WorldWideScience

Sample records for angle silicon array

  1. Nanoparticle sorting in silicon waveguide arrays

    Science.gov (United States)

    Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.

    2017-08-01

    This paper presents the optical fractionation of nanoparticles in silicon waveguide arrays. The optical lattice is generated by evanescent coupling in silicon waveguide arrays. The hotspot size is tunable by changing the refractive index of surrounding liquids. In the experiment, 0.2-μm and 0.5-μm particles are separated with a recovery rate of 95.76%. This near-field approach is a promising candidate for manipulating nanoscale biomolecules and is anticipated to benefit the biomedical applications such as exosome purification, DNA optical mapping, cell-cell interaction, etc.

  2. Light Trapping with Silicon Light Funnel Arrays.

    Science.gov (United States)

    Prajapati, Ashish; Nissan, Yuval; Gabay, Tamir; Shalev, Gil

    2018-03-19

    Silicon light funnels are three-dimensional subwavelength structures in the shape of inverted cones with respect to the incoming illumination. Light funnel (LF) arrays can serve as efficient absorbing layers on account of their light trapping capabilities, which are associated with the presence of high-density complex Mie modes. Specifically, light funnel arrays exhibit broadband absorption enhancement of the solar spectrum. In the current study, we numerically explore the optical coupling between surface light funnel arrays and the underlying substrates. We show that the absorption in the LF array-substrate complex is higher than the absorption in LF arrays of the same height (~10% increase). This, we suggest, implies that a LF array serves as an efficient surface element that imparts additional momentum components to the impinging illumination, and hence optically excites the substrate by near-field light concentration, excitation of traveling guided modes in the substrate, and mode hybridization.

  3. Light Trapping with Silicon Light Funnel Arrays

    Directory of Open Access Journals (Sweden)

    Ashish Prajapati

    2018-03-01

    Full Text Available Silicon light funnels are three-dimensional subwavelength structures in the shape of inverted cones with respect to the incoming illumination. Light funnel (LF arrays can serve as efficient absorbing layers on account of their light trapping capabilities, which are associated with the presence of high-density complex Mie modes. Specifically, light funnel arrays exhibit broadband absorption enhancement of the solar spectrum. In the current study, we numerically explore the optical coupling between surface light funnel arrays and the underlying substrates. We show that the absorption in the LF array-substrate complex is higher than the absorption in LF arrays of the same height (~10% increase. This, we suggest, implies that a LF array serves as an efficient surface element that imparts additional momentum components to the impinging illumination, and hence optically excites the substrate by near-field light concentration, excitation of traveling guided modes in the substrate, and mode hybridization.

  4. Silicon-CsI detector array for heavy-ion reactions

    CERN Document Server

    Norbeck, E; Pogodin, P I; Cheng, Y W; Ingram, F D; Bjarki, O; Grévy, S; Magestro, D J; Molen, A M V; Westfall, G D

    2000-01-01

    An array of 60 silicon-CsI(Tl) detector telescopes has been developed along with associated electronics. The close packing of the telescopes required novel designs for the photodiodes and the silicon DELTA E detectors. Newly developed electronics include preamplifiers, shaping amplifiers, test pulse circuitry, and a module to monitor leakage currents in the silicon diodes. The array covers angles from 5 deg. to 18 deg. in the 4 pi Array at the National Superconducting Cyclotron Laboratory at Michigan State University. It measures protons to 150 MeV and has isotopic resolution for intermediate mass nuclei.

  5. Integrated Arrays on Silicon at Terahertz Frequencies

    Science.gov (United States)

    Chattopadhayay, Goutam; Lee, Choonsup; Jung, Cecil; Lin, Robert; Peralta, Alessandro; Mehdi, Imran; Llombert, Nuria; Thomas, Bertrand

    2011-01-01

    In this paper we explore various receiver font-end and antenna architecture for use in integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies and use of novel integrated antennas with silicon micromachining are reported. We report novel stacking of micromachined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages which easily leads to the development of 2- dimensioanl multi-pixel receiver front-ends in the terahertz frequency range. We also report an integrated micro-lens antenna that goes with the silicon micro-machined front-end. The micro-lens antenna is fed by a waveguide that excites a silicon lens antenna through a leaky-wave or electromagnetic band gap (EBG) resonant cavity. We utilized advanced semiconductor nanofabrication techniques to design, fabricate, and demonstrate a super-compact, low-mass submillimeter-wave heterodyne frontend. When the micro-lens antenna is integrated with the receiver front-end we will be able to assemble integrated heterodyne array receivers for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.

  6. MUST: A silicon strip detector array for radioactive beam experiments

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Auger, F.; Sauvestre, J.E.; Marechal, F.; Ottini, S.; Alamanos, N.; Barbier, A.; Beaumel, D.; Bonnereau, B.; Charlet, D.; Clavelin, J.F.; Courtat, P.; Delbourgo-Salvador, P.; Douet, R.; Engrand, M.; Ethvignot, T.; Gillibert, A.; Khan, E.; Lapoux, V.; Lagoyannis, A.; Lavergne, L.; Lebon, S.; Lelong, P.; Lesage, A.; Le Ven, V.; Lhenry, I.; Martin, J.M.; Musumarra, A.; Pita, S.; Petizon, L.; Pollacco, E.; Pouthas, J.; Richard, A.; Rougier, D.; Santonocito, D.; Scarpaci, J.A.; Sida, J.L.; Soulet, C.; Stutzmann, J.S.; Suomijaervi, T.; Szmigiel, M.; Volkov, P.; Voltolini, G.

    1999-01-01

    A new and innovative array, MUST, based on silicon strip technology and dedicated to the study of reactions induced by radioactive beams on light particles is described. The detector consists of 8 silicon strip - Si(Li) telescopes used to identify recoiling light charged particles through time of flight, energy loss and energy measurements and to determine precisely their scattering angle through X, Y position measurements. Each 60x60 mm 2 double sided silicon strip detector with 60 vertical and 60 horizontal strips yields an X-Y position resolution of 1 mm, an energy resolution of 50 keV, a time resolution of around 1 ns and a 500 keV energy threshold for protons. The backing Si(Li) detectors stop protons up to 25 MeV with a resolution of approximately 50 keV. CsI crystals read out by photo-diodes which stop protons up to 70 MeV are added to the telescopes for applications where higher energy particles need to be detected. The dedicated electronics in VXIbus standard allow us to house the 968 logic and analog channels of the array in one crate placed adjacent to the reaction chamber and fully remote controlled, including pulse visualization on oscilloscopes. A stand alone data acquisition system devoted to the MUST array has been developed. Isotope identification of light charged particles over the full energy range has been achieved, and the capability of the system to measure angular distributions of states populated in inverse kinematics reactions has been demonstrated

  7. MUST: A silicon strip detector array for radioactive beam experiments

    CERN Document Server

    Blumenfeld, Y; Sauvestre, J E; Maréchal, F; Ottini, S; Alamanos, N; Barbier, A; Beaumel, D; Bonnereau, B; Charlet, D; Clavelin, J F; Courtat, P; Delbourgo-Salvador, P; Douet, R; Engrand, M; Ethvignot, T; Gillibert, A; Khan, E; Lapoux, V; Lagoyannis, A; Lavergne, L; Lebon, S; Lelong, P; Lesage, A; Le Ven, V; Lhenry, I; Martin, J M; Musumarra, A; Pita, S; Petizon, L; Pollacco, E; Pouthas, J; Richard, A; Rougier, D; Santonocito, D; Scarpaci, J A; Sida, J L; Soulet, C; Stutzmann, J S; Suomijärvi, T; Szmigiel, M; Volkov, P; Voltolini, G

    1999-01-01

    A new and innovative array, MUST, based on silicon strip technology and dedicated to the study of reactions induced by radioactive beams on light particles is described. The detector consists of 8 silicon strip - Si(Li) telescopes used to identify recoiling light charged particles through time of flight, energy loss and energy measurements and to determine precisely their scattering angle through X, Y position measurements. Each 60x60 mm sup 2 double sided silicon strip detector with 60 vertical and 60 horizontal strips yields an X-Y position resolution of 1 mm, an energy resolution of 50 keV, a time resolution of around 1 ns and a 500 keV energy threshold for protons. The backing Si(Li) detectors stop protons up to 25 MeV with a resolution of approximately 50 keV. CsI crystals read out by photo-diodes which stop protons up to 70 MeV are added to the telescopes for applications where higher energy particles need to be detected. The dedicated electronics in VXIbus standard allow us to house the 968 logic and a...

  8. Uniform tilt-angle micromirror array for multi-object spectroscopy

    Science.gov (United States)

    Waldis, Severin; Clerc, Pierre-Andre; Zamkotsian, Frederic; Zickar, Michael; Noell, Wilfried; de Rooij, Nico

    2007-01-01

    We report on micromirror arrays being developed for the use as reflective slit mask in Multi Object Spectrographs for astronomical applications. The micromirrors are etched in bulk single crystal silicon whereas the cantilever type suspension is realized by surface micromachining. One micromirror element is 100μm x 200μm in size. The micromirrors are actuated electrostatically by electrodes located on a second chip. The use of silicon on insulator (SOI) wafers for both mirror and electrode chip ensures thermal compatibility for cryogenic operation. A system of multiple landing beams has been developed, which passively locks the mirror at a well defined tilt angle when actuated. The mechanical tilt angle obtained is 20 ° at a pull-in voltage of 90V. Measurements with an optical profiler showed that the tilt angle of the actuated and locked mirror is stable with a precision of one arc minute over a range of 15V. This locking system makes the tilt angle merely independent from process variations across the wafer and thus provides uniform tilt angle over the whole array. The precision on tilt angle from mirror to mirror measured is one arc minute. The surface quality of the mirrors in actuated state is better than 10nm peak-to-valley and the local roughness is around 1nm RMS.

  9. Indoor Measurement of Angle Resolved Light Absorption by Black Silicon

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Iandolo, Beniamino; Davidsen, Rasmus Schmidt

    2017-01-01

    Angle resolved optical spectroscopy of photovoltaic (PV) samples gives crucial information on PV panels under realistic working conditions. Here, we introduce measurements of angle resolved light absorption by PV cells, performed indoors using a collimated high radiance broadband light source. Our...... indoor method offers a significant simplification as compared to measurements by solar trackers. As a proof-of-concept demonstration, we show characterization of black silicon solar cells. The experimental results showed stable and reliable optical responses that makes our setup suitable for indoor......, angle resolved characterization of solar cells....

  10. Sixa-silicon x-ray array

    International Nuclear Information System (INIS)

    Taylor, I.

    1995-01-01

    Full text: The Spectrum-X-Gamma (SRG) satellite is scheduled for launch in 1995-96. Mission objectives include broad and narrow band imaging spectroscopy over a wide range of energies from the EUV through hard X-rays with an emphasis on studying galactic and extragalactic X-ray sources. Timing and moderate resolution spectroscopy can be performed with the solid state spectrometer SIXA (Silicon X-Ray Array), placed on the focal plane of the SODART telescope with total effective area of 1150 cm 2 at 6 keV (for f = 8 in telescope). The detector consists of 19 circular Si(Li) pixels, each with an active diameter of 9.2 min and thickness of 3 min. A radiative cooler will be used to bring the detector to the proper operating temperature (120-130 K). The energy range 0.5-20 keV is divided into 1024 channels of 20 eV size. Photons can be recorded with 30 μs time resolution and 160-200 eV (1-7 keV) energy resolution. Potential observing programmes (for e.g. time-resolved Iron Kα line spectroscopy) include stellar coronae, cataclysmic variables and X-ray binaries; accretion discs and coronae of neutron stars and black hole candidates; supernova remnants, active galactic nuclei and clusters of galaxies. (author)

  11. Neutron small angle scattering of irradiated aluminium-silicon alloys

    International Nuclear Information System (INIS)

    Kostorz, G.

    1976-01-01

    Technically pure aluminium and aluminium-silicon alloys (0.43, 0.83 and 1.2% Si, also containing 0.11 to 0.14 at. % Fe) were investigated by slow neutron small angle scattering after irradiation with fast neutrons at low temperatures. Different irradiation levels, ageing at room temperature and at 60/70 0 C had no measurable effect upon small angle scattering cross-sections. From the experimental precision upper limit for the amount of Si involved in clustering after irradiation can be given. The observed small angle scattering shows a strong dependence on scattering angles and is attributed to large precipitates of Al 12 Fe 3 Si. A surface layer on the as-received samples is identified as another source of low-intensity small angle scattering. (orig.) [de

  12. Microfabricated Silicon Microneedle Array for Transdermal Drug Delivery

    International Nuclear Information System (INIS)

    Ji, J; Tay, F E; Miao Jianmin; Iliescu, C

    2006-01-01

    This paper presents developed processes for silicon microneedle arrays microfabrication. Three types of microneedles structures were achieved by isotropic etching in inductively coupled plasma (ICP) using SF 6 /O 2 gases, combination of isotropic etching with deep etching, and wet etching, respectively. A microneedle array with biodegradable porous tips was further developed based on the fabricated microneedles

  13. Microfabricated Silicon Microneedle Array for Transdermal Drug Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Ji, J [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Tay, F E [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Miao Jianmin [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Iliescu, C [Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos, 04-01, 138669 (Singapore)

    2006-04-01

    This paper presents developed processes for silicon microneedle arrays microfabrication. Three types of microneedles structures were achieved by isotropic etching in inductively coupled plasma (ICP) using SF{sub 6}/O{sub 2} gases, combination of isotropic etching with deep etching, and wet etching, respectively. A microneedle array with biodegradable porous tips was further developed based on the fabricated microneedles.

  14. Low cost silicon solar array project silicon materials task

    Science.gov (United States)

    1977-01-01

    A program was established to develop a high temperature silicon production process using existing electric arc heater technology. Silicon tetrachloride and a reductant will be injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction is expected to occur and proceed essentially to completion, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection of the molten silicon will be developed using standard engineering approaches, and the salt vapor will later be electrolytically separated into its elemental constituents for recycle. Preliminary technical evaluations and economic projections indicate not only that this process appears to be feasible, but that it also has the advantages of rapid, high capacity production of good quality molten silicon at a nominal cost.

  15. Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics.

    Science.gov (United States)

    Kayes, Md Imrul; Leu, Paul W

    2014-01-01

    Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°).

  16. Nanofabrication of Arrays of Silicon Field Emitters with Vertical Silicon Nanowire Current Limiters and Self-Aligned Gates

    Science.gov (United States)

    2016-08-19

    film is controlled so that after subsequent oxidation, a gap of Figure 2. Key steps in the fabrication of silicon field emitter arrays (FEAs) with...Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-aligned gates S A Guerrera and A I...Published 13 June 2016 Abstract We developed a fabrication process for embedding a dense array (108 cm−2) of high-aspect-ratio silicon nanowires (200 nm

  17. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The ISPA tube is a position-sensitive photon detector. It belongs to the family of hybrid photon detectors (HPD), recently developed by CERN and INFN with leading photodetector firms. HPDs confront in a vacuum envelope a photocathode and a silicon detector. This can be a single diode or a pixelized detector. The electrons generated by the photocathode are efficiently detected by the silicon anode by applying a high-voltage difference between them. ISPA tube can be used in high-energy applications as well as bio-medical and imaging applications.

  18. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The bump-bonded silicon pixel detector, developed at CERN by the EP-MIC group, is shown here in its ceramic carrier. Both represent the ISPA-tube anode. The chip features between 1024 (called OMEGA-1) and 8196 (ALICE-1) active pixels.

  19. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    Application components of ISPA tubes are shown: the CERN-developed anode chip, special windows for gamma and x-ray detection, scintillating crystal and fibre arrays for imaging and tracking of ionizing particles.

  20. Silicon PIN diode array hybrids for charged particle detection

    International Nuclear Information System (INIS)

    Shapiro, S.L.; Dunwoodie, W.M.; Arens, J.F.; Jernigan, J.G.; Gaalema, S.

    1988-09-01

    We report on the design of silicon PIN diode array hybrids for use as charged particle detectors. A brief summary of the need for vertex detectors is presented. Circuitry, block diagrams and device specifications are included. 8 refs., 7 figs., 1 tab

  1. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    On the table, under the scrutiny of some collaboration members, an ISPA tube (upper-left of the table) with some of its application components is shown: they consist of the CERN-developed anode chip, special windows for gamma and x-ray detection, scintillating crystal and fibre arrays for imaging and tracking of ionizing particles.

  2. A Method to Estimate Local Towed Array Angles Using Flush Mounted Hot Film Wall Shear Sensors

    National Research Council Canada - National Science Library

    Keith, William L; Cipolla, Kimberly M

    2008-01-01

    A towed array is provided with hot-film sensors and anemometer circuitry to calculate the angle of inclination of the towed array in real time during deployment of the towed array in a sea water environment...

  3. Preparation of electrochemically active silicon nanotubes in highly ordered arrays

    Directory of Open Access Journals (Sweden)

    Tobias Grünzel

    2013-10-01

    Full Text Available Silicon as the negative electrode material of lithium ion batteries has a very large capacity, the exploitation of which is impeded by the volume changes taking place upon electrochemical cycling. A Si electrode displaying a controlled porosity could circumvent the difficulty. In this perspective, we present a preparative method that yields ordered arrays of electrochemically competent silicon nanotubes. The method is based on the atomic layer deposition of silicon dioxide onto the pore walls of an anodic alumina template, followed by a thermal reduction with lithium vapor. This thermal reduction is quantitative, homogeneous over macroscopic samples, and it yields amorphous silicon and lithium oxide, at the exclusion of any lithium silicides. The reaction is characterized by spectroscopic ellipsometry for thin silica films, and by nuclear magnetic resonance and X-ray photoelectron spectroscopy for nanoporous samples. After removal of the lithium oxide byproduct, the silicon nanotubes can be contacted electrically. In a lithium ion electrolyte, they then display the electrochemical waves also observed for other bulk or nanostructured silicon systems. The method established here paves the way for systematic investigations of how the electrochemical properties (capacity, charge/discharge rates, cyclability of nanoporous silicon negative lithium ion battery electrode materials depend on the geometry.

  4. Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications

    Science.gov (United States)

    Deng, Can; Tan, Xinyu; Jiang, Lihua; Tu, Yiteng; Ye, Mao; Yi, Yasha

    2018-01-01

    Structural design with high light absorption is the key challenge for thin film solar cells because of its poor absorption. In this paper, the light-trapping performance of silicon inclined nanohole arrays is systematically studied. The finite difference time domain method is used to calculate the optical absorption of different inclination angles in different periods and diameters. The results indicate that the inclined nanoholes with inclination angles between 5° and 45° demonstrate greater light-trapping ability than their counterparts of the vertical nanoholes, and they also show that by choosing the optimal parameters for the inclined nanoholes, a 31.2 mA/cm2 short circuit photocurrent density could be achieved, which is 10.25% higher than the best vertical nanohole system and 105.26% higher than bare silicon with a thickness of 2330 nm. The design principle proposed in this work gives a guideline for choosing reasonable parameters in the application of solar cells.

  5. Highly Flexible Silicone Coated Neural Array for Intracochlear Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    P. Bhatti

    2015-01-01

    Full Text Available We present an effective method for tailoring the flexibility of a commercial thin-film polymer electrode array for intracochlear electrical stimulation. Using a pneumatically driven dispensing system, an average 232±64 μm (mean ± SD thickness layer of silicone adhesive coating was applied to stiffen the underside of polyimide multisite arrays. Additional silicone was applied to the tip to protect neural tissue during insertion and along the array to improve surgical handling. Each array supported 20 platinum sites (180 μm dia., 250 μm pitch, spanning nearly 28 mm in length and 400 μm in width. We report an average intracochlear stimulating current threshold of 170±93 μA to evoke an auditory brainstem response in 7 acutely deafened felines. A total of 10 arrays were each inserted through a round window approach into the cochlea’s basal turn of eight felines with one delamination occurring upon insertion (preliminary results of the in vivo data presented at the 48th Annual Meeting American Neurotology Society, Orlando, FL, April 2013, and reported in Van Beek-King 2014. Using microcomputed tomography imaging (50 μm resolution, distances ranging from 100 to 565 μm from the cochlea’s central modiolus were measured. Our method combines the utility of readily available commercial devices with a straightforward postprocessing step on the order of 24 hours.

  6. The Effect of Glancing Angle Deposition Conditions on the Morphology of a Silver Nanohelix Array

    Directory of Open Access Journals (Sweden)

    Yi-Jun Jen

    2017-09-01

    Full Text Available Silver nanohelices were grown on smooth substrates using glancing angle deposition and substrate cooling. Various nanohelix arrays were deposited under different deposition conditions—different deposition rates, substrate spin rates, deposition angles, and substrate temperatures. The effect of deposition conditions on the morphology of each nanohelix array in terms of pitch angle, pitch length, wire diameter, and radius of curvature was investigated. The dependence of circular dichroism on the size of the nanohelix arrays was also measured and demonstrated.

