Hynek; Skorepova, Eliska; Kratochvil, Bohumil; Cejka, Jan; Sedenkova, Ivana; Kobera, Libor; Policianova, Olivia; Sturc, Antonin

    2013-04-01

    Analysis of C cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), and X-ray powder diffraction data of trospium chloride (TCl) products crystallized from different mixtures of water-ethanol [φ(EtOH) = 0.5-1.0] at various temperatures (0°C, 20°C) and initial concentrations (saturated solution, 30%-50% excess of solvent) revealed extensive structural variability of TCl. Although (13) C CP/MAS NMR spectra indicated broad variety of structural phases arising from molecular disorder, temperature-modulated DSC identified presence of two distinct components in the products. FTIR spectra revealed alterations in the hydrogen bonding network (ionic hydrogen bond formation), whereas the X-ray diffraction reflected unchanged unit cell parameters. These results were explained by a two-component character of TCl products in which a dominant polymorphic form is accompanied by partly separated nanocrystalline domains of a secondary phase that does not provide clear Bragg reflections. These phases slightly differ in the degree of molecular disorder, in the quality of crystal lattice and hydrogen bonding network. It is also demonstrated that, for the quality control of such complex products, (13) C CP/MAS NMR spectroscopy combined with factor analysis (FA) can satisfactorily be used for categorizing the individual samples: FA of (13) C CP/MAS NMR spectra found clear relationships between the extent of molecular disorder and crystallization conditions. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1235-1248, 2013.

  16. Faster pediatric 3-T abdominal magnetic resonance imaging: comparison between conventional and variable refocusing flip-angle single-shot fast spin-echo sequences

    Energy Technology Data Exchange (ETDEWEB)

    Ruangwattanapaisarn, Nichanan [Mahidol University, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Bangkok (Thailand); Stanford University, LPCH Department of Radiology, Stanford, CA (United States); Loening, Andreas M.; Saranathan, Manojkumar; Vasanawala, Shreyas S. [Stanford University, LPCH Department of Radiology, Stanford, CA (United States); Litwiller, Daniel V. [GE Healthcare, Rochester, MN (United States)

    2015-06-15

    Single-shot fast spin echo (SSFSE) is particularly appealing in pediatric patients because of its motion robustness. However radiofrequency energy deposition at 3 tesla forces long pauses between slices, leading to longer scans, longer breath-holds and more between-slice motion. We sought to learn whether modulation of the SSFSE refocusing flip-angle train could reduce radiofrequency energy deposition without degrading image quality, thereby reducing inter-slice pauses and overall scan times. We modulated the refocusing flip-angle train for SSFSE to minimize energy deposition while minimizing blurring and motion-related signal loss. In a cohort of 50 consecutive patients (25 boys, mean age 5.5 years, range 1 month to 17 years) referred for abdominal MRI we obtained standard SSFSE and variable refocusing flip-angle (vrfSSFSE) images and recorded sequence scan times. Two readers independently scored the images in blinded, randomized order for noise, tissue contrast, sharpness, artifacts and left lobe hepatic signal uniformity on a four-point scale. The null hypothesis of no difference between SSFSE and vrfSSFSE image-quality was assessed with a Mann-Whitney U test, and the null hypothesis of no scan time difference was assessed with the paired t-test. SSFSE and vrfSSFSE mean acquisition times were 54.3 and 26.2 s, respectively (P-value <0.0001). For each reader, SSFSE and vrfSSFSE noise, tissue contrast, sharpness and artifacts were not significantly different (P-values 0.18-0.86). However, SSFSE had better left lobe hepatic signal uniformity (P < 0.01, both readers). vrfSSFSE is twice as fast as SSFSE, with equivalent image quality with the exception of left hepatic lobe signal heterogeneity. (orig.)

  17. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic

  18. Structure of model peptides based on Nephila clavipes dragline silk spidroin (MaSp1) studied by 13C cross polarization/magic angle spinning NMR.

    Science.gov (United States)

    Yang, Mingying; Nakazawa, Yasumoto; Yamauchi, Kazuo; Knight, David; Asakura, Tetsuo

    2005-01-01

    To obtain detailed structural information for spider dragline spidroin (MaSp1), we prepared three versions of the consensus peptide GGLGGQGAGAAAAAAGGAGQGGYGGLGSQGAGR labeled with 13C at six different sites. The 13C CP/MAS NMR spectra were observed after treating the peptides with different reagents known to alter silk protein conformations. The conformation-dependent 13C NMR chemical shifts and peak deconvolution were used to determine the local structure and the fractional compositions of the conformations, respectively. After trifluoroacetic acid (solvent)/diethyl ether (coagulant) treatment, the N-terminal region of poly-Ala (PLA) sequence, Ala8 and Ala10, adopted predominantly the alpha-helix with a substantial amount of beta-sheet. The central region, Ala15, Ala18, and Leu26, and C-terminal region, Ala31, of the peptide were dominated by either 3(1)-helix or alpha-helix. There was no indication of beta-sheet, although peak broadening indicates that the torsion angle distribution is relatively large. After 9 M LiBr/dialysis treatment, three kinds of conformation, beta-sheet, random coil, and 3(1)-helix, appeared, in almost equal amounts of beta-sheet and random coil conformations for Ala8 and Ala10 residues and distorted 3(1)-helix at the central region of the peptide. In contrast, after formic acid/methanol and 8 M urea/acetonitrile treatments, all of the local structure tends to beta-sheet, although small amounts of random coil are also observed. The peak pattern of the Ala Cbeta carbon after 8 M urea/acetonitrile treatment is similar to the corresponding patterns of silk fiber from Bombyx mori and Samia cynthia ricini. We also synthesized a longer 13C-labeled peptide containing two PLA blocks and three Gly-rich blocks. After 8 M urea/acetonitrile treatment, the conformation pattern was closely similar to that of the shorter peptide.

  19. 13C MAS NMR studies of the effects of hydration on the cell walls of potatoes and Chinese water chestnuts.

    Science.gov (United States)

    Tang, H; Belton, P S; Ng, A; Ryden, P

    1999-02-01

    13C NMR with magic angle spinning (MAS) has been employed to investigate the cell walls of potatoes and Chinese water chestnuts over a range of hydration levels. Both single-pulse excitation (SPEMAS) and cross-polarization (CPMAS) experiments were carried out. Hydration led to a substantial increase in signal intensities of galactan and galacturonan in the SPEMAS spectra and a decrease in line width, implying mobilization in the backbone and side chains of pectin. In CPMAS spectra of both samples, noncellulose components showed signal loss as hydration increased. However, the signals of some galacturonan in the 3(1) helix configuration remained in the spectra even when the water content was as high as 110%. Cellulose was unaffected. It is concluded that the pectic polysaccharides experience a distribution of molecular conformations and mobility, whereas cellulose remained as typical rigid solid.

  20. T2‐Weighted intracranial vessel wall imaging at 7 Tesla using a DANTE‐prepared variable flip angle turbo spin echo readout (DANTE‐SPACE)

    Science.gov (United States)

    Viessmann, Olivia; Li, Linqing; Benjamin, Philip

    2016-01-01

    Purpose To optimize intracranial vessel wall imaging (VWI) at 7T for sharp wall depiction and high boundary contrast. Methods A variable flip angle turbo spin echo scheme (SPACE) was optimized for VWI. SPACE provides black‐blood contrast, but has less crushing effect on cerebrospinal fluid (CSF). However, a delay alternating with nutation for tailored excitation (DANTE) preparation suppresses the signal from slowly moving spins of a few mm per second. Therefore, we optimized a DANTE‐preparation module for 7T. Signal‐to‐noise ratio (SNR), contrast‐to‐noise ratio (CNR), and signal ratio for vessel wall, CSF, and lumen were calculated for SPACE and DANTE‐SPACE in 11 volunteers at the middle cerebral artery (MCA). An exemplar MCA stenosis patient was scanned with DANTE‐SPACE. Results The 7T‐optimized SPACE sequence improved the vessel wall point‐spread function by 17%. The CNR between the wall and CSF was doubled (12.2 versus 5.6) for the DANTE‐SPACE scans compared with the unprepared SPACE. This increase was significant in the right hemisphere (P = 0.016), but not in the left (P = 0.090). The CNR between wall and lumen was halved, but remained at a high value (24.9 versus 56.5). Conclusion The optimized SPACE sequence improves VWI at 7T. Additional DANTE preparation increases the contrast between the wall and CSF. Increased outer boundary contrast comes at the cost of reduced inner boundary contrast. Magn Reson Med 77:655–663, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26890988

  1. Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional MAS NMR

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, Matthew T. [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States); Su, Yongchao; Silvers, Robert; Andreas, Loren; Clark, Lindsay [Massachusetts Institute of Technology, Department of Chemistry (United States); Wagner, Gerhard [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States); Pintacuda, Guido; Emsley, Lyndon [Université de Lyon, Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1) (France); Griffin, Robert G., E-mail: rgg@mit.edu [Massachusetts Institute of Technology, Department of Chemistry (United States)

    2015-04-15

    The human voltage dependent anion channel 1 (VDAC) is a 32 kDa β-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest VDAC requires a lipid bilayer to achieve full function, motivating the need for atomic resolution structural information of VDAC in a membrane environment. Here we report an essential step toward that goal: extensive assignments of backbone and side chain resonances for VDAC in DMPC lipid bilayers via magic angle spinning nuclear magnetic resonance (MAS NMR). VDAC reconstituted into DMPC lipid bilayers spontaneously forms two-dimensional lipid crystals, showing remarkable spectral resolution (0.5–0.3 ppm for {sup 13}C line widths and <0.5 ppm {sup 15}N line widths at 750 MHz). In addition to the benefits of working in a lipid bilayer, several distinct advantages are observed with the lipid crystalline preparation. First, the strong signals and sharp line widths facilitated extensive NMR resonance assignments for an integral membrane β-barrel protein in lipid bilayers by MAS NMR. Second, a large number of residues in loop regions were readily observed and assigned, which can be challenging in detergent-solubilized membrane proteins where loop regions are often not detected due to line broadening from conformational exchange. Third, complete backbone and side chain chemical shift assignments could be obtained for the first 25 residues, which comprise the functionally important N-terminus. The reported assignments allow us to compare predicted torsion angles for VDAC prepared in DMPC 2D lipid crystals, DMPC liposomes, and LDAO-solubilized samples to address the possible effects of the membrane mimetic environment on the conformation of the protein. Concluding, we discuss the strengths and weaknesses of the

  2. Spin orbit splitting in the valence bands of ZrS{sub x}Se{sub 2−x}: Angle resolved photoemission and density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Moustafa, Mohamed, E-mail: moustafa@physik.hu-berlin.de [Institut für Physik, Humboldt Universität zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Faculty of Engineering, Pharos University in Alexandria, Canal El Mahmoudia Str., Alexandria (Egypt); Ghafari, Aliakbar; Paulheim, Alexander; Janowitz, Christoph; Manzke, Recardo [Institut für Physik, Humboldt Universität zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany)

    2013-08-15

    Highlights: ► We performed high resolution ARPES on 1T–ZrS{sub x}Se{sub 2−x}. ► A characteristic splitting of the chalcogen p-derived VB along high symmetry directions was observed. ► The splitting size at the A point of the BZ is found to increase from 0.06 to 0.31 eV from ZrS{sub 2} towards ZrSe{sub 2}. ► Electronic structure calculations based on the DFT were performed using the model of TB–MBJ. ► The calculations show that the splitting is due to SO coupling of the valence bands. -- Abstract: Angle-resolved photoelectron spectroscopy using synchrotron radiation has been performed on 1T–ZrS{sub x}Se{sub 2−x}, where x varies from 0 to 2, in order to study the influence of the spin-orbit interaction in the valence bands. The crystals were grown by chemical vapour transport technique using Iodine as transport agent. A characteristic splitting of the chalcogen p-derived valence bands along high symmetry directions has been observed experimentally. The size of the splitting increases with the increase of the atomic number of the chalcogenide, e.g. at the A point of the Brillouin zone from 0.06 eV to 0.31 eV with an almost linear dependence with x, as progressing from ZrS{sub 2} towards ZrSe{sub 2}, respectively. Electronic structure calculations based on the density functional theory have been performed using the model of Tran–Blaha [1] and the modified version of the exchange potential proposed by Becke and Johnson [2] (TB–MBJ) both with and without spin-orbit (SO) coupling. The calculations show that the splitting is mainly due to spin-orbit coupling and the degeneracy of the valance bands is lifted.

  3. Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy.

    Science.gov (United States)

    Yan, Si; Guo, Changmiao; Hou, Guangjin; Zhang, Huilan; Lu, Xingyu; Williams, John Charles; Polenova, Tatyana

    2015-11-24

    Microtubules and their associated proteins perform a broad array of essential physiological functions, including mitosis, polarization and differentiation, cell migration, and vesicle and organelle transport. As such, they have been extensively studied at multiple levels of resolution (e.g., from structural biology to cell biology). Despite these efforts, there remain significant gaps in our knowledge concerning how microtubule-binding proteins bind to microtubules, how dynamics connect different conformational states, and how these interactions and dynamics affect cellular processes. Structures of microtubule-associated proteins assembled on polymeric microtubules are not known at atomic resolution. Here, we report a structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of dynactin motor on polymeric microtubules, solved by magic angle spinning NMR spectroscopy. We present the intermolecular interface of CAP-Gly with microtubules, derived by recording direct dipolar contacts between CAP-Gly and tubulin using double rotational echo double resonance (dREDOR)-filtered experiments. Our results indicate that the structure adopted by CAP-Gly varies, particularly around its loop regions, permitting its interaction with multiple binding partners and with the microtubules. To our knowledge, this study reports the first atomic-resolution structure of a microtubule-associated protein on polymeric microtubules. Our approach lays the foundation for atomic-resolution structural analysis of other microtubule-associated motors.

  4. Characterization of very young mineral phases of bone by solid state 31phosphorus magic angle sample spinning nuclear magnetic resonance and X-ray diffraction.

    Science.gov (United States)

    Roberts, J E; Bonar, L C; Griffin, R G; Glimcher, M J

    1992-01-01

    The properties of bone mineral change with age and maturation. Several investigators have suggested the presence of an initial or "precursor" calcium phosphate phase to help explain these differences. We have used solid state 31P magic angle sample spinning (MASS) nuclear magnetic resonance (NMR) and X-ray radial distribution function (RDF) analyses to characterize 11- and 17-day-old embryonic chick bone and fractions obtained from them by density fractionation. Density fractionation provides samples of bone containing Ca-P solid-phase deposits even younger and more homogeneous with respect to the age of mineral than the calcium phosphate (Ca-P) deposits in the whole bone samples. The analytical techniques yield no evidence for any distinct phase other than the poorly crystalline hydroxyapatite phase characteristic of mature bone mineral. In particular, there is no detectable crystalline brushite [DCPD, CaHPO4 2H2O less than 1%] or amorphous calcium phosphate (less than 8-10%) in the most recently formed bone mineral. A sizeable portion of the phosphate groups exist as HPO4(2-) in a brushite (DCPD)-like configuration. These acid phosphate moieties are apparently incorporated into the apatitic lattice. The most likely site for the brushite-like configuration is probably on the surface of the crystals.

  5. Evaluation of Tissue Metabolites with High Resolution Magic Angle Spinning MR Spectroscopy Human Prostate Samples After Three-Year Storage at -80ºC

    Directory of Open Access Journals (Sweden)

    Kate W. Jordan

    2007-01-01

    Full Text Available Accurate interpretation and correlation of tissue spectroscopy with pathological conditions requires disease specific tissue metabolite databases; however, specimens for research are often kept in frozen storage for various lengths of time. Whether such frozen storage results in alterations to the measured metabolites is a critical but largely unknown issue. In this study, human prostate tissues from specimens that had been stored at –80 ºC for 32 months were analyzed with high resolution magic angle spinning (HRMAS magnetic resonance (MR spectroscopy, and compared with the initial measurements of the adjacent specimens from the same cases when snap frozen in the operation room and kept frozen for less than 24 hours. Results of the current study indicate that that the storage-induced metabolite alterations are below the limits that tissue MR spectroscopy can discriminate. Furthermore, quantitative pathology evaluations suggest the observed alterations in metabolite profi les measured from the adjacent specimens of the same prostates may be accounted for by tissue pathological heterogeneities and are not a result of storage conditions. Hence, these results indicate that long-term frozen storage of prostate specimens can be quantitatively analyzed by HRMAS MR spectroscopy without concerns regarding significant metabolic degradation or alteration.

  6. Metabolomics by Proton High-Resolution Magic-Angle-Spinning Nuclear Magnetic Resonance of Tomato Plants Treated with Two Secondary Metabolites Isolated from Trichoderma.

    Science.gov (United States)

    Mazzei, Pierluigi; Vinale, Francesco; Woo, Sheridan Lois; Pascale, Alberto; Lorito, Matteo; Piccolo, Alessandro

    2016-05-11

    Trichoderma fungi release 6-pentyl-2H-pyran-2-one (1) and harzianic acid (2) secondary metabolites to improve plant growth and health protection. We isolated metabolites 1 and 2 from Trichoderma strains, whose different concentrations were used to treat seeds of Solanum lycopersicum. The metabolic profile in the resulting 15 day old tomato leaves was studied by high-resolution magic-angle-spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy directly on the whole samples without any preliminary extraction. Principal component analysis (PCA) of HRMAS NMR showed significantly enhanced acetylcholine and γ-aminobutyric acid (GABA) content accompanied by variable amount of amino acids in samples treated with both Trichoderma secondary metabolites. Seed germination rates, seedling fresh weight, and the metabolome of tomato leaves were also dependent upon doses of metabolites 1 and 2 treatments. HRMAS NMR spectroscopy was proven to represent a rapid and reliable technique for evaluating specific changes in the metabolome of plant leaves and calibrating the best concentration of bioactive compounds required to stimulate plant growth.

  7. 1H and 13C HR-MAS NMR investigations on native and enzymatically digested bovine nasal cartilage.

    Science.gov (United States)

    Schiller, J; Naji, L; Huster, D; Kaufmann, J; Arnold, K

    2001-08-01

    Rheumatic diseases are accompanied by a progressive destruction of the cartilage layer of the joints. Despite the frequency of the disease, degradation mechanisms are not yet understood and methods for early diagnosis are not available. Although some information on pathogenesis could be obtained from the analysis of degradation products of cartilage supernatants, the most direct information on degradation processes would come from the native cartilage as such. We have used 1H as well as 13C HR-MAS (high resolution magic angle spinning) NMR spectroscopy to obtain suitable line-widths of NMR resonances of native cartilage. 1D and 2D NMR spectra of native cartilage were compared with those of enzymatically-treated (collagenase and papain) samples. In the 1H NMR spectra of native cartilage, resonances of polysaccharides, lipids and a few amino acids of collagen were detectable, whereas the 13C NMR spectra primarily indicated the presence of chondroitin sulfate. Treatment with papain resulted only in small changes in the 1H NMR spectrum, whereas a clear diminution of all resonances was detectable in the 13C NMR spectra. On the other hand, treatment with collagenase caused the formation of peptides with an amino acid composition typical for collagen (glycine, proline, hydroxyproline and lysine). It is concluded that the HR-MAS NMR spectra of cartilage may be of significance for the investigation of cartilage degradation since they allow the fast evaluation of cartilage composition and only very small amounts of sample are required.

  8. Structural analysis of alkali cations in mixed alkali silicate glasses by 23Na and 133Cs MAS NMR

    Directory of Open Access Journals (Sweden)

    T. Minami

    2014-12-01

    Full Text Available We report the structural analysis of Na+ and Cs+ in sodium cesium silicate glasses by using 23Na and 133Cs magic-angle spinning nuclear magnetic resonance (MAS NMR spectroscopy. In the NMR spectra of cesium silicate crystals, the peak position shifted to higher magnetic field for structures with larger Cs+ coordination numbers and to lower magnetic field for smaller Cs+ coordination numbers. The MAS NMR spectra of xNa2O-yCs2O-2SiO2 (x = 0, 0.2, 0.33, 0.5, 0.66, 0.8, 1.0; x + y = 1 glass reveal that the average coordination number of both the alkali cations decreases with increasing Cs+/(Na+ + Cs+ ratio. In addition, the coordination number of Na+ in xNa2O-yCs2O-2SiO2 glass is smaller than that of Cs+. This difference between the average coordination numbers of the alkali cations is considered to be one structural reason of the mixed alkali effect.

  9. 1H HR-MAS NMR Spectroscopy and the Metabolite Determination of Typical Foods in Mediterranean Diet

    Directory of Open Access Journals (Sweden)

    Carmelo Corsaro

    2015-01-01

    Full Text Available NMR spectroscopy has become an experimental technique widely used in food science. The experimental procedures that allow precise and quantitative analysis on different foods are relatively simple. For a better sensitivity and resolution, NMR spectroscopy is usually applied to liquid sample by means of extraction procedures that can be addressed to the observation of particular compounds. For the study of semisolid systems such as intact tissues, High-Resolution Magic Angle Spinning (HR-MAS has received great attention within the biomedical area and beyond. Metabolic profiling and metabolism changes can be investigated both in animal organs and in foods. In this work we present a proton HR-MAS NMR study on the typical vegetable foods of Mediterranean diet such as the Protected Geographical Indication (PGI cherry tomato of Pachino, the PGI Interdonato lemon of Messina, several Protected Designation of Origin (PDO extra virgin olive oils from Sicily, and the Traditional Italian Food Product (PAT red garlic of Nubia. We were able to identify and quantify the main metabolites within the studied systems that can be used for their characterization and authentication.

  10. Separation of small metabolites and lipids in spectra from biopsies by diffusion-weighted HR-MAS NMR: a feasibility study.

    Science.gov (United States)

    Diserens, G; Vermathen, M; Precht, C; Broskey, N T; Boesch, C; Amati, F; Dufour, J-F; Vermathen, P

    2015-01-07

    High Resolution Magic Angle Spinning (HR-MAS) NMR allows metabolic characterization of biopsies. HR-MAS spectra from tissues of most organs show strong lipid contributions that are overlapping metabolite regions, which hamper metabolite estimation. Metabolite quantification and analysis would benefit from a separation of lipids and small metabolites. Generally, a relaxation filter is used to reduce lipid contributions. However, the strong relaxation filter required to eliminate most of the lipids also reduces the signals for small metabolites. The aim of our study was therefore to investigate different diffusion editing techniques in order to employ diffusion differences for separating lipid and small metabolite contributions in the spectra from different organs for unbiased metabonomic analysis. Thus, 1D and 2D diffusion measurements were performed, and pure lipid spectra that were obtained at strong diffusion weighting (DW) were subtracted from those obtained at low DW, which include both small metabolites and lipids. This subtraction yielded almost lipid free small metabolite spectra from muscle tissue. Further improved separation was obtained by combining a 1D diffusion sequence with a T2-filter, with the subtraction method eliminating residual lipids from the spectra. Similar results obtained for biopsies of different organs suggest that this method is applicable in various tissue types. The elimination of lipids from HR-MAS spectra and the resulting less biased assessment of small metabolites have potential to remove ambiguities in the interpretation of metabonomic results. This is demonstrated in a reproducibility study on biopsies from human muscle.

  11. Magic Angle Spinning NMR Metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Z.

    2016-05-31

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  12. Cross-polarization phenomena in the NMR of fast spinning solids subject to adiabatic sweeps.

    Science.gov (United States)

    Wi, Sungsool; Gan, Zhehong; Schurko, Robert; Frydman, Lucio

    2015-02-14

    Cross-polarization magic-angle spinning (CPMAS) experiments employing frequency-swept pulses are explored within the context of obtaining broadband signal enhancements for rare spin S = 1/2 nuclei at very high magnetic fields. These experiments employ adiabatic inversion pulses on the S-channel ((13)C) to cover a wide frequency offset range, while simultaneously applying conventional spin-locking pulse on the I-channel ((1)H). Conditions are explored where the adiabatic frequency sweep width, Δν, is changed from selectively irradiating a single magic-angle-spinning (MAS) spinning centerband or sideband, to sweeping over multiple sidebands. A number of new physical features emerge upon assessing the swept-CP method under these conditions, including multiple zero- and double-quantum CP transfers happening in unison with MAS-driven rotary resonance phenomena. These were examined using an average Hamiltonian theory specifically designed to tackle these experiments, with extensive numerical simulations, and with experiments on model compounds. Ultrawide CP profiles spanning frequency ranges of nearly 6⋅γB1 (s) were predicted and observed utilizing this new approach. Potential extensions and applications of this extremely broadband transfer conditions are briefly discussed.

  13. Nanostructures of Mg0.65Ti0.35Dx studied with x-ray diffraction, neutron diffraction, and magic-angle-spinning H2 NMR spectroscopy

    Science.gov (United States)

    Srinivasan, S.; Magusin, P. C. M. M.; Kalisvaart, W. P.; Notten, P. H. L.; Cuevas, F.; Latroche, M.; van Santen, R. A.

    2010-02-01

    Magnesium transition-metal alloys have a high hydrogen-storage capacity and show improved hydrogen-uptake and -release kinetics compared to magnesium alone. In the present study we have investigated the structure of bulk magnesium-titanium deuteride Mg0.65Ti0.35Dx prepared via mechanical alloying and gas-phase deuterium absorption by combined use of x-ray diffraction (XRD), neutron diffraction, and magic-angle-spinning H2 nuclear magnetic resonance (NMR). The initial ball-milled alloy has two XRD-distinct Mg and Ti fcc phases. Even after prolonged exposure to deuterium gas at 75 bar and 175°C the materials with and without palladium catalyst are only partly deuterated. Deuterium loading causes the formation of, on the one hand, bct (rutile) MgD2 nanodomains with interdispersed TiDy layers and, on the other hand, a separate fcc (fluorite) TiDz phase. The TiDy phase is XRD invisible, but shows clearly up at a H2 NMR shift of -43ppm between the shift of MgD2 (3 ppm) and the Knight shift of the TiDz phase (-143ppm) . Exchange NMR indicates complete deuterium exchange at 25°C between the MgD2 and TiDy phase within 1 s, as consistent with intimate contacts between these phases. Combined analysis of the XRD and NMR peak areas suggests that the deuterium concentrations y and z in the TiDy and TiDz domains are about 1.5 and 2.0, respectively. Comparing the intrinsic cell parameters of rutile MgH2 and fluorite TiH2 , we propose that stabilization of the mixed nanocomposite may arise from a coherent coupling between the crystal structures of the rutile MgD2 nanodomains and the thin layers of fcc TiDy .

  14. A study of alcohol-induced gelation of beta-lactoglobulin with small-angle neutron scattering, neutron spin echo, and dynamic light scattering measurements.

    Science.gov (United States)

    Yoshida, Koji; Yamaguchi, Toshio; Osaka, Noboru; Endo, Hitoshi; Shibayama, Mitsuhiro

    2010-04-07

    Gelation of beta-lactoglobulin (beta-Lg) in various alcohol-water mixtures with 0.1 M (M = mol L(-1)) hydrochloric acid was investigated with small-angle neutron scattering (SANS), neutron spin echo (NSE), and time-resolved dynamic light scattering (TRDLS) measurements. The beta-Lg in alcohol-water solutions undergoes gelation at specific alcohol concentrations where the alcohol-induced alpha-helical structure of beta-Lg is stabilized. The SANS profiles showed that beta-Lg exists as a single molecule at a low alcohol concentration. With increasing alcohol concentration, the profiles indicate a power law behavior of approximately 1.7 when the samples gelate. These behaviors were observed in all alcohol-water mixtures used, but the alcohol concentrations where the SANS profiles change shift to a lower alcohol concentration region with an increase in the size of the hydrophobic group of the alcohols. Apparent diffusion constants, obtained from the intermediate scattering function (ISF) of NSE and the intensity time correlation function (ITCF) of TRDLS, mainly depend on the viscosity of alcohol-water mixtures before gelation. After gelation, on the other hand, the ISFs of gels do not change appreciably in the range of the NSE time scale, indicating the microscopically rigid structure of beta-Lg gel. The ITCF functions obtained from TRDLS follow a double exponential decay type before gelation, but a logarithmic one (exponent alpha = 0.7) after gelation. It is most likely that the alcohol-induced gelation undergoes a similar mechanism to that for the heat-induced one at pH = 7 where beta-Lg aggregates stick together to form a fractal network, although the gelation time is faster in the former than in the latter.

  15. Isomeric and concentration effects of C{sub 4}-cosurfactants on four-component microemulsions investigated by neutron spin-echo and small-angle scattering

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano, E [Center for Materials Science and Engineering, Rochester Institute of Technology, Rochester, NY 14623 (United States); Kotlarchyk, M [Department of Physics, Rochester Institute of Technology, Rochester, NY 14623 (United States); Langner, A [Department of Chemistry, Rochester Institute of Technology, Rochester, NY 14623 (United States); Faraone, A [NIST Center for Neutron Research, Gaithersburg, MD 20899 (United States)

    2006-09-13

    Neutron spin-echo spectroscopy and small-angle scattering measurements were performed to determine how the isomeric structure and concentration of C{sub 4}-cosurfactants (i.e. butyl alcohols) influence structure and dynamics in four-component water-in-oil microemulsions. The system investigated was AOT/butanol/water/n-octane at room temperature (AOT denotes sodium di-2-ethyl hexylsulfosuccinate), deuterated to achieve contrast of the surfactant/cosurfactant film. At a fixed volume fraction of 0.06 and a fixed molar ratio of [water]/[AOT] = 20, we studied the effects of increasing the molar ratio of [butanol]/[AOT] from 0 to 30. Data from samples containing the cosurfactant n-butyl alcohol were compared with samples prepared with tert-butyl alcohol and, in a few cases, sec-butyl alcohol. Data were analysed using a core-shell model for polydisperse spherical droplets, allowing for the presence of shape fluctuations. It was found that all structural isomers of the cosurfactant led to a similar decrease in droplet size with increasing alcohol content. In all cases, droplet size and shape fluctuations were observed to increase with alcohol content; however, the effect was most pronounced for size fluctuations (i.e. polydispersity) in the presence of tert-butanol. The data indicates that tert-butanol has a higher degree of penetration into the water core, leading to a reduced influence on the effective area per surfactant head group on the droplet surface. There is also evidence that an increased droplet-droplet attraction upon adding tert-butanol drives phase separation in the system.

  16. Characterization of high-tannin fractions from humus by carbon-13 cross-polarization and magic-angle spinning nuclear magnetic resonance.

    Science.gov (United States)

    Lorenz, Klaus; Preston, Caroline M

    2002-01-01

    Condensed tannins can be found in various parts of many plants. Unlike lignin there has been little study of their fate as they enter the soil organic matter pool and their influence on nutrient cycling, especially through their protein-binding properties. We extracted and characterized tannin-rich fractions from humus collected in 1998 from a black spruce [Picea mariana (Mill.) Britton et al.] forest in Canada where a previous study (1995) showed high levels (3.8% by weight) of condensed tannins. A reference tannin purified from black spruce needles was characterized by solution 13C nuclear magnetic resonance (NMR) as a pure procyanidin with mainly cis stereochemistry and an average chain length of four to five units. The colorimetric proanthocyanidin (PA) assay, standardized against the black spruce tannin, showed that both extracted humus fractions had higher tannin contents than the original humus (2.84% and 11.17% vs. 0.08%), and accounted for 32% of humus tannin content. Consistent with the results from the chemical assay, the aqueous fraction showed higher tannin signals in the 13C cross-polarization and magic-angle spinning (CPMAS) NMR spectrum than the emulsified one. As both tannin-rich humus fractions were depleted in N and high in structures derived from lignin and cutin, they did not have properties consistent with recaldtrant tannin-protein complexes proposed as a mechanism for N sequestration in humus. Further studies are needed to establish if tannin-protein structures in humus can be detected or isolated, or if tannins contribute to forest management problems observed in these ecosystems by binding to and slowing down the activity of soil enzymes.

  17. Evidence for cross-linking in tomato cutin using HR-MAS NMR spectroscopy.

    Science.gov (United States)

    Deshmukh, Ashish P; Simpson, André J; Hatcher, Patrick G

    2003-11-01

    Cutin is a polyester biopolymer component of plant leaf and fruit cuticles, most often associated with waxes and cuticular polysaccharides, and sometimes with another aliphatic biopolymer called cutan. Insolubility of these cuticular biopolymers has made it difficult to apply traditional analytical techniques for structure determination, because most techniques providing molecular level details require solubility. By using the relatively new technique of one and two-dimensional high-resolution magic angle spinning (HR-MAS) NMR spectroscopy, with added information from solid-state 13C NMR spectroscopy, detailed through-bond connectivities and assignments are made for cutin from Lycopersicon esculentum (tomato) fruit. Based on the data obtained, tomato cutin is found to be predominantly an aliphatic polyester with some olefinic and aromatic moieties, consistent with previous studies that employed various degradative approaches. Aside from esters, there are free primary and secondary alcohol groups, as well as free fatty acids. A significant finding is the presence of alpha-branched fatty acids/esters. Mid-chain hydroxyls appear to be generally unesterified, but esters of mid-chain hydroxyls have been identified. The alpha-branched fatty acids/esters and esters of mid-chain hydroxyls could point towards cross-linking.

  18. Molecular dynamics of spider dragline silk fiber investigated by 2H MAS NMR.

    Science.gov (United States)

    Shi, Xiangyan; Holland, Gregory P; Yarger, Jeffery L

    2015-03-09

    The molecular dynamics of the proteins that comprise spider dragline silk were investigated with solid-state (2)H magic angle spinning (MAS) NMR line shape and spin-lattice relaxation time (T1) analysis. The experiments were performed on (2)H/(13)C/(15)N-enriched N. clavipes dragline silk fibers. The silk protein side-chain and backbone dynamics were probed for Ala-rich regions (β-sheet and 31-helical domains) in both native (dry) and supercontracted (wet) spider silk. In native (dry) silk fibers, the side chains in all Ala containing regions undergo similar fast methyl rotations (>10(9) s(-1)), while the backbone remains essentially static (silk is wet and supercontracted, the presence of water initiates fast side-chain and backbone motions for a fraction of the β-sheet region and 31-helicies. β-Sheet subregion 1 ascribed to the poly(Ala) core exhibits slower dynamics, while β-sheet subregion 2 present in the interfacial, primarily poly(Gly-Ala) region that links the β-sheets to disordered 31-helical motifs, exhibits faster motions when the silk is supercontracted. Particularly notable is the observation of microsecond backbone motions for β-sheet subregion 2 and 31-helicies. It is proposed that these microsecond backbone motions lead to hydrogen-bond disruption in β-sheet subregion 2 and helps to explain the decrease in silk stiffness when the silk is wet and supercontracted. In addition, water mobilizes and softens 31-helical motifs, contributing to the increased extensibility observed when the silk is in a supercontracted state. The present study provides critical insight into the supercontraction mechanism and corresponding changes in mechanical properties observed for spider dragline silks.

  19. Low-power broadband homonuclear dipolar recoupling in MAS NMR by two-fold symmetry pulse schemes for magnetization transfers and double-quantum excitation

    Science.gov (United States)

    Teymoori, Gholamhasan; Pahari, Bholanath; Edén, Mattias

    2015-12-01

    We provide an experimental, numerical, and high-order average Hamiltonian evaluation of an open-ended series of homonuclear dipolar recoupling sequences, SR2 2p 1 with p = 1, 2, 3, … . While operating at a very low radio-frequency (rf) power, corresponding to a nutation frequency of 1/2 of the magic-angle spinning (MAS) rate (ωnut =ωr / 2), these recursively generated double-quantum (2Q) dipolar recoupling schemes offer a progressively improved compensation to resonance offsets and rf inhomogeneity for increasing pulse-sequence order p. The excellent recoupling robustness to these experimental obstacles, as well as to CSA, is demonstrated for 2Q filtering (2QF) experiments and for driving magnetization transfers in 2D NMR correlation spectroscopy, where the sequences may provide either double or zero quantum dipolar Hamiltonians during mixing. Experimental and numerical demonstrations, which mostly target conditions of "ultra-fast" MAS (≳50 kHz) and high magnetic fields, are provided for recoupling of 13C across a wide range of isotropic and anisotropic chemical shifts, as well as dipolar coupling constants, encompassing [2,3-13C2 ]alanine, [1,3-13C2 ]alanine, diammonium [1,4-13C2 ]fumarate, and [U-13 C]tyrosine. When compared at equal power levels, a superior performance is observed for the SR2p 1 sequences with p ⩾ 3 relative to existing and well-established 2Q recoupling techniques. At ultra-fast MAS, proton decoupling is redundant during the homonuclear dipolar recoupling of dilute spins in organic solids, which renders the family of SR2p 1 schemes the first efficient 2Q recoupling option for general applications, such as 2Q-1Q correlation NMR and high-order multiple-quantum excitation, under truly low-power rf conditions.

  20. Fine-tuned characterization at the solid/solution interface of organotin compounds grafted onto cross-linked polystyrene by using high-resolution MAS NMR spectroscopy.

    Science.gov (United States)

    Martins, José C; Mercier, Frédéric A G; Vandervelden, Alexander; Biesemans, Monique; Wieruszeski, Jean-Michel; Humpfer, Eberhard; Willem, Rudolph; Lippens, Guy

    2002-08-02

    The structural characterization of organotin compounds that are grafted onto insoluble cross-linked polymers has necessarily been limited to elemental analysis, infrared spectroscopy, and in a few instances, solid-state NMR spectroscopy. This important bottleneck in the development of such grafted systems has been addressed by using high-resolution magic angle spinning (hr-MAS) NMR spectroscopy. The great potential of this technique is demonstrated through the structural characterization of diphenylbutyl-(3,4) and dichlorobutylstannanes (5,6), grafted onto divinylbenzene cross-linked polystyrene by means of a suitable linker (1, 2). First, conditions suitable for the application of hr-MAS NMR spectroscopy were identified by characterizing the (1)H resonance line widths of the grafted organotin moiety following swelling of the functionalized beads in eight representative solvents. The presence of clearly identifiable tin coupling patterns in both the 1D (13)C and 2D (1)H-(13)C HSQC spectra, and the incorporation of (119)Sn chemical shift and connectivity information from hr-MAS 1D (119)Sn and 2D (1)H-(119)Sn HMQC spectra, provide an unprecedented level of characterization of grafted organotins directly at the solid/liquid interface. In addition, the use of hr-MAS (119)Sn NMR for reaction monitoring, impurity detection, and quantification and assessment of the extent of coordination reveals its promise as a novel tool for the investigation of polymer-grafted organotin compounds. The approach described here should be sufficiently general for extension to a variety of other nuclei of interest in polymer-supported organometallic chemistry.

