WorldWideScience

Sample records for angle spinning mas

  1. Chemical profile of beans cultivars (Phaseolus vulgaris) by 1H NMR - high resolution magic angle spinning (HR-MAS);Perfil quimico de cultivares de feijao (Phaseolus vulgaris) pela tecnica de high resolution magic angle spinning (HR-MAS)

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Luciano Morais; Choze, Rafael; Cavalcante, Pedro Paulo Araujo; Santos, Suzana da Costa; Ferri, Pedro Henrique, E-mail: luciano@quimica.ufg.b [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio Gilberto [Universidade Federal de Sao Carlos (UFScar), SP (Brazil). Dept. de Quimica

    2010-07-01

    The application of one-dimensional proton high-resolution magic angle spinning ({sup 1}H HR-MAS) NMR combined with a typical advantages of solid and liquid-state NMR techniques was used as input variables for the multivariate statistical analysis. In this paper, different cultivars of beans (Phaseolus vulgaris) developed and in development by EMBRAPA - Arroz e Feijao were analyzed by {sup 1}H HR-MAS, which have been demonstrated to be a valuable tool in its differentiation according chemical composition and avoid the manipulation of the samples as used in other techniques. (author)

  2. A General Protocol for Temperature Calibration of MAS NMR Probes at Arbitrary Spinning Speeds

    Science.gov (United States)

    Guan, Xudong; Stark, Ruth E.

    2010-01-01

    A protocol using 207Pb NMR of solid lead nitrate was developed to determine the temperature of magic-angle spinning (MAS) NMR probes over a range of nominal set temperatures and spinning speeds. Using BioMAS and fastMAS probes with typical sample spinning rates of 8 and 35 kHz, respectively, empirical equations were devised to predict the respective sample temperatures. These procedures provide a straightforward recipe for temperature calibration of any MAS probe. PMID:21036557

  3. Metabolic profiling of apples from different production systems before and after controlled atmosphere (CA) storage studied by 1H high resolution-magic angle spinning (HR-MAS) NMR.

    Science.gov (United States)

    Vermathen, Martina; Marzorati, Mattia; Diserens, Gaëlle; Baumgartner, Daniel; Good, Claudia; Gasser, Franz; Vermathen, Peter

    2017-10-15

    Determination of metabolic alterations in apples induced by such processes as different crop protection strategies or storage, are of interest to assess correlations with fruit quality or fruit disorders. Preliminary results proposed the metabolic discrimination of apples from organic (BIO), integrated (IP) and low-input (LI) production. To determine contributions of temporal metabolic developments and to define the type of metabolic changes during storage, 1 H high resolution-magic angle spinning (HR-MAS) NMR spectroscopy of apple pulp was performed before and after two time points of controlled atmosphere storage. Statistical analysis revealed similar metabolic changes over time for IP-, LI- and BIO-samples, mainly decreasing lipid and sucrose, and increasing fructose, glucose and acetaldehyde levels, which are potential contributors to fruit aroma. Across the production systems, BIO apples had consistently higher levels of fructose and monomeric phenolic compounds but lower levels of condensed polyphenols than LI and IP apples, while the remaining metabolites assimilated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. High-resolution magic angle spinning proton NMR analysis of human prostate tissue with slow spinning rates.

    Science.gov (United States)

    Taylor, Jennifer L; Wu, Chin-Lee; Cory, David; Gonzalez, R Gilberto; Bielecki, Anthony; Cheng, Leo L

    2003-09-01

    The development of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy for intact tissue analysis and the correlations between the measured tissue metabolites and disease pathologies have inspired investigations of slow-spinning methodologies to maximize the protection of tissue pathology structures from HR-MAS centrifuging damage. Spinning sidebands produced by slow-rate spinning must be suppressed to prevent their complicating the spectral region of metabolites. Twenty-two human prostatectomy samples were analyzed on a 14.1T spectrometer, with HR-MAS spinning rates of 600 Hz, 700 Hz, and 3.0 kHz, a repetition time of 5 sec, and employing various rotor-synchronized suppression methods, including DANTE, WATERGATE, TOSS, and PASS pulse sequences. Among them, DANTE, as the simplest scheme, has shown the most potential in suppression of tissue water signals and spinning sidebands, as well as in quantifying metabolic concentrations. Copyright 2003 Wiley-Liss, Inc.

  5. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  6. High-resolution NMR spectroscopy of biological tissues usingprojected Magic Angle Spinning

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Rachel W.; Jachmann, Rebecca C.; Sakellariou, Dimitris; Nielsen, Ulla Gro; Pines, Alexander

    2005-01-27

    High-resolution NMR spectra of materials subject toanisotropic broadening are usually obtained by rotating the sample aboutthe magic angle, which is 54.7 degrees to the static magnetic field. Inprojected Magic Angle Spinning (p-MAS), the sample is spun about twoangles, neither of which is the magic angle. This provides a method ofobtaining isotropic spectra while spinning at shallow angles. The p-MASexperiment may be used in situations where spinning the sample at themagic angle is not possible due to geometric or other constraints,allowing the choice of spinning angle to be determined by factors such asthe shape of the sample, rather than by the spin physics. The applicationof this technique to bovine tissue samples is demonstrated as a proof ofprinciple for future biological or medical applications.

  7. 27Al Magic Angle Spinning–Nuclear Magnetic Resonance (MAS-NMR) Analyses Applied to Historical Mortars

    Czech Academy of Sciences Publication Activity Database

    Hanzlíček, Tomáš; Perná, Ivana; Brus, Jiří

    2013-01-01

    Roč. 7, č. 2 (2013), s. 153-164 ISSN 1558-3058 R&D Projects: GA AV ČR IAA300460702 Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z40500505 Keywords : mortars * magic angle spinning –nuclear magnetic resonance (MAS-NMR) in solid state * alumina-silicates Subject RIV: DM - Solid Waste and Recycling Impact factor: 0.714, year: 2013 http://www.tandfonline.com/doi/abs/10.1080/15583058.2011.624253

  8. Graphene spin valve: An angle sensor

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan)

    2017-06-15

    Graphene spin valves can be optimized for various spintronic applications by tuning the associated experimental parameters. In this work, we report the angle dependent magnetoresistance (MR) in graphene spin valve for different orientations of applied magnetic field (B). The switching points of spin valve signals show a clear shift towards higher B for each increasing angle of the applied field, thus sensing the response for respective orientation of the magnetic field. The angular variation of B shifts the switching points from ±95 G to ±925 G as the angle is varied from 0° to 90° at 300 K. The observed shifts in switching points become more pronounced (±165 G to ±1450 G) at 4.2 K for similar orientation. A monotonic increase in MR ratio is observed as the angle of magnetic field is varied in the vertical direction at 300 K and 4.2 K temperatures. This variation of B (from 0° to 90°) increases the magnitude of MR ratio from ∼0.08% to ∼0.14% at 300 K, while at 4.2 K it progresses to ∼0.39% from ∼0.14%. The sensitivity related to angular variation of such spin valve structure can be employed for angle sensing applications.

  9. NMR in rotating magnetic fields: Magic angle field spinning

    Energy Technology Data Exchange (ETDEWEB)

    Sakellariou, D.; Meriles, C.; Martin, R.; Pines, A.

    2004-09-10

    Magic angle sample spinning has been one of the cornerstones in high-resolution solid state NMR. Spinning frequencies nowadays have increased by at least one order of magnitude over the ones used in the first experiments and the technique has gained tremendous popularity. It is currently a routine procedure in solid-state NMR, high-resolution liquid-state NMR and solid-state MRI. The technique enhances the spectral resolution by averaging away rank 2 anisotropic spin interactions thereby producing isotropic-like spectra with resolved chemical shifts and scalar couplings. Andrew proposed that it should be possible to induce similar effects in a static sample if the direction of the magnetic field is varied, e.g., magic-angle rotation of the B0 field (B0-MAS) and this has been recently demonstrated using electromagnetic field rotation. Here we discuss on the possibilities to perform field rotation using alternative hardware, together with spectroscopic methods to recover isotropic resolution even in cases where the field is not rotating at the magic angle. Extension to higher magnetic fields would be beneficial in situations where the physical manipulation of the sample is inconvenient or impossible. Such situations occur often in materials or biomedical samples where ''ex-situ'' NMR spectroscopy and imaging analysis is needed.

  10. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, David W.; Sears, Jesse A.; Turcu, Romulus V. F.; Rosso, Kevin M.; Hu, Jian Zhi

    2017-12-05

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  11. Spin Valve Systems for Angle Sensor Applications

    OpenAIRE

    Johnson, Andrew

    2004-01-01

    A contact-less sensor with the ability to measure over a 360° range has been long sought after in the automotive industry. Such a sensor could be realized by utilizing the angle dependence of the Giant Magneto Resistance (GMR) Effect in a special type of magnetic multilayer called a spin valve arranged in a wheatstone bridge circuit [Spo96]. A spin valve consists of two ferromagnetic layers separated by nonmagnetic spacer layer where the magnetization of one of the ferromagnetic layers is pin...

  12. Magic angle spinning nuclear magnetic resonance apparatus and process for high-resolution in situ investigations

    Science.gov (United States)

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.

    2015-11-24

    A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.

  13. Solid-state 13C magic angle spinning NMR spectroscopy characterization of particle size structural variations in synthetic nanodiamonds

    International Nuclear Information System (INIS)

    Alam, Todd M.

    2004-01-01

    Solid-state 13 C magic angle spinning (MAS) NMR spectroscopy has been used to quantify the different carbon species observed in synthetically produced nanodiamonds. Two different diamond-like carbon species were observed using 13 C MAS NMR, which have been attributed to a highly ordered crystalline diamond phase and a disordered crystalline diamond phase. The relative ratio of these different diamond phases was found to vary with the particle size of the nanodiamond materials

  14. Accelerating proton spin diffusion in perdeuterated proteins at 100 kHz MAS

    Energy Technology Data Exchange (ETDEWEB)

    Wittmann, Johannes J.; Agarwal, Vipin; Hellwagner, Johannes; Lends, Alons; Cadalbert, Riccardo; Meier, Beat H., E-mail: beme@ethz.ch; Ernst, Matthias, E-mail: maer@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland)

    2016-12-15

    Fast magic-angle spinning (>60 kHz) has many advantages but makes spin-diffusion-type proton–proton long-range polarization transfer inefficient and highly dependent on chemical-shift offset. Using 100%-HN-[{sup 2}H,{sup 13}C,{sup 15}N]-ubiquitin as a model substance, we quantify the influence of the chemical-shift difference on the spin diffusion between proton spins and compare two experiments which lead to an improved chemical-shift compensation of the transfer: rotating-frame spin diffusion and a new experiment, reverse amplitude-modulated MIRROR. Both approaches enable broadband spin diffusion, but the application of the first variant is limited due to fast spin relaxation in the rotating frame. The reverse MIRROR experiment, in contrast, is a promising candidate for the determination of structurally relevant distance restraints. The applied tailored rf-irradiation schemes allow full control over the range of recoupled chemical shifts and efficiently drive spin diffusion. Here, the relevant relaxation time is the larger longitudinal relaxation time, which leads to a higher signal-to-noise ratio in the spectra.

  15. Multinuclear solid-state high-resolution and C-13 -{Al-27} double-resonance magic-angle spinning NMR studies on aluminum alkoxides

    NARCIS (Netherlands)

    Abraham, A.; Prins, R.; Bokhoven, J.A. van; Eck, E.R.H. van; Kentgens, A.P.M.

    2006-01-01

    A combination of Al-27 magic-angle spinning (MAS)/multiple quantum (MQ)-MAS, C-13-H-1 CPMAS, and C-13-{Al-27} transfer of population in double-resonance (TRAPDOR) nuclear magnetic resonance (NMR) were used for the structural elucidation of the aluminum alkoxides aluminum ethoxide, aluminum

  16. Simultaneous tracking of spin angle and amplitude beyond classical limits

    Science.gov (United States)

    Colangelo, Giorgio; Ciurana, Ferran Martin; Bianchet, Lorena C.; Sewell, Robert J.; Mitchell, Morgan W.

    2017-03-01

    Measurement of spin precession is central to extreme sensing in physics, geophysics, chemistry, nanotechnology and neuroscience, and underlies magnetic resonance spectroscopy. Because there is no spin-angle operator, any measurement of spin precession is necessarily indirect, for example, it may be inferred from spin projectors at different times. Such projectors do not commute, and so quantum measurement back-action—the random change in a quantum state due to measurement—necessarily enters the spin measurement record, introducing errors and limiting sensitivity. Here we show that this disturbance in the spin projector can be reduced below N1/2—the classical limit for N spins—by directing the quantum measurement back-action almost entirely into an unmeasured spin component. This generates a planar squeezed state that, because spins obey non-Heisenberg uncertainty relations, enables simultaneous precise knowledge of spin angle and spin amplitude. We use high-dynamic-range optical quantum non-demolition measurements applied to a precessing magnetic spin ensemble to demonstrate spin tracking with steady-state angular sensitivity 2.9 decibels below the standard quantum limit, simultaneously with amplitude sensitivity 7.0 decibels below the Poissonian variance. The standard quantum limit and Poissonian variance indicate the best possible sensitivity with independent particles. Our method surpasses these limits in non-commuting observables, enabling orders-of-magnitude improvements in sensitivity for state-of-the-art sensing and spectroscopy.

  17. On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR.

    Science.gov (United States)

    Mandal, Abhishek; Boatz, Jennifer C; Wheeler, Travis B; van der Wel, Patrick C A

    2017-03-01

    A number of recent advances in the field of magic-angle-spinning (MAS) solid-state NMR have enabled its application to a range of biological systems of ever increasing complexity. To retain biological relevance, these samples are increasingly studied in a hydrated state. At the same time, experimental feasibility requires the sample preparation process to attain a high sample concentration within the final MAS rotor. We discuss these considerations, and how they have led to a number of different approaches to MAS NMR sample preparation. We describe our experience of how custom-made (or commercially available) ultracentrifugal devices can facilitate a simple, fast and reliable sample preparation process. A number of groups have since adopted such tools, in some cases to prepare samples for sedimentation-style MAS NMR experiments. Here we argue for a more widespread adoption of their use for routine MAS NMR sample preparation.

  18. On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Abhishek; Boatz, Jennifer C. [University of Pittsburgh School of Medicine, Department of Structural Biology (United States); Wheeler, Travis B. [University of Pittsburgh School of Medicine, Department of Cell Biology (United States); Wel, Patrick C. A. van der, E-mail: vanderwel@pitt.edu [University of Pittsburgh School of Medicine, Department of Structural Biology (United States)

    2017-03-15

    A number of recent advances in the field of magic-angle-spinning (MAS) solid-state NMR have enabled its application to a range of biological systems of ever increasing complexity. To retain biological relevance, these samples are increasingly studied in a hydrated state. At the same time, experimental feasibility requires the sample preparation process to attain a high sample concentration within the final MAS rotor. We discuss these considerations, and how they have led to a number of different approaches to MAS NMR sample preparation. We describe our experience of how custom-made (or commercially available) ultracentrifugal devices can facilitate a simple, fast and reliable sample preparation process. A number of groups have since adopted such tools, in some cases to prepare samples for sedimentation-style MAS NMR experiments. Here we argue for a more widespread adoption of their use for routine MAS NMR sample preparation.

  19. Microfabricated inserts for magic angle coil spinning (MACS wireless NMR spectroscopy.

    Directory of Open Access Journals (Sweden)

    Vlad Badilita

    Full Text Available This article describes the development and testing of the first automatically microfabricated probes to be used in conjunction with the magic angle coil spinning (MACS NMR technique. NMR spectroscopy is a versatile technique for a large range of applications, but its intrinsically low sensitivity poses significant difficulties in analyzing mass- and volume-limited samples. The combination of microfabrication technology and MACS addresses several well-known NMR issues in a concerted manner for the first time: (i reproducible wafer-scale fabrication of the first-in-kind on-chip LC microresonator for inductive coupling of the NMR signal and reliable exploitation of MACS capabilities; (ii improving the sensitivity and the spectral resolution by simultaneous spinning the detection microcoil together with the sample at the "magic angle" of 54.74° with respect to the direction of the magnetic field (magic angle spinning - MAS, accompanied by the wireless signal transmission between the microcoil and the primary circuit of the NMR spectrometer; (iii given the high spinning rates (tens of kHz involved in the MAS methodology, the microfabricated inserts exhibit a clear kinematic advantage over their previously demonstrated counterparts due to the inherent capability to produce small radius cylindrical geometries, thus tremendously reducing the mechanical stress and tearing forces on the sample. In order to demonstrate the versatility of the microfabrication technology, we have designed MACS probes for various Larmor frequencies (194, 500 and 700 MHz testing several samples such as water, Drosophila pupae, adamantane solid and LiCl at different magic angle spinning speeds.

  20. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Shmyreva, Anna A. [Center for Magnetic Resonance, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Safdari, Majid; Furó, István [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Dvinskikh, Sergey V., E-mail: sergeid@kth.se [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034 (Russian Federation)

    2016-06-14

    Orders of magnitude decrease of {sup 207}Pb and {sup 199}Hg NMR longitudinal relaxation times T{sub 1} upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX{sub 2} (Me = Pb, Hg and X = Cl, Br, I). In lead(II) halides, the most dramatic decrease of T{sub 1} relative to that in a static sample is in PbI{sub 2}, while it is smaller but still significant in PbBr{sub 2}, and not detectable in PbCl{sub 2}. The effect is magnetic-field dependent but independent of the spinning speed in the range 200–15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  1. Sensitivity enhancement by multiple-contact cross-polarization under magic-angle spinning

    Science.gov (United States)

    Raya, J.; Hirschinger, J.

    2017-08-01

    Multiple-contact cross-polarization (MC-CP) is applied to powder samples of ferrocene and L-alanine under magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. The combination of a two-step memory function approach and the Anderson-Weiss approximation is found to be particularly useful to derive approximate analytical solutions for single-contact Hartmann-Hahn CP (HHCP) and MC-CP dynamics under MAS. We show that the MC-CP sequence requiring no pulse-shape optimization yields higher polarizations at short contact times than optimized adiabatic passage through the HH condition CP (APHH-CP) when the MAS frequency is comparable to the heteronuclear dipolar coupling, i.e., when APHH-CP through a single sideband matching condition is impossible or difficult to perform. It is also shown that the MC-CP sideband HH conditions are generally much broader than for single-contact HHCP and that efficient polarization transfer at the centerband HH condition can be reintroduced by rotor-asynchronous multiple equilibrations-re-equilibrations with the proton spin bath. Boundary conditions for the successful use of the MC-CP experiment when relying on spin-lattice relaxation for repolarization are also examined.

  2. Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90L of liquid nitrogen per day.

    Science.gov (United States)

    Albert, Brice J; Pahng, Seong Ho; Alaniva, Nicholas; Sesti, Erika L; Rand, Peter W; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Barnes, Alexander B

    2017-10-01

    Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90L per day to perform magic-angle spinning (MAS) DNP experiments below 85K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328±3 at 81±2K, and 276±4 at 105±2K. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Development of spin echo small angle neutron scattering

    International Nuclear Information System (INIS)

    Bouwman, W.G.; Uca, O.; Van Oossanen, M.; Kraan, W.H.; Rekveldt, M.T.

    1999-01-01

    A novel kind of small angle neutron scattering (SANS) instrument is being built, based on the Larmor precession of polarised neutrons in a magnetic field. A spin echo of the polarised neutrons is used to detect the scattering. The basis of this instrument is a symmetric set-up with a spin flipper in the centre, which creates a spin echo, even with a divergent beam. The precession regions on either side of the spin flipper are shaped such to produce a very sensitive relation between the vertical angle of the neutron path and the total precession angle on one side. Any SANS of a sample placed in the instrument changes the symmetry of the neutron path and therefore decreases the echo. This amounts to measuring only the difference of the incoming and outgoing angle. This gives a huge increase in intensity of the signal with respect to conventional SANS in which both incoming and outgoing angle are defined. Magnetised foils, which rotate the neutron spin between being parallel to the magnetic field and perpendicular to the field are used to start or terminate the precession. With a preliminary set-up the first spin echo SANS signal have been measured. A full correlation function in samples over distances from 5 to 1000 nm is expected to be measured in some minutes. (author)

  4. Effective Floquet Hamiltonian for spin I = 1 in magic angle spinning ...

    Indian Academy of Sciences (India)

    WINTEC

    Floquet Hamiltonians; contact transformations in NMR; Spin-1 MAS NMR; effective Ham- iltonians. 1. Introduction. Solid state nuclear magnetic resonance spectroscopy is an important technique to study structures, dyna- mics and electric charge distribution around nuclei in solids. It is also more difficult to perform and ana-.

  5. Dynamical measurements of the Spin Hall angle

    OpenAIRE

    Talalaevskyy, Oleksandr

    2017-01-01

    Broad study of magnetic properties of YIG films is performed. This thesis covers the whole path from YIG sample growth to characterization of magnetization dynamics. In the sub-chapter 5.1, full magnetic characterization of the thin sputtered YIG films is given. A batch of YIG samples with thicknesses of 19, 29, 38 and 49 nanometer is grown by magnetron sputtering for the spin waves experiment. The thickness and the surface roughness are controlled by XRR and AFM measurements. The obtained sa...

  6. High-pressure, high-temperature magic angle spinning nuclear magnetic resonance devices and processes for making and using same

    Science.gov (United States)

    Hu, Jian Zhi; Hu, Mary Y.; Townsend, Mark R.; Lercher, Johannes A.; Peden, Charles H. F.

    2015-10-06

    Re-usable ceramic magic angle spinning (MAS) NMR rotors constructed of high-mechanic strength ceramics are detailed that include a sample compartment that maintains high pressures up to at least about 200 atmospheres (atm) and high temperatures up to about least about 300.degree. C. during operation. The rotor designs minimize pressure losses stemming from penetration over an extended period of time. The present invention makes possible a variety of in-situ high pressure, high temperature MAS NMR experiments not previously achieved in the prior art.

  7. Spin-bowling in cricket re-visited: model trajectories for various spin-vector angles

    Science.gov (United States)

    Robinson, Garry; Robinson, Ian

    2016-08-01

    In this paper we investigate, via the calculation of model trajectories appropriate to slow bowling in cricket, the effects on the flight path of the ball before pitching due to changes in the angle of the spin-vector. This was accomplished by allowing the spin-vector to vary in three ways. Firstly, from off-spin, where the spin-vector points horizontally and directly down the pitch, to top-spin where it points horizontally towards the off-side of the pitch. Secondly, from off-spin to side-spin where, for side-spin, the spin-vector points vertically upwards. Thirdly, where the spin-vector points horizontally and at 45° to the pitch (in the general direction of ‘point’, as viewed by the bowler), and is varied towards the vertical, while maintaining the 45° angle in the horizontal plane. It is found that, as is well known, top-spin causes the ball to dip in flight, side-spin causes the ball to move side-ways in flight and, perhaps most importantly, off-spin can cause the ball to drift to the off-side of the pitch late in its flight as it begins to fall. At a more subtle level it is found that, if the total spin is kept constant and a small amount of top-spin is added to the ball at the expense of some off-spin, there is little change in the side-ways drift. However, a considerable reduction in the length at which the ball pitches occurs, ˜25 cm, an amount that batsmen can ignore at their peril. On the other hand, a small amount of side-spin introduced to a top-spin delivery does not alter the point of pitching significantly, but produces a considerable amount of side-ways drift, ˜10 cm or more. For pure side-spin the side-ways drift is up to ˜30 cm. When a side-spin component is added to the spin of a ball bowled with a mixture of off-spin and top-spin in equal proportions, significant movement occurs in both the side-ways direction and in the point of pitching, of the order of a few tens of centimetres.

  8. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  9. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    International Nuclear Information System (INIS)

    Mueller, K.T.; California Univ., Berkeley, CA

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-1/2 nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids

  10. Absolute Quantification of Water in Microporous Solids with1H Magic Angle Spinning NMR and Standard Addition.

    Science.gov (United States)

    Houlleberghs, Maarten; Hoffmann, Andreas; Dom, Dirk; Kirschhock, Christine E A; Taulelle, Francis; Martens, Johan A; Breynaert, Eric

    2017-07-05

    Zeolites are microporous materials driving industrial scale adsorption, ion exchange, and catalytic processes. Their water content dramatically impacts their properties, but its quantification with Karl Fisher titration or thermal gravimetric analysis is problematic. When standard addition of water is combined with 1 H magic angle spinning (MAS) NMR detection, absolute quantification of water in microporous materials becomes possible. The method was demonstrated on five different, commercially available zeolites.

  11. Spin-Echo Small-Angle Neutron Scattering Development

    NARCIS (Netherlands)

    Uca, O.

    2003-01-01

    Spin-Echo Small-Angle Neutron Scattering (SESANS) instrument is a novel SANS technique which enables one to characterize distances from a few nanometers up to the micron range. The most striking difference between normal SANS and SESANS is that in SESANS one gets information in real space, whereas

  12. 14N Polarization Inversion Spin Exchange at Magic Angle (PISEMA)

    Science.gov (United States)

    Qian, Chunqi; Fu, Riqiang; Gor'kov, Peter; Brey, William W.; Cross, Timothy A.; Gan, Zhehong

    2009-01-01

    Polarization Inversion Spin Exchange at Magic Angle (PISEMA) is a powerful experiment for determining peptide orientation in uniformly aligned samples such as planar membranes. In this paper, we present 14N-PISEMA experiment which correlates 14N quadrupolar coupling and 14N- 1H dipolar coupling. 14N-PISEMA enables the use of 14N quadrupolar coupling tensor as an ultra sensitive probe for peptide orientation and can be carried out without the need of isotope enrichment. The experiment is based on selective spin-exchange between a proton and a single-quantum transition of 14N spins. The spin-exchange dynamics is described and the experiment is demonstrated with a natural abundant N-acetyl valine crystal sample.

  13. Birefringent neutron prisms for spin echo scattering angle measurement

    Science.gov (United States)

    Pynn, Roger; Fitzsimmons, M. R.; Lee, W. T.; Stonaha, P.; Shah, V. R.; Washington, A. L.; Kirby, B. J.; Majkrzak, C. F.; Maranville, B. B.

    2009-09-01

    In the first decade of the 19th century, an English chemist, William Wollaston, invented an arrangement of birefringent prisms that splits a beam of light into two spatially separated beams with orthogonal polarizations. We have constructed similar devices for neutrons using triangular cross-section solenoids and employed them for Spin Echo Scattering Angle Measurement (SESAME). A key difference between birefringent neutron prisms and their optical analogues is that it is hard to embed the former in a medium which has absolutely no birefringence because this implies the removal of all magnetic fields. We have overcome this problem by using the symmetry properties of the Wollaston neutron prisms and of the overall spin echo arrangement. These symmetries cause a cancellation of Larmor phase aberrations and provide robust coding of neutron scattering angles with simple equipment.

  14. 1H magic-angle spinning NMR evolves as a powerful new tool for membrane proteins

    Science.gov (United States)

    Schubeis, Tobias; Le Marchand, Tanguy; Andreas, Loren B.; Pintacuda, Guido

    2018-02-01

    Building on a decade of continuous advances of the community, the recent development of very fast (60 kHz and above) magic-angle spinning (MAS) probes has revolutionised the field of solid-state NMR. This new spinning regime reduces the 1H-1H dipolar couplings, so that direct detection of the larger magnetic moment available from 1H is now possible at high resolution, not only in deuterated molecules but also in fully-protonated substrates. Such capabilities allow rapid "fingerprinting" of samples with a ten-fold reduction of the required sample amounts with respect to conventional approaches, and permit extensive, robust and expeditious assignment of small-to-medium sized proteins (up to ca. 300 residues), and the determination of inter-nuclear proximities, relative orientations of secondary structural elements, protein-cofactor interactions, local and global dynamics. Fast MAS and 1H detection techniques have nowadays been shown to be applicable to membrane-bound systems. This paper reviews the strategies underlying this recent leap forward in sensitivity and resolution, describing its potential for the detailed characterization of membrane proteins.

  15. Spin-echo based diagonal peak suppression in solid-state MAS NMR homonuclear chemical shift correlation spectra

    Science.gov (United States)

    Wang, Kaiyu; Zhang, Zhiyong; Ding, Xiaoyan; Tian, Fang; Huang, Yuqing; Chen, Zhong; Fu, Riqiang

    2018-02-01

    The feasibility of using the spin-echo based diagonal peak suppression method in solid-state MAS NMR homonuclear chemical shift correlation experiments is demonstrated. A complete phase cycling is designed in such a way that in the indirect dimension only the spin diffused signals are evolved, while all signals not involved in polarization transfer are refocused for cancellation. A data processing procedure is further introduced to reconstruct this acquired spectrum into a conventional two-dimensional homonuclear chemical shift correlation spectrum. A uniformly 13C, 15N labeled Fmoc-valine sample and the transmembrane domain of a human protein, LR11 (sorLA), in native Escherichia coli membranes have been used to illustrate the capability of the proposed method in comparison with standard 13C-13C chemical shift correlation experiments.

  16. Slow manifold and Hannay angle in the spinning top

    Energy Technology Data Exchange (ETDEWEB)

    Berry, M V [H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Shukla, P [Department of Physics, Indian Institute of Technology, Kharagpur (India)

    2011-01-15

    The spin of a top can be regarded as a fast variable, coupled to the motion of the axis which is slow. In pure precession, the rotation of the axis round a cone (without nutation), can be considered as the result of a reaction from the fast spin. The resulting restriction of the total state space of the top is an illustrative example, at graduate-student level, of the general dynamical concept of the slow manifold. For this case, the slow manifold can be calculated exactly, and expanded as a series of reaction forces (of magnetic type) in powers of slowness, corresponding to a modified precession frequency. The forces correspond to a series for the Hannay angle for the fast motion, describing the location of a point on the top.

  17. Discrimination of Basal Cell Carcinoma from Normal Skin Tissue Using High-Resolution Magic Angle Spinning 1H NMR Spectroscopy.

    Science.gov (United States)

    Mun, Je-Ho; Lee, Heonho; Yoon, Dahye; Kim, Byung-Soo; Kim, Moon-Bum; Kim, Shukmann

    2016-01-01

    High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS (1)H NMR spectroscopy. HR-MAS (1)H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS (1)H NMR spectroscopy can be a valuable tool in the diagnosis of BCC.

  18. A low-E magic angle spinning probe for biological solid state NMR at 750 MHz

    Science.gov (United States)

    McNeill, Seth A.; Gor'kov, Peter L.; Shetty, Kiran; Brey, William W.; Long, Joanna R.

    2009-04-01

    Crossed-coil NMR probes are a useful tool for reducing sample heating for biological solid state NMR. In a crossed-coil probe, the higher frequency 1H field, which is the primary source of sample heating in conventional probes, is produced by a separate low-inductance resonator. Because a smaller driving voltage is required, the electric field across the sample and the resultant heating is reduced. In this work we describe the development of a magic angle spinning (MAS) solid state NMR probe utilizing a dual resonator. This dual resonator approach, referred to as "low-E," was originally developed to reduce heating in samples of mechanically aligned membranes. The study of inherently dilute systems, such as proteins in lipid bilayers, via MAS techniques requires large sample volumes at high field to obtain spectra with adequate signal-to-noise ratio under physiologically relevant conditions. With the low-E approach, we are able to obtain homogeneous and sufficiently strong radiofrequency fields for both 1H and 13C frequencies in a 4 mm probe with a 1H frequency of 750 MHz. The performance of the probe using windowless dipolar recoupling sequences is demonstrated on model compounds as well as membrane-embedded peptides.

  19. DRAMAtic transforms in magic angle spinning recoupling NMR: The Bessel function pathway.

    Science.gov (United States)

    Goodman, Russell; Hancock, Jason; Siemens, Mark; Jarrell, Harold; Siminovitch, David

    2005-07-01

    In magic angle spinning (MAS) NMR recoupling experiments, the extraction of multiple couplings or a coupling distribution from the observed dephasing signals remains a challenging problem. At least for REDOR experiments, the REDOR transform solves this problem, enabling the simultaneous measurement of multiple dipolar couplings. Focusing on the quadrupolar dephasing observed in QUADRAMA experiments as a representative example, we demonstrate that the same analytical form used for the mathematical description of REDOR dephasing also describes the dephasing observed in a wide variety of MAS NMR recoupling experiments. This fact immediately extends REDOR transform techniques to a much broader suite of recoupling experiments than had previously been realized, including those of DRAMA, MELODRAMA and QUADRAMA. As an illustration, we use the DRAMAtic transform to provide the first inversion of a QUADRAMA dephasing signal to extract the quadrupole coupling distribution. Using a complete elliptic integral of the first kind, we further develop a novel expression for the Pake-spun powder patterns of the corresponding recoupled lineshapes. Our methods and results reinforce the central role that Bessel functions can play in simplifying the integrals that define both the dephasing signals in the time domain, and their Fourier transforms in the frequency domain.

  20. MAS NMR of HIV-1 protein assemblies

    Science.gov (United States)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  1. Magic angle spinning NMR below 6 K with a computational fluid dynamics analysis of fluid flow and temperature gradients

    Science.gov (United States)

    Sesti, Erika L.; Alaniva, Nicholas; Rand, Peter W.; Choi, Eric J.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Barnes, Alexander B.

    2018-01-01

    We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1H saturation recovery experiments show a 1H T1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells.

  2. Concentration profiling in rat tissue by high-resolution magic-angle spinning NMR spectroscopy: investigation of a model drug.

    Science.gov (United States)

    Lucas, Laura H; Wilson, Sarah F; Lunte, Craig E; Larive, Cynthia K

    2005-05-01

    The utility of high-resolution magic-angle spinning (HR-MAS) NMR for studying drug delivery in whole tissues was explored by dosing female Sprague-Dawley rats with topical or injectable benzoic acid (BA). In principle, HR-MAS NMR permits the detection of both intra- and extracellular compounds. This is an advantage over the previous detection of topically applied BA using microdialysis coupled to HPLC/UV as microdialysis samples only the extracellular space. Skin and muscle samples were analyzed by (1)H HR-MAS NMR, and BA levels were determined using an external standard solution added to the sample rotor. One to two percent of the BA topical dose was detected in the muscle, showing that BA penetrated through the dermal and subcutaneous layers. Since BA was not detected in the muscle in the microdialysis studies, the NMR spectra revealed the intracellular localization of BA. The amount of BA detected in muscle after subcutaneous injection correlated with the distance from the dosing site. Overall, the results suggest that HR-MAS NMR can distinguish differences in the local concentration of BA varying with tissue type, dosage method, and tissue proximity to the dosing site. The results illustrate the potential of this technique for quantitative analysis of drug delivery and distribution and the challenges to be addressed as the method is refined.

  3. Hydrogen and deuterium NMR of solids by magic angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Eckman, Richard Raymond [Univ. of California, Berkeley, CA (United States)

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large spectral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. For example, the homonuclear dipolar broadening, HD, for hydrogen is usually several tens of kilohertz. For deuterium, HD is relatively small; however, the quadrupole interaction causes a broadening which can be hundreds of kilohertz in polycrystalline or amorphous solids. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, βm = Arccos(3-1/2), with respect to the direction of the external magnetic field. Two approaches have been developed for each nucleus. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of β. A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when HD was small. This often occurs naturally when the nuclei are semi-dilute or involved in

  4. Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning

    KAUST Repository

    Parthasarathy, Sudhakar

    2013-09-17

    Recent research in fast magic angle spinning (MAS) methods has drastically improved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarize recent and ongoing developments in this area by presenting (13)C and (1)H solid-state NMR (SSNMR) studies on paramagnetic systems and biomolecules under fast MAS from our laboratories. First, we describe how very fast MAS (VFMAS) at the spinning speed of at least 20 kHz allows us to overcome major difficulties in (1)H and (13)C high-resolution SSNMR of paramagnetic systems. As a result, we can enhance both sensitivity and resolution by up to a few orders of magnitude. Using fast recycling (∼ms/scan) with short (1)H T1 values, we can perform (1)H SSNMR microanalysis of paramagnetic systems on the microgram scale with greatly improved sensitivity over that observed for diamagnetic systems. Second, we discuss how VFMAS at a spinning speed greater than ∼40 kHz can enhance the sensitivity and resolution of (13)C biomolecular SSNMR measurements. Low-power (1)H decoupling schemes under VFMAS offer excellent spectral resolution for (13)C SSNMR by nominal (1)H RF irradiation at ∼10 kHz. By combining the VFMAS approach with enhanced (1)H T1 relaxation by paramagnetic doping, we can achieve extremely fast recycling in modern biomolecular SSNMR experiments. Experiments with (13)C-labeled ubiquitin doped with 10 mM Cu-EDTA demonstrate how effectively this new approach, called paramagnetic assisted condensed data collection (PACC), enhances the sensitivity. Lastly, we examine (13)C SSNMR measurements for biomolecules under faster MAS at a higher field. Our preliminary (13)C SSNMR data of Aβ amyloid fibrils and GB1 microcrystals acquired at (1)H NMR frequencies of 750-800 MHz suggest that the combined use of the PACC approach and ultrahigh fields could allow for routine multidimensional SSNMR analyses of proteins at the 50-200 nmol level. Also, we briefly discuss the

  5. Detailed mechanisms of1H spin-lattice relaxation in ammonium dihydrogen phosphate confirmed by magic angle spinning.

    Science.gov (United States)

    Hayashi, Shigenobu; Jimura, Keiko

    2017-10-01

    Mechanisms of the 1 H spin-lattice relaxation in NH 4 H 2 PO 4 were studied in detail by use of the effect of magic angle spinning on the relaxation. The acid and the ammonium protons have different relaxation times at the spinning rates higher than 10 kHz due to suppression of spin diffusion between the two kinds of protons. The intrinsic relaxation times not affected by the spin diffusion and the spin-diffusion assisted relaxation times were evaluated separately, taking into consideration temperature dependence. Both mechanisms contribute to the 1 H relaxation of the acid protons comparatively. The spin-diffusion assisted relaxation mechanism was suppressed to the level lower than the experimental errors at the spinning rate of 30 kHz. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection

    International Nuclear Information System (INIS)

    Luo Hailu; Zhou Xinxing; Shu Weixing; Wen Shuangchun; Fan Dianyuan

    2011-01-01

    We theorize an enhanced and switchable spin Hall effect (SHE) of light near the Brewster angle on reflection and demonstrate it experimentally. The obtained spin-dependent splitting reaches 3200 nm near the Brewster angle, which is 50 times larger than the previously reported values in refraction. We find that the amplifying factor in weak measurement is not a constant, which is significantly different from that in refraction. As an analogy of SHE in an electronic system, a switchable spin accumulation in SHE of light is detected. We were able to switch the direction of the spin accumulations by slightly adjusting the incident angle.

  7. Angles and Daemons: Spin Correlations at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Nhan V. [Johns Hopkins Univ., Baltimore, MD (United States)

    2011-09-01

    The Large Hadron Collider has recently started collecting data, opening a new energy regime. This will allow us to probe further than ever before many of the current mysteries of the field. New physics beyond the Standard Model, the field's current paradigm, could manifest itself via new particles. In addition, the Higgs boson, hypothesized as a consequence of electroweak symmetry breaking, remains undiscovered. At the time of discovery, the properties of such particles will be unknown. In order to understand the nature of any new physics, it will be important to understand the properties of that new particle. Methods are presented for measuring its spin, parity and coupling to the Standard Model particles. These methods are implemented at the Compact Muon Solenoid experiment and an analysis is presented with the data collected during 2010 and 2011 running at the Large Hadron Collider. An application of these techniques is used to make a measurement of the weak mixing angle. A current status of the search for the Higgs boson is also presented.

  8. Microwave field distribution in a magic angle spinning dynamic nuclear polarization NMR probe.

    Science.gov (United States)

    Nanni, Emilio A; Barnes, Alexander B; Matsuki, Yoh; Woskov, Paul P; Corzilius, Björn; Griffin, Robert G; Temkin, Richard J

    2011-05-01

    We present a calculation of the microwave field distribution in a magic angle spinning (MAS) probe utilized in dynamic nuclear polarization (DNP) experiments. The microwave magnetic field (B(1S)) profile was obtained from simulations performed with the High Frequency Structure Simulator (HFSS) software suite, using a model that includes the launching antenna, the outer Kel-F stator housing coated with Ag, the RF coil, and the 4mm diameter sapphire rotor containing the sample. The predicted average B(1S) field is 13μT/W(1/2), where S denotes the electron spin. For a routinely achievable input power of 5W the corresponding value is γ(S)B(1S)=0.84MHz. The calculations provide insights into the coupling of the microwave power to the sample, including reflections from the RF coil and diffraction of the power transmitted through the coil. The variation of enhancement with rotor wall thickness was also successfully simulated. A second, simplified calculation was performed using a single pass model based on Gaussian beam propagation and Fresnel diffraction. This model provided additional physical insight and was in good agreement with the full HFSS simulation. These calculations indicate approaches to increasing the coupling of the microwave power to the sample, including the use of a converging lens and fine adjustment of the spacing of the windings of the RF coil. The present results should prove useful in optimizing the coupling of microwave power to the sample in future DNP experiments. Finally, the results of the simulation were used to predict the cross effect DNP enhancement (ϵ) vs. ω(1S)/(2π) for a sample of (13)C-urea dissolved in a 60:40 glycerol/water mixture containing the polarizing agent TOTAPOL; very good agreement was obtained between theory and experiment. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Kanmi [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-γ nuclei (e.g., 13C and 15N) via the sensitive high-{gamma} nuclei (e.g., 1H and 19F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for 1H-1H homonuclear decoupling. Also presented is a simple new strategy for optimization of 1H-1H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in 1H detected 2D 1H{l_brace}13C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional 13C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear 1H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5m$\\bar{x}$, PMLG5mm$\\bar{x}$x and SAM3) were analyzed to maximize the performance of through-bond transfer based

  10. Influence of spin creepage and contact angle on curve squeal: A numerical approach

    Science.gov (United States)

    Zenzerovic, I.; Kropp, W.; Pieringer, A.

    2018-04-01

    Curve squeal is a loud tonal sound that may arise when a railway vehicle negotiates a tight curve. Due to the nonlinear nature of squeal, time-domain models provide a higher degree of accuracy in comparison to frequency-domain models and also enable the determination of squeal amplitudes. In the present paper, a previously developed engineering time-domain model for curve squeal is extended to include the effects of the contact angle and spin creepage. The extensions enable the evaluation of more realistic squeal cases with the computationally efficient model. The model validation against Kalker's variational contact model shows good agreement between the models. Results of studies on the influence of spin creepage and contact angle show that the contact angle has a significant influence on the vertical-lateral dynamics coupling and, therefore, influences both squeal amplitude and frequency. Spin creepage mainly influences processes in the contact, therefore influencing the tangential contact force amplitude. In the combined spin-contact angle study the spin creepage value is kinematically related to the contact angle value. Results indicate that the influence of the contact angle is dominant over the influence of spin creepage. In general, results indicate that the most crucial factors in squeal are those that influence the dynamics coupling: the contact angle, wheel/rail contact positions and friction.

  11. Slow Manifold and Hannay Angle in the Spinning Top

    Science.gov (United States)

    Berry, M. V.; Shukla, P.

    2011-01-01

    The spin of a top can be regarded as a fast variable, coupled to the motion of the axis which is slow. In pure precession, the rotation of the axis round a cone (without nutation), can be considered as the result of a reaction from the fast spin. The resulting restriction of the total state space of the top is an illustrative example, at…

  12. Paddle Angle and Ball Spin in Table Tennis

    Directory of Open Access Journals (Sweden)

    Binvant Broca

    2017-01-01

    Full Text Available The relationship between the impact angle of a table tennis ball with respect to the paddle and angular velocity of the ball leaving the paddle was investigated. A table tennis ball was dropped onto a paddle oriented at impact angles ranging from 10° to 80°. It was found that the sine of the impact angle is proportional to the angular velocity of the ball as it leaves the paddle for all impact angles tested.

  13. The action-angle variables of classical spin motion in circular accelerators

    International Nuclear Information System (INIS)

    Yokoya, Kaoru

    1986-06-01

    A general formalism is presented which shows how to rewrite a given Hamiltonian involving classical spin motion in an action-angle variable representation. The canonical transformation is made using the Lie transformation technique. (orig.)

  14. Integrating High-Resolution and Solid-State Magic Angle Spinning NMR Spectroscopy and a Transcriptomic Analysis of Soybean Tissues in Response to Water Deficiency.

    Science.gov (United States)

    Coutinho, Isabel D; Moraes, Tiago Bueno; Mertz-Henning, Liliane Marcia; Nepomuceno, Alexandre Lima; Giordani, Willian; Marcolino-Gomes, Juliana; Santagneli, Silvia; Colnago, Luiz Alberto

    2017-11-01

    Solid-state NMR (SSNMR) spectroscopy methods provide chemical environment and ultrastructural details that are not easily accessible by other non-destructive, high-resolution spectral techniques. High-resolution magic angle spinning (HR-MAS) has been widely used to obtain the metabolic profile of a heterogeneous sample, combining the resolution enhancement provided by MAS in SSNMR with the shimming and locking procedures in liquid-state NMR. In this work, we explored the feasibility of using the HR-MAS and SSNMR techniques to identify metabolic changes in soybean leaves subjected to water-deficient conditions. Control and water-deficient soybean leaves were analysed using one-dimensional (1D) HR-MAS and SSNMR. Total RNA was extracted from the leaves for the transcriptomic analysis. The 1 H HR-MAS and CP-MAS 13 C{ 1 H} spectra of soybean leaves grown with and without water deficiency stress revealed striking differences in metabolites. A total of 30 metabolites were identified, and the impact of water deficiency on the metabolite profile of soybean leaves was to induce amino acid synthesis. High expression levels of genes required for amino acid biosynthesis were highly correlated with the compounds identified by 1 H HR-MAS. The integration of the 1 H HR-MAS and SSNMR spectra with the transcriptomic data provided a complete picture of the major changes in the metabolic profile of soybeans in response to water deficiency. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Wavelength-independent constant period spin-echo modulated small angle neutron scattering

    NARCIS (Netherlands)

    Sales, Morten; Plomp, J.; Habicht, Klaus; Tremsin, Anton; Bouwman, W.G.; Strobl, Markus

    2016-01-01

    Spin-Echo Modulated Small Angle Neutron Scattering (SEMSANS) in Time-of-Flight (ToF) mode has been shown to be a promising technique for measuring (very) small angle neutron scattering (SANS) signals and performing quantitative Dark-Field Imaging (DFI), i.e., SANS with 2D spatial resolution.

  16. TOF-SEMSANS—Time-of-flight spin-echo modulated small-angle neutron scattering

    NARCIS (Netherlands)

    Strobl, M.; Tremsin, A.S.; Hilger, A.; Wieder, F.; Kardjilov, N.; Manke, I.; Bouwman, W.G.; Plomp, J.

    2012-01-01

    We report on measurements of spatial beam modulation of a polarized neutron beam induced by triangular precession regions in time-of-flight mode and the application of this novel technique spin-echo modulated small-angle neutron scattering (SEMSANS) to small-angle neutron scattering in the very

  17. Magic-angle-spinning NMR spectroscopy. January 1978-May 1988 (Citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Report for January 1978-May 1988

    International Nuclear Information System (INIS)

    1988-05-01

    This bibliography contains citations concerning the principles and applications of magic-angle spinning (MAS) nuclear magnetic resonance (NMR) in high-resolution spectra analysis of solids. Magic-angle spinning NMR is a very powerful spectrographic technique for the study of structures, dynamics, and reactivity of solids, and polcrystalline and amorphous solids. Studies of various materials are presented, including zeolites, organic compounds and polymers, liquid crystals, silicate and borate glasses, and alumina and oxide films. Applications in conductive polymers, biological systems, and organic matrixes of composite materials are presented. (Contains 89 citations fully indexed and including a title list.)

  18. A robust heteronuclear dipolar recoupling method comparable to TEDOR for proteins in magic-angle spinning solid-state NMR

    Science.gov (United States)

    Zhang, Zhengfeng; Li, Jianping; Chen, Yanke; Xie, Huayong; Yang, Jun

    2017-12-01

    In this letter, we propose a robust heteronuclear dipolar recoupling method for proteins in magic-angle spinning (MAS) solid-state NMR. This method is as simple, robust and efficient as the well-known TEDOR in the aspect of magnetization transfer between 15N and 13C. Deriving from our recent band-selective dual back-to-back pulses (DBP) (Zhang et al., 2016), this method uses new phase-cycling schemes to realize broadband DBP (Bro-DBP). For broadband 15N-13C magnetization transfer (simultaneous 15N → 13C‧ and 15N → 13Cα), Bro-DBP has almost the same 15N → 13Cα efficiency while offers 30-40% enhancement on 15N → 13C‧ transfer, compared to TEDOR. Besides, Bro-DBP can also be used as a carbonyl (13C‧)-selected method, whose 15N → 13C‧ efficiency is up to 1.7 times that of TEDOR and is also higher than that of band-selective DBP. The performance of Bro-DBP is demonstrated on the N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (fMLF) peptide and the U-13C, 15N labeled β1 immunoglobulin binding domain of protein G (GB1) microcrystalline protein. Since Bro-DBP is as robust, simple and efficient as TEDOR, we believe it is very useful for protein studies in MAS solid-state NMR.

  19. Crocus sativus Petals: Waste or Valuable Resource? The Answer of High-Resolution and High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance.

    Science.gov (United States)

    Righi, Valeria; Parenti, Francesca; Tugnoli, Vitaliano; Schenetti, Luisa; Mucci, Adele

    2015-09-30

    Intact Crocus sativus petals were studied for the first time by high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy, revealing the presence of kinsenoside (2) and goodyeroside A (3), together with 3-hydroxy-γ-butyrolactone (4). These findings were confirmed by HR-NMR analysis of the ethanol extract of fresh petals and showed that, even though carried out rapidly, partial hydrolysis of glucopyranosyloxybutanolides occurs during extraction. On the other hand, kaempferol 3-O-sophoroside (1), which is "NMR-silent" in intact petals, is present in extracts. These results suggest to evaluate the utilization of saffron petals for phytopharmaceutical and nutraceutical purposes to exploit a waste product of massive production of commercial saffron and point to the application of HR-MAS NMR for monitoring bioactive compounds directly on intact petals, avoiding the extraction procedure and the consequent hydrolysis reaction.

  20. A High-Resolution Magic Angle Spinning NMR Study of the Enantiodiscrimination of 3,4-Methylenedioxymethamphetamine (MDMA by an Immobilized Polysaccharide-Based Chiral Phase.

    Directory of Open Access Journals (Sweden)

    Juliana C Barreiro

    Full Text Available This paper reports the investigation of the chiral interaction between 3,4-methylenedioxy-methamphetamine (MDMA enantiomers and an immobilized polysaccharide-based chiral phase. For that, suspended-state high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (1H HR-MAS NMR was used. 1H HR-MAS longitudinal relaxation time and Saturation Transfer Difference (STD NMR titration experiments were carried out yielding information at the molecular level of the transient diastereoisomeric complexes of MDMA enantiomers and the chiral stationary phase. The interaction of the enantiomers takes place through the aromatic moiety of MDMA and the aromatic group of the chiral selector by π-π stacking for both enantiomers; however, a stronger interaction was observed for the (R-enantiomer, which is the second one to elute at the chromatographic conditions.

  1. 1H High Resolution Magic-Angle Coil Spinning (HR-MACS µNMR Metabolic Profiling of whole Saccharomyces cervisiae cells: A Demonstrative Study

    Directory of Open Access Journals (Sweden)

    Alan eWong

    2014-06-01

    Full Text Available The low sensitivity of Nuclear Magnetic Resonance (NMR is its prime shortcoming compared to other analytical methods for metabolomic studies. It relies on large sample volume (30–50 µl for HR-MAS for rich metabolic profiling, hindering high-throughput screening especially when the sample requires a labor-intensive preparation or is a sacred specimen. This is indeed the case for some living organisms. This study evaluates a 1H HR-MAS approach for metabolic profiling of small volume (250 nl whole bacterial cells, Saccharomyces cervisiae, using an emerging micro-NMR technology: high-resolution magic-angle coil spinning (HR-MACS. As a demonstrative study for whole cells, we perform two independent metabolomics studies identifying the significant metabolites associated with osmotic stress and aging.

  2. 1H High Resolution Magic-Angle Coil Spinning (HR-MACS) - NMR Metabolic Profiling of whole Saccharomyces cervisiae cells: A Demonstrative Study

    Science.gov (United States)

    Wong, Alan; Boutin, Celine; Aguiar, Pedro

    2014-06-01

    The low sensitivity of Nuclear Magnetic Resonance (NMR) is its prime shortcoming compared to other analytical methods for metabolomic studies. It relies on large sample volume (30-50 µl for HR-MAS) for rich metabolic profiling, hindering high-throughput screening especially when the sample requires a labor-intensive preparation or is a sacred specimen. This is indeed the case for some living organisms. This study evaluates a 1H HR-MAS approach for metabolic profiling of small volume (250 nl) whole bacterial cells, Saccharomyces cervisiae, using an emerging micro-NMR technology: high-resolution magic-angle coil spinning (HR-MACS). As a demonstrative study for whole cells, we perform two independent metabolomics studies identifying the significant metabolites associated with osmotic stress and aging.

  3. Structure of spin-dependent scattering amplitude and spin effects at small angles at RHIC energies

    International Nuclear Information System (INIS)

    Akchurin, N.; Goloskokov, S.V.; Selyugin, O.V.

    1997-01-01

    Spin-dependent pomeron effects are analyzed for elastic pp-scattering and calculations for spin-dependent differential cross sections, analyzing power and double-spin correlation parameters are carried out for the energy range of the Relativistic Heavy Ion Collider (RHIC) at BNL. In this energy range, 50 ≤√≤500 GeV, the structure of pomeron-proton coupling can be measured at RHIC with colliding polarized proton beams

  4. Wake instabilities of flow over a spinning circular disk at angle of attack

    Science.gov (United States)

    Lee, Marcus; Colonius, Tim; McKeon, Beverley

    2017-11-01

    A circular disk spinning about its axis of rotational symmetry is inherently robust to external disturbances due to gyroscopic moments and is therefore a promising configuration for a robust micro air vehicle. However, literature on the wake structures and flow behavior associated with spinning disk aerodynamics remains limited, particularly at angles of attack relevant to flight. We thus use a three-dimensional immersed boundary method for incompressible viscous flows to study the effects of angle of attack, Reynolds number, and tip-speed ratio on spinning disk aerodynamics. We observe a Hopf bifurcation corresponding to a bluff-body wake instability at a critical Reynolds number and/or angle of attack, above which periodic vortex shedding occurs. We then examine how increasing the tip-speed ratio affects the stability and structure of the flow. Supported by Boeing.

  5. Viscous flow over spinning cones at angle of attack.

    Science.gov (United States)

    Lin, T. C.; Rubin, S. G.

    1973-01-01

    A numerical finite-difference method is developed for evaluating the Magnus coefficients on spinning cones in laminar flow. The merged layer, the strong interaction region, and the downstream boundary layer are all considered. The numerical method is a predictor-corrector scheme developed for three-dimensional flows with or without crossflow diffusion. This method is particularly useful in problems in which a symmetry plane does not exist. Several contributions to the Magnus force and moments are considered. These include asymmetries in displacement thickness, centrifugal force and crossflow shear, and the effects of crossflow separation and vortex formation. Comparisons are made with experimental data and other analyses.

  6. Magic angle spinning NMR below 6 K with a computational fluid dynamics analysis of fluid flow and temperature gradients.

    Science.gov (United States)

    Sesti, Erika L; Alaniva, Nicholas; Rand, Peter W; Choi, Eric J; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Barnes, Alexander B

    2018-01-01

    We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13 C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1 H saturation recovery experiments show a 1 H T 1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1 H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Two-dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs

    Science.gov (United States)

    Edén, Mattias

    2010-05-01

    Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t2 domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t1) dimension. We employ experimental 23Na and 27Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl2O5), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations.