  7. Small-angle neutron scattering measurement of silicon nanoparticle size

    International Nuclear Information System (INIS)

    Choi, Jonghoon; Tung, Shih-Huang; Wang, Nam Sun; Reipa, Vytas

    2008-01-01

    We have determined the particle size distribution profiles of octane-terminated silicon nanoparticle suspensions, produced using the sonication of electrochemically etched Si wafers. Small-angle neutron scattering data was analyzed separately in high (0.4 nm -1 -1 ) and low (q -1 ) scattering vector ranges. Data in the high q range is consistent with the log-normal distribution of isolated spherical particles with median diameter d = 3 ± 0.2 nm. Particle sizes were also indirectly assessed from photoluminescence and optical transmission spectroscopy using the size/bandgap relation: E g = 3.44d -0.5 , where E g is in eV and d in nm. Both measurements were consistent with the particle size distribution profiles, estimated from ANS data fitting and TEM image analysis. A subpopulation of larger, irregular shape structures in the size range 10-50 nm was also indicated by neutron scattering in the low q range and HRTEM images. However, further studies are warranted to explain a relationship between the slope of scattering intensity versus scattering vector dependence in the intermediate scattering vector range (0.4 nm -1 -1 ) and the role of non-geometrical Si nanoparticle characteristics (mutual interaction forces, surface termination, etc)

  8. Contact angle of ethanol–water solutions on crystalline and mesoporous silicon

    International Nuclear Information System (INIS)

    Spencer, S J; Andrews, G T; Deacon, C G

    2013-01-01

    Measurements of contact angle of ethanol–water solutions were performed on crystalline silicon and on mesoporous silicon films with porosities up to ∼72%. Water contact angles of 44° and 76° were measured for untreated and HF-dipped crystalline silicon, respectively, consistent with previous studies. The contact angle for ethanol–water mixtures was found to decrease with increasing ethanol concentration for both untreated crystalline silicon and also for HF-dipped crystalline silicon up to an ethanol concentration of ∼80%; at higher concentrations the contact angle approached zero. Similar behaviour was observed on mesoporous silicon surfaces for ethanol concentrations ≲ 40%, above which the contact angle dropped abruptly to an immeasurably small value. This behaviour is attributed to a decrease in surface tension with increasing ethanol concentration. For all ethanol–water solutions, a minimum value of contact angle was observed at a porosity of ∼40%, above which it remained approximately constant. The behaviour of contact angle with porosity can be explained by a change in the Wenzel roughness parameter due to changes in the specific surface area of the film. (paper)

  9. Investigation of porous silicon obtained under different conditions by the contact angle method

    Science.gov (United States)

    Belorus, A. O.; Bukina, Y. V.; Pastukhov, A. I.; Stebko, D. S.; Spivak, Yu M.; Moshnikov, V. A.

    2017-11-01

    This paper investigates a hydrophobicity/hydrophilicity of porous silicon by the contact angle method. Porous silicon series were obtained by electrochemical anodic etching of n-Si (100) and (111) under the current anodization density range of 5-120 mA/cm2. For this purpose the original laboratory installation and the software «Measurement of contact angle» were developed. It is shown that, the contact angle can vary significantly (up to 80 degrees for (100)) depending on the current anodization Discussion of the results is carried out taking in account the composition of the functional groups and of surface morphology of the porous silicon. These results are important for developing porous silicon particles as nanocontainers in the targeted drug delivery.

  10. Silicon photomultiplier arrays for the LHCb scintillating fibre tracker

    CERN Multimedia

    Girard, Olivier Goran; Kuonen, Axel Kevin; Stramaglia, Maria Elena

    2017-01-01

    For the LHCb detector upgrade in 2019, a large scale scintillating fibre tracker read out with silicon photomultipliers is under construction. The harsh radiation environment (neutron and ionising radiation), the 40MHz read-out rate of the trigger less system and the large detector surface of 320m2 impose many challenges. We present the results from lab tests with 1MeV electrons and from the SPS test facility at CERN for the mulitchannel SiPM array that combines peak photo-detection efficiency of 48% and extremely low correlated noise. The measurements were performed with detectors irradiated with neutrons up to a fluence of 12*1011 neq/cm2 and single photon detection was maintained. First results of the characterization of the pre-series of 500 detectors delivered by Hamamatsu and irradiation studies on a large sample will be included.

  11. Develop silicone encapsulation systems for terrestrial silicon solar arrays. First quarterly progress report, February 15, 1978--June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-10

    This study is directed toward the development of a cost effective encapsulation system for photovoltaic modules using silicone based materials. This is a cooperative effort between Dow Corning, the major supplier of silicones and silicone intermediates, and Spectrolab a leading photovoltaic array manufacturer. The total contract effort has been divided into four tasks: technology review, generation of screening concepts, assessment of encapsulation concepts, and evaluation of encapsulation concepts. A review of technology pertinent to the use and weatherability of silicone based materials and a plan for screening encapsulation concepts are presented. The technology review covered: the performance of clear silicones in weathering and stress environments, photovoltaic industry experience with silicone materials used in photovoltaic systems, and silicones used in the protection of electronic devices.

  12. Engineering sidewall angles of silica-on-silicon waveguides

    DEFF Research Database (Denmark)

    Haiyan, Ou

    2004-01-01

    Burned photoresist is used as etch mask when producing silica-onsilicon waveguides. The sidewall angle of the optical glass waveguides is engineered by varying photoresist thickness and etch selectivity. The principle for the formation of the angles is introduced and very promising experimental...

  13. DEATH-STAR: Silicon and Photovoltaic Fission Fragment Detector Arrays for Light-Ion Induced Fission Correlation Studies

    Science.gov (United States)

    Koglin, J. D.; Burke, J. T.; Fisher, S. E.; Jovanovic, I.

    2017-05-01

    The Direct Excitation Angular Tracking pHotovoltaic-Silicon Telescope ARray (DEATH-STAR) combines a series of 12 silicon detectors in a ΔE - E configuration for charged particle identification with a large-area array of 56 photovoltaic (solar) cells for detection of fission fragments. The combination of many scattering angles and fission fragment detectors allows for an angular-resolved tool to study reaction cross sections using the surrogate method, anisotropic fission distributions, and angular momentum transfers through stripping, transfer, inelastic scattering, and other direct nuclear reactions. The unique photovoltaic detectors efficiently detect fission fragments while being insensitive to light ions and have a timing resolution of 15.63±0.37 ns. Alpha particles are detected with a resolution of 35.5 keV 1σ at 7.9 MeV. Measured fission fragment angular distributions are also presented.

  14. Static and dynamic characterization of robust superhydrophobic surfaces built from nano-flowers on silicon micro-post arrays

    KAUST Repository

    Chen, Longquan

    2010-09-01

    Superhydrophobic nano-flower surfaces were fabricated using MEMS technology and microwave plasma-enhanced chemical vapor deposition (MPCVD) of carbon nanotubes on silicon micro-post array surfaces. The nano-flower structures can be readily formed within 1-2 min on the micro-post arrays with the spacing ranging from 25 to 30 μm. The petals of the nano-flowers consisted of clusters of multi-wall carbon nanotubes. Patterned nano-flower structures were characterized using various microscopy techniques. After MPCVD, the apparent contact angle (160 ± 0.2°), abbreviated as ACA (defined as the measured angle between the apparent solid surface and the tangent to the liquid-fluid interface), of the nano-flower surfaces increased by 139% compared with that of the silicon micro-post arrays. The measured ACA of the nano-flower surface is consistent with the predicted ACA from a modified Cassie-Baxter equation. A high-speed CCD camera was used to study droplet impact dynamics on various micro/nanostructured surfaces. Both static testing (ACA and sliding angle) and droplet impact dynamics demonstrated that, among seven different micro/nanostructured surfaces, the nano-flower surfaces are the most robust superhydrophobic surfaces. © 2010 IOP Publishing Ltd.

  15. Reflection color filters of the three primary colors with wide viewing angles using common-thickness silicon subwavelength gratings.

    Science.gov (United States)

    Kanamori, Yoshiaki; Ozaki, Toshikazu; Hane, Kazuhiro

    2014-10-20

    We fabricated reflection color filters of the three primary colors with wide viewing angles using silicon two-dimensional subwavelength gratings on the same quartz substrate. The grating periods were 400, 340, and 300 nm for red, green, and blue filters, respectively. All of the color filters had the same grating thickness of 100 nm, which enabled simple fabrication of a color filter array. Reflected colors from the red, green, and blue filters under s-polarized white-light irradiation appeared in the respective colors at incident angles from 0 to 50°. By rigorous coupled-wave analysis, the dimensions of each color filter were designed, and the calculated reflectivity was compared with the measured reflectivity.

  16. Interdigitated design of a thermoelectric microgenerator based on silicon nanowire arrays

    Science.gov (United States)

    Donmez, I.; Salleras, M.; Calaza, C.; Santos, J. D.; Gadea, G.; Morata, A.; Dávila, D.; Tarancón, A.; Fonseca, L.

    2015-05-01

    Silicon nanowires thermoelectric properties are much better than those of silicon bulk. Taking advantage of silicon microfabrication techniques and compatibilizing the device fabrication with the CVD-VLS silicon nanowire growth, we present a thermoelectric microgenerator based on silicon nanowire arrays with interdigitated structures which enhance the power density compared to previous designs presented by the authors. The proposed design features a thermally isolated silicon platform on the silicon device layer of an SOI silicon wafer. This silicon platform has vertical walls exposing thermoelectric generator is unileg, which means that only one type of semiconductor is used, and the second connection is made through a metal. In addition, to improve the thermal isolation of the silicon platform, multiple trenches of silicon nanowire arrays are used, up to a maximum of nine. After packaging the device with nanowires, we are able to measure the Seebeck voltage and the power obtained with different operation modes: harvesting mode, where the bottom device is heated up, and the silicon platform is cooled down by natural or forced convection, and test mode, where a heater integrated on the silicon platform is used to produce a thermal gradient.

  17. Contact Angles and Surface Tension of Germanium-Silicon Melts

    Science.gov (United States)

    Croell, A.; Kaiser, N.; Cobb, S.; Szofran, F. R.; Volz, M.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Precise knowledge of material parameters is more and more important for improving crystal growth processes. Two important parameters are the contact (wetting) angle and the surface tension, determining meniscus shapes and surface-tension driven flows in a variety of methods (Czochralski, EFG, floating-zone, detached Bridgman growth). The sessile drop technique allows the measurement of both parameters simultaneously and has been used to measure the contact angles and the surface tension of Ge(1-x)Si(x) (0 less than or equal to x less than or equal to 1.3) alloys on various substrate materials. Fused quartz, Sapphire, glassy carbon, graphite, SiC, carbon-based aerogel, pyrolytic boron nitride (pBN), AIN, Si3N4, and polycrystalline CVD diamond were used as substrate materials. In addition, the effect of different cleaning procedures and surface treatments on the wetting behavior were investigated. Measurements were performed both under dynamic vacuum and gas atmospheres (argon or forming gas), with temperatures up to 1100 C. In some experiments, the sample was processed for longer times, up to a week, to investigate any changes of the contact angle and/or surface tension due to slow reactions with the substrate. For pure Ge, stable contact angles were found for carbon-based substrates and for pBN, for Ge(1-x)Si(x) only for pBN. The highest wetting angles were found for pBN substrates with angles around 170deg. For the surface tension of Ge, the most reliable values resulted in gamma(T) = (591- 0.077 (T-T(sub m)) 10(exp -3)N/m. The temperature dependence of the surface tension showed similar values for Ge(1-x)Si(x), around -0.08 x 10(exp -3)N/m K, and a compositional dependence of 2.2 x 10(exp -3)N/m at%Si.

  18. Method of rotation angle measurement in machine vision based on calibration pattern with spot array

    International Nuclear Information System (INIS)

    Li Weimin; Jin Jing; Li Xiaofeng; Li Bin

    2010-01-01

    We propose a method of rotation angle measurement with high precision in machine vision. An area scan CCD camera, imaging lens, and calibration pattern with a spot array make up the measurement device for measuring the rotation angle. The calibration pattern with a spot array is installed at the rotation part, and the CCD camera is set at a certain distance from the rotation components. The coordinates of the spots on the calibration pattern is acquired through the vision image of the calibration pattern captured by the CCD camera. At the initial position of the calibration pattern, the camera is calibrated with the spot array; the mathematical model of distortion error of the CCD camera is built. With the equation of coordinate rotation measurement, the rotation angle of the spot array is detected. In the theoretic simulation, noise of different levels is added to the coordinates of the spot array. The experiment results show that the measurement device can measure the rotation angle precisely with a noncontact method. The standard deviation of rotation angle measurement is smaller than 3 arc sec. The measurement device can measure both microangles and large angles.

  19. Efficient Generation of an Array of Single Silicon-Vacancy Defects in Silicon Carbide

    Science.gov (United States)

    Wang, Junfeng; Zhou, Yu; Zhang, Xiaoming; Liu, Fucai; Li, Yan; Li, Ke; Liu, Zheng; Wang, Guanzhong; Gao, Weibo

    2017-06-01

    Color centers in silicon carbide have increasingly attracted attention in recent years owing to their excellent properties such as single-photon emission, good photostability, and long spin-coherence time even at room temperature. As compared to diamond, which is widely used for hosting nitrogen-vacancy centers, silicon carbide has an advantage in terms of large-scale, high-quality, and low-cost growth, as well as an advanced fabrication technique in optoelectronics, leading to prospects for large-scale quantum engineering. In this paper, we report an experimental demonstration of the generation of a single-photon-emitter array through ion implantation. VSi defects are generated in predetermined locations with high generation efficiency (approximately 19 % ±4 % ). The single emitter probability reaches approximately 34 % ±4 % when the ion-implantation dose is properly set. This method serves as a critical step in integrating single VSi defect emitters with photonic structures, which, in turn, can improve the emission and collection efficiency of VSi defects when they are used in a spin photonic quantum network. On the other hand, the defects are shallow, and they are generated about 40 nm below the surface which can serve as a critical resource in quantum-sensing applications.

  20. Fabrication of High-Frequency pMUT Arrays on Silicon Substrates

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Zawada, Tomasz; Hansen, Karsten

    2010-01-01

    A novel technique based on silicon micromachining for fabrication of linear arrays of high-frequency piezoelectric micromachined ultrasound transducers (pMUT) is presented. Piezoelectric elements are formed by deposition of lead zirconia titanate into etched features of a silicon substrate...

  1. Three Dimensionally Interconnected Silicon Nanomembranes for Optical Phased Array (OPA) and Optical True Time Delay (TTD) Applications

    Science.gov (United States)

    2012-06-01

    spectroscopy of xylene in water," Appl. Phys. Lett. 98 (2), 023304 (2011). [8-22] Xiaonan Chen, Wei Jiang, Jiaqi Chen, Lanlan Gu, and Ray T. Chen...representative arrays of silicon pi structures. 13.3 Optical characterization of Si-based FRAMMs using FTIR (normal incidence) Transmission at normal...incidence was obtained using house-built angle-resolved FTIR setup. For the L12 sample (short antenna is 1.2 μm long), the normal transmission spectrum is

  2. Amorphous silicon carbide ultramicroelectrode arrays for neural stimulation and recording

    Science.gov (United States)

    Deku, Felix; Cohen, Yarden; Joshi-Imre, Alexandra; Kanneganti, Aswini; Gardner, Timothy J.; Cogan, Stuart F.

    2018-02-01

    Objective. Foreign body response to indwelling cortical microelectrodes limits the reliability of neural stimulation and recording, particularly for extended chronic applications in behaving animals. The extent to which this response compromises the chronic stability of neural devices depends on many factors including the materials used in the electrode construction, the size, and geometry of the indwelling structure. Here, we report on the development of microelectrode arrays (MEAs) based on amorphous silicon carbide (a-SiC). Approach. This technology utilizes a-SiC for its chronic stability and employs semiconductor manufacturing processes to create MEAs with small shank dimensions. The a-SiC films were deposited by plasma enhanced chemical vapor deposition and patterned by thin-film photolithographic techniques. To improve stimulation and recording capabilities with small contact areas, we investigated low impedance coatings on the electrode sites. The assembled devices were characterized in phosphate buffered saline for their electrochemical properties. Main results. MEAs utilizing a-SiC as both the primary structural element and encapsulation were fabricated successfully. These a-SiC MEAs had 16 penetrating shanks. Each shank has a cross-sectional area less than 60 µm2 and electrode sites with a geometric surface area varying from 20 to 200 µm2. Electrode coatings of TiN and SIROF reduced 1 kHz electrode impedance to less than 100 kΩ from ~2.8 MΩ for 100 µm2 Au electrode sites and increased the charge injection capacities to values greater than 3 mC cm-2. Finally, we demonstrated functionality by recording neural activity from basal ganglia nucleus of Zebra Finches and motor cortex of rat. Significance. The a-SiC MEAs provide a significant advancement in the development of microelectrodes that over the years has relied on silicon platforms for device manufacture. These flexible a-SiC MEAs have the potential for decreased tissue damage and reduced

  3. Angle resolved characterization of nanostructured and conventionally textured silicon solar cells

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Ormstrup, Jeppe; Ommen, Martin Lind

    2015-01-01

    current, open circuit voltage, fill factor (FF) and power conversion efficiency are each measured as function of the relative incident angle between the solar cell and the light source. The relative incident angle is varied from 0° to 90° in steps of 10° in orthogonal axes, such that each solar cell......We report angle resolved characterization of nanostructured and conventionally textured silicon solar cells. The nanostructured solar cells are realized through a single step, mask-less, scalable reactive ion etching (RIE) texturing of the surface. Photovoltaic properties including short circuit...

  4. Graded index and randomly oriented core-shell silicon nanowires for broadband and wide angle antireflection

    Directory of Open Access Journals (Sweden)

    P. Pignalosa

    2011-09-01

    Full Text Available Antireflection with broadband and wide angle properties is important for a wide range of applications on photovoltaic cells and display. The SiOx shell layer provides a natural antireflection from air to the Si core absorption layer. In this work, we have demonstrated the random core-shell silicon nanowires with both broadband (from 400nm to 900nm and wide angle (from normal incidence to 60º antireflection characteristics within AM1.5 solar spectrum. The graded index structure from the randomly oriented core-shell (Air/SiOx/Si nanowires may provide a potential avenue to realize a broadband and wide angle antireflection layer.

  5. Plasma jet array treatment to improve the hydrophobicity of contaminated HTV silicone rubber

    Science.gov (United States)

    Zhang, Ruobing; Han, Qianting; Xia, Yan; Li, Shuang

    2017-10-01

    An atmospheric-pressure plasma jet array specially designed for HTV silicone rubber treatment is reported in this paper. Stable plasma containing highly energetic active particles was uniformly generated in the plasma jet array. The discharge pattern was affected by the applied voltage. The divergence phenomenon was observed at low gas flow rate and abated when the flow rate increased. Temperature of the plasma plume is close to room temperature which makes it feasible for temperature-sensitive material treatment. Hydrophobicity of contaminated HTV silicone rubber was significantly improved after quick exposure of the plasma jet array, and the effective treatment area reached 120 mm × 50 mm (length × width). Reactive particles in the plasma accelerate accumulation of the hydrophobic molecules, namely low molecular weight silicone chains, on the contaminated surface, which result in a hydrophobicity improvement of the HTV silicone rubber.

  6. Sparse Array Angle Estimation Using Reduced-Dimension ESPRIT-MUSIC in MIMO Radar

    Science.gov (United States)

    Zhang, Chaozhu

    2013-01-01

    Sparse linear arrays provide better performance than the filled linear arrays in terms of angle estimation and resolution with reduced size and low cost. However, they are subject to manifold ambiguity. In this paper, both the transmit array and receive array are sparse linear arrays in the bistatic MIMO radar. Firstly, we present an ESPRIT-MUSIC method in which ESPRIT algorithm is used to obtain ambiguous angle estimates. The disambiguation algorithm uses MUSIC-based procedure to identify the true direction cosine estimate from a set of ambiguous candidate estimates. The paired transmit angle and receive angle can be estimated and the manifold ambiguity can be solved. However, the proposed algorithm has high computational complexity due to the requirement of two-dimension search. Further, the Reduced-Dimension ESPRIT-MUSIC (RD-ESPRIT-MUSIC) is proposed to reduce the complexity of the algorithm. And the RD-ESPRIT-MUSIC only demands one-dimension search. Simulation results demonstrate the effectiveness of the method. PMID:24376387

  7. Sparse Array Angle Estimation Using Reduced-Dimension ESPRIT-MUSIC in MIMO Radar

    Directory of Open Access Journals (Sweden)

    Chaozhu Zhang

    2013-01-01

    Full Text Available Sparse linear arrays provide better performance than the filled linear arrays in terms of angle estimation and resolution with reduced size and low cost. However, they are subject to manifold ambiguity. In this paper, both the transmit array and receive array are sparse linear arrays in the bistatic MIMO radar. Firstly, we present an ESPRIT-MUSIC method in which ESPRIT algorithm is used to obtain ambiguous angle estimates. The disambiguation algorithm uses MUSIC-based procedure to identify the true direction cosine estimate from a set of ambiguous candidate estimates. The paired transmit angle and receive angle can be estimated and the manifold ambiguity can be solved. However, the proposed algorithm has high computational complexity due to the requirement of two-dimension search. Further, the Reduced-Dimension ESPRIT-MUSIC (RD-ESPRIT-MUSIC is proposed to reduce the complexity of the algorithm. And the RD-ESPRIT-MUSIC only demands one-dimension search. Simulation results demonstrate the effectiveness of the method.