  1. UAV Robust Strategy Control Based on MAS

    Directory of Open Access Journals (Sweden)

    Jian Han

    2014-01-01

    Full Text Available A novel multiagent system (MAS has been proposed to integrate individual UAV (unmanned aerial vehicle to form a UAV team which can accomplish complex missions with better efficiency and effect. The MAS based UAV team control is more able to conquer dynamic situations and enhance the performance of any single UAV. In this paper, the MAS proposed and established combines the reacting and thinking abilities to be an initiative and autonomous hybrid system which can solve missions involving coordinated flight and cooperative operation. The MAS uses BDI model to support its logical perception and to classify the different missions; then the missions will be allocated by utilizing auction mechanism after analyzing dynamic parameters. Prim potential algorithm, particle swarm algorithm, and reallocation mechanism are proposed to realize the rational decomposing and optimal allocation in order to reach the maximum profit. After simulation, the MAS has been proved to be able to promote the success ratio and raise the robustness, while realizing feasibility of coordinated flight and optimality of cooperative mission.

  2. The EBLM Project I-Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the Brown Dwarf limit

    CERN Document Server

    Triaud, Amaury H M J; Anderson, David R; Cargile, Phill; Cameron, Andrew Collier; Doyle, Amanda P; Faedi, Francesca; Gillon, Michaël; Chew, Yilen Gomez Maqueo; Hellier, Coel; Jehin, Emmanuel; Maxted, Pierre; Naef, Dominique; Pepe, Francesco; Pollacco, Don; Queloz, Didier; Ségransan, Damien; Smalley, Barry; Stassun, Keivan; Udry, Stéphane; West, Richard G

    2012-01-01

    This paper introduces a series of papers aiming to study the dozens of low mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F, G, K+M eclipsing binaries through the Rossiter-McLaughlin effect. Here we report on the spin-orbit angle of WASP-30b, a transiting brown dwarf, and improve its orbital parameters. We also present the mass, radius, spin-orbit angle and orbital parameters of a new eclipsing binary, J1219-39b (1SWAPJ121921.03-395125.6, TYC 7760-484-1), which, with a mass of 95 +/- 2 Mjup, is close to the limit between brown dwarfs and stars. We find that both objects orbit in planes that appear aligned with their primaries' equatorial plane...

  3. Resolution and measurement of heteronuclear dipolar couplings of a noncrystalline protein immobilized in a biological supramolecular assembly by proton-detected MAS solid-state NMR spectroscopy

    Science.gov (United States)

    Park, Sang Ho; Yang, Chen; Opella, Stanley J.; Mueller, Leonard J.

    2013-12-01

    Two-dimensional 15N chemical shift/1H chemical shift and three-dimensional 1H-15N dipolar coupling/15N chemical shift/1H chemical shift MAS solid-state NMR correlation spectra of the filamentous bacteriophage Pf1 major coat protein show single-site resolution in noncrystalline, intact-phage preparations. The high sensitivity and resolution result from 1H detection at 600 MHz under 50 kHz magic angle spinning using ∼0.5 mg of perdeuterated and uniformly 15N-labeled protein in which the exchangeable amide sites are partially or completely back-exchanged (reprotonated). Notably, the heteronuclear 1H-15N dipolar coupling frequency dimension is shown to select among 15N resonances, which will be useful in structural studies of larger proteins where the resonances exhibit a high degree of overlap in multidimensional chemical shift correlation spectra.

  4. I: Low Frequency NMR and NQR Using a dc SQUID. II: Variable-temperature 13C CP/MAS of Organometallics

    Energy Technology Data Exchange (ETDEWEB)

    Ziegeweid, M.A.

    1995-11-29

    NMR and NQR at low frequencies are difficult prospects due to small nuclear spin polarization. Furthermore, the sensitivity'of the inductive pickup circuitry of standard spectrometers is reduced as the frequency is lowered. I have used a cw-SQUID (Superconducting QUantum Interference Device) spectrometer, which has no such frequency dependence, to study the local atomic environment of {sup 14}N via the quadrupolar interaction. Because {sup 14}N has spin I = 1 and a 0-6 MHz frequency range, it is not possible to obtain well-resolved spectra in high magnetic fields. I have used a technique to observe {sup 14}N NQR resonances via their effect on neighboring protons mediated by the heteronuclear dipolar interaction to study peptides and narcotics. The sensitivity of the SQUID is not enough to measure low-frequency surface (or other low spin density) systems. The application of spin-polarized xenon has been previously used to enhance polarization in conventional NMR experiments. Because xenon only polarizes spins with which it is in contact, it is surface selective. While differences in chemical shifts between surface and bulk spins are not large, it is expected that the differences in quadrupole coupling constant should be very large due to the drastic change of the electric field gradient surrounding spins at the surface. With this in mind, I have taken preliminary steps to measure SQUID detected polarization transfer from Xe to another spin species at 4.2 K and in small magnetic fields (<50 G). In this regime, the spin-lattice relaxation of xenon is dependent on the applied magnetic field. The results of our efforts to characterize the relaxation of xenon are presented. The final section describes the solid-state variable-temperature (VT) one- and two-dimensional {sup 13}C cross polarization (CP)/magic angle spinning (MAS) NMR of Hf({eta}{sup 5}-C{sub 5}H{sub 5}){sub 2}({eta}{sup 1}-C{sub 5}H{sub 5}){sub 2}, Zr({eta}{sup 5}-C{sub 5}H{sub 5}){sub 3}({eta}{sup 1

  5. Processing of CP MAS kinetics: Towards NMR crystallography for complex solids

    Science.gov (United States)

    Dagys, Laurynas; Klimavicius, Vytautas; Balevicius, Vytautas

    2016-09-01

    Variable temperature and high data point density measurements of 1H-31P cross-polarization kinetics in the powdered ammonium dihydrogen phosphate (ADP) have been carried out in the range of -40 °C to +90 °C upon 7 and 10 kHz MAS. The advanced route of processing CP MAS kinetic data has been developed. It is based on reducing the incoherent far range order spin couplings and extracting the CP oscillatory term with the sequent mathematical treatment. The proper replica has been found, which allowed to reduce the Fourier-Bessel (Hankel) transform calculating the angularly averaged and purely distance-depending spin distribution profile to the routine Fourier transform. The shortest 31P-1H distances determined by CP MAS kinetics get between the values obtained by neutron and X-ray diffraction, whereas those for more remote protons are slightly larger. The changes in P⋯H distances are hardly noticeable, though a certain trend to increase upon the heating can be deduced. The clearly pronounced effect was the increase of the spin-diffusion rate constant upon heating. It allows to state that the communication between interacting spins is the process extremely easy to activate.

  6. A 3% Measurement of the Beam Normal Single Spin Asymmetry in Forward Angle Elastic Electron-Proton Scattering using the Qweak Setup

    Energy Technology Data Exchange (ETDEWEB)

    Waidyawansa, Dinayadura Buddhini [Ohio Univ., Athens, OH (United States)

    2013-08-01

    The beam normal single spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable of the imaginary part of the two-photon exchange process. Moreover, it is a potential source of false asymmetry in parity violating electron scattering experiments. The Q{sub weak} experiment uses parity violating electron scattering to make a direct measurement of the weak charge of the proton. The targeted 4% measurement of the weak charge of the proton probes for parity violating new physics beyond the Standard Model. The beam normal single spin asymmetry at Q{sub weak} kinematics is at least three orders of magnitude larger than 5 ppb precision of the parity violating asymmetry. To better understand this parity conserving background, the Q{sub weak} Collaboration has performed elastic scattering measurements with fully transversely polarized electron beam on the proton and aluminum. This dissertation presents the analysis of the 3% measurement (1.3% statistical and 2.6% systematic) of beam normal single spin asymmetry in electronproton scattering at a Q2 of 0.025 (GeV/c)2. It is the most precise existing measurement of beam normal single spin asymmetry available at the time. A measurement of this precision helps to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process.

  7. Measurement of the weak mixing angle and the spin of the gluon from angular distributions in the reaction pp{yields} Z/{gamma}*+X{yields}{mu}{sup +}{mu}{sup -}+X with ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Schmieden, Kristof

    2013-04-15

    The measurement of the effective weak mixing angle with the ATLAS experiment at the LHC is presented. It is extracted from the forward-backward asymmetry in the polar angle distribution of the muons originating from Z boson decays in the reaction pp{yields}Z/{gamma}{sup *}+X{yields} {mu}{sup +}{mu}{sup -}+X. In total 4.7 fb{sup -1} of proton-proton collisions at {radical}(s)=7 TeV are analysed. In addition, the full polar and azimuthal angular distributions are measured as a function of the transverse momentum of the Z/{gamma}{sup *} system and are compared to several simulations as well as recent results obtained in p anti p collisions. Finally, the angular distributions are used to confirm the spin of the gluon using the Lam-Tung relation.

  8. A social-democracia do MAS boliviano

    Directory of Open Access Journals (Sweden)

    Guilherme Simões Reis

    2013-12-01

    Full Text Available O partido MAS, que governa a Bolívia e é liderado pelo presidente Evo Morales, geralmente é classificado como populista ou como revolucionário. Este artigo contesta ambos os diagnósticos, e sustenta que o MAS é um partido social-democrata. Tanto em sua gênese, como em seu comportamento na oposição, como em suas políticas no governo, o MAS apresenta todas as características necessárias para ser classificado como um representante da social-democracia. Para contestar os diagnósticos predominantes na literatura, o argumento desenvolve-se aplicando três distintas abordagens sobre a social-democracia. Uma comparação histórico-ideológica com os partidos tradicionalmente apontados como social-democratas mostra que o MAS assemelha-se a eles tanto em sua origem fortemente sindical como no tipo de mudança que introduziu na política do país. Uma análise institucional mostra que não procedem as acusações de que é antissistema e contrário à democracia, características associadas tanto aos "populistas", de acordo com "teóricos das duas esquerdas latino-americanas", como aos partidos adeptos da "revolução violenta". Por fim, uma análise das políticas adotadas pelo MAS no governo indica que estão alinhadas com aquelas consideradas como social-democráticas no contexto de integração dos mercados globais. Argumenta-se no texto que o MAS não é em geral classificado como social-democrata, em parte devido a uma visão equivocada sobre suas práticas, e em parte por uma tendência dos estudiosos a chamarem a atenção para o que lhe é específico, e não para o que ele tem em comum com outros partidos de esquerda, como é feito com quaisquer partidos ao catalogá-los em famílias.

  9. 一个多Agent系统规范--MAS/KIB%MAS/KIB--a Multiagent System Specification

    Institute of Scientific and Technical Information of China (English)

    胡舜耕; 钟义信

    2000-01-01

    采用K(知道),B(相信),I(意愿)等几个基本的心智状态,建立了一个多Agent系统逻辑规范-MAS/KIB,讨论了其语法、模型和语义,给出了公理和推理规则,研究了MAS/KIB的一些基本性质.

  10. Mesoporous Silica Nanoparticles Loaded with Surfactant: Low Temperature Magic Angle Spinning 13C and 29Si NMR Enhanced by Dynamic Nuclear Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Lafon, Olivier [Universite de Lille Nord de France; Thankamony, Aany S. Lilly [Universite de Lille Nord de France; Kokayashi, Takeshi [Ames Laboratory; Carnevale, Diego [Ecole Polytechnique Federale de Lausanne; Vitzthum, Veronika [Ecole Polytechnique Federale de Lausanne; Slowing, Igor I. [Ames Laboratory; Kandel, Kapil [Ames Laboratory; Vezin, Herve [Universite de Lille Nord de France; Amoureux, Jean-Paul [Universite de Lille Nord de France; Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne; Pruski, Marek [Ames Laboratory

    2012-12-21

    We show that dynamic nuclear polarization (DNP) can be used to enhance NMR signals of 13C and 29Si nuclei located in mesoporous organic/inorganic hybrid materials, at several hundreds of nanometers from stable radicals (TOTAPOL) trapped in the surrounding frozen disordered water. The approach is demonstrated using mesoporous silica nanoparticles (MSN), functionalized with 3-(N-phenylureido)propyl (PUP) groups, filled with the surfactant cetyltrimethylammonium bromide (CTAB). The DNP-enhanced proton magnetization is transported into the mesopores via 1H–1H spin diffusion and transferred to rare spins by cross-polarization, yielding signal enhancements εon/off of around 8. When the CTAB molecules are extracted, so that the radicals can enter the mesopores, the enhancements increase to εon/off ≈ 30 for both nuclei. A quantitative analysis of the signal enhancements in MSN with and without surfactant is based on a one-dimensional proton spin diffusion model. The effect of solvent deuteration is also investigated.

  11. Single Antenna GPS Carrier Amplitude Based Rolling Angle Determination of Spinning Vehicle%基于单天线GPS载波幅度的旋转载体滚转角测量

    Institute of Scientific and Technical Information of China (English)

    李耀军; 张江华; 费涛; 崔念; 尚煜

    2014-01-01

    Traditional rolling angle and rolling rate measurement are costly and merely applied by high value plat-forms. In order to reduce cost, rolling angle determination method based on GPS signal is put forward. Rolling an-gle measurement by using GPS carrier phase and amplitude are the two main techniques used for attitude determina-tion. An approach to achieve high precision measurement of rolling angle and rolling rate of spinning vehicle with low cost is presented, that is, directly obtain I/Q signal amplitude signature of carrier for navigation by using single antenna GPS satellite receiver hardware correlator, and a rolling angle filter based on extended Kalman filtering ( EKF) is designed to estimate and track carrier frequency by using amplitude signature of carrier I/Q signals, so as to calculate rolling angle and rolling rate of spinning vehicle precisely. Actual test results show that, for using only amplitude information of I/Q signals, rolling rate and rolling angle of spinning vehicle can be calculated in real-time by using proposed method, and calculation accuracy can meet requirements of most practical applications.%传统的载体滚转角和转速测量方法成本高昂且仅限于高价值平台,为降低成本利用GPS信号测量滚转角的方法日益受到关注。将GPS载波信号的相位和幅度信息用于姿态测量,是目前旋转平台基于GPS测姿的两类主要方法。为了实现旋转载体的低成本高精度滚转角和转速测量,本文提出了单天线结构的利用GPS卫星接收机硬件相关器直接输出的导航用载波I/Q信号幅度特性,设计基于EKF的滚转角滤波器,利用载波I/Q信号的幅度特性对载波频率进行估计与跟踪,从而实现旋转载体的滚转角和转速的精确计算。实测数据试验表明,对于旋转载体仅利用卫星载波I/Q信号的幅度信息,本文提出的算法即可实时计算出旋转载体的滚转角和转速,且计算精度能够

  12. Multiple acquisitions via sequential transfer of orphan spin polarization (MAeSTOSO): How far can we push residual spin polarization in solid-state NMR?

    Science.gov (United States)

    Gopinath, T.; Veglia, Gianluigi

    2016-06-01

    Conventional multidimensional magic angle spinning (MAS) solid-state NMR (ssNMR) experiments detect the signal arising from the decay of a single coherence transfer pathway (FID), resulting in one spectrum per acquisition time. Recently, we introduced two new strategies, namely DUMAS (DUal acquisition Magic Angle Spinning) and MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), that enable the simultaneous acquisitions of multidimensional ssNMR experiments using multiple coherence transfer pathways. Here, we combined the main elements of DUMAS and MEIOSIS to harness both orphan spin operators and residual polarization and increase the number of simultaneous acquisitions. We show that it is possible to acquire up to eight two-dimensional experiments using four acquisition periods per each scan. This new suite of pulse sequences, called MAeSTOSO for Multiple Acquisitions via Sequential Transfer of Orphan Spin pOlarization, relies on residual polarization of both 13C and 15N pathways and combines low- and high-sensitivity experiments into a single pulse sequence using one receiver and commercial ssNMR probes. The acquisition of multiple experiments does not affect the sensitivity of the main experiment; rather it recovers the lost coherences that are discarded, resulting in a significant gain in experimental time. Both merits and limitations of this approach are discussed.

  13. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)

    2016-01-21

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t{sub 1} and t{sub 3} periods, respectively. In addition to through-space and through-bond {sup 13}C/{sup 1}H and {sup 13}C/{sup 13}C chemical shift correlations, the 3D {sup 1}H/{sup 13}C/{sup 1}H experiment also provides a COSY-type {sup 1}H/{sup 1}H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ({sup 1}H/{sup 1}H chemical shift correlation spectrum) at different {sup 13}C chemical shift frequencies from the 3D {sup 1}H/{sup 13}C/{sup 1}H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the

  14. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS.

    Science.gov (United States)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-21

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D (1)H/(13)C/(1)H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond (13)C/(1)H and (13)C/(13)C chemical shift correlations, the 3D (1)H/(13)C/(1)H experiment also provides a COSY-type (1)H/(1)H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ((1)H/(1)H chemical shift correlation spectrum) at different (13)C chemical shift frequencies from the 3D (1)H/(13)C/(1)H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D (1)H/(13)C/(1)H experiment would be useful to study the structure and dynamics of

  15. Corrigendum to "Multiple-quantum spin counting in magic-angle-spinning NMR via low-power symmetry-based dipolar recoupling" [J. Magn. Reson. 236 (2013) 31-40

    Science.gov (United States)

    Teymoori, Gholamhasan; Pahari, Bholanath; Viswanathan, Elumalai; Edén, Mattias

    2017-03-01

    The authors regret that an inappropriate NMR data processing, not known to all authors at the time of publication, was used to produce the multiple-quantum coherence (MQC) spin counting data presented in our article: this lead to artificially enhanced results, particularly concerning those obtained at long MQC excitation intervals (τexc). Here we reproduce Figs. 4-7 with correctly processed data.

  16. Analysis of Cross-Polarization Dynamics between Two Abundant Nuclei, 19F and 1H, Based on Spin Thermodynamics Theory

    Science.gov (United States)

    Ando, Shinji; Harris, Robin K.; Reinsberg, Stefan A.

    1999-11-01

    The phenomenological theory of spin thermodynamics based on the spin temperature hypothesis was employed to describe the cross-polarization (CP) dynamics between two abundant nuclei, 19F and 1H, when the number of fluorine atoms is not substantially less than the number of hydrogens. The influence of T1ρ's of both nuclei and the relative magnitude (heat capacity) of the two spin baths must be incorporated explicitly into the analysis in order to derive values for the parameters involved in the CP dynamics. Numerical calculations were performed to clarify the difference in the evolution of magnetization in variable contact time CP experiments between the 1H → 13C and 1H → 19F cases. A new type of CP-drain experiment was developed for observing the residual 1H magnetization after 1H → 19F CP. 19F direct polarization magic-angle spinning (MAS), 1H → 19F CP, and 1H → 19F CP-drain MAS NMR spectra have been measured for a fluorinated polyimide, 6FDA/ODA. The CP dynamics between 1H and 19F for the polyimide were analyzed on the basis of the spin thermodynamics theory. The constant for polarization transfer (THF) was determined by the analysis using the effective CP parameters, which were directly obtained from the CP and CP-drain experiments, together with independently measured values of TH1ρ and TF1ρ.

  17. Probing Metal Carbonation Reactions of CO2 in a Model System Containing Forsterite and H2O Using Si-29, C-13 Magic Angle Sample Spinning NMR Spectroscopy

    Science.gov (United States)

    Hu, J.; Kwak, J.; Hoyt, D. W.; Sears, J. A.; Rosso, K. M.; Felmy, A. R.

    2009-12-01

    Ex situ solid state NMR have been used for the first time to study fundamental mineral carbonation processes and reaction extent relevant to geologic carbon sequestration using a model silicate mineral forsterite (Mg2SiO4)+scCO2 with and without H2O. Run conditions were 80C and 96 bar. Si-29 NMR clearly shows that in the absence of CO2, the role of H2O is to hydrolyze surface Mg-O-Si bonds to produce Mg2+, and mono- and oligomeric hydroxylated silica species. The surface hydrolysis products contain only Q0 (Si(OH)4) and Q1 (Si(OH)3OSi) species. An equilibrium between Q0, Q1 and Mg2+ with a saturated concentration equivalent to less than 3.2% of the Mg2SiO4 conversion is obtained at a reaction time of up to 7 days. Using scCO2 without H2O, no reaction is observed within 7 days. Using both scCO2 and H2O, the surface reaction products for silica are mainly Q3 (SiOH(OSi)3) species accompanied by a lesser amount of Q2 (Si(OH)2(OSi)2) and Q4 (Si(OSi)4). However, no Q0 and Q1 were detected, indicating the carbonic acid formation/deprotonation and magnesite (MgCO3) precipitation reactions are faster than the forsterite hydrolysis process. Thus it can be concluded that the Mg2SiO4 hydrolysis process is the rate limiting step of the overall mineral carbonation process. Si-29 NMR combined with XRD, TEM, SAED and EDX further reveal that the reaction is a surface reaction with the Mg2SiO4 crystallite in the core and with condensed Q2-Q4 species forming amorphous surface layers. C-13 MAS NMR identified a possible reaction intermediates as (MgCO3)4*Mg(OH)2*5H2O. However, at long reaction times only crystallite magnesite MgCO3 products are observed. This research is part of a broader effort at PNNL to develop experimental tools and fundamental insights into chemical transformations affecting subsurface CO2 reactive transport. Si-29 (left) and C-13 (right) MAS NMR spectra of Mg2SiO4 under various reaction conditions. Si-29 NMR reveals that in scCO2 without H2O, no reaction is

  18. Laser angle-resolved photoemission as a probe of initial state kz dispersion, final-state band gaps, and spin texture of Dirac states in the Bi2Te3 topological insulator

    Science.gov (United States)

    Ä; rrälä, Minna; Hafiz, Hasnain; Mou, Daixiang; Wu, Yun; Jiang, Rui; Riedemann, Trevor; Lograsso, Thomas A.; Barbiellini, Bernardo; Kaminski, Adam; Bansil, Arun; Lindroos, Matti

    2016-10-01

    We have obtained angle-resolved photoemission spectroscopy (ARPES) spectra from single crystals of the topological insulator material Bi2Te3 using a tunable laser spectrometer. The spectra were collected for 11 different photon energies ranging from 5.57 to 6.70 eV for incident light polarized linearly along two different in-plane directions. Parallel first-principles, fully relativistic computations of photointensities were carried out using the experimental geometry within the framework of the one-step model of photoemission. A reasonable overall accord between theory and experiment is used to gain insight into how properties of the initial- and final-state band structures as well as those of the topological surface states and their spin textures are reflected in the laser-ARPES spectra. Our analysis reveals that laser-ARPES is sensitive to both the initial-state kz dispersion and the presence of delicate gaps in the final-state electronic spectrum.

  19. Structural elucidation of b-(Y,Sc){sub 2}Si{sub 2}O{sub 7} : combined use of {sub 89}Y MAS NMR and powder diffraction.

    Energy Technology Data Exchange (ETDEWEB)

    Allix, M.; Alba, M. D.; Florian, P.; Fernandez-Carrion, A. J.; Suchomel, M. R.; Escudero, A.; Suard, E.; Becerro, A. I. (X-Ray Science Division); (CNRS); (Univ. d' Orleans); (Inst de Ciencia de Materiales de Sevilla); (Inst. Laue-Langevin)

    2011-08-01

    Although the structures of pure Sc{sub 2}Si{sub 2}O{sub 7} and {beta}-Y{sub 2}Si{sub 2}O{sub 7} have been described in the literature using the C2/m space group, {sup 29}Si magic angle spinning (MAS) NMR measurements of the intermediate members of the Sc{sub 2}Si{sub 2}O{sub 7}-{beta}-Y{sub 2}Si{sub 2}O{sub 7} system indicate a lowering of the symmetry to the C2 space group. Indeed, these compositions exhibit a unique Si crystallographic site and an Si-O-Si angle lower than 180{sup o}, incompatible with the C2/m space group. C2 is the only possible alternative. Space group Cm can be discarded with regard to its two different Si sites per unit cell. Moreover, {sup 89}Y MAS NMR data have revealed the existence of two different Y sites in the structure of the intermediate members of the Sc{sub 2}Si{sub 2}O{sub 7}-{beta}-Y{sub 2}Si{sub 2}O{sub 7} system, confirming the lowering of the symmetry to the C2 space group. The viability of the C2 model has therefore been tested and confirmed by refinement of synchrotron and neutron powder diffraction data for the different members of the system. The structural evolutions across the Sc{sub 2}Si{sub 2}O{sub 7}-{beta}-Y{sub 2}Si{sub 2}O{sub 7} system are discussed.

  20. Structural elucidation of {beta}-(Y,Sc){sub 2}Si{sub 2}O{sub 7}. Combined use of {sup 89}Y MAS NMR and powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Allix, M.; Florian, P. [CNRS UPR3079 CEMHTI, Orleans (France); Orleans Univ. (France); Alba, M.D.; Fernandez-Carrion, A.J.; Escudero, A.; Becerro, A.I. [CSIC-Universidad de Sevilla (Spain). Inst. de Ciencia de Materiales de Sevilla; Suchomel, M.R. [Argonne National Laboratory, Argonne, IL (United States). Advanced Photon Source; Suard, E. [Institut Laue-Langevin, Grenoble (France)

    2011-08-15

    Although the structures of pure Sc{sub 2}Si{sub 2}O{sub 7} and {beta}-Y{sub 2}Si{sub 2}O{sub 7} have been described in the literature using the C2/m space group, {sup 29}Si magic angle spinning (MAS) NMR measurements of the intermediate members of the Sc{sub 2}Si{sub 2}O{sub 7}-{beta}-Y{sub 2}Si{sub 2}O{sub 7} system indicate a lowering of the symmetry to the C2 space group. Indeed, these compositions exhibit a unique Si crystallographic site and an Si-O-Si angle lower than 180, incompatible with the C2/m space group. C2 is the only possible alternative. Space group Cm can be discarded with regard to its two different Si sites per unit cell. Moreover, {sup 89}Y MAS NMR data have revealed the existence of two different Y sites in the structure of the intermediate members of the Sc{sub 2}Si{sub 2}O{sub 7}-{beta}-Y{sub 2}Si{sub 2}O{sub 7} system, confirming the lowering of the symmetry to the C2 space group. The viability of the C2 model has therefore been tested and confirmed by refinement of synchrotron and neutron powder diffraction data for the different members of the system. The structural evolutions across the Sc{sub 2}Si{sub 2}O{sub 7}-{beta}-Y{sub 2}Si{sub 2}O{sub 7} system are discussed. (orig.)

  1. 利用零交叉点测量旋转弹磁方位角的试验方法%The Experiment Method Using Zero Crossing Principle to Measure the Magnetic Azimuth Angle of Spinning Projectile

    Institute of Scientific and Technical Information of China (English)

    王康谊; 张玉梅

    2011-01-01

    针对旋转弹在地磁空间运动时的环境条件,提出了基于零交叉点原理测量弹体磁方位角的模拟试验方法,并在不同的方位角、传感器倾角和转速等条件下进行了试验.试验结果表明,零交叉点原理可以实现弹体在地磁场中的角度测量,精度基本控制在±3°的范围内,并可进一步减小误差,但该原理也存在测量盲区,盲区范围与传感器倾角有关.%Aiming at the environmental conditions of spinning projectile moving in the geomagnetic space, a simulative experiment method to measure the azimuth angle of projectile body is put forward based on the zero crossings principle. Then, the testing experiments are carried out for the different azimuth angle, sensor's obliquity and rotate speed. The experiment results indicate that the zero crossings principle can realize the angle measurement of projectile in the field magnetism, and the measurement precision is in the range of ± 3°, which can be improved farther. On the other hand, this principle exists a question of the blind area when measurement, which is related to the sensor's obliquity.

  2. Fe/GaAs(001) and MgO/Fe/GaAs(001) epitaxial systems: A spin- and angle-resolved photoemission study

    Energy Technology Data Exchange (ETDEWEB)

    Gottlob, Daniel [Forschungszentrum Juelich GmbH (Germany); Technische Universitaet Dortmund (Germany); Plucinski, Lukasz; Schneider, Claus M. [Forschungszentrum Juelich GmbH (Germany); Westphal, Carsten [Technische Universitaet Dortmund (Germany)

    2011-07-01

    Spintronics is an important field of current Solid State Research and memory units based on Magnetic Tunnel Junctions (MTJs) are now within reach. In MTJ's the nature of the electronic structure at the interface determines the spin-selectivity of the tunneling process, and thereby the magnetorestive potential of the MTJ. Electronic interface states can influence the tunneling process in epitaxial MTJs especially for thinner tunnel barriers. The research that has been done at Beamline 5, DELTA, Dortmund in the context of a Diploma thesis focussed on the electronic structure of Fe/GaAs(001) and MgO/Fe/GaAs(001) and a surface/interface state of these systems. The samples have been prepared in situ by molecular beam epitaxy and characterized by LEED and Auger spectroscopy. The electronic structure was probed in two different regions of the Brillouin zone, which have been chosen for reference (normal emission, {gamma} point) and the expectation of the surface state (21 off normal) that has been seen on Fe/W(001) in a previous study. Measurements on the MgO capped iron sample have been conducted to confirm whether the surface state does transform into an interface state.

  3. A spectrometer designed for 6.7 and 14.1 T DNP-enhanced solid-state MAS NMR using quasi-optical microwave transmission.

    Science.gov (United States)

    Pike, Kevin J; Kemp, Thomas F; Takahashi, Hiroki; Day, Robert; Howes, Andrew P; Kryukov, Eugeny V; MacDonald, James F; Collis, Alana E C; Bolton, David R; Wylde, Richard J; Orwick, Marcella; Kosuga, Kosuke; Clark, Andrew J; Idehara, Toshitaka; Watts, Anthony; Smith, Graham M; Newton, Mark E; Dupree, Ray; Smith, Mark E

    2012-02-01

    A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer operating at 6.7 T is described and demonstrated. The 187 GHz TE(13) fundamental mode of the FU CW VII gyrotron is used as the microwave source for this magnetic field strength and 284 MHz (1)H DNP-NMR. The spectrometer is designed for use with microwave frequencies up to 395 GHz (the TE(16) second-harmonic mode of the gyrotron) for DNP at 14.1T (600 MHz (1)H NMR). The pulsed microwave output from the gyrotron is converted to a quasi-optical Gaussian beam using a Vlasov antenna and transmitted to the NMR probe via an optical bench, with beam splitters for monitoring and adjusting the microwave power, a ferrite rotator to isolate the gyrotron from the reflected power and a Martin-Puplett interferometer for adjusting the polarisation. The Gaussian beam is reflected by curved mirrors inside the DNP-MAS-NMR probe to be incident at the sample along the MAS rotation axis. The beam is focussed to a ~1 mm waist at the top of the rotor and then gradually diverges to give much more efficient coupling throughout the sample than designs using direct waveguide irradiation. The probe can be used in triple channel HXY mode for 600 MHz (1)H and double channel HX mode for 284 MHz (1)H, with MAS sample temperatures ≥85 K. Initial data at 6.7 T and ~1 W pulsed microwave power are presented with (13)C enhancements of 60 for a frozen urea solution ((1)H-(13)C CP), 16 for bacteriorhodopsin in purple membrane ((1)H-(13)C CP) and 22 for (15)N in a frozen glycine solution ((1)H-(15)N CP) being obtained. In comparison with designs which irradiate perpendicular to the rotation axis the approach used here provides a highly efficient use of the incident microwave beam and an NMR-optimised coil design.

  4. Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Rohr, K.; Fritzsching, K. J.; Liao, S. Y.; Hong Mei, E-mail: mhong@iastate.edu [Iowa State University, Department of Chemistry and Ames Laboratory (United States)

    2012-12-15

    Several techniques for spectral editing of 2D {sup 13}C-{sup 13}C correlation NMR of proteins are introduced. They greatly reduce the spectral overlap for five common amino acid types, thus simplifying spectral assignment and conformational analysis. The carboxyl (COO) signals of glutamate and aspartate are selected by suppressing the overlapping amide N-CO peaks through {sup 13}C-{sup 15}N dipolar dephasing. The sidechain methine (CH) signals of valine, lecuine, and isoleucine are separated from the overlapping methylene (CH{sub 2}) signals of long-chain amino acids using a multiple-quantum dipolar transfer technique. Both the COO and CH selection methods take advantage of improved dipolar dephasing by asymmetric rotational-echo double resonance (REDOR), where every other {pi}-pulse is shifted from the center of a rotor period t{sub r} by about 0.15 t{sub r}. This asymmetry produces a deeper minimum in the REDOR dephasing curve and enables complete suppression of the undesired signals of immobile segments. Residual signals of mobile sidechains are positively identified by dynamics editing using recoupled {sup 13}C-{sup 1}H dipolar dephasing. In all three experiments, the signals of carbons within a three-bond distance from the selected carbons are detected in the second spectral dimension via {sup 13}C spin exchange. The efficiencies of these spectral editing techniques range from 60 % for the COO and dynamic selection experiments to 25 % for the CH selection experiment, and are demonstrated on well-characterized model proteins GB1 and ubiquitin.

  5. Proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 (United States); Nishiyama, Yusuke [JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558 (Japan); RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045 (Japan)

    2015-10-28

    A proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of {sup 13}C-{sup 1}H connectivities, and proximities of {sup 13}C-{sup 1}H and {sup 1}H-{sup 1}H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including {sup 1}H-{sup 1}H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) {sup 1}H/{sup 1}H and 2D {sup 13}C/{sup 1}H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of {sup 1}H-{sup 1}H proximity and {sup 13}C-{sup 1}H connectivity. In addition, the 2D (F1/F2) {sup 1}H/{sup 13}C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of {sup 1}H-{sup 1}H dipolar couplings, enables the measurement of proximities between {sup 13}C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of {sup 1}H-{sup 1}H-{sup 13}C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H{sub 2}O ⋅ HCl demonstrate the efficiency of the 3D experiment.

  6. Estimation of Spin Shell Roll Angle Based on Coriolis Acceleration%基于科氏加速度的旋转弹滚转角测量方法

    Institute of Scientific and Technical Information of China (English)

    史凯; 霍鹏飞; 祁克玉

    2013-01-01

    Aiming at the problems of complex structure,high cost in roll angle estimation of high spinning shell,a method based on Coriolis acceleration was proposed.The method used an accelerometer with its input axis co-aligned with the shell's longitudinal spin axis and mounted at some distance off the center in the fuze.Firstly accelerometer was used to measure the longitude acceleration,then the band-pass filter was used to pick up the Coriolis acceleration,finally,the application of Phase-Lock Loop figured out the Coriolis acceleration signal's phase,and this sinusoidal Coriolis acceleration phase was the shell's roll angle.The simulation result indicated that this method could meet the demands of two-dimension trajectory correction projectiles system,and the structure of the system was simplified sharply.%针对高动态弹道环境下的旋转稳定弹滚转角测量结构复杂、成本高的问题,提出了基于科氏加速度的滚转角测量方法.该方法加速度计安装时轴线与弹轴平行但不重合,存在偏心距,首先利用加速度计测量弹丸轴向加速度,然后利用带通滤波提取输出信号中包含的科氏加速度信号,最后用锁相环电路锁定科氏加速度信号相位,该相位即为弹丸的滚转角.仿真结果表明,该方法对于滚转角的测量精度能够满足二维弹道修正系统对弹丸滚转角测量的要求.该方法仅使用一个加速度计,结构大为简化.

  7. Optimized multiple quantum MAS lineshape simulations in solid state NMR

    Science.gov (United States)

    Brouwer, William J.; Davis, Michael C.; Mueller, Karl T.

    2009-10-01

    The majority of nuclei available for study in solid state Nuclear Magnetic Resonance have half-integer spin I>1/2, with corresponding electric quadrupole moment. As such, they may couple with a surrounding electric field gradient. This effect introduces anisotropic line broadening to spectra, arising from distinct chemical species within polycrystalline solids. In Multiple Quantum Magic Angle Spinning (MQMAS) experiments, a second frequency dimension is created, devoid of quadrupolar anisotropy. As a result, the center of gravity of peaks in the high resolution dimension is a function of isotropic second order quadrupole and chemical shift alone. However, for complex materials, these parameters take on a stochastic nature due in turn to structural and chemical disorder. Lineshapes may still overlap in the isotropic dimension, complicating the task of assignment and interpretation. A distributed computational approach is presented here which permits simulation of the two-dimensional MQMAS spectrum, generated by random variates from model distributions of isotropic chemical and quadrupole shifts. Owing to the non-convex nature of the residual sum of squares (RSS) function between experimental and simulated spectra, simulated annealing is used to optimize the simulation parameters. In this manner, local chemical environments for disordered materials may be characterized, and via a re-sampling approach, error estimates for parameters produced. Program summaryProgram title: mqmasOPT Catalogue identifier: AEEC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3650 No. of bytes in distributed program, including test data, etc.: 73 853 Distribution format: tar.gz Programming language: C, OCTAVE Computer: UNIX

  8. Magnus effects on spinning transonic missiles

    Science.gov (United States)

    Seginer, A.; Rosenwasser, I.

    1983-01-01

    Magnus forces and moments were measured on a basic-finner model spinning in transonic flow. Spin was induced by canted fins or by full-span or semi-span, outboard and inboard roll controls. Magnus force and moment reversals were caused by Mach number, reduced spin rate, and angle of attack variations. Magnus center of pressure was found to be independent of the angle of attack but varied with the Mach number and model configuration or reduced spin rate.