  8. Floquet-Magnus expansion for general N-coupled spins systems in magic-angle spinning nuclear magnetic resonance spectra

    Science.gov (United States)

    Mananga, Eugene Stephane; Charpentier, Thibault

    2015-04-01

    In this paper we present a theoretical perturbative approach for describing the NMR spectrum of strongly dipolar-coupled spin systems under fast magic-angle spinning. Our treatment is based on two approaches: the Floquet approach and the Floquet-Magnus expansion. The Floquet approach is well known in the NMR community as a perturbative approach to get analytical approximations. Numerical procedures are based on step-by-step numerical integration of the corresponding differential equations. The Floquet-Magnus expansion is a perturbative approach of the Floquet theory. Furthermore, we address the " γ -encoding" effect using the Floquet-Magnus expansion approach. We show that the average over " γ " angle can be performed for any Hamiltonian with γ symmetry.

  9. Heteronuclear Correlation SSNMR Spectroscopy with Indirect Detection under Fast Magic-Angle Spinning [Book Chapter

    Energy Technology Data Exchange (ETDEWEB)

    Kobayshi, Takeshi [Ames Laboratory (AMES), Ames, IA (United States); Nishiyama, Yusuke [Ames Laboratory (AMES), Ames, IA (United States); Pruski, Marek [Ames Laboratory (AMES), Ames, IA (United States)

    2018-01-01

    The main focus of this chapter is to address experimental strategies on the subject by providing a hands-on guide to fast MAS experiments, with a particular focus on indirect detection. Although our experience is limited to our respective laboratories in Ames and Yokohama, we hope that our descriptions of experimental setups and optimization procedures are sufficiently general to be applicable to all modern instruments. The chapter is organized as follows. Section 2 below introduces briefly the fast MAS technology and its main advantages. In Section 3, we describe the hardware associated with this remarkable technology and provide practical advices on its use, including procedures for loading and unloading the samples, maintaining the probe, reducing t1 noise, etc. In Section 4, we describe the principles and hands-on aspects of experiments involving the indirect detection of spin-1/2 and 14N nuclei

  10. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Baltisberger, Jay Harvey [Univ. of California, Berkeley, CA (United States)

    1993-06-01

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the {sup 87}Rb and {sup 85}Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem.

  11. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Baltisberger, J.H.

    1993-06-01

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the 87 Rb and 85 Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem

  12. Phosphorus-doped thin silica films characterized by magic-angle spinning nuclear magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Jacobsen, H.J.; Skibsted, J.; Kristensen, Martin

    2001-01-01

    Magic-angle spinning nuclear magnetic resonance spectra of 31P and 29Si have been achieved for a thin silica film doped with only 1.8% 31P and deposited by plasma enhanced chemical vapor deposition on a pure silicon wafer. The observation of a symmetric 31P chemical shift tensor is consistent...

  13. Structure in cohesive powder studied with spin-echo small angle neutron scattering

    NARCIS (Netherlands)

    Andersson, R.; Bouwman, W.G.; Luding, Stefan; de Schepper, I.M.

    2008-01-01

    Extracting structure and ordering information from the bulk of granular materials is a challenging task. Here we present Spin-Echo Small Angle Neutron Scattering Measurements in combination with computer simulations on a fine powder of silica, before and after uniaxial compression. The cohesive

  14. Structure in cohesive powders studied with spin-echo small angle neutron scattering

    NARCIS (Netherlands)

    Andersson, R.; Bouwman, W.G.; Luding, S.; De Schepper, I.M.

    2008-01-01

    Extracting structure and ordering information from the bulk of granular materials is a challenging task. Here we present Spin-Echo Small Angle Neutron Scattering Measurements in combination with computer simulations on a fine powder of silica, before and after uniaxial compression. The cohesive

  15. Phase-resolved detection of the spin Hall angle by optical ferromagnetic resonance in perpendicularly magnetized thin films

    Science.gov (United States)

    Capua, Amir; Wang, Tianyu; Yang, See-Hun; Rettner, Charles; Phung, Timothy; Parkin, Stuart S. P.

    2017-02-01

    The conversion of charge current to spin current by the spin Hall effect is of considerable current interest from both fundamental and technological perspectives. Measurement of the spin Hall angle, especially for atomically thin systems with large magnetic anisotropies, is not straightforward. Here we demonstrate a hybrid phase-resolved optical-electrical ferromagnetic resonance method that we show can robustly determine the spin Hall angle in heavy-metal/ferromagnet bilayer systems with large perpendicular magnetic anisotropy. We present an analytical model of the ferromagnetic resonance spectrum in the presence of the spin Hall effect, in which the spin Hall angle can be directly determined from the changes in the amplitude response as a function of the spin current that is generated from a dc charge current passing through the heavy-metal layer. Increased sensitivity to the spin current is achieved by operation under conditions for which the magnetic potential is shallowest at the "Smit point." Study of the phase response reveals that the spin Hall angle can be reliably extracted from a simplified measurement that does not require scanning over time or magnetic field but rather only on the dc current. The method is applied to the Pt-Co/Ni/Co system whose spin Hall angle was to date characterized only indirectly and that is especially relevant for spin-orbit torque devices.

  16. Observation of cross-shaped anisotropy in spin-resolved small-angle neutron scattering

    Science.gov (United States)

    Michels, Andreas; Honecker, Dirk; Döbrich, Frank; Dewhurst, Charles D.; Suzuki, Kiyonori; Heinemann, André

    2012-05-01

    We report the results of spin-resolved small-angle neutron scattering (SANS) experiments on the two-phase nanocrystalline alloy NANOPERM. At a saturating applied magnetic field of 1.27T we observe a cross-shaped angular anisotropy in the non-spin-flip SANS cross section Σ++. This feature—for this class of materials only visible at saturation in Σ++—is attributed to the specific ratio of nuclear to magnetic scattering being smaller than unity. Analysis of the non-spin-flip and spin-flip cross sections provides the nuclear and magnetic SANS and allows us to estimate the magnitude of the respective scattering-length density contrast at the interphase between the nanoparticles and the amorphous magnetic matrix.

  17. Recent advancements of wide-angle polarization analysis with 3He neutron spin filters

    International Nuclear Information System (INIS)

    Chen, W.C.; Gentile, T.R.; Ye, Q.; Kirchhoff, A.; Watson, S.M.; Rodriguez-Rivera, J.A.; Qiu, Y.; Broholm, C.

    2016-01-01

    Wide-angle polarization analysis with polarized 3 He based neutron spin filters (NSFs) has recently been employed on the Multi-Axis Crystal Spectrometer (MACS) at the National Institute of Standards and Technology Center for Neutron Research (NCNR). Over the past several years, the apparatus has undergone many upgrades to address the fundamental requirements for wide angle polarization analysis using spin exchange optical pumping based 3 He NSFs. In this paper, we report substantial improvements in the on-beam-line performance of the apparatus and progress toward routine user capability. We discuss new standard samples used for 3 He NSF characterization and the flipping ratio measurement on MACS. We further discuss the management of stray magnetic fields produced by operation of superconducting magnets on the MACS instrument, which can significantly reduce the 3 He polarization relaxation time. Finally, we present the results of recent development of horseshoe-shaped wide angle cells. (paper)

  18. Effective Floquet Hamiltonian for spin I = 1 in magic angle spinning ...

    Indian Academy of Sciences (India)

    WINTEC

    be used as effective Hamiltonians for the study of nuclear spin dynamics. The general form of the Hamiltonian expressed in terms of a series of terms of decreasing order of magnitude is given by. H = H0 + λH1 + λ2H2 + … (1) where λ is the perturbation parameter. A series of unitary transformations represented collectively ...

  19. Surface Interactions and Confinement of Methane: A High Pressure Magic Angle Spinning NMR and Computational Chemistry Study

    Energy Technology Data Exchange (ETDEWEB)

    Ok, Salim; Hoyt, David W.; Andersen, Amity; Sheets, Julie; Welch, Susan A.; Cole, David R.; Mueller, Karl T.; Washton, Nancy M.

    2017-01-18

    Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nano-porous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) were observed with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed non-porous, 12 nm particle size silica and a mesoporous silica with 200 nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. For pure methane, no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2 bar, 32.6 bar, 56.4 bar, 65.1 bar, 112.7 bar, and 130.3 bar). However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.

  20. Surface Interactions and Confinement of Methane: A High Pressure Magic Angle Spinning NMR and Computational Chemistry Study

    International Nuclear Information System (INIS)

    Ok, Salim; Hoyt, David W.; Andersen, Amity; Sheets, Julie; Welch, Susan A.

    2017-01-01

    Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nanoporous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, we observed changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) with 13 C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed nonporous, 12 nm particle size silica and a mesoporous silica with 200 nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. There was no significant thermal effects were found for the observed 13 C chemical shifts at all pressures studied here (28.2, 32.6, 56.4, 65.1, 112.7, and 130.3 bar) for pure methane. However, the 13 C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13 C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD, and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.

  1. Hypersonic Laminar Viscous Flow Past Spinning Cones at Angle of Attack

    Science.gov (United States)

    Agarwal, Ramesh; Rakich, John V.

    1982-01-01

    Computational results are presented for hypersonic viscous flow past spinning sharp and blunt cones of angle of attack, obtained with a parabolic Navier-Stokes marching code. The code takes into account the asymmetries in the flowfield resulting from spinning motion and computes the asymmetric shock shape, cross-flow and streamwise shear, heat transfer, cross-flow separation, and vortex structure. The Magnus force and moments are also computed. Comparisons are made with other theoretical analyses based on boundary-layer and boundary-region equations, and an anomaly is discovered in the displacement thickness contribution to the Magnus force when compared with boundary-layer results.

  2. Solid-state 31P and 1H chemical MR micro-imaging of hard tissues and biomaterials with magic angle spinning at very high magnetic field.

    Science.gov (United States)

    Yon, Maxime; Sarou-Kanian, Vincent; Scheler, Ulrich; Bouler, Jean-Michel; Bujoli, Bruno; Massiot, Dominique; Fayon, Franck

    2017-08-15

    In this work, we show that it is possible to overcome the limitations of solid-state MRI for rigid tissues due to large line broadening and short dephasing times by combining Magic Angle Spinning (MAS) with rotating pulsed field gradients. This allows recording ex vivo 31 P 3D and 2D slice-selected images of rigid tissues and related biomaterials at very high magnetic field, with greatly improved signal to noise ratio and spatial resolution when compared to static conditions. Cross-polarization is employed to enhance contrast and to further depict spatially localized chemical variations in reduced experimental time. In these materials, very high magnetic field and moderate MAS spinning rate directly provide high spectral resolution and enable the use of frequency selective excitation schemes for chemically selective imaging. These new possibilities are exemplified with experiments probing selectively the 3D spatial distribution of apatitic hydroxyl protons inside a mouse tooth with attached jaw bone with a nominal isotropic resolution nearing 100 µm.

  3. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), Sede di Perugia, c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, I-06123 Perugia (Italy); Montoncello, F.; Giovannini, L. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via G. Saragat 1, I-44122 Ferrara (Italy); Madami, M.; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Ding, J.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-06-29

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.

  4. Spin echo small angle neutron scattering using a continuously pumped (3)He neutron polarisation analyser.

    Science.gov (United States)

    Parnell, S R; Washington, A L; Li, K; Yan, H; Stonaha, P; Li, F; Wang, T; Walsh, A; Chen, W C; Parnell, A J; Fairclough, J P A; Baxter, D V; Snow, W M; Pynn, R

    2015-02-01

    We present a new instrument for spin echo small angle neutron scattering (SESANS) developed at the Low Energy Neutron Source at Indiana University. A description of the various instrument components is given along with the performance of these components. At the heart of the instrument are a series of resistive coils to encode the neutron trajectory into the neutron polarisation. These are shown to work well over a broad range of neutron wavelengths. Neutron polarisation analysis is accomplished using a continuously operating neutron spin filter polarised by Rb spin-exchange optical pumping of (3)He. We describe the performance of the analyser along with a study of the (3)He polarisation stability and its implications for SESANS measurements. Scattering from silica Stöber particles is investigated and agrees with samples run on similar instruments.

  5. Magnetic design of a spin-echo small-angle neutron-scattering instrument

    CERN Document Server

    Uca, O; Rekveldt, M T

    2003-01-01

    In a spin-echo small-angle neutron scattering instrument dipole magnets and guide field coils are used. The homogeneity of the fields should be sufficient to have linear labeling of the height with precession. Furthermore, the instrument must have a homogenous line integral over the beam cross-section. It is shown that line integral inhomogeneities are directly connected to field components perpendicular to the main field. The design parameters of these magnetic units of the setup are calculated.

  6. Small angle neutron scattering investigations of spin disorder in nanocomposite soft magnets

    International Nuclear Information System (INIS)

    Vecchini, C.; Moze, O.; Suzuki, K.; Cadogan, J.M.; Pranzas, K.; Michels, A.; Weissmueller, J.

    2006-01-01

    The technique of SANS (small angle neutron scattering) furnishes unique information on the characteristic magnetic length scales and local magnetic anisotropies at the nanoscale in nanocomposite ferromagnets. Such information is not presently available using any other microscopic technique. The basic principles and results of the technique will be presented with regard to a unique and unexpected observation of a dipole field controlled spin disorder in a prototypical soft nanocomposite ferromagnet of the Nanoperm type

  7. Analysis of artificial silicon microstructures by ultra-small-angle and spin-echo small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Trinker, M. [Atominstitut, Vienna University of Technology, A-1020 Vienna (Austria)], E-mail: mtrinker@ati.ac.at; Jericha, E. [Atominstitut, Vienna University of Technology, A-1020 Vienna (Austria); Bouwman, W.G. [Faculty of Applied Sciences, Delft University of Technology, 2629 JB Delft (Netherlands); Loidl, R. [Atominstitut, Vienna University of Technology, A-1020 Vienna (Austria); Institute Laue-Langevin, F-38042 Grenoble (France); Rauch, H. [Atominstitut, Vienna University of Technology, A-1020 Vienna (Austria)

    2007-09-11

    Ultra-Small-Angle Neutron Scattering (USANS) is currently becoming an effective technique for the analysis of structures in the micrometer range. The new Spin-Echo SANS (SESANS) method measures a signal in real space. In both cases microfabricated silicon gratings provide unique test procedures for the related devices and interpretations of the experimental data. A series of one-dimensional gratings was fabricated using a highly anisotropic ion etching technique (RIE) and measured at the USANS instrument S18 at ILL, Grenoble. Grating parameters derived from the experimental data are in agreement with the nominal values. Scattering length density correlation functions calculated from the USANS data are compared to SESANS correlation functions measured at the Delft University of Technology, demonstrating the reciprocity of the two scattering methods. Reconstruction techniques for one-dimensional scattering length density distributions are applied to the USANS data. The results are in good agreement with SEM micrographs of the samples.

  8. Structural analysis of mixed alkali borosilicate glasses containing Cs+ and Na+ using strong magnetic field magic angle spinning nuclear magnetic resonance

    Directory of Open Access Journals (Sweden)

    S. Kaneko

    2017-03-01

    Full Text Available We have investigated the local structure of alkali atoms in mixed alkali silicate, borate, and borosilicate glasses, which contain Cs+ and Na+, using strong magnetic field magic angle spinning nuclear magnetic resonance (MAS NMR spectroscopy of 133Cs and 23Na. The spectral peaks of 133Cs in borosilicate (Si:B = 1:1 and Si-rich borosilicate (Si:B = 2:1 glasses shifted to upfield with increasing Cs+/(Na+ + Cs+ ratio, which implies that the coordination number of Cs+ decreased as in the case of silicate and borate glasses. However, this trend was not observed in the 23Na spectra of either borosilicate glass. This might be because the chemical shift of 23Na in borosilicate glass is strongly affected by nearby species such as Si or B, and not by the coordination number of Na+.

  9. Spin-wave dynamics in Invar Fe65Ni35 studied by small-angle polarized neutron scattering

    NARCIS (Netherlands)

    Brück, E.H.; Grigoriev, S.V.; Deriglazov, V.V.; Okorokov, A.I.; Dijk van, N.H.; Klaasse, J.C.P.

    2002-01-01

    Abstract. Spin dynamics in Fe65Ni35 Invar alloy has been studied by left-right asymmetry of small-angle polarized neutron scattering below TC=485 K in external magnetic fields of H=0.05-0.25 T inclined relative to the incident beam. The spin-wave stiffness D and the damping & were obtained by

  10. Magic-Angle-Spinning NMR Magnet Development: Field Analysis and Prototypes

    Science.gov (United States)

    Voccio, John; Hahn, Seungyong; Park, Dong Keun; Ling, Jiayin; Kim, Youngjae; Bascuñán, Juan; Iwasa, Yukikazu

    2013-01-01

    We are currently working on a program to complete a 1.5 T/75 mm RT bore magic-angle-spinning nuclear magnetic resonance magnet. The magic-angle-spinning magnet comprises a z-axis 0.866-T solenoid and an x-axis 1.225-T dipole, each to be wound with NbTi wire and operated at 4.2 K in persistent mode. A combination of the fields creates a 1.5-T field pointed at 54.74 degrees (magic angle) from the rotation (z) axis. In the first year of this 3-year program, we have completed magnetic analysis and design of both coils. Also, using a winding machine of our own design and fabrication, we have wound several prototype dipole coils with NbTi wire. As part of this development, we have repeatedly made successful persistent NbTi-NbTi joints with this multifilamentary NbTi wire. PMID:24058275

  11. Efficient dipolar double quantum filtering under magic angle spinning without a (1)H decoupling field.

    Science.gov (United States)

    Courtney, Joseph M; Rienstra, Chad M

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Supersonic Laminar Viscous Flow Past a Cone at Angle of Attack in Spinning and Coning Motion

    Science.gov (United States)

    Agarwal, Ramesh; Rakich, John V.

    1982-01-01

    Computational results obtained with a parabolic Navier-Stokes marching code are presented for supersonic viscous flow past a pointed cone at angle of attack undergoing a combined spinning and coning motion. The code takes into account the asymmetries in the flowfield resulting from the motion and computes the asymmetric shock shape, crossflow and streamwise shear, heat transfer, crossflow separation and vortex structure. The side force and moment are also computed. Reasonably good agreement is obtained with the side force measurements of Schiff and Tobak. Comparison is also made with the only available numerical inviscid analysis. It is found that the asymmetric pressure loads due lo coning motion are much larger than all other viscous forces due lo spin and coning, making viscous forces negligible in the combined motion.

  13. Pneumatic switched angle spinning NMR probe with capacitively coupled double saddle coil.

    Science.gov (United States)

    Litvak, Ilya M; Espinosa, Catalina A; Shapiro, Rebecca A; Oldham, Andrew N; Duong, Vincent V; Martin, Rachel W

    2010-10-01

    Switched angle spinning (SAS) experiments can be used for generating isotropic-anisotropic correlations in oriented samples in a single experiment. In order for these methods to become widespread, specialized hardware is required. Here we describe the electronic and mechanical design and performance of a double-resonance SAS probe. Unlike many previous SAS probe implementations, the focus here is on systems where the dipolar couplings are partially averaged by molecular motion. This probe has a moving double saddle coil capacitively coupled to the stationary circuit. Angle switching is accomplished by a steam engine-type pneumatic mechanism. The speed and stability of the switching hardware for SAS experiments are demonstrated using spectra of model compounds. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance.

    Science.gov (United States)

    Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H; Ernst, Matthias

    2016-09-07

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.

  15. Wavelength-independent constant period spin-echo modulated small angle neutron scattering.

    Science.gov (United States)

    Sales, Morten; Plomp, Jeroen; Habicht, Klaus; Tremsin, Anton; Bouwman, Wim; Strobl, Markus

    2016-06-01

    Spin-Echo Modulated Small Angle Neutron Scattering (SEMSANS) in Time-of-Flight (ToF) mode has been shown to be a promising technique for measuring (very) small angle neutron scattering (SANS) signals and performing quantitative Dark-Field Imaging (DFI), i.e., SANS with 2D spatial resolution. However, the wavelength dependence of the modulation period in the ToF spin-echo mode has so far limited the useful modulation periods to those resolvable with the limited spatial resolution of the detectors available. Here we present our results of an approach to keep the period of the induced modulation constant for the wavelengths utilised in ToF. This is achieved by ramping the magnetic fields in the coils responsible for creating the spatially modulated beam in synchronisation with the neutron pulse, thus keeping the modulation period constant for all wavelengths. Such a setup enables the decoupling of the spatial detector resolution from the resolution of the modulation period by the use of slits or gratings in analogy to the approach in grating-based neutron DFI.

  16. Hydrogen and deuterium NMR of solids by magic-angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Eckman, R.R.

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large specral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, ..beta../sub m/ = Arccos (3/sup -1/2/), with respect to the direction of the external magnetic field. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of ..beta... A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H/sub D/ was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal motion. In the general case of large H/sub D/, isotropic spectra were obtained by dilution of /sup 1/H with /sup 2/H combined with magic angle rotation. The resolution obtained represents the practical limit for proton NMR of solids.

  17. 1H HR-MAS NMR and S180 cells: metabolite assignment and evaluation of pulse sequence

    International Nuclear Information System (INIS)

    Oliveira, Aline L. de; Martinelli, Bruno César B.; Lião, Luciano M.; Pereira, Flávia C.; Silveira-Lacerda, Elisangela P.; Alcantara, Glaucia B.

    2014-01-01

    High resolution magic angle spinning 1 H nuclear magnetic resonance spectroscopy (HR-MAS NMR) is a useful technique for evaluation of intact cells and tissues. However, optimal NMR parameters are crucial in obtaining reliable results. To identify the key steps for the optimization of HR-MAS NMR parameters, we assessed different pulse sequences and NMR parameters using sarcoma 180 (S180) cells. A complete assignment of the metabolites of S180 is given to assist future studies. (author)

  18. {sup 1}H HR-MAS NMR and S180 cells: metabolite assignment and evaluation of pulse sequence

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Aline L. de; Martinelli, Bruno César B.; Lião, Luciano M. [Universidade Federal de Goiás (UFG), Goiânia, GO (Brazil). Instituto de Química. Lab. de RMN; Pereira, Flávia C.; Silveira-Lacerda, Elisangela P. [Universidade Federal de Goiás (UFG), Goiânia, GO (Brazil). Instituto de Ciências Biológicas. Laboratório Genética Molecular e Citogenética; Alcantara, Glaucia B., E-mail: glaucia.alcantara@ufms.br [Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Inst. de Química

    2014-07-01

    High resolution magic angle spinning {sup 1}H nuclear magnetic resonance spectroscopy (HR-MAS NMR) is a useful technique for evaluation of intact cells and tissues. However, optimal NMR parameters are crucial in obtaining reliable results. To identify the key steps for the optimization of HR-MAS NMR parameters, we assessed different pulse sequences and NMR parameters using sarcoma 180 (S180) cells. A complete assignment of the metabolites of S180 is given to assist future studies. (author)

  19. 31P MAS refocused INADEQUATE spin-echo (REINE) NMR spectroscopy: revealing J coupling and chemical shift two-dimensional correlations in disordered solids.

    Science.gov (United States)

    Guerry, Paul; Smith, Mark E; Brown, Steven P

    2009-08-26

    Two-dimensional (2D) variations in (2)J(P(1),P(1)), (2)J(P(1),P(2)), and (2)J(P(2),P(2)) are obtained--using the REINE (REfocused INADEQUATE spin-Echo) pulse sequence presented by Cadars et al. (Phys. Chem. Chem. Phys. 2007, 9, 92-103)--from pixel-by-pixel fittings of the spin-echo modulation for the 2D correlation peaks due to linked phosphate tetrahedra (P(1)-P(1), P(1)-P(2), P(2)-P(1), and P(2)-P(2)) in a (31)P refocused INADEQUATE solid-state MAS NMR spectrum of a cadmium phosphate glass, 0.575CdO-0.425P(2)O(5). In particular, separate variations for each 2D (31)P REINE peak are obtained which reveal correlations between the J couplings and the (31)P chemical shifts of the coupled nuclei that are much clearer than those evident in previously presented 2D z-filtered (31)P spin-echo spectra. Notably, such correlations between the J couplings and the (31)P chemical shifts are observed even though the conditional probability distributions extracted using the protocol of Cadars et al. (J. Am. Chem. Soc. 2005, 127, 4466-4476) indicate that there is no marked correlation between the (31)P chemical shifts of neighboring phosphate tetrahedra. For 2D peaks at the P(2) (31)P chemical shift in the direct dimension, there can be contributions from chains of three units (P(1)-P(2)-P(1)), chains of four units (P(1)-P(2)-P(2)-P(1)), or longer chains or rings (-P(2)-P(2)-P(2)-): for the representative glass considered here, best fits are obtained assuming a glass comprised predominantly of chains of four units. The following variations are found: (2)J(P(1),P(1)) = 13.4 +/- 0.3 to 14.8 +/- 0.5 Hz, (2)J(P(1),P(2)) = 15.0 +/- 0.3 to 18.2 +/- 0.3 Hz, and (2)J(P(2),P(2)) = 5.9 +/- 0.6 to 9.1 +/- 0.9 Hz from the fits to the P(1)-P(1), P(1)-P(2), and P(2)-P(2) peaks, respectively. The correlation of a particular J coupling with the (31)P chemical shifts of the considered nucleus and the coupled nucleus is quantified by the coefficients C(F(2)) and C(F(1)) that correspond to the

  20. Effect of the Grip Angle on Off-Spin Bowling Performance Parameters, Analysed with a Smart Cricket Ball

    OpenAIRE

    Franz Konstantin Fuss; Batdelger Doljin; René E. D. Ferdinands

    2018-01-01

    In the off-spin bowling grip, the ball is clamped between index and middle fingers. Spin bowlers attempt to select a spread angle between these two fingers that achieves comfort and optimises performance. The aim of this paper was to investigate whether the standard grip is superior to narrow and wide grips. The bowling performance parameters were obtained from a smart cricket ball. Smart ball data revealed that the performance parameters varied with grip type. The following parameters were o...

  1. Magic-angle spinning NMR of intact bacteriophages: Insights into the capsid, DNA and their interface

    Science.gov (United States)

    Abramov, Gili; Morag, Omry; Goldbourt, Amir

    2015-04-01

    Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses.

  2. Small-angle neutron scattering modeling of spin disorder in nanoparticles.

    Science.gov (United States)

    Vivas, Laura G; Yanes, Rocio; Michels, Andreas

    2017-10-12

    Magnetic small-angle neutron scattering (SANS) is a powerful technique for investigating magnetic nanoparticle assemblies in nonmagnetic matrices. For such microstructures, the standard theory of magnetic SANS assumes uniformly magnetized nanoparticles (macrospin model). However, there exist many experimental and theoretical studies which suggest that this assumption is violated: deviations from ellipsoidal particle shape, crystalline defects, or the interplay between various magnetic interactions (exchange, magnetic anisotropy, magnetostatics, external field) may lead to nonuniform spin structures. Therefore, a theoretical framework of magnetic SANS of nanoparticles needs to be developed. Here, we report numerical micromagnetic simulations of the static spin structure and related unpolarized magnetic SANS of a single cobalt nanorod. While in the saturated state the magnetic SANS cross section is (as expected) determined by the particle form factor, significant deviations appear for nonsaturated states; specifically, at remanence, domain-wall and vortex states emerge which result in a magnetic SANS signal that is composed of all three magnetization Fourier components, giving rise to a complex angular anisotropy on a two-dimensional detector. The strength of the micromagnetic simulation methodology is the possibility to decompose the cross section into the individual Fourier components, which allows one to draw important conclusions regarding the fundamentals of magnetic SANS.

  3. Spin-echo small-angle neutron scattering study of the structure organization of the chromatin in biological cell

    NARCIS (Netherlands)

    Iashina, E.G.; Bouwman, W.G.; Duif, C.P.; Filatov, M.V.; Grigoriev, S. V.

    2017-01-01

    Spin-echo small-angle scattering (SESANS) technique is a method to measure the structure of materials from nano- to micrmeter length scales. This method could be important for studying the packaging of DNA in the eukaryotic cell. We measured the SESANS function from chicken erythrocyte nuclei

  4. Effect of the Grip Angle on Off-Spin Bowling Performance Parameters, Analysed with a Smart Cricket Ball

    Directory of Open Access Journals (Sweden)

    Franz Konstantin Fuss

    2018-02-01

    Full Text Available In the off-spin bowling grip, the ball is clamped between index and middle fingers. Spin bowlers attempt to select a spread angle between these two fingers that achieves comfort and optimises performance. The aim of this paper was to investigate whether the standard grip is superior to narrow and wide grips. The bowling performance parameters were obtained from a smart cricket ball. Smart ball data revealed that the performance parameters varied with grip type. The following parameters were optimum at the standard grip: spin rate, resultant torque, spin torque, peak angular acceleration, and peak power. The following parameters were optimum at standard and wide grips: efficiency. The following parameters were optimum at standard and narrow grips: pitch angle of spin axis. The following parameters were optimum at the wide grip: precession and the precession torque. In general, the data tended to show that the standard grip is most effective for spin bowling. However, more research is needed to confirm this result, because the precession and precession torque were optimum at the wide grip, suggesting that this may have a superior performance over the standard and narrow grips.

  5. Magic angle spinning NMR reveals sequence-dependent structural plasticity, dynamics, and the spacer peptide 1 conformation in HIV-1 capsid protein assemblies.

    Science.gov (United States)

    Han, Yun; Hou, Guangjin; Suiter, Christopher L; Ahn, Jinwoo; Byeon, In-Ja L; Lipton, Andrew S; Burton, Sarah; Hung, Ivan; Gor'kov, Peter L; Gan, Zhehong; Brey, William; Rice, David; Gronenborn, Angela M; Polenova, Tatyana

    2013-11-27

    A key stage in HIV-1 maturation toward an infectious virion requires sequential proteolytic cleavage of the Gag polyprotein leading to the formation of a conical capsid core that encloses the viral RNA genome and a small complement of proteins. The final step of this process involves severing the SP1 peptide from the CA-SP1 maturation intermediate, which triggers the condensation of the CA protein into the capsid shell. The details of the overall mechanism, including the conformation of the SP1 peptide in CA-SP1, are still under intense debate. In this report, we examine tubular assemblies of CA and the CA-SP1 maturation intermediate using magic angle spinning (MAS) NMR spectroscopy. At magnetic fields of 19.9 T and above, outstanding quality 2D and 3D MAS NMR spectra were obtained for tubular CA and CA-SP1 assemblies, permitting resonance assignments for subsequent detailed structural characterization. Dipolar- and scalar-based correlation experiments unequivocally indicate that SP1 peptide is in a random coil conformation and mobile in the assembled CA-SP1. Analysis of two CA protein sequence variants reveals that, unexpectedly, the conformations of the SP1 tail, the functionally important CypA loop, and the loop preceding helix 8 are modulated by residue variations at distal sites. These findings provide support for the role of SP1 as a trigger of the disassembly of the immature CA capsid for its subsequent de novo reassembly into mature cores and establish the importance of sequence-dependent conformational plasticity in CA assembly.

  6. Spin-Echo Small Angle Neutron Scattering analysis of liposomes and bacteria

    Science.gov (United States)

    van Heijkamp, Léon F.; Sevcenco, Ana-Maria; Abou, Diane; van Luik, Remko; Krijger, Gerard C.; Hagedoorn, Peter-Leon; de Schepper, Ignatz M.; Wolterbeek, Bert; Koning, Gerben A.; Bouwman, Wim G.

    2010-10-01

    Two types of liposomes, commonly used in drug delivery studies, and E. coli bacteria, all prepared in H2O, were resuspended in D2O and measured with Small Angle Spin-Echo Neutron Scattering (SESANS). Modeling was performed using correlation functions for solid spheres and hollow spheres. The signal strength and curve shape were more indicative of hollow particles, indicating that the H2O-D2O exchange occurred too fast to be observed with the available time resolution. Fitting the particle diameter and membrane thickness of the hollow sphere model to the data, gave results which were in good agreement with Dynamic Light Scattering (DLS) data and literature, showing as a proof-of-principle that SESANS is able to investigate such systems. SESANS may become a good alternative to conventional tritium studies or a tool with which to study intracellular vesicle transport phenomena, with possible in vivo applications. Calculations show that a substantial change in numbers of a mixed system of small and large biological particles should be observable. A possible application is the destruction by external means of great numbers of liposomes in the presence of tumor cells for triggered drug release in cancer treatment. Since SESANS is both non-invasive and non-destructive and can handle relatively thick samples, it could be a useful addition to more conventional techniques.

  7. Selectively dispersed isotope labeling for protein structure determination by magic angle spinning NMR

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, Matthew T. [Massachusetts Institute of Technology, Department of Chemistry (United States); Belenky, Marina [Brandeis University, Department of Chemistry (United States); Sivertsen, Astrid C. [Massachusetts Institute of Technology, Francis Bitter Magnet Laboratory (United States); Griffin, Robert G. [Massachusetts Institute of Technology, Department of Chemistry (United States); Herzfeld, Judith, E-mail: herzfeld@brandeis.edu [Brandeis University, Department of Chemistry (United States)

    2013-10-15

    The power of nuclear magnetic resonance spectroscopy derives from its site-specific access to chemical, structural and dynamic information. However, the corresponding multiplicity of interactions can be difficult to tease apart. Complimentary approaches involve spectral editing on the one hand and selective isotope substitution on the other. Here we present a new 'redox' approach to the latter: acetate is chosen as the sole carbon source for the extreme oxidation numbers of its two carbons. Consistent with conventional anabolic pathways for the amino acids, [1-{sup 13}C] acetate does not label {alpha} carbons, labels other aliphatic carbons and the aromatic carbons very selectively, and labels the carboxyl carbons heavily. The benefits of this labeling scheme are exemplified by magic angle spinning spectra of microcrystalline immunoglobulin binding protein G (GB1): the elimination of most J-couplings and one- and two-bond dipolar couplings provides narrow signals and long-range, intra- and inter-residue, recoupling essential for distance constraints. Inverse redox labeling, from [2-{sup 13}C] acetate, is also expected to be useful: although it retains one-bond couplings in the sidechains, the removal of CA-CO coupling in the backbone should improve the resolution of NCACX spectra.

  8. Elucidation of spin echo small angle neutron scattering correlation functions through model studies.

    Science.gov (United States)

    Shew, Chwen-Yang; Chen, Wei-Ren

    2012-02-14

    Several single-modal Debye correlation functions to approximate part of the overall Debey correlation function of liquids are closely examined for elucidating their behavior in the corresponding spin echo small angle neutron scattering (SESANS) correlation functions. We find that the maximum length scale of a Debye correlation function is identical to that of its SESANS correlation function. For discrete Debye correlation functions, the peak of SESANS correlation function emerges at their first discrete point, whereas for continuous Debye correlation functions with greater width, the peak position shifts to a greater value. In both cases, the intensity and shape of the peak of the SESANS correlation function are determined by the width of the Debye correlation functions. Furthermore, we mimic the intramolecular and intermolecular Debye correlation functions of liquids composed of interacting particles based on a simple model to elucidate their competition in the SESANS correlation function. Our calculations show that the first local minimum of a SESANS correlation function can be negative and positive. By adjusting the spatial distribution of the intermolecular Debye function in the model, the calculated SESANS spectra exhibit the profile consistent with that of hard-sphere and sticky-hard-sphere liquids predicted by more sophisticated liquid state theory and computer simulation. © 2012 American Institute of Physics

  9. Multinuclear MAS NMR studies on coked zeolites H-ZSM-5

    International Nuclear Information System (INIS)

    Ernst, H.; Freude, D.; Hunger, M.; Pfeifer, H.

    1991-01-01

    During the cracking process carbonaceous materials are deposited on the outer or inner surface of the catalyst. These deposits are in many cases the main cause of catalyst deactivation. Magic angle spinning (MAS) NMR investigations and catalytic n-hexane cracking were carried out on H-ZSM-5 zeolites after a mild hydrothermal de-alumination. By 13 C CP MAS NMR it could be shown that the enhanced catalytic activity does not enhance the coke formation and that the chemical nature of these deposits is essentially aromatic. From 1 H MAS NMR studies performed on shallow-bed activated sealed samples and 27 Al and 29 Si MAS NMR on rehydrated samples it follows that for high coke concentrations the catalyst deactivation is caused mainly by blocking of Broensted acid sites. (author). 27 refs.; 3 figs.; 2 tabs

  10. Hardware modification of a 7 mm MAS NMR probe to a single-crystal goniometer.

    Science.gov (United States)

    Kovács, Gábor; Rohonczy, János

    2006-07-01

    Tensorial terms of the Hamiltonian can be measured by solid-state single-crystal nuclear magnetic resonance (NMR) spectroscopy which requires a goniometer NMR probehead. Goniometer probes; however, are not standard parts of solid NMR spectrometers and are available only at a much higher price than magic-angle spinning (MAS) probeheads widely used in research. Due to requirements of MAS experiments, modern probeheads are designed for small ceramic rotors, which are 1-4 mm in diameter, to reach very high angular frequencies, so there are several older 7 mm MAS probeheads used rarely todays in NMR laboratories. In this paper, a simple method is presented how to rebuild step-by-step a 7 mm Bruker MAS probehead to be suitable for single-crystal spectroscopy. In the second part (31)P chemical shift tensors of Na(4)P(2)O(7) x 10H(2)O are determined to demonstrate the functionality of the rebuilt probehead.

  11. Three-dimensional magnetic spin-echo small-angle neutron scattering and neutron depolarization: A comparison

    International Nuclear Information System (INIS)

    Rekveldt, M. Theo; Dijk, Niels H. van; Grigoriev, Serguei V.; Kraan, Wicher H.; Bouwman, Wim G.

    2006-01-01

    The recently developed magnetic spin-echo small-angle neutron scattering (SANS) technique provides unique information about the distance correlation of the local vector magnetization as a function of the spin-echo length within a magnetic material. The technique probes the magnetic correlations on a length scale from 10 nm up to 10 μm within the bulk of a magnetic material by evaluating the Larmor precession of a polarized neutron beam in a spin-echo setup. The characteristics of the spin-echo SANS technique are discussed and compared to those of the more conventional neutron depolarization technique. Both of these techniques probe the average size of the magnetic inhomogeneities and the local magnetic texture. The magnetic spin-echo SANS technique gives information on the size distribution of these magnetic inhomogeneities perpendicular to the beam and, in principle, independent on the local magnetic induction. This information is not accessible by the neutron depolarization technique that gives the average size parallel to the beam multiplied with the square of the local magnetic induction. The basic possibilities of the magnetic spin-echo SANS technique are demonstrated by experiments on samples with a strong magnetic texture

  12. Self-diffusion of electrolyte species in model battery electrodes using Magic Angle Spinning and Pulsed Field Gradient Nuclear Magnetic Resonance

    Science.gov (United States)

    Tambio, Sacris Jeru; Deschamps, Michaël; Sarou-Kanian, Vincent; Etiemble, Aurélien; Douillard, Thierry; Maire, Eric; Lestriez, Bernard

    2017-09-01

    Lithium-ion batteries are electrochemical storage devices using the electrochemical activity of the lithium ion in relation to intercalation compounds owing to mass transport phenomena through diffusion. Diffusion of the lithium ion in the electrode pores has been poorly understood due to the lack of experimental techniques for measuring its self-diffusion coefficient in porous media. Magic-Angle Spinning, Pulsed Field Gradient, Stimulated-Echo Nuclear Magnetic Resonance (MAS-PFG-STE NMR) was used here for the first time to measure the self-diffusion coefficients of the electrolyte species in the LP30 battery electrolyte (i.e. a 1 M solution of LiPF6 dissolved in 1:1 Ethylene Carbonate - Dimethyl Carbonate) in model composites. These composite electrodes were made of alumina, carbon black and PVdF-HFP. Alumina's magnetic susceptibility is close to the measured magnetic susceptibility of the LP30 electrolyte thereby limiting undesirable internal field gradients. Interestingly, the self-diffusion coefficient of lithium ions decreases with increasing carbon content. FIB-SEM was used to describe the 3D geometry of the samples. The comparison between the reduction of self-diffusion coefficients as measured by PFG-NMR and as geometrically derived from FIB/SEM tortuosity values highlights the contribution of specific interactions at the material/electrolyte interface on the lithium transport properties.

  13. Multichannel spin polarimeter for energy- and angle-dispersive photoemission measurements; Vielkanal-Spinpolarimeter fuer energie- und winkeldispersive Photoemissionsmessungen

    Energy Technology Data Exchange (ETDEWEB)

    Kolbe, Michaela

    2011-09-09

    Spin polarization measurements of free electrons remain challenging since their first realization by Mott. The relevant quantity of a spin polarimeter is its figure of merit, FoM=S{sup 2}I/I{sub 0}, with the asymmetry function S and the ratio between scattered and primary intensity I/I{sub 0}. State-of-the-art devices are based on single-channel scattering (spin-orbit or exchange interaction) which is characterized by FoM {approx_equal}10{sup -4}. On the other hand, modern hemispherical analyzers feature an efficient multichannel detection of spin-integral intensity with more than 10{sup 4} data points simultaneously. In comparison between spin-resolved and spin-integral electron spectroscopy we are thus faced with a difference in counting efficiency by 8 orders of magnitude. The present work concentrates on the development and investigation of a novel technique for increasing the efficiency in spin-resolved electron spectroscopy by multichannel detection. The spin detector was integrated in a {mu}-metal shielded UHV-chamber and mounted behind a conventional hemispherical analyzer. The electrostatic lens system's geometry was determined by electron-optical simulations. The basic concept is the k {sub parallel} -conserving elastic scattering of the (0,0)-beam on a W(100) scattering crystal under 45 impact angle. It could be demonstrated that app. 960 data points (15 energy and 64 angular points) could be displayed simultaneously on a delayline detector in an energy interval of {approx_equal}3 eV. This leads to a two-dimensional figure of merit of FoM{sub 2D}=1.7. Compared to conventional spin detectors, the new type is thus characterized by a gain in efficiency of 4 orders of magnitude. The operational reliability of the new spin polarimeter could be proven by measurements with a Fe/MgO(100) and O p(1 x 1)/Fe(100)-sample, where results from the literature were reproduced with strongly decreased measuring time. Due to the high intensity it becomes possible, to

  14. Computation of hypersonic laminar viscous flow past spinning sharp and blunt cones at high angle of attack

    Science.gov (United States)

    Agarwal, R.; Rakich, J. V.

    1978-01-01

    Computational results, obtained with a parabolic Navier-Stokes marching code, are presented for hypersonic viscous flow past spinning sharp and blunt cones at angle of attack. The code takes into account the asymmetries in the flow field resulting from spinning motion and computes the asymmetric shock shape, crossflow and streamwise shear, heat transfer, crossflow separation, and vortex structure. The Magnus force and moments are also computed. Comparisons are made with other theoretical analyses based on boundary-layer and boundary-region equations, and an anomaly is discovered in the displacement thickness contribution to the Magnus force when compared with boundary-layer results. In addition, a new criterion for defining crossflow separation behind spinning bodies is introduced which generalizes the Moore-Rott-Sears criterion for two-dimensional unsteady separation. A condition which characterizes the onset of separation in the flow field is defined.

  15. Direct Observation of Localized Spin Antiferromagnetic Transition in PdCrO2 by Angle-Resolved Photoemission Spectroscopy

    Science.gov (United States)

    Noh, Han-Jin; Jeong, Jinwon; Chang, Bin; Jeong, Dahee; Moon, Hyun Sook; Cho, En-Jin; Ok, Jong Mok; Kim, Jun Sung; Kim, Kyoo; Min, B. I.; Lee, Han-Koo; Kim, Jae-Young; Park, Byeong-Gyu; Kim, Hyeong-Do; Lee, Seongsu

    2014-01-01

    We report the first case of the successful measurements of a localized spin antiferromagnetic transition in delafossite-type PdCrO2 by angle-resolved photoemission spectroscopy (ARPES). This demonstrates how to circumvent the shortcomings of ARPES for investigation of magnetism involved with localized spins in limited size of two-dimensional crystals or multi-layer thin films that neutron scattering can hardly study due to lack of bulk compared to surface. Also, our observations give direct evidence for the spin ordering pattern of Cr3+ ions in PdCrO2 suggested by neutron diffraction and quantum oscillation measurements, and provide a strong constraint that has to be satisfied by a microscopic mechanism for the unconventional anomalous Hall effect recently reported in this system. PMID:24419488

  16. Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts

    KAUST Repository

    Li, Jianping

    2013-06-05

    Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number of long-range distance restraints using dipolar coupling based spectra hamper the process of structure determination of proteins in solid-state NMR. In this study it is shown that high-resolution structure of proteins in solid phase can be determined without the use of traditional dipolar-dipolar coupling based distance restraints by combining the measurements of pseudocontact shifts (PCSs) with Rosetta calculations. The PCSs were generated by chelating exogenous paramagnetic metal ions to a tag 4-mercaptomethyl-dipicolinic acid, which is covalently attached to different residue sites in a 56-residue immunoglobulin-binding domain of protein G (GB1). The long-range structural restraints with metal-nucleus distance of up to ∼20 Å are quantitatively extracted from experimentally observed PCSs, and these are in good agreement with the distances back-calculated using an X-ray structure model. Moreover, we demonstrate that using several paramagnetic ions with varied paramagnetic susceptibilities as well as the introduction of paramagnetic labels at different sites can dramatically increase the number of long-range restraints and cover different regions of the protein. The structure generated from solid-state NMR PCSs restraints combined with Rosetta calculations has 0.7 Å root-mean-square deviation relative to X-ray structure. © 2013 American Chemical Society.

  17. HR MAS 1H NMR spectroscopy analysis of marine microalgal whole cells

    OpenAIRE

    Chauton, Matilde S.; Optun, Odd Inge; Bathen, Tone F.; Volent, Zsolt; Gribbestad, Ingrid S.; Johnsen, Geir

    2003-01-01

    To study the use of nuclear magnetic resonance (NMR) spectroscopy as a method of classification, we performed high-resolution magic angle spinning proton (HR MAS 1H) NMR spectroscopy analysis of whole-cell samples of Dunaliella sp. (Chlorophyceae), Amphidinium carterae (Dinophyceae), Phaeodactylum tricornutum and Thalassiosira pseudonana (Bacillariophyceae). Emphasising the potential use of NMR spectroscopy as a routine analysis of microalgae we chose a straightforward procedure for culturing...

  18. The effect of dimple error on the horizontal launch angle and side spin of the golf ball during putting.

    Science.gov (United States)

    Richardson, Ashley K; Mitchell, Andrew C S; Hughes, Gerwyn

    2017-02-01

    This study aimed to examine the effect of the impact point on the golf ball on the horizontal launch angle and side spin during putting with a mechanical putting arm and human participants. Putts of 3.2 m were completed with a mechanical putting arm (four putter-ball combinations, total of 160 trials) and human participants (two putter-ball combinations, total of 337 trials). The centre of the dimple pattern (centroid) was located and the following variables were measured: distance and angle of the impact point from the centroid and surface area of the impact zone. Multiple regression analysis was conducted to identify whether impact variables had significant associations with ball roll variables, horizontal launch angle and side spin. Significant associations were identified between impact variables and horizontal launch angle with the mechanical putting arm but this was not replicated with human participants. The variability caused by "dimple error" was minimal with the mechanical putting arm and not evident with human participants. Differences between the mechanical putting arm and human participants may be due to the way impulse is imparted on the ball. Therefore it is concluded that variability of impact point on the golf ball has a minimal effect on putting performance.

  19. Pairwise NMR experiments for the determination of protein backbone dihedral angle Φ based on cross-correlated spin relaxation

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Shimada, Ichio

    2007-01-01

    Novel cross-correlated spin relaxation (CCR) experiments are described, which measure pairwise CCR rates for obtaining peptide dihedral angles Φ. The experiments utilize intra-HNCA type coherence transfer to refocus 2-bond J NCα coupling evolution and generate the N (i)-C α (i) or C'(i-1)-C α (i) multiple quantum coherences which are required for measuring the desired CCR rates. The contribution from other coherences is also discussed and an appropriate setting of the evolution delays is presented. These CCR experiments were applied to 15 N- and 13 C-labeled human ubiquitin. The relevant CCR rates showed a high degree of correlation with the Φ angles observed in the X-ray structure. By utilizing these CCR experiments in combination with those previously established for obtaining dihedral angle Ψ, we can determine high resolution structures of peptides that bind weakly to large target molecules

  20. Computation of supersonic laminar viscous flow past a pointed cone at angle of attack in spinning and coning motion

    Science.gov (United States)

    Agarwal, R.; Rakich, J. V.

    1978-01-01

    Computational results obtained with a parabolic Navier-Stokes marching code are presented for supersonic viscous flow past a pointed cone at angle of attack undergoing a combined spinning and coning motion. The code takes into account the asymmetries in the flow field resulting from the motion and computes the asymmetric shock shape, crossflow and streamwise shear, heat transfer, crossflow separation and vortex structure. The side force and moment are also computed. Reasonably good agreement is obtained with the side force measurements of Schiff and Tobak. Comparison is also made with the only available numerical inviscid analysis. It is found that the asymmetric pressure loads due to coning motion are much larger than all other viscous forces due to spin and coning, making viscous forces negligible in the combined motion.

  1. Cross polarization, magic-angle spinning /sup 13/C nuclear magnetic resonance spectroscopy of soil humic fractions

    Energy Technology Data Exchange (ETDEWEB)

    Saiz-Jimenez, C.; Hawkins, B.L.; Maciel, G.E.

    1986-01-01

    Cross polarization, magic-angle spinning /sup 13/C nuclear magnetic resonance spectroscopy was used to characterize humic fractions isolated from different soils. The humic acid fractions are more aromatic than the humin fractions, probably due to the higher polysaccharide content of humins. However, fulvic acid fractions are more aromatic than the corresponding humic acid and humin fractions. These results can be interpreted in terms of the isolation procedure, because the high affinity of Polyclar AT for phenols results in higher aromaticities as compared with other isolation methods (e.g. charcoal).

  2. Estimation of parameters involved in high angle-of-attack aerodynamic theory using spin flight test data

    Science.gov (United States)

    Taylor, L. W., Jr.; Pamadi, B. N.

    1983-01-01

    The difficulty in applying parameter estimation techniques to spinning airplanes is due in part to the unwieldy number of possible combinations of terms in the equations of motion, when the model structure is unknown. The combination of high angle of attack and high rotation rate results in aerodynamic functions which are quite complex. For wing dominated configurations it is advantageous to use aerodynamic theory to generate the model structure. In this way, the number of unknown parameters is reduced and the model accuracy may be increased. Under conditions for which the theory is inadequate, however, model accuracy may be reduced. Strip theory, for example, is incapable of predicting autorotative rolling moments indicated by wind tunnel tests at angles of attack exceeding 40 degrees. An improved aerodynamic theory would be necessary to successfully apply the technique advanced for such regions.

  3. Comparison of the 1H NMR analysis of solids by the CRAMPS and MAS-only techniques

    Science.gov (United States)

    Dec, Steven F.; Bronnimann, Charles E.; Wind, Robert A.; Maciel, Gary E.

    1H NMR spectra are reported on eight representative solid samples, including pure powdered crystalline samples, synthetic organic polymers, a silica gel, HY zeolite, and a lignite. Spectra were obtained by the following three approaches: (1) single pulse on a static sample, (2) CRAMPS, and (3) single pulse with magic-angle spinning (MAS-only). The MAS-only results were obtained as a function of MAS speed. Although the MAS-only technique is capable of achieving a significant degree of line narrowing, even with modest MAS speeds, MAS-only spectra of the general quality of the apparently undistorted high-resolution 1H spectra obtained by the CRAMPS technique are not obtained at the highest MAS speeds examined (21 kHz for a polymethylmethacrylate sample), unless the 1H- 1H dipolar interactions in the sample are rather weak, as with silica gel or a zeolite. Thus, caution should be exercised in interpreting 1H MAS-only spectra, especially if CRAMPS results are not available as a calibration.

  4. Large solid-angle polarisation analysis at thermal neutron wavelengths using a sup 3 He spin filter

    CERN Document Server

    Heil, W; Cywinski, R; Humblot, H; Ritter, C; Roberts, T W; Stewart, J R

    2002-01-01

    The strongly spin-dependent absorption of neutrons in nuclear spin-polarised sup 3 He opens up the possibility of polarising neutrons from reactors and spallation sources over the full kinematical range of cold, thermal and hot neutrons. In this paper we describe the first large solid-angle polarisation analysis measurement using a sup 3 He neutron spin filter at thermal neutron wavelengths (lambda=2.5 A). This experiment was performed on the two-axis diffractometer D1B at the Institut Laue-Langevin using a banana-shaped filter cell (530 cm sup 3 ) filled with sup 3 He gas with a polarisation of P=52% at a pressure of 2.7 bar. A comparison is made with a previous measurement on D7 using a cold neutron beam on the same sample, i.e. amorphous ErY sub 6 Ni sub 3. Using uniaxial polarisation analysis both the nuclear and magnetic cross-sections could be extracted over the range of scattering-vectors [0.5<=Q(A sup - sup 1)<=3.5]. The results are in qualitative and quantitative agreement with the D7-data, whe...

  5. Bulk carbohydrate grain filling of barley ß-glucan mutants studied by 1H HR MAS NMR

    DEFF Research Database (Denmark)

    Seefeldt, Helene Fast; Larsen, Flemming Hofmann; Viereck, Nanna

    2008-01-01

    ) during grain filling. For the first time, 1H HR MAS NMR spectra of flour from immature barley seeds are analyzed. Spectral assignments are made using two-dimensional (2D) NMR methods. Both α- and β-glucan biosynthesis were characterized by inspection of the spectra as well as by calibration......Temporal and genotypic differences in bulk carbohydrate accumulation in three barley genotypes differing in the content of mixed linkage β-(1→3),(1→4)-D-glucan (β-glucan) and starch were investigated using proton high-resolution, magic angle spinning, nuclear magnetic resonance (1H HR MAS NMR...

  6. Protein residue linking in a single spectrum for magic-angle spinning NMR assignment

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Loren B.; Stanek, Jan; Marchand, Tanguy Le; Bertarello, Andrea; Paepe, Diane Cala-De; Lalli, Daniela; Krejčíková, Magdaléna; Doyen, Camille; Öster, Carl [Université de Lyon, Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1) (France); Knott, Benno; Wegner, Sebastian; Engelke, Frank [Bruker Biospin (Germany); Felli, Isabella C.; Pierattelli, Roberta [University of Florence, Department of Chemistry “Ugo Schiff“and Magnetic Resonance Center (CERM) (Italy); Dixon, Nicholas E. [University of Wollongong, School of Chemistry (Australia); Emsley, Lyndon; Herrmann, Torsten; Pintacuda, Guido, E-mail: guido.pintacuda@ens-lyon.fr [Université de Lyon, Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1) (France)

    2015-07-15

    Here we introduce a new pulse sequence for resonance assignment that halves the number of data sets required for sequential linking by directly correlating sequential amide resonances in a single diagonal-free spectrum. The method is demonstrated with both microcrystalline and sedimented deuterated proteins spinning at 60 and 111 kHz, and a fully protonated microcrystalline protein spinning at 111 kHz, with as little as 0.5 mg protein sample. We find that amide signals have a low chance of ambiguous linkage, which is further improved by linking in both forward and backward directions. The spectra obtained are amenable to automated resonance assignment using general-purpose software such as UNIO-MATCH.

  7. Porosity of silica Stöber particles determined by spin-echo small angle neutron scattering.

    Science.gov (United States)

    Parnell, S R; Washington, A L; Parnell, A J; Walsh, A; Dalgliesh, R M; Li, F; Hamilton, W A; Prevost, S; Fairclough, J P A; Pynn, R

    2016-05-25

    Stöber silica particles are used in a diverse range of applications. Despite their widespread industrial and scientific uses, information on the internal structure of the particles is non-trivial to obtain and is not often reported. In this work we have used spin-echo small angle neutron scattering (SESANS) in conjunction with ultra small angle X-ray scattering (USAXS) and pycnometry to study an aqueous dispersion of Stöber particles. Our results are in agreement with models which propose that Stöber particles have a porous core, with a significant fraction of the pores inaccessible to solvent. For samples prepared from the same master sample in a range of H2O : D2O ratio solutions we were able to model the SESANS results for the solution series assuming monodisperse, smooth surfaced spheres of radius 83 nm with an internal open pore volume fraction of 32% and a closed pore fraction of 10%. Our results are consistent with USAXS measurements. The protocol developed and discussed here shows that the SESANS technique is a powerful way to investigate particles much larger than those studied using conventional small angle scattering methods.