  8. Measurement errors related to contact angle analysis of hydrogel and silicone hydrogel contact lenses.

    Science.gov (United States)

    Read, Michael L; Morgan, Philip B; Maldonado-Codina, Carole

    2009-11-01

    This work sought to undertake a comprehensive investigation of the measurement errors associated with contact angle assessment of curved hydrogel contact lens surfaces. The contact angle coefficient of repeatability (COR) associated with three measurement conditions (image analysis COR, intralens COR, and interlens COR) was determined by measuring the contact angles (using both sessile drop and captive bubble methods) for three silicone hydrogel lenses (senofilcon A, balafilcon A, lotrafilcon A) and one conventional hydrogel lens (etafilcon A). Image analysis COR values were about 2 degrees , whereas intralens COR values (95% confidence intervals) ranged from 4.0 degrees (3.3 degrees , 4.7 degrees ) (lotrafilcon A, captive bubble) to 10.2 degrees (8.4 degrees , 12.1 degrees ) (senofilcon A, sessile drop). Interlens COR values ranged from 4.5 degrees (3.7 degrees , 5.2 degrees ) (lotrafilcon A, captive bubble) to 16.5 degrees (13.6 degrees , 19.4 degrees ) (senofilcon A, sessile drop). Measurement error associated with image analysis was shown to be small as an absolute measure, although proportionally more significant for lenses with low contact angle. Sessile drop contact angles were typically less repeatable than captive bubble contact angles. For sessile drop measures, repeatability was poorer with the silicone hydrogel lenses when compared with the conventional hydrogel lens; this phenomenon was not observed for the captive bubble method, suggesting that methodological factors related to the sessile drop technique (such as surface dehydration and blotting) may play a role in the increased variability of contact angle measurements observed with silicone hydrogel contact lenses.

  9. 5G antenna array with wide-angle beam steering and dual linear polarizations

    KAUST Repository

    Klionovski, Kirill

    2017-10-25

    In this paper, we present the design of a switched-beam antenna array at millimeter-wave frequencies for future 5G applications. The proposed antenna array is based on wideband patch antenna elements and a Butler matrix feed network. The patch antenna has a broad radiation pattern for wide-angle beam steering and allows the simultaneous operation with two orthogonal linear polarizations. A combination of two separated Butler matrices provides independent beam steering for both polarizations in the wide operating band. The antenna array has a simple multilayer construction, and it is made on a low-cost Rogers laminate.

  10. W-band Phased Array Systems using Silicon Integrated Circuits

    Science.gov (United States)

    Kim, Sang Young

    This thesis presents the silicon-based on-chip W-band phased array systems. An improved quadrature all-pass filter (QAF) and its implementation in 60--80 GHz active phase shifter using 0.13 microm SiGe BiCMOS technology is presented. It is demonstrated that with the inclusion of an Rs/R in the high Q branches of C and L, the sensitivity to the loading capacitance, therefore the I/Q phase and amplitude errors are minimized. This technique is especially suited for wideband millimeter-wave circuits where the loading capacitance (CL) is comparable to the filter capacitance (C). A prototype 60--80 GHz active phased shifter using the improved QAF is demonstrated. The overall chip size is 1.15 x 0.92 mm2 with the power consumption of 108 mW. The measured S11 and S22 are pass pi-network. The chip size is 0.45 x 0.3 mm2 without pads and consumes virtually no power. The measured S11 and S22 is 8 dBm and the simulated IIP3 is > 22 dBm. A low-power 76--84 GHz 4-element phased array receiver using the designed passive phase shifter is presented. The power consumption is minimized by using a single-ended design and alternating the amplifiers and phase shifter cells to result in a low noise figure at a low power consumption. A variable gain amplifier and the 11° phase shifter are used to correct for the rms gain and phase errors at different operating frequencies. The overall chip size is 2.0 x 2.7 mm2 with the current consumption of 18 mA/channel with 1.8 V supply voltage. The measured S11 and S 22 is circuits are designed differentially to result in less sensitivity to packaging effect and high channel-to-channel isolation. The overall chip size is 5.0 x 5.8 mm 2 with the power consumption of 500--600 mA from 2 V supply voltage. The measured S11 and S22 for all 16 phase states is 10 dB for 76.4--90 GHz with the rms gain error of -45 dB. The measured NF is 11.2--13 dB at 77--87 GHz at the maximum gain state. And the measured input P1dB is 20 dBm at 77 GHz and -25.8 dBm at the

  11. Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays

    DEFF Research Database (Denmark)

    Xiao, Binggang; Gu, Mingyue; Xiao, Sanshui

    2017-01-01

    -shaped graphene arrays. By simply stacking the double layer cross-shaped graphene with careful design, the working bandwidth can be broadened compared with the single-layer graphene-based absorber. The proposed absorbers have the properties of being polarization insensitive and having large angle tolerance...

  12. Analysis of artificial silicon microstructures by ultra-small-angle and spin-echo small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Trinker, M. [Atominstitut, Vienna University of Technology, A-1020 Vienna (Austria)], E-mail: mtrinker@ati.ac.at; Jericha, E. [Atominstitut, Vienna University of Technology, A-1020 Vienna (Austria); Bouwman, W.G. [Faculty of Applied Sciences, Delft University of Technology, 2629 JB Delft (Netherlands); Loidl, R. [Atominstitut, Vienna University of Technology, A-1020 Vienna (Austria); Institute Laue-Langevin, F-38042 Grenoble (France); Rauch, H. [Atominstitut, Vienna University of Technology, A-1020 Vienna (Austria)

    2007-09-11

    Ultra-Small-Angle Neutron Scattering (USANS) is currently becoming an effective technique for the analysis of structures in the micrometer range. The new Spin-Echo SANS (SESANS) method measures a signal in real space. In both cases microfabricated silicon gratings provide unique test procedures for the related devices and interpretations of the experimental data. A series of one-dimensional gratings was fabricated using a highly anisotropic ion etching technique (RIE) and measured at the USANS instrument S18 at ILL, Grenoble. Grating parameters derived from the experimental data are in agreement with the nominal values. Scattering length density correlation functions calculated from the USANS data are compared to SESANS correlation functions measured at the Delft University of Technology, demonstrating the reciprocity of the two scattering methods. Reconstruction techniques for one-dimensional scattering length density distributions are applied to the USANS data. The results are in good agreement with SEM micrographs of the samples.

  13. Formation of array microstructures on silicon by multibeam interfered femtosecond laser pulses

    International Nuclear Information System (INIS)

    Zhao Quanzhong; Qiu Jianrong; Zhao Chongjun; Jiang Xiongwei; Zhu Congshan

    2005-01-01

    We report on an optical interference method to fabricate array microstructures on the surface of silicon wafers by means of five-beam interference of femtosecond laser pulses. Optical microscope and scanning electron microscope observations revealed microstructures with micrometer-order were fabricated. The diffraction characteristics of the fabricated structures were evaluated. The present technique allows one-step realization of functional optoelectronic devices on silicon surface

  14. Laser desorption ionization and peptide sequencing on laser induced silicon microcolumn arrays

    Science.gov (United States)

    Vertes, Akos [Reston, VA; Chen, Yong [San Diego, CA

    2011-12-27

    The present invention provides a method of producing a laser-patterned silicon surface, especially silicon wafers for use in laser desorption ionization (LDI-MS) (including MALDI-MS and SELDI-MS), devices containing the same, and methods of testing samples employing the same. The surface is prepared by subjecting a silicon substrate to multiple laser shots from a high-power picosecond or femtosecond laser while in a processing environment, e.g., underwater, and generates a remarkable homogenous microcolumn array capable of providing an improved substrate for LDI-MS.

  15. Effects of pillar height and junction depth on the performance of radially doped silicon pillar arrays for solar energy applications

    NARCIS (Netherlands)

    Elbersen, R.; Vijselaar, Wouter Jan, Cornelis; Tiggelaar, Roald M.; Gardeniers, Johannes G.E.; Huskens, Jurriaan

    2016-01-01

    The effects of pillar height and junction depth on solar cell characteristics are investigated to provide design rules for arrays of such pillars in solar energy applications. Radially doped silicon pillar arrays are fabricated by deep reactive ion etching of silicon substrates followed by the

  16. Angle-dependent ultrasonic transmission through plates with subwavelength hole arrays.

    Science.gov (United States)

    Estrada, Héctor; García de Abajo, F Javier; Candelas, Pilar; Uris, Antonio; Belmar, Francisco; Meseguer, Francisco

    2009-04-10

    We study the angle and frequency dependence of sound transmission through water-immersed perforated aluminum plates. Three types of resonances are found to govern the acoustic properties of the plates: lattice resonances in periodic arrays, Fabry-Perot modes of the hole cavities, and elastic Lamb modes. The last two of them are still present in random arrays and have no parallel in optical transmission through holes. These modes are identified by comparing experiment with various levels of theoretical analysis, including full solution of the elasto-acoustic wave equations. We observe strong mixture of different transmission mechanisms, giving rise to unique acoustic behavior and opening new perspectives for exotic wave phenomena.

  17. Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition

    Science.gov (United States)

    Kato, Shinya; Kurokawa, Yasuyoshi; Miyajima, Shinsuke; Watanabe, Yuya; Yamada, Akira; Ohta, Yoshimi; Niwa, Yusuke; Hirota, Masaki

    2013-08-01

    To achieve a high-efficiency silicon nanowire (SiNW) solar cell, surface passivation technique is very important because a SiNW array has a large surface area. We successfully prepared by atomic layer deposition (ALD) high-quality aluminum oxide (Al2O3) film for passivation on the whole surface of the SiNW arrays. The minority carrier lifetime of the Al2O3-depositedSiNW arrays with bulk silicon substrate was improved to 27 μs at the optimum annealing condition. To remove the effect of bulk silicon, the effective diffusion length of minority carriers in the SiNW array was estimated by simple equations and a device simulator. As a result, it was revealed that the effective diffusion length in the SiNW arrays increased from 3.25 to 13.5 μm by depositing Al2O3 and post-annealing at 400°C. This improvement of the diffusion length is very important for application to solar cells, and Al2O3 deposited by ALD is a promising passivation material for a structure with high aspect ratio such as SiNW arrays.

  18. Use of an amorphous silicon EPID for measuring MLC calibration at varying gantry angle

    International Nuclear Information System (INIS)

    Clarke, M F; Budgell, G J

    2008-01-01

    Amorphous silicon electronic portal imaging devices (EPIDs) are used to perform routine quality control (QC) checks on the multileaf collimators (MLCs) at this centre. Presently, these checks are performed at gantry angle 0 0 and are considered to be valid for all other angles. Since therapeutic procedures regularly require the delivery of MLC-defined fields to the patient at a wide range of gantry angles, the accuracy of the QC checks at other gantry angles has been investigated. When the gantry is rotated to angles other than 0 0 it was found that the apparent pixel size measured using the EPID varies up to a maximum value of 0.0015 mm per pixel due to a sag in the EPID of up to 9.2 mm. A correction factor was determined using two independent methods at a range of gantry angles between 0 deg. and 360 deg. The EPID was used to measure field sizes (defined by both x-jaws and MLC) at a range of gantry angles and, after this correction had been applied, any residual gravitational sag was studied. It was found that, when fields are defined by the x-jaws and y-back-up jaws, no errors of greater than 0.5 mm were measured and that these errors were no worse when the MLC was used. It was therefore concluded that, provided the correction is applied, measurements of the field size are, in practical terms, unaffected by gantry angle. Experiments were also performed to study how the reproducibility of individual leaves is affected by gantry angle. Measurements of the relative position of each individual leaf (minor offsets) were performed at a range of gantry angles and repeated three times. The position reproducibility was defined by the RMS error in the position of each leaf and this was found to be 0.24 mm and 0.21 mm for the two leaf banks at a gantry angle of 0 0 . When measurements were performed at a range of gantry angles, these reproducibility values remained within 0.09 mm and 0.11 mm. It was therefore concluded that the calibration of the Elekta MLC is stable at

  19. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    International Nuclear Information System (INIS)

    Viel, Simon; Banerjee, Swagato; Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice; Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar; Pranko, Aliaksandr; Rieger, Julia; Wolf, Julian; Wu, Sau Lan; Yang, Hongtao

    2016-01-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN. - Highlights: • Extended inner pixel barrel layers are proposed for the ATLAS ITk upgrade. • Test beam results at small track incidence angles validate this ATLAS ITk design. • Long pixel clusters are reconstructed with high efficiency at low threshold values. • Excellent angular resolution is achieved using pixel cluster length information.

  20. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Viel, Simon, E-mail: sviel@lbl.gov [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Banerjee, Swagato [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States); Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States); Pranko, Aliaksandr [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Rieger, Julia [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); II Physikalisches Institut, Georg-August-Universität, Göttingen (Germany); Wolf, Julian [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Wu, Sau Lan; Yang, Hongtao [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States)

    2016-09-21

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN. - Highlights: • Extended inner pixel barrel layers are proposed for the ATLAS ITk upgrade. • Test beam results at small track incidence angles validate this ATLAS ITk design. • Long pixel clusters are reconstructed with high efficiency at low threshold values. • Excellent angular resolution is achieved using pixel cluster length information.

  1. Periodic arrays of deep nanopores made in silicon with reactive ion etching and deep UV lithography

    NARCIS (Netherlands)

    Woldering, L.A.; Tjerkstra, R.W.; Jansen, Henricus V.; Setija, Irwan D.; Vos, Willem L.

    2008-01-01

    We report on the fabrication of periodic arrays of deep nanopores with high aspect ratios in crystalline silicon. The radii and pitches of the pores were defined in a chromium mask by means of deep UV scan and step technology. The pores were etched with a reactive ion etching process with SF6,

  2. Tunable and angle-insensitive plasmon resonances in graphene ribbon arrays with multispectral diffraction response

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kangwen; Ma, Xunpeng; Zhang, Zuyin; Xu, Yun, E-mail: xuyun@semi.ac.cn; Song, Guofeng [Institute of Semiconductors, Chinese Academy of Sciences, Beijing (China)

    2014-03-14

    Plasmon resonances in graphene ribbon arrays are investigated numerically by means of the Finite Element Method. Numerical analysis shows that a series of multipolar resonances take place when graphene ribbon arrays are illuminated by a TM polarized electromagnetic wave. Moreover, these resonances are angle-independent, and can be tuned greatly by the width and the doping level of the graphene ribbons. Specifically, we demonstrate that for graphene arrays with several sets of graphene ribbons, which have different widths or doping levels, each of these multipolar resonances will be split into several ones. In addition, as plasmon resonances can confine electromagnetic field at the ribbon edges, graphene ribbons with different widths or doping levels offer intriguing application for electrically tunable spectral imaging.

  3. On measurement of acoustic pulse arrival angles using a vertical array

    Science.gov (United States)

    Makarov, D. V.

    2017-11-01

    We consider a recently developed method to analyze the angular structure of pulsed acoustic fields in an underwater sound channel. The method is based on the Husimi transform that allows us to approximately link a wave field with the corresponding ray arrivals. The advantage of the method lies in the possibility of its practical realization by a vertical hydrophone array crossing only a small part of the oceanic depth. The main aim of the present work is to find the optimal parameter values of the array that ensure good angular accuracy and sufficient reliability of the algorithm to calculate the arrival angles. Broadband pulses with central frequencies of 80 and 240 Hz are considered. It is shown that an array with a length of several hundred meters allows measuring the angular spectrum with an accuracy of up to 1 degree. The angular resolution is lowered with an increase of the sound wavelength due to the fundamental limitations imposed by the uncertainty relation.

  4. Materials preparation and fabrication of pyroelectric polymer/silicon MOSFET detector arrays. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, P. [Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Engineering

    1992-03-27

    The authors have delivered several 64-element linear arrays of pyroelectric elements fully integrated on silicon wafers with MOS readout devices. They have delivered detailed drawings of the linear arrays to LANL. They have processed a series of two inch wafers per submitted design. Each two inch wafer contains two 64 element arrays. After spin-coating copolymer onto the arrays, vacuum depositing the top electrodes, and polarizing the copolymer films so as to make them pyroelectrically active, each wafer was split in half. The authors developed a thicker oxide coating separating the extended gate electrode (beneath the polymer detector) from the silicon. This should reduce its parasitic capacitance and hence improve the S/N. They provided LANL three processed 64 element sensor arrays. Each array was affixed to a connector panel and selected solder pads of the common ground, the common source voltage supply connections, the 64 individual drain connections, and the 64 drain connections (for direct pyroelectric sensing response rather than the MOSFET action) were wire bonded to the connector panel solder pads. This entails (64 + 64 + 1 + 1) = 130 possible bond connections per 64 element array. This report now details the processing steps and the progress of the individual wafers as they were carried through from beginning to end.

  5. Beam Tilt-Angle Estimation for Monopole End-Fire Array Mounted on a Finite Ground Plane

    OpenAIRE

    Cao, Jia; Xue, Zhenghui; Cao, Meng

    2015-01-01

    A modified method for the beam tilt-angle estimation of monopole end-fire array mounted on finite ground plane is proposed. In the simplified model, the monopole array and ground plane are approximated to two line sources of transverse and longitudinal electric current, respectively. It is deduced that the beam tilt angle is a function about the length of ground plane in front of array Lg, the length of monopole array La, and the phase constant βα. After verifying the optimizing principle of ...

  6. Characterization of electronic structures from CdS/Si nanoheterostructure array based on silicon nanoporous pillar array

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yong, E-mail: liyong@pdsu.edu.cn [Department of Physics and Solar Energy Research Center, Pingdingshan University, Pingdingshan 467000 (China); Song, Xiao Yan [Department of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450045 (China); Song, Yue Li; Ji, Peng Fei; Zhou, Feng Qun; Tian, Ming Li; Huang, Hong Chun [Department of Physics and Solar Energy Research Center, Pingdingshan University, Pingdingshan 467000 (China); Li, Xin Jian [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2016-02-15

    Highlights: • CdS/Si nanoheterostructure array has been fabricated through a CBD method. • The electronic properties have been investigated by the I–V and C–V techniques. • The onset voltages, characteristic frequency and built-in potential are investigated. • The electronic structures can be tuned through the annealing treatments. - Abstract: The electronic properties of heterostructures are very important to its applications in the field of optoelectronic devices. Understanding and control of electronic properties are very necessary. CdS/Si nanoheterostructure array have been fabricated through growing CdS nanocrystals on the silicon nanoporous pillar array using a chemical bath deposition method. The electronic properties of CdS nanoheterostructure array have been investigated by the current–voltage, complex impedance spectroscopy and capacitance–voltage techniques. The onset voltages, characteristic frequency and built-in potential are gradually increased with increasing the annealing temperature. It is indicated that the electronic structures of CdS/Si nanoheterostructure array can be tuned through the annealing treatments.

  7. Extended Hubbard model for mesoscopic transport in donor arrays in silicon

    Science.gov (United States)

    Le, Nguyen H.; Fisher, Andrew J.; Ginossar, Eran

    2017-12-01

    Arrays of dopants in silicon are promising platforms for the quantum simulation of the Fermi-Hubbard model. We show that the simplest model with only on-site interaction is insufficient to describe the physics of an array of phosphorous donors in silicon due to the strong intersite interaction in the system. We also study the resonant tunneling transport in the array at low temperature as a mean of probing the features of the Hubbard physics, such as the Hubbard bands and the Mott gap. Two mechanisms of localization which suppresses transport in the array are investigated: The first arises from the electron-ion core attraction and is significant at low filling; the second is due to the sharp oscillation in the tunnel coupling caused by the intervalley interference of the donor electron's wave function. This disorder in the tunnel coupling leads to a steep exponential decay of conductance with channel length in one-dimensional arrays, but its effect is less prominent in two-dimensional ones. Hence, it is possible to observe resonant tunneling transport in a relatively large array in two dimensions.