  9. Stern-Gerlach Experiment with Higher Spins

    CERN Document Server

    Tekin, Bayram

    2015-01-01

    We analyze idealized sequential Stern-Gerlach experiments with higher spin particles. This analysis serves at least two purposes: The widely discussed spin-1/2 case leads to some misunderstandings which hopefully is removed by the higher spin discussion. Secondly, Wigner rotation matrices for generic spins become conceptually more transparent with this physical example. We also give compact formulas for the probabilities in terms of the angle between the sequential SG apparatuses for generic spins. We work out the spin-$1/2$, spin-$1$ and spin-$2$ cases explicitly. Since there are some confusing issues regarding the actual experiment, we also compile a "facts and fiction" section on the SG experiments.

  10. Structure determination of uniformly {sup 13}C, {sup 15}N labeled protein using qualitative distance restraints from MAS solid-state {sup 13}C-NMR observed paramagnetic relaxation enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Tamaki, Hajime [Hokkaido University, Graduate School of Life Science (Japan); Egawa, Ayako [Osaka University, Institute for Protein Research (Japan); Kido, Kouki [Hokkaido University, Graduate School of Life Science (Japan); Kameda, Tomoshi [National Institute of Advanced Industrial Science and Technology, Biotechnology Research Institute for Drug Discovery (Japan); Kamiya, Masakatsu; Kikukawa, Takashi; Aizawa, Tomoyasu [Hokkaido University, Faculty of Advanced Life Science (Japan); Fujiwara, Toshimichi [Osaka University, Institute for Protein Research (Japan); Demura, Makoto, E-mail: demura@sci.hokudai.ac.jp [Hokkaido University, Faculty of Advanced Life Science (Japan)

    2016-01-15

    Magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) is a powerful method for structure determination of insoluble biomolecules. However, structure determination by MAS solid-state NMR remains challenging because it is difficult to obtain a sufficient amount of distance restraints owing to spectral complexity. Collection of distance restraints from paramagnetic relaxation enhancement (PRE) is a promising approach to alleviate this barrier. However, the precision of distance restraints provided by PRE is limited in solid-state NMR because of incomplete averaged interactions and intermolecular PREs. In this report, the backbone structure of the B1 domain of streptococcal protein G (GB1) has been successfully determined by combining the CS-Rosetta protocol and qualitative PRE restraints. The derived structure has a Cα RMSD of 1.49 Å relative to the X-ray structure. It is noteworthy that our protocol can determine the correct structure from only three cysteine-EDTA-Mn{sup 2+} mutants because this number of PRE sites is insufficient when using a conventional structure calculation method based on restrained molecular dynamics and simulated annealing. This study shows that qualitative PRE restraints can be employed effectively for protein structure determination from a limited conformational sampling space using a protein fragment library.

  11. Improved quantification of alite and belite in anhydrous Portland cements by 29Si MAS NMR: Effects of paramagnetic ions

    DEFF Research Database (Denmark)

    Poulsen, Søren Lundsted; Kocaba, Vanessa; Le Saoût, Gwenn;

    2009-01-01

    The applicability, reliability, and repeatability of 29Si MAS NMR for determination of the quantities of alite (Ca3SiO5) and belite (Ca2SiO4) in anhydrous Portland cement was investigated in detail for 11 commercial Portland cements and the results compared with phase quantifications based...... on powder X-ray diffraction combined with Rietveld analysis and with Taylor-Bogue calculations. The effects from paramagnetic ions (Fe3+) on the spinning sideband intensities, originating from dipolar couplings between 29Si and the spins of the paramagnetic electrons, were considered and analyzed in spectra...

  12. Spin rotators and split Siberian Snakes

    Energy Technology Data Exchange (ETDEWEB)

    Roser, Thomas

    1994-03-01

    The study of spin effects in the collision of polarized high energy beams requires flexible and compact spin rotators to manipulate the beam polarization direction. Design criteria and specific examples are presented for high energy, orbit transparent spin rotators ranging from small angle rotators to be used for the excitation of spin resonances to large angle rotators to be used as Siberian Snakes. It is shown that all the requirements for spin rotators can be met with a simple 6-magnet spin rotator design, for which a complete continuous solution is presented.

  13. Spin rotators and split Siberian Snakes

    Energy Technology Data Exchange (ETDEWEB)

    Roser, T. (Brookhaven National Lab., Upton, NY (United States))

    1994-03-22

    The study of spin effects in the collision of polarized high energy beams requires flexible and compact spin rotators to manipulate the beam polarization direction. Design criteria and specific examples are presented for high energy, orbit transparent spin rotators ranging from small angle rotators to be used for the excitation of spin resonances to large angle rotators to be used as Siberian Snakes. It is shown that all the requirements for spin rotators can be met with a simple 6-magnet spin rotator design, for which a complete continuous solution is presented. (orig.)

  14. Spin foams without spins

    Science.gov (United States)

    Hnybida, Jeff

    2016-10-01

    We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. In doing so the sums over spins have been carried out. The boundary data of each n-valent node is explicitly reduced with respect to the local gauge invariance and has a manifest geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.

  15. Spin transport in p-type germanium.

    Science.gov (United States)

    Rortais, F; Oyarzún, S; Bottegoni, F; Rojas-Sánchez, J-C; Laczkowski, P; Ferrari, A; Vergnaud, C; Ducruet, C; Beigné, C; Reyren, N; Marty, A; Attané, J-P; Vila, L; Gambarelli, S; Widiez, J; Ciccacci, F; Jaffrès, H; George, J-M; Jamet, M

    2016-04-27

    We report on the spin transport properties in p-doped germanium (Ge-p) using low temperature magnetoresistance measurements, electrical spin injection from a ferromagnetic metal and the spin pumping-inverse spin Hall effect method. Electrical spin injection is carried out using three-terminal measurements and the Hanle effect. In the 2-20 K temperature range, weak antilocalization and the Hanle effect provide the same spin lifetime in the germanium valence band (≈1 ps) in agreement with predicted values and previous optical measurements. These results, combined with dynamical spin injection by spin pumping and the inverse spin Hall effect, demonstrate successful spin accumulation in Ge. We also estimate the spin Hall angle θ(SHE) in Ge-p (6-7 x 10(-4) at room temperature, pointing out the essential role of ionized impurities in spin dependent scattering.

  16. Separation of 2H MAS NMR Spectra by Two-Dimensional Spectroscopy

    Science.gov (United States)

    Kristensen, J. H.; Bildsøe, H.; Jakobsen, H. J.; Nielsen, N. C.

    1999-08-01

    New methods for optimum separation of 2H MAS NMR spectra are presented. The approach is based on hypercomplex spectroscopy that is useful for sign discrimination and phase separation. A new theoretical formalism is developed for the description of hypercomplex experiments. This exploits the properties of Lie algebras and hypercomplex numbers to obtain a solution to the Liouville-von Neumann equation. The solution is expressed in terms of coherence transfer functions that describe the allowed coherence transfer pathways in the system. The theoretical formalism is essential in order to understand all the features of hypercomplex experiments. The method is applied to the development of two-dimensional quadrupole-resolved 2H MAS NMR spectroscopy. The important features of this technique are discussed and two different versions are presented with widely different characteristics. An improved version of two-dimensional double-quantum 2H MAS NMR spectroscopy is developed. The conditions under which the double-quantum experiment is useful are discussed and its performance is compared with that observed for the quadrupole-resolved experiments. A general method is presented for evaluating the optimum pulse sequence parameters consistent with maximum sensitivity and resolution. This approach improves the performance of the experiments and is essential for any further development of the techniques. The effects of finite pulse width and hypercomplex data processing may lead to both intensity and phase distortions in the spectra. These effects are analyzed and general correction procedures are suggested. The techniques are applied to polycrystalline malonic-acid-2H4 for which the spinning sideband manifolds from the carboxyl and methylene deuterons are separated. The spinning sideband manifolds are simulated to determine the quadrupole parameters. The values are consistent with previous results, indicating that the techniques are both accurate and reliable.

  17. A Construction Way of MAS Based on Organization Theory

    Institute of Scientific and Technical Information of China (English)

    GAO Bo; FEI Qi; CHEN Xue-guang

    2002-01-01

    With emphasizing that the integration of autonomy and coordination is the basis for constructing multi-agent systems (MAS), we analyze the organizational characters inherent with MAS and point out that it's a natural and essential way to construct MAS based on organization theory. We consider that the emphasis of the theory is the process of system analyzing. Then we present an analysis frame to expound the process, which includes the process of organization definition, the process of role definition, the process of organizational structure definition and the process of interaction protocol definition. Lastly, we discuss some issues associated with the processes of system design and implementation.

  18. Observation of 1H-13C and 1H-1H proximities in a paramagnetic solid by NMR at high magnetic field under ultra-fast MAS

    Science.gov (United States)

    Li, Shenhui; Trébosc, Julien; Lafon, Olivier; Zhou, Lei; Shen, Ming; Pourpoint, Frédérique; Amoureux, Jean-Paul; Deng, Feng

    2015-02-01

    The assignment of NMR signals in paramagnetic solids is often challenging since: (i) the large paramagnetic shifts often mask the diamagnetic shifts specific to the local chemical environment, and (ii) the hyperfine interactions with unpaired electrons broaden the NMR spectra and decrease the coherence lifetime, thus reducing the efficiency of usual homo- and hetero-nuclear NMR correlation experiments. Here we show that the assignment of 1H and 13C signals in isotopically unmodified paramagnetic compounds with moderate hyperfine interactions can be facilitated by the use of two two-dimensional (2D) experiments: (i) 1H-13C correlations with 1H detection and (ii) 1H-1H double-quantum ↔ single-quantum correlations. These methods are experimentally demonstrated on isotopically unmodified copper (II) complex of L-alanine at high magnetic field (18.8 T) and ultra-fast Magic Angle Spinning (MAS) frequency of 62.5 kHz. Compared to 13C detection, we show that 1H detection leads to a 3-fold enhancement in sensitivity for 1H-13C 2D correlation experiments. By combining 1H-13C and 1H-1H 2D correlation experiments with the analysis of 13C longitudinal relaxation times, we have been able to assign the 1H and 13C signals of each L-alanine ligand.

  19. Explicit Spin Coordinates

    CERN Document Server

    Hunter, G; Hunter, Geoffrey; Schlifer, Ian

    2005-01-01

    The recently established existence of spherical harmonic functions, $Y_\\ell^{m}(\\theta,\\phi)$ for half-odd-integer values of $\\ell$ and $m$, allows for the introduction into quantum chemistry of explicit electron spin-coordinates; i.e. spherical polar angles $\\theta_s, \\phi_s$, that specify the orientation of the spin angular momentum vector in space. In this coordinate representation the spin angular momentum operators, $S^2, S_z$, are represented by the usual differential operators in spherical polar coordinates (commonly used for $L^2, L_z$), and their electron-spin eigenfunctions are $\\sqrt{\\sin\\theta_s} \\exp(\\pm\\phi_s/2)$. This eigenfunction representation has the pedagogical advantage over the abstract spin eigenfunctions, $\\alpha, \\beta,$ that ``integration over spin coordinates'' is a true integration (over the angles $\\theta_s, \\phi_s$). In addition they facilitate construction of many electron wavefunctions in which the electron spins are neither parallel nor antiparallel, but inclined at an interme...

  20. 31P magic angle spinning NMR study of flux-grown rare-earth element orthophosphate (monazite/xenotime) solid solutions: evidence of random cation distribution from paramagnetically shifted NMR resonances.

    Science.gov (United States)

    Palke, Aaron C; Stebbins, Jonathan F; Boatner, Lynn A

    2013-11-04

    We present (31)P magic angle spinning nuclear magnetic resonance spectra of flux-grown solid solutions of La(1-x)Ce(x)PO4 (x between 0.027 and 0.32) having the monoclinic monazite structure, and of Y(1-x)M(x)PO4 (M = V(n+), Ce(3+), Nd(3+), x between 0.001 and 0.014) having the tetragonal zircon structure. Paramagnetically shifted NMR resonances are observed in all samples due to the presence of paramagnetic V(n+), Ce(3+), and Nd(3+) in the diamagnetic LaPO4 or YPO4. As a first-order observation, the number and relative intensities of these peaks are related to the symmetry and structure of the diamagnetic host phase. The presence of paramagnetic shifts allows for increased resolution between NMR resonances for distinct atomic species which leads to the observation of low intensity peaks related to PO4 species having more than one paramagnetic neighbor two or four atomic bonds away. Through careful analysis of peak areas and comparison with predictions for simple models, it was determined that solid solutions in the systems examined here are characterized by complete disorder (random distribution) of diamagnetic La(3+) or Y(3+) with the paramagnetic substitutional species Ce(3+) and Nd(3+). The increased resolution given by the paramagnetic interactions also leads to the observation of splitting of specific resonances in the (31)P NMR spectra that may be caused by local, small-scale distortions from the substitution of ions having dissimilar ionic radii.

  1. Spin Hall and Spin Nernst effect from first principles

    Science.gov (United States)

    Mertig, Ingrid

    2013-03-01

    Spintronics without magnetic materials is an interesting alternative to the existing spintronics applications. The spin Hall effect creates spin currents in nonmagnetic materials and avoids the problem of spin injection. Future applications of the spin Hall effect require two properties of the materials, a large spin Hall angle and a long spin diffusion length. Ab intio calculations based on density functional theory are a powerful tool to design the desired materials and to get insight into the underlying microscopic processes. We investigated the spin Hall effect in dilute alloys, in particular the intrinsic effect based on the Berry curvature as well as side-jump and the skew-scattering contributions. The results demonstrate that a large extrinsic spin Hall effect is determined by the differences between host and impurity concerning the spin-orbit interaction. It can be caused by light p scatterers as C and N in Au. A comparable large effect is observed for heavy p scatterers as Bi in Cu. An alternative way is to deposit impurities in the adatom position. Furthermore, we predict a spin current perpendicular to a temperature gradient. The phenomenon is called spin Nernst effect. The predicted spin currents can be comparably large as in the case of the spin Hall effect.

  2. Spin gap in a spiral staircase model

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, M.N. [Institut fuer Theoretische Physik und Astrophysik, Wuerzburg Universitaet, Am Hubland, D-97074 Wuerzburg (Germany)]. E-mail: kiselev@physik.uni-wuerzburg.de; Aristov, D.N. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Kikoin, K. [Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2005-04-30

    We investigate the formation of spin gap in one-dimensional models characterized by the groups with hidden symmetries. We introduce a new class of Hamiltonians for description of spin staircases-the spin systems intermediate between 2-leg ladders and S=1 spin chains. The spin exchange anisotropy along legs is described by the angle of spiral twist. The properties of a special case of spin rotator chain (SRC) corresponding to a flat 1-leg ladder is considered by means of fermionization approach based on Jordan-Wigner transformation. The influence of dynamical hidden symmetries on the scaling properties of the spin gap is discussed.

  3. Structural changes in C–S–H gel during dissolution: Small-angle neutron scattering and Si-NMR characterization

    Energy Technology Data Exchange (ETDEWEB)

    Trapote-Barreira, Ana, E-mail: anatrapotebarreira@gmail.com [Institute of Environmental Assessment and Water Research (IDAEA), Barcelona 08034, Catalonia (Spain); Porcar, Lionel [National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Large Scale Structure Group, Institut Laue Langevin, Grenoble (France); Cama, Jordi; Soler, Josep M. [Institute of Environmental Assessment and Water Research (IDAEA), Barcelona 08034, Catalonia (Spain); Allen, Andrew J. [National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States)

    2015-06-15

    Flow-through experiments were conducted to study the calcium–silicate–hydrate (C–S–H) gel dissolution kinetics. During C–S–H gel dissolution the initial aqueous Ca/Si ratio decreases to reach the stoichiometric value of the Ca/Si ratio of a tobermorite-like phase (Ca/Si = 0.83). As the Ca/Si ratio decreases, the solid C–S–H dissolution rate increases from (4.5 × 10{sup −} {sup 14} to 6.7 × 10{sup −} {sup 12}) mol m{sup −} {sup 2} s{sup −} {sup 1}. The changes in the microstructure of the dissolving C–S–H gel were characterized by small-angle neutron scattering (SANS) and {sup 29}Si magic-angle-spinning nuclear magnetic resonance ({sup 29}Si-MAS NMR). The SANS data were fitted using a fractal model. The SANS specific surface area tends to increase with time and the obtained fit parameters reflect the changes in the nanostructure of the dissolving solid C–S–H within the gel. The {sup 29}Si MAS NMR analyses show that with dissolution the solid C–S–H structure tends to a more ordered tobermorite structure, in agreement with the Ca/Si ratio evolution.

  4. Spin Foams Without Spins

    CERN Document Server

    Hnybida, Jeff

    2015-01-01

    We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. Thus the sums over spins have been carried out. We focus on the character expansion of Yang-Mills theory which is an approximate heat kernel regularization of BF theory. The boundary data of each $n$-valent node is an element of the Grassmannian Gr(2,$n$) which carries a coherent representation of U($n$) and a geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.

  5. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    Science.gov (United States)

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-07-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.

  6. Spin-inversion in nanoscale graphene sheets with a Rashba spin-orbit barrier

    Directory of Open Access Journals (Sweden)

    Somaieh Ahmadi

    2012-03-01

    Full Text Available Spin-inversion properties of an electron in nanoscale graphene sheets with a Rashba spin-orbit barrier is studied using transfer matrix method. It is found that for proper values of Rashba spin-orbit strength, perfect spin-inversion can occur in a wide range of electron incident angle near the normal incident. In this case, the graphene sheet with Rashba spin-orbit barrier can be considered as an electron spin-inverter. The efficiency of spin-inverter can increase up to a very high value by increasing the length of Rashba spin-orbit barrier. The effect of intrinsic spin-orbit interaction on electron spin inversion is then studied. It is shown that the efficiency of spin-inverter decreases slightly in the presence of intrinsic spin-orbit interaction. The present study can be used to design graphene-based spintronic devices.

  7. Spin pumping and inverse spin Hall effect in platinum: the essential role of spin-memory loss at metallic interfaces.

    Science.gov (United States)

    Rojas-Sánchez, J-C; Reyren, N; Laczkowski, P; Savero, W; Attané, J-P; Deranlot, C; Jamet, M; George, J-M; Vila, L; Jaffrès, H

    2014-03-14

    Through combined ferromagnetic resonance, spin pumping, and inverse spin Hall effect experiments in Co|Pt bilayers and Co|Cu|Pt trilayers, we demonstrate consistent values of ℓsfPt=3.4±0.4  nm and θSHEPt=0.056±0.010 for the respective spin diffusion length and spin Hall angle for Pt. Our data and model emphasize the partial depolarization of the spin current at each interface due to spin-memory loss. Our model reconciles the previously published spin Hall angle values and explains the different scaling lengths for the ferromagnetic damping and the spin Hall effect induced voltage.

  8. Crystal structure solid-state cross polarization magic angle spinning 13C NMR correlation in luminescent d10 metal-organic frameworks constructed with the 1,2-Bis(1,2,4-triazol-4-yl)ethane ligand.

    Science.gov (United States)

    Habib, Hesham A; Hoffmann, Anke; Höppe, Henning A; Steinfeld, Gunther; Janiak, Christoph

    2009-03-02

    Hydrothermal reactions of 1,2-bis(1,2,4-triazol-4-yl)ethane (btre) with copper(II), zinc(II), and cadmium(II) salts have yielded the dinuclear complexes [Zn2Cl4(mu2-btre)2] (1) and [Zn2Br4(mu2-btre)2] (2), the one-dimensional coordination polymer infinity1[Zn(NCS)2(2-btre)] (3), the two-dimensional networks infinity2[Cu2(mu2-Cl)2(mu4-btre)] (4), infinity2[Cu2(mu2-Br)2(mu4-btre)] (5), and infinity2{[Cd6(mu3-OH)2(mu3-SO4)4(mu4-btre)3(H2O)6](SO4).6H2O} (6), and the three-dimensional frameworks infinity3{[Cu(mu4-btre)]ClO4.0.25H2O} (7), 3{[Zn(mu4-btre)(mu2-btre)](ClO4)2} (8), infinity3{[Cd(mu4-btre)(mu2-btre)](ClO4)2} (9), and infinity3[Cu2(mu2-CN)2(mu4-btre)] (10, 2-fold 3D interpenetrated framework). The copper-containing products 4, 5, 7, and 10 contain the metal in the +1 oxidation state, from a simultaneous redox and self-assembly reaction of the Cu(II) starting materials. The cyanide-containing framework 10 has captured the CN- ions from the oxidative btre decomposition. The perchlorate frameworks 7, 8, or 9 react in an aqueous NH4+PF6- solution with formation of the related PF6--containing frameworks. The differences in the metal-btre bridging mode (mu2-kappaN1:N1', mu2-kappaN1:N2 or mu4-kappaN1:N2:N1':N2') and the btre ligand symmetry can be correlated with different signal patterns in the 13C cross polarization magic angle spinning (CPMAS) NMR spectra. Compounds 2, 4, 5 and 7 to 10 exhibit fluorescence at 403-481 nm upon excitation at 270-373 nm which is not seen in the free btre ligand.

  9. Investigation of the curvature induction and membrane localization of the influenza virus M2 protein using static and off-magic-angle spinning solid-state nuclear magnetic resonance of oriented bicelles.

    Science.gov (United States)

    Wang, Tuo; Hong, Mei

    2015-04-07

    A wide variety of membrane proteins induce membrane curvature for function; thus, it is important to develop new methods to simultaneously determine membrane curvature and protein binding sites in membranes with multiple curvatures. We introduce solid-state nuclear magnetic resonance (NMR) methods based on magnetically oriented bicelles and off-magic-angle spinning (OMAS) to measure membrane curvature and the binding site of proteins in mixed-curvature membranes. We demonstrate these methods on the influenza virus M2 protein, which not only acts as a proton channel but also mediates virus assembly and membrane scission. An M2 peptide encompassing the transmembrane (TM) domain and an amphipathic helix, M2(21-61), was studied and compared with the TM peptide (M2TM). Static (31)P NMR spectra of magnetically oriented 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) bicelles exhibit a temperature-independent isotropic chemical shift in the presence of M2(21-61) but not M2TM, indicating that the amphipathic helix confers the ability to generate a high-curvature phase. Two-dimensional (2D) (31)P spectra indicate that this high-curvature phase is associated with the DHPC bicelle edges, suggestive of the structure of budding viruses from the host cell. (31)P- and (13)C-detected (1)H relaxation times of the lipids indicate that the majority of M2(21-61) is bound to the high-curvature phase. Using OMAS experiments, we resolved the (31)P signals of lipids with identical headgroups based on their distinct chemical shift anisotropies. On the basis of this resolution, 2D (1)H-(31)P correlation spectra show that the amide protons in M2(21-61) correlate with the DMPC but not DHPC (31)P signal of the bicelle, indicating that a small percentage of M2(21-61) partitions into the planar region of the bicelles. These results show that the amphipathic helix induces high membrane curvature and localizes the protein to this phase, in good

  10. Spin Hall effect by surface roughness

    KAUST Repository

    Zhou, Lingjun

    2015-01-08

    The spin Hall and its inverse effects, driven by the spin orbit interaction, provide an interconversion mechanism between spin and charge currents. Since the spin Hall effect generates and manipulates spin current electrically, to achieve a large effect is becoming an important topic in both academia and industries. So far, materials with heavy elements carrying a strong spin orbit interaction, provide the only option. We propose here a new mechanism, using the surface roughness in ultrathin films, to enhance the spin Hall effect without heavy elements. Our analysis based on Cu and Al thin films suggests that surface roughness is capable of driving a spin Hall angle that is comparable to that in bulk Au. We also demonstrate that the spin Hall effect induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.

  11. O sentido argumentativo do articulador mas no discurso oral

    OpenAIRE

    Nesello, Marcela Cristiane

    2008-01-01

    Esta pesquisa tem por objetivo estudar o sentido do articulador mas no discurso oral pela Teoria da Argumentação na Língua de Oswald Ducrot e colaboradores. Temos o propósito de identificar e analisar os sentidos que o articulador mas assume no discurso oral, bem como suas diferentes funções, por isso trata-se de uma pesquisa qualitativa. Também é objetivo desta pesquisa identificar os encadeamentos precedentes e subseqüentes ao articulador. Para esses fins, apresentamos estudos sobre o artic...

  12. KINERJA USAHA TANAMAN HIAS POTONG PT PESONA DAUN MAS ASRI

    Directory of Open Access Journals (Sweden)

    Muhamad Arief Bangun Sanjaya

    2017-01-01

    Full Text Available Pesona Daun Mas Asri is a company in cut flowers  and leaves cultivation. The  achievement is shown by the performance of the company. The overall company’s performance contributes in developing the company’s vision. Balanced score card is a management tool used to observe and maintain the stability between financial indicators (financial perspective and non financial indicators (customer, business internal process, growth and learning.  The objective of the journal is to plan the performance of the company using balanced scorecard approach, analyze and calculate the vision, mission and strategy implemented by Pesona Daun Mas in it business activity..  The result for every strategic target shows that the performance of Pesona Daun Mas is excellent with the achieved score of 78,04%.  However the target for the selling growth level and marketing activities are classified as average which means that it still needs to be developed.   Keywords:  balanced scorecard, performance evaluation, KPI performance index, ornamental plants cutAbstrakPesona Daun Mas Asri merupakan perusahaan yang bergerak dalam bidang budi daya bunga potong dan daun potong. Pencapaian dalam menjalankan sebuah perusahaan dapat dilihat dari kinerja perusahaan tersebut.Kinerja perusahaan Pesona Daun Mas Asri secara keseluruhan dapat berkontribusi untuk mengembangkan perusahaan dalam mencapai visi. Balanced scorecard adalah salah satu alat manajemen yang dapat melihat dan menjaga keseimbangan antara indikator keuangan (perspektif keuangan dan indikator non-keuangan (pelanggan, proses bisnisinternal, pertumbuhan dan pembelajaran. Tujuan dari jurnal ini adalah untuk merancang pengukuran kinerja perusahaan dengan pendekatan Balanced scorecard. Penelitian ini juga bertujuan menganalisis dan mengukur pelaksanaan visi, misi dan strategi yang dijalankan oleh Pesona Daun Mas Asri dalam kegiatan bisnisnya. Selain itu, memberikan saran dan rekomendasi, serta merumuskan implikasi

  13. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  14. Site-resolved 2H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra

    Science.gov (United States)

    Lindh, E. L.; Stilbs, P.; Furó, I.

    2016-07-01

    We investigate a way one can achieve good spectral resolution in 2H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the 2H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two 2H spin populations with similar chemical shifts but different quadrupole splittings. In 2H-exchanged cellulose containing two 2H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics.

  15. Joule heating in spin Hall geometry

    Science.gov (United States)

    Taniguchi, Tomohiro

    2016-07-01

    The theoretical formula for the entropy production rate in the presence of spin current is derived using the spin-dependent transport equation and thermodynamics. This theory is applicable regardless of the source of the spin current, for example, an electric field, a temperature gradient, or the Hall effect. It reproduces the result in a previous work on the dissipation formula when the relaxation time approximation is applied to the spin relaxation rate. By using the developed theory, it is found that the dissipation in the spin Hall geometry has a contribution proportional to the square of the spin Hall angle.

  16. The evolution of the MasAgro hubs

    NARCIS (Netherlands)

    Camacho-Villa, Tania Carolina; Almekinders, Conny; Hellin, Jon; Martinez-Cruz, Tania Eulalia; Rendon-Medel, Roberto; Guevara-Hernández, Francisco; Beuchelt, Tina D.; Govaerts, Bram

    2016-01-01

    Purpose: Little is known about effective ways to operationalize agricultural innovation processes. We use the MasAgro program in Mexico (which aims to increase maize and wheat productivity, profitability and sustainability), and the experiences of middle level ‘hub managers’, to understand how innov

  17. [Hepatic manifestation of a macrophage activation syndrome (MAS)].

    Science.gov (United States)

    Nagel, Michael; Schwarting, Andreas; Straub, Beate K; Galle, Peter R; Zimmermann, Tim

    2017-04-04

    Background Elevated liver values are the most common pathological laboratory result in Germany. Frequent findings, especially in younger patients, are nutritive- or medicamentous- toxic reasons, viral or autoimmune hepatitis. A macrophage activation syndrome (MAS) may manifest like a viral infectious disease with fever, hepatosplenomegaly and pancytopenia and is associated with a high mortality. It is based on an enhanced activation of macrophages with increased cytokine release, leading to organ damage and multi-organ failure. In addition to genetic causes, MAS is commonly associated with infections and rheumatic diseases. We report the case of a 26-year-old female patient suffering from MAS as a rare cause of elevated liver enzymes. Methods Patient characteristics, laboratory values, liver histology, bone marrow and radiological imaging were documented and analyzed. Case Report After an ordinary upper airway infection with bronchitis, a rheumatic arthritis appeared and was treated with leflunomide und methotrexate. In the further course of the disease, the patient developed an acute hepatitis with fever, pancytopenia and massive hyperferritinemia. Immunohistochemistry of the liver biopsy revealed hemophagocytosis and activation of CD68-positive macrophages. In the radiological and histological diagnostics of the liver and bone marrow, an MAS was diagnosed as underlying disease of the acute hepatitis. Under therapy with prednisolone, the fever disappeared and transaminases and ferritin rapidly normalized. Conclusion Aside from the frequent causes of elevated liver values in younger patients, such as nutritive toxic, drug induced liver injury, viral or autoimmune hepatitis, especially in case of massive hyperferritinemia, a MAS should be considered as a rare cause of acute liver disease.

  18. Direct mapping of spin and orbital entangled wave functions under interband spin-orbit coupling of giant Rashba spin-split surface states

    Science.gov (United States)

    Noguchi, Ryo; Kuroda, Kenta; Yaji, K.; Kobayashi, K.; Sakano, M.; Harasawa, A.; Kondo, Takeshi; Komori, F.; Shin, S.

    2017-01-01

    We use spin- and angle-resolved photoemission spectroscopy (SARPES) combined with a polarization-variable laser and investigate the spin-orbit coupling effect under interband hybridization of Rashba spin-split states for the surface alloys Bi/Ag(111) and Bi/Cu(111). In addition to the conventional band mapping of photoemission for Rashba spin splitting, the different orbital and spin parts of the surface wave function are directly imaged into energy-momentum space. It is unambiguously revealed that the interband spin-orbit coupling modifies the spin and orbital character of the Rashba surface states leading to the enriched spin-orbital entanglement and the pronounced momentum dependence of the spin polarization. The hybridization thus strongly deviates the spin and orbital characters from the standard Rashba model. The complex spin texture under interband spin-orbit hybridization proposed by first-principles calculation is experimentally unraveled by SARPES with a combination of p - and s -polarized light.

  19. Cross ambiguity functions on the MasPar MP-2

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, D.A.; Pryor, D.V. [Superconducting Research Center, Bowie, MD (United States); Frock, C.K. [and others

    1995-12-01

    In a signal processing environment, cross ambiguity functions are often used to detect when one signal is a time and/or frequency shift of another. They consist of multiple cross-correlations, which can be computed efficiently using complex valued FFTs. This paper discusses the implementation of cross ambiguity functions on the MasPar MP-2, a SIMD processor array. Two different implementations are developed. The first computes each cross ambiguity function serially, using FFT code that parallelizes across the complete set of processors. The second uses the MasPar IORAM to realign the data so that the cross ambiguity functions can be computed in parallel. In this case, multiple FFTs are executed in parallel on subsets of the processors, which lowers the overall amount of communication required.

  20. ERP sistēmas ieviešana

    OpenAIRE

    Proskurins, Aleksandrs

    2008-01-01

    Šajā darbā tika apskatīta informācijas sistēmu klasifikācija, uzņēmuma resursu plānošanas sistēmas (ERP) definīcija un tās vieta IS klasifikācijā. Tika apskatīti ERP sistēmu ieviešanas teorētiskie aspekti, izstrādes un pielāgošanas specifika, kā arī tika izanalizēti vairāki ERP sistēmas ieviešanas projekti Latvijas uzņēmumos.

  1. Spin-torque switching of a nano-magnet using giant spin hall effect

    Directory of Open Access Journals (Sweden)

    Ashish V. Penumatcha

    2015-10-01

    Full Text Available The Giant Spin Hall Effect(GSHE in metals with high spin-orbit coupling is an efficient way to convert charge currents to spin currents, making it well-suited for writing information into magnets in non-volatile magnetic memory as well as spin-logic devices. We demonstrate the switching of an in-plane CoFeB magnet using a combination of GSHE and an external magnetic field. The magnetic field dependence of the critical current is used to estimate the spin hall angle with the help of a thermal activation model for spin-transfer torque switching of a nanomagnet.

  2. Interfacial spin Hall current in a Josephson junction with Rashba spin-orbit coupling

    Institute of Scientific and Technical Information of China (English)

    Yang Zhi-Hong; Yang Yong-Hong; Wang Jun

    2012-01-01

    We theoretically investigate the spin transport properties of the Cooper pairs in a conventional Josephson junction with Rashba spin orbit coupling considered in one of the superconducting leads.It is found that an angle-resolved spin supercurrent flows through the junction and a nonzero interfacial spin Hall current driven by the superconducting phase difference also appears at the interface.The physical origin of this is that the Rashba spin-orbit coupling can indnce a triplet order parameter in the s-wave superconductor.The interfacial spin Hall current dependences on the system parameters are also discussed.

  3. PERBAIKAN MUTU GENETIK IKAN MAS RAJADANU MELALUI SELEKSI

    Directory of Open Access Journals (Sweden)

    Deni Radona

    2016-11-01

    Full Text Available Ikan mas rajadanu mempunyai karakter cepat tumbuh dan tahan penyakit. Selective breeding merupakan salah satu upaya dalam peningkatan mutu induk dan benih. Penelitian ini bertujuan untuk melihat respons pertumbuhan dan nilai heritabilitas pada ikan mas rajadanu (F-3 yang berpotensi tumbuh lebih cepat dibandingkan dengan generasi sebelumnya (F-2. Pembentukan ikan mas rajadanu F-3 dilakukan dengan metode hierarki (satu jantan membuahi empat betina. Pengujian respons seleksi dilakukan terhadap benih hasil pemijahan induk ikan mas rajadanu F-2 yang terseleksi. Terbentuk sebanyak 25 famili dan dipelihara secara terpisah selama 160 hari pada kolam beton ukuran 1,5 m x 1 m dengan ketinggian air 60 cm. Kolam digunakan sebanyak 25 buah. Respons seleksi dihitung dengan melihat nilai rata-rata pertumbuhan F-3 dibandingkan dengan F-2. Hasil penelitian menunjukan performa ikan mas rajadanu F-3 memiliki nilai respons seleksi (14,20 g; nilai heritabilitas (0,60; pertambahan bobot (41,63 ± 10,51 g; dan pertambahan panjang (9,86 ± 1,43 cm. Rajadanu carp strain have character of fast growing and disease resistant. Selective breeding is one of an attempts can be appllied to improve the broodstock and seed quality genetically. This research was aims to see response of growth and heritability value of F-3 on carp rajadanu that potentially grow faster compared with previous generation (F-2. The F-3 carp rajadanu was designated with hierarchy method (one males fertilize four female. The F-3 was derived from F-2 and formed 25 families. Those families were maintained for 160 days on pond with size of 1.5 m x 1 m and water depth of 60 cm. The response selection was calculated by choosing the best individuals of each based on ADG (averange daily growth. The research result show that the values of response selection was 14.20 g, heritability value of 0.60, weight, and length gain were 41.63 g and 9.86 cm, respectively.

  4. Spin Interference in Rashba 2DEG Systems

    Science.gov (United States)

    Nitta, Junsaku

    The gate controllable SOI provides useful information about spin interference.1 Spin interference effects are studied in two different interference loop structures. It is known that sample specific conductance fluctuations affect the conductance in the interference loop. By using array of many interference loops, we carefully pick up TRS Altshuler-Aronov-Spivak (AAS)-type oscillation which is not sample specific and depends on the spin phase. The experimentally obtained gate voltage dependence of AAS oscillations indicates that the spin precession angle can be controlled by the gate voltage.2 We demonstrate the time reversal Aharonov-Casher (AC) effect in small arrays of mesoscopic rings.3 By using an electrostatic gate we can control the spin precession angle rate and follow the AC phase over several interference periods. We also see the second harmonic of the AC interference, oscillating with half the period. The spin interference is still visible after more than 20π precession angle. We have proposed a Stern-Gerlach type spin filter based on the Rashba SOI.4 A spatial gradient of effective magnetic field due to the nonuniform SOI separates spin up and down electrons. This spin filter works even without any external magnetic fields and ferromagnetic contacts. We show the semiconductor/ferromagnet hybrid structure is an effective way to detect magnetization process of submicron magnets. The problem of the spin injection from ferromagnetic contact into 2DEG is also disicussed. Note from Publisher: This article contains the abstract only.

  5. Stern-Gerlach experiment with higher spins

    Science.gov (United States)

    Tekin, Bayram

    2016-05-01

    We analyze idealized sequential Stern-Gerlach (SG) experiments with higher spin particles. This analysis serves at least two purposes: the widely discussed spin-1/2 case leads to some misunderstandings since the probabilities are always evenly distributed for the sequential orthogonal magnets, which does not generalize to higher spins. A detailed discussion of the higher spin case, as is done here, is highly useful. Secondly, the Wigner rotation matrices for generic spins become conceptually more transparent with this physical example. We also give compact formulas for the probabilities in terms of the angle between the sequential SG apparatus for generic spins. We work out the spin-1/2, spin-1 cases explicitly. Since there are some confusing issues regarding the actual experiment, we also compile a ‘facts and fiction’ section on the SG experiments.