  8. Broadband homonuclear correlation spectroscopy driven by combined R2nv sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids

    Science.gov (United States)

    Hou, Guangjin; Yan, Si; Trébosc, Julien; Amoureux, Jean-Paul; Polenova, Tatyana

    2013-07-01

    We recently described a family of experiments for R2nv Driven Spin Diffusion (RDSD) spectroscopy suitable for homonuclear correlation experiments under fast MAS conditions [G. Hou, S. Yan, S.J. Sun, Y. Han, I.J. Byeon, J. Ahn, J. Concel, A. Samoson, A.M. Gronenborn, T. Polenova, Spin diffusion drive by R-symmetry sequencs: applications to homonuclear correlation spectroscopy in MAS NMR of biological and organic solids, J. Am. Chem. Soc. 133 (2011) 3943-3953]. In these RDSD experiments, since the broadened second-order rotational resonance conditions are dominated by the radio frequency field strength and the phase shifts, as well as the size of reintroduced dipolar couplings, the different R2nv sequences display unique polarization transfer behaviors and different recoupling frequency bandwidths. Herein, we present a series of modified R2nv sequences, dubbed COmbined R2nv-Driven (CORD), that yield broadband homonuclear dipolar recoupling and give rise to uniform distribution of cross peak intensities across the entire correlation spectrum. We report NMR experiments and numerical simulations demonstrating that these CORD spin diffusion sequences are suitable for broadband recoupling at a wide range of magnetic fields and MAS frequencies, including fast-MAS conditions (νr = 40 kHz and above). Since these CORD sequences are largely insensitive to dipolar truncation, they are well suited for the determination of long-range distance constraints, which are indispensable for the structural characterization of a broad range of systems. Using U-13C,15N-alanine and U-13C,15N-histidine, we show that under fast-MAS conditions, the CORD sequences display polarization transfer efficiencies within broadband frequency regions that are generally higher than those offered by other existing spin diffusion pulse schemes. A 89-residue U-13C,15N-dynein light chain (LC8) protein has also been used to demonstrate that the CORD sequences exhibit uniformly high cross peak intensities

  9. Role of polarizer-tilting-angle in zero-field spin-transfer nano-oscillators with perpendicular anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Fuentes, C.; Gallardo, R. A., E-mail: rodolfo.gallardo@usm.cl; Landeros, P. [Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso (Chile)

    2015-10-05

    An analytical model for studying the stability of a single domain ferromagnetic layer under the influence of a spin-polarized current is presented. The theory is applied to bias-field-free nano-oscillators with perpendicular anisotropy, which allows to obtain a polarizer-angle vs. current phase diagram that describes the stability of magnetic states. Explicit formulae for the critical current densities unveil the influence of the relative orientation between free and polarizer layers, allowing the emergence of precessional steady-states, and also the possibility to reduce the magnitude of the threshold current density to produce microwave oscillations. It is shown that oscillating steady-states arise in a broad angular region, and the dependence of their boundaries is fully specified by the model. The reliability of the analytical results has been corroborated by comparison to numerical calculations. Such structures are currently under intense research because of remarkable properties offering new prospects for microwave applications in communication technologies.

  10. New Measurements of the Beam Normal Spin Asymmetries at Large Backward Angles with Hydrogen and Deuterium Targets

    Science.gov (United States)

    Ríos, D. Balaguer; Aulenbacher, K.; Baunack, S.; Diefenbach, J.; Gläser, B.; von Harrach, D.; Imai, Y.; Kabuß, E.-M.; Kothe, R.; Lee, J. H.; Merkel, H.; Mora Espí, M. C.; Müller, U.; Schilling, E.; Weinrich, C.; Capozza, L.; Maas, F. E.; Arvieux, J.; El-Yakoubi, M. A.; Frascaria, R.; Kunne, R.; Morlet, M.; Ong, S.; van de Wiele, J.; Kowalski, S.; Prok, Y.

    2017-07-01

    New measurements of the beam normal single spin asymmetry in the electron elastic and quasielastic scattering on the proton and deuteron, respectively, at large backward angles and at ⟨Q2⟩ =0.22 (GeV /c )2 and ⟨Q2⟩ =0.35 ( GeV /c )2 are reported. The experimentally observed asymmetries are compared with the theoretical calculation of Pasquini and Vanderhaeghen [Phys. Rev. C 70, 045206 (2004)., 10.1103/PhysRevC.70.045206]. The agreement of the measurements with the theoretical calculations shows a dominance of the inelastic intermediate excited states of the nucleon, π N and the Δ resonance. The measurements explore a new, important parameter region of the exchanged virtual photon virtualities.

  11. High resolution magic angle spinning NMR applied to the analysis of organic compounds bound to solid supports.

    Science.gov (United States)

    Espinosa, Juan F

    2011-01-01

    In situ structural characterization of organic compounds attached to solid supports can be achieved by high-resolution magic angle spinning NMR (HRMAS NMR), a technique that provides solution-like spectra for resin-bound molecules. This review outlines the principles of the technique, the influence of the solid support on data quality, and NMR experiments that are useful for obtaining valuable information. The review describes, with multiple examples mainly from the last 7 years, how HRMAS NMR has been applied to monitor solid-phase reactions, elucidate reaction products and quantify compound loading on a solid support. Other applications, such as conformational analysis of immobilized compounds and investigation of molecular interactions with compounds in solution, are also discussed.

  12. Spin-echo small-angle neutron scattering study of the structure organization of the chromatin in biological cell

    International Nuclear Information System (INIS)

    Iashina, E G; Grigoriev, S V; Bouwman, W G; Duif, C P; Filatov, M V

    2017-01-01

    Spin-echo small-angle scattering (SESANS) technique is a method to measure the structure of materials from nano- to micrometer length scales. This method could be important for studying the packaging of DNA in the eukaryotic cell. We measured the SESANS function from chicken erythrocyte nuclei which is well fitted by the exponential function G ( z ) = exp(− z / ξ ), where ξ is the correlation length of a nucleus (in experimental data ξ = 3, 3 μ m). The exponential decay of G ( z ) corresponds to the logarithmic pair correlation function γ ( r ) = ln( ξ / r ). As the sensitivity of the SESANS signal depends on the neutron wavelength, we propose the SESANS setup with the changeable wavelength in the range from 2 to 12 Å. Such option allows one to study in great detail the internal structure of the biological cell in the length scale from 10 −2 μ m to 10 μ m. (paper)

  13. Spin-echo small-angle neutron scattering study of the structure organization of the chromatin in biological cell

    Science.gov (United States)

    Iashina, E. G.; Bouwman, W. G.; Duif, C. P.; Filatov, M. V.; Grigoriev, S. V.

    2017-06-01

    Spin-echo small-angle scattering (SESANS) technique is a method to measure the structure of materials from nano- to micrmeter length scales. This method could be important for studying the packaging of DNA in the eukaryotic cell. We measured the SESANS function from chicken erythrocyte nuclei which is well fitted by the exponential function G(z) = exp(-z/ξ), where ξ is the correlation length of a nucleus (in experimental data ξ = 3, 3 μm). The exponential decay of G(z) corresponds to the logarithmic pair correlation function γ(r) = ln(ξ/r). As the sensitivity of the SESANS signal depends on the neutron wavelength, we propose the SESANS setup with the changeable wavelength in the range from 2 to 12 Å. Such option allows one to study in great detail the internal structure of the biological cell in the length scale from 10-2 μm to 10 μm.

  14. Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; Robert Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; Charles Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; Richard HASTY; Alice Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; Jianglai Liu; Berenice Loupias; Allison Lung; Dominique Marchand; Jeffery Martin; Kenneth McFarlane; David McKee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; Gregory Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vince Sulkosky; Vincent Sulkosky; Vince Sulkosky; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; Glen Warren; Steven Wells; Steven Williamson; Stephen Wood; Chen Yan; Junho Yun; Valdis Zeps

    2007-08-01

    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 values of 0.15 and 0.25 (GeV/c)^2 with results of A_n = -4.06 +- 0.99(stat) +- 0.63(syst) and A_n = -4.82 +- 1.87(stat) +- 0.98(syst) ppm. These results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the two-photon exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

  15. Beam Normal Single Spin Asymmetry in Forward Angle Inelastic Electron-Proton Scattering using the Q-Weak Apparatus

    Energy Technology Data Exchange (ETDEWEB)

    ., Nuruzzaman [Hampton Univ., Hampton, VA (United States)

    2014-12-01

    The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (B_n) on H_2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic B_n is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of B_n background studies, we made the first measurement of B_n in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be B_n = 42.82 ± 2.45 (stat) ± 16.07 (sys) ppm at beam energy E_beam = 1.155 GeV, scattering angle theta = 8.3 deg, and missing mass W = 1.2 GeV. B_n from electron-nucleon scattering is a unique tool to study the gamma^* Delta Delta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ~10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system

  16. Multiconfiguration Dirac-Fock calculations of angle- and spin-resolved Auger spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kleiman, U., E-mail: kleiman@mpipks-dresden.mpg.d [Max-Planck-Institut fuer Physik komplexer Systeme, Abteilung Endliche Systeme, Noethnitzer Str. 38, D-01187 Dresden (Germany); Lohmann, B. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Theoretische Physik, Wilhelm-Klemm-Str. 9, D-48149 Muenster (Germany)

    2010-11-15

    The energies, line intensities as well as angular anisotropy and spin polarization parameters have been calculated for the L{sub 2,3}M{sub 1}M{sub 4,5} Auger spectra of Zn, Kr, Sr, Pd, Cd, Xe, Ba, Yb, Hg, Rn, Ra and No, the M{sub 2,3}N{sub 1}N{sub 4,5} Auger spectra of Pd, Cd, Xe, Ba, Yb, Hg, Rn, Ra and No, the N{sub 2,3}O{sub 1}O{sub 4,5} Auger spectra of Hg, Rn, Ra and No, the M{sub 4,5}N{sub 1}N{sub 2,3} Auger spectra of Kr, Sr, Pd, Cd, Xe, Ba, Yb, Hg, Rn, Ra and No, and the N{sub 4,5}O{sub 1}O{sub 2,3} Auger spectra of Xe, Ba, Yb, Hg, Rn, Ra and No. The calculations have been performed describing the Auger emission process in the context of scattering theory (relativistic distorted wave approximation) where the Auger transition amplitudes and scattering phases have been evaluated applying a relaxed orbital method within a multiconfiguration Dirac-Fock approach. Comparisons with other theoretical and experimental data are made wherever possible.

  17. Residue specific hydration of primary cell wall potato pectin identified by solid-state 13C single-pulse MAS and CP/MAS NMR spectroscopy

    DEFF Research Database (Denmark)

    Larsen, Flemming Hofmann; Chrestensen, Inge Byg; Damager, Iben

    2011-01-01

    Hydration of rhamnogalacturonan-I (RG-I) derived from potato cell wall was analyzed by 13C single-pulse (SP) magic-angle-spinning (MAS) and 13C cross-polarization (CP) MAS nuclear magnetic resonance (NMR) and supported by 2H SP/MAS NMR experiments. The study shows that the arabinan side chains...... hydrate more readily than the galactan side chains and suggests that the overall hydration properties can be controlled by modifying the ratio of these side chains. Enzymatic modification of native (NA) RG-I provided samples with reduced content of arabinan (sample DA), galactan (sample DG), or both side...... chains (sample DB). Results of these samples suggested that hydration properties were determined by the length and character of the side chains. NA and DA exhibited similar hydration characteristics, whereas DG and DB were difficult to hydrate because of the less hydrophilic properties of the rhamnose...

  18. Spin-wave dynamics in Invar Fe sub 6 sub 5 Ni sub 3 sub 5 alloy studied by small-angle polarized neutron scattering

    CERN Document Server

    Grigoriev, S V; Deriglazov, V V; Okorokov, A I; Dijk, N H V; Brück, E; Klaasse, J C P; Eckerlebe, H; Kozik, G

    2002-01-01

    Spin dynamics in Fe sub 6 sub 5 Ni sub 3 sub 5 Invar alloy has been studied by left-right asymmetry of small-angle polarized neutron scattering below T sub C =485 K in external magnetic fields of H=0.05-0.25 T inclined relative to the incident beam. The spin-wave stiffness D and the damping GAMMA were obtained by fitting the antisymmetrical contribution to the scattering. The spin-wave stiffness extrapolated by a (T/T sub C) sup 5 sup / sup 2 law to T=0 K is D sub 0 =117+-2 meVA sup 2 , which is somewhat smaller than the spin-wave stiffness obtained by triple-axis spectrometry. (orig.)

  19. Effective combined water and sideband suppression for low-speed tissue and in vivo MAS NMR.

    Science.gov (United States)

    Mobarhan, Yalda Liaghati; Struppe, Jochem; Fortier-McGill, Blythe; Simpson, André J

    2017-08-01

    High-resolution magic angle spinning (HR-MAS) NMR is a powerful technique that can provide metabolic profiles and structural constraints on intact biological and environmental samples such as cells, tissues and living organisms. However, centripetal force from fast spinning can lead to a loss of sample integrity. In analyses focusing on structural organization, metabolite compartmentalization or in vivo studies, it is critical to keep the sample intact. As such, there is growing interest in slow spinning studies that preserve sample longevity. In this study, for example, reducing the spinning rate from 2500 to 500 Hz during the analysis of a living freshwater shrimp increased the 100% survivability threshold from ~14 to 40 h. Unfortunately, reducing spinning rate decreases the intensity of the isotropic signals and increases both the intensity and number of spinning sidebands, which mask spectral information. Interestingly, water suppression approaches such as excitation sculpting and W5 WATERGATE, which are effective at higher spinning rates, fail at lower spinning rates (<2500 Hz) while simpler approaches such as presaturation are not able to effectively suppress water when the ratio of water to biomass is very high, as is the case in vivo. As such there is a considerable gap in NMR approaches which can be used to suppress water signals and sidebands in biological samples at lower spinning rates. This research presents simple but practically important sequences that combine PURGE water suppression with both phase-adjusted spinning sidebands and an analogue of TOSS termed TOSS.243. The result is simple and effective water and sideband suppression even in extremely dilute samples in pure water down to ~100 Hz spinning rate. The approach is introduced, described and applied to a range of samples including, ex vivo worm tissue, Daphnia magna (water fleas), and in vivo Hyalella azteca (shrimp).

  20. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer.

    Science.gov (United States)

    Gotlieb, K; Hussain, Z; Bostwick, A; Lanzara, A; Jozwiak, C

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-E(F) spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  1. Magnetic resonance imaging of lumbar spine. Comparison of multiple spin echo and low flip angle gradient echo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Takamichi; Fujita, Norihiko; Harada, Koushi; Kozuka, Takahiro (Osaka Univ. (Japan). Faculty of Medicine)

    1989-07-01

    Sixteen patients including 13 cases with disk herniation and 3 cases with spondylosis of lumbar spine were examined on a resistive MRI system operating at 0.1 T. All lesions were studied with both multiple spin echo (MSE) and low flip angle gradient echo (LF) techniques to evaluate which technique is more effective in detecting the disk degeneration and the indentation on subarachnoid space. MSE images were obtained with repetition time (TR) of 1100-1500 ms or cardiac gating, an echo time (TE) of 30, 60, 90, 120, 150, and 180 ms symmetrical 6 echoes, and total acquisition time of more than 281 sec. LF images were obtained with TR of 500, 250, and 100 ms, TE of 18 ms, a flip angle of 30 degree, and total acquisition time of 128 sec. Eleven lesions of spinal disk degeneration and 12 of indentation on subarachnoid space were detected with LF. On the other hand, 26 lesions of spinal disk degeneration and 38 of indentation on subarachnoid space were detected with MSE. Although the parameters of LF employed in this study were relatively effective to emphasize T2{sup *}-based contrast, the ability of LF in detection of spinal disk degeneration and indentation on subarachnoid space is less than that of MSE. Signal contrast to noise ratios for normal disk and degenerative disk, epidural-fat and disk herniated material, CSF and disk herniated material, and epidural-fat and CSF were less than 4 with LF, but more than 4 with MSE. This difference of contrast to noise ratio between MSE and LF was one of the main causes of the difference of the detection rate of spinal disk degeneration and indentation on subarachnoid space. (author).

  2. Cross-Correlated Relaxation of Dipolar Coupling and Chemical-Shift Anisotropy in Magic-Angle Spinning R1ρ NMR Measurements: Application to Protein Backbone Dynamics Measurements

    Science.gov (United States)

    Kurauskas, Vilius; Weber, Emmanuelle; Hessel, Audrey; Ayala, Isabel; Marion, Dominique; Schanda, Paul

    2016-01-01

    Transverse relaxation rate measurements in MAS solid-state NMR provide information about molecular motions occurring on nanoseconds-to-milliseconds (ns-ms) time scales. The measurement of heteronuclear (13C, 15N) relaxation rate constants in the presence of a spin-lock radio-frequency field (R1ρ relaxation) provides access to such motions, and an increasing number of studies involving R1ρ relaxation in proteins has been reported. However, two factors that influence the observed relaxation rate constants have so far been neglected, namely (i) the role of CSA/dipolar cross-correlated relaxation (CCR), and (ii) the impact of fast proton spin flips (i.e. proton spin diffusion and relaxation). We show that CSA/D CCR in R1ρ experiments is measurable, and that this cross-correlated relaxation rate constant depends on ns-ms motions, and can thus itself provide insight into dynamics. We find that proton spin-diffusion attenuates this cross-correlated relaxation, due to its decoupling effect on the doublet components. For measurements of dynamics, the use of R1ρ rate constants has practical advantages over the use of CCR rates, and the present manuscript reveals factors that have so far been disregarded and which are important for accurate measurements and interpretation. PMID:27500976

  3. Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling

    KAUST Repository

    Wang, Songlin

    2015-04-09

    We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems.

  4. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Guangjin, E-mail: hou@udel.edu, E-mail: tpolenov@udel.edu; Lu, Xingyu, E-mail: luxingyu@udel.edu, E-mail: lexvega@comcast.net; Vega, Alexander J., E-mail: luxingyu@udel.edu, E-mail: lexvega@comcast.net; Polenova, Tatyana, E-mail: hou@udel.edu, E-mail: tpolenov@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, Pennsylvania 15261 (United States)

    2014-09-14

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear {sup 1}H-X (X = {sup 13}C, {sup 15}N, {sup 31}P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the {sup 1}H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the {sup 1}H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from {sup 1}H chemical shift anisotropy, while keeping the {sup 1}H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [{sup 15}N]-N-acetyl-valine and [U-{sup 13}C,{sup 15}N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate {sup 1}H-{sup 15}N dipolar couplings in the context of 3D experiments is presented on U-{sup 13}C,{sup 15}N-enriched dynein light chain protein LC8.

  5. The local physical structure of amorphous hydrogenated boron carbide: insights from magic angle spinning solid-state NMR spectroscopy.

    Science.gov (United States)

    Paquette, Michelle M; Li, Wenjing; Sky Driver, M; Karki, Sudarshan; Caruso, A N; Oyler, Nathan A

    2011-11-02

    Magic angle spinning solid-state nuclear magnetic resonance spectroscopy techniques are applied to the elucidation of the local physical structure of an intermediate product in the plasma-enhanced chemical vapour deposition of thin-film amorphous hydrogenated boron carbide (B(x)C:H(y)) from an orthocarborane precursor. Experimental chemical shifts are compared with theoretical shift predictions from ab initio calculations of model molecular compounds to assign atomic chemical environments, while Lee-Goldburg cross-polarization and heteronuclear recoupling experiments are used to confirm atomic connectivities. A model for the B(x)C:H(y) intermediate is proposed wherein the solid is dominated by predominantly hydrogenated carborane icosahedra that are lightly cross-linked via nonhydrogenated intraicosahedral B atoms, either directly through B-B bonds or through extraicosahedral hydrocarbon chains. While there is no clear evidence for extraicosahedral B aside from boron oxides, ∼40% of the C is found to exist as extraicosahedral hydrocarbon species that are intimately bound within the icosahedral network rather than in segregated phases.

  6. Magnetic field dependent small-angle neutron scattering on a Co nanorod array: evidence for intraparticle spin misalignment

    Science.gov (United States)

    Günther, A.; Bick, J.-P.; Szary, P.; Honecker, D.; Dewhurst, C. D.; Keiderling, U.; Feoktystov, A. V.; Tschöpe, A.; Birringer, R.; Michels, A.

    2014-01-01

    The structural and magnetic properties of a cobalt nanorod array have been studied by means of magnetic field dependent small-angle neutron scattering (SANS). Measurement of the unpolarized SANS cross section dΣ/dΩ of the saturated sample in the two scattering geometries where the applied magnetic field H is either perpendicular or parallel to the wavevector k i of the incoming neutron beam allows one to separate nuclear from magnetic SANS, without employing the usual sector-averaging procedure. The analysis of the SANS data in the saturated state provides structural parameters (rod radius and centre-to-centre distance) that are in good agreement with results from electron microscopy. Between saturation and the coercive field, a strong field dependence of dΣ/dΩ is observed (in both geometries), which cannot be explained using the conventional expression of the magnetic SANS cross section of magnetic nanoparticles in a homogeneous nonmagnetic matrix. The origin of the strong field dependence of dΣ/dΩ is believed to be related to intradomain spin misalignment, due to magnetocrystalline and magnetoelastic anisotropies and magnetostatic stray fields. PMID:24904245

  7. Magnetic field dependent small-angle neutron scattering on a Co nanorod array: evidence for intraparticle spin misalignment.

    Science.gov (United States)

    Günther, A; Bick, J-P; Szary, P; Honecker, D; Dewhurst, C D; Keiderling, U; Feoktystov, A V; Tschöpe, A; Birringer, R; Michels, A

    2014-06-01

    The structural and magnetic properties of a cobalt nanorod array have been studied by means of magnetic field dependent small-angle neutron scattering (SANS). Measurement of the unpolarized SANS cross section dΣ/dΩ of the saturated sample in the two scattering geometries where the applied magnetic field H is either perpendicular or parallel to the wavevector k i of the incoming neutron beam allows one to separate nuclear from magnetic SANS, without employing the usual sector-averaging procedure. The analysis of the SANS data in the saturated state provides structural parameters (rod radius and centre-to-centre distance) that are in good agreement with results from electron microscopy. Between saturation and the coercive field, a strong field dependence of dΣ/dΩ is observed (in both geometries), which cannot be explained using the conventional expression of the magnetic SANS cross section of magnetic nanoparticles in a homogeneous nonmagnetic matrix. The origin of the strong field dependence of dΣ/dΩ is believed to be related to intradomain spin misalignment, due to magnetocrystalline and magnetoelastic anisotropies and magnetostatic stray fields.

  8. Hydration kinetics for the alite, belite, and calcium aluminate phase in Portland cements from 27Al and 29Si MAS NMR spectroscopy

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Jensen, Ole Mejlhede; Jakobsen, Hans Jørgen

    1997-01-01

    29Si magic-angle spinning (MAS) NMR spectroscopy is shown to be a valuable tool for obtaining the quantities of alite and belite in hydrated Portland cements. The hydration (1-180 days) of a white Portland cement with 10 wt.% silica fume added is investigated and the degrees of hydration for alite...... belite, and silica fume are determined. It is demonstrated that 27Al MAS NMR spectra of hydrated Portland cements can give quantitative information about the formation of ettringite and the conversion of this phase to monosulphate during hydration....

  9. Analysis of the Electronic Structure of the Special Pair of a Bacterial Photosynthetic Reaction Center by 13 C Photochemically Induced Dynamic Nuclear Polarization Magic-Angle Spinning NMR Using a Double-Quantum Axis.

    Science.gov (United States)

    Najdanova, Marija; Gräsing, Daniel; Alia, A; Matysik, Jörg

    2018-01-01

    The origin of the functional symmetry break in bacterial photosynthesis challenges since several decades. Although structurally very similar, the two branches of cofactors in the reaction center (RC) protein complex act very differently. Upon photochemical excitation, an electron is transported along one branch, while the other remains inactive. Photochemically induced dynamic nuclear polarization (photo-CIDNP) magic-angle spinning (MAS) 13 C NMR revealed that the two bacteriochlorophyll cofactors forming the "Special Pair" donor dimer are already well distinguished in the electronic ground state. These previous studies are relying solely on 13 C- 13 C correlation experiments as radio-frequency-driven recoupling (RFDR) and dipolar-assisted rotational resonance (DARR). Obviously, the chemical-shift assignment is difficult in a dimer of tetrapyrrole macrocycles, having eight pyrrole rings of similar chemical shifts. To overcome this problem, an INADEQUATE type of experiment using a POST C7 symmetry-based approach is applied to selectively isotope-labeled bacterial RC of Rhodobacter (R.) sphaeroides wild type (WT). We, therefore, were able to distinguish unresolved sites of the macromolecular dimer. The obtained chemical-shift pattern is in-line with a concentric assembly of negative charge within the common center of the Special Pair supermolecule in the electronic ground state. © 2017 The American Society of Photobiology.

  10. Size effects in van der Waals clusters studied by spin and angle-resolved electron spectroscopy and multi-coincidence ion imaging

    International Nuclear Information System (INIS)

    Rolles, D; Pesic, Z D; Zhang, H; Bilodeau, R C; Bozek, J D; Berrah, N

    2007-01-01

    We have studied the valence and inner-shell photoionization of free rare-gas clusters by means of angle and spin resolved photoelectron spectroscopy and momentum resolving electron-multi-ion coincidence spectroscopy. The electron measurements probe the evolution of the photoelectron angular distribution and spin polarization parameters as a function of photon energy and cluster size, and reveal a strong cluster size dependence of the photoelectron angular distributions in certain photon energy regions. In contrast, the spin polarization parameter of the cluster photoelectrons is found to be very close to the atomic value for all covered photon energies and cluster sizes. The ion imaging measurements, which probe the fragmentation dynamics of multiply charged van der Waals clusters, also exhibit a pronounced cluster size dependence

  11. Frozen concentration fluctuations in a poly(N-isopropyl acrylamide) gel studied by neutron spin echo and small-angle neutron scattering

    CERN Document Server

    Koizumi, S; Richter, D; Schwahn, D; Faragó, B; Annaka, M

    2002-01-01

    By employing neutron spin echo and small-angle neutron scattering, we determined the structure factor of the frozen concentration fluctuations on nano-length scales in a swollen poly(N-isopropyl acrylamide) gel. The frozen contribution, showing a plateau at the low scattering wavenumber q (0.02 A sup - sup 1), is intimately related to the abnormal butterfly scattering pattern appearing at low q under deformation. (orig.)

  12. Effect of Salicylic Acid and 5-Sulfosalicylic Acid on UV-Vis Spectroscopic Characteristics, Morphology, and Contact Angles of Spin Coated Polyaniline and Poly(4-aminodiphenylaniline Thin Films

    Directory of Open Access Journals (Sweden)

    A. Sironi

    2015-01-01

    Full Text Available Polyaniline and poly(4-aminodiphenylaniline have been prepared following two different synthetic protocols (a traditional method and a “green” method. Both the polymers have been spin coated with salicylic acid and 5-sulfosalicylic acid as the dopants, in order to obtain them in form of thin films. These materials have been characterized, thereof achieving important information on their water contact angles and surface morphology.

  13. Design of a triple resonance magic angle sample spinning probe for high field solid state nuclear magnetic resonance

    Science.gov (United States)

    Martin, Rachel W.; Paulson, Eric K.; Zilm, Kurt W.

    2003-06-01

    Standard design and construction practices used in building nuclear magnetic resonance (NMR) probes for the study of solid state samples become difficult if not entirely impractical to implement as the 1H resonance frequency approaches the self resonance frequency of commercial capacitors. We describe an approach that utilizes short variable transmission line segments as tunable reactances. Such an approach effectively controls stray reactances and provides a higher Q alternative to ceramic chip capacitors. The particular probe described is built to accommodate a 2.5 mm magic angle spinning rotor system, and is triply tuned to 13C, 15N, and 1H frequencies for use at 18.8 T (200, 80, and 800 MHz, respectively). Isolation of the three radio frequency (rf) channels is achieved using both a rejection trap and a transmission line notch filter. The compact geometry of this design allows three channels with high power handling capability to fit in a medium bore (63 mm) magnet. Extended time variable temperature operation is integral to the mechanical design, enabling the temperature control necessary for investigation of biological macromolecules. Accurate measurement of the air temperature near the sample rotor is achieved using a fiber optic thermometer, which does not interfere with the rf electronics. We also demonstrate that acceptable line shapes are only readily achieved using zero magnetic susceptibility wire in construction of the sample coil. Computer simulation of the circuit aided in the physical design of the probe. Representative data illustrating the efficiency, rf homogeneity, and signal to noise factor of the probe are presented.

  14. Controlling T2 blurring in 3D RARE arterial spin labeling acquisition through optimal combination of variable flip angles and k-space filtering.

    Science.gov (United States)

    Zhao, Li; Chang, Ching-Di; Alsop, David C

    2018-02-09

    To improve the SNR efficiency and reduce the T 2 blurring of 3D rapid acquisition with relaxation enhancement stack-of-spiral arterial spin labeling imaging by using variable refocusing flip angles and k-space filtering. An algorithm for determining the optimal combination of variable flip angles and filtering correction is proposed. The flip angles are designed using extended phase graph physical simulations in an analytical and global optimization framework, with an optional constraint on deposited power. Optimal designs for correcting to Hann and Fermi window functions were compared with conventional constant amplitude or variable flip angle only designs on 6 volunteers. With the Fermi window correction, the proposed optimal designs provided 39.8 and 27.3% higher SNR (P variable flip angle designs. Even when power deposition was limited to 50% of the constant amplitude design, the proposed method outperformed the SNR (P variable flip angles can be derived as the output of an optimization problem. The combined design of variable flip angle and k-space filtering provided superior SNR to designs primarily emphasizing either approach singly. © 2018 International Society for Magnetic Resonance in Medicine.

  15. Analysis of φ and χ1 torsion angles for hen lysozyme in solution from 1H NMR spin-spin coupling constants

    International Nuclear Information System (INIS)

    Smith, L.J.; Sutcliffe, M.J.; Redfield, C.; Dobson, C.M.

    1991-01-01

    Three-bond 3 J HNα coupling constants have been determined for 106 residues and 3 J αβ coupling constants have been measured for 57 residues of the 129-residue protein hen egg white lysozyme. These NMR data have been compared with torsion angles defined in the tetragonal and the triclinic crystal forms of the protein. For most residues the measured 3 J HNα values were consistent with the φ torsion angles found in both crystal forms; the RMS difference between the coupling constants calculated by using the tetragonal crystal structure φ angles and the experimental 3 J HNα values is 0.88 Hz. Thus there appears to be no significant averaging of the φ torsion angle either in the interior or at the surface of the protein. For 41 of the residues where 3 J αβ coupling constants have been determined, the values are consistent with a single staggered conformation about the χ 1 torsion angle and there is complete agreement between the NMR data in solution and the torsion angles defined in the crystalline state. In contrast, for the other 16 residues where 3 J αβ coupling constant values have been measured, the data indicate extensive motional averaging about the χ 1 torsion angle. These residues occur largely on the surface of the protein and examination of the crystal structures shows that many of these residues adopt a different conformation in the triclinic and tetragonal crystal forms and have high crystallographic temperature factors. It appears, however, that in solution conformational flexibility of the side chains of surface residues is significantly more pronounced than in individual crystal structures

  16. Interaction study of polyisobutylene with paraffins by NMR using the evaluation of spin-lattice relaxation times for hydrogen nuclei

    International Nuclear Information System (INIS)

    Marques, Rosana G.G.; Tavares, Maria I.B.

    2001-01-01

    The evaluation of spin-lattice relaxation times of 1 H for polyisobutylene/paraffin systems, were obtained using the classic inversion recovery technique, and also through Cross Polarization Magic Angle Spinning (CP/MAS) techniques varying the contact time and also by the delayed contact time pulse sequence. NMR results showed that the polyisobutylene/paraffin systems in which high molecular weight paraffins were used, is heterogeneous. However, for paraffins with low molecular weight, the system presents good homogeneity. (author)

  17. Out-and-back {sup 13}C-{sup 13}C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS

    Energy Technology Data Exchange (ETDEWEB)

    Barbet-Massin, Emeline; Pell, Andrew J. [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France); Jaudzems, Kristaps [Latvian Institute of Organic Synthesis (Latvia); Franks, W. Trent; Retel, Joren S. [Leibniz-Institut fuer Molekulare Pharmakologie (Germany); Kotelovica, Svetlana; Akopjana, Inara; Tars, Kaspars [Biomedical Research and Study Center (Latvia); Emsley, Lyndon [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France); Oschkinat, Hartmut [Leibniz-Institut fuer Molekulare Pharmakologie (Germany); Lesage, Anne; Pintacuda, Guido, E-mail: guido.pintacuda@ens-lyon.fr [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France)

    2013-08-15

    We present here {sup 1}H-detected triple-resonance H/N/C experiments that incorporate CO-CA and CA-CB out-and-back scalar-transfer blocks optimized for robust resonance assignment in biosolids under ultra-fast magic-angle spinning (MAS). The first experiment, (H)(CO)CA(CO)NH, yields {sup 1}H-detected inter-residue correlations, in which we record the chemical shifts of the CA spins in the first indirect dimension while during the scalar-transfer delays the coherences are present only on the longer-lived CO spins. The second experiment, (H)(CA)CB(CA)NH, correlates the side-chain CB chemical shifts with the NH of the same residue. These high sensitivity experiments are demonstrated on both fully-protonated and 100 %-H{sup N} back-protonated perdeuterated microcrystalline samples of Acinetobacter phage 205 (AP205) capsids at 60 kHz MAS.

  18. Metabolic profiles of placenta in preeclampsia using HR-MAS MRS metabolomics.

    Science.gov (United States)

    Austdal, Marie; Thomsen, Liv Cecilie Vestrheim; Tangerås, Line Haugstad; Skei, Bente; Mathew, Seema; Bjørge, Line; Austgulen, Rigmor; Bathen, Tone Frost; Iversen, Ann-Charlotte

    2015-12-01

    Preeclampsia is a heterogeneous gestational disease characterized by maternal hypertension and proteinuria, affecting 2-7% of pregnancies. The disorder is initiated by insufficient placental development, but studies characterizing the placental disease components are lacking. Our aim was to phenotype the preeclamptic placenta using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS MRS). Placental samples collected after delivery from women with preeclampsia (n = 19) and normotensive pregnancies (n = 15) were analyzed for metabolic biomarkers including amino acids, osmolytes, and components of the energy and phospholipid metabolism. The metabolic biomarkers were correlated to clinical characteristics and inflammatory biomarkers in the maternal sera. Principal component analysis showed inherent differences in placental metabolic profiles between preeclamptic and normotensive pregnancies. Significant differences in metabolic profiles were found between placentas from severe and non-severe preeclampsia, but not between preeclamptic pregnancies with fetal growth restricted versus normal weight neonates. The placental metabolites correlated with the placental stress marker sFlt-1 and triglycerides in maternal serum, suggesting variation in placental stress signaling between different placental phenotypes. HR-MAS MRS is a sensitive method for defining the placental disease component of preeclampsia, identifying several altered metabolic pathways. Placental HR-MAS MRS analysis may improve insight into processes affected in the preeclamptic placenta, and represents a novel long-required tool for a sensitive placental phenotyping of this heterogeneous disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The EBLM project. I. Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the brown dwarf limit

    Science.gov (United States)

    Triaud, A. H. M. J.; Hebb, L.; Anderson, D. R.; Cargile, P.; Collier Cameron, A.; Doyle, A. P.; Faedi, F.; Gillon, M.; Gomez Maqueo Chew, Y.; Hellier, C.; Jehin, E.; Maxted, P.; Naef, D.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Stassun, K.; Udry, S.; West, R. G.

    2013-01-01

    This paper introduces a series of papers aiming to study the dozens of low-mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F, G, K+M eclipsing binaries through the Rossiter-McLaughlin effect. Here we report on the spin-orbit angle of WASP-30b, a transiting brown dwarf, and improve its orbital parameters. We also present the mass, radius, spin-orbit angle and orbital parameters of a new eclipsing binary, J1219-39b (1SWAPJ121921.03-395125.6, TYC 7760-484-1), which, with a mass of 95 ± 2 Mjup, is close to the limit between brown dwarfs and stars. We find that both objects have projected spin-orbit angles aligned with their primaries' rotation. Neither primaries are synchronous. J1219-39b has a modestly eccentric orbit and is in agreement with the theoretical mass-radius relationship, whereas WASP-30b lies above it. Using WASP-South photometric observations (Sutherland, South Africa) confirmed with radial velocity measurement from the CORALIE spectrograph, photometry from the EulerCam camera (both mounted on the Swiss 1.2 m Euler Telescope), radial velocities from the HARPS spectrograph on the ESO's 3.6 m Telescope (prog ID 085.C-0393), and photometry from the robotic 60 cm TRAPPIST telescope, all located at ESO, La Silla, Chile. The data is publicly available at the CDS Strasbourg and on demand to the main author.Tables A.1-A.3 are available in electronic form at http://www.aanda.orgPhotometry tables are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A18

  20. MAS1H NMR Probes Freezing Point Depression of Water and Liquid-Gel Phase Transitions in Liposomes.

    Science.gov (United States)

    Mandal, Abhishek; van der Wel, Patrick C A

    2016-11-01

    The lipid bilayer typical of hydrated biological membranes is characterized by a liquid-crystalline, highly dynamic state. Upon cooling or dehydration, these membranes undergo a cooperative transition to a rigidified, more-ordered, gel phase. This characteristic phase transition is of significant biological and biophysical interest, for instance in studies of freezing-tolerant organisms. Magic-angle-spinning (MAS) solid-state NMR (ssNMR) spectroscopy allows for the detection and characterization of the phase transitions over a wide temperature range. In this study we employ MAS 1 H NMR to probe the phase transitions of both solvent molecules and different hydrated phospholipids, including tetraoleoyl cardiolipin (TOCL) and several phosphatidylcholine lipid species. The employed MAS NMR sample conditions cause a previously noted substantial reduction in the freezing point of the solvent phase. The effect on the solvent is caused by confinement of the aqueous solvent in the small and densely packed MAS NMR samples. In this study we report and examine how the freezing point depression also impacts the lipid phase transition, causing a ssNMR-observed reduction in the lipids' melting temperature (T m ). The molecular underpinnings of this phenomenon are discussed and compared with previous studies of membrane-associated water phases and the impact of membrane-protective cryoprotectants. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Resonator Sensitivity Optimization in Magnetic Resonance and the Development of a Magic Angle Spinning Probe for the NMR Study of Rare Spin Nuclei on Catalytic Surfaces.

    Science.gov (United States)

    Doty, Francis David

    The sensitivity of an arbitrary resonator for the detection of a magnetic resonance signal is derived from basic energy considerations, and is shown to be dependent on V(,s)/t(,90)P(' 1/2). The radiation damping time constant is shown to be inversely dependent on the rf filling factor. Several resonators are analyzed in detail. The optimum solenoid is shown to have a length of about 1.5 times the diameter. The multilayer solenoid and the capacitively shortened slotted line resonator are shown to have advantages for samples with high dielectric losses. The capacitively shortened slotted line resonator is shown to substantially reduce acoustic ringing problems. Efficient methods are discussed for double and triple tuning these resonators. A slotted cylindrical resonator is described which gives higher sensitivity and faster response time than conventional cavities for very small samples at X-band ESR frequencies. Double tuned circuits using lumped elements are shown to be generally more efficient than those using transmission lines in generating rf fields. The optimum inductance ratio of the two coils in a ('13)C, ('1)H CP experiment is about 3. The high speed cylindrical sample spinner is analyzed in terms of compressible fluid dynamics, resonant modes, and structural analysis to arrive at optimum air bearing and spinner design recommendations. The optimum radial clearance is shown to depend on the 1/3 power of the rotor diameter. The required air bearing hole diameter has a square root dependence on the rotor diameter. Air pockets are shown to increase the resonant frequencies. Relevant data for a number of high strength insulators including hard ceramics are tabulated, and limiting speeds are calculated. CP MAS experiments on a 5% monolayer of n-butylamine absorbed on (gamma)-alumina reveal six lines. By comparison with the liquid phase spectrum it was determined that at least two types of chemically different surface species were present and that surface

  2. 1H-detected 1H- 1H correlation spectroscopy of a stereo-array isotope labeled amino acid under fast magic-angle spinning

    Science.gov (United States)

    Takahashi, Hiroki; Kainosho, Masatsune; Akutsu, Hideo; Fujiwara, Toshimichi

    2010-04-01

    The combined use of selective deuteration, stereo-array isotope labeling (SAIL), and fast magic-angle spinning effectively suppresses the 1H-1H dipolar couplings in organic solids. This method provided the high-field 1H NMR linewidths comparable to those achieved by combined rotation and multiple-pulse spectroscopy. This technique was applied to two-dimensional 1H-detected 1H-1H polarization transfer CHH experiments of valine. The signal sensitivity for the 1H-detected CHH experiments was greater than that for the 13C-detected 1H-1H polarization transfer experiments by a factor of 2-4. We obtained the 1H-1H distances in SAIL valine by CHH experiments with an accuracy of about 0.2 Å by using a theory developed for 1H-1H polarization transfer in 13C-labeled organic compounds.

  3. Towards real-time metabolic profiling of a biopsy specimen during a surgical operation by 1H high resolution magic angle spinning nuclear magnetic resonance: a case report

    Directory of Open Access Journals (Sweden)

    Piotto Martial

    2012-01-01

    Full Text Available Abstract Introduction Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Case presentation Biopsy specimens (n = 9 originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Conclusions Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample. Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater.

  4. In situ structural characterization of a recombinant protein in native Escherichia coli membranes with solid-state magic-angle-spinning NMR.

    Science.gov (United States)

    Fu, Riqiang; Wang, Xingsheng; Li, Conggang; Santiago-Miranda, Adriana N; Pielak, Gary J; Tian, Fang

    2011-08-17

    The feasibility of using solid-state magic-angle-spinning NMR spectroscopy for in situ structural characterization of the LR11 (sorLA) transmembrane domain (TM) in native Escherichia coli membranes is presented. LR11 interacts with the human amyloid precursor protein (APP), a central player in the pathology of Alzheimer's disease. The background signals from E. coli lipids and membrane proteins had only minor effects on the LR11 TM resonances. Approximately 50% of the LR11 TM residues were assigned by using (13)C PARIS data. These assignments allowed comparisons of the secondary structure of the LR11 TM in native membrane environments and commonly used membrane mimics (e.g., micelles). In situ spectroscopy bypasses several obstacles in the preparation of membrane proteins for structural analysis and offers the opportunity to investigate how membrane heterogeneity, bilayer asymmetry, chemical gradients, and macromolecular crowding affect the protein structure.

  5. HIV-1 Capsid Function is Regulated by Dynamics: Quantitative Atomic-Resolution Insights by Integrating Magic-Angle-Spinning NMR, QM/MM, and MD.

    Science.gov (United States)

    Zhang, Huilan; Hou, Guangjin; Lu, Manman; Ahn, Jinwoo; Byeon, In-Ja L; Langmead, Christopher J; Perilla, Juan R; Hung, Ivan; Gor'kov, Peter L; Gan, Zhehong; Brey, William W; Case, David A; Schulten, Klaus; Gronenborn, Angela M; Polenova, Tatyana

    2016-10-05

    HIV-1 CA capsid protein possesses intrinsic conformational flexibility, which is essential for its assembly into conical capsids and interactions with host factors. CA is dynamic in the assembled capsid, and residues in functionally important regions of the protein undergo motions spanning many decades of timescales. Chemical shift anisotropy (CSA) tensors, recorded in magic-angle-spinning NMR experiments, provide direct residue-specific probes of motions on nano- to microsecond timescales. We combined NMR, MD, and Density-Functional-Theory calculations, to gain quantitative understanding of internal backbone dynamics in CA assemblies, and found that the dynamically averaged 15 N CSA tensors calculated by this joined protocol are in remarkable agreement with experiment. Thus, quantitative atomic-level understanding of the relationships between CSA tensors, local backbone structure and motions in CA assemblies is achieved, demonstrating the power of integrating NMR experimental data and theory for characterizing atomic-resolution dynamics in biological systems.

  6. Feasibility and applications of the spin-echo modulation option for a small angle neutron scattering instrument at the European Spallation Source

    Science.gov (United States)

    Kusmin, A.; Bouwman, W. G.; van Well, A. A.; Pappas, C.

    2017-06-01

    We describe theoretical and practical aspects of spin-echo modulated small-angle neutron scattering (SEMSANS) as well as the potential combination with SANS. Based on the preliminary technical designs of SKADI (a SANS instrument proposed for the European Spallation Source) and a SEMSANS add-on, we assess the practicability, feasibility and scientific merit of a combined SANS and SEMSANS setup by calculating tentative SANS and SEMSANS results for soft matter, geology and advanced material samples that have been previously studied by scattering methods. We conclude that lengths from 1 nm up to 0.01 mm can be observed simultaneously in a single measurement. Thus, the combination of SANS and SEMSANS instrument is suited for the simultaneous observation of a wide range of length scales, e.g. for time-resolved studies of kinetic processes in complex multiscale systems.

  7. Applications of pulsed nuclear magnetic resonance to chemistry: multiple-pulse NMR, cross polarization, magic-angle spinning annd instrumental design

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, P.D.

    1979-07-01

    Pulsed Nuclear Magnetic Resonance (NMR) has been applied to: (1) Measurements of the prinicpal components of the proton shielding tensors of the hydrides of zirconium chloride and zirconium bromide. Multiple-Pulse techniques have been used to remove static homonuclear dipolar coupling. The anisotropies and isotropic shifts of these tensors have been used to infer the possible locations of the hydrogen within the sandwich-like layers of these unusual compounds. (2) Studies of the oscillatory transfer of magnetic polarization between /sup 1/H and /sup 29/Si in substituted silanes. The technique of J Cross Polarization has been used to enhance sensitivity. The /sup 29/Si NMR shifts of -Si-O- model compounds have been investigated as a possible probe for future studies of the environment of bound oxygen in coal-derived liquids. (3) Measurements of the aromatic fraction of /sup 13/C in whole coals. The techniques of /sup 1/H-/sup 13/C Cross Polarization and Magic-Angle Spinning have been used to enhance sensitivity and remove shift anisotropy. Additional topics described are: (4) Calculation and properties of the broadened lineshape of the shileding Powder Pattern. (5) Calculation of the oscillatory transfer of magnetic polarization for an I-S system. (6) Numerical convolution and its uses. (7) The technique of digital filtering applied in the frequency domain. (8) The designs and properties of four NMR probe-circuits. (9) The design of a single-coil double-resonance probe for combined Magic-Angle Spinning and Cross Polarization. (10) The designs of low Q and high Q rf power amplifiers with emphasis on the rf matching circuitry.

  8. Non-contrast-enhanced 4D MR angiography with STAR spin labeling and variable flip angle sampling: a feasibility study for the assessment of Dural Arteriovenous Fistula

    International Nuclear Information System (INIS)

    Jang, Jinhee; Kim, Bom-yi; Choi, Hyun Seok; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-soo; Schmitt, Peter; Kim, Inseong; Paek, Munyoung

    2014-01-01

    This study aimed to evaluate the feasibility of non-contrast-enhanced 4D magnetic resonance angiography (NCE 4D MRA) with signal targeting with alternative radiofrequency (STAR) spin labeling and variable flip angle (VFA) sampling in the assessment of dural arteriovenous fistula (DAVF) in the transverse sinus. Nine patients underwent NCE 4D MRA for the evaluation of DAVF in the transverse sinus at 3 T. One patient was examined twice, once before and once after the interventional treatment. All patients also underwent digital subtraction angiography (DSA) and/or contrast-enhanced magnetic resonance angiography (CEMRA). For the acquisition of NCE 4D MRA, a STAR spin tagging method was used, and a VFA sampling was applied in the data readout module instead of a constant flip angle. Two readers evaluated the NCE 4D MRA data for the diagnosis of DAVF and its type with consensus. The results were compared with those from DSA and/or CEMRA. All patients underwent NCE 4D MRA without any difficulty. Among seven patients with patent DAVFs, all cases showed an early visualization of the transverse sinus on NCE 4D MRA. Except for one case, the type of DAVF of NCE 4D MRA was agreed with that of reference standard study. Cortical venous reflux (CVR) was demonstrated in two cases out of three patients with CVR. NCE 4D MRA with STAR tagging and VFA sampling is technically and clinically feasible and represents a promising technique for assessment of DAVF in the transverse sinus. Further technical developments should aim at improvements of spatial and temporal coverage. (orig.)

  9. E/Z MAS demonstration

    International Nuclear Information System (INIS)

    Boor, M.G.; Hurford, J.M.; Landry, R.P.; Martinez, B.J.; Solem, A.M.; Whiteson, R.; Zardecki, A.

    1998-01-01

    Los Alamos National Laboratory has developed E/Z MAS, a new generation nuclear material accountability application based on the latest technology and designed for facilities required to track nuclear materials with a simple-to-use interface. E/Z MAS is based on years of experience spent developing nuclear material accounting systems. E/Z MAS uses a modern relational database with a web server and enables users on a classified local area network to interact with the database with web browsers. The E/Z MAS Demonstration poster session demonstrates the E/Z MAS functions required by an operational nuclear facility to track material as it enters and leaves a facility and to account for the material as it moves through a process. The generation of internal facility reports and external reports for the Russian Federal system will be demonstrated. Bar-code readers will be used to demonstrate the ability of EZ MAS to automate certain functions, such as physical inventories at facilities

  10. Polydisperse methyl β-cyclodextrin–epichlorohydrin polymers: variable contact time 13C CP-MAS solid-state NMR characterization

    Directory of Open Access Journals (Sweden)

    Isabelle Mallard

    2015-12-01

    Full Text Available The polymerization of partially methylated β-cyclodextrin (CRYSMEB with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3 of imprinted polymers were obtained and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: TCH (the CP time constant and T1ρ (the proton spin-lattice relaxation time in the rotating frame. The results and the analysis presented in the paper pointed out that TCH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of TCH and T1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices.

  11. Intracranial cerebrospinal fluid spaces imaging using a pulse-triggered three-dimensional turbo spin echo MR sequence with variable flip-angle distribution

    Energy Technology Data Exchange (ETDEWEB)

    Hodel, Jerome [Unite Analyse et Restauration du Mouvement, UMR-CNRS, 8005 LBM ParisTech Ensam, Paris (France); University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Neuroradiology, Creteil (France); Hopital Henri Mondor, Creteil (France); Silvera, Jonathan [University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Neuroradiology, Creteil (France); Bekaert, Olivier; Decq, Philippe [Unite Analyse et Restauration du Mouvement, UMR-CNRS, 8005 LBM ParisTech Ensam, Paris (France); University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Neurosurgery, Creteil (France); Rahmouni, Alain [University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Radiology, Creteil (France); Bastuji-Garin, Sylvie [University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Public Health, Creteil (France); Vignaud, Alexandre [Siemens Healthcare, Saint Denis (France); Petit, Eric; Durning, Bruno [Laboratoire Images Signaux et Systemes Intelligents, UPEC, Creteil (France)

    2011-02-15

    To assess the three-dimensional turbo spin echo with variable flip-angle distribution magnetic resonance sequence (SPACE: Sampling Perfection with Application optimised Contrast using different flip-angle Evolution) for the imaging of intracranial cerebrospinal fluid (CSF) spaces. We prospectively investigated 18 healthy volunteers and 25 patients, 20 with communicating hydrocephalus (CH), five with non-communicating hydrocephalus (NCH), using the SPACE sequence at 1.5T. Volume rendering views of both intracranial and ventricular CSF were obtained for all patients and volunteers. The subarachnoid CSF distribution was qualitatively evaluated on volume rendering views using a four-point scale. The CSF volumes within total, ventricular and subarachnoid spaces were calculated as well as the ratio between ventricular and subarachnoid CSF volumes. Three different patterns of subarachnoid CSF distribution were observed. In healthy volunteers we found narrowed CSF spaces within the occipital aera. A diffuse narrowing of the subarachnoid CSF spaces was observed in patients with NCH whereas patients with CH exhibited narrowed CSF spaces within the high midline convexity. The ratios between ventricular and subarachnoid CSF volumes were significantly different among the volunteers, patients with CH and patients with NCH. The assessment of CSF spaces volume and distribution may help to characterise hydrocephalus. (orig.)

  12. Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: Application to microcrystalline and membrane protein preparations

    Science.gov (United States)

    Gopinath, T.; Veglia, Gianluigi

    2015-04-01

    Solid-state NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of experiments called Polarization Optimized Experiments (POE), in which we utilized the orphan spin operators that are discarded in classical multidimensional NMR experiments, recovering them to allow simultaneous acquisition of multiple 2D and 3D experiments, all while using conventional probes with spectrometers equipped with one receiver. POE allow the concatenation of multiple 2D or 3D pulse sequences into a single experiment, thus potentially combining all of the aforementioned advances, boosting the capability of ssNMR spectrometers at least two-fold without the addition of any hardware. In this perspective, we describe the first generation of POE, such as dual acquisition MAS (or DUMAS) methods, and then illustrate the evolution of these experiments into MEIOSIS, a method that enables the simultaneous acquisition of multiple 2D and 3D spectra. Using these new pulse schemes for the solid-state NMR investigation of biopolymers makes it possible to obtain sequential resonance assignments, as well as distance restraints, in about half the experimental time. While designed for acquisition of heteronuclei, these new experiments can be easily implemented for proton detection and coupled with other recent advancements, such as dynamic nuclear polarization (DNP), to improve signal to noise. Finally, we illustrate the application of these methods to microcrystalline protein preparations as well as single and multi-span membrane proteins reconstituted in lipid membranes.

  13. Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: application to microcrystalline and membrane protein preparations.

    Science.gov (United States)

    Gopinath, T; Veglia, Gianluigi

    2015-04-01

    Solid-state NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of experiments called Polarization Optimized Experiments (POE), in which we utilized the orphan spin operators that are discarded in classical multidimensional NMR experiments, recovering them to allow simultaneous acquisition of multiple 2D and 3D experiments, all while using conventional probes with spectrometers equipped with one receiver. POE allow the concatenation of multiple 2D or 3D pulse sequences into a single experiment, thus potentially combining all of the aforementioned advances, boosting the capability of ssNMR spectrometers at least two-fold without the addition of any hardware. In this perspective, we describe the first generation of POE, such as dual acquisition MAS (or DUMAS) methods, and then illustrate the evolution of these experiments into MEIOSIS, a method that enables the simultaneous acquisition of multiple 2D and 3D spectra. Using these new pulse schemes for the solid-state NMR investigation of biopolymers makes it possible to obtain sequential resonance assignments, as well as distance restraints, in about half the experimental time. While designed for acquisition of heteronuclei, these new experiments can be easily implemented for proton detection and coupled with other recent advancements, such as dynamic nuclear polarization (DNP), to improve signal to noise. Finally, we illustrate the application of these methods to microcrystalline protein preparations as well as single and multi-span membrane proteins reconstituted in lipid membranes. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Investigation of Silica-Supported Vanadium Oxide Catalysts by High-Field 51 V Magic-Angle Spinning NMR

    Energy Technology Data Exchange (ETDEWEB)

    Jaegers, Nicholas R.; Wan, Chuan; Hu, Mary Y.; Vasiliu, Monica; Dixon, David A.; Walter, Eric; Wachs, Israel E.; Wang, Yong; Hu, Jian Zhi

    2017-03-14

    Supported V2O5/SiO2 catalysts were studied using solid state 51V MAS NMR at a sample spinning rate of 36 kHz and at a magnetic field of 19.975 T for a better understanding of the coordination of the vanadium oxide as a function of environmental conditions . Structural transformations of the supported vanadium oxide species between the catalyst in the dehydrated state and hydrated state under an ambient environment were revisited to examine the degree of oligomerization and the effect of water. The experimental results indicate the existence of a single dehydrated surface vanadium oxide species that resonates at -675 ppm and two vanadium oxide species under ambient conditions that resonate at -566 and -610 ppm, respectively. No detectable structural difference was found as a function of vanadium oxide loading on SiO2 (3% V2O5/SiO2 and 8% V2O5/SiO2). Quantum chemistry simulations of the 51V NMR chemical shifts on predicted surface structures were used as an aide in understanding potential surface vanadium oxide species on the silica support. The results suggest the formation of isolated surface VO4 units for the dehydrated catalysts with the possibility of dimer and cyclic trimer presence. The absence of bridging V-O-V vibrations (~200-300 cm-1) in the Raman spectra [Gao et al. J. Phys. Chem. B 1998, 102, 10842-10852], however, indicates that the isolated surface VO4 sites are the dominant dehydrated surface vanadia species on silica. Upon exposure to water, hydrolysis of the bridging V-O-Si bonds is most likely responsible for the decreased electron shielding experienced by vanadium. No indicators for the presence of hydrated decavanadate clusters or hydrated vanadia gels previously proposed in the literature were detected in this study.