  8. Quantitative measurements of C-reactive protein using silicon nanowire arrays

    Directory of Open Access Journals (Sweden)

    Min-Ho Lee

    2008-03-01

    Full Text Available Min-Ho Lee, Kuk-Nyung Lee, Suk-Won Jung, Won-Hyo Kim, Kyu-Sik Shin, Woo-Kyeong SeongKorea Electronics Technology Institute, Gyeonggi, KoreaAbstract: A silicon nanowire-based sensor for biological application showed highly desirable electrical responses to either pH changes or receptor-ligand interactions such as protein disease markers, viruses, and DNA hybridization. Furthermore, because the silicon nanowire can display results in real-time, it may possess superior characteristics for biosensing than those demonstrated in previously studied methods. However, despite its promising potential and advantages, certain process-related limitations of the device, due to its size and material characteristics, need to be addressed. In this article, we suggest possible solutions. We fabricated silicon nanowire using a top-down and low cost micromachining method, and evaluate the sensing of molecules after transfer and surface modifications. Our newly designed method can be used to attach highly ordered nanowires to various substrates, to form a nanowire array device, which needs to follow a series of repetitive steps in conventional fabrication technology based on a vapor-liquid-solid (VLS method. For evaluation, we demonstrated that our newly fabricated silicon nanowire arrays could detect pH changes as well as streptavidin-biotin binding events. As well as the initial proof-of-principle studies, C-reactive protein binding was measured: electrical signals were changed in a linear fashion with the concentration (1 fM to 1 nM in PBS containing 1.37 mM of salts. Finally, to address the effects of Debye length, silicon nanowires coupled with antigen proteins underwent electrical signal changes as the salt concentration changed.Keywords: silicon nanowire array, C-reactive protein, vapor-liquid-solid method

  9. Determination of parameters for successful spray coating of silicon microneedle arrays.

    Science.gov (United States)

    McGrath, Marie G; Vrdoljak, Anto; O'Mahony, Conor; Oliveira, Jorge C; Moore, Anne C; Crean, Abina M

    2011-08-30

    Coated microneedle patches have demonstrated potential for effective, minimally invasive, drug and vaccine delivery. To facilitate cost-effective, industrial-scale production of coated microneedle patches, a continuous coating method which utilises conventional pharmaceutical processes is an attractive prospect. Here, the potential of spray-coating silicon microneedle patches using a conventional film-coating process was evaluated and the key process parameters which impact on coating coalescence and weight were identified by employing a fractional factorial design to coat flat silicon patches. Processing parameters analysed included concentration of coating material, liquid input rate, duration of spraying, atomisation air pressure, gun-to-surface distance and air cap setting. Two film-coating materials were investigated; hydroxypropylmethylcellulose (HPMC) and carboxymethylcellulose (CMC). HPMC readily formed a film-coat on silicon when suitable spray coating parameter settings were determined. CMC films required the inclusion of a surfactant (1%, w/w Tween 80) to facilitate coalescence of the sprayed droplets on the silicon surface. Spray coating parameters identified by experimental design, successfully coated 280μm silicon microneedle arrays, producing an intact film-coat, which follows the contours of the microneedle array without occlusion of the microneedle shape. This study demonstrates a novel method of coating microneedle arrays with biocompatible polymers using a conventional film-coating process. It is the first study to indicate the thickness and roughness of coatings applied to microneedle arrays. The study also highlights the importance of identifying suitable processing parameters when film coating substrates of micron dimensions. The ability of a fractional factorial design to identify these critical parameters is also demonstrated. The polymer coatings applied in this study can potentially be drug loaded for intradermal drug and vaccine delivery

  10. Skew angle effects in shingled magnetic recording system with double/triple reader head array

    Science.gov (United States)

    Elidrissi, Moulay Rachid; Sann Chan, Kheong; Greaves, Simon; Kanai, Yasushi; Muraoka, Hiroaki

    2014-05-01

    Shingled Magnetic Recording (SMR) is a scheme used to extend the life of the current perpendicular magnetic recording technology. SMR enables writing narrow tracks with a wide writer. Currently, SMR employs a single reader and will suffer inter-track interference (ITI) as the tracks become comparable in width to the reader. ITI can be mitigated by using narrower readers; however, narrower readers suffer from increased reader noise. Another approach to combat ITI is to process 2D readback and use ITI cancellation schemes to retrieve the data track. Multiple readbacks can be obtained either with a single reader and multiple revolutions or with a reader array. The former suffers from increased readback latency. In this work, we focus on the latter. When using a reader array, the skew angle poses major challenges. During writing, there is increased adjacent track erasure, and during readback the effective reader pitch varies and there is an increase in the 2D intersymbol interference caused by the rotated reader profile. In this work, we run micromagnetic simulations at different skew angles to train the grain flipping probability model, and then evaluate raw bit channel error rate performance at skew. In particular, we investigate the performance degradation caused by skewing of the 2 or 3 read head array for various read-head geometries.

  11. A photoacoustic imager with light illumination through an infrared-transparent silicon CMUT array.

    Science.gov (United States)

    Chen, Jingkuang; Wang, Mengli; Cheng, Jui-Ching; Wang, Yu-Hsin; Li, Pai-Chi; Cheng, Xiaoyang

    2012-04-01

    A novel hardware design and preliminary experimental results for photoacoustic imaging are reported in this paper. This imaging system makes use of an infrared-transparent capacitive micromachined ultrasonic transducer (CMUT) chip for ultrasound reception and illuminates the image target through the CMUT array. The cascaded arrangement between the light source and transducer array allows for a more compact imager head and results in more uniform illumination. Taking advantage of the low optical absorption coefficient of silicon in the near infrared spectrum as well as the broad acoustic bandwidth that CMUTs provide, an infrared-transparent CMUT array has been developed for ultrasound reception. The center frequency of the polysilicon-membrane CMUT devices used in this photoacoustic system is 3.5 MHz, with a fractional bandwidth of 118% in reception mode. The silicon substrate of the CMUT array has been thinned to 100 μm and an antireflection dielectric layer is coated on the back side to improve the infrared-transmission rate. Initial results show that the transmission rate of a 1.06-μm Nd:Yag laser through this CMUT chip is 12%. This transmission rate can be improved if the thickness of silicon substrate and the thin-film dielectrics in the CMUT structure are properly tailored. Imaging of a metal wire phantom using this cascaded photoacoustic imager is demonstrated.

  12. Determination of Hydrophobic Contact Angle of Epoxy Resin Compound Silicon Rubber and Silica

    Science.gov (United States)

    Syakur, Abdul; Hermawan; Sutanto, Heri

    2017-04-01

    Epoxy resin is a thermosetting polymeric material which is very good for application of high voltage outdoor insulator in electrical power system. This material has several advantages, i.e. high dielectric strength, light weight, high mechanical strength, easy to blend with additive, and easy maintenance if compared to that of porcelain and glass outdoor insulators which are commonly used. However, this material also has several disadvantages, i.e. hydrophilic property, very sensitive to aging and easily degraded when there is a flow of contaminants on its surface. The research towards improving the performance of epoxy resin insulation materials were carried out to obtain epoxy resin insulating material with high water repellent properties and high surface tracking to aging. In this work, insulating material was made at room temperature vulcanization, with material composition: Diglycidyl Ether Bisphenol A (DGEBA), Metaphenylene Diamine (MPDA) as hardener with stoichiometric value of unity, and nanosilica mixed with Silicon Rubber (SiR) with 10% (RTV21), 20% (RTV22), 30% (RTV23), 40% (RTV24) and 50% (RTV25) variation. The usage of nanosilica and Silicon Rubber (SIR) as filler was expected to provide hydrophobic properties and was able to increase the value of surface tracking of materials. The performance of the insulator observed were contact angle of hydrophobic surface materials. Tests carried out using Inclined Plane Tracking procedure according to IEC 60-587: 1984 with Ammonium Chloride (NH4Cl) as contaminants flowed using peristaltic pumps. The results show that hydrophobic contact angle can be determined from each sample, and RTV25 has maximum contact angle among others.

  13. Develop silicone encapsulation systems for terrestrial silicon solar arrays. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    This work resulted in two basic accomplishments. The first was the identification of DOW CORNING Q1-2577 as a suitable encapsulant material for use in cost effective encapsulation systems. The second was the preparation of a silicon-acrylic cover material containing a durable ultraviolet screening agent for the protection of photo-oxidatively sensitive polymers. The most expeditious method of fabrication is one in which the encapsulant material performs the combined function of adhesive, pottant, and outer cover. The costs of the encapsulant can be minimized by using it as a thin conformal coating. One encapsulation system using silicones was identified which provided protection to photovoltaic cells and survived the JPL qualification tests. This encapsulation system uses DOW CORNING Q1-2577, a conformal coating from Dow Corning, as the combined adhesive, pottant and cover material. The lowest cost encapsulation system using Q1-2577 had Super Dorlux as the substrate structural member. The overall material cost of this encapsulation system is 0.74 cents/ft/sup 2/ (1980 dollars) based on current material prices, which could decrease with increased production of Q1-2577. Subsequent to identifying the best silicone encapsulation system, a silicone acrylic cover material containing a durable ultraviolet screening agent was prepared and its effectiveness in protecting photo-oxidatively sensitive polymers was demonstrated.

  14. Corporate array of micromachined dipoles on silicon wafer for 60 GHz communication systems

    KAUST Repository

    Sallam, M. O.

    2013-03-01

    In this paper, an antenna array operating at 60 GHz and realized on 0.675 mm thick silicon substrate is presented. The array is constructed using four micromachined half-wavelength dipoles fed by a corporate feeding network. Isolation between the antenna array and its feeding network is achieved via a ground plane. This arrangement leads to maximizing the broadside radiation with relatively high front-to-back ratio. Simulations have been carried out using both HFSS and CST, which showed very good agreement. Results reveal that the proposed antenna array has good radiation characteristics, where the directivity, gain, and radiation efficiency are around 10.5 dBi, 9.5 dBi, and 79%, respectively. © 2013 IEEE.

  15. Phased array ultrasonic inspection method for homogeneous tube inspection over a wide oblique angle range

    Science.gov (United States)

    Lepage, Benoit; Painchaud-April, Guillaume

    2017-02-01

    As seamless tube manufacturers push quality requirements for their products, automated phased array Rotating Tube Inspection Systems (RTIS) are now required to provide continuous NDE detection performances over a wide angular range of oblique flaws. One major impact of this new reality is a paradigm shift for the calibration method use. This change is driven by the requirement to meet homogeneous detection over broad oblique flaw angle intervals, whereas standard practice only requires calibration at specific discrete angles. This paper presents an innovative method specifically designed to obtain high productivity and homogeneous inspection measurements over an oblique flaw range extending from -45 to 45 degrees. Experimental results from the application of the method on various tubes presenting multiple artificial flaws support the quantitative performance evaluation.

  16. High density micro-pyramids with silicon nanowire array for photovoltaic applications

    International Nuclear Information System (INIS)

    Rahman, Tasmiat; Navarro-Cía, Miguel; Fobelets, Kristel

    2014-01-01

    We use a metal assisted chemical etch process to fabricate silicon nanowire arrays (SiNWAs) onto a dense periodic array of pyramids that are formed using an alkaline etch masked with an oxide layer. The hybrid micro-nano structure acts as an anti-reflective coating with experimental reflectivity below 1% over the visible and near-infrared spectral regions. This represents an improvement of up to 11 and 14 times compared to the pyramid array and SiNWAs on bulk, respectively. In addition to the experimental work, we optically simulate the hybrid structure using a commercial finite difference time domain package. The results of the optical simulations support our experimental work, illustrating a reduced reflectivity in the hybrid structure. The nanowire array increases the absorbed carrier density within the pyramid by providing a guided transition of the refractive index along the light path from air into the silicon. Furthermore, electrical simulations which take into account surface and Auger recombination show an efficiency increase for the hybrid structure of 56% over bulk, 11% over pyramid array and 8.5% over SiNWAs. (paper)

  17. End-fire silicon optical phased array with half-wavelength spacing

    Science.gov (United States)

    Kossey, Michael R.; Rizk, Charbel; Foster, Amy C.

    2018-01-01

    We demonstrate an optical phased array with emitting elements spaced at half the operational wavelength. The device is a one-dimensional array fabricated on an integrated silicon platform for operation at a wavelength of 1.55 μm. Light is emitted end-fire from the chip edge where the waveguides are terminated. The innovative design and high confinement afforded by the silicon waveguides enables λ/2 spacing (775-nm pitch) at the output thereby eliminating grating lobes and maximizing the power in the main lobe. Steering is achieved by inducing a phase shift between the waveguide feeds via integrated thermo-optic heaters. The device forms a beam with a full-width half-maximum angular width of 17°, and we demonstrate beam steering over a 64° range limited only by the element factor.

  18. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.L. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain); Martel, I. [Dpto de Física Aplicada, Universidad de Huelva (Spain); CERN, ISOLDE, CH 1211 Geneva, 23 (Switzerland); Jiménez, R. [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Galán, J., E-mail: jgalan@diesia.uhu.es [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Salmerón, P. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain)

    2016-09-11

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from {sup 12}C up to {sup 84}Kr, yielding higher discrimination rates than any other previously reported.

  19. Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon

    KAUST Repository

    Frost, Thomas

    2014-08-13

    A silicon-based laser, preferably electrically pumped, has long been a scientific and engineering goal. We demonstrate here, for the first time, an edge-emitting InGaN/GaN disk-in-nanowire array electrically pumped laser emitting in the green (λ = 533 nm) on (001) silicon substrate. The devices display excellent dc and dynamic characteristics with values of threshold current density, differential gain, T0 and small signal modulation bandwidth equal to 1.76 kA/cm2, 3 × 10-17 cm2, 232 K, and 5.8 GHz respectively under continuous wave operation. Preliminary reliability measurements indicate a lifetime of 7000 h. The emission wavelength can be tuned by varying the alloy composition in the quantum disks. The monolithic nanowire laser on (001)Si can therefore address wide-ranging applications such as solid state lighting, displays, plastic fiber communication, medical diagnostics, and silicon photonics. © 2014 American Chemical Society.

  20. Biocompatibility of silicon-based arrays of electrodes coupled to organotypic hippocampal brain slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, J; Thiébaud, P

    2001-01-01

    In this study we examined the passive biocompatibility of a three-dimensional microelectrode array (MEA), designed to be coupled to organotypic brain slice cultures for multisite recording of electrophysiological signals. Hippocampal (and corticostriatal) brain slices from 1-week-old (and newborn......) rats were grown for 4-8 weeks on the perforated silicon chips with silicon nitride surfaces and 40 microm sized holes and compared with corresponding tissue slices grown on conventional semiporous membranes. In terms of preservation of the basic cellular and connective organization, as visualized......-methyl-D-aspartate (NMDA) and the neurotoxin trimethyltin (TMT), as demonstrated by the cellular uptake of propidium iodide (PI), which was used as a reproducible and quantifiable marker for neuronal degeneration. We conclude that organotypic brain slice cultures can grow on silicon-based three-dimensional microelectrode...

  1. A pseudo 3D glass microprobe array: glass microprobe with embedded silicon for alignment and electrical interconnection during assembly

    Science.gov (United States)

    Lee, Yu-Tao; Lin, Chiung-Wen; Lin, Chia-Min; Yeh, Shih-Rung; Chang, Yen-Chung; Fang, Weileun

    2010-02-01

    This study presents a process for the assembling of a pseudo 3D glass microprobe array. A glass microprobe with embedded silicon (ES) is batch fabricated by a glass reflow process. The silicon fixture and carrier for the assembly are also batch fabricated by silicon micromachining processes. First, the chips with a glass microprobe array are bonded by parylene-C to form the pseudo 3D glass microprobe array. The pseudo 3D microprobe array is then mounted on the silicon carrier. ES is employed for alignment during the assembly, and also acts as the electrical routing for signal recording. In application, the impedance of this glass microprobe is measured, and at 1 kHz it is 1.1 MΩ. Action potentials from rat brain cortex are also successfully recorded.

  2. High-accuracy alignment of the grating pattern along silicon directions using a short rectangular array

    Science.gov (United States)

    Wang, Yu; Liu, Zhengkun; Zheng, Yanchang; Qiu, Keqiang; Hong, Yilin

    2017-06-01

    A method for the accurate alignment of the grating pattern along silicon directions is developed. A short rectangular array is fabricated as an alignment pattern in silicon wafer through quick pre-anisotropic wet etching. The short rectangles can locate the {1 1 1} planes with zero error without the need to determine the crystal directions manually. The grating pattern is aligned along directions by using the diffraction characteristic of the short rectangular array without a superfluous process or equipment. The alignment pattern occupies an area of less than 4 mm2 and can be fabricated through one-time wet etching in any location on the silicon wafer. The alignment error of this method is up to +/- 0.013°. The method is used to fabricate a silicon grating with a period of 220 nm and a groove depth of 1.8 µm. The sidewalls of the grating are atomically smooth {1 1 1} planes with an RMS roughness of 0.162 nm.

  3. SU-F-J-184: Proton Computed Tomography Using 1D Silicon Diode Array

    Energy Technology Data Exchange (ETDEWEB)

    Wang, P [Texas Center for Proton Therapy, Irving, TX (United States); Cammin, J; Solberg, T; McDonough, J; Zhu, T; Teo, B [University of Pennsylvania, Philadelphia, PA (United States); Bisello, F; Menichelli, D [IBA Dosimetry GmbH, Schwarzenbruck (Germany)

    2016-06-15

    Purpose: Proton radiography and proton computed tomography (PCT) can be used to measure proton stopping power directly. However, practical and cost effective proton imaging detectors are not widely available. In this study, the authors investigated the feasibility of proton imaging using a silicon diode array. Methods: A one-dimensional silicon-diode detector array (1DSDA) was aligned with the central axis (CAX) of the proton beam. Polymethyl methacrylate (PMMA) slabs were used to find the correspondence between the water equivalent thickness (WET) and 1DSDA channel number. 2D proton radiographs (PR) were obtained by translation and rotation of a phantom relative to CAX while the proton nozzle and 1DSDA were kept stationary. A PCT image of one slice of the phantom was reconstructed using filtered backprojection. Results: PR and PCT images of the PMMA cube were successfully acquired using the 1DSDA. The WET of the phantom was measured using PR data with an accuracy of 4.2% or better. Structures down to 1 mm in size could be resolved. Reconstruction of a PCT image showed very good agreement with simulation. Limitations in spatial resolution are attributed to limited spatial sampling, beam collimation, and proton scatter. Conclusion: The results demonstrate the feasibility of using silicon diode arrays for proton imaging. Such a device can potentially offer fast image acquisition, high spatial and energy resolution for PR and PCT.

  4. Fabrication of ambipolar gate-all-around field-effect transistors using silicon nanobridge arrays

    Science.gov (United States)

    Oh, Jin Yong; Park, Jong-Tae; Islam, M. Saif

    2013-09-01

    Nanowire bridges have been almost dormant in a nanostructured device community due to the challenges in reproducible growth and device fabrication. In this work, we present simple methods for creating silicon nanobridge arrays with repeatability, and demonstrate integration of gate-all-around field-effect-transistors in the arrays. P-type silicon nanowires air-bridges were synthesized using gold nanoparticles via the VLS technique on the array of predefined silicon electrode-pairs, and then surrounding gates were formed on the suspended air-bridge nanowires. The nanowire air-bridge field-effect-transistors with the surrounding gate exhibited p-type accumulation-mode characteristics with a subthreshold swing of 187 mV/dec and an on/off current ratio of 1.6×106. Despite the surrounding gate that helps gate biases govern the channel, off current substantially increased as drain bias increases. This ambipolar current-voltage property was attributable to gate-induced-drain-leakage at the overlap of gate and drain electrodes and trap-assisted tunneling at the nanowire and electrode connection.

  5. Immunosensing platform based on gallium nanoparticle arrays on silicon substrates.

    Science.gov (United States)

    García Marín, Antonio; Hernández, María Jesús; Ruiz, Eduardo; Abad, Jose María; Lorenzo, Encarnación; Piqueras, Juan; Pau, Jose Luis

    2015-12-15

    Gallium nanoparticles (GaNPs) of different sizes are deposited on Si(100) substrates by thermal evaporation. Through ellipsometric analysis, it is possible to investigate the plasmonic effects in the GaNPs and exploit them to develop biosensors. The excitation of the resonant modes for certain incidence angles leads to negative values of the imaginary part of the pseudodielectric function () obtained in ellipsometry. Furthermore, there is an abrupt sign change when the difference between the phase shifts of p- and s-polarization components reaches 180° at an energy of around 3.15 eV. At that energy, reversal of the polarization handedness (RPH) occurs for an elliptically-polarized input beam. The energy of the RPH condition reduces as the evaporation time increases. The slope of at the RPH condition is extremely sensitive to changes in the surrounding medium of the NP surface and prompts the use of the GaNP/Si system as sensor platform. Fourier transformed infrared spectroscopy (FTIR) is used before and after functionalization with 3,3'-dithiodipropionic acid di(N-succinimidyl ester) and a glutathione-specific antibody to confirm the chemical modification of the sample surface. The developed immunosensor is exposed to different concentrations of glutathione (GSH) showing a linear relationship between the slope of the pseudodielectric function at the RPH condition and the GSH concentration. The immunosensor shows a limit of detection of 10nM enabling its use for the detection of low GSH levels in different medical conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Bilayer–metal assisted chemical etching of silicon microwire arrays for photovoltaic applications

    Directory of Open Access Journals (Sweden)

    R. W. Wu

    2016-02-01

    Full Text Available Silicon microwires with lateral dimension from 5 μm to 20 μm and depth as long as 20 μm are prepared by bilayer metal assisted chemical etching (MaCE. A bilayer metal configuration (Metal 1 / Metal 2 was applied to assist etching of Si where metal 1 acts as direct catalyst and metal 2 provides mechanical support. Different metal types were investigated to figure out the influence of metal catalyst on morphology of etched silicon. We find that silicon microwires with vertical side wall are produced when we use Ag/Au bilayer, while cone–like and porous microwires formed when Pt/Au is applied. The different micro-/nano-structures in as-etched silicon are demonstrated to be due to the discrepancy of work function of metal catalyst relative to Si. Further, we constructed a silicon microwire arrays solar cells in a radial p–n junction configurations in a screen printed aluminum paste p–doping process.