  6. Spin polarization of electrons with Rashba double-refraction

    Energy Technology Data Exchange (ETDEWEB)

    Ramaglia, V Marigliano; Bercioux, D; Cataudella, V; De Filippis, G; Perroni, C A [Coherentia-INFM and Dipartimento di Scienze Fisiche Universita degli Studi Federico II, Naples, I-80126 (Italy)

    2004-12-22

    We demonstrate how the Rashba spin-orbit coupling in semiconductor heterostructures can produce and control a spin-polarized current without ferromagnetic leads. The key idea is to use spin-double refraction of an electronic beam with a nonzero incidence angle. A region where the spin-orbit coupling is present separates the source and the drain without spin-orbit coupling. We show how the transmission and the beam spin polarization critically depend on the incidence angle. The transmission halves when the incidence angle is greater than a limit angle and a significant spin polarization appears. On increasing the spin-orbit coupling one can obtain the modulation of the intensity and of the spin polarization of the output electronic current when the input current is unpolarized. Our analysis shows the possibility of realizing a spin-field-effect transistor based on the propagation of only one mode with the region with spin-orbit coupling, whereas the original Datta and Das device (1990 Appl. Phys. Lett. 56 665) uses the spin precession that originates from the interference between two modes with orthogonal spin.

  7. Photonic spin Hall effect in topological insulators

    CERN Document Server

    Zhou, Xinxing; Ling, Xiaohui; Chen, Shizhen; Luo, Hailu; Wen, Shuangchun

    2013-01-01

    In this paper we theoretically investigate the photonic spin Hall effect (SHE) of a Gaussian beam reflected from the interface between air and topological insulators (TIs). The photonic SHE is attributed to spin-orbit coupling and manifests itself as in-plane and transverse spin-dependent splitting. We reveal that the spin-orbit coupling effect in TIs can be routed by adjusting the axion angle variations. Unlike the transverse spin-dependent splitting, we find that the in-plane one is sensitive to the axion angle. It is shown that the polarization structure in magneto-optical Kerr effect is significantly altered due to the spin-dependent splitting in photonic SHE. We theoretically propose a weak measurement method to determine the strength of axion coupling by probing the in-plane splitting of photonic SHE.

  8. Direct Observation of Lattice Aluminum Environments in Li Ion Cathodes LiNi1-y-zCoyAlzO2 and Al-Doped LiNixMnyCozO2 via (27)Al MAS NMR Spectroscopy.

    Science.gov (United States)

    Dogan, Fulya; Vaughey, John T; Iddir, Hakim; Key, Baris

    2016-07-06

    Direct observations of local lattice aluminum environments have been a major challenge for aluminum-bearing Li ion battery materials, such as LiNi1-y-zCoyAlzO2 (NCA) and aluminum-doped LiNixMnyCozO2 (NMC). (27)Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy is the only structural probe currently available that can qualitatively and quantitatively characterize lattice and nonlattice (i.e., surface, coatings, segregation, secondary phase etc.) aluminum coordination and provide information that helps discern its effect in the lattice. In the present study, we use NMR to gain new insights into transition metal (TM)-O-Al coordination and evolution of lattice aluminum sites upon cycling. With the aid of first-principles DFT calculations, we show direct evidence of lattice Al sites, nonpreferential Ni/Co-O-Al ordering in NCA, and the lack of bulk lattice aluminum in aluminum-"doped" NMC. Aluminum coordination of the paramagnetic (lattice) and diamagnetic (nonlattice) nature is investigated for Al-doped NMC and NCA. For the latter, the evolution of the lattice site(s) upon cycling is also studied. A clear reordering of lattice aluminum environments due to nickel migration is observed in NCA upon extended cycling.

  9. MAS及其相关概念%MAS and Correlation Conceptions

    Institute of Scientific and Technical Information of China (English)

    程显毅; 董红斌

    2000-01-01

    The researching of MAS originates from distributed artificial intelligence ,because new theory framework is provided for solving some problems in complex and distributed environment ,MAS is valued increasingly by computer ,automatic control and management science.

  10. Nacionalismo e indigenismo en el gobierno del MAS

    OpenAIRE

    Mayorga, Fernando; Rodríguez, Benjamín

    2010-01-01

    En los últimos años se ha modificado el mapa político de América latina con resultados electorales que indican una idea genérica de “giro a la izquierda”, imponiendo paulatinamente una taxonomía que distingue gobiernos socialdemócratas y gobiernos populistas. En Bolivia el arribo al gobierno del Movimiento al Socialismo (MAS) en enero de 2006 y la reelección presidencial de Evo Morales, despliega el proceso de una profunda reforma estatal que articula las demandas sociales en torno al naciona...

  11. MAS-SCM for Auto Sector-The Framework

    Directory of Open Access Journals (Sweden)

    Ritu Sindhu

    2011-07-01

    Full Text Available The purpose of this study is to describe in detail the development status of the innovative Multi -Agent based supply chain management (MAS-SCMAS for auto sector. This study was undertaken in view of the significance of improvement in efficiency of automobile sector and the development of a good multi-agent system framework to achieve that. The factors affecting the efficiency or OEE of the industry and the efficiency properties were identified. It was clearly revealed that the available model do not fulfill the needs in the supply chain management of automobile industry and there is a scope for evolving new model resulting in better efficiency.

  12. Extrinsic Spin Hall Effect Induced by Iridium Impurities in Copper

    Science.gov (United States)

    Niimi, Y.; Morota, M.; Wei, D. H.; Deranlot, C.; Basletic, M.; Hamzic, A.; Fert, A.; Otani, Y.

    2011-03-01

    We study the extrinsic spin Hall effect induced by Ir impurities in Cu by injecting a pure spin current into a CuIr wire from a lateral spin valve structure. While no spin Hall effect is observed without Ir impurity, the spin Hall resistivity of CuIr increases linearly with the impurity concentration. The spin Hall angle of CuIr, (2.1±0.6)% throughout the concentration range between 1% and 12%, is practically independent of temperature. These results represent a clear example of predominant skew scattering extrinsic contribution to the spin Hall effect in a nonmagnetic alloy.

  13. Dynamic Feedback in Ferromagnet-Spin Hall Metal Heterostructures

    Science.gov (United States)

    Cheng, Ran; Zhu, Jian-Gang; Xiao, Di

    2016-08-01

    In ferromagnet-normal-metal heterostructures, spin pumping and spin-transfer torques are two reciprocal processes that occur concomitantly. Their interplay introduces a dynamic feedback effect interconnecting energy dissipation channels of both magnetization and current. By solving the spin diffusion process in the presence of the spin Hall effect in the normal metal, we show that the dynamic feedback gives rise to (i) a nonlinear magnetic damping that is crucial to sustain uniform steady-state oscillations of a spin Hall oscillator at large angles and (ii) a frequency-dependent spin Hall magnetoimpedance that reduces to the spin Hall magnetoresistance in the dc limit.

  14. Study on Effects of Acidic Extraction on Yield and Structure of Tobacco Pectin by CP/MAS 13C NMR Spectroscopy%CP/MAS 13C NMR技术分析酸提取对烟草果胶产率和结构的影响

    Institute of Scientific and Technical Information of China (English)

    李东亮; 谭兰兰; 高芸; 朱晓兰; 戴亚

    2015-01-01

    In order to investigate the fine structure of tobacco pectin and the key factors in extraction, the effects of extraction conditions (including pH, temperature and extraction time) on the yield, purity and structure of pectin were studied by cross-polarization/magic angle spinning 13C nuclear magnetic resonance (CP/MAS 13C NMR) spectroscopy. The results showed that: 1) The highest pectin yield (10.87%) achieved after extracting for 1.5 hours at pH 1.5 and 85 ℃; while polygalacturonic acid(PGA)reached its highest purity (78.4%) after extracting for 1.5 hours at pH 2.0 and 95 ℃. 2) The extraction conditions influenced the structure of pectin to a certain extent, the degrees of methylation (DM) and acetylation (DA) of pectin increased as pH value increased from 1.5 to 2.5, while decreased with the rise of temperature and the prolongation of extraction time significantly.%为研究烟草果胶的精细结构和掌握果胶提取的关键因素,采用交叉极化/魔角旋转固态核磁光谱技术(CP/MAS 13C NMR)考察了酸提取条件(pH、温度和提取时间)对烟草果胶产率、纯度(质量分数)及结构的影响。结果表明:①在pH 1.5和85℃条件下提取1.5 h时,烟草果胶得率最高,为10.87%,但在pH 2.0和95℃条件下提取1.5 h时,聚半乳糖醛酸(PGA)的纯度最高,为78.4%。②提取条件对烟草果胶的结构也有一定的影响,pH=1.5~2.5时,果胶的甲酯度(DM)和乙酰度(DA)均随pH升高而增大,随温度升高而降低,随提取时间延长而显著下降。

  15. What drives cross-border M&As in commercial banking?

    NARCIS (Netherlands)

    Galamhussen, Mohamed; Hennart, Jean-Francois; Pinheiro, Carlos Manuel

    2016-01-01

    Using a gravity model, we analyze the determinants of the probability that commercial banks in 89 acquiring countries and 118 target countries will undertake M&As over a 30-year period (1981–2010) and of the value of these M&As. We find that the value of cross-border M&As increases with the size of

  16. Extrinsic spin Hall effect in graphene

    Science.gov (United States)

    Rappoport, Tatiana

    The intrinsic spin-orbit coupling in graphene is extremely weak, making it a promising spin conductor for spintronic devices. In addition, many applications also require the generation of spin currents in graphene. Theoretical predictions and recent experimental results suggest one can engineer the spin Hall effect in graphene by greatly enhancing the spin-orbit coupling in the vicinity of an impurity. The extrinsic spin Hall effect then results from the spin-dependent skew scattering of electrons by impurities in the presence of spin-orbit interaction. This effect can be used to efficiently convert charge currents into spin-polarized currents. I will discuss recent experimental results on spin Hall effect in graphene decorated with adatoms and metallic cluster and show that a large spin Hall effect can appear due to skew scattering. While this spin-orbit coupling is small if compared with what it is found in metals, the effect is strongly enhanced in the presence of resonant scattering, giving rise to robust spin Hall angles. I will present our single impurity scattering calculations done with exact partial-wave expansions and complement the analysis with numerical results from a novel real-space implementation of the Kubo formalism for tight-binding Hamiltonians. The author acknowledges the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.

  17. Broadband finite-pulse radio-frequency-driven recoupling (fp-RFDR) with (XY8)4(1) super-cycling for homo-nuclear correlations in very high magnetic fields at fast and ultra-fast MAS frequencies.

    Science.gov (United States)

    Shen, Ming; Hu, Bingwen; Lafon, Oliver; Trébosc, Julien; Chen, Qun; Amoureux, Jean-Paul

    2012-10-01

    We demonstrate that inter-residue (13)C-(13)C proximities (of about 380 pm) in uniformly (13)C-labeled proteins can be probed by applying robust first-order recoupling during several milliseconds in single-quantum single-quantum dipolar homo-nuclear correlation (SQ-SQ D-HOMCOR) 2D experiments. We show that the intensity of medium-range homo-nuclear correlations in these experiments is enhanced using broadband first-order finite-pulse radio-frequency-driven recoupling (fp-RFDR) NMR sequence with a nested (XY8)4(1) super-cycling. The robustness and the efficiency of the fp-RFDR-(XY8)4(1) method is demonstrated at high magnetic field (21.1T) and high Magic-Angle Spinning (MAS) speeds (up to 60 kHz). The introduced super-cycling, formed by combining phase inversion and a global four-quantum phase cycle, improves the robustness of fp-RFDR to (i) chemical shift anisotropy (CSA), (ii) spread in isotropic chemical shifts, (iii) rf-inhomogeneity and (iv) hetero-nuclear dipolar couplings for long recoupling times. We show that fp-RFDR-(XY8)4(1) is efficient sans (1)H decoupling, which is beneficial for temperature-sensitive biomolecules. The efficiency and the robustness of fp-RFDR-(XY8)4(1) is investigated by spin dynamics numerical simulations as well as solid-state NMR experiments on [U-(13)C]-L-histidine·HCl, a tetra-peptide (Fmoc-[U-(13)C,(15)N]-Val-[U-(13)C,(15)N]-Ala-[U-(13)C,(15)N]-Phe-Gly-t-Boc) and Al(PO(3))(3).

  18. 基于对策论的MAS-BDI主体模型%Modeling MAS-BDI Agent in Game Theory

    Institute of Scientific and Technical Information of China (English)

    吴朝晖; 忻栋; 潘云鹤

    2001-01-01

    BDI Agent will choose the intention, which has minimal penalty and maximal income, to achieve its goal. While in multi-Agent system,it is hard for the Agent to find the best intention,not only because of the lack of information,but also the high complexity ot computation. The factors ,which will affect the Agents' decision-making,are the cooperation state of Agents ,the Agents' reasoning process,etc. In this paper,we introduce a new model of MAS-BDI Agent based on game theory,and propose the intention selection strategy for a single BDI Agent, (cooperated)multi-Agent and(uncooperated)multiAgent.

  19. Spin polarized tunneling study on spin hall metals and topological insulators (Conference Presentation)

    Science.gov (United States)

    Liu, Luqiao

    2016-10-01

    Spin orbit interactions give rise to interesting physics phenomena in solid state materials such as the spin Hall effect (SHE) and topological insulator surface states. Those effects have been extensively studied using various electrical detection methods. However, to date most experiments focus only on characterizing electrons near the Fermi surface, while spin-orbit interaction is expected to be energy dependent. Here we developed a tunneling spectroscopy technique to measure spin Hall materials and topological insulators under finite bias voltages. By electrically injecting spin polarized electrons into spin Hall metals or topological insulators using tunnel junctions and measuring the induced transverse voltage, we are able to study SHE in typical 5d transition metals and the spin momentum locking in topological insulators. For spin Hall effect metals, the magnitude of the spin Hall angle has been a highly controversial topic in previous studies. Results obtained from various techniques can differ by more than an order of magnitude. Our results from this transport measurement turned out to be consistent with the values obtained from spin Hall torque measurements, which can help to address the long debating issue. Besides the magnitude, the voltage dependent spectra from our experiment also provide useful information in distinguishing between different potential mechanisms. Finally, because of the impedance matching capability of tunnel junctions, the spin polarized tunneling technique can also be used as a powerful tool to measure resistive materials such as the topological insulators. Orders of magnitude improvement in the effective spin Hall angle was demonstrated through our measurement

  20. Spin foams

    CERN Document Server

    Engle, Jonathan

    2013-01-01

    The spin foam framework provides a way to define the dynamics of canonical loop quantum gravity in a spacetime covariant way, by using a path integral over histories of quantum states which can be interpreted as `quantum space-times'. This chapter provides a basic introduction to spin foams aimed principally at beginning graduate students and, where possible, at broader audiences.

  1. A new angle on the Euler angles

    Science.gov (United States)

    Markley, F. Landis; Shuster, Malcolm D.

    1995-01-01

    We present a generalization of the Euler angles to axes beyond the twelve conventional sets. The generalized Euler axes must satisfy the constraint that the first and the third are orthogonal to the second; but the angle between the first and third is arbitrary, rather than being restricted to the values 0 and pi/2, as in the conventional sets. This is the broadest generalization of the Euler angles that provides a representation of an arbitrary rotation matrix. The kinematics of the generalized Euler angles and their relation to the attitude matrix are presented. As a side benefit, the equations for the generalized Euler angles are universal in that they incorporate the equations for the twelve conventional sets of Euler angles in a natural way.

  2. Extrinsic spin Hall effect from anisotropic Rashba spin-orbit coupling in graphene

    Science.gov (United States)

    Yang, H.-Y.; Huang, Chunli; Ochoa, H.; Cazalilla, M. A.

    2016-02-01

    We study the effect of anisotropy of the Rashba coupling on the extrinsic spin Hall effect due to spin-orbit active adatoms on graphene. In addition to the intrinsic spin-orbit coupling, a generalized anisotropic Rashba coupling arising from the breakdown of both mirror and hexagonal symmetries of pristine graphene is considered. We find that Rashba anisotropy can strongly modify the dependence of the spin Hall angle on carrier concentration. Our model provides a simple and general description of the skew scattering mechanism due to the spin-orbit coupling that is induced by proximity to large adatom clusters.

  3. Spin Hall effect-driven spin torque in magnetic textures

    KAUST Repository

    Manchon, Aurelien

    2011-07-13

    Current-induced spin torque and magnetization dynamics in the presence of spin Hall effect in magnetic textures is studied theoretically. The local deviation of the charge current gives rise to a current-induced spin torque of the form (1 - ΒM) × [(u 0 + αH u 0 M) ∇] M, where u0 is the direction of the injected current, H is the Hall angle and is the non-adiabaticity parameter due to spin relaxation. Since αH and ×can have a comparable order of magnitude, we show that this torque can significantly modify the current-induced dynamics of both transverse and vortex walls. © 2011 American Institute of Physics.

  4. Glaucoma, Open-Angle

    Science.gov (United States)

    ... Programs Home > Statistics and Data > Glaucoma, Open-angle Glaucoma, Open-angle Open-angle Glaucoma Defined In open-angle glaucoma, the fluid passes ... 2010 2010 U.S. Age-Specific Prevalence Rates for Glaucoma by Age and Race/Ethnicity The prevalence of ...

  5. Angiotensin type 2 receptor (AT2R) and receptor Mas

    DEFF Research Database (Denmark)

    Villela, Daniel; Leonhardt, Julia; Patel, Neal;

    2015-01-01

    The angiotensin type 2 receptor (AT2R) and the receptor Mas are components of the protective arms of the renin-angiotensin system (RAS), i.e. they both mediate tissue protective and regenerative actions. The spectrum of actions of these two receptors and their signalling mechanisms display striking...... similarities. Moreover, in some instances, antagonists for one receptor are able to inhibit the action of agonists for the respective other receptor. These observations suggest that there may be a functional or even physical interaction of both receptors. This article discusses potential mechanisms underlying...... the phenomenon of blockade of angiotensin-(1-7) [Ang-(1-7)] actions by AT2R antagonists and vice versa. Such mechanisms may comprise dimerization of the receptors or dimerization-independent mechanisms such as lack of specificity of the receptor ligands used in the experiments or involvement of the Ang-(1...

  6. TOKSISITAS LETAL MOLUSKISIDA NIKLOSAMIDA PADA BENIH IKAN MAS (Cyprinus carpio

    Directory of Open Access Journals (Sweden)

    Yosmaniar Yosmaniar

    2009-04-01

    Full Text Available Penggunaan moluskisida untuk menanggulangi hama dalam budidaya tanaman padi yang semakin meningkat berpotensi mencemari lingkungan perairan, karena mengandung residu dari bahan aktifnya. Moluskisida niklosamida (C13H8Cl2N2O4 merupakan bahan aktif pestisida yang digunakan untuk memberantas hama keong mas atau siput murbei (Pomacea sp. di sawah. Dengan demikian, bahan tersebut memiliki potensi untuk mencemari lahan tempat usaha budidaya ikan. Penelitian ini bertujuan untuk mengetahui potensi toksisitas akut niklosamida terhadap benih ikan mas (Cyprinus carpio yang ditunjukkan oleh nilai Median Lethal Concentration (LC50 24, 48, dan 96 jam. Penelitian dilakukan di Instalasi Riset Lingkungan Perikanan Budidaya dan Toksikologi, Cibalagung-Bogor. Menggunakan ikan mas dengan bobot individu 2,47 ± 0,13 g. Moluskisida yang digunakan mengandung bahan aktif niklosamida 250g/L. Wadah pengujian berupa 21 unit akuarium kaca berukuran 40 cm x 20 cm x 20 cm yang dilengkapi aerasi serta saluran pemasukan dan pengeluaran. Jumlah ikan uji setiap wadah 10 ekor dengan peubah yang diukur adalah mortalitas ikan. Selama penelitian ikan tidak diberi makan. Tahapan penelitian terdiri atas penentuan nilai ambang atas-bawah, nilai lethal time dan LC50 -24, 48, 72, dan 96 jam. Data diolah dengan analisis probit program LC50. Hasil penelitian menunjukkan bahwa nilai LC50-24, 48, 72, dan 96 jam terhadap benih ikan mas adalah 0,8012 (0,7140—0,8990; 0,5999 (0,5356—0,6719; 0,4511 (0,4067—0,5004; dan 0,3849 mg/L (0,3684—0,4061. Hal ini menunjukkan niklosamida termasuk pestisida yang memiliki toksisitas sangat tinggi (golongan A. The use of molluscicide in aquatic as well as in terresterial agro ecosystem without properly controlled may produce detrimental effects on freshwater fisheries. Molluscicide utilization for golden apple snail (Pomacea sp. control in rice field has increased. The ingredient potencially has a possibility to pollute aquaculture water. The

  7. Two spinning ways for precession dynamo.

    Science.gov (United States)

    Cappanera, L; Guermond, J-L; Léorat, J; Nore, C

    2016-04-01

    It is numerically demonstrated by means of a magnetohydrodynamic code that precession can trigger dynamo action in a cylindrical container. Fixing the angle between the spin and the precession axis to be 1/2π, two limit configurations of the spinning axis are explored: either the symmetry axis of the cylinder is parallel to the spin axis (this configuration is henceforth referred to as the axial spin case), or it is perpendicular to the spin axis (this configuration is referred to as the equatorial spin case). In both cases, the centro-symmetry of the flow breaks when the kinetic Reynolds number increases. Equatorial spinning is found to be more efficient in breaking the centro-symmetry of the flow. In both cases, the average flow in the reference frame of the mantle converges to a counter-rotation with respect to the spin axis as the Reynolds number grows. We find a scaling law for the average kinetic energy in term of the Reynolds number in the axial spin case. In the equatorial spin case, the unsteady asymmetric flow is shown to be capable of sustaining dynamo action in the linear and nonlinear regimes. The magnetic field is mainly dipolar in the equatorial spin case, while it is is mainly quadrupolar in the axial spin case.

  8. Food Waste Composting Study from Makanan Ringan Mas

    Science.gov (United States)

    Kadir, A. A.; Ismail, S. N. M.; Jamaludin, S. N.

    2016-07-01

    The poor management of municipal solid waste in Malaysia has worsened over the years especially on food waste. Food waste represents almost 60% of the total municipal solid waste disposed in the landfill. Composting is one of low cost alternative method to dispose the food waste. This study is conducted to compost the food waste generation in Makanan Ringan Mas, which is a medium scale industry in Parit Kuari Darat due to the lack knowledge and exposure of food waste recycling practice. The aim of this study is to identify the physical and chemical parameters of composting food waste from Makanan Ringan Mas. The physical parameters were tested for temperature and pH value and the chemical parameter are Nitrogen, Phosphorus and Potassium. In this study, backyard composting was conducted with 6 reactors. Tapioca peel was used as fermentation liquid and soil and coconut grated were used as the fermentation bed. Backyard composting was conducted with six reactors. The overall results from the study showed that the temperature of the reactors were within the range which are from 30° to 50°C. The result of this study revealed that all the reactors which contain processed food waste tend to produce pH value within the range of 5 to 6 which can be categorized as slightly acidic. Meanwhile, the reactors which contained raw food waste tend to produce pH value within the range of 7 to 8 which can be categorized as neutral. The highest NPK obtained is from Reactor B that process only raw food waste. The average value of Nitrogen is 48540 mg/L, Phosphorus is 410 mg/L and Potassium is 1550 mg/L. From the comparison with common chemical fertilizer, it shows that NPK value from the composting are much lower than NPK of the common chemical fertilizer. However, comparison with NPK of organic fertilizer shown only slightly difference value in NPK.

  9. Persistent Spin and Charge Currents in Open Conducting Ring Subjected to Rashba Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xi-Sua; XIONG Shi-Jie

    2008-01-01

    We investigate persistent charge and spin currents of a one-dimensional ring with Rashba spin-orbit coupling and connected asymmetrically to two external leads spanned with angle (φ)0.Because of the asymmetry of the structure and the spin-reflection,the persistent charge and spin currents can be induced.The magnification of persistent currents can be obtained when tuning the energy of incident electron to the sharp zero and sharp resonance of transmission depending on the Aharonov-Casher (AC) phase due to the spin-orbit coupling and the angle spanned by two leads (φ)0.The general dependence of the charge and spin persistent currents on these parameters is obtained.This suggests a possible method of controlling the magnitude and direction of persistent currents by tuning the AC phase and (φ)0,without the electromagnetic flux though the ring.

  10. Exploring a possible origin of a 14 deg y-normal spin tilt at RHIC polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-06-15

    A possible origin of a 14 deg y-normal spin n0 tilt at the polarimeter is in snake angle defects. This possible cause is investigated by scanning the snake axis angle µ, and the spin rotation angle at the snake, φ, in the vicinity of their nominal values.

  11. TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect

    Directory of Open Access Journals (Sweden)

    Saburo Takahashi and Sadamichi Maekawa

    2008-01-01

    Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.

  12. Asynchronous through-bond homonuclear isotropic mixing: application to carbon–carbon transfer in perdeuterated proteins under MAS

    Energy Technology Data Exchange (ETDEWEB)

    Kulminskaya, Natalia; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus, E-mail: rali@nmr.mpibpc.mpg.de [Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology (Germany)

    2015-11-15

    Multiple-bond carbon–carbon homonuclear mixing is a hurdle in extensively deuterated proteins and under fast MAS due to the absence of an effective proton dipolar-coupling network. Such conditions are now commonly employed in solid-state NMR spectroscopy. Here, we introduce an isotropic homonuclear {sup 13}C–{sup 13}C through-bond mixing sequence, MOCCA, for the solid state. Even though applied under MAS, this scheme performs without rotor synchronization and thus does not pose the usual hurdles in terms of power dissipation for fast spinning. We compare its performance with existing homonuclear {sup 13}C–{sup 13}C mixing schemes using a perdeuterated and partially proton-backexchanged protein. Based on the analysis of side chain carbon–carbon correlations, we show that particularly MOCCA with standard 180-degree pulses and delays leading to non-rotor-synchronized spacing performs exceptionally well. This method provides high magnetization transfer efficiency for multiple-bond transfer in the aliphatic region compared with other tested mixing sequences. In addition, we show that this sequence can also be tailor-made for recoupling within a selected spectral region using band-selective pulses.

  13. Residual dipolar couplings in sup 3 sup 1 P MAS spectra of PPh sub 3 substituted cobalt complexes

    CERN Document Server

    Szalontai, G

    2002-01-01

    Residual dipolar couplings between sup 3 sup 1 P- sup 5 sup 9 Co spin pairs were studied in sup 3 sup 1 P MAS spectra of mono- and dinuclear cobalt-triphenylphosphine complexes. These spectra can provide important information such as the scalar coupling between the dipolar phosphorus and the quadrupolar cobalt nuclei normally not available from solution phase studies. In case of complementary (NQR or x-ray) data even the relative orientation of the interacting shielding, dipolar, scalar couplings, and electric field gradient tensors or internuclear distances can be determined. Examples are shown both for well resolved and practically unresolved cases, factors which possibly control the spectral resolution are discussed in detail. (author)

  14. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  15. MAS based coordinated scheduling of storage capacities in a virtual microgrid

    DEFF Research Database (Denmark)

    Brehm, Robert; Top, Søren; Mátéfi-Tempfli, Stefan

    A distributed decentralized multi-agent system (MAS) for coordinated scheduling of charge and discharge intervals for storage capacities in a utility grid integrated microgrid is presented. As basis for the MAS based energy management system (EMS) serves a scheduling algorithm based on a distribu......A distributed decentralized multi-agent system (MAS) for coordinated scheduling of charge and discharge intervals for storage capacities in a utility grid integrated microgrid is presented. As basis for the MAS based energy management system (EMS) serves a scheduling algorithm based...... on a distributed optimization algorithm to minimize power flow from/to a virtual microgrid over a transformer substation. A cooperative low-level MAS scheme, which is based on the consensus algorithm is introduced. It is shown that using a cooperative MAS, load profile flattening (peak-shaving) for the utility...... be used, for example by a Distribution System Operator (DSO) to control grid load profiles of virtual microgrids....

  16. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  17. Multi-Robot Remote Interaction with FS-MAS

    Directory of Open Access Journals (Sweden)

    Yunliang Jiang

    2013-02-01

    Full Text Available The need to reduce bandwidth, improve productivity, autonomy and the scalability in multi‐robot teleoperation has been recognized for a long time. In this article we propose a novel finite state machine mobile agent based on the network interaction service model, namely FS‐MAS. This model consists of three finite state machines, namely the Finite State Mobile Agent (FS‐Agent, which is the basic service module. The Service Content Finite State Machine (Content‐FS, using the XML language to define workflow, to describe service content and service computation process. The Mobile Agent computation model Finite State Machine (MACM‐FS, used to describe the service implementation. Finally, we apply this service model to the multi‐robot system, the initial realization completing complex tasks in the form of multi‐robot scheduling. This demonstrates that the robot has greatly improved intelligence, and provides a wide solution space for critical issues such as task division, rational and efficient use of resource and multi‐robot collaboration.

  18. Spin-Valley Beam Splitter in Graphene

    CERN Document Server

    Song, Yu; Shi, Zhi-Gui; Li, Shun; Zhang, Jian

    2016-01-01

    The fourfold spin-valley degenerate degrees of freedom in bulk graphene can support rich physics and novel applications associated with multicomponent quantum Hall effects and linear conductance filtering. In this work, we study how to break the spin-valley degeneracy of electron beams spatially. We propose a spin-valley beam splitter in a gated ferromagnetic/pristine/strained graphene structure. We demonstrate that, in a full resonant tunneling regime for all spin-valley beam components, the formation of quasi-standing waves can lead four giant lateral Goos-H\\"{a}nchen shifts as large as the transverse beam width, while the interplay of the two modulated regions can lead difference of resonant angles or energies for the four spin-valley flavors, manifesting an effective spin-valley beam splitting effect. The beam splitting effect is found to be controllable by the gating and strain.

  19. Spin control of light with hyperbolic metasurfaces

    CERN Document Server

    Yermakov, Oleh Y; Bogdanov, Andrey A; Iorsh, Ivan V; Bliokh, Konstantin Y; Kivshar, Yuri S

    2016-01-01

    Transverse spin angular momentum is an inherent feature of evanescent waves which may have applications in nanoscale optomechanics, spintronics, and quantum information technology due to the robust spin-directional coupling. Here we analyze a local spin angular momentum density of hybrid surface waves propagating along anisotropic hyperbolic metasurfaces. We reveal that, in contrast to bulk plane waves and conventional surface plasmons at isotropic interfaces, the spin of the hybrid surface waves can be engineered to have an arbitrary angle with the propagation direction. This property allows to tailor directivity of surface waves via the magnetic control of the spin projection of quantum emitters, and it can be useful for optically controlled spin transfer.

  20. Snell's Law for Spin Waves

    Science.gov (United States)

    Stigloher, J.; Decker, M.; Körner, H. S.; Tanabe, K.; Moriyama, T.; Taniguchi, T.; Hata, H.; Madami, M.; Gubbiotti, G.; Kobayashi, K.; Ono, T.; Back, C. H.

    2016-07-01

    We report the experimental observation of Snell's law for magnetostatic spin waves in thin ferromagnetic Permalloy films by imaging incident, refracted, and reflected waves. We use a thickness step as the interface between two media with different dispersion relations. Since the dispersion relation for magnetostatic waves in thin ferromagnetic films is anisotropic, deviations from the isotropic Snell's law known in optics are observed for incidence angles larger than 25 ° with respect to the interface normal between the two magnetic media. Furthermore, we can show that the thickness step modifies the wavelength and the amplitude of the incident waves. Our findings open up a new way of spin wave steering for magnonic applications.

  1. Spin-polarized spin-orbit-split quantum-well states in a metal film

    Energy Technology Data Exchange (ETDEWEB)

    Varykhalov, Andrei; Sanchez-Barriga, Jaime; Gudat, Wolfgang; Eberhardt, Wolfgang; Rader, Oliver [BESSY Berlin (Germany); Shikin, Alexander M. [St. Petersburg State University (Russian Federation)

    2008-07-01

    Elements with high atomic number Z lead to a large spin-orbit coupling. Such materials can be used to create spin-polarized electronic states without the presence of a ferromagnet or an external magnetic field if the solid exhibits an inversion asymmetry. We create large spin-orbit splittings using a tungsten crystal as substrate and break the structural inversion symmetry through deposition of a gold quantum film. Using spin- and angle-resolved photoelectron spectroscopy, it is demonstrated that quantum-well states forming in the gold film are spin-orbit split and spin polarized up to a thickness of at least 10 atomic layers. This is a considerable progress as compared to the current literature which reports spin-orbit split states at metal surfaces which are either pure or covered by at most a monoatomic layer of adsorbates.

  2. Classical gravitational spin-spin interaction

    OpenAIRE

    Bonnor, W. B.

    2002-01-01

    I obtain an exact, axially symmetric, stationary solution of Einstein's equations for two massless spinning particles. The term representing the spin-spin interaction agrees with recently published approximate work. The spin-spin force appears to be proportional to the inverse fourth power of the coordinate distance between the particles.

  3. Spin-Orbit induced semiconductor spin guides

    OpenAIRE

    Valin-Rodriguez, Manuel; Puente, Antonio; Serra, Llorens

    2002-01-01

    The tunability of the Rashba spin-orbit coupling allows to build semiconductor heterostructures with space modulated coupling intensities. We show that a wire-shaped spin-orbit modulation in a quantum well can support propagating electronic states inside the wire only for a certain spin orientation and, therefore, it acts as an effective spin transmission guide for this particular spin orientation.

  4. Extrinsic Spin Hall effect of AuW alloys

    Science.gov (United States)

    Laczkowski, Piotr; Rojas-Sánchez, Juan Carlos; Savero-Torres, Williams; Reyren, Nicolas; Deranlot, Cyril; George, Jean-Marie; Jaffres, Henri; Beigné, Cyril; Notin, Lucien; Collin, Sophie; Marty, Alain; Attané, Jean-Philippe; Vila, Laurent; Petroff, Frederic; Fert, Albert; UMPhy CNRS-Thales Palaiseau Team; CEA-SP2M-INAC Grenoble Team

    The spin Hall effect (SHE) allows a reciprocal conversion between charge and spin currents using spin orbit interactions. Large Spin Hall angle have been reported in transition metals (Pt, W, Beta-Ta) and in alloys made of heavy metals. We will report on SHA in AuW alloys exhibiting a non-monotonic relation with W content. In this regime, it suggests a skew-scattering to side-jump dominant contribution to the spin Hall resistivity, thus allowing precise tuning of SHA vs. W content. We will present experiments by using Lateral Spin Valves with refined spin-absorption model adapted to strong spin-orbit interactions. By using complementary FMR/Spin-Pumping techniques, we demonstrate very large SHA of the order of 15 % at rather high W concentration in rather good agreement with the previous method

  5. Mas receptor deficiency exacerbates lipopolysaccharide-induced cerebral and systemic inflammation in mice.

    Science.gov (United States)

    Oliveira-Lima, Onésia C; Pinto, Mauro C X; Duchene, Johan; Qadri, Fatimunnisa; Souza, Laura L; Alenina, Natalia; Bader, Michael; Santos, Robson A S; Carvalho-Tavares, Juliana

    2015-12-01

    Beyond the classical actions of the renin-angiotensin system on the regulation of cardiovascular homeostasis, several studies have shown its involvement in acute and chronic inflammation. The G protein-coupled receptor Mas is a functional binding site for the angiotensin-(1-7); however, its role in the immune system has not been fully elucidated. In this study, we evaluated the effect of genetic deletion of Mas receptor in lipopolysaccharide (LPS)-induced systemic and cerebral inflammation in mice. Inflammatory response was triggered in Mas deficient (Mas(-/-)) and C57BL/6 wild-type (WT) mice (8-12 weeks-old) by intraperitoneal injection of LPS (5 mg/kg). Mas(-/-) mice presented more intense hypothermia compared to WT mice 24 h after LPS injection. Systemically, the bone marrow of Mas(-/-) mice contained a lower number of neutrophils and monocytes 3 h and 24 h after LPS injection, respectively. The plasma levels of inflammatory mediators KC, MCP-1 and IL-10 were higher in Mas(-/-) mice 24 h after LPS injection in comparison to WT. In the brain, Mas(-/-) animals had a significant increase in the number of adherent leukocytes to the brain microvasculature compared to WT mice, as well as, increased number of monocytes and neutrophils recruited to the pia-mater. The elevated number of adherent leukocytes on brain microvasculature in Mas(-/-) mice was associated with increased expression of CD11b - the alpha-subunit of the Mac-1 integrin - in bone marrow neutrophils 3h after LPS injection, and with increased brain levels of chemoattractants KC, MIP-2 and MCP-1, 24 h later. In conclusion, we demonstrated that Mas receptor deficiency results in exacerbated inflammation in LPS-challenged mice, which suggest a potential role for the Mas receptor as a regulator of systemic and brain inflammatory response induced by LPS.

  6. A New Spin on Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, Chris [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    The electronic spin degree of freedom is of general fundamental importance to all matter. Understanding its complex roles and behavior in the solid state, particularly in highly correlated and magnetic materials, has grown increasingly desirable as technology demands advanced devices and materials based on ever stricter comprehension and control of the electron spin. However, direct and efficient spin dependent probes of electronic structure are currently lacking. Angle Resolved Photoemission Spectroscopy (ARPES) has become one of the most successful experimental tools for elucidating solid state electronic structures, bolstered by-continual breakthroughs in efficient instrumentation. In contrast, spin-resolved photoemission spectroscopy has lagged behind due to a lack of similar instrumental advances. The power of photoemission spectroscopy and the pertinence of electronic spin in the current research climate combine to make breakthroughs in Spin and Angle Resolved Photoemission Spectroscopy (SARPES) a high priority . This thesis details the development of a unique instrument for efficient SARPES and represents a radical departure from conventional methods. A custom designed spin polarimeter based on low energy exchange scattering is developed, with projected efficiency gains of two orders of magnitude over current state-of-the-art polarimeters. For energy analysis, the popular hemispherical analyzer is eschewed for a custom Time-of-Flight (TOF) analyzer offering an additional order of magnitude gain in efficiency. The combined instrument signifies the breakthrough needed to perform the high resolution SARPES experiments necessary for untangling the complex spin-dependent electronic structures central to today's condensed matter physics.