  15. Faster pediatric 3-T abdominal magnetic resonance imaging: comparison between conventional and variable refocusing flip-angle single-shot fast spin-echo sequences.

    Science.gov (United States)

    Ruangwattanapaisarn, Nichanan; Loening, Andreas M; Saranathan, Manojkumar; Litwiller, Daniel V; Vasanawala, Shreyas S

    2015-06-01

    Single-shot fast spin echo (SSFSE) is particularly appealing in pediatric patients because of its motion robustness. However radiofrequency energy deposition at 3 tesla forces long pauses between slices, leading to longer scans, longer breath-holds and more between-slice motion. We sought to learn whether modulation of the SSFSE refocusing flip-angle train could reduce radiofrequency energy deposition without degrading image quality, thereby reducing inter-slice pauses and overall scan times. We modulated the refocusing flip-angle train for SSFSE to minimize energy deposition while minimizing blurring and motion-related signal loss. In a cohort of 50 consecutive patients (25 boys, mean age 5.5 years, range 1 month to 17 years) referred for abdominal MRI we obtained standard SSFSE and variable refocusing flip-angle (vrfSSFSE) images and recorded sequence scan times. Two readers independently scored the images in blinded, randomized order for noise, tissue contrast, sharpness, artifacts and left lobe hepatic signal uniformity on a four-point scale. The null hypothesis of no difference between SSFSE and vrfSSFSE image-quality was assessed with a Mann-Whitney U test, and the null hypothesis of no scan time difference was assessed with the paired t-test. SSFSE and vrfSSFSE mean acquisition times were 54.3 and 26.2 s, respectively (P-value <0.0001). For each reader, SSFSE and vrfSSFSE noise, tissue contrast, sharpness and artifacts were not significantly different (P-values 0.18-0.86). However, SSFSE had better left lobe hepatic signal uniformity (P < 0.01, both readers). vrfSSFSE is twice as fast as SSFSE, with equivalent image quality with the exception of left hepatic lobe signal heterogeneity.

  16. Faster pediatric 3-T abdominal magnetic resonance imaging: comparison between conventional and variable refocusing flip-angle single-shot fast spin-echo sequences

    International Nuclear Information System (INIS)

    Ruangwattanapaisarn, Nichanan; Loening, Andreas M.; Saranathan, Manojkumar; Vasanawala, Shreyas S.; Litwiller, Daniel V.

    2015-01-01

    Single-shot fast spin echo (SSFSE) is particularly appealing in pediatric patients because of its motion robustness. However radiofrequency energy deposition at 3 tesla forces long pauses between slices, leading to longer scans, longer breath-holds and more between-slice motion. We sought to learn whether modulation of the SSFSE refocusing flip-angle train could reduce radiofrequency energy deposition without degrading image quality, thereby reducing inter-slice pauses and overall scan times. We modulated the refocusing flip-angle train for SSFSE to minimize energy deposition while minimizing blurring and motion-related signal loss. In a cohort of 50 consecutive patients (25 boys, mean age 5.5 years, range 1 month to 17 years) referred for abdominal MRI we obtained standard SSFSE and variable refocusing flip-angle (vrfSSFSE) images and recorded sequence scan times. Two readers independently scored the images in blinded, randomized order for noise, tissue contrast, sharpness, artifacts and left lobe hepatic signal uniformity on a four-point scale. The null hypothesis of no difference between SSFSE and vrfSSFSE image-quality was assessed with a Mann-Whitney U test, and the null hypothesis of no scan time difference was assessed with the paired t-test. SSFSE and vrfSSFSE mean acquisition times were 54.3 and 26.2 s, respectively (P-value <0.0001). For each reader, SSFSE and vrfSSFSE noise, tissue contrast, sharpness and artifacts were not significantly different (P-values 0.18-0.86). However, SSFSE had better left lobe hepatic signal uniformity (P < 0.01, both readers). vrfSSFSE is twice as fast as SSFSE, with equivalent image quality with the exception of left hepatic lobe signal heterogeneity. (orig.)

  17. Faster pediatric 3-T abdominal magnetic resonance imaging: comparison between conventional and variable refocusing flip-angle single-shot fast spin-echo sequences

    Energy Technology Data Exchange (ETDEWEB)

    Ruangwattanapaisarn, Nichanan [Mahidol University, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Bangkok (Thailand); Stanford University, LPCH Department of Radiology, Stanford, CA (United States); Loening, Andreas M.; Saranathan, Manojkumar; Vasanawala, Shreyas S. [Stanford University, LPCH Department of Radiology, Stanford, CA (United States); Litwiller, Daniel V. [GE Healthcare, Rochester, MN (United States)

    2015-06-15

    Single-shot fast spin echo (SSFSE) is particularly appealing in pediatric patients because of its motion robustness. However radiofrequency energy deposition at 3 tesla forces long pauses between slices, leading to longer scans, longer breath-holds and more between-slice motion. We sought to learn whether modulation of the SSFSE refocusing flip-angle train could reduce radiofrequency energy deposition without degrading image quality, thereby reducing inter-slice pauses and overall scan times. We modulated the refocusing flip-angle train for SSFSE to minimize energy deposition while minimizing blurring and motion-related signal loss. In a cohort of 50 consecutive patients (25 boys, mean age 5.5 years, range 1 month to 17 years) referred for abdominal MRI we obtained standard SSFSE and variable refocusing flip-angle (vrfSSFSE) images and recorded sequence scan times. Two readers independently scored the images in blinded, randomized order for noise, tissue contrast, sharpness, artifacts and left lobe hepatic signal uniformity on a four-point scale. The null hypothesis of no difference between SSFSE and vrfSSFSE image-quality was assessed with a Mann-Whitney U test, and the null hypothesis of no scan time difference was assessed with the paired t-test. SSFSE and vrfSSFSE mean acquisition times were 54.3 and 26.2 s, respectively (P-value <0.0001). For each reader, SSFSE and vrfSSFSE noise, tissue contrast, sharpness and artifacts were not significantly different (P-values 0.18-0.86). However, SSFSE had better left lobe hepatic signal uniformity (P < 0.01, both readers). vrfSSFSE is twice as fast as SSFSE, with equivalent image quality with the exception of left hepatic lobe signal heterogeneity. (orig.)

  18. Spin diffusion and1H spin-lattice relaxation in Cs2(HSO4)(H2PO4) containing a small amount of ammonium ions.

    Science.gov (United States)

    Hayashi, Shigenobu; Jimura, Keiko

    2017-11-01

    Inorganic solid acid salts with hydrogen bond networks frequently show very long spin-lattice relaxation times even for 1 H because the hydrogen bonds suppress motions. In the present work, the 1 H spin-lattice relaxation in Cs 2 (HSO 4 )(H 2 PO 4 ) containing a small amount of ammonium ions were studied in detail by use of the effect of magic angle spinning (MAS) on the relaxation. The 1 H spin-lattice relaxation times of the acid protons decrease with increase in the content of ammonium ions. Reorientation of the NH 4 group fluctuates the dipole-dipole interaction and relaxes the ammonium protons as well as the acid protons. The 1 H relaxation times of the acid protons are a little bit longer than those of the ammonium protons at the MAS rate of 8 kHz. The spinning at 50 kHz makes the relaxation times of the acid protons longer and those of the ammonium protons shorter. Spin diffusion between the acid and the ammonium protons averages partially the 1 H relaxation of the acid and the ammonium protons at the MAS rate of 8 kHz. The spin diffusion is suppressed completely at the MAS rate of 50 kHz. Spin diffusion between the acid protons is not suppressed at the MAS rate of 50 kHz. The acid protons always show the same relaxation times. The intrinsic relaxation times not affected by spin diffusion are evaluated quantitatively for both the acid and the ammonium protons. Those values are independent of the ammonium content. Contribution of the spin diffusion between the acid and the ammonium protons to the relaxation is estimated quantitatively. Using those parameters, the effect of ammonium ions on the 1 H spin-lattice relaxation can be predicted. The 1 H spin-lattice relaxation is a sensitive tool to study the distribution of ammonium ions in solids. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Small Angle X-ray Scattering and Electron Spin Resonance Spectroscopy Study on Fragrance Infused Cationic Vesicles Modeling Scent-Releasing Fabric Softeners.

    Science.gov (United States)

    Ogura, Taku; Sato, Takaaki; Abe, Masahiko; Okano, Tomomichi

    2018-02-01

    Industrially relevant systems for household and personal-care products often involve a large number of components. Such multiple component formulations are indispensable and effective for functionalization of the products, but may simultaneously provide more complex structural features compared to those in ideal systems comprising a smaller number of highly pure substances. Using cryogenic transmission electron microscopy (cryo-TEM), small angle X-ray scattering (SAXS), and electron spin resonance (ESR) spectroscopy, we have investigated effects of fragrance-incorporation into cationic vesicles on their bilayer structures and membrane-membrane interactions. Cationic vesicles were prepared from TEQ surfactant, whose major component was di(alkyl fatty ester) quaternary ammonium methosulfate, and fragrance components, l-menthol, linalool, and d-limonene, were infused into the vesicle membranes to model scent-releasing fabric softeners. The cryo-TEM images confirm formation of multilamellar vesicles (MLVs). Generalized indirect Fourier transformation (GIFT) analysis of the SAXS intensities based on the modified Caillé structure factor model reveals that incorporation of a more hydrophobic fragrance component leads to a more pronounced increase of the surface separation (water layer thickness). Furthermore, the fragrance-infused systems show longer-range order of the bilayer correlations and enhanced undulation fluctuation of the membranes than those in the TEQ alone system. The spin-label ESR results indicate different restricted molecular motions in the TEQ bilayers depending on the labeled position and their marked changes upon addition of the fragrance components, suggesting different mixing schemes and solubilization positions of the fragrance molecules in the TEQ bilayers. The present data have demonstrated how the infused fragrance molecules having different hydrophobicity and molecular architectures into the cationic vesicles affect the membrane structures and

  20. The metabolic profile of lemon juice by proton HR-MAS NMR: the case of the PGI Interdonato Lemon of Messina.

    Science.gov (United States)

    Cicero, Nicola; Corsaro, Carmelo; Salvo, Andrea; Vasi, Sebastiano; Giofré, Salvatore V; Ferrantelli, Vincenzo; Di Stefano, Vita; Mallamace, Domenico; Dugo, Giacomo

    2015-01-01

    We have studied by means of High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) the metabolic profile of the famous Sicilian lemon known as 'Interdonato Lemon of Messina PGI'. The PGI Interdonato Lemon of Messina possesses high organoleptic and healthy properties and is recognised as one of the most nutrient fruits. In particular, some of its constituents are actively studied for their chemo-preventive and therapeutic properties. In this paper, we have determined by means of HR-MAS NMR spectroscopy the molar concentration of the main metabolites constituent the juice of PGI Interdonato Lemon of Messina in comparison with that of the not-PGI Interdonato Lemon of Turkey. Our aim is to develop an analytical technique, in order to determine a metabolic fingerprint able to reveal commercial frauds in national and international markets.

  1. Interaction study of polyisobutylene with paraffins by NMR using the evaluation of spin-lattice relaxation times for hydrogen nuclei; Estudo da interacao do poliisobutileno com parafinas por RMN no estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Rosana G.G. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas - CENPES]. E-mail: garrido@cenpes.petrobras.com.br; Tavares, Maria I.B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mail: mibt@ima.ufrj.br

    2001-07-01

    The evaluation of spin-lattice relaxation times of {sup 1}H for polyisobutylene/paraffin systems, were obtained using the classic inversion recovery technique, and also through Cross Polarization Magic Angle Spinning (CP/MAS) techniques varying the contact time and also by the delayed contact time pulse sequence. NMR results showed that the polyisobutylene/paraffin systems in which high molecular weight paraffins were used, is heterogeneous. However, for paraffins with low molecular weight, the system presents good homogeneity. (author)

  2. HR-MAS NMR for rapid identification of illicit substances in tablets and Blotter papers seized by Police Department

    International Nuclear Information System (INIS)

    Souza, Luciano F.; Vieira, Tarcísio S.; Lião, Luciano M.; Alcantara, Glaucia B.

    2016-01-01

    Illicit substances found in blotter papers and tablets seized by police are traditionally identified and characterized from extracts of these materials. However, the procedures involved in extraction stages can result in artifacts and even contamination of the samples to be analyzed. On the other hand, high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) is a technique that requires no pretreatment steps, enabling direct analysis of the material, including the analysis of new illegal synthetic psychoactive substances. This study presents and discusses applications of the HR-MAS NMR in the analysis of tablets and blotter papers seized. Additional analysis in solution of the extracts of these materials was performed to compare the obtained spectral resolution signals. The results demonstrated that the HR-MAS NMR allowed the rapid identification of 3,4-methylenedioxy-N-methylcathinone (methylone), 4-methylmethcathinone (mephedrone), 2,5-dimethoxy-4-bromoamphetamine (DOB) and 2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2- methoxyphenyl)methyl]ethanamine (25B-NBOMe) in samples of tablets and blotter papers seized in Goiás State, Brazil. (author)

  3. HR-MAS NMR for rapid identification of illicit substances in tablets and Blotter papers seized by Police Department

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luciano F.; Vieira, Tarcísio S.; Lião, Luciano M., E-mail: lucianoliao@ufg.br [Universidade Federal de Goiás (UFG), Goiânia, GO (Brazil). Instituto de Química; Alcantara, Glaucia B. [Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Instituto de Química

    2016-07-01

    Illicit substances found in blotter papers and tablets seized by police are traditionally identified and characterized from extracts of these materials. However, the procedures involved in extraction stages can result in artifacts and even contamination of the samples to be analyzed. On the other hand, high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) is a technique that requires no pretreatment steps, enabling direct analysis of the material, including the analysis of new illegal synthetic psychoactive substances. This study presents and discusses applications of the HR-MAS NMR in the analysis of tablets and blotter papers seized. Additional analysis in solution of the extracts of these materials was performed to compare the obtained spectral resolution signals. The results demonstrated that the HR-MAS NMR allowed the rapid identification of 3,4-methylenedioxy-N-methylcathinone (methylone), 4-methylmethcathinone (mephedrone), 2,5-dimethoxy-4-bromoamphetamine (DOB) and 2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2- methoxyphenyl)methyl]ethanamine (25B-NBOMe) in samples of tablets and blotter papers seized in Goiás State, Brazil. (author)

  4. Characterization of coke by MAS 13C-NMR

    International Nuclear Information System (INIS)

    Nagy, J.B.; Tuel, A.; Munck, M.; Derouane, E.G.

    1991-01-01

    The molecular architecture of coke is difficult to determine. Nuclear magnetic resonance spectroscopy allows one to understand the chemical environment or types of hydrogen and carbon in the sample. It is also possible to estimate the proportion of atoms in the various environments. Here, liquid-state and solid-state NMR have been used to characterize different series of feedstocks and coke samples. Liquid phase 13 C NMR was used to analyse feeds and products separated by HPLC (PEW) in fractions called aliphatics, mono-, di-, tri-, and polyaromatics. An internal lock with deuterated chloroform was used due to the small amount of material present in each fraction. The NMR analysis gives the aromaticity and gives a nice correlation with the results obtained by GC/MS (average no of C-atoms in each fraction, chainlength, no. of substituents etc.). Structural features were gained by comparison of different fractions, while differences were seen, when feed and product were compared. For liquid samples, a model has been proposed in which the feed is supposed to be described as a mixture of six model compounds. Results concerning three series of feedstocks and the structural paramaters deduced from 13 C and 1 H NMR spectra are discussed and compared with the experimental data obtained from elemental analysis. In the solid state, by using Cross Polarization (CP) and Magic Angle Spinning (MAS), it is possible to obtain information on different carbon structural types. Structural parameters, such as the aromaticity f a or the H/C ratio can be evaluated with a good reliability. (AB) (23 refs.)

  5. Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy.

    Science.gov (United States)

    Yan, Si; Guo, Changmiao; Hou, Guangjin; Zhang, Huilan; Lu, Xingyu; Williams, John Charles; Polenova, Tatyana

    2015-11-24

    Microtubules and their associated proteins perform a broad array of essential physiological functions, including mitosis, polarization and differentiation, cell migration, and vesicle and organelle transport. As such, they have been extensively studied at multiple levels of resolution (e.g., from structural biology to cell biology). Despite these efforts, there remain significant gaps in our knowledge concerning how microtubule-binding proteins bind to microtubules, how dynamics connect different conformational states, and how these interactions and dynamics affect cellular processes. Structures of microtubule-associated proteins assembled on polymeric microtubules are not known at atomic resolution. Here, we report a structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of dynactin motor on polymeric microtubules, solved by magic angle spinning NMR spectroscopy. We present the intermolecular interface of CAP-Gly with microtubules, derived by recording direct dipolar contacts between CAP-Gly and tubulin using double rotational echo double resonance (dREDOR)-filtered experiments. Our results indicate that the structure adopted by CAP-Gly varies, particularly around its loop regions, permitting its interaction with multiple binding partners and with the microtubules. To our knowledge, this study reports the first atomic-resolution structure of a microtubule-associated protein on polymeric microtubules. Our approach lays the foundation for atomic-resolution structural analysis of other microtubule-associated motors.

  6. Magic angle spinning and oriented sample solid-state NMR structural restraints combine for influenza a M2 protein functional insights.

    Science.gov (United States)

    Can, Thach V; Sharma, Mukesh; Hung, Ivan; Gor'kov, Peter L; Brey, William W; Cross, Timothy A

    2012-06-06

    As a small tetrameric helical membrane protein, the M2 proton channel structure is highly sensitive to its environment. As a result, structural data from a lipid bilayer environment have proven to be essential for describing the conductance mechanism. While oriented sample solid-state NMR has provided a high-resolution backbone structure in lipid bilayers, quaternary packing of the helices and many of the side-chain conformations have been poorly restrained. Furthermore, the quaternary structural stability has remained a mystery. Here, the isotropic chemical shift data and interhelical cross peaks from magic angle spinning solid-state NMR of a liposomal preparation strongly support the quaternary structure of the transmembrane helical bundle as a dimer-of-dimers structure. The data also explain how the tetrameric stability is enhanced once two charges are absorbed by the His37 tetrad prior to activation of this proton channel. The combination of these two solid-state NMR techniques appears to be a powerful approach for characterizing helical membrane protein structure.

  7. Evaluation of Tissue Metabolites with High Resolution Magic Angle Spinning MR Spectroscopy Human Prostate Samples After Three-Year Storage at -80ºC

    Directory of Open Access Journals (Sweden)

    Kate W. Jordan

    2007-01-01

    Full Text Available Accurate interpretation and correlation of tissue spectroscopy with pathological conditions requires disease specific tissue metabolite databases; however, specimens for research are often kept in frozen storage for various lengths of time. Whether such frozen storage results in alterations to the measured metabolites is a critical but largely unknown issue. In this study, human prostate tissues from specimens that had been stored at –80 ºC for 32 months were analyzed with high resolution magic angle spinning (HRMAS magnetic resonance (MR spectroscopy, and compared with the initial measurements of the adjacent specimens from the same cases when snap frozen in the operation room and kept frozen for less than 24 hours. Results of the current study indicate that that the storage-induced metabolite alterations are below the limits that tissue MR spectroscopy can discriminate. Furthermore, quantitative pathology evaluations suggest the observed alterations in metabolite profi les measured from the adjacent specimens of the same prostates may be accounted for by tissue pathological heterogeneities and are not a result of storage conditions. Hence, these results indicate that long-term frozen storage of prostate specimens can be quantitatively analyzed by HRMAS MR spectroscopy without concerns regarding significant metabolic degradation or alteration.

  8. Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Kraus, Jodi; Gupta, Rupal; Yehl, Jenna; Lu, Manman; Case, David A; Gronenborn, Angela M; Akke, Mikael; Polenova, Tatyana

    2018-03-22

    Magic angle spinning NMR spectroscopy is uniquely suited to probe the structure and dynamics of insoluble proteins and protein assemblies at atomic resolution, with NMR chemical shifts containing rich information about biomolecular structure. Access to this information, however, is problematic, since accurate quantum mechanical calculation of chemical shifts in proteins remains challenging, particularly for 15 N H . Here we report on isotropic chemical shift predictions for the carbohydrate recognition domain of microcrystalline galectin-3, obtained from using hybrid quantum mechanics/molecular mechanics (QM/MM) calculations, implemented using an automated fragmentation approach, and using very high resolution (0.86 Å lactose-bound and 1.25 Å apo form) X-ray crystal structures. The resolution of the X-ray crystal structure used as an input into the AF-NMR program did not affect the accuracy of the chemical shift calculations to any significant extent. Excellent agreement between experimental and computed shifts is obtained for 13 C α , while larger scatter is observed for 15 N H chemical shifts, which are influenced to a greater extent by electrostatic interactions, hydrogen bonding, and solvation.

  9. Investigating the lignocellulosic composition during delignification using confocal raman spectroscopy, cross-polarization magic angle spinning carbon 13 - nuclear magnetic resonance (CP/MAS 13C- NMR) spectroscopy and atomic force microscopy

    CSIR Research Space (South Africa)

    Chunilall, Viren

    2012-03-01

    Full Text Available in the distribution of lignin between the middle lamella and secondary cell wall layer for all clones and species investigated. The E. gc clone showed high levels of lignin in the secondary cell wall layer compared to the E. gu clone, E. dunnii and E. nitens species...

  10. Protein resonance assignment at MAS frequencies approaching 100 kHz: a quantitative comparison of J-coupling and dipolar-coupling-based transfer methods

    Energy Technology Data Exchange (ETDEWEB)

    Penzel, Susanne; Smith, Albert A.; Agarwal, Vipin; Hunkeler, Andreas [ETH Zürich, Physical Chemistry (Switzerland); Org, Mai-Liis; Samoson, Ago, E-mail: ago.samoson@ttu.ee [Tallinn University of Technology, NMR Instituut, Tartu Teadus, Tehnomeedikum (Estonia); Böckmann, Anja, E-mail: a.bockmann@ibcp.fr [UMR 5086 CNRS/Université de Lyon 1, Institut de Biologie et Chimie des Protéines (France); Ernst, Matthias, E-mail: maer@ethz.ch; Meier, Beat H., E-mail: beme@ethz.ch [ETH Zürich, Physical Chemistry (Switzerland)

    2015-10-15

    We discuss the optimum experimental conditions to obtain assignment spectra for solid proteins at magic-angle spinning (MAS) frequencies around 100 kHz. We present a systematic examination of the MAS dependence of the amide proton T{sub 2}′ times and a site-specific comparison of T{sub 2}′ at 93 kHz versus 60 kHz MAS frequency. A quantitative analysis of transfer efficiencies of building blocks, as they are used for typical 3D experiments, was performed. To do this, we compared dipolar-coupling and J-coupling based transfer steps. The building blocks were then combined into 3D experiments for sequential resonance assignment, where we evaluated signal-to-noise ratio and information content of the different 3D spectra in order to identify the best assignment strategy. Based on this comparison, six experiments were selected to optimally assign the model protein ubiquitin, solely using spectra acquired at 93 kHz MAS. Within 3 days of instrument time, the required spectra were recorded from which the backbone resonances have been assigned to over 96 %.

  11. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  12. 27Al MAS NMR spectroscopic identification of reaction intermediates in the carbothermal reduction and nitridation of alumina

    International Nuclear Information System (INIS)

    Jung, Woo-Sik; Chae, Seen-Ae

    2010-01-01

    The reaction intermediates in the carbothermal reduction and nitridation (CRN) reaction of γ-Al 2 O 3 were identified by 27 Al magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. This identification ruled out the possibility of a reaction mechanism involving the gaseous reaction intermediates. In the CRN reaction of γ-Al 2 O 3 , AlO 4 units were converted to AlN stepwise via AlN x O 4-x (x = 1, 2, 3) intermediates, while AlO 6 units were more slowly converted to AlN than AlO 4 units and the NMR peaks of partially nitridated AlO 6 units were not detected. The NMR peak intensities of partially nitridated AlO 4 units became weaker with increasing reaction temperature.

  13. High-resolution magic angle spinning (1)H NMR spectroscopy of metabolic changes in rabbit lens after treatment with dexamethasone combined with UVB exposure

    Czech Academy of Sciences Publication Activity Database

    Seather, O.; Risa, O.; Čejková, Jitka; Krane, J.; Midelfart, A.

    2004-01-01

    Roč. 242, - (2004), s. 1000-1007 ISSN 0721-832X R&D Projects: GA ČR GA304/03/0419 Institutional research plan: CEZ:AV0Z5008914 Keywords : HR-MAS 1H NMR Subject RIV: FF - HEENT, Dentistry Impact factor: 1.513, year: 2004

  14. High Tech M&As

    DEFF Research Database (Denmark)

    Toppenberg, Gustav

    2013-01-01

    of findings are not applicable to the high-tech industry; in fact this industry has many additional challenges. In this study, we aim to explore the process of M&A in the high-tech industry by drawing on extant literature and empirical field work. The paper outlines a research project in progress which...... intends to provide theoretical, empirical and practical contributions in answering the research question: what role does Operations and IT play in creating value in high-tech M&As? The research adds a needed perspective on M&A literature by unveiling unique challenges and opportunities faced by the M......&A teams in this sector. The phenomenon is studied from multiple perspectives: integration team, acquiring group and the company being acquired....

  15. Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations.

    Science.gov (United States)

    Pan, Jianjun; Cheng, Xiaolin; Sharp, Melissa; Ho, Chian-Sing; Khadka, Nawal; Katsaras, John

    2015-01-07

    The detailed structural and mechanical properties of a tetraoleoyl cardiolipin (TOCL) bilayer were determined using neutron spin echo (NSE) spectroscopy, small angle neutron and X-ray scattering (SANS and SAXS, respectively), and molecular dynamics (MD) simulations. We used MD simulations to develop a scattering density profile (SDP) model, which was then utilized to jointly refine SANS and SAXS data. In addition to commonly reported lipid bilayer structural parameters, component distributions were obtained, including the volume probability, electron density and neutron scattering length density. Of note, the distance between electron density maxima DHH (39.4 Å) and the hydrocarbon chain thickness 2DC (29.1 Å) of TOCL bilayers were both found to be larger than the corresponding values for dioleoyl phosphatidylcholine (DOPC) bilayers. Conversely, TOCL bilayers have a smaller overall bilayer thickness DB (36.7 Å), primarily due to their smaller headgroup volume per phosphate. SDP analysis yielded a lipid area of 129.8 Å(2), indicating that the cross-sectional area per oleoyl chain in TOCL bilayers (i.e., 32.5 Å(2)) is smaller than that for DOPC bilayers. Multiple sets of MD simulations were performed with the lipid area constrained at different values. The calculated surface tension versus lipid area resulted in a lateral area compressibility modulus KA of 342 mN m(-1), which is slightly larger compared to DOPC bilayers. Model free comparison to experimental scattering data revealed the best simulated TOCL bilayer from which detailed molecular interactions were determined. Specifically, Na(+) cations were found to interact most strongly with the glycerol hydroxyl linkage, followed by the phosphate and backbone carbonyl oxygens. Inter- and intra-lipid interactions were facilitated by hydrogen bonding between the glycerol hydroxyl and phosphate oxygen, but not with the backbone carbonyl. Finally, analysis of the intermediate scattering functions from NSE

  16. Nuclear Magnetic Resonance spectroscopy of marine microalgae: Metabolic profiling and species discrimination from High-Resolution Magic Angle Spinning NMR analysis of whole-cell samples

    OpenAIRE

    Chauton, Matilde Skogen

    2005-01-01

    Based on what is said about the background and structure, this thesis presents a discussion of the use of NMR spectroscopy as a tool for species discrimination and metabolic profiling of microalgae. The results of various analyses including NMR and statistics are evaluated from what is known from already established identification methods such as pigment chromatography and chemotaxonomy, and the chemical composition of microalgal cells. The main focus is on the application of HR MAS on whole ...

  17. 1H HR-MAS NMR Spectroscopy and the Metabolite Determination of Typical Foods in Mediterranean Diet

    Directory of Open Access Journals (Sweden)

    Carmelo Corsaro

    2015-01-01

    Full Text Available NMR spectroscopy has become an experimental technique widely used in food science. The experimental procedures that allow precise and quantitative analysis on different foods are relatively simple. For a better sensitivity and resolution, NMR spectroscopy is usually applied to liquid sample by means of extraction procedures that can be addressed to the observation of particular compounds. For the study of semisolid systems such as intact tissues, High-Resolution Magic Angle Spinning (HR-MAS has received great attention within the biomedical area and beyond. Metabolic profiling and metabolism changes can be investigated both in animal organs and in foods. In this work we present a proton HR-MAS NMR study on the typical vegetable foods of Mediterranean diet such as the Protected Geographical Indication (PGI cherry tomato of Pachino, the PGI Interdonato lemon of Messina, several Protected Designation of Origin (PDO extra virgin olive oils from Sicily, and the Traditional Italian Food Product (PAT red garlic of Nubia. We were able to identify and quantify the main metabolites within the studied systems that can be used for their characterization and authentication.

  18. Chemometric analysis applied in 1H HR-MAS NMR and FT-IR data for chemotaxonomic distinction of intact lichen samples

    International Nuclear Information System (INIS)

    Alcantara, Glaucia Braz; Honda, Neli Kika; Castro Ferreira, Marcia Miguel; Ferreira, Antonio Gilberto

    2007-01-01

    This paper describes the potentiality of chemometric analysis applied in 1 H HR-MAS NMR and FT-IR data for lichen chemotaxonomic investigations. Lichens present a difficult morphologic differentiation and the chemical analyses are frequently employed for their taxonomic classification, mainly due to the secondary metabolites to be relatively constant for these organisms. The lichen chemotaxonomic classification is usually carried out by color reactions, chromatography, fluorescence and mass spectrometry analysis, where the identification is obtained by one or more techniques. There are some papers which use the carbohydrate content in chemotaxonomy investigation. However, the majority of these techniques involve laborious and time consuming sample pre-treatment. This work focuses on application of 1 H high resolution magic angle spinning - nuclear magnetic resonance (HR-MAS NMR) and Fourier transform infrared (FT-IR) associated with chemometric analysis to intact samples. In comparison to other traditional techniques, 1 H HR-MAS NMR and FT-IR allied with chemometrics provided a fast and economic method for lichen chemotaxonomy. Both methods were useful for lichen analysis and permitted the satisfactory distinction among families, genera and species, although better results were achieved for FT-IR data

  19. Chemometric analysis applied in {sup 1}H HR-MAS NMR and FT-IR data for chemotaxonomic distinction of intact lichen samples

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara, Glaucia Braz [Departamento de Quimica, Universidade Federal de Sao Carlos, P.O. Box 676, CEP 13565-905, Sao Carlos/SP (Brazil)]. E-mail: glabraz@yahoo.com.br; Honda, Neli Kika [Departamento de Quimica, Universidade Federal de Mato Grosso do Sul, P.O. Box 549, CEP 79070-900, Campo Grande/MS (Brazil); Castro Ferreira, Marcia Miguel [Instituto de Quimica, Universidade Estadual de Campinas, P.O. Box 6154, CEP 13084-971, Campinas/SP (Brazil); Ferreira, Antonio Gilberto [Departamento de Quimica, Universidade Federal de Sao Carlos, P.O. Box 676, CEP 13565-905, Sao Carlos/SP (Brazil)

    2007-07-09

    This paper describes the potentiality of chemometric analysis applied in {sup 1}H HR-MAS NMR and FT-IR data for lichen chemotaxonomic investigations. Lichens present a difficult morphologic differentiation and the chemical analyses are frequently employed for their taxonomic classification, mainly due to the secondary metabolites to be relatively constant for these organisms. The lichen chemotaxonomic classification is usually carried out by color reactions, chromatography, fluorescence and mass spectrometry analysis, where the identification is obtained by one or more techniques. There are some papers which use the carbohydrate content in chemotaxonomy investigation. However, the majority of these techniques involve laborious and time consuming sample pre-treatment. This work focuses on application of {sup 1}H high resolution magic angle spinning - nuclear magnetic resonance (HR-MAS NMR) and Fourier transform infrared (FT-IR) associated with chemometric analysis to intact samples. In comparison to other traditional techniques, {sup 1}H HR-MAS NMR and FT-IR allied with chemometrics provided a fast and economic method for lichen chemotaxonomy. Both methods were useful for lichen analysis and permitted the satisfactory distinction among families, genera and species, although better results were achieved for FT-IR data.

  20. A 3% Measurement of the Beam Normal Single Spin Asymmetry in Forward Angle Elastic Electron-Proton Scattering using the Qweak Setup

    Energy Technology Data Exchange (ETDEWEB)

    Waidyawansa, Dinayadura Buddhini [Ohio Univ., Athens, OH (United States)

    2013-08-01

    The beam normal single spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable of the imaginary part of the two-photon exchange process. Moreover, it is a potential source of false asymmetry in parity violating electron scattering experiments. The Q{sub weak} experiment uses parity violating electron scattering to make a direct measurement of the weak charge of the proton. The targeted 4% measurement of the weak charge of the proton probes for parity violating new physics beyond the Standard Model. The beam normal single spin asymmetry at Q{sub weak} kinematics is at least three orders of magnitude larger than 5 ppb precision of the parity violating asymmetry. To better understand this parity conserving background, the Q{sub weak} Collaboration has performed elastic scattering measurements with fully transversely polarized electron beam on the proton and aluminum. This dissertation presents the analysis of the 3% measurement (1.3% statistical and 2.6% systematic) of beam normal single spin asymmetry in electronproton scattering at a Q2 of 0.025 (GeV/c)2. It is the most precise existing measurement of beam normal single spin asymmetry available at the time. A measurement of this precision helps to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process.

  1. Measurement of the weak mixing angle and the spin of the gluon from angular distributions in the reaction pp{yields} Z/{gamma}*+X{yields}{mu}{sup +}{mu}{sup -}+X with ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Schmieden, Kristof

    2013-04-15

    The measurement of the effective weak mixing angle with the ATLAS experiment at the LHC is presented. It is extracted from the forward-backward asymmetry in the polar angle distribution of the muons originating from Z boson decays in the reaction pp{yields}Z/{gamma}{sup *}+X{yields} {mu}{sup +}{mu}{sup -}+X. In total 4.7 fb{sup -1} of proton-proton collisions at {radical}(s)=7 TeV are analysed. In addition, the full polar and azimuthal angular distributions are measured as a function of the transverse momentum of the Z/{gamma}{sup *} system and are compared to several simulations as well as recent results obtained in p anti p collisions. Finally, the angular distributions are used to confirm the spin of the gluon using the Lam-Tung relation.

  2. Biological response in various compartments of the rat lens after in vivo exposure to UVR-B analyzed by HR-MAS 1H NMR spectroscopy.

    Science.gov (United States)

    Tessem, May-Britt; Bathen, Tone F; Löfgren, Stefan; Saether, Oddbjørn; Mody, Vino; Meyer, Linda; Dong, Xiuqin; Söderberg, Per G; Midelfart, Anna

    2006-12-01

    The purpose of the present study was to investigate metabolic changes in different compartments of the rat lens (anterior, nuclear, posterior, and equatorial) after exposure to an acute double threshold dose of ultraviolet-B radiation (UVR-B) by using high-resolution magic angle spinning (HR-MAS) (1)H nuclear magnetic resonance (NMR) spectroscopy and pattern recognition (PR) METHODS: methods. One eye in each of 28 6-week-old female albino Sprague-Dawley rats was exposed to in vivo 7.5 kJ/m2 UVR-B for 15 minutes. The contralateral eye was left unexposed. One week after irradiation, all rats were killed, and both lenses were isolated. Each lens was cored by a trephine, and the cylinder was sliced into three portions (anterior, nuclear, and posterior). The lens material that remained after the coring process was analyzed as the equatorial region. Analysis of lens metabolism was performed by HR-MAS 1H NMR spectroscopy (14.1 T; Avance DRX600; Bruker BioSpin GmbH, Rheinstetten, Germany), and the metabolic profiles were statistically analyzed by the PR method of principal component analysis (PCA). Metabolic differences were detected among the compartments in the lens, both in samples from the contralateral nonexposed lenses and in samples from lenses exposed to in vivo UVR-B. In the rat lens, exposure to UVR-B caused changes in GSH, phosphocholine, myo-inositol, succinate, formate, and adenosine triphosphate (ATP)/adenosine diphosphate (ADP) and in levels of the amino acids phenylalanine, taurine, hypo-taurine, tyrosine, alanine, valine, isoleucine, and glutamate, that varied among lens compartments. HR-MAS 1H NMR spectroscopy, combined with PR methods (PCA), is effective for analysis of separate parts of the intact rat lens. To understand the biochemistry of the lens, it is important to divide the lens into sections, representing functionally and anatomically distinct compartments.

  3. Spin Hall noise

    NARCIS (Netherlands)

    Kamra, A.; Witek, F.P.; Meyer, S.; Huebl, H.; Geprägs, S.; Gross, R.; Bauer, G.E.W.; Goennenwein, S.T.B.

    2014-01-01

    We measure the low-frequency thermal fluctuations of pure spin current in a platinum film deposited on yttrium iron garnet via the inverse spin Hall effect (ISHE)-mediated voltage noise as a function of the angle ? between the magnetization and the transport direction. The results are consistent

  4. Multiple acquisitions via sequential transfer of orphan spin polarization (MAeSTOSO): How far can we push residual spin polarization in solid-state NMR?

    Science.gov (United States)

    Gopinath, T; Veglia, Gianluigi

    2016-06-01

    Conventional multidimensional magic angle spinning (MAS) solid-state NMR (ssNMR) experiments detect the signal arising from the decay of a single coherence transfer pathway (FID), resulting in one spectrum per acquisition time. Recently, we introduced two new strategies, namely DUMAS (DUal acquisition Magic Angle Spinning) and MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), that enable the simultaneous acquisitions of multidimensional ssNMR experiments using multiple coherence transfer pathways. Here, we combined the main elements of DUMAS and MEIOSIS to harness both orphan spin operators and residual polarization and increase the number of simultaneous acquisitions. We show that it is possible to acquire up to eight two-dimensional experiments using four acquisition periods per each scan. This new suite of pulse sequences, called MAeSTOSO for Multiple Acquisitions via Sequential Transfer of Orphan Spin pOlarization, relies on residual polarization of both (13)C and (15)N pathways and combines low- and high-sensitivity experiments into a single pulse sequence using one receiver and commercial ssNMR probes. The acquisition of multiple experiments does not affect the sensitivity of the main experiment; rather it recovers the lost coherences that are discarded, resulting in a significant gain in experimental time. Both merits and limitations of this approach are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. I: Low Frequency NMR and NQR Using a dc SQUID. II: Variable-temperature 13C CP/MAS of Organometallics

    Energy Technology Data Exchange (ETDEWEB)

    Ziegeweid, Marcia A. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    NMR and NQR at low frequencies are difficult prospects due to small nuclear spin polarization. Furthermore, the sensitivity of the inductive pickup circuitry of standard spectrometers is reduced as the frequency is lowered. I have used a cw-SQUID (Superconducting Quantum Interference Device) spectrometer, which has no such frequency dependence, to study the local atomic environment of 14N via the quadrupolar interaction. Because 14N has spin I = 1 and a 0-6 MHz frequency range, it is not possible to obtain well-resolved spectra in high magnetic fields. I have used a technique to observe 14N NQR resonances via their effect on neighboring protons mediated by the heteronuclear dipolar interaction to study peptides and narcotics. The sensitivity of the SQUID is not enough to measure low-frequency surface (or other low spin density) systems. The application of spin-polarized xenon has been previously used to enhance polarization in conventional NMR experiments. Because xenon only polarizes spins with which it is in contact, it is surface selective. While differences in chemical shifts between surface and bulk spins are not large, it is expected that the differences in quadrupole coupling constant should be very large due to the drastic change of the electric field gradient surrounding spins at the surface. With this in mind, I have taken preliminary steps to measure SQUID detected polarization transfer from Xe to another spin species at 4.2 K and in small magnetic fields (<50 G). In this regime, the spin-lattice relaxation of xenon is dependent on the applied magnetic field. The results of our efforts to characterize the relaxation of xenon are presented. The final section describes the solid-state variable-temperature (VT) one- and two-dimensional 13C cross polarization (CP)/magic angle spinning (MAS) NMR of Hf(η5-C5H5)21-C5H5)2, Zr

  6. Mesoporous Silica Nanoparticles Loaded with Surfactant: Low Temperature Magic Angle Spinning 13C and 29Si NMR Enhanced by Dynamic Nuclear Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Lafon, Olivier [Universite de Lille Nord de France; Thankamony, Aany S. Lilly [Universite de Lille Nord de France; Kokayashi, Takeshi [Ames Laboratory; Carnevale, Diego [Ecole Polytechnique Federale de Lausanne; Vitzthum, Veronika [Ecole Polytechnique Federale de Lausanne; Slowing, Igor I. [Ames Laboratory; Kandel, Kapil [Ames Laboratory; Vezin, Herve [Universite de Lille Nord de France; Amoureux, Jean-Paul [Universite de Lille Nord de France; Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne; Pruski, Marek [Ames Laboratory

    2012-12-21

    We show that dynamic nuclear polarization (DNP) can be used to enhance NMR signals of 13C and 29Si nuclei located in mesoporous organic/inorganic hybrid materials, at several hundreds of nanometers from stable radicals (TOTAPOL) trapped in the surrounding frozen disordered water. The approach is demonstrated using mesoporous silica nanoparticles (MSN), functionalized with 3-(N-phenylureido)propyl (PUP) groups, filled with the surfactant cetyltrimethylammonium bromide (CTAB). The DNP-enhanced proton magnetization is transported into the mesopores via 1H–1H spin diffusion and transferred to rare spins by cross-polarization, yielding signal enhancements εon/off of around 8. When the CTAB molecules are extracted, so that the radicals can enter the mesopores, the enhancements increase to εon/off ≈ 30 for both nuclei. A quantitative analysis of the signal enhancements in MSN with and without surfactant is based on a one-dimensional proton spin diffusion model. The effect of solvent deuteration is also investigated.

  7. Broadband MAS NMR spectroscopy in the low-power limit

    Science.gov (United States)

    Sanders, Kevin J.; Pell, Andrew J.; Wegner, Sebastian; Grey, Clare P.; Pintacuda, Guido

    2018-04-01

    We investigate the performance of broadband adiabatic inversion pulses in the high-power (short high-powered adiabatic pulse, SHAP) and low-power (single-sideband-selective adiabatic pulse, S3AP) RF regimes on a spin system subjected to large anisotropic interactions. We show by combined experimental results and spin dynamics simulations that when the magic-angle spinning rate exceeds 100 kHz S3APs begin outperforming SHAPs. This is especially true for low-gamma nuclei, such as 6 Li in paramagnetic Li-ion battery materials. Finally, we show how S3APs can be improved by combining multiple waveforms sweeping over multiple sidebands simultaneously, in order to produce inverted sideband profiles free from intensity biasing.

  8. Correlating the P-31 NMR Chemical Shielding Tensor and the (2)J(P,C) Spin-Spin Coupling Constants with Torsion Angles zeta and alpha in the Backbone of Nucleic Acids

    Czech Academy of Sciences Publication Activity Database

    Benda, Ladislav; Sochorová Vokáčová, Zuzana; Straka, Michal; Sychrovský, Vladimír

    2012-01-01

    Roč. 116, č. 12 (2012), s. 3823-3833 ISSN 1520-6106 R&D Projects: GA ČR GAP205/10/0228; GA ČR GPP208/10/P398; GA ČR GA203/09/2037 Institutional research plan: CEZ:AV0Z40550506 Keywords : nucleic acids * phosphorus NMR * NMR calculations * cross-correlated relaxation * spin–spin coupling constants Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.607, year: 2012

  9. Characterization of some coals and coal intercalations by high-resolution /sup 1/H (BR-24/MAS at 270 MHz) and /sup 13/ (CP/MAS) n. m. r. in solids

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberger, H.; Scheler, G.; Kuenstner, E.

    1988-04-01

    High resolution /sup 1/H n.m.r. studies combining the BR-24 multiple-pulse method after BURUM and RHIM with fast magic-angle sample spinning (MAS), and high resolution solid-state /sup 13/C n.m.r. measurements with cross polarization (CP) and MAS have been used for investigating: a number of coals of different ranks; GDR soft brown coals characterized by textural differences; and typical intercalations to be found in such soft brown coals. The resolution level of /sup 1/H n.m.r. spectra achieved so far at a resonance frequency of 270 MHz permits determination of essential functional groups. The coalification series ranging from soft brown coal to anthracite shows an increase of the aromaticity values f/sub a//sup C/ and also an increase of the f..cap alpha../sup H/ values, which is analogous to the increases in reflectance and carbon content. There are marked differences between the functional groups to be found in detrital and xylite-containing soft brown coals. Tertiary (Miocene) brown coals from the 2nd Lower Lusatian seam (GDR) (i.e. unbedded, poorly bedded, bedded, xylite-containing unbedded, and gelified bedded coals) differ significantly due to variations in micropetrographical composition. Varying amounts of cellulose and lignin are contained in the xylites of the 2nd Lower Lusatian seam. /sup 13/C and /sup 1/H n.m.r. measurements are employed to determine the main constituents of substances such as pyropissite, retinite, fusite and 'monkey hairs' (fossilized rubber). 48 refs., 5 figs., 3 tabs

  10. Observation of transverse spin Nernst magnetoresistance induced by thermal spin current in ferromagnet/non-magnet bilayers.

    Science.gov (United States)

    Kim, Dong-Jun; Jeon, Chul-Yeon; Choi, Jong-Guk; Lee, Jae Wook; Surabhi, Srivathsava; Jeong, Jong-Ryul; Lee, Kyung-Jin; Park, Byong-Guk

    2017-11-09

    Electric generation of spin current via spin Hall effect is of great interest as it allows an efficient manipulation of magnetization in spintronic devices. Theoretically, pure spin current can be also created by a temperature gradient, which is known as spin Nernst effect. Here, we report spin Nernst effect-induced transverse magnetoresistance in ferromagnet/non-magnetic heavy metal bilayers. We observe that the magnitude of transverse magnetoresistance in the bilayers is significantly modified by heavy metal and its thickness. This strong dependence of transverse magnetoresistance on heavy metal evidences the generation of thermally induced pure spin current in heavy metal. Our analysis shows that spin Nernst angles of W and Pt have the opposite sign to their spin Hall angles. Moreover, our estimate implies that the magnitude of spin Nernst angle would be comparable to that of spin Hall angle, suggesting an efficient generation of spin current by the spin Nernst effect.

  11. 1H-detected MAS solid-state NMR experiments enable the simultaneous mapping of rigid and dynamic domains of membrane proteins

    Science.gov (United States)

    Gopinath, T.; Nelson, Sarah E. D.; Veglia, Gianluigi

    2017-12-01

    Magic angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy is emerging as a unique method for the atomic resolution structure determination of native membrane proteins in lipid bilayers. Although 13C-detected ssNMR experiments continue to play a major role, recent technological developments have made it possible to carry out 1H-detected experiments, boosting both sensitivity and resolution. Here, we describe a new set of 1H-detected hybrid pulse sequences that combine through-bond and through-space correlation elements into single experiments, enabling the simultaneous detection of rigid and dynamic domains of membrane proteins. As proof-of-principle, we applied these new pulse sequences to the membrane protein phospholamban (PLN) reconstituted in lipid bilayers under moderate MAS conditions. The cross-polarization (CP) based elements enabled the detection of the relatively immobile residues of PLN in the transmembrane domain using through-space correlations; whereas the most dynamic region, which is in equilibrium between folded and unfolded states, was mapped by through-bond INEPT-based elements. These new 1H-detected experiments will enable one to detect not only the most populated (ground) states of biomacromolecules, but also sparsely populated high-energy (excited) states for a complete characterization of protein free energy landscapes.

  12. Magnus effects on spinning transonic missiles

    Science.gov (United States)

    Seginer, A.; Rosenwasser, I.

    1983-01-01

    Magnus forces and moments were measured on a basic-finner model spinning in transonic flow. Spin was induced by canted fins or by full-span or semi-span, outboard and inboard roll controls. Magnus force and moment reversals were caused by Mach number, reduced spin rate, and angle of attack variations. Magnus center of pressure was found to be independent of the angle of attack but varied with the Mach number and model configuration or reduced spin rate.

  13. Spin Hall effect and spin swapping in diffusive superconductors

    Science.gov (United States)

    Espedal, Camilla; Lange, Peter; Sadjina, Severin; Mal'shukov, A. G.; Brataas, Arne

    2017-02-01

    We consider the spin-orbit-induced spin Hall effect and spin swapping in diffusive superconductors. By employing the nonequilibrium Keldysh Green's function technique in the quasiclassical approximation, we derive coupled transport equations for the spectral spin and particle distributions and for the energy density in the elastic scattering regime. We compute four contributions to the spin Hall conductivity, namely, skew scattering, side jump, anomalous velocity, and the Yafet contribution. The reduced density of states in the superconductor causes a renormalization of the spin Hall angle. We demonstrate that all four of these contributions to the spin Hall conductivity are renormalized in the same way in the superconducting state. In its simplest manifestation, spin swapping transforms a primary spin current into a secondary spin current with swapped current and polarization directions. We find that the spin-swapping coefficient is not explicitly but only implicitly affected by the superconducting gap through the renormalized diffusion coefficients. We discuss experimental consequences for measurements of the (inverse) spin Hall effect and spin swapping in four-terminal geometries. In our geometry, below the superconducting transition temperature, the spin-swapping signal is increased an order of magnitude while changes in the (inverse) spin Hall signal are moderate.

  14. Evidence for radiation induced crosslinking in polytetrafluoroethylene by means of high-resolution solid-state 19F high-speed MAS NMR

    International Nuclear Information System (INIS)

    Katoh, Etsuko; Sugisawa, Hisashi; Oshima, Akihiro; Tabata, Yoneho; Seguchi, Tadao; Yamazaki, Toshimasa

    1999-01-01

    Radiation effects on molecular structure of polytetrafluoroethylene (PTFE) were studied by high-resolution solid-state 19 F high speed magic angle spinning (HS MAS) NMR spectroscopy. Samples used for the NMR studies were prepared by electron beam irradiation of PTFE with a wide range of irradiation doses from 0.5-10 MGy in the molten state at 340 deg. C under oxygen-free atmosphere. While the non-irradiated PTFE displayed only an intense peak of the internal CF 2 , several new signals corresponding to CF 3 , CF 2 and CF groups were observed for the PTFE which was high temperature irradiated at 340 deg. C in oxygen-free atmosphere (hti-PTFE). Intensities of these new signals increased with an increase of irradiation dose. The present solid-state 19 F HS MAS NMR studies provide not only the first experimental evidence regarding the existence of crosslinking structure in hti-PTFE, directly detected as the CF signal, but also the crosslinking density which can be estimated from a proportion of the CF versus total fluorine signal intensities. The higher the irradiation dose, the higher the crosslinking density; hti-PTFE with 10 MGy contains one crosslinking site per approximately 24 CF 2 groups, while the hti-PTFE with 5 MGy contains one crosslinking site per approximately 36 CF 2 groups. Further, G value of crosslinking (G(x)) was estimated from the signal intensities of 19 F HS MAS NMR spectra. The highest G(x)-value, 1.85, was observed for the 2MGy hti-PTFE sample, suggesting that crosslinking of PTFE is formed most efficaciously with 2 MGy irradiation in the molten state at 340 deg. C under oxygen-free atmosphere

  15. The effect of antitumor glycosides on glioma cells and tissues as studied by proton HR-MAS NMR spectroscopy.

    Directory of Open Access Journals (Sweden)

    Isabel García-Álvarez

    Full Text Available The effect of the treatment with glycolipid derivatives on the metabolic profile of intact glioma cells and tumor tissues, investigated using proton high resolution magic angle spinning ((1H HR-MAS nuclear magnetic resonance (NMR spectroscopy, is reported here. Two compounds were used, a glycoside and its thioglycoside analogue, both showing anti-proliferative activity on glioma C6 cell cultures; however, only the thioglycoside exhibited antitumor activity in vivo. At the drug concentrations showing anti-proliferative activity in cell culture (20 and 40 µM, significant increases in choline containing metabolites were observed in the (1H NMR spectra of the same intact cells. In vivo experiments in nude mice bearing tumors derived from implanted C6 glioma cells, showed that reduction of tumor volume was associated with significant changes in the metabolic profile of the same intact tumor tissues; and were similar to those observed in cell culture. Specifically, the activity of the compounds is mainly associated with an increase in choline and phosphocholine, in both the cell cultures and tumoral tissues. Taurine, a metabolite that has been considered a biomarker of apoptosis, correlated with the reduction of tumor volume. Thus, the results indicate that the mode of action of the glycoside involves, at least in part, alteration of phospholipid metabolism, resulting in cell death.

  16. Molecular and electron-spin structures of a ring-shaped mixed-valence polyoxovanadate (IV, V) studied by (11)B and (23)Na solid-state NMR spectroscopy and DFT calculations.

    Science.gov (United States)

    Iijima, Takahiro; Yamase, Toshihiro; Nishimura, Katsuyuki

    2016-01-01

    (11)B and (23)Na solid-state nuclear magnetic resonance (NMR) spectra of ring-shaped paramagnetic crystals of H15[V7(IV)V5(V)B32O84Na4]·13H2O containing seven d(1) electrons from V(IV) were studied. Magic-angle-spinning (MAS) and multiple-quantum MAS NMR experiments were performed at moderate (9.4T) and ultrahigh magnetic fields (21.6T). The NMR parameters for quadrupole and isotropic chemical shift interactions were estimated by simulation of the NMR spectra and from relativistic density functional theory (DFT) calculations. Four Na ions incorporated into the framework were found to occupy four distinct sites with different populations. The DFT calculation showed that d(1) electrons with effectively one up-spin caused by strong antiferromagnetic interactions were delocalized over the 12V ions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Local Noncollinear Spin Analysis.

    Science.gov (United States)

    Abate, Bayileyegn A; Joshi, Rajendra P; Peralta, Juan E

    2017-12-12

    In this work, we generalize the local spin analysis of Clark and Davidson [J. Chem. Phys. 2001 115 (16), 7382] for the partitioning of the expectation value of the molecular spin square operator, ⟨Ŝ 2 ⟩, into atomic contributions, ⟨Ŝ A ·Ŝ B ⟩, to the noncollinear spin case in the framework of density functional theory (DFT). We derive the working equations, and we show applications to the analysis of the noncollinear spin solutions of typical spin-frustrated systems and to the calculation of magnetic exchange couplings. In the former case, we employ the triangular H 3 He 3 test molecule and a Mn 3 complex to show that the local spin analysis provides additional information that complements the standard one-particle spin population analysis. For the calculation of magnetic exchange couplings, J AB , we employ the local spin partitioning to extract ⟨Ŝ A ·Ŝ B ⟩ as a function of the interatomic spin orientation given by the angle θ. This, combined with the dependence of the electronic energy with θ, provides a methodology to extract J AB from DFT calculations that, in contrast to conventional energy differences based methods, does not require the use of ad hoc S A and S B values.

  18. Cross-Polarized Magic-Angle Spinning (sup13)C Nuclear Magnetic Resonance Spectroscopic Characterization of Soil Organic Matter Relative to Culturable Bacterial Species Composition and Sustained Biological Control of Pythium Root Rot.