  7. Hybrid Solar Cells Based on Silicon Nanowire Arrays for Remote Chemical Sensing

    Directory of Open Access Journals (Sweden)

    Joël DAVENAS

    2014-05-01

    Full Text Available Disordered arrays of silicon nanowires have been produced by the OAG technique. The UV-visible absorption spectrum of the SiNWs shows a main increase of the absorption extending in the near infrared and similar absorption than bulk crystalline silicon below 400 nm. T EMT simulation of the UV absorption of silicon nanowires predicts a main optical absorption for a nanowire orientation parallel to the electric field vector of the incident light, as expected for SiNW lying with a dominant orientation parallel to the substrate. The enhanced optical absorption tail extending above 400 nm has been attributed to the combination of band gap opening shown by the PL emission and high densities of silicon surface states at high surface/volume ratio. Hybrid solar cells have been fabricated through the dispersion of silicon nanowires in a poly(3-hexylthiophene thin film leading to a 1.14 % conversion yield, which was increased to 3.04 % upon SiNW surface functionalization, opening new perspectives for self sufficient power supplies applicable to remote sensing.

  8. Nanopore arrays in a silicon membrane for parallel single-molecule detection: DNA translocation.

    Science.gov (United States)

    Zhang, Miao; Schmidt, Torsten; Jemt, Anders; Sahlén, Pelin; Sychugov, Ilya; Lundeberg, Joakim; Linnros, Jan

    2015-08-07

    Optical nanopore sensing offers great potential in single-molecule detection, genotyping, or DNA sequencing for high-throughput applications. However, one of the bottle-necks for fluorophore-based biomolecule sensing is the lack of an optically optimized membrane with a large array of nanopores, which has large pore-to-pore distance, small variation in pore size and low background photoluminescence (PL). Here, we demonstrate parallel detection of single-fluorophore-labeled DNA strands (450 bps) translocating through an array of silicon nanopores that fulfills the above-mentioned requirements for optical sensing. The nanopore array was fabricated using electron beam lithography and anisotropic etching followed by electrochemical etching resulting in pore diameters down to ∼7 nm. The DNA translocation measurements were performed in a conventional wide-field microscope tailored for effective background PL control. The individual nanopore diameter was found to have a substantial effect on the translocation velocity, where smaller openings slow the translocation enough for the event to be clearly detectable in the fluorescence. Our results demonstrate that a uniform silicon nanopore array combined with wide-field optical detection is a promising alternative with which to realize massively-parallel single-molecule detection.

  9. Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon microcolumn arrays

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yong [Department of Chemistry, George Washington University, Washington, DC 20052 (United States); Luo Guanghong [Department of Chemistry, George Washington University, Washington, DC 20052 (United States); Diao Jiajie [Department of Physics, George Washington University, Washington, DC 20052 (United States); Chornoguz, Olesya [Department of Chemistry, George Washington University, Washington, DC 20052 (United States); Reeves, Mark [Department of Physics, George Washington University, Washington, DC 20052 (United States); Vertes, Akos [Department of Chemistry, George Washington University, Washington, DC 20052 (United States)

    2007-04-15

    Due to their optical properties and morphology, thin films formed of nanoparticles are potentially new platforms for soft laser desorption/ionization (SLDI) mass spectrometry. Thin films of gold nanoparticles (with 12{+-}1 nm particle size) were prepared by evaporation-driven vertical colloidal deposition and used to analyze a series of directly deposited polypeptide samples. In this new SLDI method, the required laser fluence for ion detection was equal or less than what was needed for matrix-assisted laser desorption/ionization (MALDI) but the resulting spectra were free of matrix interferences. A silicon microcolumn array-based substrate (a.k.a. black silicon) was developed as a new matrix-free laser desorption ionization surface. When low-resistivity silicon wafers were processed with a 22 ps pulse length 3x{omega} Nd:YAG laser in air, SF{sub 6} or water environment, regularly arranged conical spikes emerged. The radii of the spike tips varied with the processing environment, ranging from approximately 500 nm in water, to {approx}2 {mu}m in SF{sub 6} gas and to {approx}5 {mu}m in air. Peptide mass spectra directly induced by a nitrogen laser showed the formation of protonated ions of angiotensin I and II, substance P, bradykinin fragment 1-7, synthetic peptide, pro14-arg, and insulin from the processed silicon surfaces but not from the unprocessed areas. Threshold fluences for desorption/ionization were similar to those used in MALDI. Although compared to silicon nanowires the threshold laser pulse energy for ionization is significantly ({approx}10x) higher, the ease of production and robustness of microcolumn arrays offer complementary benefits.

  10. Magnetic alloy nanowire arrays with different lengths: Insights into the crossover angle of magnetization reversal process

    Energy Technology Data Exchange (ETDEWEB)

    Samanifar, S.; Alikhani, M. [Department of Physics, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of); Almasi Kashi, M., E-mail: almac@kashanu.ac.ir [Department of Physics, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of); Ramazani, A. [Department of Physics, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of); Montazer, A.H. [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of)

    2017-05-15

    Nanoscale magnetic alloy wires are being actively investigated, providing fundamental insights into tuning properties in magnetic data storage and processing technologies. However, previous studies give trivial information about the crossover angle of magnetization reversal process in alloy nanowires (NWs). Here, magnetic alloy NW arrays with different compositions, composed of Fe, Co and Ni have been electrochemically deposited into hard-anodic aluminum oxide templates with a pore diameter of approximately 150 nm. Under optimized conditions of alumina barrier layer and deposition bath concentrations, the resulting alloy NWs with aspect ratio and saturation magnetization (M{sub s}) up to 550 and 1900 emu cm{sup −3}, respectively, are systematically investigated in terms of composition, crystalline structure and magnetic properties. Using angular dependence of coercivity extracted from hysteresis loops, the reversal processes are evaluated, indicating non-monotonic behavior. The crossover angle (θ{sub c}) is found to depend on NW length and M{sub s}. At a constant M{sub s}, increasing NW length decreases θ{sub c}, thereby decreasing the involvement of vortex mode during the magnetization reversal process. On the other hand, decreasing M{sub s} decreases θ{sub c} in large aspect ratio (>300) alloy NWs. Phenomenologically, it is newly found that increasing Ni content in the composition decreases θ{sub c}. The angular first-order reversal curve (AFORC) measurements including the irreversibility of magnetization are also investigated to gain a more detailed insight into θ{sub c}. - Highlights: • Magnetic alloy NWs with aspect ratios up to 550 were fabricated into hard-AAO templates. • Morphology, composition, crystal structure and magnetic properties were investigated. • Angular dependence of coercivity was used to describe the magnetization reversal process. • The crossover angle of magnetization reversal was found to depend on NW length and M{sub s}.

  11. Computationally Efficient 2D DOA Estimation with Uniform Rectangular Array in Low-Grazing Angle

    Directory of Open Access Journals (Sweden)

    Junpeng Shi

    2017-02-01

    Full Text Available In this paper, we propose a computationally efficient spatial differencing matrix set (SDMS method for two-dimensional direction of arrival (2D DOA estimation with uniform rectangular arrays (URAs in a low-grazing angle (LGA condition. By rearranging the auto-correlation and cross-correlation matrices in turn among different subarrays, the SDMS method can estimate the two parameters independently with one-dimensional (1D subspace-based estimation techniques, where we only perform difference for auto-correlation matrices and the cross-correlation matrices are kept completely. Then, the pair-matching of two parameters is achieved by extracting the diagonal elements of URA. Thus, the proposed method can decrease the computational complexity, suppress the effect of additive noise and also have little information loss. Simulation results show that, in LGA, compared to other methods, the proposed methods can achieve performance improvement in the white or colored noise conditions.

  12. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.

    Science.gov (United States)

    Shen, Xiaojuan; Sun, Baoquan; Liu, Dong; Lee, Shuit-Tong

    2011-12-07

    Silicon nanowire arrays (SiNWs) on a planar silicon wafer can be fabricated by a simple metal-assisted wet chemical etching method. They can offer an excellent light harvesting capability through light scattering and trapping. In this work, we demonstrated that the organic-inorganic solar cell based on hybrid composites of conjugated molecules and SiNWs on a planar substrate yielded an excellent power conversion efficiency (PCE) of 9.70%. The high efficiency was ascribed to two aspects: one was the improvement of the light absorption by SiNWs structure on the planar components; the other was the enhancement of charge extraction efficiency, resulting from the novel top contact by forming a thin organic layer shell around the individual silicon nanowire. On the contrary, the sole planar junction solar cell only exhibited a PCE of 6.01%, due to the lower light trapping capability and the less hole extraction efficiency. It indicated that both the SiNWs structure and the thin organic layer top contact were critical to achieve a high performance organic/silicon solar cell. © 2011 American Chemical Society

  13. Handheld mechanical cell lysis chip with ultra-sharp silicon nano-blade arrays for rapid intracellular protein extraction.

    Science.gov (United States)

    Yun, Sung-Sik; Yoon, Sang Youl; Song, Min-Kyung; Im, Sin-Hyeog; Kim, Sohee; Lee, Jong-Hyun; Yang, Sung

    2010-06-07

    This paper presents a handheld mechanical cell lysis chip with ultra-sharp nano-blade arrays fabricated by simple and cost effective crystalline wet etching of (110) silicon. The ultra-sharp nano-blade array is simply formed by the undercutting of (110) silicon during the crystalline wet etching process. Cells can be easily disrupted by the silicon nano-blade array without the help of additional reagents or electrical sources. Based on the bench-top test of the proposed device, a handheld mechanical cell lysis chip with the nano-blade arrays is designed and fabricated for direct connection to a commercial syringe. The direct connection to a syringe provides rapid cell lysis, easy handling, and minimization of the lysate dead volume. The protein concentration in the cell lysate obtained by the proposed lysis chip is quantitatively comparable to the one prepared by a conventional chemical lysis method.

  14. Arrays of silicon drift detectors for an extraterrestrial X-ray spectrometer

    Science.gov (United States)

    Rehak, Pavel; Carini, Gabriella; Chen, Wei; De Geronimo, Gianluigi; Fried, Jack; Li, Zheng; Pinelli, Donald A.; Peter Siddons, D.; Vernon, Emerson; Gaskin, Jessica A.; Ramsey, Brian D.

    2010-12-01

    Arrays of Silicon Drift Detectors (SDD) were designed, produced and tested. These arrays are the central part of an X-Ray Spectrometer (XRS) for measuring the abundances of light surface elements (C-Fe) fluoresced by ambient radiation on the investigated celestial object. The basic building element (or cell) of the arrays consists of a single hexagonal SDD. Signal electrons drift toward the center of the hexagon where a very low capacitance anode is located. The hexagonal shape of an individual SDD allows for a continuous covering of large detection areas of various shapes. To match the number of SDD cells with the external Application Specific Integrated Circuit (ASIC), two arrays, one with 16 and another with 64 cells were developed. One side of SDDs, called the window side, is a continuous thin rectifying junction through which the X-ray radiation enters the detector. The opposite side, called the device side contains electron collecting anodes as well as all other electrodes needed to generate the drift field and to sink leakage current produced on Si-SiO 2 interface. On both sides of the detector array there is a system of guard rings, which smoothly adjusts the voltage of the boundary cells to the ground potential of the silicon outside the sensitive volume. The drift voltage inside the detector is generated by an implanted rectifying contact, which forms a hexagonal spiral. This spiral produces the main valley where signal electrons drift as well as the voltage divider to produce the drift field. System performance is shown by a spectrum of Mn X-rays produced by the decay of 55Fe.

  15. Arrays of silicon drift detectors for an extraterrestrial X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rehak, Pavel; Carini, Gabriella [Brookhaven National Laboratory (BNL), Upton, NY 11973 (United States); Chen, Wei, E-mail: weichen@bnl.go [Brookhaven National Laboratory (BNL), Upton, NY 11973 (United States); De Geronimo, Gianluigi; Fried, Jack; Li Zheng; Pinelli, Donald A.; Peter Siddons, D.; Vernon, Emerson [Brookhaven National Laboratory (BNL), Upton, NY 11973 (United States); Gaskin, Jessica A.; Ramsey, Brian D. [National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), Huntsville, AL (United States)

    2010-12-11

    Arrays of Silicon Drift Detectors (SDD) were designed, produced and tested. These arrays are the central part of an X-Ray Spectrometer (XRS) for measuring the abundances of light surface elements (C-Fe) fluoresced by ambient radiation on the investigated celestial object. The basic building element (or cell) of the arrays consists of a single hexagonal SDD. Signal electrons drift toward the center of the hexagon where a very low capacitance anode is located. The hexagonal shape of an individual SDD allows for a continuous covering of large detection areas of various shapes. To match the number of SDD cells with the external Application Specific Integrated Circuit (ASIC), two arrays, one with 16 and another with 64 cells were developed. One side of SDDs, called the window side, is a continuous thin rectifying junction through which the X-ray radiation enters the detector. The opposite side, called the device side contains electron collecting anodes as well as all other electrodes needed to generate the drift field and to sink leakage current produced on Si-SiO{sub 2} interface. On both sides of the detector array there is a system of guard rings, which smoothly adjusts the voltage of the boundary cells to the ground potential of the silicon outside the sensitive volume. The drift voltage inside the detector is generated by an implanted rectifying contact, which forms a hexagonal spiral. This spiral produces the main valley where signal electrons drift as well as the voltage divider to produce the drift field. System performance is shown by a spectrum of Mn X-rays produced by the decay of {sup 55}Fe.

  16. Magnetic structure of cross-shaped permalloy arrays embedded in silicon wafers

    International Nuclear Information System (INIS)

    Machida, Kenji; Tezuka, Tomoyuki; Yamamoto, Takahiro; Ishibashi, Takayuki; Morishita, Yoshitaka; Koukitu, Akinori; Sato, Katsuaki

    2005-01-01

    This paper describes the observed magnetic structure and the micromagnetic simulation of cross-shaped, permalloy (Ni 80 Fe 20 ) arrays embedded in silicon wafers. The nano-scale-width, cross-shaped patterns were fabricated using the damascene technique, electron beam lithography, and chemical mechanical polishing. The magnetic poles were observed as two pairs of bright and dark spots at the ends of the crossed-bars using a magnetic force microscope. The force gradient distributions were simulated based on micromagnetic calculations and tip's stray field calculations using the integral equation method. This process of calculation successfully explains the appearance of the poles and complicated spin structure at the crossing region

  17. Beam Tilt-Angle Estimation for Monopole End-Fire Array Mounted on a Finite Ground Plane

    Directory of Open Access Journals (Sweden)

    Jia Cao

    2015-01-01

    Full Text Available A modified method for the beam tilt-angle estimation of monopole end-fire array mounted on finite ground plane is proposed. In the simplified model, the monopole array and ground plane are approximated to two line sources of transverse and longitudinal electric current, respectively. It is deduced that the beam tilt angle is a function about the length of ground plane in front of array Lg, the length of monopole array La, and the phase constant βα. After verifying the optimizing principle of monopole end-fire array, a 10-element monopole Yagi-Uda antenna satisfying Hansen-Woodyard condition is designed and measured for the analysis. By comparison and analysis, the value of βα is demonstrated to be the key point of the proposed method. And a slow wave monopole array is proved to be able to achieve a low beam tilt angle from end-fire with only a short-length ground plane.

  18. THz Direct Detector and Heterodyne Receiver Arrays in Silicon Nanoscale Technologies

    Science.gov (United States)

    Grzyb, Janusz; Pfeiffer, Ullrich

    2015-10-01

    The main scope of this paper is to address various implementation aspects of THz detector arrays in the nanoscale silicon technologies operating at room temperatures. This includes the operation of single detectors, detectors operated in parallel (arrays), and arrays of detectors operated in a video-camera mode with an internal reset to support continuous-wave illumination without the need to synchronize the source with the camera (no lock-in receiver required). A systematic overview of the main advantages and limitations in using silicon technologies for THz applications is given. The on-chip antenna design challenges and co-design aspects with the active circuitry are thoroughly analyzed for broadband detector/receiver operation. A summary of the state-of-the-art arrays of broadband THz direct detectors based on two different operation principles is presented. The first is based on the non-quasistatic resistive mixing process in a MOSFET channel, whereas the other relies on the THz signal rectification by nonlinearity of the base-emitter junction in a high-speed SiGe heterojunction bipolar transistor (HBT). For the MOSFET detector arrays implemented in a 65 nm bulk CMOS technology, a state-of-the-art optical noise equivalent power (NEP) of 14 pW/ at 720 GHz was measured, whereas for the HBT detector arrays in a 0.25 μm SiGe process technology, an optical NEP of 47 pW/ at 700 GHz was found. Based on the implemented 1k-pixel CMOS camera with an average power consumption of 2.5 μW/pixel, various design aspects specific to video-mode operation are outlined and co-integration issues with the readout circuitry are analyzed. Furthermore, a single-chip 2 × 2 array of heterodyne receivers for multi-color active imaging in a 160-1000 GHz band is presented with a well-balanced NEP across the operation bandwidth ranging from 0.1 to 0.24 fW/Hz (44.1-47.8 dB single-sideband NF) and an instantaneous IF bandwidth of 10 GHz. In its present implementation, the receiver RF

  19. Topological investigation of electronic silicon nanoparticulate aggregates using ultra-small-angle X-ray scattering

    Science.gov (United States)

    Jonah, E. O.; Britton, D. T.; Beaucage, P.; Rai, D. K.; Beaucage, G.; Magunje, B.; Ilavsky, J.; Scriba, M. R.; Härting, M.

    2012-11-01

    The network topology of two types of silicon nanoparticles, produced by high energy milling and pyrolysis of silane, in layers deposited from inks on permeable and impermeable substrates has been quantitatively characterized using ultra-small-angle X-ray scattering, supported by scanning electron microscopy observations. The milled particles with a highly polydisperse size distribution form agglomerates, which in turn cluster to form larger aggregates with a very high degree of aggregation. Smaller nanoparticles with less polydisperse size distribution synthesized by thermal catalytic pyrolysis of silane form small open clusters. The Sauter mean diameters of the primary particles of the two types of nanoparticles were obtained from USAXS particle volume to surface ratio, with values of 41 and 21 nm obtained for the high energy milled and pyrolysis samples, respectively. Assuming a log-normal distribution of the particles, the geometric standard deviation of the particles was calculated to be 1.48 for all the samples, using parameters derived from the unified fit to the USAXS data. The flow properties of the inks and substrate combination lead to quantitative changes in the mean particle separation, with slowly curing systems with good capillary flow resulting in denser networks with smaller aggregates and better contact between particles.

  20. A low-profile three-dimensional neural probe array using a silicon lead transfer structure

    Science.gov (United States)

    Cheng, Ming-Yuan; Je, Minkyu; Tan, Kwan Ling; Lim Tan, Ee; Lim, Ruiqi; Yao, Lei; Li, Peng; Park, Woo-Tae; Phua, Eric Jian Rong; Lip Gan, Chee; Yu, Aibin

    2013-09-01

    This paper presents a microassembly method for low-profile three-dimensional probe arrays for neural prosthesis and neuroscience applications. A silicon (Si) lead transfer structure, Si interposer, is employed to form electrical connections between two orthogonal planes—the two dimensional probes and the dummy application-specific integrated circuit (ASIC) chip. In order to hold the probe array and facilitate the alignment of probes during assembly, a Si platform is designed to have through-substrate slots for the insertion of probes and cavities for holding the Si interposers. The electrical interconnections between the probes and the dummy ASIC chip are formed by solder reflow, resulting in greatly improved throughput in the proposed assembly method. Moreover, since the backbone of the probe can be embedded inside the cavity of the Si platform, the profile of the probe array above the cortical surface can be controlled within 750 µm. This low-profile allows the probe array not to touch the skull after it is implanted on the brain. The impedance of the assembled probe is also measured and discussed.

  1. Formation of holographic polymer-dispersed liquid crystal memory by angle-multiplexing recording for optically reconfigurable gate arrays.

    Science.gov (United States)

    Ogiwara, Akifumi; Watanabe, Minoru

    2015-12-20

    Formation of holographic polymer-dispersed liquid crystal (HPDLC) memory for an optically reconfigurable gate array is discussed for angle-multiplexing recording by controlling the laser interference exposure in LC composites. The successive laser illumination system to record the various configuration contexts at the specified region and angle in HPDLC memory is constructed by using the combination of a half-mirror and a photomask placed on the motorized stages under the control of a personal computer. The effect of laser exposure energy on the formation of holographic memory is investigated by measuring diffraction intensity as a function of exposure energy during the grating formation process and observing the internal grating structure by scanning electron microscopy. The optical reconfiguration in the gate-array VLSI is executed for configuration contexts of OR and NOR operations shown as logical operators that are reconstructed by laser irradiation at different incident angles for a specified region in the HPDLC memory.