  7. A spin cell for spin current.

    Science.gov (United States)

    Sun, Qing-feng; Guo, Hong; Wang, Jian

    2003-06-27

    We propose and investigate a spin-cell device which provides the necessary spin-motive force to drive a spin current for future spintronic circuits. Our spin cell has four basic characteristics: (i) it has two poles so that a spin current flows in from one pole and out from the other pole, and in this way a complete spin circuit can be established; (ii) it has a source of energy to drive the spin current; (iii) it maintains spin coherence so that a sizable spin current can be delivered; (iv) it drives a spin current without a charge current. The proposed spin cell for spin current should be realizable using technologies presently available.

  8. Spin squeezing in nonlinear spin coherent states

    OpenAIRE

    Wang, Xiaoguang

    2001-01-01

    We introduce the nonlinear spin coherent state via its ladder operator formalism and propose a type of nonlinear spin coherent state by the nonlinear time evolution of spin coherent states. By a new version of spectroscopic squeezing criteria we study the spin squeezing in both the spin coherent state and nonlinear spin coherent state. The results show that the spin coherent state is not squeezed in the x, y, and z directions, and the nonlinear spin coherent state may be squeezed in the x and...

  9. The utility of MAS5 expression summary and detection call algorithms

    Directory of Open Access Journals (Sweden)

    Wilson Claire L

    2007-07-01

    Full Text Available Abstract Background Used alone, the MAS5.0 algorithm for generating expression summaries has been criticized for high False Positive rates resulting from exaggerated variance at low intensities. Results Here we show, with replicated cell line data, that, when used alongside detection calls, MAS5 can be both selective and sensitive. A set of differentially expressed transcripts were identified that were found to be changing by MAS5, but unchanging by RMA and GCRMA. Subsequent analysis by real time PCR confirmed these changes. In addition, with the Latin square datasets often used to assess expression summary algorithms, filtered MAS5.0 was found to have performance approaching that of its peers. Conclusion When used alongside detection calls, MAS5 is a sensitive and selective algorithm for identifying differentially expressed genes.

  10. Spin-dependent tunneling through a spin precession quantum dot%通过自旋进动量子点自旋相关的隧穿

    Institute of Scientific and Technical Information of China (English)

    张爱芳; 辛子华; 宋红岩; 吴留坡; 施耀铭

    2008-01-01

    Spin-polarized transport through a processing magnetic spin coupled to ferromagnetic electrodes is studied usinga non-equilibrium Green's function approach. The characteristic of conductance is obtained at zero temperature. We findthat competition between spin-exchange interaction on the spin site and spin-orbit interaction in the barriers dominates theresonant behavior of conductance. In a parallel configuration, conductance peaks have identical amplitude. With the angle θincreasing, the width of resonant peaks is broadened or narrowed for different spin coherent states. In an anti-parallel case,spin-flip tunneling in the barriers will essentially enhance amplitude of the conductance peak.

  11. Cavity spin optodynamics

    CERN Document Server

    Brahms, N

    2010-01-01

    The dynamics of a large quantum spin coupled parametrically to an optical resonator is treated in analogy with the motion of a cantilever in cavity optomechanics. New spin optodynamic phenonmena are predicted, such as cavity-spin bistability, optodynamic spin-precession frequency shifts, coherent amplification and damping of spin, and the spin optodynamic squeezing of light.

  12. Photo-Cross-Linked Poly(DL-lactide)-Based Networks. Structural Characterization by HR-MAS NMR Spectroscopy and Hydrolytic Degradation Behavior

    NARCIS (Netherlands)

    Melchels, Ferry P. W.; Velders, Aldrik H.; Feijen, Jan; Grijpma, Dirk W.

    2010-01-01

    To date, biodegradable networks and particularly their kinetic chain lengths have been characterized by analysis of their degradation products in solution. We characterize the network itself by NMR analysis in the solvent-swollen state under magic angle spinning conditions. The networks were prepare

  13. Photo-Cross-Linked Poly(dl-lactide)-Based Networks. Structural Characterization by HR-MAS NMR Spectroscopy and Hydrolytic Degradation Behavior

    NARCIS (Netherlands)

    Melchels, Ferry P.W.; Velders, Aldrik H.; Feijen, Jan; Grijpma, Dirk W.

    2010-01-01

    To date, biodegradable networks and particularly their kinetic chain lengths have been characterized by analysis of their degradation products in solution. We characterize the network itself by NMR analysis in the solvent-swollen state under magic angle spinning conditions. The networks were prepare

  14. 31P MAS-NMR study of flux-grown rare-earth element orthophosphate (monazite/xenotime) solid solutions: Evidence of random cation distribution from paramagnetically shifted NMR resonances

    Energy Technology Data Exchange (ETDEWEB)

    Palke, A. C. [Stanford University; Stebbins, J. F. [Stanford University; Boatner, Lynn A [ORNL

    2013-01-01

    We present 31P magic angle spinning nuclear magnetic resonance (MAS-NMR) spectra of flux-grown solid solutions of La1-xCexPO4 ( x between 0.027 and 0.32) having the monoclinic monazite structure, and of Y1-xMxPO4 (M = Vn+, Ce3+, Nd3+, x between 0.001 and 0.014) having the tetragonal zircon structure. Paramagnetically shifted NMR resonances are observed in all samples due to the presence of paramagnetic Vn+, Ce3+, and Nd3+ in the diamagnetic LaPO4 or YPO4. As a first-order observation, the number and relative intensity of these peaks is related to the symmetry and structure of the diamagnetic host phase. The presence of paramagnetic shifts allows for increased resolution between NMR resonances for distinct atomic species which leads to the observation of low intensity peaks related to PO4 species having more than one paramagnetic neighbor two or four atomic bonds away. Through careful analysis of peak areas and comparison with predictions for simple models, it was determined that solid solutions in the systems examined here are characterized by complete disorder (random distribution) of diamagnetic La3+ or Y3+ with the paramagnetic substitutional species Ce3+ and Nd3+. The increased resolution given by the paramagnetic interactions also leads to the observation of splitting of specific resonances in the 31P NMR spectra that may be caused by local, small-scale distortions from the substitution of ions having dissimilar ionic radii.

  15. Measurement of spin Hall effect of reflected light.

    Science.gov (United States)

    Qin, Yi; Li, Yan; He, Huanyu; Gong, Qihuang

    2009-09-01

    We have measured the spin-dependent nanometer-sized displacements of the spin Hall effect of the reflected light from a planar air-glass interface. In the case of the vertical polarization, the displacement is found to increase with the incident angle and subsequently decrease after approximately 48 deg, while in the case of the horizontal polarization, it changes rapidly near the Brewster angle. For a fixed incident angle of 30 deg, the displacement decreases to zero as the polarization angle approaches approximately 39 deg from 0 deg (the horizontal polarization) and then increases in the opposite direction until 90 deg (the vertical polarization).

  16. Coherent control of plasmonic Spin Hall effect (Conference Presentation)

    Science.gov (United States)

    Xiao, Shiyi; Zhong, Fan; Liu, Hui; Zhu, Shining; Li, Jensen

    2016-10-01

    We demonstrate spin-induced manipulation of surface-plasmon polariton (SPP) by exploiting the plasmonic spin Hall effect. By constructing metasurfaces with plasmonic atoms and varying spin-dependent geometric phase, we establish a holographic interface between an incident plane wave and the SPP on an optical chip. It allows us to gain spin-splitting and flexible control of the shapes and phases of the local SPP orbitals. Furthermore, a linearly polarized incident light with rotating polarization angle can be used to play a motion picture of the orbitals. These investigations provide a feasible route to many applications, including spin-enabled imaging, data storage and integrated optics.

  17. Effect of quantum tunneling on spin Hall magnetoresistance

    Science.gov (United States)

    Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk

    2017-02-01

    We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y3Fe5O12) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.

  18. Single-Spin Asymmetries at CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Avakian, Harutyun

    2003-05-01

    Single spin asymmetries (SSA) are crucial tools in the study of the spin structure of hadrons in pion electroproduction, since they are directly related to some hot topics,including transverse polarization distribution functions, fragmentation of polarized quarks and generalized parton distribution functions. At low beam energies, when the virtual photon has a relatively large angle with respect to the initial spin direction, the measured single-target spin-dependent sin φ moment in the cross section for the longitudinally polarized target contain contributions from the target spin components, both longitudinal and transverse with respect to the photon direction.This contribution presents preliminary results from Jefferson Lab's CLAS detector on beam and target SSA in pion azimuthal distributions in one particle inclusive electroproduction in the DIS regime (Q2 > 1GeV 2,W > 2GeV ) off a polarized NH3 target.

  19. Doppler effect induced spin relaxation boom

    Science.gov (United States)

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-03-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures.

  20. Reading Angles in Maps

    Science.gov (United States)

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…

  1. A New Algebraic Modelling Approach to Distributed Problem-Solving in MAS

    Institute of Scientific and Technical Information of China (English)

    帅典勋; 邓志东

    2002-01-01

    This paper is devoted to a new algebraic modelling approach to distributed problem-solving in multi-agent systems (MAS), which is featured by a unified framework for describing and treating social behaviors, social dynamics and social intelligence. A conceptual architecture of algebraic modelling is presented. The algebraic modelling of typical social behaviors, social situation and social dynamics is discussed in the context of distributed problemsolving in MAS. The comparison and simulation on distributed task allocations and resource assignments in MAS show more advantages of the algebraic approach than other conventional methods.

  2. Experimental evidences of a large extrinsic spin Hall effect in AuW alloy

    Energy Technology Data Exchange (ETDEWEB)

    Laczkowski, P.; Rojas-Sánchez, J.-C. [Unité Mixte de Physique CNRS/Thales and Université Paris-Sud 11, 91767 Palaiseau (France); INAC/SP2M, CEA-Université Joseph Fourier, F-38054 Grenoble (France); Savero-Torres, W.; Notin, L.; Beigné, C.; Marty, A.; Attané, J.-P.; Vila, L. [INAC/SP2M, CEA-Université Joseph Fourier, F-38054 Grenoble (France); Jaffrès, H.; Reyren, N.; Deranlot, C.; George, J.-M.; Fert, A. [Unité Mixte de Physique CNRS/Thales and Université Paris-Sud 11, 91767 Palaiseau (France)

    2014-04-07

    We report an experimental study of a gold-tungsten alloy (7 at. % W concentration in Au host) displaying remarkable properties for spintronics applications using both magneto-transport in lateral spin valve devices and spin-pumping with inverse spin Hall effect experiments. A very large spin Hall angle of about 10% is consistently found using both techniques with the reliable spin diffusion length of 2 nm estimated by the spin sink experiments in the lateral spin valves. With its chemical stability, high resistivity, and small induced damping, this AuW alloy may find applications in the nearest future.

  3. Experimental evidences of a large extrinsic spin Hall effect in AuW alloy

    Science.gov (United States)

    Laczkowski, P.; Rojas-Sánchez, J.-C.; Savero-Torres, W.; Jaffrès, H.; Reyren, N.; Deranlot, C.; Notin, L.; Beigné, C.; Marty, A.; Attané, J.-P.; Vila, L.; George, J.-M.; Fert, A.

    2014-04-01

    We report an experimental study of a gold-tungsten alloy (7 at. % W concentration in Au host) displaying remarkable properties for spintronics applications using both magneto-transport in lateral spin valve devices and spin-pumping with inverse spin Hall effect experiments. A very large spin Hall angle of about 10% is consistently found using both techniques with the reliable spin diffusion length of 2 nm estimated by the spin sink experiments in the lateral spin valves. With its chemical stability, high resistivity, and small induced damping, this AuW alloy may find applications in the nearest future.

  4. Photoelectric angle converter

    Science.gov (United States)

    Podzharenko, Volodymyr A.; Kulakov, Pavlo I.

    2001-06-01

    The photo-electric angle transmitter of rotation is offered, at which the output voltage is linear function of entering magnitude. In a transmitter the linear phototransducer is used on the basis of pair photo diode -- operating amplifier, which output voltage is linear function of the area of an illuminated photosensitive stratum, and modulator of a light stream of the special shape, which ensures a linear dependence of this area from an angle of rotation. The transmitter has good frequent properties and can be used for dynamic measurements of an angular velocity and angle of rotation, in systems of exact drives and systems of autocontrol.

  5. TrustMAS: Trusted Communication Platform for Multi-Agent Systems

    CERN Document Server

    Szczypiorski, Krzysztof; Mazurczyk, Wojciech; Cabaj, Krzysztof; Radziszewski, Pawel

    2008-01-01

    The paper presents TrustMAS - Trusted Communication Platform for Multi-Agent Systems, which provides trust and anonymity for mobile agents. The platform includes anonymous technique based on random-walk algorithm for providing general purpose anonymous communication for agents. All agents, which take part in the proposed platform, benefit from trust and anonymity that is provided for their interactions. Moreover, in TrustMAS there are StegAgents (SA) that are able to perform various steganographic communication. To achieve that goal, SAs may use methods in different layers of TCP/IP model or specialized middleware enabling steganography that allows hidden communication through all layers of mentioned model. In TrustMAS steganographic channels are used to exchange routing tables between StegAgents. Thus all StegAgents in TrustMAS with their ability to exchange information by using hidden channels form distributed steganographic router (Stegrouter).

  6. Cassini's Maneuver Automation Software (MAS) Process: How to Successfully Command 200 Navigation Maneuvers

    Science.gov (United States)

    Yang, Genevie Velarde; Mohr, David; Kirby, Charles E.

    2008-01-01

    To keep Cassini on its complex trajectory, more than 200 orbit trim maneuvers (OTMs) have been planned from July 2004 to July 2010. With only a few days between many of these OTMs, the operations process of planning and executing the necessary commands had to be automated. The resulting Maneuver Automation Software (MAS) process minimizes the workforce required for, and maximizes the efficiency of, the maneuver design and uplink activities. The MAS process is a well-organized and logically constructed interface between Cassini's Navigation (NAV), Spacecraft Operations (SCO), and Ground Software teams. Upon delivery of an orbit determination (OD) from NAV, the MAS process can generate a maneuver design and all related uplink and verification products within 30 minutes. To date, all 112 OTMs executed by the Cassini spacecraft have been successful. MAS was even used to successfully design and execute a maneuver while the spacecraft was in safe mode.

  7. Giant Spin Pumping and Inverse Spin Hall Effect in the Presence of Surface and Bulk Spin-Orbit Coupling of Topological Insulator Bi2Se3.

    Science.gov (United States)

    Jamali, Mahdi; Lee, Joon Sue; Jeong, Jong Seok; Mahfouzi, Farzad; Lv, Yang; Zhao, Zhengyang; Nikolić, Branislav K; Mkhoyan, K Andre; Samarth, Nitin; Wang, Jian-Ping

    2015-10-14

    Three-dimensional (3D) topological insulators are known for their strong spin-orbit coupling (SOC) and the existence of spin-textured surface states that might be potentially exploited for "topological spintronics." Here, we use spin pumping and the inverse spin Hall effect to demonstrate successful spin injection at room temperature from a metallic ferromagnet (CoFeB) into the prototypical 3D topological insulator Bi2Se3. The spin pumping process, driven by the magnetization dynamics of the metallic ferromagnet, introduces a spin current into the topological insulator layer, resulting in a broadening of the ferromagnetic resonance (FMR) line width. Theoretical modeling of spin pumping through the surface of Bi2Se3, as well as of the measured angular dependence of spin-charge conversion signal, suggests that pumped spin current is first greatly enhanced by the surface SOC and then converted into a dc-voltage signal primarily by the inverse spin Hall effect due to SOC of the bulk of Bi2Se3. We find that the FMR line width broadens significantly (more than a factor of 5) and we deduce a spin Hall angle as large as 0.43 in the Bi2Se3 layer.

  8. Spin Hall effects in metallic multilayers (Conference Presentation)

    Science.gov (United States)

    Woltersdorf, Georg; Wei, Dahai H.; Obstbaum, Martin; Back, Christian H.; Decker, Martin

    2016-10-01

    We study the direct as well as the inverse SHE. In the case of the direct SHE a dc charge current is applied in the plane of a ferromagnet/normal metal layer stack and the SHE creates a spin polarization at the surface of the normal metal leading to the injection of a spin current into the ferromagnet. This spin current is absorbed in the ferromagnet and causes a spin transfer torque. Using time and spatially resolved Kerr microscopy we measure the transferred spin momentum and compute the spin Hall angle. In a second set of experiments using identical samples pure spin currents are injected by the spin pumping effect from the ferromagnet into the normal metal. The spin current injected by spin pumping has a large ac component transverse to the static magnetization direction and a very small dc component parallel to the magnetization direction. The inverse SHE converts these spin current into charge current. The corresponding inverse SHE voltages induced by spin pumping at ferromagnetic resonance are measured in permalloy/platinum and permalloy/gold multilayers in various excitation geometries and as a function of frequency in order to separate the contributions of anisotropic magnetoresistance and SHE. In addition, we present experimental evidence for the ac component of inverse SHE voltages generated by spin pumping.

  9. 1H MAS NMR characterization of hydrogen over silica-supported rhodium catalyst

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Hydrogen species in both SiO2 and Rh/SiO2 catalysts pretreated indifferent atmospheres (H2, O2, helium or air) at different temperatures (773 or 973 K) were investigated by means of 1H MAS NMR. In SiO2 and O2-pretreated catalysts, a series of downfield signals at ~7.0, 3.8-4.0, 2.0 and 1.5-1.0 were detected. The first two signals can be attributed to strongly adsorbed and physisorbed water and the others to terminal silanol (SiOH) and SiOH under the screening of oxygen vacancies in SiO2 lattice, respectively. Besides the above signals, both upfield signal at ~-110 and downfield signals at 3.0 and 0.0 were also detected in H2-pretreated catalyst, respectively. The upfield signal at ~-110 originated from the dissociative adsorption of H2 over rhodium and was found to consist of both the contributions of reversible and irreversible hydrogen. There also probably existed another dissociatively adsorbed hydrogen over rhodium, which was known to be b hydrogen and in a unique form of "delocalized hydrogen". It was presumed that the b hydrogen had an upfield shift of ca. -20- -50, though its 1H NMR signals, which, having been masked by the spinning sidebands of Si-OH, failed to be directly detected out. The downfield signal at 3.0 was assigned to spillover hydrogen weakly bound by the bridge oxygen of SiO2. Another downfield signal at 0.0 was assigned to hydrogen held in the oxygen vacancies of SiO2 (Si-H species), suffering from the screening of trapped electrons. Both the spillover hydrogen and the Si-H resulted from the migration of the reversible hydrogen and the b hydrogen from rhodium to SiO2 in the close vicinity. It was proved that the above migration of hydrogen was preferred to occur at higher temperature than at lower temperature.

  10. The effect of FF-MAS on porcine cumulus-oocyte complex maturation, fertilization and pronucleus formation in vitro

    DEFF Research Database (Denmark)

    Færge, Inger; Strejcek, Frantisek; Laurincik, Jozef

    2006-01-01

    Follicular fluid meiosis-activating sterol (FF-MAS) has been isolated from the follicular fluid (FF) of several species including man. FF-MAS increases the quality of in vitro oocyte maturation, and thus the developmental potential of oocytes exposed to FF-MAS during in vitro maturaion is improved...

  11. Angle-Ply Weaving

    Science.gov (United States)

    Farley, Gary L.

    1990-01-01

    Bias-direction or angle-ply weaving is proposed new process for weaving fibers along bias in conventional planar fabric or in complicated three-dimensional multilayer fabric preform of fiber-reinforced composite structure. Based upon movement of racks of needles and corresponding angle yarns across fabric as fabric being formed. Fibers woven along bias increases shear stiffness and shear strength of preform, increasing value of preform as structural member.

  12. AVE 0991, a non-peptide Mas-receptor agonist, facilitates penile erection.

    Science.gov (United States)

    da Costa Gonçalves, Andrey C; Fraga-Silva, Rodrigo A; Leite, Romulo; Santos, Robson A S

    2013-03-01

    The renin-angiotensin system plays a crucial role in erectile function. It has been shown that elevated levels of angiotensin II contribute to the development of erectile dysfunction both in humans and in aminals. On the contrary, the heptapeptide angiotensin-(1-7) appears to mediate penile erection by activation of the Mas receptor. Recently, we have shown that the erectile function of Mas gene-deleted mice was substantially reduced, which was associated with a marked increase in fibrous tissue in the corpus cavernosum. We have hypothesized that the synthetic non-peptide Mas agonist, AVE 0991, would potentiate penile erectile function. We showed that intracavernosal injection of AVE 0991 potentiated the erectile response of anaesthetized Wistar rats, measured as the ratio between corpus cavernosum pressure and mean arterial pressure, upon electrical stimulation of the major pelvic ganglion. The facilitatory effect of AVE 0991 on erectile function was dose dependent and completely blunted by the nitric oxide synthesis inhibitor, l-NAME. Importantly, concomitant intracavernosal infusion of the specific Mas receptor blocker, A-779, abolished the effect of AVE 0991. We demonstrated that AVE 0991 potentiates the penile erectile response through Mas in an NO-dependent manner. Importantly, these results suggest that Mas agonists, such as AVE 0991, might have significant therapeutic benefits for the treatment of erectile dysfunction.

  13. Spin Canting and Transverse Relaxation at Surfaces and in the Interior of Ferrimagnetic Particles

    DEFF Research Database (Denmark)

    Mørup, Steen

    2003-01-01

    Analytical expressions for the magnetic energy and the spin-canting angles in some simple ferrimagnetic bulk and surface structures are presented. It is shown that the energy barriers separating different spin-canted states often will be very small. Therefore, the spin canting may be static only ...

  14. Relativistic Spin Operators

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng-Fei; RUAN Tu-Nan

    2001-01-01

    A systematic theory on the appropriate spin operators for the relativistic states is developed. For a massive relativistic particle with arbitrary nonzero spin, the spin operator should be replaced with the relativistic one, which is called in this paper as moving spin. Further the concept of moving spin is discussed in the quantum field theory. A new is constructed. It is shown that, in virtue of the two operators, problems in quantum field concerned spin can be neatly settled.

  15. Hierarchical spin-orbital polarization of a giant Rashba system.

    Science.gov (United States)

    Bawden, Lewis; Riley, Jonathan M; Kim, Choong H; Sankar, Raman; Monkman, Eric J; Shai, Daniel E; Wei, Haofei I; Lochocki, Edward B; Wells, Justin W; Meevasana, Worawat; Kim, Timur K; Hoesch, Moritz; Ohtsubo, Yoshiyuki; Le Fèvre, Patrick; Fennie, Craig J; Shen, Kyle M; Chou, Fangcheng; King, Phil D C

    2015-09-01

    The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarization. Combining polarization-dependent and resonant angle-resolved photoemission measurements with density functional theory calculations, we show that the two "spin-split" branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a reinterpretation of spin splitting in Rashba-like systems and opens new possibilities for controlling spin polarization through the orbital sector.

  16. Structure dependent spin selectivity in electron transport through oligopeptides

    Science.gov (United States)

    Kiran, Vankayala; Cohen, Sidney R.; Naaman, Ron

    2017-03-01

    The chiral-induced spin selectivity (CISS) effect entails spin-selective electron transmission through chiral molecules. In the present study, the spin filtering ability of chiral, helical oligopeptide monolayers of two different lengths is demonstrated using magnetic conductive probe atomic force microscopy. Spin-specific nanoscale electron transport studies elucidate that the spin polarization is higher for 14-mer oligopeptides than that of the 10-mer. We also show that the spin filtering ability can be tuned by changing the tip-loading force applied on the molecules. The spin selectivity decreases with increasing applied force, an effect attributed to the increased ratio of radius to pitch of the helix upon compression and increased tilt angles between the molecular axis and the surface normal. The method applied here provides new insights into the parameters controlling the CISS effect.

  17. Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: Two faces of one coin

    CERN Document Server

    Krivoruchenko, M I

    2008-01-01

    Using elementary geometric tools, we derive essentially in the same way expressions for rotation angle of the swing plane of Foucault's pendulum and rotation angle of spin of relativistic particle moving along circular orbit (Thomas precession effect).

  18. Large extrinsic spin Hall effect in Au-Cu alloys by extensive atomic disorder scattering

    Science.gov (United States)

    Zou, L. K.; Wang, S. H.; Zhang, Y.; Sun, J. R.; Cai, J. W.; Kang, S. S.

    2016-01-01

    Spin Hall angle, which denotes the conversion efficiency between spin and charge current, is a key parameter in the pure spin current phenomenon. The search for materials with large spin Hall angle is indeed important for scientific interest and potential application in spintronics. Here the large enhanced spin Hall effect (SHE) of Au-Cu alloy is reported by investigating the spin Seebeck effect, spin Hall anomalous Hall effect, and spin Hall magnetoresistance of the Y3F e5O12 (YIG)/A uxC u1 -x hybrid structure over the full composition. At the near equiatomic Au-Cu composition with maximum atomic disorder scattering, the spin Hall angle of the Au-Cu alloy increases by two to three times together with a moderate spin diffusion length in comparison with Au. The longitudinal spin Seebeck voltage and the spin Hall magnetoresistance ratio also increase by two to three times. More importantly, no evidence of anomalous Hall effect is observed in all YIG/Au-Cu samples, in contrast to the cases of other giant SHE materials Pt(Pd), Ta, and W. This behavior makes Au-Cu free from any suspicion of the magnetic proximity effect involved in the hybrid structure, and thus the Au-Cu alloy can be an ideal material for pure spin current study.

  19. Mas receptor is involved in the estrogen-receptor induced nitric oxide-dependent vasorelaxation.

    Science.gov (United States)

    Sobrino, Agua; Vallejo, Susana; Novella, Susana; Lázaro-Franco, Macarena; Mompeón, Ana; Bueno-Betí, Carlos; Walther, Thomas; Sánchez-Ferrer, Carlos; Peiró, Concepción; Hermenegildo, Carlos

    2017-04-01

    The Mas receptor is involved in the angiotensin (Ang)-(1-7) vasodilatory actions by increasing nitric oxide production (NO). We have previously demonstrated an increased production of Ang-(1-7) in human umbilical vein endothelial cells (HUVEC) exposed to estradiol (E2), suggesting a potential cross-talk between E2 and the Ang-(1-7)/Mas receptor axis. Here, we explored whether the vasoactive response and NO-related signalling exerted by E2 are influenced by Mas. HUVEC were exposed to 10nM E2 for 24h in the presence or absence of the selective Mas receptor antagonist A779, and the estrogen receptor (ER) antagonist ICI182780 (ICI). E2 increased Akt and endothelial nitric oxide synthase (eNOS) mRNA and protein expression, measured by RT-PCR and Western blot, respectively. Furthermore, E2 increased Akt activity (determined by the levels of phospho-Ser(473)) and eNOS activity (by the enhanced phosphorylation of Ser(1177), the activated form), resulting in increased NO production, which was measured by the fluorescence probe DAF-2-FM. These signalling events were dependent on ER and Mas receptor activation, since they were abolished in the presence of ICI or A779. In ex-vivo functional experiments performed with a small-vessel myograph in isolated mesenteric vessels from wild-type mice pre-contracted with noradrenaline, the relaxant response to physiological concentrations of E2 was blocked by ICI and A779, to the same extent to that obtained in the vessels isolated from Mas-deficient. In conclusion, E2 induces NO production and vasodilation through mechanisms that require Mas receptor activation.

  20. Limited Angle Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Kyung; Cho, Min Kook; Kim, Seong Sik [Pusan National University, Busan (Korea, Republic of)

    2007-07-01

    In computed tomography (CT), many situations are restricted to obtain enough number of projections or views to avoid artifacts such as streaking and geometrical distortion in the reconstructed images. Speed of motion of an object to be imaged can limit the number of views. Cardiovascular imaging is a representative example. Size of an object can also limit the complete traverse motion or geometrical complexity can obscure to be imaged at certain range of angles. These situations are frequently met in industrial nondestructive testing and evaluation. Dental CT also suffers from similar situation because cervical spine causes less x-ray penetration from some directions such that the available information is not sufficient for standard reconstruction algorithms. The limited angle tomography is now greatly paid attention as a new genre in medical and industrial imaging, popularly known as digital tomosynthesis. In this study, we introduce a modified filtered backprojection method in limited angle tomography and demonstrate its application for the dental imaging.

  1. Spin-Dependent Goos-Hanchen Effect in Semiconducting Quantum Dots

    Science.gov (United States)

    Abdelrazek, Ahmed S.; Zein, Walid A.; Phillips, Adel H.

    2013-08-01

    The present research is devoted to the investigation of the spin-dependant Goos-Hanchen phase shift in quantum nanodevice. This nanodevice is modeled as semiconducting quantum dot coupled to two ferromagnetic leads. The spin transport through such nanodevice is conducted under the effect of both magnetic field and the photon energy of the induced ac-field. The angle of incidence of electrons is taken into account. Results show that the Goos-Hanchen phase shift of spin-up electrons is different from that of spin-down electron. Also, spin polarization and giant magneto-resistance are strongly depending on the angle of incidence of electrons and the photon energy of the induced ac-field. The present model could realize experimentally the spin beam splitter and spin filter needed for spin qubits and quantum information processing.

  2. Dynamical angled brane

    Science.gov (United States)

    Maeda, Kei-ichi; Uzawa, Kunihito

    2016-12-01

    We discuss the dynamical D p -brane solutions describing any number of D p branes whose relative orientations are given by certain SU(2) rotations. These are the generalization of the static angled D p -brane solutions. We study the collision of the dynamical D3 brane with angles in type-II string theory, and show that the particular orientation of the smeared D3-brane configuration can provide an example of colliding branes if they have the same charges. Otherwise a singularity appears before D3 branes collide.

  3. Ferromagnetic/Nonmagnetic Nanostructures for the Electrical Measurement of the Spin Hall Effect.

    Science.gov (United States)

    Pham, Van Tuong; Vila, Laurent; Zahnd, Gilles; Marty, Alain; Savero-Torres, Williams; Jamet, Matthieu; Attané, Jean-Philippe

    2016-11-09

    Spin-orbitronics is based on the ability of spin-orbit interactions to achieve the conversion between charge currents and pure spin currents. As the precise evaluation of the conversion efficiency becomes a crucial issue, the need for straightforward ways to observe this conversion has emerged as one of the main challenges in spintronics. Here, we propose a simple device, akin to the ferromagnetic/nonmagnetic bilayers used in most spin-orbit torques experiments, and consisting of a spin Hall effect wire connected to two transverse ferromagnetic electrodes. We show that this system allows probing electrically the direct and inverse conversion in a spin Hall effect system and measuring both the spin Hall angle and the spin diffusion length. By applying this method to several spin Hall effect materials (Pt, Pd, Au, Ta, W), we show that it represents a promising tool for the metrology of spin-orbit materials.

  4. Spin Hall magnetoresistance in antiferromagnet/normal metal bilayers

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We investigate the emergence of spin Hall magnetoresistance in a magnetic bilayer composed of a normal metal adjacent to an antiferromagnet. Based on a recently derived drift diffusion equation, we show that the resistance of the bilayer depends on the relative angle between the direction transverse to the current flow and the Néel order parameter. While this effect presents striking similarities with the spin Hall magnetoresistance recently reported in ferromagnetic bilayers, its physical origin is attributed to the anisotropic spin relaxation of itinerant spins in the antiferromagnet.

  5. Spin Transport in Mesoscopic Superconducting-Ferromagnetic Hybrid Conductor

    Directory of Open Access Journals (Sweden)

    Zein W. A.

    2008-01-01

    Full Text Available The spin polarization and the corresponding tunneling magnetoresistance (TMR for a hybrid ferromagnetic / superconductor junction are calculated. The results show that these parameters are strongly depends on the exchange field energy and the bias voltage. The dependence of the polarization on the angle of precession is due to the spin flip through tunneling process. Our results could be interpreted as due to spin imbalance of carriers resulting in suppression of gap energy of the superconductor. The present investigation is valuable for manufacturing magnetic recording devices and nonvolatile memories which imply a very high spin coherent transport for such junction.

  6. The development of the ProMAS: a Probabilistic Medication Adherence Scale

    Directory of Open Access Journals (Sweden)

    Kleppe M

    2015-03-01

    Full Text Available Mieke Kleppe,1,2 Joyca Lacroix,2 Jaap Ham,1 Cees Midden1 1Human Technology Interaction, Eindhoven University of Technology, Eindhoven, the Netherlands; 2Behavior, Cognition and Perception, Philips Research, Eindhoven, the Netherlands Abstract: Current self-report medication adherence measures often provide heavily skewed results with limited variance, suggesting that most participants are highly adherent. This contrasts with findings from objective adherence measures. We argue that one of the main limitations of these self-report measures is the limited range covered by the behaviors assessed. That is, the items do not match the adherence behaviors that people perform, resulting in a ceiling effect. In this paper, we present a new self-reported medication adherence scale based on the Rasch model approach (the ProMAS, which covers a wide range of adherence behaviors. The ProMAS was tested with 370 elderly receiving medication for chronic conditions. The results indicated that the ProMAS provided adherence scores with sufficient fit to the Rasch model. Furthermore, the ProMAS covered a wider range of adherence behaviors compared to the widely used Medication Adherence Report Scale (MARS instrument, resulting in more variance and less skewness in adherence scores. We conclude that the ProMAS is more capable of discriminating between people with different adherence rates than the MARS. Keywords: questionnaire design, probabilistic models, methodology

  7. Altered heart rate and blood pressure variability in mice lacking the Mas protooncogene

    Directory of Open Access Journals (Sweden)

    T. Walther

    2000-01-01

    Full Text Available Heart rate variability is a relevant predictor of cardiovascular risk in humans. A significant genetic influence on heart rate variability is suggested, although the genes involved are ill-defined. The Mas-protooncogene encodes a G-protein-coupled receptor with seven transmembrane domains highly expressed in testis and brain. Since this receptor is supposed to interact with the signaling of angiotensin II, which is an important regulator of cardiovascular homeostasis, heart rate and blood pressure were analyzed in Mas-deficient mice. Using a femoral catheter the blood pressure of mice was measured for a period of 30 min and 250 data values per second were recorded. The mean values and range of heart rate and blood pressure were then calculated. Neither heart rate nor blood pressure were significantly different between knockout mice and controls. However, high resolution recording of these parameters and analysis of the data by non-linear dynamics revealed significant alterations in cardiovascular variability in Mas-deficient animals. In particular, females showed a strong reduction of heart rate variability. Furthermore, the data showed an increased sympathetic tone in knockout animals of both genders. The marked alterations detected in Mas-deficient mice of both genders suggest that the Mas-protooncogene is an important determinant of heart rate and blood pressure variability.

  8. Neuroprotective Mechanisms of the ACE2-Angiotensin-(1-7)-Mas Axis in Stroke

    DEFF Research Database (Denmark)

    Bennion, Douglas M; Haltigan, Emily; Regenhardt, Robert W;

    2015-01-01

    The discovery of beneficial neuroprotective effects of the angiotensin converting enzyme 2-angiotensin-(1-7)-Mas axis [ACE2-Ang-(1-7)-Mas] in ischemic and hemorrhagic stroke has spurred interest in a more complete characterization of its mechanisms of action. Here, we summarize findings that desc...... complete understanding of the mechanisms of action of Ang-(1-7) to elicit neuroprotection will serve as an essential step toward research into potential targeted therapeutics in the clinical setting.......The discovery of beneficial neuroprotective effects of the angiotensin converting enzyme 2-angiotensin-(1-7)-Mas axis [ACE2-Ang-(1-7)-Mas] in ischemic and hemorrhagic stroke has spurred interest in a more complete characterization of its mechanisms of action. Here, we summarize findings...... that describe the protective role of the ACE2-Ang-(1-7)-Mas axis in stroke, along with a focused discussion on the potential mechanisms of neuroprotective effects of Ang-(1-7) in stroke. The latter incorporates evidence describing the actions of Ang-(1-7) to counter the deleterious effects of angiotensin II...

  9. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  10. The quadriceps angle

    DEFF Research Database (Denmark)

    Miles, James Edward; Frederiksen, Jane V.; Jensen, Bente Rona

    2012-01-01

    : Pelvic limbs from red foxes (Vulpes vulpes). METHODS: Q angles were measured on hip dysplasia (HD) and whole limb (WL) view radiographs of each limb between the acetabular rim, mid-point (Q1: patellar center, Q2: femoral trochlea), and tibial tuberosity. Errors of 0.5-2.0 mm at measurement landmarks...

  11. Selection of Parameters in Ball-Spinning

    Institute of Scientific and Technical Information of China (English)

    Maosheng LI; Yongnian YAN; Shihong ZHANG; Dachang KANG

    2004-01-01

    Nowadays, with the development of spinning processes, more and more systematic research about spinning parameters has been published. Based on these results, a routing about how to select spinning parameters has been gradually formed. However, ball spinning, due to its own features plus research lack, is still unclear about its parameter selections. In addition, some manufacture-enterprises only notice the use of this technique whereas ignore the theory creation. The optimal parameters about the ball spinning although have been released from these enterprises but in fact not a helpful theory for other researchers and producers. Focus on selecting the parameters based on the trial-and-error, this article has carried a series of experiments to study the influence on the spinning working course from those parameters, especially the peeling phenomena, and the tube diameter bulging. An optimal graph of the working angle, the axial feeding rate, and the acceptable working course is put forward. Additionally, based on the theory of the minimal reduction rate, the selection of the ball diameter is finally described. Thus, it has given the rules to get the proper parameters in ball spinning.

  12. Reducing galvanomagnetic effects in spin pumping measurement with Co{sub 75}Fe{sub 25} as a spin injector

    Energy Technology Data Exchange (ETDEWEB)

    Haidar, S. M., E-mail: haidar@imr.tohoku.ac.jp; Iguchi, R.; Yagmur, A.; Lustikova, J. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Shiomi, Y. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); Saitoh, E. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); CREST, Japan Science and Technology Agency, Tokyo 102-0076 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195 (Japan)

    2015-05-14

    We have investigated dc voltage generation induced by ferromagnetic resonance in a Co{sub 75}Fe{sub 25}/Pt film. In order to reduce rectification effects of anisotropic magnetoresistance and the planar Hall effect, which may be observed simultaneously with the inverse spin Hall effect, we selected Co{sub 75}Fe{sub 25} with extremely small anisotropic magnetoresistance as a spin injector. Using the difference in the spectral shape of voltage and in the angle dependence of in-plane magnetization among the effects, we demonstrated that the generated dc voltage is governed by the inverse spin Hall effect induced by spin pumping.