    Science.gov (United States)

    Boehm, M J; Wu, T; Stone, A G; Kraakman, B; Iannotti, D A; Wilson, G E; Madden, L V; Hoitink, H

    1997-01-01

    We report the use of a model system that examines the dynamics of biological energy availability in organic matter in a sphagnum peat potting mix critical to sustenance of microorganism-mediated biological control of pythium root rot, a soilborne plant disease caused by Pythium ultimum. The concentration of readily degradable carbohydrate in the peat, mostly present as cellulose, was characterized by cross-polarized magic-angle spinning (sup13)C nuclear magnetic resonance spectroscopy. A decrease in the carbohydrate concentration in the mix was observed during the initial 10 weeks after potting as the rate of hydrolysis of fluorescein diacetate declined below a critical threshold level required for biological control of pythium root rot. Throughout this period, total microbial biomass and activity, based on rates of [(sup14)C]acetate incorporation into phospholipids, did not change but shifts in culturable bacterial species composition occurred. Species capable of inducing biocontrol were succeeded by pleomorphic gram-positive genera and putative oligotrophs not or less effective in control. We conclude that sustained efficacy of naturally occurring biocontrol agents was limited by energy availability to this microflora within the organic matter contained in the potting mix. We propose that this critical role of organic matter may be a key factor explaining the variability in efficacy typically encountered in the control of pythium root rot with biocontrol agents.

  19. TCSP ER-2 MODIS AIRBORNE SIMULATOR (MAS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TCSP ER-2 MODIS Airborne Simulator (MAS) dataset was collected by a MODIS Airborne Simulator (MAS), which is a multi-spectral line-scanner system that acquires...

  20. Spectral editing through laser-flash excitation in two-dimensional photo-CIDNP MAS NMR experiments

    Science.gov (United States)

    Sai Sankar Gupta, Karthick Babu; Daviso, Eugenio; Jeschke, Gunnar; Alia, A.; Ernst, Matthias; Matysik, Jörg

    2014-09-01

    In solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) MAS NMR experiments, strong signal enhancement is observed from molecules forming a spin-correlated radical pair in a rigid matrix. Two-dimensional 13C-13C dipolar-assisted rotational resonance (DARR) photo-CIDNP MAS NMR experiments have been applied to obtain exact chemical shift assignments from those cofactors. Under continuous illumination, the signals are enhanced via three-spin mixing (TSM) and differential decay (DD) and their intensity corresponds to the electron spin density in pz orbitals. In multiple-13C labelled samples, spin diffusion leads to propagation of signal enhancement to all 13C spins. Under steady-state conditions, direct signal assignment is possible due to the uniform signal intensity. The original intensities, however, are inaccessible and the information of the local electron spin density is lost. Upon laser-flash illumination, the signal is enhanced via the classical radical pair mechanism (RPM). The obtained intensities are related to isotropic hyperfine interactions aiso and both enhanced absorptive and emissive lines can be observed due to differences in the sign of the local isotropic hyperfine interaction. Exploiting the mechanism of the polarization, selectivity can be increased by the novel time-resolved two-dimensional dipolar-assisted rotational resonance (DARR) MAS NMR experiment which simplifies the signal assignment compared to complex spectra of the same RCs obtained by continuous illumination. Here we present two-dimensional time-resolved photo-CIDNP MAS NMR experiments providing both directly: signal assignment and spectral editing by sign and strength of aiso. Hence, this experiment provides a direct key to the electronic structure of the correlated radical pair.

  1. Spin-inversion in nanoscale graphene sheets with a Rashba spin-orbit barrier

    Directory of Open Access Journals (Sweden)

    Somaieh Ahmadi

    2012-03-01

    Full Text Available Spin-inversion properties of an electron in nanoscale graphene sheets with a Rashba spin-orbit barrier is studied using transfer matrix method. It is found that for proper values of Rashba spin-orbit strength, perfect spin-inversion can occur in a wide range of electron incident angle near the normal incident. In this case, the graphene sheet with Rashba spin-orbit barrier can be considered as an electron spin-inverter. The efficiency of spin-inverter can increase up to a very high value by increasing the length of Rashba spin-orbit barrier. The effect of intrinsic spin-orbit interaction on electron spin inversion is then studied. It is shown that the efficiency of spin-inverter decreases slightly in the presence of intrinsic spin-orbit interaction. The present study can be used to design graphene-based spintronic devices.

  2. A new sensitive isotropic-anisotropic separation experiment—SPEED MAS

    Science.gov (United States)

    Strohmeier, Mark; Grant, David M.

    2004-06-01

    A new sensitive 2D isotropic-anisotropic separation experiment that utilizes stroboscopic phase encoding in the evolution dimension (SPEED) under magic angle sample spinning is presented. This 2D experiment consists of a train of 2 N-1 π pulses that are applied over 2 N rotor periods. The π pulse train effectively reduces the apparent spinning speed in the evolution dimension by a factor of 1/(2 N) from the mechanical spinning speed. Thus, problems commonly associated with magic angle turning such as stable slow spinning, different matching and TPPM proton decoupling conditions are avoided. Data replication similar to the five π replicated magic angle turning (FIREMAT) and pseudo 2D sideband suppression (P2DSS) experiments transfers resolution from the acquisition dimension to the evolution dimension. Hence, large spectral windows with good digital resolution are obtained with a few evolution increments. Here, slow spinning sideband patterns are extracted from the replicated 2D dataset with TIGER processing. Nevertheless, 2D Fourier transformation is also applicable. The extracted sideband patterns are identical to magic angle turning sideband pattern allowing for easy extraction of principal shift components. Accurate 13C principal shift components are obtained for 3-methylglutaric acid using SPEED and FIREMAT experiments to validate the method. Furthermore, SPEED spectra for calcium acetate and α santonin are reported to show the wide applicability of this new experiment.

  3. Scoliosis angle

    International Nuclear Information System (INIS)

    Marklund, T.

    1978-01-01

    The most commonly used methods of assessing the scoliotic deviation measure angles that are not clearly defined in relation to the anatomy of the patient. In order to give an anatomic basis for such measurements it is proposed to define the scoliotic deviation as the deviation the vertebral column makes with the sagittal plane. Both the Cobb and the Ferguson angles may be based on this definition. The present methods of measurement are then attempts to measure these angles. If the plane of these angles is parallel to the film, the measurement will be correct. Errors in the measurements may be incurred by the projection. A hypothetical projection, called a 'rectified orthogonal projection', is presented, which correctly represents all scoliotic angles in accordance with these principles. It can be constructed in practice with the aid of a computer and by performing measurements on two projections of the vertebral column; a scoliotic curve can be represented independent of the kyphosis and lordosis. (Auth.)

  4. 31P magic angle spinning NMR study of flux-grown rare-earth element orthophosphate (monazite/xenotime) solid solutions: evidence of random cation distribution from paramagnetically shifted NMR resonances.

    Science.gov (United States)

    Palke, Aaron C; Stebbins, Jonathan F; Boatner, Lynn A

    2013-11-04

    We present (31)P magic angle spinning nuclear magnetic resonance spectra of flux-grown solid solutions of La(1-x)Ce(x)PO4 (x between 0.027 and 0.32) having the monoclinic monazite structure, and of Y(1-x)M(x)PO4 (M = V(n+), Ce(3+), Nd(3+), x between 0.001 and 0.014) having the tetragonal zircon structure. Paramagnetically shifted NMR resonances are observed in all samples due to the presence of paramagnetic V(n+), Ce(3+), and Nd(3+) in the diamagnetic LaPO4 or YPO4. As a first-order observation, the number and relative intensities of these peaks are related to the symmetry and structure of the diamagnetic host phase. The presence of paramagnetic shifts allows for increased resolution between NMR resonances for distinct atomic species which leads to the observation of low intensity peaks related to PO4 species having more than one paramagnetic neighbor two or four atomic bonds away. Through careful analysis of peak areas and comparison with predictions for simple models, it was determined that solid solutions in the systems examined here are characterized by complete disorder (random distribution) of diamagnetic La(3+) or Y(3+) with the paramagnetic substitutional species Ce(3+) and Nd(3+). The increased resolution given by the paramagnetic interactions also leads to the observation of splitting of specific resonances in the (31)P NMR spectra that may be caused by local, small-scale distortions from the substitution of ions having dissimilar ionic radii.

  5. Spin Hall effect by surface roughness

    KAUST Repository

    Zhou, Lingjun

    2015-01-08

    The spin Hall and its inverse effects, driven by the spin orbit interaction, provide an interconversion mechanism between spin and charge currents. Since the spin Hall effect generates and manipulates spin current electrically, to achieve a large effect is becoming an important topic in both academia and industries. So far, materials with heavy elements carrying a strong spin orbit interaction, provide the only option. We propose here a new mechanism, using the surface roughness in ultrathin films, to enhance the spin Hall effect without heavy elements. Our analysis based on Cu and Al thin films suggests that surface roughness is capable of driving a spin Hall angle that is comparable to that in bulk Au. We also demonstrate that the spin Hall effect induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.

  6. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  7. Structural changes in C–S–H gel during dissolution: Small-angle neutron scattering and Si-NMR characterization

    Energy Technology Data Exchange (ETDEWEB)

    Trapote-Barreira, Ana, E-mail: anatrapotebarreira@gmail.com [Institute of Environmental Assessment and Water Research (IDAEA), Barcelona 08034, Catalonia (Spain); Porcar, Lionel [National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Large Scale Structure Group, Institut Laue Langevin, Grenoble (France); Cama, Jordi; Soler, Josep M. [Institute of Environmental Assessment and Water Research (IDAEA), Barcelona 08034, Catalonia (Spain); Allen, Andrew J. [National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States)

    2015-06-15

    Flow-through experiments were conducted to study the calcium–silicate–hydrate (C–S–H) gel dissolution kinetics. During C–S–H gel dissolution the initial aqueous Ca/Si ratio decreases to reach the stoichiometric value of the Ca/Si ratio of a tobermorite-like phase (Ca/Si = 0.83). As the Ca/Si ratio decreases, the solid C–S–H dissolution rate increases from (4.5 × 10{sup −} {sup 14} to 6.7 × 10{sup −} {sup 12}) mol m{sup −} {sup 2} s{sup −} {sup 1}. The changes in the microstructure of the dissolving C–S–H gel were characterized by small-angle neutron scattering (SANS) and {sup 29}Si magic-angle-spinning nuclear magnetic resonance ({sup 29}Si-MAS NMR). The SANS data were fitted using a fractal model. The SANS specific surface area tends to increase with time and the obtained fit parameters reflect the changes in the nanostructure of the dissolving solid C–S–H within the gel. The {sup 29}Si MAS NMR analyses show that with dissolution the solid C–S–H structure tends to a more ordered tobermorite structure, in agreement with the Ca/Si ratio evolution.

  8. Structural changes in C–S–H gel during dissolution: Small-angle neutron scattering and Si-NMR characterization

    International Nuclear Information System (INIS)

    Trapote-Barreira, Ana; Porcar, Lionel; Cama, Jordi; Soler, Josep M.; Allen, Andrew J.

    2015-01-01

    Flow-through experiments were conducted to study the calcium–silicate–hydrate (C–S–H) gel dissolution kinetics. During C–S–H gel dissolution the initial aqueous Ca/Si ratio decreases to reach the stoichiometric value of the Ca/Si ratio of a tobermorite-like phase (Ca/Si = 0.83). As the Ca/Si ratio decreases, the solid C–S–H dissolution rate increases from (4.5 × 10 − 14 to 6.7 × 10 − 12 ) mol m − 2 s − 1 . The changes in the microstructure of the dissolving C–S–H gel were characterized by small-angle neutron scattering (SANS) and 29 Si magic-angle-spinning nuclear magnetic resonance ( 29 Si-MAS NMR). The SANS data were fitted using a fractal model. The SANS specific surface area tends to increase with time and the obtained fit parameters reflect the changes in the nanostructure of the dissolving solid C–S–H within the gel. The 29 Si MAS NMR analyses show that with dissolution the solid C–S–H structure tends to a more ordered tobermorite structure, in agreement with the Ca/Si ratio evolution

  9. Recent Results from the MicroMAS Global Environmental MonitoringNanosatellite Mission

    Science.gov (United States)

    Blackwell, W. J.; Cahoy, K.

    2014-12-01

    The Micro-sized Microwave Atmospheric Satellite (MicroMAS) is a dual-spinning 3U CubeSat equipped with apassive microwave radiometer that observes in nine channels near the 118.75-GHz oxygen absorption line.MicroMAS is designed to observe convective thunderstorms, tropical cyclones, and hurricanes from a midinclinationorbit. The MicroMAS flight unit was developed by MIT Lincoln Laboratory and the MIT Space SystemsLaboratory and was launched to the International Space Station on July 13, 2014, and scheduled for an earlySeptember deployment for a ~90-day mission. The payload is housed in the "lower" 1U of the dual-spinning 3UCubeSat and mechanically rotated approximately once per second as the spacecraft orbits the Earth, resulting in across-track scanned beam with a full-width half-max (FWHM) beamwidth of 2.4 degrees and an approximately 17-km diameter footprint at nadir incidence from a nominal altitude of 400 km. The relatively low cost of MicroMASenables the deployment of a constellation of sensors, spaced equally around several orbit planes. A small fleet ofMicroMAS systems could yield high-resolution global temperature and water vapor profiles, as well as cloudmicrophysical and precipitation parameters.Significant advancements were made in the Assembly, Integration, and Test phase of the project developmentlifecycle. The flight software and communications architecture was refined and tested in relevant lab facilities. Thepower subsystem was modified to include additional required inhibits for the ISS launch. Hardware in the loop testsas well as simulations of the attitude determination and control system (ADCS) were performed to validate theunique dual-spinning, local vertical, local horizontal (LVLH) stabilized flight design. ADCS algorithms were testedon a 3-axis air bearing and custom rig inside a 3-axis programmable Helmholtz cage. Finally, the integratedspacecraft underwent a series of environmental tests in order to verify the results of thermal modeling

  10. (1)H HR-MAS spectroscopy for quantitative measurement of choline concentration in amniotic fluid as a marker of fetal lung maturity: inter- and intraobserver reproducibility study.

    Science.gov (United States)

    Joe, Bonnie N; Vahidi, Kiarash; Zektzer, Andrew; Chen, Mei-Hsiu; Clifton, Matthew S; Butler, Thomas; Keshari, Kayvan; Kurhanewicz, John; Coakley, Fergus; Swanson, Mark G

    2008-12-01

    To determine the intra- and interobserver reproducibility of human amniotic fluid metabolite concentration measurements (including potential markers of fetal lung maturity) detectable by MR spectroscopy. (1)H high-resolution magic angle spinning (HR-MAS) spectroscopy was performed at 11.7 T on 23 third-trimester amniotic fluid samples. Samples were analyzed quantitatively using 3-(trimethylsilyl)propionic-2,2,3,3-d(4) acid (TSP) as a reference. Four observers independently quantified eight metabolite regions (TSP, lactate doublet and quartet, alanine, citrate, creatinine, choline, and glucose) twice from anonymized, randomized spectra using a semiautomated software program. Excellent inter- and intraobserver reproducibility was found for all metabolites. Intraclass correlation as a measure of interobserver agreement for the four readers ranged from 0.654 to 0.995. A high correlation of 0.973 was seen for choline in particular, a major component of surfactant. Pearson correlation as a measure of intraobserver reproducibility ranged from 0.478 to 0.999. Quantification of choline and other metabolite concentrations in amniotic fluid by high-resolution MR spectroscopy can be performed with high inter- and intraobserver reproducibility. Demonstration of reproducible metabolite concentration measurements is a critical first step in the search for biomarkers of fetal lung maturity. (c) 2008 Wiley-Liss, Inc.

  11. Spin-torque switching of a nano-magnet using giant spin hall effect

    Directory of Open Access Journals (Sweden)

    Ashish V. Penumatcha

    2015-10-01

    Full Text Available The Giant Spin Hall Effect(GSHE in metals with high spin-orbit coupling is an efficient way to convert charge currents to spin currents, making it well-suited for writing information into magnets in non-volatile magnetic memory as well as spin-logic devices. We demonstrate the switching of an in-plane CoFeB magnet using a combination of GSHE and an external magnetic field. The magnetic field dependence of the critical current is used to estimate the spin hall angle with the help of a thermal activation model for spin-transfer torque switching of a nanomagnet.

  12. Solid state NMR, basic theory and recent progress for quadrupole nuclei with half-integer spin

    International Nuclear Information System (INIS)

    Dieter, F.

    1998-01-01

    This review describes the basic theory and some recently developed techniques for the study of quadrupole nuclei with half integer spins in powder materials. The latter is connected to the introduction of the double rotation (DOR) by A. Samoson et al. (1) and to the introduction of the multiple quantum magic-angle spinning (MQ MAS) technique by L. Frydman et. al. (2). For integer spins, especially the solid-state deuterium magnetic resonance, we refer to the review of G.L. Hoatson and R.L. Vold: '' 2 H-NMR Spectroscopy of Solids and Liquid Crystals'' (3). For single crystals we refer to O. Kanert and M. Mehring: ''Static quadrupole effects in disordered cubic solids''(4) and we would like also to mention the ''classic'' review of M.H. Cohen and F. Reif: ''Quadrupole effects in NMR studies of solids'' (5). Some more recent reviews in the field under study are D. Freude and J. Haase ''Quadrupole effects in solid-state NMR'' (6). Ch. Jager: ''Satellite Transition Spectroscopy of Quadrupolar Nuclei'' (7) and B.F. Chmelka and J.W. Zwanziger: ''Solid State NMR Line Narrowing Methods for Quadrupolar Nuclei - Double Rotation and Dynamic-Angle Spinning'' (8). A survey of nuclear quadrupole frequency data published before the end of 1982 is given by H. Chihara and N. Nakamura in Landolt-Bornstein, Vol. 20 (9). Values of the chemical shift of quadrupole nuclei in solids can be found in books such as ''Multinuclear NMR'' edited by J. Mason (10). In section 9 of ref (6) some electric field gradient and chemical shift data published from 1983 to 1992 for the most studied quadrupole nuclei sup 27 Al, sup 23 Na, and sup 17 O are given

  13. Quantification of a single score (1+) in the Modified Ashworth Scale (MAS), a clinical assessment of spasticity.

    Science.gov (United States)

    Ewoldt, Jourdan K; Lazzaro, Emily C; Roth, Elliot J; Suresh, Nina L

    2016-08-01

    The Modified Ashworth Scale (MAS) is an assessment that is often used by clinicians to grade spasticity in the affected limbs of stroke survivors. The MAS is a function of the angle at which the clinician perceives a resistance to stretch and/or a `catch' during a passive joint rotation. The qualitative nature of the assessment in combination with the low resolution of the scale could result in varied grouping of spastic patients, even for a single score. The objective of this pilot study was to develop a method for the quantification of the MAS, which could provide greater resolution and could eventually guide better informed therapeutic interventions. The MAS assessment at the elbow joint for four stroke survivors with the same clinical MAS score of 1+ was performed by a clinician and quantified using signals from surface electromyography (EMG) and an electrogoniometer. The subjects were tested on both the affected and contralateral upper limbs. The findings from this study show a varied set of signal outputs across four stroke survivors, all graded at 1+. The quantification provides insight as to the mechanisms underlying the passive resistance.

  14. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  15. Spin Electronics

    Science.gov (United States)

    2003-08-01

    applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a...physical phenomena in II-VI and III-V semiconductors. In II-VI systems, the Mn2+ ions act to boost the electron spin precession up to terahertz ...conductors, proximity effect between ferromagnets and superconductors , and the effects of spin injection on the physical properties of the

  16. Spin doctoring

    OpenAIRE

    Vozková, Markéta

    2011-01-01

    1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...

  17. Spin-resolved electron waiting times in a quantum-dot spin valve

    Science.gov (United States)

    Tang, Gaomin; Xu, Fuming; Mi, Shuo; Wang, Jian

    2018-04-01

    We study the electronic waiting-time distributions (WTDs) in a noninteracting quantum-dot spin valve by varying spin polarization and the noncollinear angle between the magnetizations of the leads using the scattering matrix approach. Since the quantum-dot spin valve involves two channels (spin up and down) in both the incoming and outgoing channels, we study three different kinds of WTDs, which are two-channel WTD, spin-resolved single-channel WTD, and cross-channel WTD. We analyze the behaviors of WTDs in short times, correlated with the current behaviors for different spin polarizations and noncollinear angles. Cross-channel WTD reflects the correlation between two spin channels and can be used to characterize the spin-transfer torque process. We study the influence of the earlier detection on the subsequent detection from the perspective of cross-channel WTD, and define the influence degree quantity as the cumulative absolute difference between cross-channel WTDs and first-passage time distributions to quantitatively characterize the spin-flip process. We observe that influence degree versus spin-transfer torque for different noncollinear angles as well as different polarizations collapse into a single curve showing universal behaviors. This demonstrates that cross-channel WTDs can be a pathway to characterize spin correlation in spintronics system.

  18. SAFARI 2000 MODIS Airborne Simulator (MAS) Browse Images

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS Airborne Simulator (MAS) collected imagery for the SAFARI 2000 field campaign. Currently available data consist of browse imagery and flight track...

  19. CAMEX-4 ER-2 MODIS AIRBORNE SIMULATOR (MAS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS Airborne Simulator (MAS) is an airborne scanning spectrometer that acquires high spatial resolution imagery of cloud and surface features from its vantage...

  20. TCSP ER-2 MODIS AIRBORNE SIMULATOR (MAS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS Airborne Simulator (MAS) is a multi-spectral line-scanner system that acquires image data in 50 spectral bands over wavelengths ranging from 0.46 to 14.3...

  1. Extrinsic spin Hall effect in graphene

    Science.gov (United States)

    Rappoport, Tatiana

    The intrinsic spin-orbit coupling in graphene is extremely weak, making it a promising spin conductor for spintronic devices. In addition, many applications also require the generation of spin currents in graphene. Theoretical predictions and recent experimental results suggest one can engineer the spin Hall effect in graphene by greatly enhancing the spin-orbit coupling in the vicinity of an impurity. The extrinsic spin Hall effect then results from the spin-dependent skew scattering of electrons by impurities in the presence of spin-orbit interaction. This effect can be used to efficiently convert charge currents into spin-polarized currents. I will discuss recent experimental results on spin Hall effect in graphene decorated with adatoms and metallic cluster and show that a large spin Hall effect can appear due to skew scattering. While this spin-orbit coupling is small if compared with what it is found in metals, the effect is strongly enhanced in the presence of resonant scattering, giving rise to robust spin Hall angles. I will present our single impurity scattering calculations done with exact partial-wave expansions and complement the analysis with numerical results from a novel real-space implementation of the Kubo formalism for tight-binding Hamiltonians. The author acknowledges the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.

  2. The EBLM Project I-Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the Brown Dwarf limit

    OpenAIRE

    Triaud, Amaury H. M. J.; Hebb, Leslie; Anderson, David R.; Cargile, Phill; Cameron, Andrew Collier; Doyle, Amanda P.; Faedi, Francesca; Gillon, Michaël; Chew, Yilen Gomez Maqueo; Hellier, Coel; Jehin, Emmanuel; Maxted, Pierre; Naef, Dominique; Pepe, Francesco; Pollacco, Don

    2012-01-01

    This paper introduces a series of papers aiming to study the dozens of low-mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F,...

  3. Spin transport properties in a double quantum ring with Rashba spin-orbit interaction

    Science.gov (United States)

    Naeimi, Azadeh S.; Eslami, Leila; Esmaeilzadeh, Mahdi; Abolhassani, Mohammad Reza

    2013-01-01

    We study spin-resolved electron transport in a double quantum ring in the presence of Rashba spin-orbit interaction and a magnetic flux using quantum waveguide theory. We show that, at the proper values of the system parameters such as the Rashba coupling constant, the radius of the rings, and the angle between the leads, the double quantum ring can act as a perfect electron spin-inverter with very high efficiency. Also, the double quantum ring can work as a spin switch. The spin polarization of transmitted electrons can be controlled and changed from -1 to +1 by using a magnetic flux.

  4. Spin Hall effect-driven spin torque in magnetic textures

    KAUST Repository

    Manchon, Aurelien

    2011-07-13

    Current-induced spin torque and magnetization dynamics in the presence of spin Hall effect in magnetic textures is studied theoretically. The local deviation of the charge current gives rise to a current-induced spin torque of the form (1 - ΒM) × [(u 0 + αH u 0 M) ∇] M, where u0 is the direction of the injected current, H is the Hall angle and is the non-adiabaticity parameter due to spin relaxation. Since αH and ×can have a comparable order of magnitude, we show that this torque can significantly modify the current-induced dynamics of both transverse and vortex walls. © 2011 American Institute of Physics.

  5. Spin-independent transparency of pure spin current at normal/ferromagnetic metal interface

    Science.gov (United States)

    Hao, Runrun; Zhong, Hai; Kang, Yun; Tian, Yufei; Yan, Shishen; Liu, Guolei; Han, Guangbing; Yu, Shuyun; Mei, Liangmo; Kang, Shishou

    2018-03-01

    The spin transparency at the normal/ferromagnetic metal (NM/FM) interface was studied in Pt/YIG/Cu/FM multilayers. The spin current generated by the spin Hall effect (SHE) in Pt flows into Cu/FM due to magnetic insulator YIG blocking charge current and transmitting spin current via the magnon current. Therefore, the nonlocal voltage induced by an inverse spin Hall effect (ISHE) in FM can be detected. With the magnetization of FM parallel or antiparallel to the spin polarization of pure spin currents ({{\\boldsymbol{σ }}}sc}), the spin-independent nonlocal voltage is induced. This indicates that the spin transparency at the Cu/FM interface is spin-independent, which demonstrates that the influence of spin-dependent electrochemical potential due to spin accumulation on the interfacial spin transparency is negligible. Furthermore, a larger spin Hall angle of Fe20Ni80 (Py) than that of Ni is obtained from the nonlocal voltage measurements. Project supported by the National Basic Research Program of China (Grant No. 2015CB921502), the National Natural Science Foundation of China (Grant Nos. 11474184 and 11627805), the 111 Project, China (Grant No. B13029), and the Fundamental Research Funds of Shandong University, China.

  6. Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures

    Science.gov (United States)

    Savero Torres, W.; Sierra, J. F.; Benítez, L. A.; Bonell, F.; Costache, M. V.; Valenzuela, S. O.

    2017-12-01

    Spin Hall effects have surged as promising phenomena for spin logics operations without ferromagnets. However, the magnitude of the detected electric signals at room temperature in metallic systems has been so far underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the signal in monolayer graphene/Pt devices when compared to their fully metallic counterparts. The enhancement stems in part from efficient spin injection and the large spin resistance of graphene but we also observe 100% spin absorption in Pt and find an unusually large effective spin Hall angle of up to 0.15. The large spin-to-charge conversion allows us to characterise spin precession in graphene under the presence of a magnetic field. Furthermore, by developing an analytical model based on the 1D diffusive spin-transport, we demonstrate that the effective spin-relaxation time in graphene can be accurately determined using the (inverse) spin Hall effect as a means of detection. This is a necessary step to gather full understanding of the consequences of spin absorption in spin Hall devices, which is known to suppress effective spin lifetimes in both metallic and graphene systems.

  7. Increased vascular sympathetic modulation in mice with Mas receptor deficiency

    Science.gov (United States)

    Rabello Casali, Karina; Ravizzoni Dartora, Daniela; Moura, Marina; Bertagnolli, Mariane; Bader, Michael; Haibara, Andrea; Alenina, Natalia; Irigoyen, Maria Claudia; Santos, Robson A

    2016-01-01

    Introduction: The angiotensin-converting enzyme 2 (ACE2)/angiotensin (Ang)-(1–7)/Mas axis could modulate the heart rate (HR) and blood pressure variabilities (BPV) which are important predictors of cardiovascular risk and provide information about the autonomic modulation of the cardiovascular system. Therefore we investigated the effect of Mas deficiency on autonomic modulation in wild type and Mas-knockout (KO) mice. Methods: Blood pressure was recorded at high sample rate (4000 Hz). Stationary sequences of 200–250 beats were randomly chosen. Frequency domain analysis of HR and BPV was performed with an autoregressive algorithm on the pulse interval sequences and on respective systolic sequences. Results: The KO group presented an increase of systolic arterial pressure (SAP; 127.26±11.20 vs 135.07±6.98 mmHg), BPV (3.54±1.54 vs 5.87±2.12 mmHg2), and low-frequency component of systolic BPV (0.12±0.11 vs 0.47±0.34 mmHg2). Conclusions: The deletion of Mas receptor is associated with an increase of SAP and with an increased BPV, indicating alterations in autonomic control. Increase of sympathetic vascular modulation in absence of Mas evidences the important role of Ang-(1–7)/Mas on cardiovascular regulation. Moreover, the absence of significant changes in HR and HRV can indicate an adaptation of autonomic cardiac balance. Our results suggest that the Ang-(1–7)/Mas axis seems more important in autonomic modulation of arterial pressure than HR. PMID:27080540

  8. Spin dependence in superelastic electron scattering from Na(3P)

    International Nuclear Information System (INIS)

    McClelland, J.J.; Kelley, M.H.; Celotta, R.J.

    1985-01-01

    Measurements are presented of spin asymmetries for superelastic scattering of 10-eV spin polarized electrons from the excited Na(3P/sub 3/2/) state created by linearly polarized laser optical pumping. Asymmetries as large as 16% are observed in scattering from a state which is not spin-polarized. Results are shown both as a function of scattering angle with fixed laser polarization direction, and as a function of the laser polarization direction at a fixed scattering angle

  9. TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect

    Directory of Open Access Journals (Sweden)

    Saburo Takahashi and Sadamichi Maekawa

    2008-01-01

    Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.

  10. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  11. Spin glasses

    International Nuclear Information System (INIS)

    Fischer, K.H.; Hertz, J.A.

    1993-01-01

    Spin glasses, simply defined by the authors as a collection of spins (i.e., magnetic moments) whose low-temperature state is a frozen disordered one, represent one of the fascinating new fields of study in condensed matter physics, and this book is the first to offer a comprehensive account of the subject. Included are discussions of the most important developments in theory, experimental work, and computer modeling of spin glasses, all of which have taken place essentially within the last two decades. The first part of the book gives a general introduction to the basic concepts and a discussion of mean field theory, while the second half concentrates on experimental results, scaling theory, and computer simulation of the structure of spin glasses

  12. Pollen morphology of Cornus mas L. and Cornus sanguinea L.

    OpenAIRE

    Karlıoğlu Kılıç, Nurgül; Tuttu, Gamze

    2017-01-01

    Pollen morphology of Cornus mas L. and Cornus sanguinea L.Abstract: The pollen morphology of 2 species of the genus Cornus L. distributed in Turkey was studied with light and scanning electron microscope. The pollen of genus Cornus is 3-colporate. Pollen of the Cornus mas is spheroidal and Cornus sanguinea is subprolate. Size varies of Cornus mas pollen with the polar axis ranging from 21.54 to 27.36 μm and equatorial axis from 21.31 to 26.72 μm. Size varies of Cornus sanguinea pollen with po...

  13. The kinematic differences between off-spin and leg-spin bowling in cricket.

    Science.gov (United States)

    Beach, Aaron J; Ferdinands, René E D; Sinclair, Peter J

    2016-09-01

    Spin bowling is generally coached using a standard technical framework, but this practice has not been based upon a comparative biomechanical analysis of leg-spin and off-spin bowling. This study analysed the three-dimensional (3D) kinematics of 23 off-spin and 20 leg-spin bowlers using a Cortex motion analysis system to identify how aspects of the respective techniques differed. A multivariate ANOVA found that certain data tended to validate some of the stated differences in the coaching literature. Off-spin bowlers had a significantly shorter stride length (p = 0.006) and spin rate (p = 0.001), but a greater release height than leg-spinners (p = 0.007). In addition, a number of other kinematic differences were identified that were not previously documented in coaching literature. These included a larger rear knee flexion (p = 0.007), faster approach speed (p < 0.001), and flexing elbow action during the arm acceleration compared with an extension action used by most of the off-spin bowlers. Off-spin and leg-spin bowlers also deviated from the standard coaching model for the shoulder alignment, front knee angle at release, and forearm mechanics. This study suggests that off-spin and leg-spin are distinct bowling techniques, supporting the development of two different coaching models in spin bowling.

  14. MAS2-8 radar and digital control unit

    Science.gov (United States)

    Oberg, J. M.; Ulaby, F. T.

    1974-01-01

    The design of the MAS 2-8 (2 to 8 GHz microwave-active spectrometer), a ground-based sensor system, is presented. A major modification in 1974 to the MAS 2-8, that of a control subsystem to automate the data-taking operation, is the prime focus. The digital control unit automatically changes all system parameters except FM rate and records the return signal on paper tape. The overall system operation and a detailed discussion of the design and operation of the digital control unit are presented.

  15. KINERJA USAHA TANAMAN HIAS POTONG PT PESONA DAUN MAS ASRI

    Directory of Open Access Journals (Sweden)

    Muhamad Arief Bangun Sanjaya

    2017-01-01

    Full Text Available Pesona Daun Mas Asri is a company in cut flowers  and leaves cultivation. The  achievement is shown by the performance of the company. The overall company’s performance contributes in developing the company’s vision. Balanced score card is a management tool used to observe and maintain the stability between financial indicators (financial perspective and non financial indicators (customer, business internal process, growth and learning.  The objective of the journal is to plan the performance of the company using balanced scorecard approach, analyze and calculate the vision, mission and strategy implemented by Pesona Daun Mas in it business activity..  The result for every strategic target shows that the performance of Pesona Daun Mas is excellent with the achieved score of 78,04%.  However the target for the selling growth level and marketing activities are classified as average which means that it still needs to be developed.   Keywords:  balanced scorecard, performance evaluation, KPI performance index, ornamental plants cutAbstrakPesona Daun Mas Asri merupakan perusahaan yang bergerak dalam bidang budi daya bunga potong dan daun potong. Pencapaian dalam menjalankan sebuah perusahaan dapat dilihat dari kinerja perusahaan tersebut.Kinerja perusahaan Pesona Daun Mas Asri secara keseluruhan dapat berkontribusi untuk mengembangkan perusahaan dalam mencapai visi. Balanced scorecard adalah salah satu alat manajemen yang dapat melihat dan menjaga keseimbangan antara indikator keuangan (perspektif keuangan dan indikator non-keuangan (pelanggan, proses bisnisinternal, pertumbuhan dan pembelajaran. Tujuan dari jurnal ini adalah untuk merancang pengukuran kinerja perusahaan dengan pendekatan Balanced scorecard. Penelitian ini juga bertujuan menganalisis dan mengukur pelaksanaan visi, misi dan strategi yang dijalankan oleh Pesona Daun Mas Asri dalam kegiatan bisnisnya. Selain itu, memberikan saran dan rekomendasi, serta merumuskan implikasi

  16. Exploring a possible origin of a 14 deg y-normal spin tilt at RHIC polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-06-15

    A possible origin of a 14 deg y-normal spin n0 tilt at the polarimeter is in snake angle defects. This possible cause is investigated by scanning the snake axis angle µ, and the spin rotation angle at the snake, φ, in the vicinity of their nominal values.

  17. Limited flip angle MR imaging: Hemorrhagic applications

    International Nuclear Information System (INIS)

    Drayer, B.P.; Rigamonti, D.; Johnson, P.C.; Spetzler, R.F.; Keller, P.J.; Flom, R.A.; Bird, C.R.; Hodak, J.A.

    1987-01-01

    The authors studied 64 patients with hemorrhagic brain lesions, including vascular malformations (n = 29), hemorrhagic infarctions (n = 9), chronic slit hemorrhagic residua of hypertensive hematoma (n = 10), trauma (n = 8), and gliobastoma multiforme (n = 8). With a 1.5-T MR imaging system, 5-mm sections were obtained at a repetition time of 300 msec (or 500), an echo time of 12.3 msec (or 10 and 40), and a flip angle of 60 0 (or 20 0 ). The limited flip angle study was always extremely sensitive for the detection of hemosiderin. With multiple cavernous angiomas, additional small lesions (in five of 18 patients) were detected only with the limited flip angle technique. The hemosiderin-laden macrophage residua of hemorrhagic infarction and hypertensive hematoma were better seen on limited flip angle images than on T2-weighted spin-echo images. The detection of blood on limited flip angle images permitted the grading of glioma as glioblastoma multiforme

  18. The evolution of the MasAgro hubs

    NARCIS (Netherlands)

    Camacho-Villa, Tania Carolina; Almekinders, Conny; Hellin, Jon; Martinez-Cruz, Tania Eulalia; Rendon-Medel, Roberto; Guevara-Hernández, Francisco; Beuchelt, Tina D.; Govaerts, Bram

    2016-01-01

    Purpose: Little is known about effective ways to operationalize agricultural innovation processes. We use the MasAgro program in Mexico (which aims to increase maize and wheat productivity, profitability and sustainability), and the experiences of middle level ‘hub managers’, to understand how

  19. 48 CFR 538.271 - MAS contract awards.

    Science.gov (United States)

    2010-10-01

    ... price/discount relationship between the Government and the identified commercial customer (or category... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false MAS contract awards. 538... CATEGORIES OF CONTRACTING FEDERAL SUPPLY SCHEDULE CONTRACTING Establishing and Administering Federal Supply...

  20. Meconium aspiration syndrome (MAS) - Where do we go? Research perspectives.

    Science.gov (United States)

    Kääpä, Pekka O

    2009-10-01

    The pathogenetic cascade of meconium aspiration syndrome (MAS) in newborn infants is complex and still incompletely studied. The variable clinical presentation of MAS is basically connected with variation of the amount and consistency of aspirated meconium and also its distribution within the affected lungs. The contributing role of other factors, like intrauterine fetal compromises, lung maturity at the time of insult as well as direct and indirect effects of meconium and its components on the lung alveolar and vascular integrity and development, remains to be studied in further detail. Better understanding of the lung injury processes in MAS, specifically inflammatory injury and non-inflammatory apoptosis and their interplay, may offer new possibilities to treat the severely affected infants, and needs therefore to be explored. Systemic dispersion of intrapulmonary meconium and its components may further induce inflammatory circulatory changes and injurious effects in distant organs, but the mechanisms and clinical significance of these systemic complications are still poorly known. It is thus evident that lung injury processes and potent long-term consequences in various extrapulmonary organs, specifically the brain, as well as development of new approaches to their treatment and prevention form great challenges for future research of MAS.

  1. Snell's Law for Spin Waves

    Science.gov (United States)

    Stigloher, J.; Decker, M.; Körner, H. S.; Tanabe, K.; Moriyama, T.; Taniguchi, T.; Hata, H.; Madami, M.; Gubbiotti, G.; Kobayashi, K.; Ono, T.; Back, C. H.

    2016-07-01

    We report the experimental observation of Snell's law for magnetostatic spin waves in thin ferromagnetic Permalloy films by imaging incident, refracted, and reflected waves. We use a thickness step as the interface between two media with different dispersion relations. Since the dispersion relation for magnetostatic waves in thin ferromagnetic films is anisotropic, deviations from the isotropic Snell's law known in optics are observed for incidence angles larger than 25 ° with respect to the interface normal between the two magnetic media. Furthermore, we can show that the thickness step modifies the wavelength and the amplitude of the incident waves. Our findings open up a new way of spin wave steering for magnonic applications.

  2. Spin-polarized spin-orbit-split quantum-well states in a metal film

    Energy Technology Data Exchange (ETDEWEB)

    Varykhalov, Andrei; Sanchez-Barriga, Jaime; Gudat, Wolfgang; Eberhardt, Wolfgang; Rader, Oliver [BESSY Berlin (Germany); Shikin, Alexander M. [St. Petersburg State University (Russian Federation)

    2008-07-01

    Elements with high atomic number Z lead to a large spin-orbit coupling. Such materials can be used to create spin-polarized electronic states without the presence of a ferromagnet or an external magnetic field if the solid exhibits an inversion asymmetry. We create large spin-orbit splittings using a tungsten crystal as substrate and break the structural inversion symmetry through deposition of a gold quantum film. Using spin- and angle-resolved photoelectron spectroscopy, it is demonstrated that quantum-well states forming in the gold film are spin-orbit split and spin polarized up to a thickness of at least 10 atomic layers. This is a considerable progress as compared to the current literature which reports spin-orbit split states at metal surfaces which are either pure or covered by at most a monoatomic layer of adsorbates.

  3. Moment arms and lengths of human upper limb muscles as functions of joint angles.

    Science.gov (United States)

    Pigeon, P; Yahia, L; Feldman, A G

    1996-10-01

    Modeling of musculoskeletal structures requires accurate data on anatomical parameters such as muscle lengths (MLs), moment arms (MAs) and those describing the upper limb position. Using a geometrical model of planar arm movements with three degrees of freedom, we present, in an analytical form, the available information on the relationship between MAs and MLs and joint angles for thirteen human upper limb muscles. The degrees of freedom included are shoulder flexion/extension, elbow flexion/extension, and either wrist flexion/extension (the forearm in supination) or radial/ulnar deviation (the forearm in mid-pronation). Previously published MA/angle curves were approximated by polynomials. ML/angle curves were obtained by combining the constant values of MLs (defined by the distance between the origin and insertion points for a specific upper limb position) with a variable part obtained by multiplying the MA (joint radius) and the joint angle. The MAs of the prime wrist movers in radial/ulnar deviation were linear functions of the joint angle (R2 > or = 0.9954), while quadratic polynomials accurately described their MAs during wrist flexion/extensions. The relationship between MAs and the elbow angle was described by 2nd, 3rd or 5th-order polynomials (R2 > or = 0.9904), with a lesser quality of fit for the anconeus (R2 = 0.9349). In the full range of angular displacements, the length of wrist, elbow and shoulder muscles can change by 8.5, 55 and 200%, respectively.

  4. Widespread spin polarization effects in photoemission from topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, C.; Chen, Y. L.; Fedorov, A. V.; Analytis, J. G.; Rotundu, C. R.; Schmid, A. K.; Denlinger, J. D.; Chuang, Y.-D.; Lee, D.-H.; Fisher, I. R.; Birgeneau, R. J.; Shen, Z.-X.; Hussain, Z.; Lanzara, A.

    2011-06-22

    High-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi{sub 2}Se{sub 3} using a recently developed high-efficiency spectrometer. The topological surface state's helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations of photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.

  5. A New Spin on Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, Chris [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    The electronic spin degree of freedom is of general fundamental importance to all matter. Understanding its complex roles and behavior in the solid state, particularly in highly correlated and magnetic materials, has grown increasingly desirable as technology demands advanced devices and materials based on ever stricter comprehension and control of the electron spin. However, direct and efficient spin dependent probes of electronic structure are currently lacking. Angle Resolved Photoemission Spectroscopy (ARPES) has become one of the most successful experimental tools for elucidating solid state electronic structures, bolstered by-continual breakthroughs in efficient instrumentation. In contrast, spin-resolved photoemission spectroscopy has lagged behind due to a lack of similar instrumental advances. The power of photoemission spectroscopy and the pertinence of electronic spin in the current research climate combine to make breakthroughs in Spin and Angle Resolved Photoemission Spectroscopy (SARPES) a high priority . This thesis details the development of a unique instrument for efficient SARPES and represents a radical departure from conventional methods. A custom designed spin polarimeter based on low energy exchange scattering is developed, with projected efficiency gains of two orders of magnitude over current state-of-the-art polarimeters. For energy analysis, the popular hemispherical analyzer is eschewed for a custom Time-of-Flight (TOF) analyzer offering an additional order of magnitude gain in efficiency. The combined instrument signifies the breakthrough needed to perform the high resolution SARPES experiments necessary for untangling the complex spin-dependent electronic structures central to today's condensed matter physics.

  6. Diffraction-dependent spin splitting in spin Hall effect of light on reflection.

    Science.gov (United States)

    Qiu, Xiaodong; Xie, Linguo; Qiu, Jiangdong; Zhang, Zhiyou; Du, Jinglei; Gao, Fuhua

    2015-07-27

    We report on a diffraction-dependent spin splitting of the paraxial Gaussian light beams on reflection theoretically and experimentally. In the case of horizontal incident polarization, the spin splitting is proportional to the diffraction length of light beams near the Brewster angle. However, the spin splitting is nearly independent with the diffraction length for the vertical incident polarization. By means of the angular spectrum theory, we find that the diffraction-dependent spin splitting is attributed to the first order expansion term of the reflection coefficients with respect to the transverse wave-vector which is closely related to the diffraction length.

  7. Interference Spins

    DEFF Research Database (Denmark)

    Popovski, Petar; Simeone, Osvaldo; Nielsen, Jimmy Jessen

    2015-01-01

    on traffic load and interference condition leads to performance gains. In this letter, a general network of multiple interfering two-way links is studied under the assumption of a balanced load in the two directions for each link. Using the notion of interference spin, we introduce an algebraic framework...

  8. Spinning worlds

    NARCIS (Netherlands)

    Schwarz, H.

    2017-01-01

    The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1

  9. ERP sistēmas ieviešana

    OpenAIRE

    Proskurins, Aleksandrs

    2008-01-01

    Šajā darbā tika apskatīta informācijas sistēmu klasifikācija, uzņēmuma resursu plānošanas sistēmas (ERP) definīcija un tās vieta IS klasifikācijā. Tika apskatīti ERP sistēmu ieviešanas teorētiskie aspekti, izstrādes un pielāgošanas specifika, kā arī tika izanalizēti vairāki ERP sistēmas ieviešanas projekti Latvijas uzņēmumos.

  10. The MicroMAS CubeSat Mission

    Science.gov (United States)

    Cahoy, K.; Blackwell, W. J.; Allen, G.; Bury, M.; Efromson, R.; Galbraith, C.; Hancock, T.; Leslie, V.; Osaretin, I.; Retherford, L.; Scarito, M.; Shields, M.; Toher, D.; Wight, K.; Miller, D.; Marinan, A.; Paek, S.; Peters, E.; Schmidt, F. H.; Alvisio, B.; Wise, E.; Masterson, R.; Franzim Miranda, D.; Crail, C.; Kingsbury, R.; Souffrant, A.; Orrego, L.; Eslinger, G.; Nicholas, A.; Pong, C.

    2012-12-01

    The recently published Midterm Assessment of NASA's Implementation of the Decadal Survey finds that, "The nation's Earth observing system is beginning a rapid decline in capability as long-running missions end and key new missions are delayed, lost, or canceled. The projected loss of observing capability could have significant adverse consequences for science and society." In this presentation, we explore low-cost, mission-flexible, and rapidly deployable spaceborne sensors that can meet stringent performance requirements pervading the NASA Earth Science measurement programs, including especially the recommended NRC Decadal Survey missions. New technologies have enabled a novel approach toward this science observational goal, and in this paper we describe recent technology develop efforts to address the challenges above through the use of CubeSat radiometers. The Micro-sized Microwave Atmospheric Satellite (MicroMAS) is a 3U cubesat (30x10x10 cm, ~4kg) hosting a passive microwave spectrometer operating near the 118.75-GHz oxygen absorption line. The focus of the first MicroMAS mission (hereafter, MicroMAS-1) is to observe convective thunderstorms, tropical cyclones, and hurricanes from a near-equatorial orbit at approximately 500-km altitude. A MicroMAS flight unit is currently being developed in anticipation of a 2014 launch to be provided by NASA. A parabolic reflector is mechanically rotated as the spacecraft orbits the earth, thus directing a cross-track scanned beam with FWHM beamwidth of 2.4-degrees, yielding an approximately 25-km diameter footprint from a nominal altitude of 500 km. Radiometric calibration is carried out using observations of cold space, the earth's limb, and an internal noise diode that is weakly coupled through the RF front-end electronics. A key technology feature is the development of an ultra-compact intermediate frequency processor module for channelization, detection, and A-to-D conversion. The antenna system and RF front

  11. In a spin at Brookhaven spin physics

    CERN Document Server

    Makdisi, Y I

    2003-01-01

    The mysterious quantity that is spin took centre stage at Brookhaven for the SPIN2002 meeting last September. The 15th biennial International Spin Physics Symposium (SPIN2002) was held at Brookhaven National Laboratory on 9-14 September 2002. Some 250 spin enthusiasts attended, including experimenters and theorists in both nuclear and high-energy physics, as well as accelerator physicists and polarized target and polarized source experts. The six-day symposium included 23 plenary talks and 150 parallel talks. SPIN2002 was preceded by a one-day spin physics tutorial for students, postdocs, and anyone else who felt the need for a refresher course. (2 refs).

  12. Spin-Circuit Representation of Spin Pumping

    Science.gov (United States)

    Roy, Kuntal

    2017-07-01

    Circuit theory has been tremendously successful in translating physical equations into circuit elements in an organized form for further analysis and proposing creative designs for applications. With the advent of new materials and phenomena in the field of spintronics and nanomagnetics, it is imperative to construct the spin-circuit representations for different materials and phenomena. Spin pumping is a phenomenon by which a pure spin current can be injected into the adjacent layers. If the adjacent layer is a material with a high spin-orbit coupling, a considerable amount of charge voltage can be generated via the inverse spin Hall effect allowing spin detection. Here we develop the spin-circuit representation of spin pumping. We then combine it with the spin-circuit representation for the materials having spin Hall effect to show that it reproduces the standard results as in the literature. We further show how complex multilayers can be analyzed by simply writing a netlist.

  13. Magnonic Charge Pumping via Spin-Orbit Coupling

    Science.gov (United States)

    Ciccarelli, Chiara; Hals, Kjetil; Irvine, Andrew; Novak, Vit; Tserkovnyak, Yaroslav; Kurebayashi, Hidekazu; Brataas, Arne; Ferguson, Andrew

    2015-03-01

    The interplay between spin, charge and orbital degrees of freedom has led to the development of spintronic devices such as spin-torque oscillators and spin-transfer torque MRAM. In this development, spin pumping represents a convenient way to electrically detect magnetization dynamics. The effect originates from direct conversion of low-energy quantized spin waves in the magnet, known as magnons, into a flow of spins from the precessing magnet to adjacent leads. In this case, a secondary spin-charge conversion element, such as heavy metals with large spin Hall angle or multilayer layouts, is required to convert the spin current into a charge signal. Here, we report the observation of charge pumping in which a precessing ferromagnet pumps a charge current, demonstrating direct conversion of magnons into high-frequency currents via spin-orbit interaction. The generated electric current, unlike spin currents generated by spin-pumping, can be directly detected without the need of any additional spin-charge conversion mechanism. The charge-pumping phenomenon is generic and gives a deeper understanding of its reciprocal effect, the spin orbit torque, which is currently attracting interest for their potential in manipulating magnetic information.

  14. PROPAGANDA POLITIK PARTAI GERINDRA DALAM GAME MAS GARUDA PADA PEMILU 2014 (Analisis Deskriptif Game Online Mas Garuda

    Directory of Open Access Journals (Sweden)

    Angga Satrya Putra

    2016-03-01

    Full Text Available The purpose of this study was to determine how the meaning of the look and content of the online game “Garuda Mas”. This game contains aspects of politically charged designations so that it can become a propaganda technique. The subject of this study is the game “Garuda Mas” which has been input on social media Facebook.Methods of data collection using documentary and literature. Data analysis using descriptive techniques. Data validity checking techniques using triangulation source.The results showed that the game “MAS GARUDA” can form the perspective of the players against Mas Garuda as a superhero figure hopes the Indonesian people who are able to overcome all the problems that exist in Indonesia. This game is a form of creative campaigns using propaganda techniques inserted in the game that has the power to change the mindset of every player. Change of mindset occurs because the player did not have an opportunity to think critically on aspects marking contained in the game. By indirectly the players will feel the emotional of this game and assume characterizations “Garuda Mas” in this game is a truth that can be believed.Keywords: Descriptive, Online Games, Mas Garuda, Partai Gerindra

  15. Half-metallic superconducting triplet spin multivalves

    Science.gov (United States)

    Alidoust, Mohammad; Halterman, Klaus

    2018-02-01

    We study spin switching effects in finite-size superconducting multivalve structures. We examine F1F2SF3 and F1F2SF3F4 hybrids where a singlet superconductor (S) layer is sandwiched among ferromagnet (F) layers with differing thicknesses and magnetization orientations. Our results reveal a considerable number of experimentally viable spin-valve configurations that lead to on-off switching of the superconducting state. For S widths on the order of the superconducting coherence length ξ0, noncollinear magnetization orientations in adjacent F layers with multiple spin axes leads to a rich variety of triplet spin-valve effects. Motivated by recent experiments, we focus on samples where the magnetizations in the F1 and F4 layers exist in a fully spin-polarized half-metallic phase, and calculate the superconducting transition temperature, spatially and energy resolved density of states, and the spin-singlet and spin-triplet superconducting correlations. Our findings demonstrate that superconductivity in these devices can be completely switched on or off over a wide range of magnetization misalignment angles due to the generation of equal-spin and opposite-spin triplet pairings.

  16. Effect of quantum tunneling on spin Hall magnetoresistance.

    Science.gov (United States)

    Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk

    2017-02-22

    We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y 3 Fe 5 O 12 ) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.

  17. Spin Coherence in Semiconductor Nanostructures

    National Research Council Canada - National Science Library

    Flatte, Michael E

    2006-01-01

    ... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...

  18. Spin-flip scattering effect on the current-induced spin torque in ferromagnet-insulator-ferromagnet tunnel junctions

    International Nuclear Information System (INIS)

    Zhu Zhengang; Su Gang; Jin Biao; Zheng Qingrong

    2003-01-01

    We have investigated the current-induced spin transfer torque of a ferromagnet-insulator-ferromagnet tunnel junction by taking the spin-flip scatterings into account. It is found that the spin-flip scattering can induce an additional spin torque, enhancing the maximum of the spin torque and giving rise to an angular shift compared to the case when the spin-flip scatterings are neglected. The effects of the molecular fields of the left and right ferromagnets on the spin torque are also studied. It is found that τ Rx /I e (τ Rx is the spin-transfer torque acting on the right ferromagnet and I e is the tunneling electrical current) does vary with the molecular fields. At two certain angles, τ Rx /I e is independent of the molecular field of the right ferromagnet, resulting in two crossing points in the curve of τ Rx /I e versus the relevant orientation for different molecular fields

  19. Perancangan Dan Pembuatan Sistem Informasi Administrasi Pada Toko Jamur Mas

    OpenAIRE

    -, Yosep; Setiawan, Alexander; Rostianingsih, Silvia

    2013-01-01

    Jamur Mas is a store which sell and buy goods of daily needs. This store has some problems, which are counting of profit and loss, inventory and account receivable and account payable list. Problems that occur are in the recording, where all the recording is still done manually, this recording has a big risk.To answer these problems, then made an application, this application is developed and made with Microsoft Visual Studio 2005.Net and Microsoft SQL Server 2005 as a data storage. This appl...

  20. Angiotensin type 2 receptor (AT2R) and receptor Mas

    DEFF Research Database (Denmark)

    Villela, Daniel; Leonhardt, Julia; Patel, Neal

    2015-01-01

    The angiotensin type 2 receptor (AT2R) and the receptor Mas are components of the protective arms of the renin-angiotensin system (RAS), i.e. they both mediate tissue protective and regenerative actions. The spectrum of actions of these two receptors and their signalling mechanisms display striking...... the phenomenon of blockade of angiotensin-(1-7) [Ang-(1-7)] actions by AT2R antagonists and vice versa. Such mechanisms may comprise dimerization of the receptors or dimerization-independent mechanisms such as lack of specificity of the receptor ligands used in the experiments or involvement of the Ang-(1...