  2. Bundle Block Adjustment of Airborne Three-Line Array Imagery Based on Rotation Angles

    Directory of Open Access Journals (Sweden)

    Yongjun Zhang

    2014-05-01

    Full Text Available In the midst of the rapid developments in electronic instruments and remote sensing technologies, airborne three-line array sensors and their applications are being widely promoted and plentiful research related to data processing and high precision geo-referencing technologies is under way. The exterior orientation parameters (EOPs, which are measured by the integrated positioning and orientation system (POS of airborne three-line sensors, however, have inevitable systematic errors, so the level of precision of direct geo-referencing is not sufficiently accurate for surveying and mapping applications. Consequently, a few ground control points are necessary to refine the exterior orientation parameters, and this paper will discuss bundle block adjustment models based on the systematic error compensation and the orientation image, considering the principle of an image sensor and the characteristics of the integrated POS. Unlike the models available in the literature, which mainly use a quaternion to represent the rotation matrix of exterior orientation, three rotation angles are directly used in order to effectively model and eliminate the systematic errors of the POS observations. Very good experimental results have been achieved with several real datasets that verify the correctness and effectiveness of the proposed adjustment models.

  3. Development of silicon monolithic arrays for dosimetry in external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Bisello, Francesca, E-mail: francesca.bisello@iba-group.com [IBA Dosimetry GmbH, Schwarzenbruck (Germany); Friedrich-Alexander Universität Erlangen—Nürnberg, Erlangen (Germany); Menichelli, David [IBA Dosimetry GmbH, Schwarzenbruck (Germany); Scaringella, Monica [University of Florence, Firenze (Italy); INFN—Florence Division, Sesto Fiorentino (Italy); Talamonti, Cinzia; Zani, Margherita; Bucciolini, Marta [University of Florence, Firenze (Italy); Azienda Ospedaliera Unversitaria Careggi, Firenze (Italy); Bruzzi, Mara [University of Florence, Firenze (Italy); INFN—Florence Division, Sesto Fiorentino (Italy)

    2015-10-01

    New tools for dosimetry in external beam radiotherapy have been developed during last years in the framework of the collaboration among the University of Florence, INFN Florence and IBA Dosimetry. The first step (in 2007) was the introduction in dosimetry of detector solutions adopted from high energy physics, namely epitaxial silicon as the base detector material and a guard ring in diode design. This allowed obtaining state of the art radiation hardness, in terms of sensitivity dependence on accumulated dose, with sensor geometry particularly suitable for the production of monolithic arrays with modular design. Following this study, a 2D monolithic array has been developed, based on 6.3×6.3 cm{sup 2} modules with 3 mm pixel pitch. This prototype has been widely investigated and turned out to be a promising tool to measure dose distributions of small and IMRT fields. A further linear array prototype has been recently design with improve spatial resolution (1 mm pitch) and radiation hardness. This 24 cm long device is constituted by 4×64 mm long modules. It features low sensitivity changes with dose (0.2%/kGy) and dose per pulse (±1% in the range 0.1–2.3 mGy/pulse, covering applications with flattened and unflattened photon fields). The detector has been tested with very satisfactory results as a tool for quality assurance of linear accelerators, with special regards to small fields, and proton pencil beams. In this contribution, the characterization of the linear array with unflattened MV X-rays, {sup 60}Co radiation and 226 MeV protons is reported. - Highlights: • A silicon monolithic 1D array with 1 mm pixel pitch was developed. • The detector was characterized with {sup 60}Co, unflattened MV X-rays, 226 MeV protons. • Dose linearity in clinical relevance range and dose profiles were measured. • The detector performs good agreement with reference detectors. • The technology is suitable in dose profiling in MV X-ray and proton therapy.

  4. Scalable gamma-ray camera for wide-area search based on silicon photomultipliers array

    Science.gov (United States)

    Jeong, Manhee; Van, Benjamin; Wells, Byron T.; D'Aries, Lawrence J.; Hammig, Mark D.

    2018-03-01

    Portable coded-aperture imaging systems based on scintillators and semiconductors have found use in a variety of radiological applications. For stand-off detection of weakly emitting materials, large volume detectors can facilitate the rapid localization of emitting materials. We describe a scalable coded-aperture imaging system based on 5.02 × 5.02 cm2 CsI(Tl) scintillator modules, each partitioned into 4 × 4 × 20 mm3 pixels that are optically coupled to 12 × 12 pixel silicon photo-multiplier (SiPM) arrays. The 144 pixels per module are read-out with a resistor-based charge-division circuit that reduces the readout outputs from 144 to four signals per module, from which the interaction position and total deposited energy can be extracted. All 144 CsI(Tl) pixels are readily distinguishable with an average energy resolution, at 662 keV, of 13.7% FWHM, a peak-to-valley ratio of 8.2, and a peak-to-Compton ratio of 2.9. The detector module is composed of a SiPM array coupled with a 2 cm thick scintillator and modified uniformly redundant array mask. For the image reconstruction, cross correlation and maximum likelihood expectation maximization methods are used. The system shows a field of view of 45° and an angular resolution of 4.7° FWHM.

  5. Nano-fabrication of depth-varying amorphous silicon crescent shell array for light trapping

    Science.gov (United States)

    Yang, Huan; Li, Ben Q.; Jiang, Xinbing; Yu, Wei; Liu, Hongzhong

    2017-12-01

    We report a new structure of depth controllable amorphous silicon (a-Si) crescent shells array, fabricated by the SiO2 monolayer array assisted deposition of a-Si by plasma enhanced chemical vapor deposition and nanosphere lithography, for high-efficiency light trapping applications. The depth of the crescent shell cavity was tailored by selective etching of a-Si layer of the SiO2/a-Si core/shell nanoparticle array with a varied etching time. The morphological changes of the crescent shells were examined by scanning electron microscopy and atomic force microscopy. A simple model is developed to describe the geometrical evolution of the a-Si crescent shells. Spectroscopic measurements and finite difference time domain simulations were conducted to examine the optical performance of the crescent shells. Results show that these nanostructures all have a broadband high efficiency absorption and that the light trapping capability of these crescent shell structures depends on the excitation of depths-regulated optical resonance modes. With an appropriate selection of process parameters, the structure of crescent a-Si shells may be fine-tuned to achieve an optimal light trapping capacity.

  6. Aluminum oxide passivated radial junction sub-micrometre pillar array textured silicon solar cells

    Science.gov (United States)

    Pudasaini, Pushpa Raj; Elam, David; Ayon, Arturo A.

    2013-06-01

    We report radial, p-n junction, sub-micrometre, pillar array textured solar cells, fabricated on an n-type Czochralski silicon wafer. Relatively simple processing schemes such as metal-assisted chemical etching and spin on dopant techniques were employed for the fabrication of the proposed solar cells. Atomic layer deposition (ALD) grown aluminum oxide (Al2O3) was employed as a surface passivation layer on the B-doped emitter surface. In spite of the fact that the sub-micrometre pillar array textured surface has a relatively high surface-to-volume ratio, we observed an open circuit voltage (VOC) and a short circuit current density (JSC) as high as 572 mV and 29.9 mA cm-2, respectively, which leads to a power conversion efficiency in excess of 11.30%, for the optimized structure of the solar cell described herein. Broadband omnidirectional antireflection effects along with the light trapping property of the sub-micrometre, pillar array textured surface and the excellent passivation quality of the ALD-grown Al2O3 on the B-doped emitter surface were responsible for the enhanced electrical performance of the proposed solar cells.

  7. Research on analytical model and design formulas of permanent magnetic bearings based on Halbach array with arbitrary segmented magnetized angle

    International Nuclear Information System (INIS)

    Wang, Nianxian; Wang, Dongxiong; Chen, Kuisheng; Wu, Huachun

    2016-01-01

    The bearing capacity of permanent magnetic bearings can be improved efficiently by using the Halbach array magnetization. However, the research on analytical model of Halbach array PMBs with arbitrary segmented magnetized angle has not been developed. The application of Halbach array PMBs has been limited by the absence of the analytical model and design formulas. In this research, the Halbach array PMBs with arbitrary segmented magnetized angle has been studied. The magnetization model of bearings is established. The magnetic field distribution model of the permanent magnet array is established by using the scalar magnetic potential model. On the basis of this, the bearing force model and the bearing stiffness model of the PMBs are established based on the virtual displacement method. The influence of the pair of magnetic rings in one cycle and the structure parameters of PMBs on the maximal bearing capacity and support stiffness characteristics are studied. The reference factors for the design process of PMBs have been given. Finally, the theoretical model and the conclusions are verified by the finite element analysis.

  8. Hybrid Si nanowire/amorphous silicon FETs for large-area image sensor arrays.

    Science.gov (United States)

    Wong, William S; Raychaudhuri, Sourobh; Lujan, René; Sambandan, Sanjiv; Street, Robert A

    2011-06-08

    Silicon nanowire (SiNW) field-effect transistors (FETs) were fabricated from nanowire mats mechanically transferred from a donor growth wafer. Top- and bottom-gate FET structures were fabricated using a doped a-Si:H thin film as the source/drain (s/d) contact. With a graded doping profile for the a-Si:H s/d contacts, the off-current for the hybrid nanowire/thin-film devices was found to decrease by 3 orders of magnitude. Devices with the graded contacts had on/off ratios of ∼10(5), field-effect mobility of ∼50 cm(2)/(V s), and subthreshold swing of 2.5 V/decade. A 2 in. diagonal 160 × 180 pixel image sensor array was fabricated by integrating the SiNW backplane with an a-Si:H p-i-n photodiode.

  9. Application of silicon zig-zag wall arrays for anodes of Li-ion batteries

    Science.gov (United States)

    Li, G. V.; Rumyantsev, A. M.; Levitskii, V. S.; Beregulin, E. V.; Zhdanov, V. V.; Terukov, E. I.; Astrova, E. V.

    2016-01-01

    Cyclic tests of anodes based on zigzag wall arrays fabricated by the electrochemical etching and post-anodization treatment of silicon have been performed. Compared with anodes based on nanowires and planar thin films, these structures have several advantages. An ex situ analysis of the morphology and structural transformations in a material subjected to cyclic lithiation was conducted by electron microscopy and micro-Raman spectroscopy. The effect of geometrical parameters and a cycling mode on the degradation rate was studied. It is shown that a significant rise in the cycle life of the anode can be obtained by the restriction of the inserted amount of lithium. The anode, subjected to galvanostatic cycling at a rate C/2.8 at a limited charge capacity of 1000 mA · h g-1, demonstrates no degradation after 1200 cycles.

  10. Extraordinary transmission through gain-assisted silicon-based nanohole arrays in telecommunication regimes.

    Science.gov (United States)

    Bavil, Mehdi Afshari; Deng, Qingzhong; Zhou, Zhiping

    2014-08-01

    Extraordinary gain-assisted transmission in telecommunication regimes through circular nanohole arrays drilled on a metallic film is investigated theoretically. Silicon-compatible Er-Yb silicate, which has a photoluminescence peak in the telecommunication regime, was selected for optical amplification purposes. Geometrical parameters were optimized analytically in order to present transmission resonances at telecommunication regions. The required gain value for lossless propagation was determined by considering the surface-plasmon dispersion relation. Simulation results show that the predicted gain for lossless propagation cannot completely compensate the loss. By increasing gain value, absorption becomes zero and transmission approaches unit through a laser with a pumping power of 372 mW at 1480 nm.

  11. Large-scale aligned silicon carbonitride nanotube arrays: Synthesis, characterization, and field emission property

    International Nuclear Information System (INIS)

    Liao, L.; Xu, Z.; Liu, K. H.; Wang, W. L.; Liu, S.; Bai, X. D.; Wang, E. G.; Li, J. C.; Liu, C.

    2007-01-01

    Large-scale aligned silicon carbonitride (SiCN) nanotube arrays have been synthesized by microwave-plasma-assisted chemical vapor deposition using SiH 4 , CH 4 , and N 2 as precursors. The three elements of Si, C, and N are chemically bonded with each other and the nanotube composition can be adjusted by varying the SiH 4 concentration, as revealed by electron energy loss spectroscopy and x-ray photoelectron spectroscopy. The evolution of microstructure of the SiCN nanotubes with different Si concentrations was characterized by high-resolution transmission electron microscopy and Raman spectroscopy. The dependence of field emission characteristics of the SiCN nanotubes on the composition has been investigated. With the increasing Si concentration, the SiCN nanotube exhibits more favorable oxidation resistance, which suggests that SiCN nanotube is a promising candidate as stable field emitter

  12. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates

    Science.gov (United States)

    Barrese, James C.; Rao, Naveen; Paroo, Kaivon; Triebwasser, Corey; Vargas-Irwin, Carlos; Franquemont, Lachlan; Donoghue, John P.

    2013-12-01

    Objective. Brain-computer interfaces (BCIs) using chronically implanted intracortical microelectrode arrays (MEAs) have the potential to restore lost function to people with disabilities if they work reliably for years. Current sensors fail to provide reliably useful signals over extended periods of time for reasons that are not clear. This study reports a comprehensive retrospective analysis from a large set of implants of a single type of intracortical MEA in a single species, with a common set of measures in order to evaluate failure modes. Approach. Since 1996, 78 silicon MEAs were implanted in 27 monkeys (Macaca mulatta). We used two approaches to find reasons for sensor failure. First, we classified the time course leading up to complete recording failure as acute (abrupt) or chronic (progressive). Second, we evaluated the quality of electrode recordings over time based on signal features and electrode impedance. Failure modes were divided into four categories: biological, material, mechanical, and unknown. Main results. Recording duration ranged from 0 to 2104 days (5.75 years), with a mean of 387 days and a median of 182 days (n = 78). Sixty-two arrays failed completely with a mean time to failure of 332 days (median = 133 days) while nine array experiments were electively terminated for experimental reasons (mean = 486 days). Seven remained active at the close of this study (mean = 753 days). Most failures (56%) occurred within a year of implantation, with acute mechanical failures the most common class (48%), largely because of connector issues (83%). Among grossly observable biological failures (24%), a progressive meningeal reaction that separated the array from the parenchyma was most prevalent (14.5%). In the absence of acute interruptions, electrode recordings showed a slow progressive decline in spike amplitude, noise amplitude, and number of viable channels that predicts complete signal loss by about eight years. Impedance measurements showed

  13. Simple, Fast, and Cost-Effective Fabrication of Wafer-Scale Nanohole Arrays on Silicon for Antireflection

    Directory of Open Access Journals (Sweden)

    Di Di

    2014-01-01

    Full Text Available A simple, fast, and cost-effective method was developed in this paper for the high-throughput fabrication of nanohole arrays on silicon (Si, which is utilized for antireflection. Wafer-scale polystyrene (PS monolayer colloidal crystal was developed as templates by spin-coating method. Metallic shadow mask was prepared by lifting off the oxygen etched PS beads from the deposited chromium film. Nanohole arrays were fabricated by Si dry etching. A series of nanohole arrays were fabricated with the similar diameter but with different depth. It is found that the maximum depth of the Si-hole was determined by the diameter of the Cr-mask. The antireflection ability of these Si-hole arrays was investigated. The results show that the reflection decreases with the depth of the Si-hole. The deepest Si-hole arrays show the best antireflection ability (reflection 600 nm, which was about 28 percent of the nonpatterned silicon wafer’s reflection. The proposed method has the potential for high-throughput fabrication of patterned Si wafer, and the low reflectivity allows the application of these wafers in crystalline silicon solar cells.

  14. SHARC: Silicon Highly-segmented Array for Reactions and Coulex used in conjunction with the TIGRESS γ-ray spectrometer

    Science.gov (United States)

    Diget, C. Aa; Fox, S. P.; Smith, A.; Williams, S.; Porter-Peden, M.; Achouri, L.; Adsley, P.; Al-Falou, H.; Austin, R. A. E.; Ball, G. C.; Blackmon, J. C.; Brown, S.; Catford, W. N.; Chen, A. A.; Chen, J.; Churchman, R. M.; Dech, J.; DiValenti, D.; Djongolov, M.; Fulton, B. R.; Garnsworthy, A.; Hackman, G.; Hager, U.; Kshetri, R.; Kurchaninov, L.; Laird, A. M.; Martin, J.-P.; Matos, M.; Orce, J. N.; Orr, N. A.; Pearson, C. J.; Ruiz, C.; Sarazin, F.; Sjue, S.; Smalley, D.; Svensson, C. E.; Taggart, M.; Tardiff, E.; Wilson, G. L.

    2011-02-01

    The combination of γ-ray spectroscopy and charged-particle spectroscopy is a powerful tool for the study of nuclear reactions with beams of nuclei far from stability. This paper presents a new silicon detector array, SHARC, the Silicon Highly-segmented Array for Reactions and Coulex. The array is used at the radioactive-ion-beam facility at TRIUMF (Canada), in conjunction with the TIGRESS γ-ray spectrometer, and is built from custom Si-strip detectors utilising a fully digital readout. SHARC has more than 50% efficiency, approximately 1000-strip segmentation, angular resolutions of Δθ approx 1.3 deg and Δphi approx 3.5 deg, 25-30 keV energy resolution, and thresholds of 200 keV for up to 25 MeV particles. SHARC is now complete, and the experimental program in nuclear astrophysics and nuclear structure has commenced.

  15. SHARC: Silicon Highly-segmented Array for Reactions and Coulex used in conjunction with the TIGRESS {gamma}-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Diget, C A; Fox, S P; Adsley, P; Fulton, B R [Department of Physics, University of York, York, YO10 5DD (United Kingdom); Smith, A [School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL (United Kingdom); Williams, S; Ball, G C; Churchman, R M; Dech, J; Valentino, D Di; Djongolov, M [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Porter-Peden, M [Department of Physics, Colorado School of Mines, Golden, CO 80401 (United States); Achouri, L [Laboratoire de Physique Corpusculaire, IN2P3-CNRS, ISMRA et Universite de Caen, F-14050 Caen (France); Al-Falou, H; Austin, R A E [Department of Astronomy and Physics, Saint Mary' s University, Halifax, NS, B3H 3C3 (Canada); Blackmon, J C [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Brown, S; Catford, W N [Department of Physics, University of Surrey, Guildford, GU2 5XH (United Kingdom); Chen, A A; Chen, J, E-mail: christian.diget@york.ac.uk [Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1 (Canada)

    2011-02-01

    The combination of {gamma}-ray spectroscopy and charged-particle spectroscopy is a powerful tool for the study of nuclear reactions with beams of nuclei far from stability. This paper presents a new silicon detector array, SHARC, the Silicon Highly-segmented Array for Reactions and Coulex. The array is used at the radioactive-ion-beam facility at TRIUMF (Canada), in conjunction with the TIGRESS {gamma}-ray spectrometer, and is built from custom Si-strip detectors utilising a fully digital readout. SHARC has more than 50% efficiency, approximately 1000-strip segmentation, angular resolutions of {Delta}{theta} {approx} 1.3 deg. and {Delta}{phi} {approx} 3.5 deg., 25-30 keV energy resolution, and thresholds of 200 keV for up to 25 MeV particles. SHARC is now complete, and the experimental program in nuclear astrophysics and nuclear structure has commenced.

  16. SHARC: Silicon Highly-segmented Array for Reactions and Coulex used in conjunction with the TIGRESS γ-ray spectrometer

    International Nuclear Information System (INIS)

    Diget, C A; Fox, S P; Adsley, P; Fulton, B R; Smith, A; Williams, S; Ball, G C; Churchman, R M; Dech, J; Valentino, D Di; Djongolov, M; Porter-Peden, M; Achouri, L; Al-Falou, H; Austin, R A E; Blackmon, J C; Brown, S; Catford, W N; Chen, A A; Chen, J

    2011-01-01

    The combination of γ-ray spectroscopy and charged-particle spectroscopy is a powerful tool for the study of nuclear reactions with beams of nuclei far from stability. This paper presents a new silicon detector array, SHARC, the Silicon Highly-segmented Array for Reactions and Coulex. The array is used at the radioactive-ion-beam facility at TRIUMF (Canada), in conjunction with the TIGRESS γ-ray spectrometer, and is built from custom Si-strip detectors utilising a fully digital readout. SHARC has more than 50% efficiency, approximately 1000-strip segmentation, angular resolutions of Δθ ∼ 1.3 deg. and Δφ ∼ 3.5 deg., 25-30 keV energy resolution, and thresholds of 200 keV for up to 25 MeV particles. SHARC is now complete, and the experimental program in nuclear astrophysics and nuclear structure has commenced.

  17. Thin crystalline silicon with double-sided nano-hole array fabricated by soft UV-NIL and RIE

    Science.gov (United States)

    Wang, Min; Zhang, Yulian; Lu, Linfeng; Li, Dongdong; Zhu, Xufei

    2017-05-01

    The thin crystalline silicon (c-Si) is deemed to be an alternative material for solar cells, but it is too thin to effectively absorb light on a broad spectrum. Here we experimentally demonstrate, for the first time, that a double-sided nano-hole array on free-standing thin c-Si (20 µm) by combining soft ultra-violet nanoimprint lithography (soft UV-NIL) and reactive ion etching (RIE), which is simple and possible for mass production. This thin c-Si with double-sided nano-hole array proves to show 40% lower light reflectivity than flat silicon at long wavelength range, which is coincident with the simulated results. The thin c-Si with double-sided nano-hole array also has the advantages of good flexibility and uniform thickness, adding feasibility to apply the structure to photonic devices.