  13. The essential role of spin-memory loss at 3d/5d metallic interfaces in spin pumping

    Science.gov (United States)

    Jaffres, Henri

    2015-03-01

    I will present a review of experiments and theory of spin-pumping in Co/(Cu)/Pt 3d/5d metallic systems in the ferromagnetic resonance (FMR) regime of spin injection. By combining i) FMR analyses of the resonance linewidth of the Co spectra in contact with the Pt (or Cu/Pt) reservoir and ii) detection of the inverse spin-hall effect signal vs. Pt thickness, we were able to evidence two different lengthscales for the spin-current profile generated or absorbed at the interfaces. The first lenghscale, extracted from FMR analyses and of the order of 2 nm, represents a typical interface length characteristic of a spin memory loss at the Co/Pt and Co/Cu/Pt interfaces. This represent a typical region of spin-current dissipation by which almost 60-70 % of the total current generated is lost before conversion in bulk Pt. The second lengthscale, roughly equal to 3.4 nm, like determined by Inverse Spin Hall Effect (ISHE) transverse voltage measurement, is more characteristic of the spin-diffusion length of the bulk Pt that governs a part of the spin-to-charge conversion efficiency by ISHE. After careful analyses, we determined a spin-hall angle of 5.6 % for Pt and an intrinsic spin hall conductivity of 3200 (Ohm.cm)-1 for our corresponding Pt resistivity. In the end, I will focus on the physical description of our experiments within a derived Valet-Fert model describing the spin transport/relaxation in a diffusive approach and using relevant boundary conditions for spin-pumping (constant spin accumulation in the ferromagnet). The origin of the spin-memory loss and spin-current discontinuity, also proposed in a very recent work, will be explained in terms of atomic intermixing at interfaces or possible Rashba-split states at Co/Pt interfaces.

  14. Evidence for a systematic offset of $-$0.25~mas in the Gaia DR1 parallaxes

    CERN Document Server

    Stassun, Keivan G

    2016-01-01

    We test the parallaxes reported in the Gaia first data release using the sample of eclipsing binaries with accurate, empirical distances from Stassun & Torres (2016). We find a clear average offset of $-$0.25$\\pm$0.05 mas in the sense of the Gaia parallaxes being too small (i.e., the distances too long). The documented Gaia systematic uncertainty is 0.3 mas, which the eclipsing binary sample corroborates. The offset does not depend strongly on obvious parameters such as color, brightness, or spatial position. However, with a statistical significance of 99.7%, nearer stars possibly exhibit larger offsets according to $\\Delta\\pi \\approx -0.16 -0.02 \\times \\pi$ mas.

  15. Technology Enhanced Learning for People with Intellectual Disabilities and Cerebral Paralysis: The MAS Platform

    Science.gov (United States)

    Colomo-Palacios, Ricardo; Paniagua-Martín, Fernando; García-Crespo, Ángel; Ruiz-Mezcua, Belén

    Education for students with disabilities now takes place in a wide range of settings, thus, including a wider range of assistive tools. As a result of this, one of the most interesting application domains of technology enhanced learning is related to the adoption of learning technologies and designs for people with disabilities. Following this unstoppable trend, this paper presents MAS, a software platform aimed to help people with severe intellectual disabilities and cerebral paralysis in their learning processes. MAS, as a technology enhanced learning platform, provides several tools that supports learning and monitoring for people with special needs, including adaptative games, data processing and monitoring tools. Installed in a special needs education institution in Madrid, Spain, MAS provides special educators with a tool that improved students education processes.

  16. Generation and manipulation of spin current via a hybrid four-terminal single-molecule junction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Rong [College of Science, China University of Mining and Technology, Xuzhou 221116 (China); Bai Long, E-mail: bailong2100@163.com [College of Science, China University of Mining and Technology, Xuzhou 221116 (China); Duan Chenlong [School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116 (China)

    2012-07-01

    We present a new device which consists of a molecular quantum dot (MQD) attached to a normal-metal, two ferromagnetic (FM), and a superconducting leads. The spin-related Andreev reflection (AR) current and the spin-dependent single-particle tunneling current through the normal-metal terminal are obtained, and it is found that the spin current exhibits the transistor-like behavior. The joint effects of the coherent spin flip and the angle between magnetic moments of the two FM leads on the spin current are also studied, these results provide the possibility to manipulate the spin current with the system parameters.

  17. Magnon transport in noncollinear spin textures: Anisotropies and topological magnon Hall effects

    Science.gov (United States)

    Mook, Alexander; Göbel, Börge; Henk, Jürgen; Mertig, Ingrid

    2017-01-01

    We analyze signatures of noncollinear spin textures in the magnon transport of both spin and heat by means of atomistic spin dynamics. The influence of the spin texture is demonstrated for a spin spiral and for a skyrmion lattice on a frustrated antiferromagnet. Spin spirals show an anisotropy in the longitudinal transport, whereas skyrmion lattices exhibit transverse transport, which is interpreted in terms of topology and establishes skyrmion-induced versions of magnon Hall effects. The conductivities depend sensitively on the spiral pitch and on the skyrmion size; we predict magnon Hall angles as large as 60%.

  18. Factor analysis of 27Al MAS NMR spectra for identifying nanocrystalline phases in amorphous geopolymers.

    Science.gov (United States)

    Urbanova, Martina; Kobera, Libor; Brus, Jiri

    2013-11-01

    Nanostructured materials offer enhanced physicochemical properties because of the large interfacial area. Typically, geopolymers with specifically synthesized nanosized zeolites are a promising material for the sorption of pollutants. The structural characterization of these aluminosilicates, however, continues to be a challenge. To circumvent complications resulting from the amorphous character of the aluminosilicate matrix and from the low concentrations of nanosized crystallites, we have proposed a procedure based on factor analysis of (27)Al MAS NMR spectra. The capability of the proposed method was tested on geopolymers that exhibited various tendencies to crystallize (i) completely amorphous systems, (ii) X-ray amorphous systems with nanocrystalline phases, and (iii) highly crystalline systems. Although the recorded (27)Al MAS NMR spectra did not show visible differences between the amorphous systems (i) and the geopolymers with the nanocrystalline phase (ii), the applied factor analysis unambiguously distinguished these materials. The samples were separated into the well-defined clusters, and the systems with the evolving crystalline phase were identified even before any crystalline fraction was detected by X-ray powder diffraction. Reliability of the proposed procedure was verified by comparing it with (29)Si MAS NMR spectra. Factor analysis of (27)Al MAS NMR spectra thus has the ability to reveal spectroscopic features corresponding to the nanocrystalline phases. Because the measurement time of (27)Al MAS NMR spectra is significantly shorter than that of (29)Si MAS NMR data, the proposed procedure is particularly suitable for the analysis of large sets of specifically synthesized geopolymers in which the formation of the limited fractions of nanocrystalline phases is desired.

  19. Decoherence dynamics of a single spin versus spin ensemble

    NARCIS (Netherlands)

    Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R.

    2008-01-01

    We study decoherence of central spins by a spin bath, focusing on the difference between measurement of a single central spin and measurement of a large number of central spins (as found in typical spin-resonance experiments). For a dilute spin bath, the single spin demonstrates Gaussian free-induct

  20. Dibujo y pensamiento en la obra de Rafael Masó

    OpenAIRE

    Marañón González, Rafael Carlos

    2002-01-01

    Rafael Masó, arquitecto noucentista, es además, el artista adecuado para el análisis de una obra totalmente gráfica.Dibujos, escritos, gráficos y bocetos, son los elementos idóneos para que las ideas sobre la expresión gráfica, queden reflejados en esta Tesis Doctoral.Para conocer su obra gráfica, es necesario llegar a lo más profundo de sus pensamientos transmitidos por historiadores y la Familia Masó. Tanto su obra arquitectónica, como sus dibujos, son conocidos por expertos y estudiosos ...

  1. Application of a Multi-Agent System (MAS) to Rational Credit Rating

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A Multi-Agent System (MAS) is a promising approach to build complex system. This paper introduces the research of the Inner-Enterprise Credit Rating MAS (IECRMAS). To raise the ratingaccuracy, we not only consider the rating-target's information, but also focus on the evaluators' feature information and propose the rational rating-group formation algorithm based on an anti-bias measurement of the group. We also propose the rational rating individual, which consists of the evaluator and the assistant rating agent. A rational group formation protocol is designed to coordinate autonomous agents to perform the rating job.

  2. “Logias masónicas en la Nueva España”

    Directory of Open Access Journals (Sweden)

    Carlos Francisco Martínez Moreno

    2011-01-01

    Full Text Available Este artículo busca mostrar que en la Nueva España hubo logias masónicas autorizadas por la Gran Logia del Estado de Louisiana para ser establecidas en Veracruz, Campeche y Mérida Yucatán entre 1816 y 1820. La evidencia documental se presenta por primera vez con su transcripción y traducción, con un estudio hermenéutico del contexto político y masónico de la época, y de algunas reflexiones acerca de la composición de los miembros de las tres logias.

  3. Quantum control of spin-nematic squeezing in a dipolar spin-1 condensate

    Science.gov (United States)

    Huang, Yixiao; Xiong, Heng-Na; Yang, Yang; Hu, Zheng-Da; Xi, Zhengjun

    2017-01-01

    Versatile controllability of interactions and magnetic field in ultracold atomic gases ha now reached an era where spin mixing dynamics and spin-nematic squeezing can be studied. Recent experiments have realized spin-nematic squeezed vacuum and dynamic stabilization following a quench through a quantum phase transition. Here we propose a scheme for storage of maximal spin-nematic squeezing, with its squeezing angle maintained in a fixed direction, in a dipolar spin-1 condensate by applying a microwave pulse at a time that maximal squeezing occurs. The dynamic stabilization of the system is achieved by manipulating the external periodic microwave pulses. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is numerical simulated and agrees with a stability analysis. Moreover, the stability range coincides well with the spin-nematic vacuum squeezed region which indicates that the spin-nematic squeezed vacuum will never disappear as long as the spin dynamics are stabilized. PMID:28233786

  4. Spin-dependent quantum interference in photoemission process from spin-orbit coupled states

    Science.gov (United States)

    Yaji, Koichiro; Kuroda, Kenta; Toyohisa, Sogen; Harasawa, Ayumi; Ishida, Yukiaki; Watanabe, Shuntaro; Chen, Chuangtian; Kobayashi, Katsuyoshi; Komori, Fumio; Shin, Shik

    2017-01-01

    Spin–orbit interaction entangles the orbitals with the different spins. The spin–orbital-entangled states were discovered in surface states of topological insulators. However, the spin–orbital-entanglement is not specialized in the topological surface states. Here, we show the spin–orbital texture in a surface state of Bi(111) by laser-based spin- and angle-resolved photoelectron spectroscopy (laser-SARPES) and describe three-dimensional spin-rotation effect in photoemission resulting from spin-dependent quantum interference. Our model reveals that, in the spin–orbit-coupled systems, the spins pointing to the mutually opposite directions are independently locked to the orbital symmetries. Furthermore, direct detection of coherent spin phenomena by laser-SARPES enables us to clarify the phase of the dipole transition matrix element responsible for the spin direction in photoexcited states. These results permit the tuning of the spin polarization of optically excited electrons in solids with strong spin–orbit interaction. PMID:28232721

  5. Entangled spins and ghost-spins

    CERN Document Server

    Jatkar, Dileep P

    2016-01-01

    We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in arXiv:1602.06505 [hep-th] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves), the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the gho...

  6. Magnons, Spin Current and Spin Seebeck Effect

    Science.gov (United States)

    Maekawa, Sadamichi

    2012-02-01

    When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).

  7. Spin-polarized spin excitation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J, E-mail: lothseb@us.ibm.com, E-mail: heinrich@almaden.ibm.com [IBM Research Division, Almaden Research Center, San Jose, CA 95120 (United States)

    2010-12-15

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu{sub 2}N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  8. A RECOLLIMATION SHOCK 80 mas FROM THE CORE IN THE JET OF THE RADIO GALAXY 3C 120: OBSERVATIONAL EVIDENCE AND MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Agudo, Ivan; Gomez, Jose L.; Casadio, Carolina; Roca-Sogorb, Mar [Instituto de Astrofisica de Andalucia, CSIC, Apartado 3004, 18080 Granada (Spain); Cawthorne, Timothy V., E-mail: jlgomez@iaa.es [School of Computing, Engineering and Physical Science, University of Central Lancashire, Preston PR1 2HE (United Kingdom)

    2012-06-20

    We present Very Long Baseline Array observations of the radio galaxy 3C 120 at 5, 8, 12, and 15 GHz designed to study a peculiar stationary jet feature (hereafter C80) located {approx}80 mas from the core, which was previously shown to display a brightness temperature {approx}600 times larger than expected at such distances. The high sensitivity of the images-obtained between 2009 December and 2010 June-has revealed that C80 corresponds to the eastern flux density peak of an arc of emission (hereafter A80), downstream of which extends a large ({approx}20 mas in size) bubble-like structure that resembles an inverted bow shock. The linearly polarized emission closely follows that of the total intensity in A80, with the electric vector position angle distributed nearly perpendicular to the arc-shaped structure. Despite the stationary nature of C80/A80, superluminal components with speeds up to 3 {+-} 1 c have been detected downstream from its position, resembling the behavior observed in the HST-1 emission complex in M87. The total and polarized emission of the C80/A80 structure, its lack of motion, and brightness temperature excess are best reproduced by a model based on synchrotron emission from a conical shock with cone opening angle {eta} = 10 Degree-Sign , jet viewing angle {theta} = 16 Degree-Sign , a completely tangled upstream magnetic field, and upstream Lorentz factor {gamma}{sub u} = 8.4. The good agreement between our observations and numerical modeling leads us to conclude that the peculiar feature associated with C80/A80 corresponds to a conical recollimation shock in the jet of 3C 120 located at a de-projected distance of {approx}190 pc downstream from the nucleus.

  9. The lateral angle revisited

    DEFF Research Database (Denmark)

    Morgan, Jeannie; Lynnerup, Niels; Hoppa, R.D.

    2013-01-01

    measurements taken from computed tomography (CT) scans. Previous reports have observed that the lateral angle size in females is significantly larger than in males. The method was applied to an independent series of 77 postmortem CT scans (42 males, 35 females) to validate its accuracy and reliability...... method appears to be of minimal practical use in forensic anthropology and archeology. © 2013 American Academy of Forensic Sciences....

  10. Contact angle hysteresis explained.

    Science.gov (United States)

    Gao, Lichao; McCarthy, Thomas J

    2006-07-04

    A view of contact angle hysteresis from the perspectives of the three-phase contact line and of the kinetics of contact line motion is given. Arguments are made that advancing and receding are discrete events that have different activation energies. That hysteresis can be quantified as an activation energy by the changes in interfacial area is argued. That this is an appropriate way of viewing hysteresis is demonstrated with examples.

  11. Subsonic Aerodynamics of Spinning and Non-Spinning Type 200 Lightcraft: Progress Report

    Science.gov (United States)

    Kenoyer, David A.; Myrabo, Leik N.

    2010-05-01

    A combined experimental and numerical investigation of subsonic aerodynamics for Type 200 laser lightcraft is underway for both spinning and non-spinning cases. A 12.2 cm diameter aluminum model with a "closed" annular airbreathing inlet was fitted to a sting balance in RPI's 61 cm by 61 cm subsonic wind tunnel. Aerodynamic forces and moments were measured first for the non-spinning case vs. angle of attack, at several freestream flow velocities (e.g., 30, 45, and 60 m/s) to assess Reynolds number effects. The CFD analysis was performed for 0-180° angles of attack for a fixed coordinate system (i.e., non-spinning Type 200 model), and predictions compared favorably with the experimental data. In the near future, for the spinning case, a brushless electric motor has been installed to rotate the wind tunnel model at 3000 to 13,000 RPM; Magnus force effects upon the coefficients (Cd, Cl, and Cm) are expected to reveal interesting departures from the non-spinning database in forthcoming experiments.

  12. RHIC spin physics: Proceedings. Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This proceedings compiles one-page summaries and five transparencies for each talk, with the intention that the speaker should include a web location for additional information in the summary. Also, email addresses are given with the participant list. The order follows the agenda: gluon, polarimetry, accelerator, W production and quark/antiquark polarization, parity violation searches, transversity, single transverse spin, small angle elastic scattering, and the final talk on ep collisions at RHIC. The authors begin the Proceedings with the full set of transparencies from Bob Jaffe`s colloquium on spin, by popular request.

  13. Spin Rotation of Formalism for Spin Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Luccio,A.

    2008-02-01

    The problem of which coefficients are adequate to correctly represent the spin rotation in vector spin tracking for polarized proton and deuteron beams in synchrotrons is here re-examined in the light of recent discussions. The main aim of this note is to show where some previous erroneous results originated and how to code spin rotation in a tracking code. Some analysis of a recent experiment is presented that confirm the correctness of the assumptions.

  14. Rashba-type spin splitting and spin interference of the Cu(1 1 1) surface state at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dil, J. Hugo, E-mail: hugo.dil@epfl.ch [Institut de Physique de la Matière Condensée, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Meier, Fabian [Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Osterwalder, Jürg [Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland)

    2015-05-15

    We report on the measurement of the Rashba-type spin splitting of the Shockley surface state on Cu(1 1 1) by spin- and angle-resolved photoemission at room temperature. Along the spatial direction expected for a Rashba-type effect the measured spin splitting corresponds to what has previously been reported by first principle calculations which were verified by high resolution ARPES using low temperatures and perfect crystals. Furthermore it is found that structural defects cause a spin-interference in the photoemission process and as a result the main measured spin signal is in the plane orthogonal to the typical Rashba orientation. Although the determination of the exact origin of this signal requires further investigations, the main results can be used as a benchmark for future spin-resolved photoemission set-ups.

  15. SecMAS: Security Enhanced Monitoring and Analysis Systems for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ding Chao

    2016-01-01

    Full Text Available The monitoring, control, and security guarantee for the communication in the wireless sensor networks (WSNs are currently treated as three independent issues and addressed separately through specialized tools. However, most cases of WSNs applications requires the network administrator change the network configuration in a very short time to response to the change of observed phenomenon with security guarantee. To meet this requirement, we propose a security enhanced monitoring and control platform named SecMAS for WSNs, which provides the real-time visualization about network states and online reconfiguration of the network properties and behaviours in a resource-efficient way. Besides, basic cryptographic primitives and part of the anomaly detection functionalities are implemented in SecMAS to enabling the secure communication in WSNs. Furthermore, we conduct experiments to evaluate the performance of SecMAS in terms of the latency, throughput, communication overhead, and the security capacity. The experimental results demonstrate that the SecMAS system achieves stable, efficient and secure data collection with lightweight quick-response network control.

  16. Two-Stage MAS Technique for Analysis of DRA Elements and Arrays on Finite Ground Planes

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2007-01-01

    A two-stage Method of Auxiliary Sources (MAS) technique is proposed for analysis of dielectric resonator antenna (DRA) elements and arrays on finite ground planes (FGPs). The problem is solved by first analysing the DRA on an infinite ground plane (IGP) and then using this solution to model the FGP...... problem....

  17. Performance of RINEPT is amplified by dipolar couplings under ultrafast MAS conditions.

    Science.gov (United States)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2014-06-01

    The refocused insensitive nuclei enhanced by polarization transfer (RINEPT) technique is commonly used for heteronuclear polarization transfer in solution and solid-state NMR spectroscopy. Suppression of dipolar couplings, either by fast molecular motions in solution or by a combination of MAS and multiple pulse sequences in solids, enables the polarization transfer via scalar couplings. However, the presence of unsuppressed dipolar couplings could alter the functioning of RINEPT, particularly under fast/ultrafast MAS conditions. In this study, we demonstrate, through experiments on rigid solids complemented by numerical simulations, that the polarization transfer efficiency of RINEPT is dependent on the MAS frequency. In addition, we show that heteronuclear dipolar coupling is the dominant factor in the polarization transfer, which is strengthened by the presence of (1)H-(1)H dipolar couplings. In fact, the simultaneous presence of homonuclear and heteronuclear dipolar couplings is the premise for the polarization transfer by RINEPT, whereas the scalar coupling plays an insignificant role under ultrafast MAS conditions on rigid solids. Our results additionally reveal that the polarization transfer efficiency decreases with the increasing duration of RF pulses used in the RINEPT sequence.

  18. Project MAS, 1982-1983. O.E.E. Evaluation Report.

    Science.gov (United States)

    Villegas, Ana; Villegas, Jose

    This multi-site instructional program, in its first year of a three-year funding cycle, provided instruction in English as a Second Language (ESL) and native language arts, as well as bilingual instruction in various content areas, to 400 Spanish speaking students of limited English proficiency in grades 3-8. The functional goal of Project MAS,…

  19. Spin-Mechatronics

    Science.gov (United States)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  20. Switching the direction of spin accumulation in the spin Hall effect of light by adjusting the optical axis of an uniaxial crystal

    Institute of Scientific and Technical Information of China (English)

    Tang Ming; Zhou Xin-Xing; Xiao Zhi-Cheng; Luo Hai-Lu; Wen Shuang-Chun

    2013-01-01

    We theoretically and experimentally investigate a switchable spin Hall effect (SHE) of light in reflection near the Brewster angle at an air-uniaxial crystal interface.We find a large transverse spin splitting near the Brewster angle,whose sign can be altered by rotating the optical axis.As an analogy of the SHE in an electronic system,a switchable spin accumulation in the SHE of light is detected.We are able to switch the direction of the spin accumulation by adjusting the optical axis angle of the uniaxial crystal.These findings may give opportunities for photon spin manipulating and developing a new generation of nano-photonic devices.

  1. Cone Algorithm of Spinning Vehicles under Dynamic Coning Environment

    Directory of Open Access Journals (Sweden)

    Shuang-biao Zhang

    2015-01-01

    Full Text Available Due to the fact that attitude error of vehicles has an intense trend of divergence when vehicles undergo worsening coning environment, in this paper, the model of dynamic coning environment is derived firstly. Then, through investigation of the effect on Euler attitude algorithm for the equivalency of traditional attitude algorithm, it is found that attitude error is actually the roll angle error including drifting error and oscillating error, which is induced directly by dynamic coning environment and further affects the pitch angle and yaw angle through transferring. Based on definition of the cone frame and cone attitude, a cone algorithm is proposed by rotation relationship to calculate cone attitude, and the relationship between cone attitude and Euler attitude of spinning vehicle is established. Through numerical simulations with different conditions of dynamic coning environment, it is shown that the induced error of Euler attitude fluctuates by the variation of precession and nutation, especially by that of nutation, and the oscillating frequency of roll angle error is twice that of pitch angle error and yaw angle error. In addition, the rotation angle is more competent to describe the spinning process of vehicles under coning environment than Euler angle gamma, and the real pitch angle and yaw angle are calculated finally.

  2. Effect of a Selective Mas Receptor Agonist in Cerebral Ischemia In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Seyoung Lee

    Full Text Available Functional modulation of the non-AT1R arm of the renin-angiotensin system, such as via AT2R activation, is known to improve stroke outcome. However, the relevance of the Mas receptor, which along with the AT2R forms the protective arm of the renin-angiotensin system, as a target in stroke is unclear. Here we tested the efficacy of a selective MasR agonist, AVE0991, in in vitro and in vivo models of ischemic stroke. Primary cortical neurons were cultured from E15-17 mouse embryos for 7-9 d, subjected to glucose deprivation for 24 h alone or with test drugs, and percentage cell death was determined using trypan blue exclusion assay. Additionally, adult male mice were subjected to 1 h middle cerebral artery occlusion and were administered either vehicle or AVE0991 (20 mg/kg i.p. at the commencement of 23 h reperfusion. Some animals were also treated with the MasR antagonist, A779 (80 mg/kg i.p. 1 h prior to surgery. Twenty-four h after MCAo, neurological deficits, locomotor activity and motor coordination were assessed in vivo, and infarct and edema volumes estimated from brain sections. Following glucose deprivation, application of AVE0991 (10-8 M to 10-6 M reduced neuronal cell death by ~60% (P<0.05, an effect prevented by the MasR antagonist. By contrast, AVE0991 administration in vivo had no effect on functional or histological outcomes at 24 h following stroke. These findings indicate that the classical MasR agonist, AVE0991, can directly protect neurons from injury following glucose-deprivation. However, this effect does not translate into an improved outcome in vivo when administered systemically following stroke.

  3. Planar Hall effect based characterization of spin orbital torques in Ta/CoFeB/MgO structures

    Science.gov (United States)

    Jamali, Mahdi; Zhao, Zhengyang; DC, Mahendra; Zhang, Delin; Li, Hongshi; Smith, Angeline K.; Wang, Jian-Ping

    2016-04-01

    The spin orbital torques in Ta/CoFeB/MgO structures are experimentally investigated utilizing the planar Hall effect and magnetoresistance measurement. By angular field characterization of the planar Hall resistance at ±current, the differential resistance which is directly related to the spin orbital torques is derived. Upon curve fitting of the analytical formulas over the experimental results, it is found that the anti-damping torque, also known as spin Hall effect, is sizable while a negligible field-like torque is observed. A spin Hall angle of about 18 ± 0.6% is obtained for the Ta layer. Temperature dependent study of the spin orbital torques is also performed. It is found that temperature does not significantly modify the spin Hall angle. By cooling down the sample down to 100 K, the obtained spin Hall angle has a maximum value of about 20.5 ± 0.43%.

  4. Spin Transport by Collective Spin Excitations

    Science.gov (United States)

    Hammel, P. Chris

    We report studies of angular momentum transport in insulating materials. Our measurements reveal efficient spin pumping from high wavevector k spin waves in thin film Y3Fe5O12 (YIG): spin pumping is independent of wavevector up to k ~ 20 μm-1. Optical detection of YIG FMR by NV centers in diamond reveals a role for spin waves in this insulator-to-insulator spin transfer process. Spin transport is typically suppressed by insulating barriers, but we find that fluctuating antiferromagnetic correlations enable efficient spin transport at nm-scale thicknesses in insulating antiferromagnets, even in the absence of long-range order, and that the spin decay length increases with the strength of the antiferromagnetic correlations. This research is supported by the U.S. DOE through Grants DE-FG02-03ER46054 and DE-SC0001304, by the NSF MRSEC program through Grant No. 1420451 and by the Army Research Office through Grant W911NF0910147.

  5. Variable angle correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y K [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with {sup 13}C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.

  6. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  7. Arbitrary Spin Galilean Oscillator

    CERN Document Server

    Hagen, C R

    2014-01-01

    The so-called Dirac oscillator was proposed as a modification of the free Dirac equation which reproduces many of the properties of the simple harmonic oscillator but accompanied by a strong spin-orbit coupling term. It has yet to be extended successfully to the arbitrary spin S case primarily because of the unwieldiness of general spin Lorentz invariant wave equations. It is shown here using the formalism of totally symmetric multispinors that the Dirac oscillator can, however, be made to accommodate spin by incorporating it into the framework of Galilean relativity. This is done explicitly for spin zero and spin one as special cases of the arbitrary spin result. For the general case it is shown that the coefficient of the spin-orbit term has a 1/S behavior by techniques which are virtually identical to those employed in the derivation of the g-factor carried out over four decades ago.

  8. Hyperspectral Microwave Atmospheric Sounder (HyMAS) architecture and design accommodations

    Science.gov (United States)

    Hilliard, L.; Racette, P.; Blackwell, W.; Galbraith, C.; Thompson, E.

    The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term “ hyperspectral microwave” is used to indicate an all-weather sounding that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earth's atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions. The simulations proposed for HyMAS 118/183-GHz system should yield surface precipitation rate and water path retrievals for small hail, soft hail, or snow pellets, snow, rainwater, etc. with accuracies comparable to those of the Advanced Technology Microwave Sounder. Further improvements in retrieval methodology (for example, polarization exploitation) are expected. The CoSMIR instrument is a packaging concept re-used on HyMAS to ease the integration features of the scanhead. The HyMAS scanhead will include an ultra-compact Intermediate Frequency Processor (IFP) module that is mounted inside the door to improve thermal management. The IFP is fabricated with materials made of Low-Temperature Co-fired Ceramic (LTCC) technology integrated with detectors, amplifiers, A/D conversion and data aggregation. The IFP will put out 52 channels of 16 bit data comprised of 4 - 9 channel data streams for temperature profiles and 2-8 channel streams for water vapor. With the limited volume of the existing CoSMIR scanhead and new HyMAS front end components, the HyMAS team at Goddard began preliminary layout work inside the new drum. Importing and re-using models of the shell, the s- an head

  9. Organic spin clusters: macrocyclic-macrocyclic polyarylmethyl polyradicals with very high spin S = 5-13.

    Science.gov (United States)

    Rajca, Andrzej; Wongsriratanakul, Jirawat; Rajca, Suchada

    2004-06-02

    Synthesis and magnetic studies of a new class of organic spin clusters, possessing alternating connectivity of unequal spins, are described. Polyarylmethyl polyether precursors to the spin clusters, with linear and branched connectivity between calix[4]arene-based macrocycles, are prepared via modular, multistep syntheses. Their molecular connectivity and stereoisomerism are analyzed using NMR spectroscopy. The absolute masses (4-10 kDa) are determined by FABMS and GPC/MALS. Small angle neutron scattering (SANS) provides the radii of gyration of 1.2-1.8 nm. The corresponding polyradicals with 15, 22, and 36 triarylmethyls, which are prepared and studied as solutions in tetrahydrofuran-d(8), may be described as S' = 7/2, 1/2, 7/2 spin trimer (average S = 5-6), S' = 7/2, 1/2, 6/2, 1/2, 7/2 spin pentamer (average S = 7-9), and spin nonamer (average S = 11-13), respectively, as determined by SQUID magnetometry and numerical fits to linear combinations of the Brillouin functions. For spin trimer and pentamer, the quantitative magnetization data are fit to new percolation models, based upon random distributions of chemical defects and ferromagnetic vs antiferromagnetic couplings. The value of S = 13 is the highest for an organic molecule.

  10. Angle-deviation optical profilometer

    Institute of Scientific and Technical Information of China (English)

    Chen-Tai Tan; Yuan-Sheng Chan; Zhen-Chin Lin; Ming-Hung Chiu

    2011-01-01

    @@ We propose a new optical profilometer for three-dimensional (3D) surface profile measurement in real time.The deviation angle is based on geometrical optics and is proportional to the apex angle of a test plate.Measuring the reflectivity of a parallelogram prism allows detection of the deviation angle when the beam is incident at the nearby critical angle. The reflectivity is inversely proportional to the deviation angle and proportional to the apex angle and surface height. We use a charge-coupled device (CCD) camera at the image plane to capture the reflectivity profile and obtain the 3D surface profile directly.%We propose a new optical profilometer for three-dimensional (3D) surface profile measurement in real time.The deviation angle is based on geometrical optics and is proportional to the apex angle of a test plate.Measuring the refiectivity of a parallelogram prism allows detection of the deviation angle when the beam is incident at the nearby critical angle. The refiectivity is inversely proportional to the deviation angle and proportional to the apex angle and surface height. We use a charge-coupled device (CCD) camera at the image plane to capture the refiectivity profile and obtain the 3D surface profile directly.

  11. Angiotensin-(1-7 attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas

    Directory of Open Access Journals (Sweden)

    María Gabriela Morales

    2016-04-01

    Full Text Available Immobilization is a form of disuse characterized by a loss of strength and muscle mass. Among the main features are decreased IGF-1/Akt signalling and increased ubiquitin-proteasome pathway signalling, which induce greater myosin heavy chain degradation. Activation of the classical renin-angiotensin system (RAS causes deleterious effects in skeletal muscle, including muscle wasting. In contrast, angiotensin-(1-7 [Ang-(1-7], a peptide of the non-classical RAS, produces beneficial effects in skeletal muscle. However, the role of Ang-(1-7 in skeletal muscle disuse atrophy and independent of classical RAS activation has not been evaluated. Therefore, we assessed the functions of Ang-(1-7 and the Mas receptor in disuse muscle atrophy in vivo using unilateral cast immobilization of the hind limb in male, 12-week-old wild-type (WT and Mas-knockout (Mas KO mice for 1 and 14 days. Additionally, we evaluated the participation of IGF-1/IGFR-1/Akt signalling and ubiquitin-proteasome pathway expression on the effects of Ang-(1-7 immobilization-induced muscle atrophy. Our results found that Ang-(1-7 prevented decreased muscle strength and reduced myofiber diameter, myosin heavy chain levels, and the induction of atrogin-1 and MuRF-1 expressions, all of which normally occur during immobilization. Analyses indicated that Ang-(1-7 increases IGF-1/IGFR-1/Akt pathway signalling through IGFR-1 and Akt phosphorylation, and the concomitant activation of two downstream targets of Akt, p70S6K and FoxO3. These anti-atrophic effects of Ang-(1-7 were not observed in Mas KO mice, indicating crucial participation of the Mas receptor. This report is the first to propose anti-atrophic effects of Ang-(1-7 via the Mas receptor and the participation of the IGF-1/IGFR-1/Akt/p70S6K/FoxO3 mechanism in disuse skeletal muscle atrophy.

  12. Spinning Eggs and Ballerinas

    Science.gov (United States)

    Cross, Rod

    2013-01-01

    Measurements are presented on the rise of a spinning egg. It was found that the spin, the angular momentum and the kinetic energy all decrease as the egg rises, unlike the case of a ballerina who can increase her spin and kinetic energy by reducing her moment of inertia. The observed effects can be explained, in part, in terms of rolling friction…

  13. H/D isotope effect of {sup 1}H MAS NMR spectra and {sup 79}Br NQR frequencies of piperidinium p-bromobenzoate and pyrrolidinium p-bromobenzoate

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Hisashi, E-mail: hhonda@yokohama-cu.ac.jp [Yokohama City University, Graduate School of Nanobioscience (Japan); Kyo, Shinshin [Yokohama City University, Faculty of Sciences (Japan); Akaho, Yousuke [Yokohama City University, Faculty of International College of Arts and Sciences (Japan); Takamizawa, Satoshi [Yokohama City University, Graduate School of Nanobioscience (Japan); Terao, Hiromitsu [Tokushima University, Faculty of Integrated Arts and Sciences (Japan)

    2010-04-15

    H/D isotope effects onto {sup 79}Br NQR frequencies of piperidinium p-bromobenzoate were studied by deuterium substitution of hydrogen atoms which form two kinds of N-H Midline-Horizontal-Ellipsis O type hydrogen bonds, and the isotope shift of ca. 100 kHz were detected for a whole observed temperature range. In addition, {sup 1}H MAS NMR spectra measurements of piperidinium and pyrrolidinium p-bromobenzoate were carried out and little isotope changes of NMR line shape were detected. In order to reveal effects of molecular arrangements into the obtained isotope shift of NQR frequencies, single-crystal X-ray measurement of piperidinium p-bromobenzoate-d2 and density-functional-theory calculation were carried out. Our estimation showed the dihedral-angle change between piperidine and benzene ring contributes to isotope shift rather than those of N-H lengths by deuterium substitution.

  14. A novel BN–MAS system composite ceramics with greatly improved mechanical properties prepared by low temperature hot-pressing

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Delong; Yang, Zhihua, E-mail: zhyang@hit.edu.cn; Duan, Xiaoming; Liang, Bin; Li, Qian; Jia, Dechang, E-mail: dcjia@hit.edu.cn; Zhou, Yu

    2015-05-01

    A novel composite ceramics with excellent mechanical properties was fabricated by means of low temperature hot-pressing using hexagonal boron nitride (h-BN) and magnesium aluminum silicate (MAS) as raw materials. The influences of starting MAS content on the microstructural evolution and mechanical properties of the composites were investigated. The results indicate that the effective enhancement of relative density of composites has been achieved, which shows that MAS is an effective liquid-phase sintering aid during the hot-pressing. MAS also can improve the structural ordering of h-BN flakes. On the other hand, h-BN exhibits significant inhibiting effect on the crystallization of α-Cordierite. Furthermore, h-BN flakes with layered structure can play a role in strengthening the MAS matrix. So h-BN and MAS are considered to be co-enhanced by each other, resulting in better sintering ability and the mechanical properties of composite ceramics are better than that of both h-BN and MAS. Composite ceramics incorporated with 50 wt% MAS exhibits the highest bending strength and fracture toughness of 213±25 MPa and 2.49±0.35 MPa m{sup 1/2}, respectively.

  15. A hybrid MAS/MoM technique for 2D impedance scatterers illuminated by closely positioned sources

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2005-01-01

    A hybrid technique for 2D scattering problems with impedance structures and closely positioned illuminating sources is presented. This technique combines the method of auxiliary sources (MAS) with a localized method of moments (MoM) region near the source. Significant improvements over standard MAS...

  16. Heterodyne Interferometer Angle Metrology

    Science.gov (United States)

    Hahn, Inseob; Weilert, Mark A.; Wang, Xu; Goullioud, Renaud

    2010-01-01

    A compact, high-resolution angle measurement instrument has been developed that is based on a heterodyne interferometer. The common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer setup, an optical mask is used to sample the measurement laser beam reflecting back from a target surface. Angular rotations, around two orthogonal axes in a plane perpendicular to the measurement- beam propagation direction, are determined simultaneously from the relative displacement measurement of the target surface. The device is used in a tracking telescope system where pitch and yaw measurements of a flat mirror were simultaneously performed with a sensitivity of 0.1 nrad, per second, and a measuring range of 0.15 mrad at a working distance of an order of a meter. The nonlinearity of the device is also measured less than one percent over the measurement range.