  1. Measuring proton shift tensors with ultrafast MAS NMR.

    Science.gov (United States)

    Miah, Habeeba K; Bennett, David A; Iuga, Dinu; Titman, Jeremy J

    2013-10-01

    A new proton anisotropic-isotropic shift correlation experiment is described which operates with ultrafast MAS, resulting in good resolution of isotropic proton shifts in the detection dimension. The new experiment makes use of a recoupling sequence designed using symmetry principles which reintroduces the proton chemical shift anisotropy in the indirect dimension. The experiment has been used to measure the proton shift tensor parameters for the OH hydrogen-bonded protons in tyrosine·HCl and citric acid at Larmor frequencies of up to 850 MHz. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Acidic properties of SSZ-33 and SSZ-35 novel zeolites: a complex infrared and MAS NMR study

    Czech Academy of Sciences Publication Activity Database

    Gil, B.; Zones, S. I.; Hwang, S.-J.; Voláková, Martina; Čejka, Jiří

    2008-01-01

    Roč. 112, č. 8 (2008), s. 2997-3007 ISSN 1932-7447 R&D Projects: GA ČR GA104/07/0383; GA AV ČR 1QS400400560 Institutional research plan: CEZ:AV0Z40400503 Keywords : nuclear magnetic resonance * adsorbed probe molecules * angle- spinning NMR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.396, year: 2008

  3. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  4. Heat and spin interconversion

    International Nuclear Information System (INIS)

    Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji

    2017-01-01

    Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)

  5. Nuclear spin pumping and electron spin susceptibilities

    NARCIS (Netherlands)

    Danon, J.; Nazarov, Y.V.

    2011-01-01

    In this work we present a new formalism to evaluate the nuclear spin dynamics driven by hyperfine interaction with nonequilibrium electron spins. To describe the dynamics up to second order in the hyperfine coupling it suffices to evaluate the susceptibility and fluctuations of the electron spin.

  6. Validation of commercial Mas receptor antibodies for utilization in Western Blotting, immunofluorescence and immunohistochemistry studies.

    Science.gov (United States)

    Burghi, Valeria; Fernández, Natalia Cristina; Gándola, Yamila Belén; Piazza, Verónica Gabriela; Quiroga, Diego Tomás; Guilhen Mario, Érica; Felix Braga, Janaína; Bader, Michael; Santos, Robson Augusto Souza; Dominici, Fernando Pablo; Muñoz, Marina Cecilia

    2017-01-01

    Mas receptor (MasR) is a G protein-coupled receptor proposed as a candidate for mediating the angiotensin (Ang)-converting enzyme 2-Ang (1-7) protective axis of renin-angiotensin system. Because the role of this receptor is not definitively clarified, determination of MasR tissue distribution and expression levels constitutes a critical knowledge to fully understanding its function. Commercially available antibodies have been widely employed for MasR protein localization and quantification, but they have not been adequately validated. In this study, we carried on an exhaustive evaluation of four commercial MasR antibodies, following previously established criteria. Western Blotting (WB) and immunohistochemistry studies starting from hearts and kidneys from wild type (WT) mice revealed that antibodies raised against different MasR domains yielded different patterns of reactivity. Furthermore, staining patterns appeared identical in samples from MasR knockout (MasR-KO) mice. We verified by polymerase chain reaction analysis that the MasR-KO mice used were truly deficient in this receptor as MAS transcripts were undetectable in either heart or kidney from this animal model. In addition, we evaluated the ability of the antibodies to detect the human c-myc-tagged MasR overexpressed in human embryonic kidney cells. Three antibodies were capable of detecting the MasR either by WB or by immunofluorescence, reproducing the patterns obtained with an anti c-myc antibody. In conclusion, although three of the selected antibodies were able to detect MasR protein at high expression levels observed in a transfected cell line, they failed to detect this receptor in mice tissues at physiological expression levels. As a consequence, validated antibodies that can recognize and detect the MasR at physiological levels are still lacking.

  7. Residual dipolar couplings in sup 3 sup 1 P MAS spectra of PPh sub 3 substituted cobalt complexes

    CERN Document Server

    Szalontai, G

    2002-01-01

    Residual dipolar couplings between sup 3 sup 1 P- sup 5 sup 9 Co spin pairs were studied in sup 3 sup 1 P MAS spectra of mono- and dinuclear cobalt-triphenylphosphine complexes. These spectra can provide important information such as the scalar coupling between the dipolar phosphorus and the quadrupolar cobalt nuclei normally not available from solution phase studies. In case of complementary (NQR or x-ray) data even the relative orientation of the interacting shielding, dipolar, scalar couplings, and electric field gradient tensors or internuclear distances can be determined. Examples are shown both for well resolved and practically unresolved cases, factors which possibly control the spectral resolution are discussed in detail. (author)

  8. Operation of the MAMI accelerator with a Wien filter based spin rotation system

    Energy Technology Data Exchange (ETDEWEB)

    Tioukine, V. [Institut fuer Kernphysik, Johannes-Gutenberg Universitaet Mainz, J.-J. Becherweg 45, D-55099 Mainz (Germany)]. E-mail: tioukine@kph.uni-mainz.de; Aulenbacher, K. [Institut fuer Kernphysik, Johannes-Gutenberg Universitaet Mainz, J.-J. Becherweg 45, D-55099 Mainz (Germany)

    2006-12-01

    A compact spin rotation system based on a Wien filter has been installed at the Mainz microtron accelerator (MAMI). Under operation with varying spin rotation angles a significant change of focal length together with a shift of the central beam trajectory is expected. We demonstrate that these effects can be kept under control. As a consequence operation with spin rotation angles between 0{sup o} and {+-}90{sup o} has been achieved without compromising the beam quality and operational stability of MAMI.

  9. Operation of the MAMI accelerator with a Wien filter based spin rotation system

    Science.gov (United States)

    Tioukine, V.; Aulenbacher, K.

    2006-12-01

    A compact spin rotation system based on a Wien filter has been installed at the Mainz microtron accelerator (MAMI). Under operation with varying spin rotation angles a significant change of focal length together with a shift of the central beam trajectory is expected. We demonstrate that these effects can be kept under control. As a consequence operation with spin rotation angles between 0° and ±90° has been achieved without compromising the beam quality and operational stability of MAMI.

  10. TOKSISITAS LETAL MOLUSKISIDA NIKLOSAMIDA PADA BENIH IKAN MAS (Cyprinus carpio

    Directory of Open Access Journals (Sweden)

    Yosmaniar Yosmaniar

    2009-04-01

    Full Text Available Penggunaan moluskisida untuk menanggulangi hama dalam budidaya tanaman padi yang semakin meningkat berpotensi mencemari lingkungan perairan, karena mengandung residu dari bahan aktifnya. Moluskisida niklosamida (C13H8Cl2N2O4 merupakan bahan aktif pestisida yang digunakan untuk memberantas hama keong mas atau siput murbei (Pomacea sp. di sawah. Dengan demikian, bahan tersebut memiliki potensi untuk mencemari lahan tempat usaha budidaya ikan. Penelitian ini bertujuan untuk mengetahui potensi toksisitas akut niklosamida terhadap benih ikan mas (Cyprinus carpio yang ditunjukkan oleh nilai Median Lethal Concentration (LC50 24, 48, dan 96 jam. Penelitian dilakukan di Instalasi Riset Lingkungan Perikanan Budidaya dan Toksikologi, Cibalagung-Bogor. Menggunakan ikan mas dengan bobot individu 2,47 ± 0,13 g. Moluskisida yang digunakan mengandung bahan aktif niklosamida 250g/L. Wadah pengujian berupa 21 unit akuarium kaca berukuran 40 cm x 20 cm x 20 cm yang dilengkapi aerasi serta saluran pemasukan dan pengeluaran. Jumlah ikan uji setiap wadah 10 ekor dengan peubah yang diukur adalah mortalitas ikan. Selama penelitian ikan tidak diberi makan. Tahapan penelitian terdiri atas penentuan nilai ambang atas-bawah, nilai lethal time dan LC50 -24, 48, 72, dan 96 jam. Data diolah dengan analisis probit program LC50. Hasil penelitian menunjukkan bahwa nilai LC50-24, 48, 72, dan 96 jam terhadap benih ikan mas adalah 0,8012 (0,7140—0,8990; 0,5999 (0,5356—0,6719; 0,4511 (0,4067—0,5004; dan 0,3849 mg/L (0,3684—0,4061. Hal ini menunjukkan niklosamida termasuk pestisida yang memiliki toksisitas sangat tinggi (golongan A. The use of molluscicide in aquatic as well as in terresterial agro ecosystem without properly controlled may produce detrimental effects on freshwater fisheries. Molluscicide utilization for golden apple snail (Pomacea sp. control in rice field has increased. The ingredient potencially has a possibility to pollute aquaculture water. The

  11. Development of Instrumentation for Spin-Echo Induced Spatial Beam Modulations

    DEFF Research Database (Denmark)

    Sales, Morten

    orientation of the neutron as it has been shown in Spin-Echo Small Angle Neutron Scattering (SESANS). Taking this technique further we have shown that it is possible to perform quantitative Dark-Field Imaging, where the small angle scattering signal of individual areas in a neutron image can be obtained......Spin-Echo Modulated Small Angle Neutron Scattering in Time-of-Flight mode (ToF SEMSANS) is an emerging technique extending the measurable phase space covered by neutron scattering. Using inclined magnetic field surfaces, (very) small angle scattering from a sample can be mapped into the spin...

  12. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  13. J-NSE: Neutron spin echo spectrometer

    Directory of Open Access Journals (Sweden)

    Olaf Holderer

    2015-08-01

    Full Text Available Neutron Spin-Echo (NSE spectroscopy is well known as the only neutron scattering technique that achieves energy resolution of several neV. By using the spin precession of polarized neutrons in magnetic field one can measure tiny velocity changes of the individual neutron during the scattering process. Contrary to other inelastic neutron scattering techniques, NSE measures the intermediate scattering function S(Q,t in reciprocal space and time directly. The Neutron Spin-Echo spectrometer J-NSE, operated by JCNS, Forschungszentrum Jülich at the Heinz Maier-Leibnitz Zentrum (MLZ in Garching, covers a time range (2 ps to 200 ns on length scales accessible by small angle scattering technique. Along with conventional NSE spectroscopy that allows bulk measurements in transmission mode, J-NSE offers a new possibility - gracing incidence spin echo spectroscopy (GINSENS, developed to be used as "push-button" option in order to resolve the depth dependent near surface dynamics.

  14. Analysis of Hydroperoxides in Solid Polyethylene by MAS (13)C NMR and EPR

    International Nuclear Information System (INIS)

    ASSINK, ROGER A.; CELINA, MATHIAS C.; DUNBAR, TIMOTHY D.; ALAM, TODD M.; CLOUGH, ROGER LEE; GILLEN, KENNETH T.

    1999-01-01

    13 C-enriched polyethylene was subjected to γ-irradiation in the presence of air at 25 and 80 C for total doses ranging from 71 to 355 kGy. Significant quantities of hydroperoxides were detected in the 25 C irradiated sample by 13 C magic angle spinning NMR spectroscopy. This method of detection was performed on the solid polymer and required no chemical derivatization or addition of solvent. The chemical stability and subsequent products of the hydroperoxide species were studied by annealing the irradiated samples in air at temperatures ranging from 22 to 110 C. A time-temperature superposition analysis provided an activation energy of 108 kJ/mol for the hydroperoxide decomposition process. The primary products of hydroperoxide decomposition were ketones and secondary alcohols with lesser amounts of acids and esters. EPR measurements suggest that the reactive hydroperoxide species reside in the amorphous phase of polyethylene, consistent with degradation occurring in the amorphous phase

  15. Spin interference of neutrons tunneling through magnetic thin films

    International Nuclear Information System (INIS)

    Hino, Masahiro; Achiwa, Norio; Tasaki, Seiji; Ebisawa, Toru; Akiyoshi, Tsunekazu; Kawai, Takeshi.

    1996-01-01

    Larmor precession of a neutron spin is represented as the superposition of the wave functions of the two Stern-Gerlach states ↑ and ↓. A transverse neutron spin echo (NSE) spectrometer can hence be used as a neutron spin interferometer (NSI) by setting a magnetic film, such as iron and permalloy45 (Fe 55 Ni 45 ), thin enough to permit tunneling at an incident angle above and below the critical angle of the total reflection in the Larmor precession field. The NSI can be used to study spin coherent superposition and rotation of the Larmor precession through a magnetic thin film for a tunneling ↑ spin neutron and a non-tunneling ↓ spin neutron and to get the tunneling time using Larmor clock. The NSI experiments were carried out to measure the shifts of NSE signals transmitted through magnetic iron films with thicknesses of 200 and 400 A and those magnetic permalloy45 films with thicknesses of 200 and 400 A, respectively, as a function of the incident angle. Then even in tunneling ↑ spin neutron and non-tunneling ↓ spin neutron, NSE signal was observed. The phase delay was measured in iron and permalloy45 films with thickness of 200 A, and the tunneling time using Larmor clock was estimated to be 4 ± 0.6 x 10 -9 sec. (author)

  16. Angiotensin-(1-7)/Mas axis integrity is required for the expression of object recognition memory.

    Science.gov (United States)

    Lazaroni, Thiago L N; Raslan, Ana Cláudia S; Fontes, Walkiria R P; de Oliveira, Marilene L; Bader, Michael; Alenina, Natalia; Moraes, Márcio F D; Dos Santos, Robson A; Pereira, Grace S

    2012-01-01

    It has been shown that the brain has its own intrinsic renin-angiotensin system (RAS) and angiotensin-(1-7) (Ang-(1-7)) is particularly interesting, because it appears to counterbalance most of the Ang II effects. Ang-(1-7) exerts its biological function through activation of the G-protein-coupled receptor Mas. Interestingly, hippocampus is one of the regions with higher expression of Mas. However, the role of Ang-(1-7)/Mas axis in hippocampus-dependent memories is still poorly understood. Here we demonstrated that Mas ablation, as well as the blockade of Mas in the CA1-hippocampus, impaired object recognition memory (ORM). We also demonstrated that the blockade of Ang II receptors AT1, but not AT2, recovers ORM impairment of Mas-deficient mice. Considering that high concentrations of Ang-(1-7) may activate AT1 receptors, nonspecifically, we evaluate the levels of Ang-(1-7) and its main precursors Ang I and Ang II in the hippocampus of Mas-deficient mice. The Ang I and Ang II levels are unaltered in the whole hipocampus of MasKo. However, Ang-(1-7) concentration is increased in the whole hippocampus of MasKo mice, as well as in the CA1 area. Taken together, our findings suggest that the functionality of the Ang-(1-7)/Mas axis is essential for normal ORM processing. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Spin Transport in Mesoscopic Superconducting-Ferromagnetic Hybrid Conductor

    Directory of Open Access Journals (Sweden)

    Zein W. A.

    2008-01-01

    Full Text Available The spin polarization and the corresponding tunneling magnetoresistance (TMR for a hybrid ferromagnetic/superconductor junction are calculated. The results show that these parameters are strongly depends on the exchange field energy and the bias voltage. The dependence of the polarization on the angle of precession is due to the spin flip through tunneling process. Our results could be interpreted as due to spin imbalance of carriers resulting in suppression of gap energy of the superconductor. The present investigation is valuable for manufacturing magnetic recording devices and nonvolatile memories which imply a very high spin coherent transport for such junction.

  18. Spin Hall magnetoresistance in antiferromagnet/normal metal bilayers

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We investigate the emergence of spin Hall magnetoresistance in a magnetic bilayer composed of a normal metal adjacent to an antiferromagnet. Based on a recently derived drift diffusion equation, we show that the resistance of the bilayer depends on the relative angle between the direction transverse to the current flow and the Néel order parameter. While this effect presents striking similarities with the spin Hall magnetoresistance recently reported in ferromagnetic bilayers, its physical origin is attributed to the anisotropic spin relaxation of itinerant spins in the antiferromagnet.

  19. Spin Transport in Mesoscopic Superconducting-Ferromagnetic Hybrid Conductor

    Directory of Open Access Journals (Sweden)

    Zein W. A.

    2008-01-01

    Full Text Available The spin polarization and the corresponding tunneling magnetoresistance (TMR for a hybrid ferromagnetic / superconductor junction are calculated. The results show that these parameters are strongly depends on the exchange field energy and the bias voltage. The dependence of the polarization on the angle of precession is due to the spin flip through tunneling process. Our results could be interpreted as due to spin imbalance of carriers resulting in suppression of gap energy of the superconductor. The present investigation is valuable for manufacturing magnetic recording devices and nonvolatile memories which imply a very high spin coherent transport for such junction.

  20. The HBN Angle

    Directory of Open Access Journals (Sweden)

    Harsh Bhagvatiprasad Dave

    2015-01-01

    Full Text Available Aim: The purpose of this study was to establish a new cephalometric measurement, named the Harsh Bhagvatiprasad Nita angle (HBN, to assess the sagittal jaw relationship with accuracy and reproducibility. Materials and Methods: Three hundred pretreatment lateral cephalograms (100 each of Class I, II, and III were taken from the Department of Orthodontics and Dentofacial Orthopedics of Rajasthan Dental College and Hospital, Jaipur (Rajasthan and were subdivided into skeletal Class I, II, and III based on ANB, Wits appraisal, and Beta angle. This angle uses 3 skeletal landmarks the "C" (apparent axis of the condyle, "M" (midpoint of the premaxilla, and "G" (center of the largest circle that is tangent to the internal inferior, anterior, and posterior surfaces of the mandibular symphysis. Results: The result of the mean and standard deviation for the HBN angle were calculated in all three skeletal groups. After using one-way analysis of variance and post-hoc multiple comparisons by using Tukey′s honestly significant difference, homogeneous subsets, receiver operating characteristics (ROC curve - to differentiate Class II with Class I, ROC curve - to differentiate Class III with Class I, Reliability analysis with interclass correlation of HBN angle with other angles, we obtained results that showed that a patient with a HBN angle 40° and 46° can be considered to have a Class I skeletal pattern. Conclusions: A new angle, the HBN angle, was developed as a diagnostic aid to evaluate the sagittal jaw relationship more consistently. HBN angle 40° and 46° can be considered to have a Class I skeletal pattern, a more acute HBN angle indicates a Class II skeletal pattern, and a more obtuse HBN angle indicates a Class III skeletal pattern.

  1. Probing sol-gel matrices microenvironments by PGSE HR-MAS NMR.

    Science.gov (United States)

    Ferreira, Ana S D; Barreiros, Susana; Cabrita, Eurico J

    2017-05-01

    We applied Pulsed Gradient Spin Echo diffusion with high-resolution magic angle spinning NMR to study sol-gel matrices used to encapsulate enzymes for biocatalysis (TMOS/MTMS and TMOS/BTMS) to gain insight into the local chemical microenvironment. Transport properties of solvents with different polarities (1-pentanol, acetonitrile and n-hexane) were studied through their apparent self-diffusion coefficients. The spin echo attenuation of the solvents shows two distinct diffusion domains, one with fast diffusion (D fast ) associated with interparticle diffusion and another with slow diffusion (D slow ) corresponding to the displacement inside the pores within the sol-gel particles. The analysis of the root mean square displacements at different diffusion times showed that the D fast domain has a free diffusion regime in both matrices (the root mean square displacement is linearly dependent of the diffusion time), while the D slow domain shows a different regime that depends on the matrix. We investigated the exchange regime between the two diffusion sites. In both matrices, n-hexane was in intermediate exchange between diffusion domains, while the polar solvents were in slow exchange in TMOS/BTMS and in intermediate exchange in TMOS/MTMS. Data were fitted for TMOS/BTMS with the Kärger model, and the physical parameters were obtained. The results add to the evidence that the pores are a hydrophobic environment but that the presence of some free hydrophilic groups inside the pore, as observed in the TMOS/BTMS, has a key role in slowing down the exchange of polar solvents and that this is relevant to explain previously reported enzyme activity in these materials. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Decoherence dynamics of a single spin versus spin ensemble

    NARCIS (Netherlands)

    Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R.

    2008-01-01

    We study decoherence of central spins by a spin bath, focusing on the difference between measurement of a single central spin and measurement of a large number of central spins (as found in typical spin-resonance experiments). For a dilute spin bath, the single spin demonstrates Gaussian

  3. Finding Attitude of a Spin Axis from Roll Angles

    Science.gov (United States)

    2011-03-01

    COPIES ORGANIZATION 21 1 DEFENSE TECHNICAL ( PDF INFORMATION CTR only) DTIC OCA 8725 JOHN J KINGMAN RD STE 0944 FORT BELVOIR VA...PICATINNY ARSENAL NJ 07806-5000 2 CDR US ARMY TACOM ARDEC AMSRD AAR AEP S Q HUYNH T ZAPATA BLDG 94 PICATINNY ARSENAL NJ 07806-5000

  4. Incorporation of phosphorus guest ions in the calcium silicate phases of Portland cement from 31P MAS NMR spectroscopy.

    Science.gov (United States)

    Poulsen, Søren L; Jakobsen, Hans J; Skibsted, Jørgen

    2010-06-21

    Portland cements may contain small quantities of phosphorus (typically below 0.5 wt % P(2)O(5)), originating from either the raw materials or alternative sources of fuel used to heat the cement kilns. This work reports the first (31)P MAS NMR study of anhydrous and hydrated Portland cements that focuses on the phase and site preferences of the (PO(4))(3-) guest ions in the main clinker phases and hydration products. The observed (31)P chemical shifts (10 to -2 ppm), the (31)P chemical shift anisotropy, and the resemblance of the lineshapes in the (31)P and (29)Si MAS NMR spectra strongly suggest that (PO(4))(3-) units are incorporated in the calcium silicate phases, alite (Ca(3)SiO(5)) and belite (Ca(2)SiO(4)), by substitution for (SiO(4))(4-) tetrahedra. This assignment is further supported by a determination of the spin-lattice relaxation times for (31)P in alite and belite, which exhibit the same ratio as observed for the corresponding (29)Si relaxation times. From simulations of the intensities, observed in inversion-recovery spectra for a white Portland cement, it is deduced that 1.3% and 2.1% of the Si sites in alite and belite, respectively, are replaced by phosphorus. Charge balance may potentially be achieved to some extent by a coupled substitution mechanism where Ca(2+) is replaced by Fe(3+) ions, which may account for the interaction of the (31)P spins with paramagnetic Fe(3+) ions as observed for the ordinary Portland cements. A minor fraction of phosphorus may also be present in the separate phase Ca(3)(PO(4))(2), as indicated by the observation of a narrow resonance at delta((31)P) = 3.0 ppm for two of the studied cements. (31)P{(1)H} CP/MAS NMR spectra following the hydration of a white Portland cement show that the resonances from the hydrous phosphate species fall in the same spectral range as observed for (PO(4))(3-) incorporated in alite. This similarity and the absence of a large (31)P chemical shift ansitropy indicate that the hydrous (PO(4

  5. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  6. Magnons, Spin Current and Spin Seebeck Effect

    Science.gov (United States)

    Maekawa, Sadamichi

    2012-02-01

    When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).

  7. Using a grating analyser for SEMSANS investigations in the very small angle range

    International Nuclear Information System (INIS)

    Strobl, M.; Wieder, F.; Duif, C.P.; Hilger, A.; Kardjilov, N.; Manke, I.; Bouwman, W.G.

    2012-01-01

    Spin-echo modulation small-angle neutron scattering (SEMSANS) is based on the detection of spatial beam modulation, which is induced by triangular spin echo precession regions and subsequent spin analyses. In order to detect such signal and exploit it for small angle scattering investigations neutron detection with sub-millimeter spatial resolution is required. Here an approach is reported where instead of a position sensitive detector an absorption grating is used to analyze the beam modulation stepwise. The spin-echo length scan in this case is performed by varying the sample-to-detector distance. The real space correlation functions of reference sample structures in the range 10 2 nm, i.e. giving rise to small-angle scattering in the very small-angle range, are recorded and analyzed successfully.

  8. Spin-1 diquark contributing to the formation of tetraquarks in light mesons

    International Nuclear Information System (INIS)

    Kim, Hungchong; Cheoun, Myung-Ki; Kim, K.S.

    2017-01-01

    We apply a mixing framework to the light-meson systems and examine tetraquark possibility in the scalar channel. In the diquark-antidiquark model, a scalar diquark is a compact object when its color and flavor structures are in (anti 3 c , anti 3 f ). Assuming that all the quarks are in an S-wave, the spin-0 tetraquark formed out of this scalar diquark has only one spin configuration, vertical stroke J,J 12 ,J 34 right angle = vertical stroke 000 right angle, where J is the spin of the tetraquark, J 12 the diquark spin, J 34 the antidiquark spin. In this construction of the scalar tetraquark, we notice that another compact diquark with spin-1 in (6 c , anti 3 f ) can be used although it is less compact than the scalar diquark. The spin-0 tetraquark constructed from this vector diquark leads to the spin configuration vertical stroke J,J 12 ,J 34 right angle = vertical stroke 011 right angle. The two configurations, vertical stroke 000 right angle and vertical stroke 011 right angle, are found to mix strongly through the color-spin interaction. The physical states can be identified with certain mixtures of the two configurations which diagonalize the hyperfine masses of the color-spin interaction. Matching these states to two scalar resonances a 0 (980), a 0 (1450) or to K * 0 (800), K * 0 (1430) depending on the isospin channel, we find that their mass splittings are qualitatively consistent with the hyperfine mass splittings, which can support their tetraquark structure. To test our mixing scheme further, we also construct the tetraquarks for J = 1, J = 2 with the spin configurations vertical stroke 111 right angle and vertical stroke 2011 right angle, and we discuss possible candidates in the physical spectrum. (orig.)

  9. Spin-1 diquark contributing to the formation of tetraquarks in light mesons

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hungchong [Korea Aerospace University, Research Institute of Basic Science, Goyang (Korea, Republic of); Cheoun, Myung-Ki [Soongsil University, Department of Physics, Seoul (Korea, Republic of); Kim, K.S. [Korea Aerospace University, School of Liberal Arts and Science, Goyang (Korea, Republic of)

    2017-03-15

    We apply a mixing framework to the light-meson systems and examine tetraquark possibility in the scalar channel. In the diquark-antidiquark model, a scalar diquark is a compact object when its color and flavor structures are in (anti 3{sub c}, anti 3{sub f}). Assuming that all the quarks are in an S-wave, the spin-0 tetraquark formed out of this scalar diquark has only one spin configuration, vertical stroke J,J{sub 12},J{sub 34} right angle = vertical stroke 000 right angle, where J is the spin of the tetraquark, J{sub 12} the diquark spin, J{sub 34} the antidiquark spin. In this construction of the scalar tetraquark, we notice that another compact diquark with spin-1 in (6{sub c}, anti 3{sub f}) can be used although it is less compact than the scalar diquark. The spin-0 tetraquark constructed from this vector diquark leads to the spin configuration vertical stroke J,J{sub 12},J{sub 34} right angle = vertical stroke 011 right angle. The two configurations, vertical stroke 000 right angle and vertical stroke 011 right angle, are found to mix strongly through the color-spin interaction. The physical states can be identified with certain mixtures of the two configurations which diagonalize the hyperfine masses of the color-spin interaction. Matching these states to two scalar resonances a{sub 0}(980), a{sub 0}(1450) or to K{sup *}{sub 0}(800), K{sup *}{sub 0}(1430) depending on the isospin channel, we find that their mass splittings are qualitatively consistent with the hyperfine mass splittings, which can support their tetraquark structure. To test our mixing scheme further, we also construct the tetraquarks for J = 1, J = 2 with the spin configurations vertical stroke 111 right angle and vertical stroke 2011 right angle, and we discuss possible candidates in the physical spectrum. (orig.)

  10. Why does meconium cause meconium aspiration syndrome? Current concepts of MAS pathophysiology.

    Science.gov (United States)

    van Ierland, Y; de Beaufort, A J

    2009-10-01

    One in every 7 pregnancies ends with meconium-stained amniotic fluid and approximately 5% of these infants develop the meconium aspiration syndrome (MAS). MAS is a severe disease of the (mainly) term neonate, characterized by respiratory distress, pulmonary inflammation, persistent pulmonary hypertension and chronic hypoxia. The pathophysiology of MAS is multifactorial and complex. In this article, we discuss the mechanical and chemical effects of meconium on a newborn's airway, meconium-induced inflammation, mediated by proinflammatory cytokines and chemokines, the complement system and the proinflammatory enzyme phospholipase A2. Furthermore, we focus on MAS-related apoptotic cell death, causing severe acute lung injury due to damage and detachment of lung airway and alveolar cells. Finally, risk factors for MAS development to identify those newborns that develop MAS and those who do not are discussed.

  11. Pure spin current manipulation in antiferromagnetically exchange coupled heterostructures

    Science.gov (United States)

    Avilés-Félix, L.; Butera, A.; González-Chávez, D. E.; Sommer, R. L.; Gómez, J. E.

    2018-03-01

    We present a model to describe the spin currents generated by ferromagnet/spacer/ferromagnet exchange coupled trilayer systems and heavy metal layers with strong spin-orbit coupling. By exploiting the magnitude of the exchange coupling (oscillatory RKKY-like coupling) and the spin-flop transition in the magnetization process, it has been possible to produce spin currents polarized in arbitrary directions. The spin-flop transition of the trilayer system originates pure spin currents whose polarization vector depends on the exchange field and the magnetization equilibrium angles. We also discuss a protocol to control the polarization sign of the pure spin current injected into the metallic layer by changing the initial conditions of magnetization of the ferromagnetic layers previously to the spin pumping and inverse spin Hall effect experiments. The small differences in the ferromagnetic layers lead to a change in the magnetization vector rotation that permits the control of the sign of the induced voltage components due to the inverse spin Hall effect. Our results can lead to important advances in hybrid spintronic devices with new functionalities, particularly, the ability to control microscopic parameters such as the polarization direction and the sign of the pure spin current through the variation of macroscopic parameters, such as the external magnetic field or the thickness of the spacer in antiferromagnetic exchange coupled systems.

  12. Reading Angles in Maps

    Science.gov (United States)

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…

  13. Evidence for Heterodimerization and Functional Interaction of the Angiotensin Type 2 Receptor and the Receptor MAS.

    Science.gov (United States)

    Leonhardt, Julia; Villela, Daniel C; Teichmann, Anke; Münter, Lisa-Marie; Mayer, Magnus C; Mardahl, Maibritt; Kirsch, Sebastian; Namsolleck, Pawel; Lucht, Kristin; Benz, Verena; Alenina, Natalia; Daniell, Nicholas; Horiuchi, Masatsugu; Iwai, Masaru; Multhaup, Gerhard; Schülein, Ralf; Bader, Michael; Santos, Robson A; Unger, Thomas; Steckelings, Ulrike Muscha

    2017-06-01

    The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin-angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa. Such cross-inhibition may indicate heterodimerization of these receptors. Therefore, this study investigated the molecular and functional interplay between MAS and the AT2R. Molecular interactions were assessed by fluorescence resonance energy transfer and by cross correlation spectroscopy in human embryonic kidney-293 cells transfected with vectors encoding fluorophore-tagged MAS or AT2R. Functional interaction of AT2R and MAS was studied in astrocytes with CX3C chemokine receptor-1 messenger RNA expression as readout. Coexpression of fluorophore-tagged AT2R and MAS resulted in a fluorescence resonance energy transfer efficiency of 10.8 ± 0.8%, indicating that AT2R and MAS are capable to form heterodimers. Heterodimerization was verified by competition experiments using untagged AT2R and MAS. Specificity of dimerization of AT2R and MAS was supported by lack of dimerization with the transient receptor potential cation channel, subfamily C-member 6. Dimerization of the AT2R was abolished when it was mutated at cysteine residue 35. AT2R and MAS stimulation with the respective agonists, Compound 21 or angiotensin-(1-7), significantly induced CX3C chemokine receptor-1 messenger RNA expression. Effects of each agonist were blocked by an AT2R antagonist (PD123319) and also by a MAS antagonist (A-779). Knockout of a single of these receptors made astrocytes unresponsive for both agonists. Our results suggest that MAS and the AT2R form heterodimers and that-at least in astrocytes-both receptors functionally depend on each other. © 2017 American Heart Association, Inc.

  14. Optimal reconstruction angles

    International Nuclear Information System (INIS)

    Cook, G.O. Jr.; Knight, L.

    1979-07-01

    The question of optimal projection angles has recently become of interest in the field of reconstruction from projections. Here, studies are concentrated on the n x n pixel space, where literative algorithms such as ART and direct matrix techniques due to Katz are considered. The best angles are determined in a Gauss--Markov statistical sense as well as with respect to a function-theoretical error bound. The possibility of making photon intensity a function of angle is also examined. Finally, the best angles to use in an ART-like algorithm are studied. A certain set of unequally spaced angles was found to be preferred in several contexts. 15 figures, 6 tables

  15. Optimized Distribution of Beijing Population Based on CA-MAS

    Directory of Open Access Journals (Sweden)

    Haoguang Liang

    2017-01-01

    Full Text Available In recent years rapid expansion of populations, disruption of ecological environments, and power shortages to areas of high population density in undeveloped areas have appeared in major cities in China. Well-planned population distribution in a city has become one of the key development strategies of urbanization in the country. Taking Beijing as a case-study and using 2010 as the base period, this study simulates city population size and distribution during 2011–2030 using the CA-MAS model. The results showed that (1 the unplanned layout of Beijing’s population is inefficient and will result in the slow agglomeration of populations into surrounding small towns, (2 the suburbanization of the population (while employment opportunities remain centralized increases the stress of the city commuters, (3 the current policy guiding the distribution of residential and commercial areas is effective, accelerating the formation of small town clusters, which play a role in the city’s radiation and diffusion, contributing to reducing urban commuter stress, and (4 promoting the homogenization of public resources, planning the development of a multicenter urban area, and promoting mixed use (commercial and residential zoning are the main measures recommended to strengthen the sustainability of Beijing’s urban development and to optimize spatial layout.

  16. Designing magnetic droplet soliton nucleation employing spin polarizer

    Science.gov (United States)

    Mohseni, Morteza; Mohseni, Majid

    2018-04-01

    We show by means of micromagnetic simulations that spin polarizer in nano-contact (NC) spin torque oscillators as the representative of the fixed layer in an orthogonal pseudo-spin valve can be employed to design and to control magnetic droplet soliton nucleation and dynamics. We found that using a tilted spin polarizer layer decreases the droplet nucleation time which is more suitable for high speed applications. However, a tilted spin polarizer increases the nucleation current and decreases the frequency stability of the droplet. Additionally, by driving the magnetization inhomogenously at the NC region, it is found that a tilted spin polarizer reduces the precession angle of the droplet and through an interplay with the Oersted field of the DC current, it breaks the spatial symmetry of the droplet profile. Our findings explore fundamental insight into nano-scale magnetic droplet soliton dynamics with potential tunability parameters for future microwave electronics.

  17. RHIC spin physics: Proceedings. Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This proceedings compiles one-page summaries and five transparencies for each talk, with the intention that the speaker should include a web location for additional information in the summary. Also, email addresses are given with the participant list. The order follows the agenda: gluon, polarimetry, accelerator, W production and quark/antiquark polarization, parity violation searches, transversity, single transverse spin, small angle elastic scattering, and the final talk on ep collisions at RHIC. The authors begin the Proceedings with the full set of transparencies from Bob Jaffe`s colloquium on spin, by popular request.

  18. RHIC spin physics: Proceedings. Volume 7

    International Nuclear Information System (INIS)

    1998-01-01

    This proceedings compiles one-page summaries and five transparencies for each talk, with the intention that the speaker should include a web location for additional information in the summary. Also, email addresses are given with the participant list. The order follows the agenda: gluon, polarimetry, accelerator, W production and quark/antiquark polarization, parity violation searches, transversity, single transverse spin, small angle elastic scattering, and the final talk on ep collisions at RHIC. The authors begin the Proceedings with the full set of transparencies from Bob Jaffe's colloquium on spin, by popular request

  19. Nuclear spin-lattice relaxation in carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Panich, A.M., E-mail: pan@bgu.ac.i [Department of Physics, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Sergeev, N.A. [Institute of Physics, University of Szczecin, 70-451 Szczecin (Poland)

    2010-04-15

    Interpretation of nuclear spin-lattice relaxation data in the carbon nanostructures is usually based on the analysis of fluctuations of dipole-dipole interactions of nuclear spins and anisotropic electron-nuclear interactions responsible for chemical shielding, which are caused by molecular dynamics. However, many nanocarbon systems such as fullerene and nanotube derivatives, nanodiamonds and carbon onions reveal noticeable amount of paramagnetic defects with unpaired electrons originating from dangling bonds. The interaction between nuclear and electron spins strongly influences the nuclear spin-lattice relaxation, but usually is not taken into account, thus the relaxation data are not correctly interpreted. Here we report on the temperature dependent NMR spectra and spin-lattice relaxation measurements of intercalated fullerenes C{sub 60}(MF{sub 6}){sub 2} (M=As and Sb), where nuclear relaxation is caused by both molecular rotation and interaction between nuclei and unpaired electron spins. We present a detailed theoretical analysis of the spin-lattice relaxation data taking into account both these contributions. Good agreement between the experimental data and calculations is obtained. The developed approach would be useful in interpreting the NMR relaxation data in different nanostructures and their intercalation compounds.

  20. Spin-Mechatronics

    Science.gov (United States)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  1. Hydration properties and phosphorous speciation in native, gelatinized and enzymatically modified potato starch analyzed by solid-state MAS NMR

    DEFF Research Database (Denmark)

    Larsen, Flemming Hofmann; Kasprzak, Miroslaw Marek; Lærke, Helle Nygaard

    2013-01-01

    Hydration of granular, gelatinized and molecularly modified states of potato starch in terms of molecular mobility were analyzed by 13C and 31P solid-state MAS NMR. Gelatinization (GEL) tremendously reduced the immobile fraction compared to native (NA) starch granules. This effect was enhanced....... Comparative analysis of wheat and waxy maize starches demonstrated that starches were similar upon gelatinization independent of botanical origin and that the torsion angles of the glycosidic linkages were averages of the crystalline A and B type structures. In starch suspension phosphorous in immobile...... regions was only observed in NA starch. Moreover phosphorous was observed in a minor pH-insensitive form and as major phosphate in hydrated GEL and BE starches....

  2. Photoelectric angle converter

    Science.gov (United States)

    Podzharenko, Volodymyr A.; Kulakov, Pavlo I.

    2001-06-01

    The photo-electric angle transmitter of rotation is offered, at which the output voltage is linear function of entering magnitude. In a transmitter the linear phototransducer is used on the basis of pair photo diode -- operating amplifier, which output voltage is linear function of the area of an illuminated photosensitive stratum, and modulator of a light stream of the special shape, which ensures a linear dependence of this area from an angle of rotation. The transmitter has good frequent properties and can be used for dynamic measurements of an angular velocity and angle of rotation, in systems of exact drives and systems of autocontrol.

  3. Two-dimensional spin diffusion in multiterminal lateral spin valves

    Science.gov (United States)

    Saha, D.; Basu, D.; Holub, M.; Bhattacharya, P.

    2008-01-01

    The effects of two-dimensional spin diffusion on spin extraction in lateral semiconductor spin valves have been investigated experimentally and theoretically. A ferromagnetic collector terminal of variable size is placed between the ferromagnetic electron spin injector and detector of a conventional lateral spin valve for spin extraction. It is observed that transverse spin diffusion beneath the collector terminal plays an important role along with the conventional longitudinal spin diffusion in describing the overall transport of spin carriers. Two-dimensional spin diffusion reduces the perturbation of the channel electrochemical potentials and improves spin extraction.

  4. Conversion of pure spin current to charge current in amorphous bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, H.; Ando, Y.; Shinjo, T.; Shiraishi, M., E-mail: shiraishi@ee.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, Osaka 560-8531 (Japan); Shikoh, E. [Graduate School of Engineering, Osaka City University, Osaka 558-8585 (Japan); Fuseya, Y. [Department of Applied Physics and Chemistry, The University of Electro-Communications, Tokyo 182-8585 (Japan)

    2014-05-07

    Spin Hall angle and spin diffusion length in amorphous bismuth (Bi) are investigated by using conversion of a pure spin current to a charge current in a spin pumping technique. In Bi/Ni{sub 80}Fe{sub 20}/Si(100) sample, a clear direct current (DC) electromotive force due to the inverse spin Hall effect of the Bi layer is observed at room temperature under a ferromagnetic resonance condition of the Ni{sub 80}Fe{sub 20} layer. From the Bi thickness dependence of the DC electromotive force, the spin Hall angle and the spin diffusion length of the amorphous Bi film are estimated to be 0.02 and 8 nm, respectively.

  5. Spin alignment of excited projectiles due to target spin-flip interactions

    Science.gov (United States)

    Charity, R. J.; Elson, J. M.; Manfredi, J.; Shane, R.; Sobotka, L. G.; Chajecki, Z.; Coupland, D.; Iwasaki, H.; Kilburn, M.; Lee, Jenny; Lynch, W. G.; Sanetullaev, A.; Tsang, M. B.; Winkelbauer, J.; Youngs, M.; Marley, S. T.; Shetty, D. V.; Wuosmaa, A. H.

    2015-02-01

    The sequential breakup of E /A =65.5 -MeV7Be and E /A =36.6 -MeV6Li projectiles excited through inelastic interactions with 9Be target nuclei has been studied. For events where the target nucleus remained in its ground state, significant alignment of the excited projectile's spin axis parallel or antiparallel to the beam direction was observed. This unusual spin alignment was found to be largely independent of the projectile's scattering angle and it was deduced that the target nucleus has a significant probability of changing its spin orientation during the interaction. It is proposed that the unusual spin alignment is a consequence of the molecular structure of the 9Be nucleus.

  6. Angles in hyperbolic lattices

    DEFF Research Database (Denmark)

    Risager, Morten S.; Södergren, Carl Anders

    2017-01-01

    It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den......It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior...... of the density function in both the small and large variable limits. This extends earlier results by Boca, Pasol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension n . Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead...

  7. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  8. E/Z MAS: An easy-to-use computerized materials control and accountability system

    International Nuclear Information System (INIS)

    Anderson, L.K.; Boor, M.G.; Hurford, J.M.; Landry, R.P.; Martinez, B.J.; Solem, A.M.; Whiteson, R.; Zardecki, A.

    1998-01-01

    Nuclear facilities that handle and process nuclear materials are required to track their nuclear holdings and to keep adequate records that manage and control the inventory of those holdings. The complexity of a system that does this job is directly proportional to the complexity of the facility's operations. This paper describes an approach to computerized materials protection, control, and accountability (MPC and A) that was introduced by Los Alamos National Laboratory (LANL) in the fall of 1997. This new system, E/Z MAS, is the latest addition to the LANL suite of computerized MPC and A tools, which also includes the CoreMAS system. E/Z MAS was initially designed to address the needs of those facilities that have small to modest MPC and A needs but has been expanded to provide full functionality for any facility. The system name, E/Z MAS, reflects the system's easy-to-use characteristics, which include ease of installation and ease of software maintenance. Both CoreMAS and E/Z MAS have been provided to facilities in the Former Soviet Union to assist them in implementing a computerized MPC and A system that meets their needs. In this paper the authors will address the functionality of CoreMAS and E/Z MAS, and an argument in favor of intranet-based material control and accountability will be advanced

  9. Cone Algorithm of Spinning Vehicles under Dynamic Coning Environment

    Directory of Open Access Journals (Sweden)

    Shuang-biao Zhang

    2015-01-01

    Full Text Available Due to the fact that attitude error of vehicles has an intense trend of divergence when vehicles undergo worsening coning environment, in this paper, the model of dynamic coning environment is derived firstly. Then, through investigation of the effect on Euler attitude algorithm for the equivalency of traditional attitude algorithm, it is found that attitude error is actually the roll angle error including drifting error and oscillating error, which is induced directly by dynamic coning environment and further affects the pitch angle and yaw angle through transferring. Based on definition of the cone frame and cone attitude, a cone algorithm is proposed by rotation relationship to calculate cone attitude, and the relationship between cone attitude and Euler attitude of spinning vehicle is established. Through numerical simulations with different conditions of dynamic coning environment, it is shown that the induced error of Euler attitude fluctuates by the variation of precession and nutation, especially by that of nutation, and the oscillating frequency of roll angle error is twice that of pitch angle error and yaw angle error. In addition, the rotation angle is more competent to describe the spinning process of vehicles under coning environment than Euler angle gamma, and the real pitch angle and yaw angle are calculated finally.

  10. Spin at Lausanne

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    From 25 September to 1 October, some 150 spin enthusiasts gathered in Lausanne for the 1980 International Symposium on High Energy Physics with Polarized Beams and Polarized Targets. The programme was densely packed, covering physics interests with spin as well as the accelerator and target techniques which make spin physics possible

  11. Spin-torque transistor

    NARCIS (Netherlands)

    Bauer, G.E.W.; Brataas, A.; Tserkovnyak, Y.; Van Wees, B.J.

    2003-01-01

    A magnetoelectronic thin-film transistor is proposed that can display negative differential resistance and gain. The working principle is the modulation of the soure–drain current in a spin valve by the magnetization of a third electrode, which is rotated by the spin-torque created by a control spin

  12. Recent trends in spin-resolved photoelectron spectroscopy

    Science.gov (United States)

    Okuda, Taichi

    2017-12-01

    Since the discovery of the Rashba effect on crystal surfaces and also the discovery of topological insulators, spin- and angle-resolved photoelectron spectroscopy (SARPES) has become more and more important, as the technique can measure directly the electronic band structure of materials with spin resolution. In the same way that the discovery of high-Tc superconductors promoted the development of high-resolution angle-resolved photoelectron spectroscopy, the discovery of this new class of materials has stimulated the development of new SARPES apparatus with new functions and higher resolution, such as spin vector analysis, ten times higher energy and angular resolution than conventional SARPES, multichannel spin detection, and so on. In addition, the utilization of vacuum ultra violet lasers also opens a pathway to the realization of novel SARPES measurements. In this review, such recent trends in SARPES techniques and measurements will be overviewed.

  13. Global Landslides on Rapidly Spinning Spheroids

    Science.gov (United States)

    Scheeres, Daniel J.; Sanchez, P.

    2013-10-01

    The angle of repose and conditions for global landslides on the surfaces of small, rapidly spinning, spheroidal asteroids are studied. Applying techniques of soil mechanics, we develop a theory for, and examples of, how regolith will fail and flow in this microgravity environment. Our motivation is to develop an understanding of the "top-shaped" class of asteroids based on analytical soil mechanics. Our analysis transforms the entire asteroid surface into a local frame where we can model it as a conventional granular pile with a surface slope, acceleration and height variations as a function of the body's spin rate, shape and density. A general finding is that the lowest point on a rapidly spinning spheroid is at the equator with the effective height of surface material monotonically increasing towards the polar regions, where the height can be larger than the physical radius of the body. We study the failure conditions of both cohesionless and cohesive regolith, and develop specific predictions of the surface profile as a function of the regolith angle of friction and the maximum spin rate experienced by the body. The theory also provides simple guidelines on what the shape may look like, although we do not analyze gravitationally self-consistent evolution of the body shape. The theory is tested with soft-sphere discrete element method granular mechanics simulations to better understand the dynamical aspects of global asteroid landslides. We find significant differences between failure conditions for cohesive and cohesionless regolith. In the case of cohesive regolith, we show that extremely small values of strength (much less than that found in lunar regolith) can stabilize a surface even at very rapid spin rates. Cohesionless surfaces, as expected, fail whenever their surface slopes exceed the angle of friction. Based on our analysis we propose that global landslides and the flow of material towards the equator on spheroidal bodies are precipitated by exogenous

  14. Spin physics in semiconductors

    CERN Document Server

    2017-01-01

    This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.

  15. Temperature dependence of the magnetization of canted spin structures

    DEFF Research Database (Denmark)

    Jacobsen, Henrik; Lefmann, Kim; Brok, Erik

    2012-01-01

    Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models...... for the temperature dependence of the magnetization of a simple canted spin structure in which relaxation can take place at finite temperatures between spin configurations with different canting angles. We show that the saturation magnetization may either decrease or increase with decreasing temperature, depending...

  16. Strain engineered magnetic tunnel junctions and spin-orbit torque switching (Conference Presentation)

    Science.gov (United States)

    Wu, Yang; Narayanapillai, Kulothungasagaran; Elyasi, Mehrdad; Qiu, Xuepeng; Yang, Hyunsoo

    2016-10-01

    The efficient generation of pure spin currents and manipulation of the magnetization dynamics of magnetic structures is of central importance in the field of spintronics. The spin-orbit effect is one of the promising ways to generate spin currents, in which a charge current can be converted to a transverse spin current due to the spin-orbit interaction. We investigate the spin dynamics in the presence of strong spin-orbit coupling materials such as LaAlO3/SrTiO3 oxide heterostructures. Angle dependent magnetoresistance measurements are employed to detect and understand the current-induced spin-orbit torques, and an effective field of 2.35 T is observed for a dc-current of 200 uA. In order to understand the interaction between light and spin currents, we use a femtosecond laser to excite an ultrafast transient spin current and subsequent terahertz (THz) emission in nonmagnet (NM)/ferromagnet (FM)/oxide heterostructures. The THz emission strongly relies on spin-orbit interaction, and is tailored by the magnitude and sign of the effective spin Hall angle of the NM. Our results can be utilized for ultrafast spintronic devices and tunable THz sources.

  17. The Effect of Glancing Angle Deposition Conditions on the Morphology of a Silver Nanohelix Array

    Directory of Open Access Journals (Sweden)

    Yi-Jun Jen

    2017-09-01

    Full Text Available Silver nanohelices were grown on smooth substrates using glancing angle deposition and substrate cooling. Various nanohelix arrays were deposited under different deposition conditions—different deposition rates, substrate spin rates, deposition angles, and substrate temperatures. The effect of deposition conditions on the morphology of each nanohelix array in terms of pitch angle, pitch length, wire diameter, and radius of curvature was investigated. The dependence of circular dichroism on the size of the nanohelix arrays was also measured and demonstrated.

  18. Spin-orbit-torque and magnetic damping in tailored ferromagnetic bilayers

    OpenAIRE

    Lee, DongJoon; Kim, JongHyuk; Park, HeeGyum; Lee, Kyung-Jin; Ju, Byeong-Kwon; Koo, Hyun Cheol; Min, Byoung-Chul; Lee, OukJae

    2018-01-01

    We study spin-orbit-torque-driven ferromagnetic resonance (FMR) in ferromagnetic (FM) bilayers, consisting of Co and permalloy (Py), sandwiched between Pt and MgO layers. We find that the FM layer in contact with the Pt layers dominantly determines that spin Hall angle, which is consistent with the spin-transparency model. By contrast, the FMR linewidths are considerably influenced not only by the spin-pumping effect across the Pt|FM in terface but also by the spin relaxation such as two-magn...

  19. Spin-resolved photoemission of surface states of W(110)-(1x1)H

    International Nuclear Information System (INIS)

    Hochstrasser, M.; Tobin, J.G.; Rotenberg, Eli; Kevan, S.D.

    2002-01-01

    The surface electronic states of W(110)-(1x1)H have been measured using spin- and angle-resolved photoemission. We directly demonstrate that the surface bands are both split and spin-polarized by the spin-orbit interaction in association with the loss of inversion symmetry near a surface. We observe 100 percent spin polarization of the surface states, with the spins aligned in the plane of the surface and oriented in a circular fashion relative to the S-bar symmetry point. In contrast, no measurable polarization of nearby bulk states is observed

  20. Muon spin relaxation in random spin systems

    International Nuclear Information System (INIS)

    Toshimitsu Yamazaki

    1981-01-01

    The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)

  1. Evidence for Heterodimerization and Functional Interaction of the Angiotensin Type 2 Receptor and the Receptor MAS

    DEFF Research Database (Denmark)

    Leonhardt, Julia; Villela, Daniel C.; Teichmann, Anke

    2017-01-01

    The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin-angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa. Such cross-inhibition may......, subfamily C-member 6. Dimerization of the AT2R was abolished when it was mutated at cysteine residue 35. AT2R and MAS stimulation with the respective agonists, Compound 21 or angiotensin-(1-7), significantly induced CX3C chemokine receptor-1 messenger RNA expression. Effects of each agonist were blocked...

  2. Beam divergence correction method for neutron resonance spin echo spectroscope

    International Nuclear Information System (INIS)

    Maruyama, Ryuji; Tasaki, Seiji; Hino, Masahiro; Kitaguchi, Masaaki; Kawabata, Yuji; Ebisawa, Toru

    2005-01-01

    A beam divergence correction method for Neutron resonance spin echo (NRSE) spectroscope was proposed and the effectiveness is evaluated by simulation. When a beam divergence correction coil was introduced into NRSE spectroscope and the optimum magnetic field was given, the visibility of spin echo signal was recovered by controlling scattering of phase difference generated by beam divergence. The effectiveness of the correction method was proved by the above result. Principle of NRSE spectroscopy, decrease of spin polarization rate by beam divergence and its correction method, structure of divergence angle correction coil and the magnetic field calculation and result of simulation are described. (S.Y.)

  3. The BANANA Survey: Spin-Orbit Alignment in Binary Stars

    Science.gov (United States)

    Albrecht, Simon; Winn, J. N.; Fabrycky, D. C.; Torres, G.; Setiawan, J.

    2012-04-01

    Binaries are not always neatly aligned. Previous observations of the DI Herculis system showed that the spin axes of both stars are highly inclined with respect to one another and the orbital axis. Here, we report on our ongoing survey to measure relative orientations of spin-axes in a number of eclipsing binary systems. These observations will hopefully lead to new insights into star and planet formation, as different formation scenarios predict different degrees of alignment and different dependencies on the system parameters. Measurements of spin-orbit angles in close binary systems will also create a basis for comparison for similar measurements involving close-in planets.

  4. open angle glaucoma (poag)?

    African Journals Online (AJOL)

    there is a build up of pressure due to poor outflow of aqueous humor. The outflow obstruction could occur at the trabecular meshwork of the anterior chamber angle or subsequently in the episcleral vein due to raised venous pressure. Such build up of pressure results in glaucoma . Elevated intraocular pressure remains the ...

  5. The quadriceps angle

    DEFF Research Database (Denmark)

    Miles, James Edward; Frederiksen, Jane V.; Jensen, Bente Rona

    2012-01-01

    : Pelvic limbs from red foxes (Vulpes vulpes). METHODS: Q angles were measured on hip dysplasia (HD) and whole limb (WL) view radiographs of each limb between the acetabular rim, mid-point (Q1: patellar center, Q2: femoral trochlea), and tibial tuberosity. Errors of 0.5-2.0 mm at measurement landmarks...

  6. At Right Angles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. At Right Angles. Shailesh A Shirali. Information and Announcements Volume 17 Issue 9 September 2012 pp 920-920. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/017/09/0920-0920 ...

  7. The lateral angle revisited

    DEFF Research Database (Denmark)

    Morgan, Jeannie; Lynnerup, Niels; Hoppa, R.D.

    2013-01-01

    This article presents the results of a validation study of a previously published method of sex determination from the temporal bone. The purpose of this study was to evaluate the lateral angle method for the internal acoustic canal for accurately determining the sex of human skeletal remains usi...... method appears to be of minimal practical use in forensic anthropology and archeology....

  8. Small angle neutron scattering

    International Nuclear Information System (INIS)

    Gupta, Sanjay

    1982-01-01

    The technique of small angle neutron scattering was first used in Germany less than two decades ago. Since then it has developed very rapidly, and today it is regarded as one of the most powerful techniques in materials, chemical and biological research. During the last decade the combination of high flux reactors and sophisticated instrumentation has revolutionized the technique. This paper endeavours to present a brief but comprehensive review of small angle scattering of neutrons and its applications in solid state research. The domain in which small angle neutron scattering is particularly useful is delineated and some of the methods used in the analysis of data are discussed with special emphasis on recent developments. Typical small angle neutron scattering cameras are described. Finally some experimental results on heterogeneities in metallic systems (both static and dynamic studies), radiation damage in materials, superconductivity, magnetic materials and the technologically very important area of non-destructive testing are reviewed in order to illustrate the wide range of applicability of this technique to problems in solid state research. (author)

  9. Neutron small angle scattering

    International Nuclear Information System (INIS)

    Ibel, K.

    1975-01-01

    The neutron small-angle scattering system at the High-Flux Reactor in Grenoble consists of three major parts: the supply of cold neutrons via bent neutron guides; the small angle camera D11; and the data handling facilities. The camera D11 has an overall length of 80 m. The effective length of the camera is variable. The length of the collimator before the fixed sample position can be reduced by movable neutron guides; the secondary flight path of 40 m full length contains detector sites in various positions. Thus, a large domain of momentum transfers can be exploited. Scattering angles between 5.10 -4 and 0.5 rad and neutron wavelengths from 0.2 to 2.0 nm are available with the same instrument and the same relative resolution. A large-area position-sensitive detector is used which allows simultaneous recording of intensities scattered into different angles; it is a multiwire proportional chamber. 3808 elements of 1 cm 2 are arranged in a two-dimensional matrix. Future development comprises an increase of the limit in the count rate due to the electronic interface between the detector and on-line computer, actually at 5.10 4 per sec. by one order of magnitude

  10. At Right Angles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. At Right Angles. Shailesh A Shirali. Information and Announcements Volume 17 Issue 9 September 2012 pp 920-920. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/017/09/0920-0920 ...