  18. Well incorporation of carbon nanodots with silicon nanowire arrays featuring excellent photocatalytic performances.

    Science.gov (United States)

    Chen, Chia-Yun; Hsiao, Po-Hsuan; Wei, Ta-Cheng; Chen, Ting-Chen; Tang, Chien-Hsin

    2017-05-17

    Recently, silicon (Si) nanowires have been intensively applied for a wide range of optoelectronic applications. Nevertheless, rare explorations considering the photodegradation of organic pollutants based on Si nanowires were performed, and they still require vast improvement, in particular for their degradation efficiency. In this study, broad-band and high efficiency photocatalytic systems were demonstrated through the good incorporation of Si nanowires with highly fluorescent carbon nanodots. The photodegradation rate of these intriguing heterostructure arrays under a 580 nm light illumination is approximately 6 times higher than that of sole Si nanowires, and more than 3.6 and 4.5 times higher than that of Si nanowire incorporated with silver and gold nanoparticles, respectively. Optimizing the luminescent behaviors of carbon nanodots leads to the involvement of multiple light sources that activate the photoexcitation of carriers within the Si nanowires. This feature was further elucidated by examining the corresponding photocurrents under light illumination, which presents currents 1.9 times higher than those with the sole Si nanowires. In combination with excellent wettability with dye solutions, the present heterostructured nanowire arrays have promised the robust photocatalytic capability with retained efficiency after cycling uses, which may open up unique opportunities for future pollutant detoxification and wastewater treatment.

  19. Quantifying the Traction Force of a Single Cell by Aligned Silicon Nanowire Array

    KAUST Repository

    Li, Zhou

    2009-10-14

    The physical behaviors of stationary cells, such as the morphology, motility, adhesion, anchorage, invasion and metastasis, are likely to be important for governing their biological characteristics. A change in the physical properties of mammalian cells could be an indication of disease. In this paper, we present a silicon-nanowire-array based technique for quantifying the mechanical behavior of single cells representing three distinct groups: normal mammalian cells, benign cells (L929), and malignant cells (HeLa). By culturing the cells on top of NW arrays, the maximum traction forces of two different tumor cells (HeLa, L929) have been measured by quantitatively analyzing the bending of the nanowires. The cancer cell exhibits a larger traction force than the normal cell by ∼20% for a HeLa cell and ∼50% for a L929 cell. The traction forces have been measured for the L929 cells and mechanocytes as a function of culture time. The relationship between cells extending area and their traction force has been investigated. Our study is likely important for studying the mechanical properties of single cells and their migration characteristics, possibly providing a new cellular level diagnostic technique. © 2009 American Chemical Society.

  20. Implementing Silicon Nanoribbon Field-Effect Transistors as Arrays for Multiple Ion Detection.

    Science.gov (United States)

    Stoop, Ralph L; Wipf, Mathias; Müller, Steffen; Bedner, Kristine; Wright, Iain A; Martin, Colin J; Constable, Edwin C; Fanget, Axel; Schönenberger, Christian; Calame, Michel

    2016-05-06

    Ionic gradients play a crucial role in the physiology of the human body, ranging from metabolism in cells to muscle contractions or brain activities. To monitor these ions, inexpensive, label-free chemical sensing devices are needed. Field-effect transistors (FETs) based on silicon (Si) nanowires or nanoribbons (NRs) have a great potential as future biochemical sensors as they allow for the integration in microscopic devices at low production costs. Integrating NRs in dense arrays on a single chip expands the field of applications to implantable electrodes or multifunctional chemical sensing platforms. Ideally, such a platform is capable of detecting numerous species in a complex analyte. Here, we demonstrate the basis for simultaneous sodium and fluoride ion detection with a single sensor chip consisting of arrays of gold-coated SiNR FETs. A microfluidic system with individual channels allows modifying the NR surfaces with self-assembled monolayers of two types of ion receptors sensitive to sodium and fluoride ions. The functionalization procedure results in a differential setup having active fluoride- and sodium-sensitive NRs together with bare gold control NRs on the same chip. Comparing functionalized NRs with control NRs allows the compensation of non-specific contributions from changes in the background electrolyte concentration and reveals the response to the targeted species.

  1. Implementing Silicon Nanoribbon Field-Effect Transistors as Arrays for Multiple Ion Detection

    Directory of Open Access Journals (Sweden)

    Ralph L. Stoop

    2016-05-01

    Full Text Available Ionic gradients play a crucial role in the physiology of the human body, ranging from metabolism in cells to muscle contractions or brain activities. To monitor these ions, inexpensive, label-free chemical sensing devices are needed. Field-effect transistors (FETs based on silicon (Si nanowires or nanoribbons (NRs have a great potential as future biochemical sensors as they allow for the integration in microscopic devices at low production costs. Integrating NRs in dense arrays on a single chip expands the field of applications to implantable electrodes or multifunctional chemical sensing platforms. Ideally, such a platform is capable of detecting numerous species in a complex analyte. Here, we demonstrate the basis for simultaneous sodium and fluoride ion detection with a single sensor chip consisting of arrays of gold-coated SiNR FETs. A microfluidic system with individual channels allows modifying the NR surfaces with self-assembled monolayers of two types of ion receptors sensitive to sodium and fluoride ions. The functionalization procedure results in a differential setup having active fluoride- and sodium-sensitive NRs together with bare gold control NRs on the same chip. Comparing functionalized NRs with control NRs allows the compensation of non-specific contributions from changes in the background electrolyte concentration and reveals the response to the targeted species.

  2. Effect of phonon transport on the Seebeck coefficient and thermal conductivity of silicon nanowire arrays

    Science.gov (United States)

    Sadhu, Jyothi Swaroop

    Thermoelectrics enable solid-state conversion of heat to electricity by the Seebeck effect, but must provide scalable and cost-effective technology for practical waste heat harvesting. This dissertation explores the thermoelectric properties of electrochemically etched silicon nanowires through experiments, complemented by charge and thermal transport theories. Electrolessly etched silicon nanowires show anomalously low thermal conductivity that has been attributed to the increased scattering of heat conducting phonons from the surface disorder introduced by etching. The reduction is below the incoherent limit for phonon scattering at the boundary, the so-called Casimir limit. A new model of partially coherent phonon transport shows that correlated multiple scattering of phonons off resonantly matched rough surfaces can indeed lead to thermal conductivity below the Casimir limit. Using design guidelines from the theory, silicon nanowires of controllable surface roughness are fabricated using metal-assisted chemical etching. Extensive characterization of the nanowire surfaces using transmission electron microscopy provides surface roughness parameters that are important in testing transport theories. The second part of the dissertation focuses on the implications of increased phonon scattering on the Seebeck coefficient, which is a cumulative effect of non-equilibrium amongst charge carriers and phonons. A novel frequency-domain technique enables simultaneous measurements of the Seebeck coefficient and the thermal conductivity of nanowire arrays. The frequency response measurements isolate the parasitic contributions thus improving upon existing techniques for cross-plane thermoelectric measurements. While the thermal conductivity of nanowires reduces significantly with increased roughness, there is also a significant reduction in the Seebeck coefficient over a wide range of doping. Theoretical fitting of the data reveals that such reduction results from the

  3. Wideband metamaterial array with polarization-independent and wide incident angle for harvesting ambient electromagnetic energy and wireless power transfer

    Science.gov (United States)

    Zhong, Hui-Teng; Yang, Xue-Xia; Song, Xing-Tang; Guo, Zhen-Yue; Yu, Fan

    2017-11-01

    In this work, we introduced the design, demonstration, and discussion of a wideband metamaterial array with polarization-independent and wide-angle for harvesting ambient electromagnetic (EM) energy and wireless power transfer. The array consists of unit cells with one square ring and four metal bars. In comparison to the published metamaterial arrays for harvesting EM energy or wireless transfer, this design had the wide operation bandwidth with the HPBW (Half Power Band Width) of 110% (6.2 GHz-21.4 GHz), which overcomes the narrow-band operation induced by the resonance characteristic of the metamaterial. On the normal incidence, the simulated maximum harvesting efficiency was 96% and the HPBW was 110% for the random polarization wave. As the incident angle increases to 45°, the maximum efficiency remained higher than 88% and the HPBW remained higher than 83% for the random polarization wave. Furthermore, the experimental verification of the designed metamaterial array was conducted, and the measured results were in reasonable agreement with the simulated ones.

  4. Optimal and Local Connectivity Between Neuron and Synapse Array in the Quantum Dot/Silicon Brain

    Science.gov (United States)

    Duong, Tuan A.; Assad, Christopher; Thakoor, Anikumar P.

    2010-01-01

    This innovation is used to connect between synapse and neuron arrays using nanowire in quantum dot and metal in CMOS (complementary metal oxide semiconductor) technology to enable the density of a brain-like connection in hardware. The hardware implementation combines three technologies: 1. Quantum dot and nanowire-based compact synaptic cell (50x50 sq nm) with inherently low parasitic capacitance (hence, low dynamic power approx.l0(exp -11) watts/synapse), 2. Neuron and learning circuits implemented in 50-nm CMOS technology, to be integrated with quantum dot and nanowire synapse, and 3. 3D stacking approach to achieve the overall numbers of high density O(10(exp 12)) synapses and O(10(exp 8)) neurons in the overall system. In a 1-sq cm of quantum dot layer sitting on a 50-nm CMOS layer, innovators were able to pack a 10(exp 6)-neuron and 10(exp 10)-synapse array; however, the constraint for the connection scheme is that each neuron will receive a non-identical 10(exp 4)-synapse set, including itself, via its efficacy of the connection. This is not a fully connected system where the 100x100 synapse array only has a 100-input data bus and 100-output data bus. Due to the data bus sharing, it poses a great challenge to have a complete connected system, and its constraint within the quantum dot and silicon wafer layer. For an effective connection scheme, there are three conditions to be met: 1. Local connection. 2. The nanowire should be connected locally, not globally from which it helps to maximize the data flow by sharing the same wire space location. 3. Each synapse can have an alternate summation line if needed (this option is doable based on the simple mask creation). The 10(exp 3)x10(exp 3)-neuron array was partitioned into a 10-block, 10(exp 2)x10(exp 3)-neuron array. This building block can be completely mapped within itself (10,000 synapses to a neuron).

  5. N-rich silicon nitride angled MMI for coarse wavelength division (de)multiplexing in the O-band.

    Science.gov (United States)

    Bucio, Thalía Domínguez; Khokhar, Ali Z; Mashanovich, Goran Z; Gardes, Frederic Y

    2018-03-15

    We report the design and fabrication of a compact angled multimode interferometer (AMMI) on a 600 nm thick N-rich silicon nitride platform (n=1.92) optimized to match the International Telecommunication Union coarse wavelength division (de)multiplexing standard in the O telecommunication band. The demonstrated device exhibited a good spectral response with Δλ=20  nm, BW 3 dB ∼11  nm, ILprocess that enables multilayer integration schemes due to its processing temperature <400°C.

  6. Arrays of suspended silicon nanowires defined by ion beam implantation: mechanical coupling and combination with CMOS technology

    Science.gov (United States)

    Llobet, J.; Rius, G.; Chuquitarqui, A.; Borrisé, X.; Koops, R.; van Veghel, M.; Perez-Murano, F.

    2018-04-01

    We present the fabrication, operation, and CMOS integration of arrays of suspended silicon nanowires (SiNWs). The functional structures are obtained by a top-down fabrication approach consisting in a resistless process based on focused ion beam irradiation, causing local gallium implantation and silicon amorphization, plus selective silicon etching by tetramethylammonium hydroxide, and a thermal annealing process in a boron rich atmosphere. The last step enables the electrical functionality of the irradiated material. Doubly clamped silicon beams are fabricated by this method. The electrical readout of their mechanical response can be addressed by a frequency down-mixing detection technique thanks to an enhanced piezoresistive transduction mechanism. Three specific aspects are discussed: (i) the engineering of mechanically coupled SiNWs, by making use of the nanometer scale overhang that it is inherently-generated with this fabrication process, (ii) the statistical distribution of patterned lateral dimensions when fabricating large arrays of identical devices, and (iii) the compatibility of the patterning methodology with CMOS circuits. Our results suggest that the application of this method to the integration of large arrays of suspended SiNWs with CMOS circuitry is interesting in view of applications such as advanced radio frequency band pass filters and ultra-high-sensitivity mass sensors.

  7. Formation of Mach angle profiles during wet etching of silica and silicon nitride materials

    Energy Technology Data Exchange (ETDEWEB)

    Ghulinyan, M., E-mail: ghulinyan@fbk.eu [Centre for Materials and Microsystems, Fondazione Bruno Kessler, I-38123 Povo (Italy); Bernard, M.; Bartali, R. [Centre for Materials and Microsystems, Fondazione Bruno Kessler, I-38123 Povo (Italy); Deptartment of Physics, University of Trento, I-38123 Povo (Italy); Pucker, G. [Centre for Materials and Microsystems, Fondazione Bruno Kessler, I-38123 Povo (Italy)

    2015-12-30

    Highlights: • Photoresist adhesion induces the formation of complex etch profiles in dielectrics. • Hydrofluoric acid etching of silica glass and silicon nitride materials was studied. • The phenomenon has been modeled in analogy with sonic boom propagation. • The material etch rate and resist adhesion/erosion define the final profile. - Abstract: In integrated circuit technology peeling of masking photoresist films is a major drawback during the long-timed wet etching of materials. It causes an undesired film underetching, which is often accompanied by a formation of complex etch profiles. Here we report on a detailed study of wedge-shaped profile formation in a series of silicon oxide, silicon oxynitride and silicon nitride materials during wet etching in a buffered hydrofluoric acid (BHF) solution. The shape of etched profiles reflects the time-dependent adhesion properties of the photoresist to a particular material and can be perfectly circular, purely linear or a combination of both, separated by a knee feature. Starting from a formal analogy between the sonic boom propagation and the wet underetching process, we model the wedge formation mechanism analytically. This model predicts the final form of the profile as a function of time and fits the experimental data perfectly. We discuss how this knowledge can be extended to the design and the realization of optical components such as highly efficient etch-less vertical tapers for passive silicon photonics.

  8. A silicon strip detector array for energy verification and quality assurance in heavy ion therapy.

    Science.gov (United States)

    Debrot, Emily; Newall, Matthew; Guatelli, Susanna; Petasecca, Marco; Matsufuji, Naruhiro; Rosenfeld, Anatoly B

    2018-02-01

    The measurement of depth dose profiles for range and energy verification of heavy ion beams is an important aspect of quality assurance procedures for heavy ion therapy facilities. The steep dose gradients in the Bragg peak region of these profiles require the use of detectors with high spatial resolution. The aim of this work is to characterize a one dimensional monolithic silicon detector array called the "serial Dose Magnifying Glass" (sDMG) as an independent ion beam energy and range verification system used for quality assurance conducted for ion beams used in heavy ion therapy. The sDMG detector consists of two linear arrays of 128 silicon sensitive volumes each with an effective size of 2mm × 50μm × 100μm fabricated on a p-type substrate at a pitch of 200 μm along a single axis of detection. The detector was characterized for beam energy and range verification by measuring the response of the detector when irradiated with a 290 MeV/u 12 C ion broad beam incident along the single axis of the detector embedded in a PMMA phantom. The energy of the 12 C ion beam incident on the detector and the residual energy of an ion beam incident on the phantom was determined from the measured Bragg peak position in the sDMG. Ad hoc Monte Carlo simulations of the experimental setup were also performed to give further insight into the detector response. The relative response profiles along the single axis measured with the sDMG detector were found to have good agreement between experiment and simulation with the position of the Bragg peak determined to fall within 0.2 mm or 1.1% of the range in the detector for the two cases. The energy of the beam incident on the detector was found to vary less than 1% between experiment and simulation. The beam energy incident on the phantom was determined to be (280.9 ± 0.8) MeV/u from the experimental and (280.9 ± 0.2) MeV/u from the simulated profiles. These values coincide with the expected energy of 281 MeV/u. The sDMG detector

  9. Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing angle deposition and solid state reaction

    Science.gov (United States)

    2013-01-01

    This work develops a method for growing Ni-silicide/Si heterostructured nanowire arrays by glancing angle Ni deposition and solid state reaction on ordered Si nanowire arrays. Samples of ordered Si nanowire arrays were fabricated by nanosphere lithography and metal-induced catalytic etching. Glancing angle Ni deposition deposited Ni only on the top of Si nanowires. When the annealing temperature was 500°C, a Ni3Si2 phase was formed at the apex of the nanowires. The phase of silicide at the Ni-silicide/Si interface depended on the diameter of the Si nanowires, such that epitaxial NiSi2 with a {111} facet was formed at the Ni-silicide/Si interface in Si nanowires with large diameter, and NiSi was formed in Si nanowires with small diameter. A mechanism that is based on flux divergence and a nucleation-limited reaction is proposed to explain this phenomenon of size-dependent phase formation. PMID:23663726

  10. Silicon materials task of the Low Cost Solar Array Project: Effect of impurities and processing on silicon solar cells

    Science.gov (United States)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Hanes, M. H.; Rai-Choudhury, P.; Mollenkopf, H. C.

    1982-01-01

    The effects of impurities and processing on the characteristics of silicon and terrestrial silicon solar cells were defined in order to develop cost benefit relationships for the use of cheaper, less pure solar grades of silicon. The amount of concentrations of commonly encountered impurities that can be tolerated in typical p or n base solar cells was established, then a preliminary analytical model from which the cell performance could be projected depending on the kinds and amounts of contaminants in the silicon base material was developed. The impurity data base was expanded to include construction materials, and the impurity performace model was refined to account for additional effects such as base resistivity, grain boundary interactions, thermal processing, synergic behavior, and nonuniform impurity distributions. A preliminary assessment of long term (aging) behavior of impurities was also undertaken.

  11. The influence of passivation and photovoltaic properties of α-Si:H coverage on silicon nanowire array solar cells

    Science.gov (United States)

    2013-01-01

    Silicon nanowire (SiNW) arrays for radial p-n junction solar cells offer potential advantages of light trapping effects and quick charge collection. Nevertheless, lower open circuit voltages (Voc) lead to lower energy conversion efficiencies. In such cases, the performance of the solar cells depends critically on the quality of the SiNW interfaces. In this study, SiNW core-shell solar cells have been fabricated by growing crystalline silicon (c-Si) nanowires via the metal-assisted chemical etching method and by depositing hydrogenated amorphous silicon (α-Si:H) via the plasma-enhanced chemical vapor deposition (PECVD) method. The influence of deposition parameters on the coverage and, consequently, the passivation and photovoltaic properties of α-Si:H layers on SiNW solar cells have been analyzed. PMID:24059343

  12. The influence of passivation and photovoltaic properties of α-Si:H coverage on silicon nanowire array solar cells.

    Science.gov (United States)

    Li, Kuntang; Wang, Xiuqin; Lu, Pengfei; Ding, Jianning; Yuan, Ningyi

    2013-09-23

    Silicon nanowire (SiNW) arrays for radial p-n junction solar cells offer potential advantages of light trapping effects and quick charge collection. Nevertheless, lower open circuit voltages (Voc) lead to lower energy conversion efficiencies. In such cases, the performance of the solar cells depends critically on the quality of the SiNW interfaces. In this study, SiNW core-shell solar cells have been fabricated by growing crystalline silicon (c-Si) nanowires via the metal-assisted chemical etching method and by depositing hydrogenated amorphous silicon (α-Si:H) via the plasma-enhanced chemical vapor deposition (PECVD) method. The influence of deposition parameters on the coverage and, consequently, the passivation and photovoltaic properties of α-Si:H layers on SiNW solar cells have been analyzed.

  13. Desarrollo de un circuito integrado de múltiples canales para Silicon fotomultiplicador arrays lectura

    CERN Document Server

    Comerma i Montells, Albert

    2013-10-31

    The aim of this thesis is to present a solution for the readout of Silicon Photo-Multipliers (SiPMs) arrays improving currently implemented systems. Using as a starting point previous designs with similar objectives a novel current mode input stage has been designed and tested. To start with the design a valid model has been used to generate realistic output from the SiPMs depending on light input. Design has been performed in first place focusing in general applications for medical imaging Positron Emission Tomography (PET) and then using the same topology for a more constrained design in particle detectors (upgrade of Tracker detector at LHCb experiment). A 16 channel ASIC for PET applications including the novel input stage has demonstrated an excellent timing measurement with good energy resolution measurement and pile-up detection. This document starts with the analysis of the requirements needed to fit such a system. Followed by a detailed description of the input stage and analog processing. Signal is ...

  14. Fabrication of microlens array on silicon surface using electrochemical wet stamping technique

    Science.gov (United States)

    Lai, Lei-Jie; Zhou, Hang; Zhu, Li-Min

    2016-02-01

    This paper focuses on the fabrication of microlens array (MLA) on silicon surface by taking advantage of a novel micromachining approach, the electrochemical we stamping (E-WETS). The E-WETS allows the direct imprinting of MLA on an agarose stamp into the substrate through a selective anodic dissolution process. The pre-patterned agarose stamp can direct and supply the solution preferentially on the contact area between the agarose stamp and the substrate, to which the electrochemical reaction is confined. The anodic potential vs. saturated calomel electrode is optimized and 1.5 V is chosen as the optimum value for the electrochemical polishing of p-Si. A refractive MLA on a PMMA mold is successfully transferred onto the p-Si surface. The machining deviations of the fabricated MLA from those on the mold are 0.44% in diameter and 2.1% in height respectively, and the machining rate in HF is around 1.1 μm/h. The surface roughness of the fabricated MLA is less than 12 nm owing to the electrochemical polishing process. The results demonstrate that E-WETS is a promising approach to fabricate MLA on p-Si surface with high accuracy and efficiency.