  17. Determining the Stellar Spin Axis Orientation

    Science.gov (United States)

    Lesage, Anna-Lea; Wiedemann, Gunter

    2015-01-01

    We present an observing method that permits the determination of the absolute stellar spin axis position angle based on spectro-astrometric observations for slowly-rotating late-type stars. This method is complementary to current interferometric observations that determine the orientation of stellar spin axis for early-type fast-rotating stars. Spectro-astrometry enables us to study phenomena below the diffraction limit, at the milli-arcsecond scale. It relies on the wavelength dependent variations of the centroid position of a structured source in a long-slit spectrum. A rotating star has a slight tilt in its spectral lines, which induces a displacement of the photocentre's position. By monitoring the amplitude of the displacement for varying slit orientations, we can infer the absolute position angle of the stellar spin axis. Finally, we present first observational results on Aldebaran obtained with the Thüringer Landesternwarte high resolution spectrograph. We were able to retrieve Aldebaran's position angle with less than 10° errors.

  18. Rehabilitación de una masía de Sentmenat

    OpenAIRE

    Souto Béjar, Carla; Hormigo Morales, Miriam

    2009-01-01

    El siguiente Proyecto Final de Carrera trata del estudio de evolución histórica, diagnosis, intervención y propuesta de rehabilitación de la masía “Can Padró” de Sentmenat, municipio de la comarca del Vallés Occidental. La masía “Can Padró” es un edificio aislado que consta de 1195,67 m2 útiles y 1501,98 m2 construidos distribuidos en 3 plantas más la azotea que forma esta casa rural. Aparte, se ha edificado 261,6 m2 en las construcciones anexas sin incluir la balsa adyacente. ...

  19. Porfirio Díaz en la historiografía masónica mexicana

    OpenAIRE

    Marco Antonio Flores Zavala

    2015-01-01

    En este artículo se analiza la presencia del general Porfirio Díaz en la historiografía masónica mexicana. Para la redacción de este texto se recurrió a las obras de José María Mateos (Historia de la masonería en México desde 1806 hasta 1884), Richard Chism (Una contribución a la historia masónica de México) y Luis J. Zalce (Apuntes para la historia de la masonería en México, de mis lecturas y mis recuerdos). El cuestionario es básico: ¿Qué fuentes documentales utilizaron los autores para red...

  20. El Proyecto Sismico "LARSE" - Trabajando Hacia un Futuro con Mas Seguridad para Los Angeles

    Science.gov (United States)

    Henyey, Thomas L.; Fuis, Gary S.; Benthien, Mark L.; Burdette, Thomas R.; Christofferson, Shari A.; Clayton, Robert W.; Criley, Edward E.; Davis, Paul M.; Hendley, James W.; Kohler, Monica D.; Lutter, William J.; McRaney, John K.; Murphy, Janice M.; Okaya, David A.; Ryberg, Trond; Simila, Gerald W.; Stauffer, Peter H.

    1999-01-01

    La region de Los Angeles contiene una red de fallas activas, incluyendo muchas fallas por empuje que son profundas y no rompen la superficie de la tierra. Estas fallas ocultas incluyen la falla anteriormente desconocida que fue responsable por la devastacion que ocurrio durante el terremoto de Northridge en enero de 1994, el terremoto mas costoso en la historia de los Estados Unidos. El Experimento Sismico en la Region de Los Angeles (Los Angeles Region Seismic Experiment, LARSE), esta localizando los peligros ocultos de los terremotos debajo de la region de Los Angeles para mejorar la construccion de las estructuras que pueden apoyar terremotos que son inevitables en el futuro, y que ayudaran a los cientificos determinar donde occurira el sacudimento mas fuerte y poderoso.

  1. Le Kāmasūtra et la « pulsion shastrique » en Inde

    OpenAIRE

    Naudou, Elizabeth

    2013-01-01

    Le mot « shastrique » fait référence au traité (śāstra) d’où sont issus les Kāmasūtra, (plus généralement appelé le Kāmasūtra), « aphorismes sur l’amour » : le Kāmaśāstra, « traité sur l’amour ». Qui dit śāstra, dit, en Inde, exposé religieux ou scientifique, d’où l’expression « pulsion shastrique » que l’on pourrait rendre par « pulsion encyclopédique énumérative et classificatoire ». Le but de cet exposé est de replacer le texte dans cette structure mentale typiquement indienne, qui reflète...

  2. Equilibrium contact angle or the most-stable contact angle?

    Science.gov (United States)

    Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A

    2014-04-01

    It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation.

  3. Modelling Lyman α forest cross-correlations with LyMAS

    Science.gov (United States)

    Lochhaas, Cassandra; Weinberg, David H.; Peirani, Sébastien; Dubois, Yohan; Colombi, Stéphane; Blaizot, Jérémy; Font-Ribera, Andreu; Pichon, Christophe; Devriendt, Julien

    2016-10-01

    We use the Lyα Mass Association Scheme (LyMAS) to predict cross-correlations at z = 2.5 between dark matter haloes and transmitted flux in the Lyα forest, and compare to cross-correlations measured for quasars and damped Lyα systems (DLAs) from the Baryon Oscillation Spectroscopic Survey (BOSS) by Font-Ribera et al. We calibrate LyMAS using Horizon-AGN hydrodynamical cosmological simulations of a (100 h- 1 Mpc)3 comoving volume. We apply this calibration to a (1 h- 1 Gpc)3 simulation realized with 20483 dark matter particles. In the 100 h- 1 Mpc box, LyMAS reproduces the halo-flux correlations computed from the full hydrodynamic gas distribution very well. In the 1 h- 1 Gpc box, the amplitude of the large-scale cross-correlation tracks the halo bias bh as expected. We provide empirical fitting functions that describe our numerical results. In the transverse separation bins used for the BOSS analyses, LyMAS cross-correlation predictions follow linear theory accurately down to small scales. Fitting the BOSS measurements requires inclusion of random velocity errors; we find best-fitting rms velocity errors of 399 and 252 {km} {s}^{-1} for quasars and DLAs, respectively. We infer bias-weighted mean halo masses of M_h/10^{12} h^{-1} M_{⊙}=2.19^{+0.16}_{-0.15} and 0.69^{+0.16}_{-0.14} for the host haloes of quasars and DLAs, with ˜0.2 dex systematic uncertainty associated with redshift evolution, intergalactic medium parameters, and selection of data fitting range.

  4. Investigation of multiaxial molecular dynamics by 2H MAS NMR spectroscopy.

    Science.gov (United States)

    Kristensen, J H; Hoatson, G L; Vold, R L

    1998-11-01

    The technique of 2H MAS NMR spectroscopy is presented for the investigation of multiaxial molecular dynamics. To evaluate the effects of discrete random reorientation a Lie algebraic formalism based on the stochastic Liouville-von Neumann equation is developed. The solution to the stochastic Liouville-von Neumann equation is obtained both in the presence and absence of rf irradiation. This allows effects of molecular dynamics to be evaluated during rf pulses and extends the applicability of the formalism to arbitrary multiple pulse experiments. Theoretical methods are presented for the description of multiaxial dynamics with particular emphasis on the application of vector parameters to represent molecular rotations. Numerical time and powder integration algorithms are presented that are both efficient and easy to implement computationally. The applicability of 2H MAS NMR spectroscopy for investigating molecular dynamics is evaluated from theoretical spectra. To demonstrate the potential of the technique the dynamics of thiourea-2H4 is investigated experimentally. From a series of variable temperature MAS and quadrupole echo spectra it has been found that the dynamics can be described by composite rotation about the CS and CN bonds. Both experiments are sensitive to the fast CS rotation which is shown to be described by the Arrhenius parameters E(CS) = 46.4 +/- 2.3 kJ mol(-1) and ln(A(CS))= 32.6 +/- 0.9. The MAS experiment represents a significant improvement by simultaneously allowing the dynamics of the slow CN rotation to be fully characterized in terms of E(CN) = 56.3 +/- 3.4 kJ mol(-1) and ln(A(CN)) = 25.3 +/- 1.1.

  5. Trends and Determinants in the Japanese Cross-Border M&As

    OpenAIRE

    Filobok, Natalia

    2006-01-01

    This paper provides an overview of the recent trends in the Japanese cross-border M&A activity in 1988-2004 and investigates the factors influencing them. We develop classifications of theoretical foundations and factors of M&A activity and their application for the Japanese case. The article examines two categories of the Japanese M&As - transactions with Japanese companies as a target (sales) and transactions with Japanese companies as an acquirer (purchases). In the Japanese cr...

  6. Time reversal Aharonov-Casher effect using Rashba spin-orbit interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, Junsaku [Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Bergsten, Tobias [CREST-JST, Kawaguchi Center Building, 4-1-8 Honcho Kawaguchi-shi, Saitama 332-0012 (Japan)

    2007-09-15

    We propose a spin interferometer using Rashba spin-orbit interaction. A spin interference effect is demonstrated in small arrays of mesoscopic InGaAs rings. This spin interference is the time reversal Aharonov-Casher (AC) effect. The AC interference oscillations are controlled over several periods. This result shows evidence for electrical manipulation of the spin precession angle in an InGaAs two-dimensional electron gas channel. We control the precession rate in a precise and predictable way with an electrostatic gate.

  7. Unconventional Fermi surface spin patterns in the (Bi/Pb/Sb)/Ag(111) surface alloy

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Fabian; Dil, Hugo [Physik Institut Universitaet Zuerich (Switzerland); Swiss Light Source PSI (Switzerland); Petrov, Vladimir [Physics Institute St Petersburg (Russian Federation); Patthey, Luc [Swiss Light Source PSI (Switzerland); Osterwalder, Juerg [Physik Institut Universitaet Zuerich (Switzerland)

    2009-07-01

    By a controllable change in the stoichiometry of the long range ordered mixed surface alloy (Bi/Pb/Sb)/Ag(111) the Rashba and Fermi energy can be tuned over a wide range. We show by spin and angle-resolved photoemission spectroscopy that the spin structure of the individual surface state bands remain unaffected despite the random intermixing of the adatoms. We further report on the observation of unconventional Fermi surface spin textures. These spin textures are found when the Fermi energy lies between the crossing point and the apex of the Rashba type Kramer's pair. The results will be discussed in the context of spin transport.

  8. A refined model of the chlorosomal antennae of the green bacterium chlorobium tepidum from proton chemical shift constraints obtained with high-field 2-D and 3-D MAS NMR dipolar correlation spectroscopy

    NARCIS (Netherlands)

    Rossum, van B.E.J.; Steengaard, D.B.; Boender, G.J.; Schaffner, K.; Holzwarth, A.R.; Groot, de H.J.M.

    2001-01-01

    Heteronuclear 2-D and 3-D magic-angle spinning NMR dipolar correlation spectroscopy was applied to determine solid-state 1H shifts for aggregated bacteriochlorophyll c (BChl c) in uniformly 13C-enriched light harvesting chlorosomes of the green photosynthetic bacterium Chlorobium tepidum. A complete

  9. Inverse spin Hall effect by spin injection

    Science.gov (United States)

    Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.

    2007-09-01

    Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.

  10. Spin supplementary conditions for spinning compact binaries

    CERN Document Server

    Mikóczi, Balázs

    2016-01-01

    We consider the different spin supplementary conditions (SSC) for a spinning compact binary with the leading-order spin-orbit (SO) interaction. The Lagrangian of the binary system can be constructed but it is acceleration-dependent in two cases of SSC. We rewrite the generalized Hamiltonian formalism proposed by Ostrogradsky and compute the conservative quantities and the dissipative part of relative motion during the gravitational radiation of each SSCs. We give the orbital elements and observed quantities of the SO dynamics, for instance the energy and the orbital angular momentum losses and waveforms and discuss their SSC dependence.

  11. Spin-pumping and spin-Hall magnetoresistance (SMR) at transition metal interfaces: case of (Co/Pt) (Conference Presentation)

    Science.gov (United States)

    Jaffres, Henri; George, Jean-Marie; Laczowski, Piotr; Reyren, Nicolas; Vila, Laurent

    2016-10-01

    pure interfacial spin dissipation by SML (decoherence, interfacial enhanced scattering) and give out a general analytical expression for SMR. Our conclusions go towards a robust value of the spin-Hall conductivity and SML like previously published. The CIP spin-Hall angle, of the order of 0.10 is larger than the one found in spin-pumping experiments (CPP geometry) owing to the smaller conductivity at the Co/Pt interface, in agreement with the results of STT-FMR experiments.

  12. Detection of Ethambutol - resistant Mycobacterium tuberculosis strains by MAS-PCR method and comparison with Proportion

    Directory of Open Access Journals (Sweden)

    M. Asgharzadeh

    2007-01-01

    Full Text Available Abstract Background and purpose: Ethambutol (EMB is one of the first - line drugs used for anti-tubercular therapy but resistance to this medicine is developed in many parts of the world. EMB resistant strains commonly have embB mutations. Purpose of this research was detection of EMB-resistant Mycobactercium tuberculosis strains isolated from patients by MAS-PCR method and comparison with Proportion procedure.Materials and Methods: One hundred and twenty M. tuberculosis strains were isolated from patients with tulerculosis in Tabriz TB research center. Susceptibility testing to EMB was performed by the Proportion method. DNA was isolated from cultivated cells by SDS-proteinase K modified method. Isolated DNA was used as the template for PCR reaction.Results: One hundred and sixteen strains were susceptible to EMB and 4 (3.33% strains were resistant to EMB. All EMB resistant strains were multidrug-resistant. The MAS-PCR method was used to evaluate of mutation in the embB306 codon. Mutation was seen at the embB306 codon in all resistant strains to ethambutol.Conclusion: The results showed that MAS-PCR method can be used as a simple and rapid procedure for detecting EMB-resistance in Mycobacterium tuberculosis strains.

  13. UPLC-TOF-MS Characterization and Identification of Bioactive Iridoids in Cornus mas Fruit

    Science.gov (United States)

    West, Brett J.; Jensen, C. Jarakae

    2013-01-01

    Cornus mas L. is indigenous to Europe and parts of Asia. Although Cornus is widely considered to be an iridoid rich genera, only two iridoids have been previously found in this plant. The lack of information on taxonomically and biologically active iridoids prompted us to develop and optimize an analytical method for characterization of additional phytochemicals in C. mas fruit. An ultra performance liquid chromatography (UPLC) coupled with photodiode array spectrophotometry (PDA) and electrospray time-of-flight mass spectrometry (ESI-TOF-MS) was employed and mass parameters were optimized. Identification was made by elucidating the mass spectral data and further confirmed by comparing retention times and UV spectra of target peaks with those of reference compounds. Primary DNA damage and antigenotoxicity tests in E. coli PQ37 were used to screen the iridoids for biological activity. As a result, ten phytochemicals were identified, including iridoids loganic acid, loganin, sweroside, and cornuside. Nine of these were reported for the first time from C. mas fruit. The iridoids did not induce SOS repair of DNA, indicating a lack of genotoxic activity in E. coli PQ37. However, loganin, sweroside, and cornuside did reduce the amount of DNA damage caused by 4-nitroquinoline 1-oxide, suggesting potential antigenotoxic activity. PMID:24228188

  14. UPLC-TOF-MS Characterization and Identification of Bioactive Iridoids in Cornus mas Fruit

    Directory of Open Access Journals (Sweden)

    Shixin Deng

    2013-01-01

    Full Text Available Cornus mas L. is indigenous to Europe and parts of Asia. Although Cornus is widely considered to be an iridoid rich genera, only two iridoids have been previously found in this plant. The lack of information on taxonomically and biologically active iridoids prompted us to develop and optimize an analytical method for characterization of additional phytochemicals in C. mas fruit. An ultra performance liquid chromatography (UPLC coupled with photodiode array spectrophotometry (PDA and electrospray time-of-flight mass spectrometry (ESI-TOF-MS was employed and mass parameters were optimized. Identification was made by elucidating the mass spectral data and further confirmed by comparing retention times and UV spectra of target peaks with those of reference compounds. Primary DNA damage and antigenotoxicity tests in E. coli PQ37 were used to screen the iridoids for biological activity. As a result, ten phytochemicals were identified, including iridoids loganic acid, loganin, sweroside, and cornuside. Nine of these were reported for the first time from C. mas fruit. The iridoids did not induce SOS repair of DNA, indicating a lack of genotoxic activity in E. coli PQ37. However, loganin, sweroside, and cornuside did reduce the amount of DNA damage caused by 4-nitroquinoline 1-oxide, suggesting potential antigenotoxic activity.

  15. Modeling Lyman-\\alpha\\ Forest Cross-Correlations with LyMAS

    CERN Document Server

    Lochhaas, Cassandra; Peirani, Sébastien; Dubois, Yohan; Colombi, Stéphane; Blaizot, Jérémy; Font-Ribera, Andreu; Pichon, Christophe; Devriendt, Julien

    2015-01-01

    We use the Ly-$\\alpha$ Mass Association Scheme (LyMAS; Peirani et al. 2014) to predict cross-correlations at z = 2.5 between dark matter halos and transmitted flux in the Ly-$\\alpha$ forest, and we compare these predictions to cross-correlations measured for quasars and damped Ly-$\\alpha$ systems (DLAs) from the Baryon Oscillation Spectroscopic Survey (BOSS) by Font-Ribera et al. (2012, 2013). We calibrate and test LyMAS using Horizon-AGN hydrodynamical cosmological simulations of a $(100\\ h^{-1}\\ \\rm{Mpc})^3$ comoving volume with and without AGN feedback. We apply this calibration to a $(1\\ h^{-1}\\ \\rm{Gpc})^3$ simulation realized with $2048^3$ dark matter particles for our primary predictions. In the $100\\ h^{-1}\\ \\rm{Mpc}$ box, LyMAS reproduces the halo-flux correlations computed from the full hydrodynamic gas distribution essentially perfectly. In the $1\\ h^{-1}\\ \\rm{Gpc}$ box, the amplitude of the cross-correlation tracks the halo bias as expected, and the correlation for a halo sample with a distributio...

  16. Infrared and MAS NMR Spectroscopic Studies of Al18B4O33

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The IR spectrum and 11B and 27Al MAS NMR spectra of Al18B4O33 are presented and discussed in relation to the possible existence of boron atoms substituting for aluminum atoms. TheIR spectrum shows that the strong vibrations of the BO3 groups are present in the 1 500~1 200em-1 region, and very weak bands of BO4 units are present in the region from 1 000 to 1 100cm-1. 11B MAS NMR spectrum indicates that the strong signal for BO3 units appears in the region from δ +5 to δ +20, and the very weak signal for BO4 units is at about δ-1, while 27AlMAS NMR spectrum shows five peaks at about δ +62, +42. 1, +14,-4.7 and-6.4, originating from AlO4, AlO4, A1O5, AlO6 and AlO6, respectively. These results reveal that there areminor BO4 units in Al18B4O33, indicating that a small amount of B atoms substitute for Al atomsin the 4-fold coordination.

  17. Extrinsic spin Hall effect in metallic slab systems

    Energy Technology Data Exchange (ETDEWEB)

    Herschbach, Christian; Fedorov, Dmitry V.; Zahn, Peter [Institut fuer Physik, Martin-Luther-Universitaet Halle-Wittenberg, D-06099 Halle (Germany); Gradhand, Martin [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Mertig, Ingrid [Institut fuer Physik, Martin-Luther-Universitaet Halle-Wittenberg, D-06099 Halle (Germany); Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2011-07-01

    After the first measurement of the gigantic spin Hall effect (SHE) in Au, a discussion about the responsible mechanism has been started. Recently, a new experiment with Pt-doped Au films showed a large spin Hall angle (SHA) as was reported before in Ref. Here we present ab initio calculations in order to describe the skew scattering mechanism of the spin Hall effect in free-standing Au slabs of different thicknesses. The computation is based on a fully relativistic Korringa-Kohn-Rostoker Green's function method. The dependence of the SHA on the position of the substitutional Pt impurities in the slab is investigated.

  18. Inverse spin Hall effect in a closed loop circuit

    Energy Technology Data Exchange (ETDEWEB)

    Omori, Y.; Auvray, F.; Wakamura, T.; Niimi, Y., E-mail: niimi@issp.u-tokyo.ac.jp [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581 (Japan); Fert, A. [Unité Mixte de Physique CNRS/Thales, 91767 Palaiseau France associée à l' Université de Paris-Sud, 91405 Orsay (France); Otani, Y. [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581 (Japan); RIKEN-CEMS, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-06-16

    We present measurements of inverse spin Hall effects (ISHEs), in which the conversion of a spin current into a charge current via the ISHE is detected not as a voltage in a standard open circuit but directly as the charge current generated in a closed loop. The method is applied to the ISHEs of Bi-doped Cu and Pt. The derived expression of ISHE for the loop structure can relate the charge current flowing into the loop to the spin Hall angle of the SHE material and the resistance of the loop.

  19. Kagome spin ice

    Science.gov (United States)

    Mellado, Paula

    Spin ice in magnetic pyrochlore oxides is a peculiar magnetic state. Like ordinary water ice, these materials are in apparent violation with the third law of thermodynamics, which dictates that the entropy of a system in thermal equilibrium vanishes as its temperature approaches absolute zero. In ice, a "zero-point" entropy is retained down to low temperatures thanks to a high number of low-energy positions of hydrogen ions associated with the Bernal-Fowler ice-rules. Spins in pyrochlore oxides Ho2Ti 2O7 and Dy2Ti2O7 exhibit a similar degeneracy of ground states and thus also have a sizable zero-point entropy. A recent discovery of excitations carrying magnetic charges in pyrochlore spin ice adds another interesting dimension to these magnets. This thesis is devoted to a theoretical study of a two-dimensional version of spin ice whose spins reside on kagome, a lattice of corner-sharing triangles. It covers two aspects of this frustrated classical spin system: the dynamics of artificial spin ice in a network of magnetic nanowires and the thermodynamics of crystalline spin ice. Magnetization dynamics in artificial spin ice is mediated by the emission, propagation and absorption of domain walls in magnetic nanowires. The dynamics shows signs of self-organized behavior such as avalanches. The theoretical model compares favorably to recent experiments. The thermodynamics of the microscopic version of spin ice on kagome is examined through analytical calculations and numerical simulations. The results show that, in addition to the high-temperature paramagnetic phase and the low-temperature phase with magnetic order, spin ice on kagome may have an intermediate phase with fluctuating spins and ordered magnetic charges. This work is concluded with a calculation of the entropy of kagome spin ice at zero temperature when one of the sublattices is pinned by an applied magnetic field and the system breaks up into independent spin chains, a case of dimensional reduction.

  20. Semiconductor spintronics: Tuning the spin Hall effect in Si

    Science.gov (United States)

    Tetlow, Holly; Gradhand, Martin

    2013-02-01

    A large spin Hall effect is calculated in doped silicon. The effect is determined using first principle calculations for the extrinsic spin Hall effect due to skew scattering at substitutional impurities. It is shown that the applied method accounts accurately for experimental results on B-doped Si. Here, the effect is weak but can be tuned significantly with heavy impurities. In the case of Si(Pt) and Si(Bi) a spin Hall angle is calculated comparable to those found in metals. Furthermore, the calculated spin relaxation times give physical insight to the different effect of electron and hole doping in Si. Experimentally, spin relaxation times for the electron-doped regime were found three orders of magnitude larger than for the hole-doped systems. Our calculations reproduce this finding which can be understood in terms of the electronic band structure of bulk Si.

  1. Direction of spin axis and spin rate of the pitched baseball.

    Science.gov (United States)

    Jinji, Tsutomu; Sakurai, Shinji

    2006-07-01

    In this study, we aimed to determine the direction of the spin axis and the spin rate of pitched baseballs and to estimate the associated aerodynamic forces. In addition, the effects of the spin axis direction and spin rate on the trajectory of a pitched baseball were evaluated. The trajectories of baseballs pitched by both a pitcher and a pitching machine were recorded using four synchronized video cameras (60 Hz) and were analyzed using direct linear transform (DLT) procedures. A polynomial function using the least squares method was used to derive the time-displacement relationship of the ball coordinates during flight for each pitch. The baseball was filmed immediately after ball release using a high-speed video camera (250 Hz), and the direction of the spin axis and the spin rate (omega) were calculated based on the positional changes of the marks on the ball. The lift coefficient was correlated closely with omegasinalpha (r = 0.860), where alpha is the angle between the spin axis and the pitching direction. The term omegasinalpha represents the vertical component of the velocity vector. The lift force, which is a result of the Magnus effect occurring because of the rotation of the ball, acts perpendicularly to the axis of rotation. The Magnus effect was found to be greatest when the angular and translational velocity vectors were perpendicular to each other, and the break of the pitched baseball became smaller as the angle between these vectors approached 0 degrees. Balls delivered from a pitching machine broke more than actual pitcher's balls. It is necessary to consider the differences when we use pitching machines in batting practice.

  2. Spinning particles and higher spin field equations

    CERN Document Server

    Bastianelli, Fiorenzo; Corradini, Olindo; Latini, Emanuele

    2015-01-01

    Relativistic particles with higher spin can be described in first quantization using actions with local supersymmetry on the worldline. First, we present a brief review of these actions and their use in first quantization. In a Dirac quantization scheme the field equations emerge as Dirac constraints on the Hilbert space, and we outline how they lead to the description of higher spin fields in terms of the more standard Fronsdal-Labastida equations. Then, we describe how these actions can be extended so that the propagating particle is allowed to take different values of the spin, i.e. carry a reducible representation of the Poincar\\'e group. This way one may identify a four dimensional model that carries the same degrees of freedom of the minimal Vasiliev's interacting higher spin field theory. Extensions to massive particles and to propagation on (A)dS spaces are also briefly commented upon.

  3. Slow spin relaxation in dipolar spin ice.

    Science.gov (United States)

    Orendac, Martin; Sedlakova, Lucia; Orendacova, Alzbeta; Vrabel, Peter; Feher, Alexander; Pajerowski, Daniel M.; Cohen, Justin D.; Meisel, Mark W.; Shirai, Masae; Bramwell, Steven T.

    2009-03-01

    Spin relaxation in dipolar spin ice Dy2Ti2O7 and Ho2Ti2O7 was investigated using the magnetocaloric effect and susceptibility. The magnetocaloric behavior of Dy2Ti2O7 at temperatures where the orientation of spins is governed by ``ice rules`` (T Tice) revealed thermally activated relaxation; however, the resulting temperature dependence of the relaxation time is more complicated than anticipated by a mere extrapolation of the corresponding high temperature data [1]. A susceptibility study of Ho2Ti2O7 was performed at T > Tice and in high magnetic fields, and the results suggest a slow relaxation of spins analogous to the behavior reported in a highly polarized cooperative paramagnet [2]. [1] J. Snyder et al., Phys. Rev. Lett. 91 (2003) 107201. [2] B. G. Ueland et al., Phys. Rev. Lett. 96 (2006) 027216.

  4. Some Special Cases of Spin-Yaw Lock-In

    Science.gov (United States)

    1987-08-01

    TERMS (Continue on reverse if necessary and uidentity by block number) FIEL GRUP UBGOUP Aerodynamics Ordnance 01 01 Aeronautics Rockets 19 07 19...forces the spin to its resonance value was first answered by Nicolaides 2 when he introduced an induced roll moment which was a function of the total...asymmetries. He showed that a laterally offset c.m. location introduces an induced roll moment which is a function of two angles: (a) the total angle of

  5. Spin Hall Effect and Origins of Nonlocal Resistance in Adatom-Decorated Graphene.

    Science.gov (United States)

    Van Tuan, D; Marmolejo-Tejada, J M; Waintal, X; Nikolić, B K; Valenzuela, S O; Roche, S

    2016-10-21

    Recent experiments reporting an unexpectedly large spin Hall effect (SHE) in graphene decorated with adatoms have raised a fierce controversy. We apply numerically exact Kubo and Landauer-Büttiker formulas to realistic models of gold-decorated disordered graphene (including adatom clustering) to obtain the spin Hall conductivity and spin Hall angle, as well as the nonlocal resistance as a quantity accessible to experiments. Large spin Hall angles of ∼0.1 are obtained at zero temperature, but their dependence on adatom clustering differs from the predictions of semiclassical transport theories. Furthermore, we find multiple background contributions to the nonlocal resistance, some of which are unrelated to the SHE or any other spin-dependent origin, as well as a strong suppression of the SHE at room temperature. This motivates us to design a multiterminal graphene geometry which suppresses these background contributions and could, therefore, quantify the upper limit for spin-current generation in two-dimensional materials.

  6. Probing Spin-Orbit Misalignment Processes Around Early-Type Stars

    Science.gov (United States)

    Ahlers, Johnathon; Barnes, Jason W.

    2016-10-01

    Planets in early-type systems seem to frequently misalign from their host star's spin axis. These spin-orbit misaligned systems challenge conventional planet-formation theories because planets probably do not form with initially misaligned orbits -- their angular momenta must be conserved with the stellar nursery in which they formed. In such a case, planets must migrate to their misaligned positions. However, very few transiting exoplanets have had their spin-orbit alignment angles measured. Our model constrains spin-orbit alignment angles via photometry and asteroseismology while accounting for the brightness effects of stellar variability and rapid rotation that commonly occur in early-type stars, making the analysis of hundreds of Kepler transit light curves possible for the first time. We will employ these techniques to probe spin-orbit misalignment theories by empirically testing the spin-orbit state of exoplanets orbiting early-type stars.

  7. Characterization of Mas-7-induced pore formation in SK-N-BE(2)C human neuroblastoma cells.

    Science.gov (United States)

    Suh, B C; Lee, I S; Chae, H D; Han, S; Kim, K T

    1998-04-30

    Mastoparan, a peptide toxin from wasp venome, mimics receptors by stimulating the GTPase activity of guanine nucleotide binding proteins and the G-protein-coupled phospholipase C (PLC). By using Mas-7, the active analog of mastoparan, we showed that it makes pores in the plasma membrane. Treatment with Mas-7 but not Mas-17, the inactive analog, produced a concentration-dependent rise in intracellular Ca2+ concentration ([Ca2+]i) and facilitated the uptake of ethidium bromide (EtBr) (314 Da) to a sustained level during the stimulation. In addition, Mas-7 triggered the influx of lucifer yellow (457 Da), while it did not induce the influx of fura-2 (831 Da) and Evans blue (961 Da). However, the Mas-7-induced permeability was selectively prevented by the addition of La3+, Ni2+, and Co2+, but not Cd2+. This blocking activity was concentration-dependent. While the stimulatory effect of Mas-7 on PLC activity was dependent on extracellular Ca2+, the pore forming activity of Mas-7 was not effected by removal of extracellular Ca2+. These results, therefore, suggest that the mastoparan's action in pore formation is independent from its action in PLC stimulation and is negatively effected by inorganic cations.

  8. Generalization of the Euler Angles

    Science.gov (United States)

    Bauer, Frank H. (Technical Monitor); Shuster, Malcolm D.; Markley, F. Landis

    2002-01-01

    It is shown that the Euler angles can be generalized to axes other than members of an orthonormal triad. As first shown by Davenport, the three generalized Euler axes, hereafter: Davenport axes, must still satisfy the constraint that the first two and the last two axes be mutually perpendicular if these axes are to define a universal set of attitude parameters. Expressions are given which relate the generalized Euler angles, hereafter: Davenport angles, to the 3-1-3 Euler angles of an associated direction-cosine matrix. The computation of the Davenport angles from the attitude matrix and their kinematic equation are presented. The present work offers a more direct development of the Davenport angles than Davenport's original publication and offers additional results.

  9. Spin accumulation in the extrinsic spin Hall effect

    Science.gov (United States)

    Tse, Wang-Kong; Fabian, J.; Žutić, I.; Das Sarma, S.

    2005-12-01

    The drift-diffusion formalism for spin-polarized carrier transport in semiconductors is generalized to include spin-orbit coupling. The theory is applied to treat the extrinsic spin Hall effect using realistic boundary conditions. It is shown that carrier and spin-diffusion lengths are modified by the presence of spin-orbit coupling and that spin accumulation due to the extrinsic spin Hall effect is strongly and qualitatively influenced by boundary conditions. Analytical formulas for the spin-dependent carrier recombination rates and inhomogeneous spin densities and currents are presented.

  10. Angular Dependence of Spin Transfer Switching in Spin Valve Nanopillar Based Heusler Alloy

    Directory of Open Access Journals (Sweden)

    Pirat Khunkitti

    2016-01-01

    Full Text Available The spin transfer induced magnetization switching in current perpendicular-to-the-plane spin valve nanopillar based Co2FeAl0.5Si0.5 Heusler alloy with varying the initial angles of the magnetization of sensing layer, θ0, was investigated via macrospin simulations. The effects of an in-plane magnetic field, Hi, on the switching behavior were also evaluated. The magnetization switching was excited by spin polarized switching current, Is. The time varying magnetization was computed by the Landau-Lifshitz-Gilbert-Slonczewski equation, while the spin transfer induced noise was examined by using the power spectral density analysis. It was found that θ0 should be narrowly initialized since this configuration produces the small noise during the switching. Also, the negative Is produced more uniform switching than the positive Is due to existence of ferromagnetic exchange coupling. When Hi was presented, the noise generated at low frequencies could be suppressed, and then the switching behavior became more uniform. In addition, the results indicated that the noise configuration could be explained by the physical dynamic of magnetization behavior. Hence, the spin transfer induced noise needs to be minimized in order to improve the performance of spin transfer torque random access memory for high density recording.

  11. Mesoscopic spin Hall effect in semiconductor nanostructures

    Science.gov (United States)

    Zarbo, Liviu

    The spin Hall effect (SHE) is a name given to a collection of diverse phenomena which share two principal features: (i) longitudinal electric current flowing through a paramagnetic semiconductor or metallic sample leads to transverse spin current and spin accumulation of opposite sign at opposing lateral edges; (ii) SHE does not require externally applied magnetic field or magnetic ordering in the equilibrium state of the sample, instead it relies on the presence of spin-orbit (SO) couplings within the sample. This thesis elaborates on a new type of phenomenon within the SHE family, predicted in our recent studies [Phys. Rev. B 72, 075361 (2005); Phys. Rev. Lett. 95, 046601 (2005); Phys. Rev. B 72, 075335 (2005); Phys. Rev. B 73 , 075303 (2006); and Europhys. Lett. 77, 47004 (2007)], where pure spin current flows through the transverse electrodes attached to a clean finitesize two-dimensional electron gas (2DEG) due to unpolarized charge current injected through its longitudinal leads. If transverse leads are removed, the effect manifests as nonequilibrium spin Hall accumulation at the lateral edges of 2DEG wires. The SO coupling driving this SHE effect is of the Rashba type, which arises due to structural inversion asymmetry of semiconductor heterostructure hosting the 2DEG. We term the effect "mesoscopic" because the spin Hall currents and accumulations reach optimal value in samples of the size of the spin precession length---the distance over which the spin of an electron precesses by an angle pi. In strongly SO-coupled structures this scale is of the order of ˜100 nm, and, therefore, mesoscopic in the sense of being much larger than the characteristic microscopic scales (such as the Fermi wavelength, screening length, or the mean free path in disordered systems), but still much smaller than the macroscopic ones. Although the first theoretical proposal for SHE, driven by asymmetry in SO-dependent scattering of spin-up and spin-down electrons off impurities

  12. Worldline as a Spin Chain

    CERN Document Server

    Fatollahi, Amir H

    2016-01-01

    The general theoretical ground for the models based on the compact angle coordinates is presented. It is observed that the proper dependence on compact coordinates has to be through the group elements and is achieved most naturally in a discrete-time formulation of the theory. By the construction, the discrete worldline inlaid by compact coordinates resembles the spin chains of magnetic systems. As examples, the models based on the groups U(1), $\\mathbb{Z}_N$ and SU(2) are explicitly constructed and their exact energy spectra are obtained. As the consequence of minima in the spectra, the models exhibit a phase transition of first-order. The dynamics by U(1) group is attempted to be fitted to the proposed role for monopoles in the dual Meissner effect of confinement mechanism.

  13. Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  14. Magnus effects at high angles of attack and critical Reynolds numbers

    Science.gov (United States)

    Seginer, A.; Ringel, M.

    1983-01-01

    The Magnus force and moment experienced by a yawed, spinning cylinder were studied experimentally in low speed and subsonic flows at high angles of attack and critical Reynolds numbers. Flow-field visualization aided in describing a flow model that divides the Magnus phenomenon into a subcritical region, where reverse Magnus loads are experienced, and a supercritical region where these loads are not encountered. The roles of the spin rate, angle of attack, and crossflow Reynolds number in determining the boundaries of the subcritical region and the variations of the Magnus loads were studied.

  15. Higher spin gauge theories

    CERN Document Server

    Henneaux, Marc; Vasiliev, Mikhail A

    2017-01-01

    Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...

  16. Dynamics of stellar spin driven by planets undergoing Lidov-Kozai migration: paths to spin-orbit misalignment

    Science.gov (United States)

    Storch, Natalia I.; Lai, Dong; Anderson, Kassandra R.

    2017-03-01

    Many exoplanetary systems containing hot Jupiters (HJs) exhibit significant misalignment between the spin axes of the host stars and the orbital angular momentum axes of the planets ('spin-orbit misalignment'). High-eccentricity migration involving Lidov-Kozai oscillations of the planet's orbit induced by a distant perturber is a possible channel for producing such misaligned HJ systems. Previous works have shown that the dynamical evolution of the stellar spin axis during the high-e migration plays a dominant role in generating the observed spin-orbit misalignment. Numerical studies have also revealed various patterns of the evolution of the stellar spin axis leading to the final misalignment. Here, we develop an analytic theory to elucidate the evolution of spin-orbit misalignment during the Lidov-Kozai migration of planets in stellar binaries. Secular spin-orbit resonances play a key role in the misalignment evolution. We include the effects of short-range forces and tidal dissipation, and categorize the different possible paths to spin-orbit misalignment as a function of various physical parameters (e.g. planet mass and stellar rotation period). We identify five distinct spin-orbit evolution paths and outcomes, only two of which are capable of producing retrograde orbits. We show that these paths to misalignment and the outcomes depend only on two dimensionless parameters, which compare the stellar spin precession frequency with the rate of change of the planet's orbital axis, and the Lidov-Kozai oscillation frequency. Our analysis reveals a number of novel phenomena for the stellar spin evolution, ranging from bifurcation, adiabatic advection, to fully chaotic evolution of spin-orbit angles.