  11. HR-MAS NMR metabolomics of 'Swingle' citrumelo rootstock genetically modified to overproduce proline.

    Science.gov (United States)

    de Oliveira, Caroline S; Carlos, Eduardo F; Vieira, Luiz G E; Lião, Luciano M; Alcantara, Glaucia B

    2014-08-01

    The accumulation of proline is a typical physiological response to abiotic stresses in higher plants. 'Swingle' citrumelo, an important rootstock for citrus production, has been modified with a mutated Δ(1)-pyrroline-5-carboxylate synthetase gene (VaP5CSF129A) linked to the cauliflower mosaic virus 35S promoter to induce the overproduction of free proline. This paper presents a comparative metabolomic study of nontransgenic versus transgenic 'Swingle' citrumelo plants with high endogenous proline. (1)H high-resolution magic angle spinning nuclear magnetic resonance spectroscopy and multivariate analysis showed significant differences in some metabolites between the nontransgenic and transgenic leaves and roots. The overproduction of proline has reduced the sucrose content in transgenic leaves, revealing a metabolic cost for these plants. In roots, the high level of free proline acts for the adjustment of cation-anion balance, causing the reduction of acetic acid content. The same sucrose level in roots indicates that they can be considered as sucrose sink. Similar behavior may be waited for fruits produced on transgenic rootstock. Copyright © 2014 John Wiley & Sons, Ltd.

  12. The susceptibilities in the spin-S Ising model

    International Nuclear Information System (INIS)

    Ainane, A.; Saber, M.

    1995-08-01

    The susceptibilities of the spin-S Ising model are evaluated using the effective field theory introduced by Tucker et al. for studying general spin-S Ising model. The susceptibilities are studied for all spin values from S = 1/2 to S = 5/2. (author). 12 refs, 4 figs

  13. Smoke, Clouds and Radiation Brazil NASA ER-2 Moderate Resolution Imaging Spectrometer (MODIS) Airborne Simulator (MAS) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — SCARB_ER2_MAS data are Smoke, Clouds and Radiation Brazil (SCARB) NASA ER2 Moderate Resolution Imaging Spectrometer (MODIS) Airborne Simulator (MAS)...

  14. Higher spin gauge theories

    CERN Document Server

    Henneaux, Marc; Vasiliev, Mikhail A

    2017-01-01

    Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...

  15. Spin caloritronics in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Angsula; Frota, H. O. [Department of Physics, Federal University of Amazonas, Av. Rodrigo Octavio 3000-Japiim, 69077-000 Manaus, AM (Brazil)

    2015-06-14

    Spin caloritronics, the combination of spintronics with thermoelectrics, exploiting both the intrinsic spin of the electron and its associated magnetic moment in addition to its fundamental electronic charge and temperature, is an emerging technology mainly in the development of low-power-consumption technology. In this work, we study the thermoelectric properties of a Rashba dot attached to two single layer/bilayer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current, which depends on the temperature and chemical potential. We demonstrate that the Rashba dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature, and also the Rashba term have been observed.

  16. Spin caloritronics in graphene

    Science.gov (United States)

    Frota, H. O.; Ghosh, Angsula

    2014-08-01

    Spin caloritronics, the combination of spintronics with thermoelectrics, based on spin and heat transport has attracted a great attention mainly in the development of low-power-consumption technology. In this work we study the thermoelectric properties of a quantum dot attached to two single layer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current which depends on the temperature and chemical potential. We demonstrate that the quantum dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature and also the Coulomb repulsion due to the double occupancy of an energy level have been observed.

  17. Nonadiabatic generation of spin currents in a quantum ring with Rashba and Dresselhaus spin-orbit interactions

    International Nuclear Information System (INIS)

    Niţa, Marian; Ostahie, Bogdan; Marinescu, D C; Manolescu, Andrei; Gudmundsson, Vidar

    2012-01-01

    When subjected to a linearly polarized terahertz pulse, a mesoscopic ring endowed with spin-orbit interaction (SOI) of the Rashba-Dresselhaus type exhibits non-uniform azimuthal charge and spin distributions. Both types of SOI couplings are considered linear in the electron momentum. Our results are obtained within a formalism based on the equation of motion satisfied by the density operator which is solved numerically for different values of the angle φ, the angle determining the polarization direction of the laser pulse. Solutions thus obtained are later employed in determining the time-dependent charge and spin currents, whose values are calculated in the stationary limit. Both these currents exhibit an oscillatory behavior complicated in the case of the spin current by a beating pattern. We explain this occurrence on account of the two spin-orbit interactions which force the electron spin to oscillate between the two spin quantization axes corresponding to Rashba and Dresselhaus interactions. The oscillation frequencies are explained using the single particle spectrum.

  18. Spin-polarized scanning-tunneling probe for helical Luttinger liquids.

    Science.gov (United States)

    Das, Sourin; Rao, Sumathi

    2011-06-10

    We propose a three-terminal spin-polarized STM setup for probing the helical nature of the Luttinger liquid edge state that appears in the quantum spin Hall system. We show that the three-terminal tunneling conductance depends on the angle (θ) between the magnetization direction of the tip and the local orientation of the electron spin on the edge while the two terminal conductance is independent of this angle. We demonstrate that chiral injection of an electron into the helical Luttinger liquid (when θ is zero or π) is associated with fractionalization of the spin of the injected electron in addition to the fractionalization of its charge. We also point out a spin current amplification effect induced by the spin fractionalization.

  19. Inactivation Of ACC Oxidase Acco During Modified Atmosphere Storage MAS Of Mango

    Directory of Open Access Journals (Sweden)

    E. Basuki

    2017-02-01

    Full Text Available Inactivation ACC Oxidase ACCO during Modified Atmosphere Storage MAS of Mango were carried out at Food Technology Laboratory University of Mataram from by using Completely Randomized Design and continued with Least Significant Different at five percent significance level. Mangoes were stored at Polyethylene PE bags PE KMnO4 Polypropylene bags PP PP KMnO4 and unpacked Control for three weeks. The physical properties of fruit such as weight loss and decay percentage were determined while physiological properties such as the rate of respiration ethylene production including ACCO activity. Inactivation of ACCO occurred to almost half-time of its activity in mango stored at MAS as compared to unpacked mango. Therefore paralleled the rate of respiration and production of ethylene at MAS leads to extend the storage life of mangoes. Weight loss and decay percentage of mango kept in MAS for 3 weeks were lower than unpacked.

  20. Spin and Maximal Acceleration

    Directory of Open Access Journals (Sweden)

    Giorgio Papini

    2017-12-01

    Full Text Available We study the spin current tensor of a Dirac particle at accelerations close to the upper limit introduced by Caianiello. Continual interchange between particle spin and angular momentum is possible only when the acceleration is time-dependent. This represents a stringent limit on the effect that maximal acceleration may have on spin physics in astrophysical applications. We also investigate some dynamical consequences of maximal acceleration.

  1. Spin Hall effect devices

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Wunderlich, Joerg; Olejník, Kamil

    2012-01-01

    Roč. 11, č. 5 (2012), s. 382-390 ISSN 1476-1122 EU Projects: European Commission(XE) 268066 - 0MSPIN; European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 35.749, year: 2012

  2. Spin coating apparatus

    Science.gov (United States)

    Torczynski, John R.

    2000-01-01

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  3. Worldline as a spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Fatollahi, Amir H. [Alzahra University, Department of Physics, P. O. Box 19938, Tehran (Iran, Islamic Republic of)

    2017-03-15

    The general theoretical ground for models based on compact angle coordinates is presented. It is observed that the proper dependence on compact coordinates has to be through the group elements and is achieved most naturally in a discrete-time formulation of the theory. By the construction, the discrete worldline inlaid by compact coordinates resembles the spin chains of magnetic systems. As examples, the models based on the groups U(1), Z{sub N} and SU(2) are explicitly constructed and their exact energy spectra are obtained. As the consequence of the minima in the spectra, the models exhibit a phase transition of first order. We attempt to fit the dynamics by the U(1) group to the proposed role for monopoles in the dual Meissner effect of the confinement mechanism. (orig.)

  4. Preliminary studies concerning chromosome constitution of some Cornus mas L. genotypes (Bacau district)

    OpenAIRE

    Elena Truta; Gabriela Capraru; Craita-Maria Rosu; Stefania Surdu; Gogu Giorghita; Viorel Ionel Rati

    2009-01-01

    : The cytogenetic characterization is necessary to decipher the controversies on biogeography, taxonomy and evolution of the genus, evolution of chromosome number. Some of Cornus species have the following diploid chromosome numbers: Cornus suecica L. 2n=22, Cornus mas L. 2n=18, 54, Cornus sanguinea L. 2n=22, Cornus sericea L. 2n=22, Cornus alba 2n=22. Our preliminary observations performed on Cornus mas genotypes (Bacau district) confirmed the existence of 2n=18 chromosomes. Kary...

  5. Analysis of local molecular motions of aromatic sidechains in proteins by 2D and 3D fast MAS NMR spectroscopy and quantum mechanical calculations

    Czech Academy of Sciences Publication Activity Database

    Paluch, P.; Pawlak, T.; Jeziorna, A.; Trébosc, J.; Hou, G.; Vega, A. J.; Amoureux, J. P.; Dračínský, Martin; Polenova, T.; Potrzebowski, M. J.

    2015-01-01

    Roč. 17, č. 43 (2015), s. 28789-28801 ISSN 1463-9076 R&D Projects: GA ČR GA15-11223S Institutional support: RVO:61388963 Keywords : solid-state NMR * angle spinning NMR * NMR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.449, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/cp/c5cp04475h

  6. A controllable spin prism

    International Nuclear Information System (INIS)

    Hakioglu, T

    2009-01-01

    Based on Khodas et al (2004 Phys. Rev. Lett. 92 086602), we propose a device acting like a controllable prism for an incident spin. The device is a large quantum well where Rashba and Dresselhaus spin-orbit interactions are present and controlled by the plunger gate potential, the electric field and the barrier height. A totally destructive interference can be manipulated externally between the Rashba and Dresselhaus couplings. The spin-dependent transmission/reflection amplitudes are calculated as the control parameters are changed. The device operates as a spin prism/converter/filter in different regimes and may stimulate research in promising directions in spintronics in analogy with linear optics.

  7. Quantum spin Hall phases

    International Nuclear Information System (INIS)

    Murakami, Shuichi

    2009-01-01

    We review our recent theoretical works on the quantum spin Hall effect. First we compare edge states in various 2D systems, and see whether they are robust or fragile against perturbations. Through the comparisons we see the robust nature of edge states in 2D quantum spin Hall phases. We see how it is protected by the Z 2 topological number, and reveal the nature of the Z 2 topological number by studying the phase transition between the quantum spin Hall and insulator phases. We also review our theoretical proposal of the ultrathin bismuth film as a candidate to the 2D quantum spin Hall system. (author)

  8. PREFACE: Spin Electronics

    Science.gov (United States)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic

  9. Spin glasses (II)

    International Nuclear Information System (INIS)

    Fischer, K.H.

    1985-01-01

    Experimental results of spin glass studies are reviewed and related to existing theories. Investigations of spin glasses are concentrated on atomic structure, metallurgical treatment, and high-temperature susceptibility of alloys, on magnetic properties at low temperature and near the freezing temperature, on anisotropy behaviour measured by ESR, NMR and torque, on specific heat, Moessbauer effect, neutron scattering and muon-spin depolarization experiments, ultrasound and transport properties. Some new theories of spin glasses are discussed which have been developed since Part I appeared

  10. A novel α/β-hydrolase gene IbMas enhances salt tolerance in transgenic sweetpotato.

    Directory of Open Access Journals (Sweden)

    Degao Liu

    Full Text Available Salt stress is one of the major environmental stresses in agriculture worldwide and affects crop productivity and quality. The development of crops with elevated levels of salt tolerance is therefore highly desirable. In the present study, a novel maspardin gene, named IbMas, was isolated from salt-tolerant sweetpotato (Ipomoea batatas (L. Lam. line ND98. IbMas contains maspardin domain and belongs to α/β-hydrolase superfamily. Expression of IbMas was up-regulated in sweetpotato under salt stress and ABA treatment. The IbMas-overexpressing sweetpotato (cv. Shangshu 19 plants exhibited significantly higher salt tolerance compared with the wild-type. Proline content was significantly increased, whereas malonaldehyde content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbMas up-regulated the salt stress responsive genes, including pyrroline-5-carboxylate synthase, pyrroline-5-carboxylate reductase, SOD, psbA and phosphoribulokinase genes, under salt stress. These findings suggest that overexpression of IbMas enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and increasing reactive oxygen species scavenging capacity.

  11. AVE 0991, a non-peptide Mas-receptor agonist, facilitates penile erection.

    Science.gov (United States)

    da Costa Gonçalves, Andrey C; Fraga-Silva, Rodrigo A; Leite, Romulo; Santos, Robson A S

    2013-03-01

    The renin-angiotensin system plays a crucial role in erectile function. It has been shown that elevated levels of angiotensin II contribute to the development of erectile dysfunction both in humans and in aminals. On the contrary, the heptapeptide angiotensin-(1-7) appears to mediate penile erection by activation of the Mas receptor. Recently, we have shown that the erectile function of Mas gene-deleted mice was substantially reduced, which was associated with a marked increase in fibrous tissue in the corpus cavernosum. We have hypothesized that the synthetic non-peptide Mas agonist, AVE 0991, would potentiate penile erectile function. We showed that intracavernosal injection of AVE 0991 potentiated the erectile response of anaesthetized Wistar rats, measured as the ratio between corpus cavernosum pressure and mean arterial pressure, upon electrical stimulation of the major pelvic ganglion. The facilitatory effect of AVE 0991 on erectile function was dose dependent and completely blunted by the nitric oxide synthesis inhibitor, l-NAME. Importantly, concomitant intracavernosal infusion of the specific Mas receptor blocker, A-779, abolished the effect of AVE 0991. We demonstrated that AVE 0991 potentiates the penile erectile response through Mas in an NO-dependent manner. Importantly, these results suggest that Mas agonists, such as AVE 0991, might have significant therapeutic benefits for the treatment of erectile dysfunction.

  12. Magnon condensation and spin superfluidity

    Science.gov (United States)

    Bunkov, Yury M.; Safonov, Vladimir L.

    2018-04-01

    We consider the Bose-Einstein condensation (BEC) of quasi-equilibrium magnons which leads to spin superfluidity, the coherent quantum transfer of magnetization in magnetic material. The critical conditions for excited magnon density in ferro- and antiferromagnets, bulk and thin films, are estimated and discussed. It was demonstrated that only the highly populated region of the spectrum is responsible for the emergence of any BEC. This finding substantially simplifies the BEC theoretical analysis and is surely to be used for simulations. It is shown that the conditions of magnon BEC in the perpendicular magnetized YIG thin film is fulfillied at small angle, when signals are treated as excited spin waves. We also predict that the magnon BEC should occur in the antiferromagnetic hematite at room temperature at much lower excited magnon density compared to that of ferromagnetic YIG. Bogoliubov's theory of Bose-Einstein condensate is generalized to the case of multi-particle interactions. The six-magnon repulsive interaction may be responsible for the BEC stability in ferro- and antiferromagnets where the four-magnon interaction is attractive.

  13. Spin canting in ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Marx, J., E-mail: jmarx@physik.uni-kl.de; Huang, H.; Salih, K. S. M.; Thiel, W. R.; Schünemann, V. [University of Kaiserslautern, Department of Physics (Germany)

    2016-12-15

    Recently, an easily scalable process for the production of small (3 −7 nm) monodisperse superparamagnetic ferrite nanoparticles MeFe{sub 2}O{sub 4} (Me = Zn, Mn, Co) from iron metal and octanoic acid has been reported (Salih et al., Chem. Mater. 25 1430–1435 2013). Here we present a Mössbauer spectroscopic study of these ferrite nanoparticles in external magnetic fields of up to B = 5 T at liquid helium temperatures. Our analysis shows that all three systems show a comparable inversion degree and the cationic distribution for the tetrahedral A and the octahedral B sites has been determined to (Zn{sub 0.19}Fe{sub 0.81}){sup A}[Zn{sub 0.81}Fe{sub 1.19}] {sup B}O{sub 4}, (Mn{sub 0.15}Fe{sub 0.85}){sup A}[Mn{sub 0.85}Fe{sub 1.15}] {sup B}O{sub 4} and (Co{sub 0.27}Fe{sub 0.73}){sup A}[Co{sub 0.73}Fe{sub 1.27}] {sup B}O{sub 4}. Spin canting occurs presumably in the B-sites and spin canting angles of 33°, 51° and 59° have been determined for the zinc, the manganese, and the cobalt ferrite nanoparticles.

  14. Noise in tunneling spin current across coupled quantum spin chains

    OpenAIRE

    Aftergood, Joshua; Takei, So

    2017-01-01

    We theoretically study the spin current and its dc noise generated between two spin-1/2 spin chains weakly coupled at a single site in the presence of an over-population of spin excitations and a temperature elevation in one subsystem relative to the other, and compare the corresponding transport quantities across two weakly coupled magnetic insulators hosting magnons. In the spin chain scenario, we find that applying a temperature bias exclusively leads to a vanishing spin current and a conc...

  15. Effect of spin rotation coupling on spin transport

    International Nuclear Information System (INIS)

    Chowdhury, Debashree; Basu, B.

    2013-01-01

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied

  16. Spin labels. Applications in biology

    International Nuclear Information System (INIS)

    Frangopol, T.P.; Frangopol, M.; Ionescu, S.M.; Pop, I.V.; Benga, G.

    1980-11-01

    The main applications of spin labels in the study of biomembranes, enzymes, nucleic acids, in pharmacology, spin immunoassay are reviewed along with the fundamentals of the spin label method. 137 references. (author)

  17. Spin Switching via Quantum Dot Spin Valves

    Science.gov (United States)

    Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.

    2018-01-01

    We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.

  18. Spin, mass, and symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E. [Stanford Univ., CA (United States)

    1994-12-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.

  19. Physics lab in spin

    CERN Multimedia

    Hawkes, N

    1999-01-01

    RAL is fostering commerical exploitation of its research and facilities in two main ways : spin-out companies exploit work done at the lab, spin-in companies work on site taking advantage of the facilities and the expertise available (1/2 page).

  20. More spinoff from spin

    International Nuclear Information System (INIS)

    Masaike, Akira

    1993-01-01

    Despite playing a major role in today's Standard Model, spin - the intrinsic angular momentum carried by particles - is sometimes dismissed as an inessential complication. However several major spin questions with important implications for the Standard Model remain unanswered, and recent results and new technological developments made the 10th International Symposium on High Energy Spin Physics, held in Nagoya, Japan, in November, highly topical. The symposium covered a wide range of physics, reflecting the diversity of spin effects, however four main themes were - the spin content of the nucleon, tests of symmetries and physics beyond standard models, intermediate energy physics, and spin technologies. Opening the meeting, T. Kinoshita reviewed the status of measurements of the anomalous magnetic moment (g-2) of the electron and the muon. The forthcoming experiment at Brookhaven (September 1991, page 23) will probe beyond the energy ranges open to existing electronpositron colliders. For example muon substructure will be opened up to 5 TeV and Ws to 2 TeV. R.L. Jaffe classified quark-parton distributions in terms of their spin dependence, pointing out their leftright attributes, and emphasized the importance of measuring transverse spin distributions through lepton pair production

  1. Antiferromagnetic spin Seebeck effect.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-03

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.

  2. Spin, mass, and symmetry

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1994-01-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics

  3. Relationship between the angle of repose and angle of internal ...

    African Journals Online (AJOL)

    Abstract. Click on the link to view the abstract. Keywords: Angle of repose, angle of internal friction, granular materials, triaxial compression machine, moisture content. Tanzania J. Agric. Sc. (1998) Vol.1 No.2, 187-194 ...

  4. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans

    1975-01-01

    with increasing temperatures implies that the two-ion coupling is effectively isotropic above ∼ 150 K. We present arguments for concluding that, among the mechanisms which may introduce anisotropic two-ion couplings in the rare-earth metals, the modification of the indirect exchange interaction by the spin......The energies of spin waves propagating in the c direction of Tb have been studied by inelastic neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent...... with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results...

  5. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.

    2017-12-08

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  6. Rb-129Xe spin-exchange rates due to binary and three-body collisions at high Xe pressures

    International Nuclear Information System (INIS)

    Cates, G.D.; Fitzgerald, R.J.; Barton, A.S.; Bogorad, P.; Gatzke, M.; Newbury, N.R.; Saam, B.

    1992-01-01

    We have studied the spin relaxation of 129 Xe nuclei due to collisions with Rb atoms at Xe pressures of 245--1817 Torr. Our results can be characterized by two parameters, the Rb- 129 Xe velocity-averaged binary spin-exchange cross section left-angle σv right-angle and a rate γ M that characterizes spin relaxation due to van der Waals molecules. Our results complement earlier studies performed at Xe pressures of about 1 Torr and N 2 pressures of 10--100 Torr. This work is useful for predicting spin-exchange rates between polarized Rb atoms and 129 Xe nuclei

  7. Critical angle laser refractometer

    International Nuclear Information System (INIS)

    Castrejon-Pita, J.R.; Morales, A.; Castrejon-Garcia, R.

    2006-01-01

    A simple laser refractometer based on the detection of the critical angle for liquids is presented. The calibrated refractometer presents up to 0.000 11 of uncertainty when the refractive index is in the range between 1.300 00 and 1.340 00. The experimental setup is easy to construct and the material needed is available at most optics laboratories. The calibration method is simple and can be used in other devices. The refractive index measurements in aqueous solutions of sodium chloride were carried out to test the device and a linear dependence between the refractive index and the salt concentration was found

  8. Test of a two-dimensional neutron spin analyzer

    International Nuclear Information System (INIS)

    Falus, Peter; Vorobiev, Alexei; Krist, Thomas

    2006-01-01

    The aim of this measurement was to test the new large-area spin polarization analyzer for the EVA-SERGIS beamline at Institute Laue Langevin (ILL). The spin analyzer, which was built in Berlin selects one of the two spin states of a neutron beam of wavelength 5.5 A impinging on a horizontal sample and reflected or scattered from the sample. The spin is analyzed for all neutrons scattered into a detector with an area of 190 mmx190 mm positioned 2.7 m behind the sample, thus covering an angular interval of 4 o x4 o . The tests were done at the HMI V14 beamline followed by tests at the EVA beamline at ILL. The transmission for the two spin components, the flipping ratio and small angle scattering were recorded while scanning the incoming beam on the analyzer. It was clearly visible, that due to the stacked construction the intensity is blocked at regular intervals. Careful inspection shows that the transmission of the good spin component is more than 0.72 for 60% of the detector area and the corrected flipping ratio is more than 47 for 60% of the detector area. Although some small-angle scattering is visible, it is notable that this analyzer design has small scattering intensities

  9. Test of a two-dimensional neutron spin analyzer

    Science.gov (United States)

    Falus, Péter; Vorobiev, Alexei; Krist, Thomas

    2006-11-01

    The aim of this measurement was to test the new large-area spin polarization analyzer for the EVA-SERGIS beamline at Institute Laue Langevin (ILL). The spin analyzer, which was built in Berlin selects one of the two spin states of a neutron beam of wavelength 5.5 Å impinging on a horizontal sample and reflected or scattered from the sample. The spin is analyzed for all neutrons scattered into a detector with an area of 190 mm×190 mm positioned 2.7 m behind the sample, thus covering an angular interval of 4°×4°. The tests were done at the HMI V14 beamline followed by tests at the EVA beamline at ILL. The transmission for the two spin components, the flipping ratio and small angle scattering were recorded while scanning the incoming beam on the analyzer. It was clearly visible, that due to the stacked construction the intensity is blocked at regular intervals. Careful inspection shows that the transmission of the good spin component is more than 0.72 for 60% of the detector area and the corrected flipping ratio is more than 47 for 60% of the detector area. Although some small-angle scattering is visible, it is notable that this analyzer design has small scattering intensities.

  10. Spin orientation in solid solution hematite-ilmenite

    DEFF Research Database (Denmark)

    Brok, Erik; Frandsen, Cathrine; Lefmann, Kim

    2017-01-01

    The spin orientation in synthetic hematite-ilmenite samples and in a sample of natural hematite was studied from room temperature to above the antiferromagnetic-paramagnetic phase transition (the Néel temperature; TN ≈ 600–950 K) by neutron powder diffraction and at room temperature by Mössbauer...... of synthetic hematite samples. We find the spins in the antiferromagnetic sublattices to be rotated out of the basal plane by an angle between 11(2)° and 22.7(5)° in both synthetic hematite-ilmenite samples and in the natural hematite sample. The spin angle remains tilted out of the basal plane in the entire...... in understanding of one of the two main mineral systems responsible for rock magnetism....

  11. Large spin Hall magnetoresistance and its correlation to the spin-orbit torque in W/CoFeB/MgO structures

    Science.gov (United States)

    Cho, Soonha; Baek, Seung-heon Chris; Lee, Kyeong-Dong; Jo, Younghun; Park, Byong-Guk

    2015-01-01

    The phenomena based on spin-orbit interaction in heavy metal/ferromagnet/oxide structures have been investigated extensively due to their applicability to the manipulation of the magnetization direction via the in-plane current. This implies the existence of an inverse effect, in which the conductivity in such structures should depend on the magnetization orientation. In this work, we report a systematic study of the magnetoresistance (MR) of W/CoFeB/MgO structures and its correlation with the current-induced torque to the magnetization. We observe that the MR is independent of the angle between the magnetization and current direction but is determined by the relative magnetization orientation with respect to the spin direction accumulated by the spin Hall effect, for which the symmetry is identical to that of so-called the spin Hall magnetoresistance. The MR of ~1% in W/CoFeB/MgO samples is considerably larger than those in other structures of Ta/CoFeB/MgO or Pt/Co/AlOx, which indicates a larger spin Hall angle of W. Moreover, the similar W thickness dependence of the MR and the current-induced magnetization switching efficiency demonstrates that MR in a non-magnet/ferromagnet structure can be utilized to understand other closely correlated spin-orbit coupling effects such as the inverse spin Hall effect or the spin-orbit spin transfer torques. PMID:26423608

  12. On the analysis of time-of-flight spin-echo modulated dark-field imaging data

    DEFF Research Database (Denmark)

    Sales, Morten; Plomp, Jeroen; Bouwman, Wim G.

    2017-01-01

    Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large...... modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori......-spatially resolved Spin-Echo Modulated Small Angle Neutron Scattering....

  13. Identification of Li-Ion Battery SEI Compounds through (7)Li and (13)C Solid-State MAS NMR Spectroscopy and MALDI-TOF Mass Spectrometry.

    Science.gov (United States)

    Huff, Laura A; Tavassol, Hadi; Esbenshade, Jennifer L; Xing, Wenting; Chiang, Yet-Ming; Gewirth, Andrew A

    2016-01-13

    Solid-state (7)Li and (13)C MAS NMR spectra of cycled graphitic Li-ion anodes demonstrate SEI compound formation upon lithiation that is followed by changes in the SEI upon delithiation. Solid-state (13)C DPMAS NMR shows changes in peaks associated with organic solvent compounds (ethylene carbonate and dimethyl carbonate, EC/DMC) upon electrochemical cycling due to the formation of and subsequent changes in the SEI compounds. Solid-state (13)C NMR spin-lattice (T1) relaxation time measurements of lithiated Li-ion anodes and reference poly(ethylene oxide) (PEO) powders, along with MALDI-TOF mass spectrometry results, indicate that large-molecular-weight polymers are formed in the SEI layers of the discharged anodes. MALDI-TOF MS and NMR spectroscopy results additionally indicate that delithiated anodes exhibit a larger number of SEI products than is found in lithiated anodes.

  14. Magnetic Snell's law and spin-wave fiber with Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Yu, Weichao; Lan, Jin; Wu, Ruqian; Xiao, Jiang

    2016-10-01

    Spin waves are collective excitations propagating in the magnetic medium with ordered magnetizations. Magnonics, utilizing the spin wave (magnon) as an information carrier, is a promising candidate for low-dissipation computation and communication technologies. We discover that, due to the Dzyaloshinskii-Moriya interaction, the scattering behavior of the spin wave at a magnetic domain wall follows a generalized Snell's law, where two magnetic domains work as two different mediums. Similar to optical total reflection that occurs at water-air interfaces, spin waves may experience total reflection at the magnetic domain walls when their incident angle is larger than a critical value. We design a spin-wave fiber using a magnetic domain structure with two domain walls, and demonstrate that such a spin-wave fiber can transmit spin waves over long distances by total internal reflections, in analogy to an optical fiber.

  15. Efficient room temperature spin-Hall injection across an oxide barrier

    International Nuclear Information System (INIS)

    Chen, Shuhan; Qin, Chuan; Ji, Yi

    2014-01-01

    Spin Hall injection is demonstrated at room temperature using Pt metal and AlO x barriers. A substantial spin accumulation, comparable to that of a magnetic spin injection, is transferred into a mesoscopic Cu wire from an adjacent Pt wire across an AlO x barrier. The Pt spin Hall angle is 0.030 ± 0.007 when assuming a Pt spin diffusion length λ pt  > 6 nm and 0.09 ± 0.02 when assuming λ pt  = 2 nm. Nearly (66 ± 6)% of the spin accumulation on the Pt surface is transferred into the Cu across the AlO x , enabling an efficient spin Hall injection scheme.

  16. Scaling of misorientation angle distributions

    DEFF Research Database (Denmark)

    Hughes, D.A.; Chrzan, D.C.; Liu, Q.

    1998-01-01

    The measurement of misorientation angle distributions following different amounts of deformation in cold-rolled aluminum and nickel and compressed stainless steel is reported. The sealing of the dislocation cell boundary misorientation angle distributions is studied. Surprisingly, the distributio...

  17. Neuroprotective Mechanisms of the ACE2-Angiotensin-(1-7)-Mas Axis in Stroke

    DEFF Research Database (Denmark)

    Bennion, Douglas M; Haltigan, Emily; Regenhardt, Robert W

    2015-01-01

    The discovery of beneficial neuroprotective effects of the angiotensin converting enzyme 2-angiotensin-(1-7)-Mas axis [ACE2-Ang-(1-7)-Mas] in ischemic and hemorrhagic stroke has spurred interest in a more complete characterization of its mechanisms of action. Here, we summarize findings that desc......The discovery of beneficial neuroprotective effects of the angiotensin converting enzyme 2-angiotensin-(1-7)-Mas axis [ACE2-Ang-(1-7)-Mas] in ischemic and hemorrhagic stroke has spurred interest in a more complete characterization of its mechanisms of action. Here, we summarize findings...... that describe the protective role of the ACE2-Ang-(1-7)-Mas axis in stroke, along with a focused discussion on the potential mechanisms of neuroprotective effects of Ang-(1-7) in stroke. The latter incorporates evidence describing the actions of Ang-(1-7) to counter the deleterious effects of angiotensin II...... complete understanding of the mechanisms of action of Ang-(1-7) to elicit neuroprotection will serve as an essential step toward research into potential targeted therapeutics in the clinical setting....

  18. Altered heart rate and blood pressure variability in mice lacking the Mas protooncogene

    Directory of Open Access Journals (Sweden)

    T. Walther

    2000-01-01

    Full Text Available Heart rate variability is a relevant predictor of cardiovascular risk in humans. A significant genetic influence on heart rate variability is suggested, although the genes involved are ill-defined. The Mas-protooncogene encodes a G-protein-coupled receptor with seven transmembrane domains highly expressed in testis and brain. Since this receptor is supposed to interact with the signaling of angiotensin II, which is an important regulator of cardiovascular homeostasis, heart rate and blood pressure were analyzed in Mas-deficient mice. Using a femoral catheter the blood pressure of mice was measured for a period of 30 min and 250 data values per second were recorded. The mean values and range of heart rate and blood pressure were then calculated. Neither heart rate nor blood pressure were significantly different between knockout mice and controls. However, high resolution recording of these parameters and analysis of the data by non-linear dynamics revealed significant alterations in cardiovascular variability in Mas-deficient animals. In particular, females showed a strong reduction of heart rate variability. Furthermore, the data showed an increased sympathetic tone in knockout animals of both genders. The marked alterations detected in Mas-deficient mice of both genders suggest that the Mas-protooncogene is an important determinant of heart rate and blood pressure variability.

  19. Angle performance on optima MDxt

    Energy Technology Data Exchange (ETDEWEB)

    David, Jonathan; Kamenitsa, Dennis [Axcelis Technologies, Inc., 108 Cherry Hill Dr, Beverly, MA 01915 (United States)

    2012-11-06

    Angle control on medium current implanters is important due to the high angle-sensitivity of typical medium current implants, such as halo implants. On the Optima MDxt, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through six narrow slits, and any angle adjustment is made by electrostatically steering the beam, while cross-wafer beam parallelism is adjusted by changing the focus of the electrostatic parallelizing lens (P-lens). In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen prior to implant. A variety of tests were run to measure the accuracy and repeatability of Optima MDxt's angle control. SIMS profiles of a high energy, channeling sensitive condition show both the cross-wafer angle uniformity, along with the small-angle resolution of the system. Angle repeatability was quantified by running a channeling sensitive implant as a regular monitor over a seven month period and measuring the sheet resistance-to-angle sensitivity. Even though crystal cut error was not controlled for in this case, when attributing all Rs variation to angle changes, the overall angle repeatability was measured as 0.16 Degree-Sign (1{sigma}). A separate angle repeatability test involved running a series of V-curves tests over a four month period using low crystal cut wafers selected from the same boule. The results of this test showed the angle repeatability to be <0.1 Degree-Sign (1{sigma}).

  20. Variable angle correlation spectroscopy

    International Nuclear Information System (INIS)

    Lee, Y.K.; Lawrence Berkeley Lab., CA

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13 C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system

  1. Variable angle correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Kyo [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.

  2. On spinfoam models in large spin regime

    International Nuclear Information System (INIS)

    Han, Muxin

    2014-01-01

    We study the semiclassical behavior of Lorentzian Engle–Pereira–Rovelli–Livine (EPRL) spinfoam model, by taking into account the sum over spins in the large spin regime. We also employ the method of stationary phase analysis with parameters and the so-called, almost analytic machinery, in order to find the asymptotic behavior of the contributions from all possible large spin configurations in the spinfoam model. The spins contributing the sum are written as J f = λj f , where λ is a large parameter resulting in an asymptotic expansion via stationary phase approximation. The analysis shows that at least for the simplicial Lorentzian geometries (as spinfoam critical configurations), they contribute the leading order approximation of spinfoam amplitude only when their deficit angles satisfy γ Θ-ring f ≤λ −1/2 mod 4πZ. Our analysis results in a curvature expansion of the semiclassical low energy effective action from the spinfoam model, where the UV modifications of Einstein gravity appear as subleading high-curvature corrections. (paper)

  3. OPTIMUM PROJECTION ANGLE FOR ATTAINING MAXIMUM DISTANCE IN A SOCCER PUNT KICK

    Directory of Open Access Journals (Sweden)

    Nicholas P. Linthorne

    2011-03-01

    Full Text Available To produce the greatest horizontal distance in a punt kick the ball must be projected at an appropriate angle. Here, we investigated the optimum projection angle that maximises the distance attained in a punt kick by a soccer goalkeeper. Two male players performed many maximum-effort kicks using projection angles of between 10° and 90°. The kicks were recorded by a video camera at 100 Hz and a 2 D biomechanical analysis was conducted to obtain measures of the projection velocity, projection angle, projection height, ball spin rate, and foot velocity at impact. The player's optimum projection angle was calculated by substituting mathematical equations for the relationships between the projection variables into the equations for the aerodynamic flight of a soccer ball. The calculated optimum projection angles were in agreement with the player's preferred projection angles (40° and 44°. In projectile sports even a small dependence of projection velocity on projection angle is sufficient to produce a substantial shift in the optimum projection angle away from 45°. In the punt kicks studied here, the optimum projection angle was close to 45° because the projection velocity of the ball remained almost constant across all projection angles. This result is in contrast to throwing and jumping for maximum distance, where the projection velocity the athlete is able to achieve decreases substantially with increasing projection angle and so the optimum projection angle is well below 45°.

  4. Resonant Tunneling Spin Pump

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  5. Nuclear spins in nanostructures

    International Nuclear Information System (INIS)

    Coish, W.A.; Baugh, J.

    2009-01-01

    We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provide a decoherence source for the electron, and on the other, a strong effective magnetic field that can be used to execute local coherent rotations. A great deal of effort has been directed toward understanding the details of the relevant decoherence processes and to find new methods to manipulate the coupled electron-nuclear system. A sequence of spectacular new results have provided understanding of spin-bath decoherence, nuclear spin diffusion, and preparation of the nuclear state through dynamic polarization and more general manipulation of the nuclear-spin density matrix through ''state narrowing.'' These results demonstrate the richness of this physical system and promise many new mysteries for the future. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  6. Optical activity via Kerr nonlinearity in a spinning chiral medium

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Anwar Ali, E-mail: anwarali@uom.edu.pk [Department of Physics, University of Malakand at Chakdara Dir(L) (Pakistan); Bacha, Bakht Amin, E-mail: aminoptics@gmail.com [Department of Physics, University of Malakand at Chakdara Dir(L) (Pakistan); Khan, Rahmat Ali, E-mail: rahmat_alipk@yahoo.com [Department of Mathematics, University of Malakand (Pakistan)

    2016-11-11

    Optical activity is investigated in a chiral medium by employing the four level cascade atomic model, in which the optical responses of the atomic medium are studied with Kerr nonlinearity. Light entering into a chiral medium splits into circular birefringent beams. The angle of divergence between the circular birefringent beams and the polarization states of the two light beams is manipulated with Kerr nonlinearity. In the stationary chiral medium the angle of divergence between the circular birefringent beams is calculated to be 1.3 radian. Furthermore, circular birefringence is optically controlled in a spinning chiral medium, where the maximum rotary photon drag angle for left (right) circularly polarized beam is ±1.1 (±1.5) microradian. The change in the angle of divergence between circular birefringent beams by rotary photon drag is calculated to be 0.4 microradian. The numerical results may help to understand image designing, image coding, discovery of photonic crystals and optical sensing technology. - Highlights: • Coherent control of a circular birefringence in a chiral medium is studied. • Angle of divergence between birefringent beams is modified with Kerr nonlinearity. • Rotary photon drag is controlled for birefringent beams and enhanced with Kerr nonlinearity in a spinning medium. • Rotation of the angle of divergence is observed with mechanical rotation of the medium about an axis and modified with Kerr effect. • A change in the angle of divergence is calculated by about a microradian with rotary photon drag.

  7. Spin drift and spin diffusion currents in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)], E-mail: m.miah@griffith.edu.au

    2008-09-15

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  8. Spin drift and spin diffusion currents in semiconductors

    Directory of Open Access Journals (Sweden)

    M Idrish Miah

    2008-01-01

    Full Text Available On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  9. Spin drift and spin diffusion currents in semiconductors

    International Nuclear Information System (INIS)

    Idrish Miah, M

    2008-01-01

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  10. Higher spins and holography

    Science.gov (United States)

    Kraus, Per; Ross, Simon F.

    2013-05-01

    The principles of quantum mechanics and relativity impose rigid constraints on theories of massless particles with nonzero spin. Indeed, Yang-Mills theory and General Relativity are the unique solution in the case of spin-1 and spin-2. In asymptotically flat spacetime, there are fundamental obstacles to formulating fully consistent interacting theories of particles of spin greater than 2. However, indications are that such theories are just barely possible in asymptotically anti-de Sitter or de Sitter spacetimes, where the non-existence of an S-matrix provides an escape from the theorems restricting theories in Minkowski spacetime. These higher spin gravity theories are therefore of great intrinsic interest, since they, along with supergravity, provide the only known field theories generalizing the local invariance principles of Yang-Mills theory and General Relativity. While work on higher spin gravity goes back several decades, the subject has gained broader appeal in recent years due to its appearance in the AdS/CFT correspondence. In three and four spacetime dimensions, there exist duality proposals linking higher spin gravity theories to specific conformal field theories living in two and three dimensions respectively. The enlarged symmetry algebra of the conformal field theories renders them exactly soluble, which makes them excellent laboratories for understanding in detail the holographic mechanism behind AdS/CFT duality. Steady progress is also being made on better understanding the space of possible higher spin gravity theories and their physical content. This work includes classifying the possible field multiplets and their interactions, constructing exact solutions of the nonlinear field equations, and relating higher spin theories to string theory. A full understanding of these theories will involve coming to grips with the novel symmetry principles that enlarge those of General Relativity and Yang-Mills theory, and one can hope that this will provide

  11. Spin transfer torque with spin diffusion in magnetic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2012-08-09

    Spin transport in magnetic tunnel junctions in the presence of spin diffusion is considered theoretically. Combining ballistic tunneling across the barrier and diffusive transport in the electrodes, we solve the spin dynamics equation in the metallic layers. We show that spin diffusion mixes the transverse spin current components and dramatically modifies the bias dependence of the effective spin transfer torque. This leads to a significant linear bias dependence of the out-of-plane torque, as well as a nonconventional thickness dependence of both spin torque components.

  12. Electron spin and nuclear spin manipulation in semiconductor nanosystems

    International Nuclear Information System (INIS)

    Hirayama, Yoshiro; Yusa, Go; Sasaki, Satoshi

    2006-01-01

    Manipulations of electron spin and nuclear spin have been studied in AlGaAs/GaAs semiconductor nanosystems. Non-local manipulation of electron spins has been realized by using the correlation effect between localized and mobile electron spins in a quantum dot- quantum wire coupled system. Interaction between electron and nuclear spins was exploited to achieve a coherent control of nuclear spins in a semiconductor point contact device. Using this device, we have demonstrated a fully coherent manipulation of any two states among the four spin levels of Ga and As nuclei. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Spins in chemistry

    CERN Document Server

    McWeeny, Roy

    2004-01-01

    Originally delivered as a series of lectures, this volume systematically traces the evolution of the ""spin"" concept from its role in quantum mechanics to its assimilation into the field of chemistry. Author Roy McWeeny presents an in-depth illustration of the deductive methods of quantum theory and their application to spins in chemistry, following the path from the earliest concepts to the sophisticated physical methods employed in the investigation of molecular structure and properties. Starting with the origin and development of the spin concept, the text advances to an examination of sp

  14. Frustrated spin systems

    CERN Document Server

    2013-01-01

    This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can - within a single book - obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated

  15. Spin Hall effect transistor

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, Joerg; Park, B.G.; Irvine, A.C.; Zarbo, Liviu; Rozkotová, E.; Němec, P.; Novák, Vít; Sinova, Jairo; Jungwirth, Tomáš

    2010-01-01

    Roč. 330, č. 6012 (2010), s. 1801-1804 ISSN 0036-8075 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510 EU Projects: European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.364, year: 2010

  16. Spin tracking in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luccio, A.U. [Brookhaven National Lab., Upton, NY (United States); Katayama, T. [Univ. of Tokyo (Japan); Wu, H. [Riken Inst., Tokyo (Japan)

    1997-07-01

    In the acceleration of polarized protons in RHIC many spin depolarizing resonances are encountered. Helical Siberian snakes will be used to overcome depolarizing effects. The behavior of polarization can be studied by numerical tracking in a model accelerator. That allows one to check the strength of the resonances, to study the effect of snakes, to find safe lattice tune regions, and finally to study the operation of special devices like spin flippers. In this paper the authors describe numerical spin tracking. Results show that, for the design corrected distorted orbit and the design beam emittance, the polarization of the beam will be preserved in the whole range of proton energies in RHIC.

  17. SPINning parallel systems software

    International Nuclear Information System (INIS)

    Matlin, O.S.; Lusk, E.; McCune, W.

    2002-01-01

    We describe our experiences in using Spin to verify parts of the Multi Purpose Daemon (MPD) parallel process management system. MPD is a distributed collection of processes connected by Unix network sockets. MPD is dynamic processes and connections among them are created and destroyed as MPD is initialized, runs user processes, recovers from faults, and terminates. This dynamic nature is easily expressible in the Spin/Promela framework but poses performance and scalability challenges. We present here the results of expressing some of the parallel algorithms of MPD and executing both simulation and verification runs with Spin

  18. Measuring the spin of black holes in binary systems using gravitational waves.

    Science.gov (United States)

    Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo

    2014-06-27

    Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries.

  19. Anomalous Cherenkov spin-orbit sound

    Science.gov (United States)

    Smirnov, Sergey

    2011-02-01

    The Cherenkov effect is a well-known phenomenon in the electrodynamics of fast charged particles passing through transparent media. If the particle is faster than the light in a given medium, the medium emits a forward light cone. This beautiful phenomenon has an acoustic counterpart where the role of photons is played by phonons and the role of the speed of light is played by the sound velocity. In this case the medium emits a forward sound cone. Here, we show that in a system with spin-orbit interactions in addition to this normal Cherenkov sound there appears an anomalous Cherenkov sound with forward and backward sound propagation. Furthermore, we demonstrate that the transition from the normal to anomalous Cherenkov sound happens in a singular way at the Cherenkov cone angle. The detection of this acoustic singularity therefore represents an alternative experimental tool for the measurement of the spin-orbit coupling strength.

  20. Novel spin effects in quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1993-02-01

    This report discusses a number of interesting hadronic spin effects which test fundamental features of perturbative and non-perturbative QCD. These include constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton; the principle of hadron helicity retention in high x F inclusive reactions; predictions based on total hadron helicity conservation in high momentum transfer exclusive reactions; the dependence of nuclear structure functions and shadowing on virtual photon polarization; and general constraints on the magnetic moment of hadrons. I also will discuss the implications of several measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A NN observed in large angle proton-proton scattering, the anomalously large ρπ branching ratio of the J/ψ, and the rapidly changing polarization dependence of both J/ψ and continuum lepton pair hadroproduction observed at large x F

  1. Spin-valley splitting of electron beam in graphene

    Directory of Open Access Journals (Sweden)

    Yu Song

    2016-11-01

    Full Text Available We study spatial separation of the four degenerate spin-valley components of an electron beam in a EuO-induced and top-gated ferromagnetic/pristine/strained graphene structure. We show that, in a full resonant tunneling regime for all beam components, the formation of standing waves can lead sudden phase jumps ∼−π and giant lateral Goos-Hänchen shifts as large as the transverse beam width, while the interplay of the spin and valley imaginary wave vectors in the modulated regions can lead differences of resonant angles for the four spin-valley flavors, manifesting a spin-valley beam splitting effect. The splitting effect is found to be controllable by the gating and strain.

  2. Spin effects in the antler event topology at hadron colliders

    CERN Document Server

    Edelhauser, Lisa; Park, Myeonghun

    2012-01-01

    We investigate spin correlation effects in the "antler" event topology pp-> A-> B1, B2 -> l^{-}, C1, l^{+}, C2 at the LHC. We study the shapes of several kinematic variables, including the relative pseudorapidity, relative azimuthal angle and the energies of the two leptons, as well as several mass variables M_{ll}, Meff, \\sqrt{s}_{min}, MT2, MCT and MCTx. We focus on the two kinematic extremes of \\sqrt{s} - threshold and infinity - and derive analytical expressions for the differential distributions of several variables, most notably the cos{\\theta_{ll}}^* variable proposed by Barr in hep-ph/0511115. For all possible spin assignments of particles A, B and C, we derive the cos{\\theta_{ll}}^* differential distribution at threshold, including the effects of spin correlations. Our analytical results help identify the problematic cases for spin discrimination.

  3. Spin tune dependence on closed orbit in RHIC

    International Nuclear Information System (INIS)

    Ptitsyn, V.; Bai, M.; Roser, T.

    2010-01-01

    Polarized proton beams are accelerated in RHIC to 250 GeV energy with the help of Siberian Snakes. The pair of Siberian Snakes in each RHIC ring holds the design spin tune at 1/2 to avoid polarization loss during acceleration. However, in the presence of closed orbit errors, the actual spin tune can be shifted away from the exact 1/2 value. It leads to a corresponding shift of locations of higher-order ('snake') resonances and limits the available betatron tune space. The largest closed orbit effect on the spin tune comes from the horizontal orbit angle between the two snakes. During RHIC Run in 2009 dedicated measurements with polarized proton beams were taken to verify the dependence of the spin tune on the local orbits at the Snakes. The experimental results are presented along with the comparison with analytical predictions.

  4. Spin tune dependence on closed orbit in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsyn, V.; Bai, M.; Roser, T.

    2010-05-23

    Polarized proton beams are accelerated in RHIC to 250 GeV energy with the help of Siberian Snakes. The pair of Siberian Snakes in each RHIC ring holds the design spin tune at 1/2 to avoid polarization loss during acceleration. However, in the presence of closed orbit errors, the actual spin tune can be shifted away from the exact 1/2 value. It leads to a corresponding shift of locations of higher-order ('snake') resonances and limits the available betatron tune space. The largest closed orbit effect on the spin tune comes from the horizontal orbit angle between the two snakes. During RHIC Run in 2009 dedicated measurements with polarized proton beams were taken to verify the dependence of the spin tune on the local orbits at the Snakes. The experimental results are presented along with the comparison with analytical predictions.

  5. Technology Enhanced Learning for People with Intellectual Disabilities and Cerebral Paralysis: The MAS Platform

    Science.gov (United States)

    Colomo-Palacios, Ricardo; Paniagua-Martín, Fernando; García-Crespo, Ángel; Ruiz-Mezcua, Belén

    Education for students with disabilities now takes place in a wide range of settings, thus, including a wider range of assistive tools. As a result of this, one of the most interesting application domains of technology enhanced learning is related to the adoption of learning technologies and designs for people with disabilities. Following this unstoppable trend, this paper presents MAS, a software platform aimed to help people with severe intellectual disabilities and cerebral paralysis in their learning processes. MAS, as a technology enhanced learning platform, provides several tools that supports learning and monitoring for people with special needs, including adaptative games, data processing and monitoring tools. Installed in a special needs education institution in Madrid, Spain, MAS provides special educators with a tool that improved students education processes.

  6. Correlation of resting elbow angle with spasticity in chronic stroke survivors

    Directory of Open Access Journals (Sweden)

    Minal Y Bhadane

    2015-08-01

    Full Text Available Objective: To evaluate whether resting joint angle is indicative of severity of spasticity of the elbow flexors in chronic stroke survivors. Methods: Seventeen hemiparetic stroke subjects (male: n=13; female: n=4; age: 37-89 years; 11 right and 6 left hemiplegia; averaged 54.8 months after stroke, ranging 12-107 months participated in the study. The number of subjects with modified Ashworth scale score (MAS = 0, 1, 1+, 2, 3 was 3, 3, 5, 3, 3, respectively. In a single experimental session, resting elbow joint angle, MAS, and Tardieu scale score (Tardieu R1 were measured. A customized motorized stretching device was used to stretch elbow flexors at 5°/s, 50°/s, and 100°/s, respectively. Biomechanical responses (peak reflex torque and reflex stiffness of elbow flexors were quantified. Correlation analyses between clinical and biomechanical assessments were performed. Results: Resting elbow joint angle showed a strong positive correlation with Tardieu R1 (r = 0.77, p<0.01 and a very strong negative correlation with MAS (r = −0.89, p<0.01. The resting angle also had strong correlations with biomechanical measures (r= −0.63 to −0.76, p<0.01. Conclusion: Our study provides experimental evidence for anecdotal observation that the resting elbow joint angle correlates with severity of spasticity in chronic stroke. Resting angle observation for spasticity assessment can and will be an easy, yet a valid way of spasticity estimation in clinical settings, particularly for small muscles or muscles which are not easily measurable by common clinical methods.

  7. Small angle neutron scattering

    International Nuclear Information System (INIS)

    Dasannacharya, B.A.; Goyal, P.S.

    1997-01-01

    Small angle neutron scattering (SANS) is one of the most popular neutron scattering technique both for the basic research and as a tool in the hands of applied scientist. SANS is used for studying the structure of a material on a length scale of 10 - 1000 A. SANS is a diffraction experiment that involves scattering of a monocromatic beam of neutrons in order to obtain structural information about macromolecules and heterogeneities. This paper will discuss the design of SANS spectrometers with a special emphasis on the instruments which are better suited for medium flux reactors. The design of several different types of SANS spectrometers will be given. The optimization procedures and appropriate modifications to suit the budget and the space will be discussed. As an example, the design of a SANS spectrometer at CIRUS reactor Trombay will be given. (author)

  8. Spin squeezing and quantum correlations

    Indian Academy of Sciences (India)

    2 states. A coherent spin-s state. (CSS) θ φ can then be thought of as having no quantum correlations as the constituent. 2s elementary spins point in the same direction ˆn(θ φ) which is the mean spin direction. 2. State classification and squeezing. In order to discuss squeezing, we begin with the squeezing condition itself.

  9. Geometry of spin coherent states

    Science.gov (United States)

    Chryssomalakos, C.; Guzmán-González, E.; Serrano-Ensástiga, E.

    2018-04-01

    Spin states of maximal projection along some direction in space are called (spin) coherent, and are, in many respects, the ‘most classical’ available. For any spin s, the spin coherent states form a 2-sphere in the projective Hilbert space \

  10. Muscle attachment site (MAS) patterns for species determination in European species of Lucilia (Diptera: Calliphoridae).

    Science.gov (United States)

    Niederegger, Senta; Szpila, Krzysztof; Mall, Gita

    2015-03-01

    Species identification is generally assessed to be more difficult in larval stages than in adult forms. Especially closely related species such as Lucilia caesar and Lucilia illustris are difficult to identify. The aim of this study was to simplify species determination in Lucilia larvae for entomological and forensic purposes. Muscle attachment site (MAS) patterns were previously found to be a good tool for species determination in blowfly larvae. Here, distinctive MAS patterns are presented for European Lucilia ampullacea, L. caesar, L. illustris, L. richardsi, L. sericata, and L. silvarum. A joint pattern for the genus Lucilia is provided for a quick classification of a larva to the genus.

  11. Development of a generic, computerized nuclear material accountability system: NucMAS

    International Nuclear Information System (INIS)

    Cornell, M.D.; O'Leary, J.M.

    1987-01-01

    The application NucMAS provides basic computerized accountability functions for the Savannah River Plant (SRP) Separations Department Material Balance Areas (MBA's). These functions include data entry, data management, calculations, and report generation. NucMAS can be used both for routine reporting to the SRP central Material Control and Accounting (MC and A) system and for rapid ad hoc queries in emergency situations. The system is designed to work with any process handling one or more of the 17 accountable nuclear materials specified by the Department of Energy (DOE). It relies on user-supplied configuration data to drive data prompts, report headings, data validations, and calculations

  12. Nonpeptide AVE 0991 is an angiotensin-(1-7) receptor Mas agonist in the mouse kidney.

    Science.gov (United States)

    Pinheiro, Sérgio Veloso Brant; Simões e Silva, Ana Cristina; Sampaio, Walkyria Oliveira; de Paula, Renata Dutra; Mendes, Elizabeth Pereira; Bontempo, Elizabete Dias; Pesquero, João Bosco; Walther, Thomas; Alenina, Natalia; Bader, Michael; Bleich, Markus; Santos, Robson Augusto Souza

    2004-10-01

    It has been described recently that the nonpeptide AVE 0991 (AVE) mimics the effects of angiotensin-(1-7) [Ang-(1-7)] in bovine endothelial cells. In this study, we tested the possibility that AVE is an agonist of the Ang-(1-7) receptor Mas, in vitro and in vivo. In water-loaded C57BL/6 mice, AVE (0.58 nmol/g body weight) produced a significant reduction in urinary volume (0.06+/-0.03 mL/60 min [n=9] versus 0.27+/-0.05 [n=9]; PAVE. As observed previously for Ang-(1-7), the antidiuretic effect of AVE after water load was blunted in Mas-knockout mice (0.37+/-0.10 mL/60 min [n=9] versus 0.27+/-0.03 mL/60 min [n=11] AVE-treated mice). In vitro receptor autoradiography in C57BL/6 mice showed that the specific binding of 125I-Ang-(1-7) to mouse kidney slices was displaced by AVE, whereas no effects were observed in the binding of 125I-angiotensin II or 125I-angiotensin IV. Furthermore, AVE displaced the binding of 125I-Ang-(1-7) in Mas-transfected monkey kidney cells (COS) cells (IC50=4.75x10(-8) mol/L) and of rhodamine-Ang-(1-7) in Mas-transfected Chinese hamster ovary (CHO) cells. It also produced NO release in Mas-transfected CHO cells blocked by A-779 but not by angiotensin II type-1 (AT1) and AT2 antagonists. Contrasting with these data, the antidiuretic effect of AVE was totally blocked by AT2 antagonists and partially blocked (approximately 60%) by AT1 antagonists. The binding data, the results obtained in Mas-knockout mice and in Mas-transfected cells, show that AVE is a Mas receptor agonist. Our data also suggest the involvement of AT2/AT1-related mechanisms, including functional antagonism, oligomerization or cross-talk, in the renal responses to AVE.

  13. Magnus effects at high angles of attack and critical Reynolds numbers

    Science.gov (United States)

    Seginer, A.; Ringel, M.

    1983-01-01

    The Magnus force and moment experienced by a yawed, spinning cylinder were studied experimentally in low speed and subsonic flows at high angles of attack and critical Reynolds numbers. Flow-field visualization aided in describing a flow model that divides the Magnus phenomenon into a subcritical region, where reverse Magnus loads are experienced, and a supercritical region where these loads are not encountered. The roles of the spin rate, angle of attack, and crossflow Reynolds number in determining the boundaries of the subcritical region and the variations of the Magnus loads were studied.

  14. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  15. Higher Spins & Strings

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The conjectured relation between higher spin theories on anti de-Sitter (AdS) spaces and weakly coupled conformal field theories is reviewed. I shall then outline the evidence in favour of a concrete duality of this kind, relating a specific higher spin theory on AdS3 to a family of 2d minimal model CFTs. Finally, I shall explain how this relation fits into the framework of the familiar stringy AdS/CFT correspondence.

  16. Quantum spin quadrumer

    Science.gov (United States)

    Khatua, Subhankar; Shankar, R.; Ganesh, R.

    2018-02-01

    A fundamental motif in frustrated magnetism is the fully mutually coupled cluster of N spins, with each spin coupled to every other spin. Clusters with N =2 and 3 have been extensively studied as building blocks of square and triangular lattice antiferromagnets. In both cases, large-S semiclassical descriptions have been fruitfully constructed, providing insights into the physics of macroscopic magnetic systems. Here, we develop a semiclassical theory for the N =4 cluster. This problem has rich mathematical structure with a ground-state space that has nontrivial topology. We show that ground states are appropriately parametrized by a unit vector order parameter and a rotation matrix. Remarkably, in the low-energy description, the physics of the cluster reduces to that of an emergent free spin-S spin and a rigid rotor. This successfully explains the spectrum of the quadrumer and its associated degeneracies. However, this mapping does not hold in the vicinity of collinear ground states due to a subtle effect that arises from the nonmanifold nature of the ground-state space. We demonstrate this by an analysis of soft fluctuations, showing that collinear states have a larger number of soft modes. Nevertheless, as these singularities only occur on a subset of measure zero, the mapping to a spin and a rotor provides a good description of the quadrumer. We interpret thermodynamic properties of the quadrumer that are accessible in molecular magnets, in terms of the rotor and spin degrees of freedom. Our study paves the way for field theoretic descriptions of systems such as pyrochlore magnets.

  17. Spider Spinning for Dummies

    Science.gov (United States)

    Bird, Richard S.

    Spider spinning is a snappy name for the problem of listing the ideals of a totally acyclic poset in such a way that each ideal is computed from its predecessor in constant time. Such an algorithm is said to be loopless. Our aim in these lectures is to show how to calculate a loopless algorithm for spider spinning. The calculation makes use of the fundamental laws of functional programming and the real purpose of the exercise is to show these laws in action.

  18. Supermassive black hole spin-flip during the inspiral

    International Nuclear Information System (INIS)

    Gergely, Laszlo A; Biermann, Peter L; Caramete, Laurentiu I

    2010-01-01

    During post-Newtonian evolution of a compact binary, a mass ratio ν different from 1 provides a second small parameter, which can lead to unexpected results. We present a statistics of supermassive black hole candidates, which enables us first to derive their mass distribution, and then to establish a logarithmically even probability in ν of the mass ratios at their encounter. In the mass ratio range ν in (1/30, 1/3) of supermassive black hole mergers representing 40% of all possible cases, the combined effect of spin-orbit precession and gravitational radiation leads to a spin-flip of the dominant spin during the inspiral phase of the merger. This provides a mechanism for explaining a large set of observations on X-shaped radio galaxies. In another 40% with mass ratios ν in (1/30, 1/1000) a spin-flip never occurs, while in the remaining 20% of mergers with mass ratios ν in (1/3, 1) it may occur during the plunge. We analyze the magnitude of the spin-flip angle occurring during the inspiral as a function of the mass ratio and original relative orientation of the spin and orbital angular momentum. We also derive a formula for the final spin at the end of the inspiral in this mass ratio range.

  19. Spin-orbit torques and charge pumping in crystalline magnets

    Science.gov (United States)

    Ciccarelli, Chiara

    In magnetic crystals with an inversion asymmetric unit cell a non-zero global spin-polarization is generated by an electrical current, which acts with a torque on the magnetisation exciting magnetic dynamics. This relativistic non-equilibrium spin phenomenon also has a reciprocal effect in which the excitation of magnons results in the pumping of a charge current. The possibility to manipulate/read magnetism with electrical currents is highly relevant for magnetic memories and other spintronic devices. I will start by reviewing our recent research on spin-orbit torques (SOTs) in crystalline magnets, in particular our very recent measurements of the crystalline SOT at room temperature in half-Heusler NiMnSb thin films. With this experiment we are able to fully characterise magnitude and symmetry of the SOTs. I will then talk about the first demonstration of magnonic charge pumping in crystal magnet GaMnAs. In this effect, which is the reciprocal effect of SOTs, the precessing ferromagnet pumps a charge current. Differently from spin pumping, which is commonly used to electrically detect magnetization dynamics, in charge pumping magnons are converted within the ferromagnet into high-frequency currents via the relativistic spin-orbit interaction, without the need of a secondary spin-charge conversion element, such as heavy metals with large spin Hall angle.

  20. Spin-analyzed SANS for soft matter applications

    Science.gov (United States)

    Chen, W. C.; Barker, J. G.; Jones, R.; Krycka, K. L.; Watson, S. M.; Gagnon, C.; Perevozchivoka, T.; Butler, P.; Gentile, T. R.

    2017-06-01

    The small angle neutron scattering (SANS) of nearly Q-independent nuclear spin-incoherent scattering from hydrogen present in most soft matter and biology samples may raise an issue in structure determination in certain soft matter applications. This is true at high wave vector transfer Q where coherent scattering is much weaker than the nearly Q-independent spin-incoherent scattering background. Polarization analysis is capable of separating coherent scattering from spin-incoherent scattering, hence potentially removing the nearly Q-independent background. Here we demonstrate SANS polarization analysis in conjunction with the time-of-flight technique for separation of coherent and nuclear spin-incoherent scattering for a sample of silver behenate back-filled with light water. We describe a complete procedure for SANS polarization analysis for separating coherent from incoherent scattering for soft matter samples that show inelastic scattering. Polarization efficiency correction and subsequent separation of the coherent and incoherent scattering have been done with and without a time-of-flight technique for direct comparisons. In addition, we have accounted for the effect of multiple scattering from light water to determine the contribution of nuclear spin-incoherent scattering in both the spin flip channel and non-spin flip channel when performing SANS polarization analysis. We discuss the possible gain in the signal-to-noise ratio for the measured coherent scattering signal using polarization analysis with the time-of-flight technique compared with routine unpolarized SANS measurements.

  1. Spin-engineered quantum dots

    OpenAIRE

    Fleurov, V.; Ivanov, V. A.; Peeters, F. M.; Vagner, I. D.

    2001-01-01

    Spatially nonhomogeneously spin polarized nuclei are proposed as a new mechanism to monitor electron states in a nanostructure, or as a means to createn and, if necessary, reshape such nanostructures in the course of the experiment. We found that a polarization of nulear spins may lift the spin polarization of the electron states in a nanostructure and, if sufficiently strong, leads to a polarization of the electron spins. Polarized nuclear spins may form an energy landscape capable of bindin...

  2. Theory of spin Hall effect

    OpenAIRE

    Chudnovsky, Eugene M.

    2007-01-01

    An extension of Drude model is proposed that accounts for spin and spin-orbit interaction of charge carriers. Spin currents appear due to combined action of the external electric field, crystal field and scattering of charge carriers. The expression for spin Hall conductivity is derived for metals and semiconductors that is independent of the scattering mechanism. In cubic metals, spin Hall conductivity $\\sigma_s$ and charge conductivity $\\sigma_c$ are related through $\\sigma_s = [2 \\pi \\hbar...

  3. Spin-Current and Spin-Splitting in Helicoidal Molecules Due to Spin-Orbit Coupling

    Science.gov (United States)

    Caetano, R. A.

    2016-03-01

    The use of organic materials in spintronic devices has been seriously considered after recent experimental works have shown unexpected spin-dependent electrical properties. The basis for the confection of any spintronic device is ability of selecting the appropriated spin polarization. In this direction, DNA has been pointed out as a potential candidate for spin selection due to the spin-orbit coupling originating from the electric field generated by accumulated electrical charges along the helix. Here, we demonstrate that spin-orbit coupling is the minimum ingredient necessary to promote a spatial spin separation and the generation of spin-current. We show that the up and down spin components have different velocities that give rise to a spin-current. By using a simple situation where spin-orbit coupling is present, we provide qualitative justifications to our results that clearly point to helicoidal molecules as serious candidates to integrate spintronic devices.

  4. Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction

    KAUST Repository

    Ortiz Pauyac, Christian

    2016-06-19

    In the present thesis we introduce the reader to the field of spintronics and explore new phenomena, such as spin transfer torques, spin filtering, and three types of spin-orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently and are promising candidates for a new generation of memory devices in computer technology. A general overview of these phenomena is presented in Chap. 1. In Chap. 2 we study spin transfer torques in tunnel junctions in the presence of spin filtering. In Chap. 3 we discuss the Rashba torque in ferromagnetic films, and in Chap. 4 we study spin Hall effect and spin swapping in ferromagnetic films, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives are summarized in Chap. 5.

  5. 27 Al MAS NMR Studies of HBEA Zeolite at Low to High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Z.; Wan, Chuan; Vjunov, Aleksei; Wang, Meng; Zhao, Zhenchao; Hu, Mary Y.; Camaioni, Donald M.; Lercher, Johannes A.

    2017-06-01

    27Al single pulse (SP) MAS NMR spectra of HBEA zeolites with high Si/Al ratios of 71 and 75 were obtained at three magnetic field strengths of 7.05, 11.75 and 19.97 T. High field 27Al MAS NMR spectra acquired at 19.97 T show significantly improved spectral resolution, resulting in at least two well-resolved tetrahedral-Al NMR peaks. Based on the results obtained from 27Al MAS and MQMAS NMR acquired at 19.97 T, four different quadrupole peaks are used to deconvolute the 27Al SP MAS spectra acquired at vari-ous fields by using the same set of quadrupole coupling constants, asymmetric parameters and relative integrated peak intensities for the tetrahedral Al peaks. The line shapes of individual peaks change from typical quadrupole line shape at low field to essentially symmetrical line shapes at high field. We demonstrate that for fully hydrated HBEA zeolites the effect of second order quadrupole interaction can be ignored and quantitative spectral analysis can be performed by directly fitting the high field spectra using mixed Gaussian/Lorentzian line shapes. Also, the analytical steps described in our work allow direct assignment of spectral intensity to individual Al tetrahedral sites (T-sites) of zeolite HBEA. Finally, the proposed concept is suggested generally applicable to other zeo-lite framework types, thus, allowing a direct probing of Al distributions by NMR spectroscopic methods in zeolites with high confi-dence.

  6. Marker-assisted-selection (MAS): A fast track to increase genetic ...

    African Journals Online (AJOL)

    Mapping and tagging of agriculturally important genes have been greatly facilitated by an array of molecular markers in crop plants. Marker-assisted selection (MAS) is gaining considerable importance as it would improve the efficiency of plant breeding through precise transfer of genomic regions of interest (foreground ...

  7. Who bears the burden of international taxation? Evidence from cross-border M&As

    NARCIS (Netherlands)

    Huizinga, H.P.; Voget, J.; Wagner, W.B.

    2012-01-01

    Cross-border M&As can trigger additional taxation of the target's income in the form of non-resident dividend withholding taxes and acquirer-country corporate income taxation. This paper finds that this additional international taxation is fully capitalized into lower takeover premiums. In contrast,

  8. Characterization and significance of ACE2 and Mas receptor in human colon adenocarcinoma.

    Science.gov (United States)

    Bernardi, Stella; Zennaro, Cristina; Palmisano, Silvia; Velkoska, Elena; Sabato, Nicoletta; Toffoli, Barbara; Giacomel, Greta; Buri, Luigi; Zanconati, Fabrizio; Bellini, Giuseppe; Burrell, Louise M; De Manzini, Nicolò; Fabris, Bruno

    2012-03-01

    A new arm of the renin-angiotensin system (RAS) has been recently characterized; this includes angiotensin converting enzyme (ACE)2 and angiotensin (Ang)1-7, a heptapeptide acting through the Mas receptor (MasR). Recent studies show that Ang1-7 has an antiproliferative action on lung adenocarcinoma cells. The aim of this study was to characterize RAS expression in human colon adenocarcinoma and to investigate whether Ang1-7 exerts an antiproliferative effect on human colon adenocarcinoma cells. Gene, protein expression and enzymatic activity of the main components of the RAS were determined on non-neoplastic colon mucosa as well as on the tumor mass and the mucosa taken 5 cm distant from it, both collected from patients with colon adenocarcinoma. Two different human colon cancer cell lines were treated with AngII and Ang1-7. The novel finding of this study was that MasR was significantly upregulated in colon adenocarcinoma compared with non-neoplastic colon mucosa, which showed little or no expression of it. ACE gene expression and enzymatic activity were also increased in the tumors. However, AngII and Ang1-7 did not have any pro-/antiproliferative effects in the cell lines studied. The data suggest that upregulation of the MasR could be used as a diagnostic marker of colon adenocarcinoma.

  9. 29Si MAS NMR for the zeolite Y - gallium oxide system

    International Nuclear Information System (INIS)

    Sulikowski, B.; Derewinski, M.; Olejniczak, Z.; Segnowski, S.

    1994-01-01

    Wide-pore zeolites modified by gallium oxide has been prepared for catalytic use. Its physico-chemical and catalytic properties have been studied. The structure changes of the catalyst have been investigated by means of MAS NMR spectroscopy. Spectra of 29 Si has been described and discussed

  10. An Analysis of the Rise and Fall of the AA-MAS Policy

    Science.gov (United States)

    Lazarus, Sheryl S.; Thurlow, Martha L.; Ysseldyke, James E.; Edwards, Lynn M.

    2015-01-01

    In 2005, to address concerns about students who might fall in the "gap" between the regular assessment and the alternate assessment based on alternate achievement standards (AA-AAS), the U.S. Department of Education announced that states could develop alternate assessments based on modified achievement standards (AA-MAS). This article…

  11. Successfully Transitioning from the AA-MAS to the General Assessment. NCEO Policy Directions. Number 22

    Science.gov (United States)

    Lazarus, Sheryl; Thurlow, Martha; Christensen, Laurene; Shyyan, Vitaliy

    2014-01-01

    Federal policy initiatives such as the flexibility waivers for accountability are requiring that states transition away from the use of an alternate assessment based on modified achievement standards (AA-MAS). It is expected that those students who had participated in that assessment will instead participate in the state's general assessment (or a…

  12. Considerations for Consortia as States Transition Away from AA-MAS. NCEO Brief. Number 7

    Science.gov (United States)

    National Center on Educational Outcomes, 2014

    2014-01-01

    States with an alternate assessment based on modified achievement standards (AA-MAS) that received a flexibility waiver from some of the requirements of No Child Left Behind are required to phase out their use of this assessment. And, on August 23, 2013, the U.S. Department of Education published a proposed rollback of regulation that allowed the…

  13. Application of HR-MAS NMR spectroscopy for studying chemotype variations of Withania somnifera (L.) Dunal.

    Science.gov (United States)

    Bharti, S K; Bhatia, Anil; Tewari, S K; Sidhu, O P; Roy, Raja

    2011-10-01

    Withania somnifera (L.) Dunal (Solanaceae), commonly known as Ashwagandha, is one of the most valued Indian medicinal plants with a number of pharmaceutical and nutraceutical applications. Metabolic profiling has been performed by HR-MAS NMR spectroscopy on fresh leaf and root tissue specimens from four chemotypes of W. somnifera. The HR-MAS NMR spectroscopy of lyophilized defatted leaf tissue specimens clearly distinguishes resonances of medicinally important secondary metabolites (withaferin A and withanone) and its distinctive quantitative variability among the chemotypes. A total of 41 metabolites were identified from both the leaf and root tissues of the chemotypes. The presence of methanol in leaf and root tissues of W. somnifera was detected by HR-MAS NMR spectroscopy. Multivariate principal component analysis (PCA) on HR-MAS (1) H NMR spectra of leaves revealed clear variations in primary metabolites among the chemotypes. The results of the present study demonstrated an efficient method, which can be utilized for metabolite profiling of primary and secondary metabolites in medicinally important plants. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Two-Stage MAS Technique for Analysis of DRA Elements and Arrays on Finite Ground Planes

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2007-01-01

    A two-stage Method of Auxiliary Sources (MAS) technique is proposed for analysis of dielectric resonator antenna (DRA) elements and arrays on finite ground planes (FGPs). The problem is solved by first analysing the DRA on an infinite ground plane (IGP) and then using this solution to model the FGP...

  15. Factor analysis of 27Al MAS NMR spectra for identifying nanocrystalline phases in amorphous geopolymers

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Martina; Kobera, Libor; Brus, Jiří

    2013-01-01

    Roč. 51, č. 11 (2013), s. 734-742 ISSN 0749-1581 R&D Projects: GA ČR(CZ) GA13-24155S Institutional support: RVO:61389013 Keywords : solid-state NMR * 27Al MAS NMR * factor analysis Subject RIV: JN - Civil Engineering Impact factor: 1.559, year: 2013

  16. Acceptance Test Report for the Modular Automation System (MAS) Manufactured by Honeywell Inc.

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON, D.L.

    2000-02-01

    This document details the performance of the acceptance test of the Honeywell MAS Control System for equipment to be installed in gloveboxes HA-20MB and HA-211 at a later date. Equipment that was anticipated included 6 stabilization furnaces, only three and their associated equipment were installed.

  17. HUBUNGAN ANTARA PERTUMBUHAN DENGAN KEBERADAAN GEN TAHAN PENYAKIT MAJOR HISTOCOMPATIBILITY COMPLEX (MHC PADA IKAN MAS (Cyprinus carpio

    Directory of Open Access Journals (Sweden)

    Erma Primanita Hayuningtyas

    2016-04-01

    Full Text Available Wabah penyakit koi herpes virus (KHV di Indonesia yang terjadi sejak tahun 2002 merupakan salah satu faktor yang memicu kemerosotan produksi ikan mas budidaya. Pembentukan strain unggul ikan mas tahan KHV dapat menjadi solusi bagi permasalahan tersebut. Pemilihan genotip ikan mas tahan KHV dengan marka molekuler gen major histocompatibility complex class II (MHC-II, khususnya pada alel Cyca DAB 1*05 akan membantu dalam kegiatan seleksi. Penelitian ini bertujuan untuk mengetahui keberadaan gen MHC-II pada populasi dasar G0 ikan mas strain Rajadanu dan hubungannya dengan pertumbuhan (bobot. Metode deteksi keberadaan gen MHC-II pada dua kelompok ikan dengan ukuran berbeda dilakukan dengan teknik PCR. Hubungan antara pertumbuhan ikan mas dengan persentase kemunculan gen MHC-II dianalisis dengan menggunakan program SPSS (Statistical Package for the Social Sciences, sehingga diperoleh korelasi di antara keduanya. Hasil penelitian menunjukkan bahwa hubungan antara pertumbuhan dengan persentase keberadaan gen MHC-II berkorelasi negatif dengan nilai R = -0,742. Hal ini mengindikasikan bahwa semakin cepat pertumbuhan populasi ikan mas maka semakin sedikit persentase individu yang mempunyai gen MHC-II pada setiap populasi ikan mas. Sehingga populasi ikan mas yang pertumbuhannya lambat memiliki tingkat persentase positif MHC-II lebih tinggi (85,71%-100% dibandingkan populasi ikan mas yang pertumbuhannya cepat (42,86%-85,71%.

  18. Enhancing current-induced torques by abutting additional spin polarizer layer to nonmagnetic metal layer

    Science.gov (United States)

    Go, Gyungchoon; Lee, Kyung-Jin; Kim, Young Keun

    2017-04-01

    Recently, the switching of a perpendicularly magnetized ferromagnet (FM) by injecting an in-plane current into an attached non-magnet (NM) has become of emerging technological interest. This magnetization switching is attributed to the spin-orbit torque (SOT) originating from the strong spin-orbit coupling of the NM layer. However, the switching efficiency of the NM/FM structure itself may be insufficient for practical use, as for example, in spin transfer torque (STT)-based magnetic random access memory (MRAM) devices. Here we investigate spin torque in an NM/FM structure with an additional spin polarizer (SP) layer abutted to the NM layer. In addition to the SOT contribution, a spin-polarized current from the SP layer creates an extra spin chemical potential difference at the NM/FM interface and gives rise to a STT on the FM layer. We show that, using typical parameters including device width, thickness, spin diffusion length, and the spin Hall angle, the spin torque from the SP layer can be much larger than that from the spin Hall effect (SHE) of the NM.

  19. Generalization of the Euler Angles

    Science.gov (United States)

    Bauer, Frank H. (Technical Monitor); Shuster, Malcolm D.; Markley, F. Landis

    2002-01-01

    It is shown that the Euler angles can be generalized to axes other than members of an orthonormal triad. As first shown by Davenport, the three generalized Euler axes, hereafter: Davenport axes, must still satisfy the constraint that the first two and the last two axes be mutually perpendicular if these axes are to define a universal set of attitude parameters. Expressions are given which relate the generalized Euler angles, hereafter: Davenport angles, to the 3-1-3 Euler angles of an associated direction-cosine matrix. The computation of the Davenport angles from the attitude matrix and their kinematic equation are presented. The present work offers a more direct development of the Davenport angles than Davenport's original publication and offers additional results.

  20. Optical spin generation/detection and spin transport lifetimes

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  1. Optical spin generation/detection and spin transport lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-02-25

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  2. Angle Performance on Optima XE

    International Nuclear Information System (INIS)

    David, Jonathan; Satoh, Shu

    2011-01-01

    Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were able to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1σ). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.

  3. Thermoelectric spin voltage in graphene.

    Science.gov (United States)

    Sierra, Juan F; Neumann, Ingmar; Cuppens, Jo; Raes, Bart; Costache, Marius V; Valenzuela, Sergio O

    2018-02-01

    In recent years, new spin-dependent thermal effects have been discovered in ferromagnets, stimulating a growing interest in spin caloritronics, a field that exploits the interaction between spin and heat currents 1,2 . Amongst the most intriguing phenomena is the spin Seebeck effect 3-5 , in which a thermal gradient gives rise to spin currents that are detected through the inverse spin Hall effect 6-8 . Non-magnetic materials such as graphene are also relevant for spin caloritronics, thanks to efficient spin transport 9-11 , energy-dependent carrier mobility and unique density of states 12,13 . Here, we propose and demonstrate that a carrier thermal gradient in a graphene lateral spin valve can lead to a large increase of the spin voltage near to the graphene charge neutrality point. Such an increase results from a thermoelectric spin voltage, which is analogous to the voltage in a thermocouple and that can be enhanced by the presence of hot carriers generated by an applied current 14-17 . These results could prove crucial to drive graphene spintronic devices and, in particular, to sustain pure spin signals with thermal gradients and to tune the remote spin accumulation by varying the spin-injection bias.

  4. A wide range of energy spin-filtering in a Rashba quantum ring using S-matrix method

    Science.gov (United States)

    Naeimi, Azadeh S.; Eslami, Leila; Esmaeilzadeh, Mahdi

    2013-01-01

    In this paper, spin-filtering properties of transmitted electrons through a quantum ring in the presence of Rashba spin-orbit interaction and magnetic flux are studied. To investigate the effects of coupling between the leads and ring on the spin-filtering, the S-matrix method is used. It is shown that by tuning the Rashba spin-orbit strength and the magnetic flux, the quantum ring can act as a perfect spin-filter with high efficiency. The spin-filtering can be changed from spin up to spin down and vice versa by changing the Rashba strength when the magnetic flux is held constant or by changing the magnetic flux when the Rashba strength is held constant. In addition, the effect of the angle between the leads on spin-filtering properties is taken into account and the angles at which the spin-filtering can occur are determined. The spin-filtering can take place in narrow ranges of electron energy for weak coupling, while for strong coupling it can take place in a wide range of electron energy.

  5. Relationship between the Angle of Repose and Angle of Internal ...

    African Journals Online (AJOL)

    ghum and rice. The angles have a big influence on the design offlow and storage structures of ... the angles of internal friction for the same grains and same moisture contents. The data ob- tained were fed into SAS statistical software for step-wise regression analysis. A model of the ..... tion, Application and Validation of En-.

  6. Neutron spin precession in samples of polarised nuclei and neutron spin phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Piegsa, Florian Michael

    2009-07-09

    The doublet neutron-deuteron (nd) scattering length b{sub 2,d}, which is at present only known with an accuracy of 5%, is particularly well suited to fix three-body forces in novel effective field theories at low energies. The understanding of such few-nucleon systems is essential, e.g. for predictions of element abundances in the big-bang and stellar fusion. b{sub 2,d} can be obtained via a linear combination of the spin-independent nd scattering length b{sub c,d} and the spin-dependent one, b{sub i,d}. The aim of this thesis was to perform a high-accuracy measurement of the latter to improve the relative accuracy of b{sub 2,d} below 1%. The experiment was performed at the fundamental neutron physics beam line FUNSPIN at the Paul Scherrer Institute in Switzerland. It utilises the effect that the spin of a neutron passing through a target with polarised nuclei performs a pseudomagnetic precession proportional to the spin-dependent scattering length of the nuclei. An ideal method to measure this precession angle very accurately is Ramsey's atomic beam technique, adapted to neutrons. The most crucial part of the experimental setup is the so-called frozen spin target, which consists of a specially designed dilution refrigerator and contains a sample with dynamically polarised nuclear spins. The polarisation of the sample is determined by nuclear magnetic resonance (NMR) techniques. It turned out that the relaxation of the nuclear spins during the necessary ''cross-calibration'' of the two employed NMR systems is ultimately limiting the achievable accuracy of b{sub i,d}. During the extensive use of the Ramsey resonance method in the neutron-deuteron experiment, an idea emerged that the applied technique could be exploited in a completely different context, namely polarised neutron radiography. Hence, the second part of the thesis covers the development of a novel neutron radiography technique, based on the spin-dependent interaction of the

  7. Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  8. Noise in tunneling spin current across coupled quantum spin chains

    Science.gov (United States)

    Aftergood, Joshua; Takei, So

    2018-01-01

    We theoretically study the spin current and its dc noise generated between two spin-1 /2 spin chains weakly coupled at a single site in the presence of an over-population of spin excitations and a temperature elevation in one subsystem relative to the other, and we compare the corresponding transport quantities across two weakly coupled magnetic insulators hosting magnons. In the spin chain scenario, we find that applying a temperature bias exclusively leads to a vanishing spin current and a concomitant divergence in the spin Fano factor, defined as the spin current noise-to-signal ratio. This divergence is shown to have an exact analogy to the physics of electron scattering between fractional quantum Hall edge states and not to arise in the magnon scenario. We also reveal a suppression in the spin current noise that exclusively arises in the spin chain scenario due to the fermion nature of the spin-1/2 operators. We discuss how the spin Fano factor may be extracted experimentally via the inverse spin Hall effect used extensively in spintronics.

  9. Overview of spin physics

    Energy Technology Data Exchange (ETDEWEB)

    Yokosawa, A.

    1992-12-23

    Spin physics activities at medium and high energies became significantly active when polarized targets and polarized beams became accessible for hadron-hadron scattering experiments. My overview of spin physics will be inclined to the study of strong interaction using facilities at Argonne ZGS, Brookhaven AGS (including RHIC), CERN, Fermilab, LAMPF, an SATURNE. In 1960 accelerator physicists had already been convinced that the ZGS could be unique in accelerating a polarized beam; polarized beams were being accelerated through linear accelerators elsewhere at that time. However, there was much concern about going ahead with the construction of a polarized beam because (i) the source intensity was not high enough to accelerate in the accelerator, (ii) the use of the accelerator would be limited to only polarized-beam physics, that is, proton-proton interaction, and (iii) p-p elastic scattering was not the most popular topic in high-energy physics. In fact, within spin physics, [pi]-nucleon physics looked attractive, since the determination of spin and parity of possible [pi]p resonances attracted much attention. To proceed we needed more data beside total cross sections and elastic differential cross sections; measurements of polarization and other parameters were urgently needed. Polarization measurements had traditionally been performed by analyzing the spin of recoil protons. The drawbacks of this technique are: (i) it involves double scattering, resulting in poor accuracy of the data, and (ii) a carbon analyzer can only be used for a limited region of energy.

  10. Electron ionization and spin polarization control of Fe atom adsorbed graphene irradiated by a femtosecond laser

    International Nuclear Information System (INIS)

    Yu, Dong; Jiang, Lan; Wang, Feng; Li, Xin; Qu, Liangti; Lu, Yongfeng

    2015-01-01

    We investigate the structural properties and ionized spin electrons of an Fe–graphene system, in which the time-dependent density functional theory (TDDFT) within the generalized gradient approximation is used. The electron dynamics, including electron ionization and ionized electron spin polarization, is described for Fe atom adsorbed graphene under femtosecond laser irradiation. The theoretical results show that the electron ionization and ionized electron spin polarization are sensitive to the laser parameters, such as the incident angle and the peak intensity. The spin polarization presents the maximum value under certain laser parameters, which may be used as a source of spin-polarized electrons. - Highlights: • The structural properties of Fe–graphene system are investigated. • The electron dynamics of Fe–graphene system under laser irradiation are described. • The Fe–graphene system may be used as a source of spin-polarized electrons

  11. Illuminating "spin-polarized" Bloch wave-function projection from degenerate bands in decomposable centrosymmetric lattices

    Science.gov (United States)

    Li, Pengke; Appelbaum, Ian

    2018-03-01

    The combination of space inversion and time-reversal symmetries results in doubly degenerate Bloch states with opposite spin. Many lattices with these symmetries can be constructed by combining a noncentrosymmetric potential (lacking this degeneracy) with its inverted copy. Using simple models, we unravel the evolution of local spin splitting during this process of inversion symmetry restoration, in the presence of spin-orbit interaction and sublattice coupling. Importantly, through an analysis of quantum mechanical commutativity, we examine the difficulty of identifying states that are simultaneously spatially segregated and spin polarized. We also explain how surface-sensitive experimental probes (such as angle-resolved photoemission spectroscopy, or ARPES) of "hidden spin polarization" in layered materials are susceptible to unrelated spin splitting intrinsically induced by broken inversion symmetry at the surface.

  12. Disentanglement of bulk and interfacial spin Hall effect in ferromagnet/normal metal interface

    Science.gov (United States)

    Zhou, X.; Tang, M.; Fan, X. L.; Qiu, X. P.; Zhou, S. M.

    2016-10-01

    Spin Hall effect in PdPt alloys in contact with ferromagnetic Ni80Fe20 alloys has been studied by spin torque ferromagnetic resonance technique. The spin torque spin Hall angle (ST-SHA) proves to be contributed by the interfacial and bulk SHAs. The bulk SHA is dominated by the skew scattering and reaches a maximal value for the largest randomization of Pt and Pd atoms at the intermediate alloy composition. In particular, the interfacial SHA becomes prominent for Pt-rich alloys. This phenomenon indicates the enhanced Rashba spin-orbit coupling at the interface, as Pt has a stronger spin-orbit coupling and larger z -potential gradient compared to Pd. The present work highlights the interfacial SHA and provides a pathway to improve the functionality and performance of the next generation spintronic devices.

  13. Application of magnetic resonance force microscopy cyclic adiabatic inversion for a single-spin measurement

    CERN Document Server

    Berman, G P; Chapline, G; Gurvitz, S A; Hammel, P C; Pelekhov, D V; Suter, A; Tsifrinovich, V I

    2003-01-01

    We consider the process of a single-spin measurement using magnetic resonance force microscopy (MRFM) with a cyclic adiabatic inversion (CAI). This technique is also important for different applications, including a measurement of a qubit state in quantum computation. The measurement takes place through the interaction of a single spin with a cantilever modelled by a quantum oscillator in a coherent state in a quasi-classical range of parameters. The entire system is treated rigorously within the framework of the Schroedinger equation. For a many-spin system our equations accurately describe conventional MRFM experiments involving CAI of the spin system. Our computer simulations of the quantum spin-cantilever dynamics show that the probability distribution for the cantilever position develops two asymmetric peaks with the total relative probabilities mainly dependent on the initial angle between the directions of the average spin and the effective magnetic field, in the rotating frame. We show that each of th...

  14. Some studies of the relativistic theories for spin-3/2 particles and its interactions with an uniforme magnetic field

    International Nuclear Information System (INIS)

    Oliveira, M.A.B. de.

    1984-01-01

    We present our investigations on the problems of non-causality of propagation, at the c-number level, of four spin 3/2 theories in the Schroedinger form employing the minimum number of eight components, in interaction with a constant magnetic field. Analyzing first the basic formulations of free particle spin 3/2 relativistic wave equations, we deduze, extending to spin 3/2 Dirac's ''spin 1/2 factorization'' of the mas condition, a new eight-component relativistic wave equation in the Schroedinger form for this spin and prove its relativistic invariance. We demostrate explicitly that the entire content of the Rarita-Schwinger (RS) theory for spin 3/2 can be written in the form of two Dirac-Like wave equations. We demonstrate that our wave equation for spin 3/2 cab indeed be deduzed from a modified RS theory wherein both Hamiltonians above referred to are taken hermitian. We also establish, in a transparent maner, the equivalences existing between the formalisms of RS, Belinfante and Hurley-Sudarshan for spin 3/2. We investigate the c-number problem of the stationary state eigevalues of the spin 3/2 Hamiltonians in a constant external magnetic field, in the four theories in the Schoedinger form with eight components, those of Moldauer and Case (deduzed from TS theory), of Weaver, Hammer and Good. (autor) [pt

  15. Hyperspectral Microwave Atmospheric Sounder (HyMAS) architecture and design accommodations

    Science.gov (United States)

    Hilliard, L.; Racette, P.; Blackwell, W.; Galbraith, C.; Thompson, E.

    The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term “ hyperspectral microwave” is used to indicate an all-weather sounding that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earth's atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions. The simulations proposed for HyMAS 118/183-GHz system should yield surface precipitation rate and water path retrievals for small hail, soft hail, or snow pellets, snow, rainwater, etc. with accuracies comparable to those of the Advanced Technology Microwave Sounder. Further improvements in retrieval methodology (for example, polarization exploitation) are expected. The CoSMIR instrument is a packaging concept re-used on HyMAS to ease the integration features of the scanhead. The HyMAS scanhead will include an ultra-compact Intermediate Frequency Processor (IFP) module that is mounted inside the door to improve thermal management. The IFP is fabricated with materials made of Low-Temperature Co-fired Ceramic (LTCC) technology integrated with detectors, amplifiers, A/D conversion and data aggregation. The IFP will put out 52 channels of 16 bit data comprised of 4 - 9 channel data streams for temperature profiles and 2-8 channel streams for water vapor. With the limited volume of the existing CoSMIR scanhead and new HyMAS front end components, the HyMAS team at Goddard began preliminary layout work inside the new drum. Importing and re-using models of the shell, the s- an head

  16. Quantum spin transistor with a Heisenberg spin chain

    Science.gov (United States)

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-01-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438

  17. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  18. Spin gating electrical current

    Science.gov (United States)

    Ciccarelli, C.; Zârbo, L. P.; Irvine, A. C.; Campion, R. P.; Gallagher, B. L.; Wunderlich, J.; Jungwirth, T.; Ferguson, A. J.

    2012-09-01

    The level of the chemical potential is a fundamental parameter of the electronic structure of a physical system, which consequently plays an important role in defining the properties of active electrical devices. We directly measure the chemical potential shift in the relativistic band structure of the ferromagnetic semiconductor (Ga,Mn)As, controlled by changes in its magnetic order parameter. Our device comprises a non-magnetic aluminum single electron channel capacitively coupled to the (Ga,Mn)As gate electrode. The chemical potential shifts of the gate are directly read out from the shifts in the Coulomb blockade oscillations of the single electron transistor. The experiments introduce a concept of spin gating electrical current. In our spin transistor spin manipulation is completely removed from the electrical current carrying channel.

  19. SPIN-selling

    CERN Document Server

    Rackham, Neil

    1995-01-01

    True or false? In selling high-value products or services: "closing" increases your chance of success; it is essential to describe the benefits of your product or service to the customer; objection handling is an important skill; and open questions are more effective than closed questions. All false, says Neil Rackham. He and his team studied more than 35,000 sales calls made by 10,000 sales people in 23 countries over 12 years. Their findings revealed that many of the methods developed for selling low-value goods just don't work for major sales. Rackham went on to introduce his SPIN-selling method, where SPIN describes the whole selling process - Situation questions, Problem questions, Implication questions, Need-payoff questions. SPIN-selling provides you with a set of simple and practical techniques which have been tried in many of today's leading companies with dramatic improvements to their sales performance.

  20. Chiral higher spin gravity

    Science.gov (United States)

    Krishnan, Chethan; Raju, Avinash

    2017-06-01

    We construct a candidate for the most general chiral higher spin theory with AdS3 boundary conditions. In the Chern-Simons language, on the left it has the Drinfeld-Sokolov reduced form, but on the right all charges and chemical potentials are turned on. Altogether (for the spin-3 case) these are 19 functions. Despite this, we show that the resulting metric has the form of the "most general" AdS3 boundary conditions discussed by Grumiller and Riegler. The asymptotic symmetry algebra is a product of a W3 algebra on the left and an affine s l (3 )k current algebra on the right, as desired. The metric and higher spin fields depend on all the 19 functions. We compare our work with previous results in the literature.

  1. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden

    1975-01-01

    The selection rules for the linear couplings between magnons and phonons propagating in the c direction of a simple basal-plane hcp ferromagnet are determined by general symmetry considerations. The acoustic-optical magnon-phonon interactions observed in the heavy-rare-earth metals have been...... explained by Liu as originating from the mixing of the spin states of the conduction electrons due to the spin-orbit coupling. We find that this coupling mechanism introduces interactions which violate the selection rules for a simple ferromagnet. The interactions between the magnons and phonons propagating...... in the c direction of Tb have been studied experimentally by means of inelastic neutron scattering. The magnons are coupled to both the acoustic- and optical-transverse phonons. By studying the behavior of the acoustic-optical coupling, we conclude that it is a spin-mixed-induced coupling as proposed...

  2. Measurement of the angle gamma

    International Nuclear Information System (INIS)

    Aleksan, R.; Sphicas, P.; Massachusetts Inst. of Tech., Cambridge, MA

    1993-12-01

    The angle γ as defined in the Wolfenstein approximation is not completely out of reach of current or proposed dedicated B experiments. This work represents but a first step in the direction of extracting the third angle of the unitarity triangle by study the feasibility of using new decay modes in a hadronic machine. (A.B.). 11 refs., 1 fig., 7 tabs

  3. Nucleation of small angle boundaries

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1996-12-01

    Full Text Available The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition...

  4. Spin flexoelectricity and chiral spin structures in magnetic films

    OpenAIRE

    Pyatakov, A. P.; Sergeev, A. S.; Mikailzade, F. A.; Zvezdin, A. K.

    2015-01-01

    In this short review a broad range of chiral phenomena observed in magnetic films (spin cycloid and skyrmion structures formation as well as chirality dependent domain wall motion) is considered under the perspective of spin flexoelectricity, i.e. the relation between bending of magnetization pattern and electric polarization. The similarity and the difference between the spin flexoelectricity and the newly emerged notion of spin flexomagnetism is discussed. The phenomenological arguments bas...

  5. Spinning geodesic Witten diagrams

    International Nuclear Information System (INIS)

    Dyer, Ethan; Freedman, Daniel Z.; Massachusetts Institute of Technology; Massachusetts Institute of Technology; Sully, James; McGill University, Montreal, QC

    2017-01-01

    We present an expression for the four-point conformal blocks of symmetric traceless operators of arbitrary spin as an integral over a pair of geodesics in Anti-de Sitter space, generalizing the geodesic Witten diagram formalism of Hijano et al. to arbitrary spin. As an intermediate step in the derivation, we identify a convenient basis of bulk threepoint interaction vertices which give rise to all possible boundary three point structures. Lastly, we highlight a direct connection between the representation of the conformal block as geodesic Witten diagram and the shadow operator formalism.

  6. Spin gating electrical current

    Czech Academy of Sciences Publication Activity Database

    Ciccarelli, C.; Zarbo, Liviu; Irvine, A.C.; Campion, R. P.; Gallagher, B. L.; Wunderlich, Joerg; Jungwirth, Tomáš; Ferguson, A.J.

    2012-01-01

    Roč. 101, č. 12 (2012), , , "122411-1"-"122411-4" ISSN 0003-6951 R&D Projects: GA AV ČR KJB100100802; GA AV ČR KAN400100652 EU Projects: European Commission(XE) 268066 - 0MSPIN; European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic resonance * spin-orbit coupling * nanodevices Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.794, year: 2012 http://arxiv.org/abs/1203.2439

  7. Spin echo in synchrotrons

    Directory of Open Access Journals (Sweden)

    Alexander W. Chao

    2007-01-01

    Full Text Available As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency Δν_{spin} of the beam (particularly due to its energy spread is sufficiently large that the spin precession phases of individual particles smear out completely during the time τ between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference-overlap effect and a spin echo effect. This paper is to address these two effects. The interference-overlap effect occurs when Δν_{spin} is too small, or when τ is too short, to complete the smearing process. In this case, the two resonance crossings overlap each other, and the final polarization exhibits constructive or destructive interference patterns depending on the exact value of τ. Typically, the beam’s energy spread is large and this interference-overlap effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time τ after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when τ is very large, and could be a sensitive (albeit challenging way to experimentally test the intricate spin dynamics in a synchrotron

  8. Spin, gravity, and inertia.

    Science.gov (United States)

    Obukhov, Y N

    2001-01-08

    The gravitational effects in the relativistic quantum mechanics are investigated. The exact Foldy-Wouthuysen transformation is constructed for the Dirac particle coupled to the static spacetime metric. As a direct application, we analyze the nonrelativistic limit of the theory. The new term describing the specific spin (gravitational moment) interaction effect is recovered in the Hamiltonian. The comparison of the true gravitational coupling with the purely inertial case demonstrates that the spin relativistic effects do not violate the equivalence principle for the Dirac fermions.

  9. Angiotensin-(1-7 attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas

    Directory of Open Access Journals (Sweden)

    María Gabriela Morales

    2016-04-01

    Full Text Available Immobilization is a form of disuse characterized by a loss of strength and muscle mass. Among the main features are decreased IGF-1/Akt signalling and increased ubiquitin-proteasome pathway signalling, which induce greater myosin heavy chain degradation. Activation of the classical renin-angiotensin system (RAS causes deleterious effects in skeletal muscle, including muscle wasting. In contrast, angiotensin-(1-7 [Ang-(1-7], a peptide of the non-classical RAS, produces beneficial effects in skeletal muscle. However, the role of Ang-(1-7 in skeletal muscle disuse atrophy and independent of classical RAS activation has not been evaluated. Therefore, we assessed the functions of Ang-(1-7 and the Mas receptor in disuse muscle atrophy in vivo using unilateral cast immobilization of the hind limb in male, 12-week-old wild-type (WT and Mas-knockout (Mas KO mice for 1 and 14 days. Additionally, we evaluated the participation of IGF-1/IGFR-1/Akt signalling and ubiquitin-proteasome pathway expression on the effects of Ang-(1-7 immobilization-induced muscle atrophy. Our results found that Ang-(1-7 prevented decreased muscle strength and reduced myofiber diameter, myosin heavy chain levels, and the induction of atrogin-1 and MuRF-1 expressions, all of which normally occur during immobilization. Analyses indicated that Ang-(1-7 increases IGF-1/IGFR-1/Akt pathway signalling through IGFR-1 and Akt phosphorylation, and the concomitant activation of two downstream targets of Akt, p70S6K and FoxO3. These anti-atrophic effects of Ang-(1-7 were not observed in Mas KO mice, indicating crucial participation of the Mas receptor. This report is the first to propose anti-atrophic effects of Ang-(1-7 via the Mas receptor and the participation of the IGF-1/IGFR-1/Akt/p70S6K/FoxO3 mechanism in disuse skeletal muscle atrophy.

  10. Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas

    Science.gov (United States)

    Morales, María Gabriela; Abrigo, Johanna; Acuña, María José; Santos, Robson A.; Bader, Michael; Brandan, Enrique; Simon, Felipe; Olguin, Hugo; Cabrera, Daniel; Cabello-Verrugio, Claudio

    2016-01-01

    ABSTRACT Immobilization is a form of disuse characterized by a loss of strength and muscle mass. Among the main features are decreased IGF-1/Akt signalling and increased ubiquitin-proteasome pathway signalling, which induce greater myosin heavy chain degradation. Activation of the classical renin-angiotensin system (RAS) causes deleterious effects in skeletal muscle, including muscle wasting. In contrast, angiotensin-(1-7) [Ang-(1-7)], a peptide of the non-classical RAS, produces beneficial effects in skeletal muscle. However, the role of Ang-(1-7) in skeletal muscle disuse atrophy and independent of classical RAS activation has not been evaluated. Therefore, we assessed the functions of Ang-(1-7) and the Mas receptor in disuse muscle atrophy in vivo using unilateral cast immobilization of the hind limb in male, 12-week-old wild-type (WT) and Mas-knockout (Mas KO) mice for 1 and 14 days. Additionally, we evaluated the participation of IGF-1/IGFR-1/Akt signalling and ubiquitin-proteasome pathway expression on the effects of Ang-(1-7) immobilization-induced muscle atrophy. Our results found that Ang-(1-7) prevented decreased muscle strength and reduced myofiber diameter, myosin heavy chain levels, and the induction of atrogin-1 and MuRF-1 expressions, all of which normally occur during immobilization. Analyses indicated that Ang-(1-7) increases IGF-1/IGFR-1/Akt pathway signalling through IGFR-1 and Akt phosphorylation, and the concomitant activation of two downstream targets of Akt, p70S6K and FoxO3. These anti-atrophic effects of Ang-(1-7) were not observed in Mas KO mice, indicating crucial participation of the Mas receptor. This report is the first to propose anti-atrophic effects of Ang-(1-7) via the Mas receptor and the participation of the IGF-1/IGFR-1/Akt/p70S6K/FoxO3 mechanism in disuse skeletal muscle atrophy. PMID:26851244

  11. Participation and Performance Reporting for the Alternate Assessment Based on Modified Achievement Standards (AA-MAS). Technical Report 58

    Science.gov (United States)

    Albus, Deb; Thurlow, Martha L.; Lazarus, Sheryl S.

    2011-01-01

    This report examines publicly reported participation and performance data for the alternate assessment based on modified achievement standards (AA-MAS). The authors' analysis of these data included all states publicly reporting AA-MAS data, regardless of whether they had received approval to use the results for Title I accountability calculations.…

  12. A hybrid MAS/MoM technique for 2D impedance scatterers illuminated by closely positioned sources

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2005-01-01

    A hybrid technique for 2D scattering problems with impedance structures and closely positioned illuminating sources is presented. This technique combines the method of auxiliary sources (MAS) with a localized method of moments (MoM) region near the source. Significant improvements over standard MAS...

  13. Spin dynamics of large-spin fermions in a harmonic trap

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Junjun; Feng, Tongtong; Gu, Qiang, E-mail: qgu@ustb.edu.cn

    2017-04-15

    Understanding the collective dynamics in a many-body system has been a central task in condensed matter physics. To achieve this task, we develop a Hartree–Fock theory to study the collective oscillations of spinor Fermi system, motivated by recent experiment on spin-9/2 fermions. We observe an oscillation period shoulder for small rotation angles. Different from previous studies, where the shoulder is found connected to the resonance from periodic to running phase, here the system is always in a running phase in the two-body phase space. This shoulder survives even in the many-body oscillations, which could be tested in the experiments. We also show how these collective oscillations evolve from two- to many-body. Our theory provides an alternative way to understand the collective dynamics in large-spin Fermi systems.

  14. Spin information from vector-meson decay in photoproduction

    International Nuclear Information System (INIS)

    Kloet, W.M.; Chiang, W.; Tabakin, F.

    1998-01-01

    For the photoproduction of vector mesons, all single and double spin observables involving vector-meson two-body decays are defined consistently in the γN center-of-mass frame. These definitions yield a procedure for extracting physically meaningful single and double spin observables that are subject to known rules concerning their angle and energy evolution. As part of this analysis, we show that measuring the two-meson decay of a photo produced ρ or φ does not determine the vector meson's vector polarization, but only its tensor polarization. The vector meson decay into lepton pairs is also insensitive to the vector meson's vector polarization, unless one measures the spin of one of the leptons. Similar results are found for all double spin observables which involve observation of vector-meson decay. To access the vector meson's vector polarization, one therefore needs to either measure the spin of the decay leptons, make an analysis of the background interference effects, or relate the vector meson's vector polarization to other accessible spin observables. copyright 1998 The American Physical Society

  15. Optimized three-dimensional fast-spin-echo MRI.

    Science.gov (United States)

    Mugler, John P

    2014-04-01

    Spin-echo-based acquisitions are the workhorse of clinical MRI because they provide a variety of useful image contrasts and are resistant to image artifacts from radio-frequency or static field inhomogeneity. Three-dimensional (3D) acquisitions provide datasets that can be retrospectively reformatted for viewing in freely selectable orientations, and are thus advantageous for evaluating the complex anatomy associated with many clinical applications of MRI. Historically, however, 3D spin-echo-based acquisitions have not played a significant role in clinical MRI due to unacceptably long acquisition times or image artifacts associated with details of the acquisition method. Recently, optimized forms of 3D fast/turbo spin-echo imaging have become available from several MR-equipment manufacturers (for example, CUBE [GE], SPACE [Siemens], and VISTA [Philips]). Through specific design strategies and optimization, including short non-spatially selective radio-frequency pulses to significantly shorten the echo spacing and variable flip angles for the refocusing radio-frequency pulses to suppress blurring or considerably lengthen the useable duration of the spin-echo train, these techniques permit single-slab 3D imaging of sizeable volumes in clinically acceptable acquisition times. These optimized fast/turbo spin-echo pulse sequences provide a robust and flexible approach for 3D spin-echo-based imaging with a broad range of clinical applications. Copyright © 2014 Wiley Periodicals, Inc.

  16. Correlation of Resting Elbow Angle with Spasticity in Chronic Stroke Survivors.

    Science.gov (United States)

    Bhadane, Minal Y; Gao, Fan; Francisco, Gerard E; Zhou, Ping; Li, Sheng

    2015-01-01

    To evaluate whether resting joint angle is indicative of severity of spasticity of the elbow flexors in chronic stroke survivors. Seventeen hemiparetic stroke subjects (male: n = 13; female: n = 4; age: 37-89 years; 11 right and 6 left hemiplegia; averaged 54.8 months after stroke, ranging 12-107 months) participated in the study. The number of subjects with modified Ashworth scale score (MAS) = 0, 1, 1+, 2, and 3 was 3, 3, 5, 3, and 3, respectively. In a single experimental session, resting elbow joint angle, MAS, and Tardieu scale score (Tardieu R1) were measured. A customized motorized stretching device was used to stretch elbow flexors at 5, 50, and 100°/s, respectively. Biomechanical responses (peak reflex torque and reflex stiffness) of elbow flexors were quantified. Correlation analyses between clinical and biomechanical assessments were performed. Resting elbow joint angle showed a strong positive correlation with Tardieu R1 (r = 0.77, p spasticity in chronic stroke. Resting angle observation for spasticity assessment can and will be an easy, yet a valid way of spasticity estimation in clinical settings, particularly for small muscles or muscles which are not easily measurable by common clinical methods.

  17. A stochastic picture of spin

    International Nuclear Information System (INIS)

    Faris, W.G.

    1981-01-01

    Dankel has shown how to incorporate spin into stochastic mechanics. The resulting non-local hidden variable theory gives an appealing picture of spin correlation experiments in which Bell's inequality is violated. (orig.)

  18. Center of Mass Estimation for a Spinning Spacecraft Using Doppler Shift of the GPS Carrier Frequency

    Science.gov (United States)

    Sedlak, Joseph E.

    2016-01-01

    A sequential filter is presented for estimating the center of mass (CM) of a spinning spacecraft using Doppler shift data from a set of onboard Global Positioning System (GPS) receivers. The advantage of the proposed method is that it is passive and can be run continuously in the background without using commanded thruster firings to excite spacecraft dynamical motion for observability. The NASA Magnetospheric Multiscale (MMS) mission is used as a test case for the CM estimator. The four MMS spacecraft carry star cameras for accurate attitude and spin rate estimation. The angle between the spacecraft nominal spin axis (for MMS this is the geometric body Z-axis) and the major principal axis of inertia is called the coning angle. The transverse components of the estimated rate provide a direct measure of the coning angle. The coning angle has been seen to shift slightly after every orbit and attitude maneuver. This change is attributed to a small asymmetry in the fuel distribution that changes with each burn. This paper shows a correlation between the apparent mass asymmetry deduced from the variations in the coning angle and the CM estimates made using the GPS Doppler data. The consistency between the changes in the coning angle and the CM provides validation of the proposed GPS Doppler method for estimation of the CM on spinning spacecraft.

  19. El Proyecto Sismico "LARSE" - Trabajando Hacia un Futuro con Mas Seguridad para Los Angeles

    Science.gov (United States)

    Henyey, Thomas L.; Fuis, Gary S.; Benthien, Mark L.; Burdette, Thomas R.; Christofferson, Shari A.; Clayton, Robert W.; Criley, Edward E.; Davis, Paul M.; Hendley, James W.; Kohler, Monica D.; Lutter, William J.; McRaney, John K.; Murphy, Janice M.; Okaya, David A.; Ryberg, Trond; Simila, Gerald W.; Stauffer, Peter H.

    1999-01-01

    La region de Los Angeles contiene una red de fallas activas, incluyendo muchas fallas por empuje que son profundas y no rompen la superficie de la tierra. Estas fallas ocultas incluyen la falla anteriormente desconocida que fue responsable por la devastacion que ocurrio durante el terremoto de Northridge en enero de 1994, el terremoto mas costoso en la historia de los Estados Unidos. El Experimento Sismico en la Region de Los Angeles (Los Angeles Region Seismic Experiment, LARSE), esta localizando los peligros ocultos de los terremotos debajo de la region de Los Angeles para mejorar la construccion de las estructuras que pueden apoyar terremotos que son inevitables en el futuro, y que ayudaran a los cientificos determinar donde occurira el sacudimento mas fuerte y poderoso.

  20. Antiferromagnetic spin-orbitronics

    KAUST Repository

    Manchon, Aurelien

    2015-05-01

    Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.