  17. Quantum Spin Gyroscope

    Science.gov (United States)

    2015-07-15

    Progress Report (ONR Award No. N00014-14-1-0804) Quantum Spin Gyroscope August 2014-July 2015 Report Type: Annual Report Primary Contact E-mail... Quantum Spin Gyroscope Grant/Contract Number: N00014-14-1-0804 Principal Investigator Name: Paola Cappellaro Program Manager: Richard Tommy Willis...required large volumes. Our project aims at overcoming these drawbacks by developing a novel solid-state quantum spin gyro- scope associated with the

  18. Spin coating apparatus

    Science.gov (United States)

    Torczynski, John R.

    2000-01-01

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  19. Picosecond Spin Seebeck Effect

    Science.gov (United States)

    Kimling, Johannes; Choi, Gyung-Min; Brangham, Jack T.; Matalla-Wagner, Tristan; Huebner, Torsten; Kuschel, Timo; Yang, Fengyuan; Cahill, David G.

    2017-02-01

    We report time-resolved magneto-optic Kerr effect measurements of the longitudinal spin Seebeck effect in normal metal /Y3Fe5 O12 bilayers driven by an interfacial temperature difference between electrons and magnons. The measured time evolution of spin accumulation induced by laser excitation indicates transfer of angular momentum across normal metal /Y3Fe5 O12 interfaces on a picosecond time scale, too short for contributions from a bulk temperature gradient in an yttrium iron garnet. The product of spin-mixing conductance and the interfacial spin Seebeck coefficient determined is of the order of 108 A m-2 K-1 .

  20. Picosecond spin Seebeck effect

    OpenAIRE

    Kimling, Johannes; Choi, Gyung-Min; Brangham, Jack T.; Matalla-Wagner, Tristan; Huebner, Torsten; Kuschel, Timo; Yang, Fengyuan; Cahill, David G.

    2016-01-01

    We report time-resolved magneto-optic Kerr effect measurements of the longitudinal spin Seebeck effect driven by an interfacial temperature difference between itinerant electrons and magnons. The measured time-evolution of spin accumulation induced by laser-excitation indicates transfer of angular momentum across Au/Y$_3$Fe$_5$O$_{12}$ and Cu/Y$_3$Fe$_5$O$_{12}$ interfaces on a picosecond time-scale. The product of spin-mixing conductance and interfacial spin Seebeck coefficient determined is...

  1. Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film

    Science.gov (United States)

    Yao, Wei; Wang, Eryin; Huang, Huaqing; Deng, Ke; Yan, Mingzhe; Zhang, Kenan; Miyamoto, Koji; Okuda, Taichi; Li, Linfei; Wang, Yeliang; Gao, Hongjun; Liu, Chaoxing; Duan, Wenhui; Zhou, Shuyun

    2017-01-01

    The generally accepted view that spin polarization in non-magnetic solids is induced by the asymmetry of the global crystal space group has limited the search for spintronics materials mainly to non-centrosymmetric materials. In recent times it has been suggested that spin polarization originates fundamentally from local atomic site asymmetries and therefore centrosymmetric materials may exhibit previously overlooked spin polarizations. Here, by using spin- and angle-resolved photoemission spectroscopy, we report the observation of helical spin texture in monolayer, centrosymmetric and semiconducting PtSe2 film without the characteristic spin splitting in conventional Rashba effect (R-1). First-principles calculations and effective analytical model analysis suggest local dipole induced Rashba effect (R-2) with spin-layer locking: opposite spins are degenerate in energy, while spatially separated in the top and bottom Se layers. These results not only enrich our understanding of the spin polarization physics but also may find applications in electrically tunable spintronics.

  2. LA IDENTIDAD POLÍTICA DEL MAS-IPSP EN BOLIVIA. DE TRADICIONES, DEMANDAS Y ANTAGONISMOS

    OpenAIRE

    Quiroga (UNRC e UNC), María Virginia

    2013-01-01

    En este artículo se pretende analizar al MAS-IPSP en tanto identidad política que emergió en resistencia a la férrea aplicación de políticas neoliberales en Bolivia y se consolidó como una alternativa popular que triunfó en las elecciones nacionales de diciembre de 2005 y de diciembre de 2009. El análisis aquí propuesto arroja importantes claves para comprender el proceso boliviano actual, planteando novedosas articulaciones entre “lo social” y “lo político”.

  3. Design and implementation of a multi-axis precision movement machine based on MAS theory

    Institute of Scientific and Technical Information of China (English)

    Li MA; Linlin CI; Genyan GE

    2009-01-01

    A model construction of a multi-agent system (MAS) and the basic function of the agent are described.The precision control method using the multi-CPU of a programmable logic controller (PLC) is introduced,and a distributed method using multiple CPUs to control different motion machines is given.The test results indicate that in industrial control fields,the combination of using the credible PLC to control the motion machine and multi-CPU task distributing methods can solve multi-axis machine linkage and implication,providing a more credible method for multi-axis motion units.

  4. Effect of postural angle on back muscle activities in aging female workers performing computer tasks

    OpenAIRE

    Kamil, Nabilla Sofia Mohd; Dawal, Siti Zawiah Md

    2015-01-01

    [Purpose] This study investigated the effects of postural angle on back muscle activity during a computer task in aging women. [Subjects] Seventeen women ≥50 years old participated. [Methods] The participants were instructed to perform computer-related tasks for 20 minutes on a workstation that simulated typical office working conditions. Back posture was measured from the measured trunk and pelvic angles. Electromyography activities were recorded simultaneously from the cervical erector spin...

  5. Thickness dependence of spin torque ferromagnetic resonance in Co{sub 75}Fe{sub 25}/Pt bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, A.; Barman, A., E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sec III, Salt Lake, Kolkata 700 098 (India); Kondou, K., E-mail: kkondou@riken.jp [RIKEN-CEMS, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Sukegawa, H.; Mitani, S. [National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047 (Japan); Kasai, S. [RIKEN-CEMS, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047 (Japan); Niimi, Y. [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581 (Japan); Otani, Y. [RIKEN-CEMS, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581 (Japan)

    2014-02-17

    The spin Hall angle of Pt in Co{sub 75}Fe{sub 25}/Pt bilayer films was experimentally investigated by means of the spin-torque ferromagnetic resonance and the modulation of damping measurements. By comparing the present results with the Ni{sub 80}Fe{sub 20}/Pt system, we found that the ferromagnetic layer underneath the Pt one greatly affects the estimation of the spin Hall angle. We also discuss the spin diffusion length of Pt and the ferromagnetic thickness dependence of the Gilbert damping coefficient.

  6. Immobilized MAS1 lipase showed high esterification activity in the production of triacylglycerols with n-3 polyunsaturated fatty acids.

    Science.gov (United States)

    Wang, Xiumei; Li, Daoming; Qu, Man; Durrani, Rabia; Yang, Bo; Wang, Yonghua

    2017-02-01

    Immobilization of lipase MAS1 from marine Streptomyces sp. strain W007 and its application in catalyzing esterification of n-3 polyunsaturated fatty acids (PUFA) with glycerol were investigated. The resin XAD1180 was selected as a suitable support for the immobilization of lipase MAS1, and its absorption ability was 75mg/g (lipase/resin ratio) with initial buffer pH value of 8.0. The thermal stability of immobilized MAS1 was improved significantly compared with that of the free lipase. Immobilized MAS1 had no regiospecificity in the hydrolysis of triolein. The highest esterification degree (99.31%) and TAG content (92.26%) by immobilized MAS1-catalyzed esterification were achieved under the optimized conditions, which were significantly better than those (82.16% and 47.26%, respectively) by Novozym 435. More than 92% n-3 PUFA was incorporated into TAG that had similar fatty acids composition to the substrate (n-3 PUFA). The immobilized MAS1 exhibited 50% of its initial activity after being used for five cycles.

  7. Large spin-orbit torques in Pt/Co-Ni/W heterostructures

    Science.gov (United States)

    Yu, Jiawei; Qiu, Xuepeng; Legrand, William; Yang, Hyunsoo

    2016-07-01

    The spin orbit torques (SOTs) in perpendicularly magnetized Co-Ni multilayers sandwiched between two heavy metals (HM) have been studied. By exploring various HM materials, we show an efficient enhancement or cancellation of the total SOT, depending on the combination of the two HM materials. The maximum SOT effective field is obtained in Pt/Co-Ni/W heterostructures. We also model our double HM system and show that the effective spin Hall angle has a peak value at certain HM thicknesses. Measuring the SOT in Pt/Co-Ni/W for various W thicknesses confirms an effective spin Hall angle up to 0.45 in our double HM system.

  8. Physics lab in spin

    CERN Multimedia

    Hawkes, N

    1999-01-01

    RAL is fostering commerical exploitation of its research and facilities in two main ways : spin-out companies exploit work done at the lab, spin-in companies work on site taking advantage of the facilities and the expertise available (1/2 page).

  9. Operator Spin Foam Models

    CERN Document Server

    Bahr, Benjamin; Kamiński, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2010-01-01

    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as the main tool. An equivalence relation we impose in the set of the operator spin foams allows to split the faces and the edges of the foams. The consistency with that relation requires introduction of the (familiar for the BF theory) face amplitude. The operator spin foam models are defined quite generally. Imposing a maximal symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with demanding consistency with splitting the edges, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on Spin(4) BF spin foam model is exactly the way we tend to view 4d quantum gravity, starting with the BC model and continuing with the EPRL or FK models. That makes...

  10. Antiferromagnetic spin Seebeck effect.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-03

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.

  11. Antiferromagnetic Spin Seebeck Effect

    Science.gov (United States)

    Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-01

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2 . A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30 nm )/Pt (4 nm) grown by molecular beam epitaxy on a MgF2 (110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2-80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9 T ) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.

  12. Single spin magnetic resonance

    Science.gov (United States)

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  13. Protective effects of Cornus mas fruit extract on carbon tetrachloride induced nephrotoxicity in rats.

    Science.gov (United States)

    Es Haghi, M; Dehghan, G; Banihabib, N; Zare, S; Mikaili, P; Panahi, F

    2014-09-01

    Oxidative damage is implicated in the pathogenesis of kidney injury. Cornus mas is used for in renal aliments traditionally in Iran. The present study was aimed to investigate the antioxidant activity of C. mas fruit extract (CMFE) on carbon tetrachloride (CCl4) treated oxidative stress in Wistar albino rats. Forty two male albino rats were divided into seven groups. Group I served as a sham; Group II served as a normal control; Group III served as a toxic control, with CCl4 (1 ml/kg body weight; 80% in olive oil); Groups IV and V received CMFE at doses of 300 and 700 mg/kg before CCl4 injection; Groups VI and VII received extract at same doses orally at 2, 6, 12, 24 and 48 h after CCl4 intoxication. CCl4 injection produced a significant rise in serum markers of oxidative stress and lipid peroxidation product malondialdehyde along with the reduction of antioxidant enzymes such as superoxide dismuta, catalase and glutathion peroxidase. Serum creatinine, urea and uric acid concentrations were increased whereas level of protein and albumin were reduced. Treatment of rats with different doses of fruit extract (300 and 700 mg/kg) significantly (P induced with CCl4 in lipid peroxidation, antioxidant defenses, biochemical and renal lesions. Based on these results, we conclude that CMFE protects kidney from oxidative stress induced by CCl4.

  14. Vadības sistēmas pilnveidošana SIA "Water Ser"

    OpenAIRE

    Strods, Jānis

    2013-01-01

    Maģistra darba tēma ir „Vadības sistēmas pilnveidošana SIA „WATER SER””. Darba pētījuma mērķis ir SIA „WATER SER” uz ilgtermiņa attīstību balstītas vadības sistēmas pilnveidošanas pasākumu definēšana, izstrāde, un ieviešanas plāna prezentēšana. Darba pirmā nodaļa ir veltīta populārāko vadības sistēmu teorētiskajam aprakstam. Otrā nodaļa ir veltīta būvniecības nozares raksturojumam. Darba trešā nodaļa ir veltīta pētāmā uzņēmuma raksturošanai. Ceturtajā nodaļā, balstoties uz veikto datu anal...

  15. Renoprotective Effects of AVE0991, a Nonpeptide Mas Receptor Agonist, in Experimental Acute Renal Injury

    Directory of Open Access Journals (Sweden)

    Lívia Corrêa Barroso

    2012-01-01

    Full Text Available Renal ischemia and reperfusion (I/R is the major cause of acute kidney injury in hospitalized patients. Mechanisms underlying reperfusion-associated injury include recruitment and activation of leukocytes and release of inflammatory mediators. In this study, we investigated the renal effects of acute administration of AVE0991, an agonist of Mas, the angiotensin-(1–7 receptor, the angiotensin-(1–7 receptor, in a murine model of renal I/R. Male C57BL/6 wild-type or Mas−/− mice were subjected to 30 min of bilateral ischemia and 24 h of reperfusion. Administration of AVE0991 promoted renoprotective effects, as seen by improvement of function, decreased tissue injury, prevention of local and remote leucocyte infiltration, and release of the chemokine, CXCL1. I/R injury was similar in WT and Mas−/− mice, suggesting that endogenous activation of this receptor does not control renal damage under baseline conditions. In conclusion, pharmacological interventions using Mas receptor agonists may represent a therapeutic opportunity for the treatment of renal I/R injury.

  16. “La iconografía masónica y sus fuentes”

    Directory of Open Access Journals (Sweden)

    Pere Sánchez Ferré

    2014-01-01

    Full Text Available El corpus iconográfico de la masonería es un elemento esencial en las prácticas rituales y un soporte privilegiado para transmitir sus doctrinas, su saber y su ciencia. Las imágenes y símbolos masónicos trascienden la experiencia estética para adentrarse en el terreno de lo iniciático, es decir, de lo espiritual; por lo tanto, el legado iconográfico que la Orden ha conservado es una representación del mundo sagrado a la que solamente se accede mediante su propio lenguaje: el simbólico, vehículo y fundamento de su sabiduría. Por ende, el objetivo del siguiente trabajo es analizar las fuentes en las que se ha inspirado el imaginario masónico a fin de comprender su significado primero y radical, su naturaleza original y los elementos que lo componen. Se intentará también poner de manifiesto el itinerario experimentado por este universo iconográfico desde el siglo XVIII hasta la actualidad, lo cual revelará la naturaleza de la metamorfosis experimentada por la masonería moderna desde su fundación.

  17. Nuevos datos en torno al escultor Josep Bover i Mas (1802-1866

    Directory of Open Access Journals (Sweden)

    Rodríguez Samaniego, Cristina

    2013-12-01

    Full Text Available Josep Bover i Mas (1802-1866 was one of the most distinguished Spanish sculptors of the Academy of Fine Arts of Barcelona during the first half of the 19th century. He had a major career as professional artist and teacher, which has been only partially studied. The author here assembles the scarce bibliographical information available on this sculptor and presents new data relating to his life and production, in order to provide a comprehensive interpretation of his works. Likewise, a renewed reflection on Spanish 19th -century academic sculpture is proposed.Josep Bover i Mas (1802-1866 fue uno de los más destacados escultores españoles de la Academia de Bellas Artes de Barcelona de la primera mitad del siglo XIX, desarrollando una interesante carrera como creador profesional y docente que, hasta el día de hoy sólo ha sido estudiada de forma fragmentaria. El presente artículo pretende reunir la escasa bibliografía publicada en torno al escultor y aportar numerosos datos nuevos relacionados con su vida y obra, facilitando la interpretación global de su trabajo. Asimismo, pretende sugerir una reflexión sobre la escultura académica decimonónica con el objetivo de contribuir a renovar la visión que de ésta se ha presentado hasta el momento.

  18. STRESS RESPONSE TO NICKEL IN ASPLENIUM SCOLOPENDRIUM L. AND DRYOPTERIS FILIX-MAS (L. SCHOTT.

    Directory of Open Access Journals (Sweden)

    Oana Alexandra Drăghiceanu

    2016-12-01

    Full Text Available The aim of this study was to determine the physiological response and the defensive potential in species Asplenium scolopendrium L. and Dryopteris filix-mas (L. Schott under the action of nickel. The following experimental variants were tested: 0, 250, 500, 1000, 1500 mg Ni kg-1soil. One month, and three months respectively, after the initiation of the experiment, the amount of assimilating pigments was determined. One month after the initiation of the experiment, there were no significant differences between the variants with Ni and the control as far as the content of chlorophyll (a and b and carotenoids was concerned. The results obtained three months after the inception of the experiment indicate that, at low concentrations, Ni stimulates the synthesis of chlorophyll. In the same period there occurred antioxidant mechanisms: increase in the amount of carotenoids and increased activity of catalase. In the species Dryopteris filix-mas, the variant with 1.000 mg Ni kg-1soil, the amount of chlorophyll was significantly reduced, and the catalase activity was 3 times higher than that obtained in the control group.

  19. ISOLATION AND HPLC METHOD DEVELOPMENT FOR FILIXIC ACID PBP FROM DRYOPTERIS FILIX-MAS

    Directory of Open Access Journals (Sweden)

    Shankar Katekhaye

    2011-11-01

    Full Text Available Simple, rapid and specific isolation and HPLC method has been develop for filixic acid PBP in Dryopteris filix-mas extract. HPLC analysis was performed on C18 column using a 90:10 (v/v mixtures of acetonitrile and methanol as isocratic mobile phase at a flow rate 1.0 ml/min. UV detection was at 254 nm for filixic acid PBP. Filixic acid shown retention time at 4.02 min. Method was validated for accuracy, precision, linearity, specificity and sensitivity in accordance with International Conference on Harmonisation guidelines. Validation studies revealed that the method is specific, accurate, precise, reliable and reproducible. Good linear correlation coefficient (r2 > 0.993 was obtained for calibration plots in the range tested. The limit of detection was 2.25 µg/ml and limit of quantification was 7.53 µg/ml for filixic acid PBP. Intra and inter-day relative standard deviation of precision was less than 1.50 %. Recovery was between 94.57 and 101.05 % filixic acid. The method can be successfully used for quantitative analysis of filixic acid PBP in D. filix-mas for day-to-day studies.

  20. Thickness dependence of spin Hall magnetoresistance in FeMn/Pt bilayers

    Directory of Open Access Journals (Sweden)

    Yumeng Yang

    2016-06-01

    Full Text Available We investigated spin Hall magnetoresistance in FeMn/Pt bilayers, which was found to be one order of magnitude larger than that of heavy metal and insulating ferromagnet or antiferromagnet bilayer systems, and comparable to that of NiFe/Pt bilayers. The spin Hall magnetoresistance shows a non-monotonic dependence on the thicknesses of both FeMn and Pt. The former can be accounted for by the thickness dependence of net magnetization in FeMn thin films, whereas the latter is mainly due to spin accumulation and diffusion in Pt. Through analysis of the Pt thickness dependence, the spin Hall angle, spin diffusion length of Pt and the real part of spin mixing conductance were determined to be 0.2, 1.1 nm, and 5.5 × 1014 Ω−1m−2, respectively. The results corroborate the spin orbit torque effect observed in this system recently.

  1. Magnetic Snell's law and spin-wave fiber with Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Yu, Weichao; Lan, Jin; Wu, Ruqian; Xiao, Jiang

    2016-10-01

    Spin waves are collective excitations propagating in the magnetic medium with ordered magnetizations. Magnonics, utilizing the spin wave (magnon) as an information carrier, is a promising candidate for low-dissipation computation and communication technologies. We discover that, due to the Dzyaloshinskii-Moriya interaction, the scattering behavior of the spin wave at a magnetic domain wall follows a generalized Snell's law, where two magnetic domains work as two different mediums. Similar to optical total reflection that occurs at water-air interfaces, spin waves may experience total reflection at the magnetic domain walls when their incident angle is larger than a critical value. We design a spin-wave fiber using a magnetic domain structure with two domain walls, and demonstrate that such a spin-wave fiber can transmit spin waves over long distances by total internal reflections, in analogy to an optical fiber.

  2. Ultrafast spin-polarization control of Dirac fermions in topological insulators

    Science.gov (United States)

    Sánchez-Barriga, J.; Golias, E.; Varykhalov, A.; Braun, J.; Yashina, L. V.; Schumann, R.; Minár, J.; Ebert, H.; Kornilov, O.; Rader, O.

    2016-04-01

    Three-dimensional topological insulators (TIs) are characterized by spin-polarized Dirac-cone surface states that are protected from backscattering by time-reversal symmetry. Control of the spin polarization of topological surface states (TSSs) using femtosecond light pulses opens novel perspectives for the generation and manipulation of dissipationless surface spin currents on ultrafast time scales. Using time-, spin-, and angle-resolved spectroscopy, we directly monitor the ultrafast response of the spin polarization of photoexcited TSSs to circularly polarized femtosecond pulses of infrared light. We achieve all-optical switching of the transient out-of-plane spin polarization, which relaxes in about 1.2 ps. Our observations establish the feasibility of ultrafast optical control of spin-polarized Dirac fermions in TIs and pave the way for optospintronic applications at ultimate speeds.

  3. Measuring the spin of black holes in binary systems using gravitational waves

    CERN Document Server

    Vitale, Salvatore; Veitch, John; Raymond, Vivien; Sturani, Riccardo

    2014-01-01

    Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions, and the opportunity of measuring spins directly through GW observations. In this letter we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientation, and signal-to-noise ratio. We find that spin magnitudes and tilt angles can be estimated to accuracy of a few percent for neutron star--black hole systems and $\\sim$ 5-30% for black hole binaries. In contrast, the difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum, and that a sudden change of behavior occurs when a system is observed from ...

  4. Skew Scattering from Correlated Systems: Impurities and Collective Excitations in the Spin Hall Effect

    Science.gov (United States)

    Ziman, Timothy; Gu, Bo; Maekawa, Sadamichi

    2017-01-01

    The spin Hall effect is affected by the Coulomb interaction as well as spin-spin correlations in metals. Here we examine the enhancement in the effect caused by resonant skew scattering induced by electron correlations. For single-impurity scattering, local Coulomb correlations may significantly change the observed spin Hall angle. There may be additional effects because of the special atomic environment close to a surface — extra degeneracies compared to the bulk, enhanced correlations that move the relative d- or f-levels, and interference effects coming from the lower local dimension. Our results may explain the very large spin Hall angle observed in CuBi alloys. We discuss the impact on the spin Hall effect from cooperative effects, firstly in an itinerant ferromagnet where there is an anomaly near the Curie temperature originating from high-order spin fluctuations. The second case considered is a metallic spin glass, where exchange via slowly fluctuating magnetic moments may lead to the precession of an injected spin current. This decreases the net spin-charge conversion from skew scattering at temperatures below a value three or four times the freezing temperature.

  5. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans

    1975-01-01

    with increasing temperatures implies that the two-ion coupling is effectively isotropic above ∼ 150 K. We present arguments for concluding that, among the mechanisms which may introduce anisotropic two-ion couplings in the rare-earth metals, the modification of the indirect exchange interaction by the spin......The energies of spin waves propagating in the c direction of Tb have been studied by inelastic neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent...... with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results...

  6. Antiferromagnetic spin Seebeck Effect

    OpenAIRE

    Wu, SM; W. Zhang; Kc, A; Borisov, P.; Pearson, JE; Jiang, JS; Lederman, D.; Hoffmann, A.; Bhattacharya, A

    2015-01-01

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF_{2}. A device scale on-chip heater is deposited on a bilayer of MnF_{2} (110) (30  nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF_{2} (110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF_{2} through the inverse spin Hall effect. The low temperature (2-80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop t...

  7. Hysteresis during contact angles measurement.

    Science.gov (United States)

    Diaz, M Elena; Fuentes, Javier; Cerro, Ramon L; Savage, Michael D

    2010-03-15

    A theory, based on the presence of an adsorbed film in the vicinity of the triple contact line, provides a molecular interpretation of intrinsic hysteresis during the measurement of static contact angles. Static contact angles are measured by placing a sessile drop on top of a flat solid surface. If the solid surface has not been previously in contact with a vapor phase saturated with the molecules of the liquid phase, the solid surface is free of adsorbed liquid molecules. In the absence of an adsorbed film, molecular forces configure an advancing contact angle larger than the static contact angle. After some time, due to an evaporation/adsorption process, the interface of the drop coexists with an adsorbed film of liquid molecules as part of the equilibrium configuration, denoted as the static contact angle. This equilibrium configuration is metastable because the droplet has a larger vapor pressure than the surrounding flat film. As the drop evaporates, the vapor/liquid interface contracts and the apparent contact line moves towards the center of the drop. During this process, the film left behind is thicker than the adsorbed film and molecular attraction results in a receding contact angle, smaller than the equilibrium contact angle.

  8. Fractionalized spin-wave continuum in kagome spin liquids

    Science.gov (United States)

    Mei, Jia-Wei; Wen, Xiao-Gang

    Motivated by spin-wave continuum (SWC) observed in recent neutron scattering experiments in Herbertsmithite, we use Gutzwiller-projected wave functions to study dynamic spin structure factor S (q , ω) of spin liquid states on the kagome lattice. Spin-1 excited states in spin liquids are represented by Gutzwiller-projected two-spinon excited wave functions. We investigate three different spin liquid candidates, spinon Fermi-surface spin liquid (FSL), Dirac spin liquid (DSL) and random-flux spin liquid (RSL). FSL and RSL have low energy peaks in S (q , ω) at K points in the extended magnetic Brillouin zone, in contrast to experiments where low energy peaks are found at M points. There is no obviuos contradiction between DSL and neutron scattering measurements. Besides a fractionalized spin (i.e. spin-1/2), spinons in DSL carry a fractionalized crystal momentum which is potentially detectable in SWC in the neutron scattering measurements.

  9. Micromagnetic study of spin transfer switching with a spin polarization tilted out of the free layer plane

    Energy Technology Data Exchange (ETDEWEB)

    Chaves-O' Flynn, Gabriel D., E-mail: gdc229@nyu.edu; Wolf, Georg; Pinna, Daniele; Kent, Andrew D. [Department of Physics, New York University, New York, New York 10003 (United States)

    2015-05-07

    We present the results of zero temperature macrospin and micromagnetic simulations of spin transfer switching of thin film nanomagnets in the shape of an ellipse with a spin-polarization tilted out of the layer plane. The perpendicular component of the spin-polarization is shown to increase the reversal speed, leading to a lower current for switching in a given time. However, for tilt angles larger than a critical angle, the layer magnetization starts to precess about an out-of-plane axis, which leads to a final magnetization state that is very sensitive to simulation conditions. As the ellipse lateral size increases, this out-of-plane precession is suppressed, due to the excitation of spatially non-uniform magnetization modes.

  10. The role of the fast motion of the spin label in the interpretation of EPR spectra for spin-labeled macromolecules.

    Science.gov (United States)

    Timofeev, Vladimir P; Nikolsky, Dmitriy O

    2003-12-01

    The spin label method was used to observe the nature of the fast motions of side chains in protein monocrystals. The EPR spectra of spin-labeled lysozyme monocrystals (with different orientations of the tetragonal protein crystal in relation to the direction of the magnetic field) were interpreted using the method of molecular dynamics (MD). Within the proposed simple model, MD calculations of the spin label motion trajectories are performed in a reasonable real time. The model regards the protein molecule as frozen as a whole and the spin-labeled amino acid residue as unfrozen. To calculate the trajectories in vacuum, a model of spin-labeled lysozyme was assembled, and the parameters of the force fields were specified for atoms of the protein molecule, including the spin label. The calculations show that the protein environment sterically limits the area of the possible angular reorientations for the NO reporter group of the nitroxide (within the spin label), and this, in turn, affects the shape of the EPR spectrum. However, it turned out that the spread in the positions of the reporter group in the angle space strictly adheres to the Gaussian distribution. Using the coordinates of the spin label atoms obtained by the MD method within a selected time range and considering the distribution of the spin label states over the ensemble of spin-labeled macromolecules in a crystal, the EPR spectra of spin-labeled lysozyme monocrystals were simulated. The resultant theoretical EPR spectra appeared to be similar to experimental ones.

  11. Spin transport at interfaces with spin-orbit coupling: Formalism

    Science.gov (United States)

    Amin, V. P.; Stiles, M. D.

    2016-09-01

    We generalize magnetoelectronic circuit theory to account for spin transfer to and from the atomic lattice via interfacial spin-orbit coupling. This enables a proper treatment of spin transport at interfaces between a ferromagnet and a heavy-metal nonmagnet. This generalized approach describes spin transport in terms of drops in spin and charge accumulations across the interface (as in the standard approach), but additionally includes the responses from in-plane electric fields and offsets in spin accumulations. A key finding is that in-plane electric fields give rise to spin accumulations and spin currents that can be polarized in any direction, generalizing the Rashba-Edelstein and spin Hall effects. The spin accumulations exert torques on the magnetization at the interface when they are misaligned from the magnetization. The additional out-of-plane spin currents exert torques via the spin-transfer mechanism on the ferromagnetic layer. To account for these phenomena we also describe spin torques within the generalized circuit theory. The additional effects included in this generalized circuit theory suggest modifications in the interpretations of experiments involving spin-orbit torques, spin pumping, spin memory loss, the Rashba-Edelstein effect, and the spin Hall magnetoresistance.

  12. Spin Hall and spin Nernst effects in graphene with intrinsic and Rashba spin-orbit interactions

    Institute of Scientific and Technical Information of China (English)

    Zhu Guo-Bao

    2012-01-01

    The spin Hall and spin Nernst effects in graphene are studied based on Green's function formalism.We calculate intrinsic contributions to spin Hall and spin Nernst conductivities in the Kane-Mele model with various structures.When both intrinsic and Rashba spin-orbit interactions are present,their interplay leads to some characteristics of the dependence of spin Hall and spin Nernst conductivities on the Fermi level.When the Rashba spin-orbit interaction is smaller than intrinsic spin-orbit coupling,a weak kink in the conductance appears.The kink disappears and a divergence appears when the Rashba spin-orbit interaction enhances.When the Rashba spin-orbit interaction approaches and is stronger than intrinsic spin-orbit coupling,the divergence becomes more obvious.

  13. The effect of FF-MAS on porcine cumulus-oocyte complex maturation, fertilization and pronucleus formation in vitro.

    Science.gov (United States)

    Faerge, Inger; Strejcek, Frantisek; Laurincik, Jozef; Rath, Detlef; Niemann, Heiner; Schellander, Karl; Rosenkranz, Christine; Hyttel, Poul Maddox; Grøndahl, Christian

    2006-08-01

    Follicular fluid meiosis-activating sterol (FF-MAS) has been isolated from the follicular fluid (FF) of several species including man. FF-MAS increases the quality of in vitro oocyte maturation, and thus the developmental potential of oocytes exposed to FF-MAS during in vitro maturation is improved. The aim of the present study was to investigate the effects of FF-MAS on porcine oocyte maturation and pronucleus formation in vitro. Porcine cumulus-oocyte complexes (COCs) were isolated from abattoir ovaries and in vitro matured for 48 h in NCSU 37 medium supplemented with 1 mg/l cysteine, 10 ng/ml epidermal growth factor and 50 microM 2-mercaptoethanol with or without 10% porcine follicular fluid (pFF). For the first 22 h, 1 mM db-cAMP and 10 I.E PMSG/hCG was added. The medium was supplemented with 1 microM, 3 microM, 10 microM, 30 microM or 100 microM FF-MAS dissolved in ethanol. After maturation the COCs were denuded mechanically using a fine glass pipette under constant pH and in vitro fertilized with fresh semen (5 x 10(5) spermatozoa/ml). The presumptive zygotes were evaluated 18 h after fertilization. The addition of pFF increased the monospermic as well as the polyspermic penetration of oocytes. In the absence of pFF, the addition of FF-MAS decreased the polyspermic penetration rate, whereas FF-MAS in combination with pFF decreased monospermic and increased polyspermic penetration. The degeneration rate of ova decreased in the presence of FF-MAS irrespective of the presence or absence of pFF. In the absence of pFF, FF-MAS at 3-10 microM increased the number of zygotes with advanced maternal pronuclear stages. In supraphysiological doses, i.e. 30-100 microM, FF-MAS dose-dependently and reversibly inhibited nuclear maturation in the absence of pFF.

  14. To Spin or Not to Spin?

    Institute of Scientific and Technical Information of China (English)

    Tina Boikos

    2008-01-01

    @@ The alarm has just gone off. Do I really have to get up? I wonder. Originally, signing up for an early-morning spinning class seemed like a good idea; it jump-starts the day with some well-needed exercise.

  15. Measuring the spin of black holes in binary systems using gravitational waves.

    Science.gov (United States)

    Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo

    2014-06-27

    Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries.

  16. Sol-gel chemistry synthesis and DTA-TGA, XRPD, SIC and {sup 7}Li, {sup 31}P, {sup 29}Si MAS-NMR studies on the Li-NASICON Li{sub 3}Zr{sub 2-y}Si{sub 2-4y}P{sub 1+4y}O{sub 12} (0 Less-Than-Or-Slanted-Equal-To y Less-Than-Or-Slanted-Equal-To 0.5) system

    Energy Technology Data Exchange (ETDEWEB)

    Belam, W., E-mail: WahidBelam@yahoo.fr [Chemistry Department, Bizerta Science Faculty, 7021 Jarzouna, Bizerta (Tunisia)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer The samples of Li-NASICON were elaborated by sol-gel chemistry. Black-Right-Pointing-Pointer The calcined temperatures of the studied samples were deduced from their thermograms. Black-Right-Pointing-Pointer The recorded X-ray powder diffractograms were indexed in the rhombohedral system. Black-Right-Pointing-Pointer The synthesized Li-NASICON materials are excellent lithium fast cation conductors. - Abstract: Five selected compounds of Li-NASICON, Li{sub 3}Zr{sub 2-y}Si{sub 2-4y}P{sub 1+4y}O{sub 12} (0 Less-Than-Or-Slanted-Equal-To y Less-Than-Or-Slanted-Equal-To 0.5), were synthesized by sol-gel chemistry in order to obtain pure polycrystalline powder and then analyzed by different physicochemical characterizations such as coupled DTA (differential thermal analysis)-TGA (thermogravimetric analysis), XRPD (X-ray powder diffraction), CIS (complex impedance spectroscopy) and MAS (magic angle spinning)-NMR (nuclear magnetic resonance). So the calcined temperature of each sample has been deduced from its corresponding DTA-TGA thermogram. However, the recorded X-ray powder diffractograms were indexed in the rhombohedral system with R3{sup Macron }c space group which corresponds to the ideal structure of NASICON. Whereas, the complex impedance spectroscopy study showed that these Li-NASICON materials are excellent lithium fast cation conductors with total electric conductivity maximal value 1.97 Multiplication-Sign 10{sup -3} S cm{sup -1} at 293 K in the case of Li{sub 3}Zr{sub 1.5}P{sub 3}O{sub 12}. Furthermore, {sup 7}Li, {sup 31}P and {sup 29}Si MAS-NMR spectroscopy study and DFT/B3LYP theoretical calculations of chemical shifts were performed to discuss the ambiguousness that exists between the resonance peak number in the experimental spectrum and the crystallographic site number relative to Li{sub 3}Zr{sub 2}Si{sub 2}PO{sub 12}.

  17. Two Comments on Bond Angles

    Science.gov (United States)

    Glaister, P.

    1997-09-01

    Tetrahedral Bond Angle from Elementary Trigonometry The alternative approach of using the scalar (or dot) product of vectors enables the determination of the bond angle in a tetrahedral molecule in a simple way. There is, of course, an even more straightforward derivation suitable for students who are unfamiliar with vectors, or products thereof, but who do know some elementary trigonometry. The starting point is the figure showing triangle OAB. The point O is the center of a cube, and A and B are at opposite corners of a face of that cube in which fits a regular tetrahedron. The required bond angle alpha = AÔB; and using Pythagoras' theorem, AB = 2(square root 2) is the diagonal of a face of the cube. Hence from right-angled triangle OEB, tan(alpha/2) = (square root 2) and therefore alpha = 2tan-1(square root 2) is approx. 109° 28' (see Fig. 1).

  18. Spin and wavelength multiplexed nonlinear metasurface holography

    Science.gov (United States)

    Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas

    2016-06-01

    Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam-Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption.

  19. Semiclassical Quantization of Spinning Quasiparticles in Ballistic Josephson Junctions

    Science.gov (United States)

    Konschelle, François; Bergeret, F. Sebastián; Tokatly, Ilya V.

    2016-06-01

    A Josephson junction made of a generic magnetic material sandwiched between two conventional superconductors is studied in the ballistic semiclassic limit. The spectrum of Andreev bound states is obtained from the single valuedness of a particle-hole spinor over closed orbits generated by electron-hole reflections at the interfaces between superconducting and normal materials. The semiclassical quantization condition is shown to depend only on the angle mismatch between initial and final spin directions along such closed trajectories. For the demonstration, an Andreev-Wilson loop in the composite position-particle-hole-spin space is constructed and shown to depend on only two parameters, namely, a magnetic phase shift and a local precession axis for the spin. The details of the Andreev-Wilson loop can be extracted via measuring the spin-resolved density of states. A Josephson junction can thus be viewed as an analog computer of closed-path-ordered exponentials.

  20. Spin effects in the antler event topology at hadron colliders

    CERN Document Server

    Edelhäuser, Lisa; Park, Myeonghun

    2012-01-01

    We investigate spin correlation effects in the "antler" event topology pp-> A-> B1, B2 -> l^{-}, C1, l^{+}, C2 at the LHC. We study the shapes of several kinematic variables, including the relative pseudorapidity, relative azimuthal angle and the energies of the two leptons, as well as several mass variables M_{ll}, Meff, \\sqrt{s}_{min}, MT2, MCT and MCTx. We focus on the two kinematic extremes of \\sqrt{s} - threshold and infinity - and derive analytical expressions for the differential distributions of several variables, most notably the cos{\\theta_{ll}}^* variable proposed by Barr in hep-ph/0511115. For all possible spin assignments of particles A, B and C, we derive the cos{\\theta_{ll}}^* differential distribution at threshold, including the effects of spin correlations. Our analytical results help identify the problematic cases for spin discrimination.