  15. An Improved Manufacturing Approach for Discrete Silicon Microneedle Arrays with Tunable Height-Pitch Ratio

    Directory of Open Access Journals (Sweden)

    Renxin Wang

    2016-10-01

    Full Text Available Silicon microneedle arrays (MNAs have been widely studied due to their potential in various transdermal applications. However, discrete MNAs, as a preferred choice to fabricate flexible penetrating devices that could adapt curved and elastic tissue, are rarely reported. Furthermore, the reported discrete MNAs have disadvantages lying in uniformity and height-pitch ratio. Therefore, an improved technique is developed to manufacture discrete MNA with tunable height-pitch ratio, which involves KOH-dicing-KOH process. The detailed process is sketched and simulated to illustrate the formation of microneedles. Furthermore, the undercutting of convex mask in two KOH etching steps are mathematically analyzed, in order to reveal the relationship between etching depth and mask dimension. Subsequently, fabrication results demonstrate KOH-dicing-KOH process. {321} facet is figured out as the surface of octagonal pyramid microneedle. MNAs with diverse height and pitch are also presented to identify the versatility of this approach. At last, the metallization is realized via successive electroplating.

  16. Thermally responsive silicon nanowire arrays for native/denatured-protein separation

    International Nuclear Information System (INIS)

    Wang Hongwei; Wang Yanwei; Yuan Lin; Wang Lei; Yang Weikang; Wu Zhaoqiang; Li Dan; Chen Hong

    2013-01-01

    We present our findings of the selective adsorption of native and denatured proteins onto thermally responsive, native-protein resistant poly(N-isopropylacrylamide) (PNIPAAm) decorated silicon nanowire arrays (SiNWAs). The PNIPAAm–SiNWAs surface, which shows very low levels of native-protein adsorption, favors the adsorption of denatured proteins. The amount of denatured-protein adsorption is higher at temperatures above the lower critical solution temperature (LCST) of PNIPAAm. Temperature cycling surrounding the LCST, which ensures against thermal denaturation of native proteins, further increases the amount of denatured-protein adsorption. Moreover, the PNIPAAm–SiNWAs surface is able to selectively adsorb denatured protein even from mixtures of different protein species; meanwhile, the amount of native proteins in solution is kept nearly at its original level. It is believed that these results will not only enrich current understanding of protein interactions with PNIPAAm-modified SiNWAs surfaces, but may also stimulate applications of PNIPAAm–SiNWAs surfaces for native/denatured protein separation. (paper)

  17. Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses

    Science.gov (United States)

    Fuentes-Edfuf, Yasser; Garcia-Lechuga, Mario; Puerto, Daniel; Florian, Camilo; Garcia-Leis, Adianez; Sanchez-Cortes, Santiago; Solis, Javier; Siegel, Jan

    2017-05-01

    We demonstrate a simple way to fabricate amorphous micro-rings in crystalline silicon using direct laser writing. This method is based on the fact that the phase of a thin surface layer can be changed into the amorphous phase by irradiation with a few ultrashort laser pulses (800 nm wavelength and 100 fs duration). Surface-depressed amorphous rings with a central crystalline disk can be fabricated without the need for beam shaping, featuring attractive optical, topographical, and electrical properties. The underlying formation mechanism and phase change pathway have been investigated by means of fs-resolved microscopy, identifying fluence-dependent melting and solidification dynamics of the material as the responsible mechanism. We demonstrate that the lateral dimensions of the rings can be scaled and that the rings can be stitched together, forming extended arrays of structures not limited to annular shapes. This technique and the resulting structures may find applications in a variety of fields such as optics, nanoelectronics, and mechatronics.

  18. Transmit/Receive Spatial Smoothing with Improved Effective Array Aperture for Angle and Mutual Coupling Estimation in Bistatic MIMO Radar

    Directory of Open Access Journals (Sweden)

    Haomiao Liu

    2016-01-01

    Full Text Available We proposed a transmit/receive spatial smoothing with improved effective aperture approach for angle and mutual coupling estimation in bistatic MIMO radar. Firstly, the noise in each channel is restrained, by exploiting its independency, in both the spatial domain and temporal domain. Then the augmented transmit and receive spatial smoothing matrices with improved effective aperture are obtained, by exploiting the Vandermonde structure of steering vector with uniform linear array. The DOD and DOA can be estimated by utilizing the unitary ESPRIT algorithm. Finally, the mutual coupling coefficients of both the transmitter and the receiver can be figured out with the estimated angles of DOD and DOA. Numerical examples are presented to verify the effectiveness of the proposed method.

  19. Initial steps toward the realization of large area arrays of single photon counting pixels based on polycrystalline silicon TFTs

    Science.gov (United States)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao; Street, Robert A.; Lu, Jeng Ping

    2014-03-01

    The thin-film semiconductor processing methods that enabled creation of inexpensive liquid crystal displays based on amorphous silicon transistors for cell phones and televisions, as well as desktop, laptop and mobile computers, also facilitated the development of devices that have become ubiquitous in medical x-ray imaging environments. These devices, called active matrix flat-panel imagers (AMFPIs), measure the integrated signal generated by incident X rays and offer detection areas as large as ~43×43 cm2. In recent years, there has been growing interest in medical x-ray imagers that record information from X ray photons on an individual basis. However, such photon counting devices have generally been based on crystalline silicon, a material not inherently suited to the cost-effective manufacture of monolithic devices of a size comparable to that of AMFPIs. Motivated by these considerations, we have developed an initial set of small area prototype arrays using thin-film processing methods and polycrystalline silicon transistors. These prototypes were developed in the spirit of exploring the possibility of creating large area arrays offering single photon counting capabilities and, to our knowledge, are the first photon counting arrays fabricated using thin film techniques. In this paper, the architecture of the prototype pixels is presented and considerations that influenced the design of the pixel circuits, including amplifier noise, TFT performance variations, and minimum feature size, are discussed.

  20. A new large solid angle multi-element silicon drift detector system for low energy X-ray fluorescence spectroscopy

    Science.gov (United States)

    Bufon, J.; Schillani, S.; Altissimo, M.; Bellutti, P.; Bertuccio, G.; Billè, F.; Borghes, R.; Borghi, G.; Cautero, G.; Cirrincione, D.; Fabiani, S.; Ficorella, F.; Gandola, M.; Gianoncelli, A.; Giuressi, D.; Kourousias, G.; Mele, F.; Menk, R. H.; Picciotto, A.; Rachevski, A.; Rashevskaya, I.; Sammartini, M.; Stolfa, A.; Zampa, G.; Zampa, N.; Zorzi, N.; Vacchi, A.

    2018-03-01

    Low-energy X-ray fluorescence (LEXRF) is an essential tool for bio-related research of organic samples, whose composition is dominated by light elements. Working at energies below 2 keV and being able to detect fluorescence photons of lightweight elements such as carbon (277 eV) is still a challenge, since it requires in-vacuum operations to avoid in-air photon absorption. Moreover, the detectors must have a thin entrance window and collect photons at an angle of incidence near 90 degrees to minimize the absorption by the protective coating. Considering the low fluorescence yield of light elements, it is important to cover a substantial part of the solid angle detecting ideally all emitted X-ray fluorescence (XRF) photons. Furthermore, the energy resolution of the detection system should be close to the Fano limit in order to discriminate elements whose XRF emission lines are often very close within the energy spectra. To ensure all these features, a system consisting of four monolithic multi-element silicon drift detectors was developed. The use of four separate detector units allows optimizing the incidence angle on all the sensor elements. The multi-element approach in turn provides a lower leakage current on each anode, which, in combination with ultra-low noise preamplifiers, is necessary to achieve an energy resolution close to the Fano limit. The potential of the new detection system and its applicability for typical LEXRF applications has been proved on the Elettra TwinMic beamline.

  1. Dynamic Conformations of Nucleosome Arrays in Solution from Small-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Steven C. [George Washington Univ., Washington, DC (United States)

    2016-01-31

    We set out to determine quantitative information regarding the dynamic conformation of nucleosome arrays in solution using experimental SAXS. Toward this end, we developed a CG simulation algorithm for dsDNA which rapidly generates ensembles of structures through Metropolis MC sampling of a Markov chain.

  2. Silicon photomultiplier arrays - a novel photon detector for a high resolution tracker produced at FBK-irst, Italy

    International Nuclear Information System (INIS)

    Greim, R.; Gast, H.; Kirn, T.; Olzem, J.; Yearwood, G. Roper; Schael, S.; Zimmermann, N.; Ambrosi, G.; Azzarello, P.; Battiston, R.; Piemonte, C.

    2009-01-01

    A silicon photomultiplier (SiPM) array has been developed at FBK-irst [Piemonte C., Nucl. Instrum. Methods A, 568 (2006) 224; Piemonte C. et al., IEEE Trans. Nucl. Sci., 54 (2007) 236] having 32 channels and a dimension of 8.0x1.1mm 2 . Each 250 μm wide channel is subdivided into 5x22 rectangularly arranged pixels. These sensors are developed to read out a modular high resolution scintillating fiber tracker. Key properties like breakdown voltage, gain and photon detection efficiency (PDE) are found to be homogeneous over all 32 channels of an SiPM array. This could make scintillating fiber trackers with SiPM array readout a promising alternative to available tracker technologies, if noise properties and the PDE are improved.

  3. Silicon photomultiplier arrays - a novel photon detector for a high resolution tracker produced at FBK-irst, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Greim, R.; Gast, H.; Kirn, T.; Olzem, J.; Yearwood, G. Roper; Schael, S.; Zimmermann, N. [I. Physikalisches Institut B, RWTH Aachen University, 52074 Aachen (Germany); Ambrosi, G.; Azzarello, P. [Dipartimento di Fisica, Universita di Perugia, 06123 Perugia (Italy); Battiston, R. [Dipartimento di Fisica, Universita di Perugia, 06123 Perugia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, 06123 Perugia (Italy); Piemonte, C. [Fondazione Bruno Kessler - Istituto per la Ricerca Scientifica e tecnologica, 38050 Trento (Italy)

    2009-12-15

    A silicon photomultiplier (SiPM) array has been developed at FBK-irst [Piemonte C., Nucl. Instrum. Methods A, 568 (2006) 224; Piemonte C. et al., IEEE Trans. Nucl. Sci., 54 (2007) 236] having 32 channels and a dimension of 8.0x1.1mm{sup 2}. Each 250 mum wide channel is subdivided into 5x22 rectangularly arranged pixels. These sensors are developed to read out a modular high resolution scintillating fiber tracker. Key properties like breakdown voltage, gain and photon detection efficiency (PDE) are found to be homogeneous over all 32 channels of an SiPM array. This could make scintillating fiber trackers with SiPM array readout a promising alternative to available tracker technologies, if noise properties and the PDE are improved.

  4. Construction and performance of silicon detectors for the small angle spectrometers of the collider detector of Fermilab

    International Nuclear Information System (INIS)

    Apollinari, G.; Bedeschi, F.; Bellettini, G.; Bosi, F.; Bosisio, L.; Cervelli, F.; Del Fabbro, R.; Dell'Orso, M.; Di Virgilio, A.; Focardi, E.; Giannetti, P.; Giorgi, M.; Menzione, A.; Ristori, L.; Scribano, A.; Sestini, P.; Stefanini, A.; Tonelli, G.; Zetti, F.; Bertolucci, S.; Cordelli, M.; Curatolo, M.; Dulach, B.; Esposito, B.; Giromini, P.; Miscetti, S.; Sansoni, A.

    1987-01-01

    The manufacturing process of a series of position sensitive silicon detectors is described together with the tests performed to optimize the performance of the detectors. The detectors are Schottky diodes with strips on the ohmic contact which allow to determine the position of the incoming ionizing particles by charge partition. Four detectors were assembled in a telescope and tested inside the vacuum pipe of the Tevatron Collider at Fermilab. The system is a prototype of the Small Angle Silicon Spectrometer, designed primarily to study p-anti p elastic and diffractive cross sections, and is a part of the Collider Detector of Fermilab (CDF). Several tests were performed to check the efficiency and the linearity of response of various regions of the detectors. Scans of the beam halo were also done in high and low β optics to check how close to the beam the detectors could be operated. Finally, the dependence of the detector response on temperature and integrated radiation dose was investigated. (orig.)

  5. Extraction force and cortical tissue reaction of silicon microelectrode arrays implanted in the rat brain.

    Science.gov (United States)

    McConnell, George C; Schneider, Thomas M; Owens, D Jason; Bellamkonda, Ravi V

    2007-06-01

    Micromotion of implanted silicon multielectrode arrays (Si MEAs) is thought to influence the inflammatory response they elicit. The degree of strain that micromotion imparts on surrounding tissue is related to the extent of mechanical integration of the implanted electrodes with the brain. In this study, we quantified the force of extraction of implanted four shank Michigan electrodes in adult rat brains and investigated potential cellular and extracellular matrix contributors to tissue-electrode adhesion using immunohistochemical markers for microglia, astrocytes and extracellular matrix deposition in the immediate vicinity of the electrodes. Our results suggest that the peak extraction force of the implanted electrodes increases significantly from the day of implantation (day 0) to the day of extraction (day 7 and day 28 postimplantation) (1.68 +/- 0.54 g, 3.99 +/- 1.31 g, and 4.86 +/- 1.49 g, respectively; mean +/- SD; n = 4). For an additional group of four shank electrode implants with a closer intershank spacing we observed a significant increase in peak extraction force on day 28 postimplantation compared to day 0 and day 7 postimplantation (5.56 +/- 0.76 g, 0.37 +/- 0.12 g and 1.87 +/- 0.88 g, respectively; n = 4). Significantly, only glial fibrillary acidic protein (GFAP) expression was correlated with peak extraction force in both electrode designs of all the markers of astroglial scar studied. For studies that try to model micromotion-induced strain, our data implies that adhesion between tissue and electrode increases after implantation and sheds light on the nature of implanted electrode-elicited brain tissue reaction.

  6. Hollow silicon microneedle array based trans-epidermal antiemetic patch for efficient management of chemotherapy induced nausea and vomiting

    Science.gov (United States)

    Kharbikar, Bhushan N.; Kumar S., Harish; Kr., Sindhu; Srivastava, Rohit

    2015-12-01

    Chemotherapy Induced Nausea and Vomiting (CINV) is a serious health concern in the treatment of cancer patients. Conventional routes for administering anti-emetics (i.e. oral and parenteral) have several drawbacks such as painful injections, poor patient compliance, dependence on skilled personnel, non-affordability to majority of population (parenteral), lack of programmability and suboptimal bioavailability (oral). Hence, we have developed a trans-epidermal antiemetic drug delivery patch using out-of-plane hollow silicon microneedle array. Microneedles are pointed micron-scale structures that pierce the epidermal layer of skin to reach dermal blood vessels and can directly release the drug in their vicinity. They are painless by virtue of avoiding significant contact with dermal sensory nerve endings. This alternate approach gives same pharmacodynamic effects as par- enteral route at a sparse drug-dose requirement, hence negligible side-effects and improved patient compliance. Microneedle design attributes were derived by systematic study of human skin anatomy, natural micron-size structures like wasp-sting and cactus-spine and multi-physics simulations. We used deep reactive ion etching with Bosch process and optimized recipe of gases to fabricate high-aspect-ratio hollow silicon microneedle array. Finally, microneedle array and polydimethylsiloxane drug reservoir were assembled to make finished anti-emetic patch. We assessed microneedles mechanical stability, physico-chemical properties and performed in-vitro, ex- vivo and in-vivo studies. These studies established functional efficacy of the device in trans-epidermal delivery of anti-emetics, its programmability, ease of use and biosafety. Thus, out-of-plane hollow silicon microneedle array trans-epidermal antiemetic patch is a promising strategy for painless and effective management of CINV at low cost in mainstream healthcare.

  7. Temperature- and Angle-Dependent Magnetic Properties of Ni Nanotube Arrays Fabricated by Electrodeposition in Polycarbonate Templates

    Directory of Open Access Journals (Sweden)

    Yonghui Chen

    2016-12-01

    Full Text Available Parallel arrays of Ni nanotubes with an external diameter of 150 nm, a wall thickness of 15 nm, and a length of 1.2 ± 0.3 µm were successfully fabricated in ion-track etched polycarbonate (PC templates by electrochemical deposition. The morphology and crystal structure of the nanotubes were characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM, and X-ray diffraction (XRD. Structural analyses indicate that Ni nanotubes have a polycrystalline structure with no preferred orientation. Angle dependent hysteresis studies at room temperature carried out by using a vibrating sample magnetometer (VSM demonstrate a transition of magnetization between the two different magnetization reversal modes: curling rotation for small angles and coherent rotation for large angles. Furthermore, temperature dependent magnetic analyses performed with a superconducting quantum interference device (SQUID magnetometer indicate that magnetization of the nanotubes follows modified Bloch’s law in the range 60–300 K, while the deviation of the experimental curve from this law below 60 K can be attributed to the finite size effects in the nanotubes. Finally, it was found that coercivity measured at different temperatures follows Kneller’s law within the premises of Stoner–Wohlfarth model for ferromagnetic nanostructures.

  8. Large-Area, UV-Optimized, Back-Illuminated Silicon Photomultiplier Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Existing photocathode-based technologies for visible and UV instruments lack sensitivity, are bulky, and have limited reliability. Solid-state silicon...

  9. 4K×4K format 10μm pixel pitch H4RG-10 hybrid CMOS silicon visible focal plane array for space astronomy

    Science.gov (United States)

    Bai, Yibin; Tennant, William; Anglin, Selmer; Wong, Andre; Farris, Mark; Xu, Min; Holland, Eric; Cooper, Donald; Hosack, Joseph; Ho, Kenneth; Sprafke, Thomas; Kopp, Robert; Starr, Brian; Blank, Richard; Beletic, James W.; Luppino, Gerard A.

    2012-07-01

    Teledyne’s silicon hybrid CMOS focal plane array technology has matured into a viable, high performance and high- TRL alternative to scientific CCD sensors for space-based applications in the UV-visible-NIR wavelengths. This paper presents the latest results from Teledyne’s low noise silicon hybrid CMOS visible focal place array produced in 4K×4K format with 10 μm pixel pitch. The H4RG-10 readout circuit retains all of the CMOS functionality (windowing, guide mode, reference pixels) and heritage of its highly successful predecessor (H2RG) developed for JWST, with additional features for improved performance. Combined with a silicon PIN detector layer, this technology is termed HyViSI™ (Hybrid Visible Silicon Imager). H4RG-10 HyViSI™ arrays achieve high pixel interconnectivity (noise (passed radiation testing for low earth orbit (LEO) environment.

  10. Grazing angle X-ray fluorescence from periodic structures on silicon and silica surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, S.H., E-mail: nowak@ifg-adlershof.de [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Banaś, D. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Błchucki, W.; Cao, W.; Dousse, J.-Cl. [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Hönicke, P. [Physikalisch-Technische Bundesanstalt (PTB), D-10587 Berlin (Germany); Hoszowska, J. [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Jabłoński, Ł. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Kayser, Y. [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Kubala-Kukuś, A.; Pajek, M. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Reinhardt, F. [Physikalisch-Technische Bundesanstalt (PTB), D-10587 Berlin (Germany); Savu, A.V. [Microsystems Laboratory (LMIS1), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Szlachetko, J. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2014-08-01

    Various 3-dimensional nano-scaled periodic structures with different configurations and periods deposited on the surface of silicon and silica substrates were investigated by means of the grazing incidence and grazing emission X-ray fluorescence techniques. Apart from the characteristics which are typical for particle- and layer-like samples, the measured angular intensity profiles show additional periodicity-related features. The latter could be explained by a novel theoretical approach based on simple geometrical optics (GO) considerations. The new GO-based calculations were found to yield results in good agreement with experiment, also in cases where other theoretical approaches are not valid, e.g., periodic particle distributions with an increased surface coverage.

  11. Grazing angle X-ray fluorescence from periodic structures on silicon and silica surfaces

    International Nuclear Information System (INIS)

    Nowak, S.H.; Banaś, D.; Błchucki, W.; Cao, W.; Dousse, J.-Cl.; Hönicke, P.; Hoszowska, J.; Jabłoński, Ł.; Kayser, Y.; Kubala-Kukuś, A.; Pajek, M.; Reinhardt, F.; Savu, A.V.; Szlachetko, J.

    2014-01-01

    Various 3-dimensional nano-scaled periodic structures with different configurations and periods deposited on the surface of silicon and silica substrates were investigated by means of the grazing incidence and grazing emission X-ray fluorescence techniques. Apart from the characteristics which are typical for particle- and layer-like samples, the measured angular intensity profiles show additional periodicity-related features. The latter could be explained by a novel theoretical approach based on simple geometrical optics (GO) considerations. The new GO-based calculations were found to yield results in good agreement with experiment, also in cases where other theoretical approaches are not valid, e.g., periodic particle distributions with an increased surface coverage

  12. Internal-strain effect on the valence band of strained silicon and its correlation with the bond angles

    Energy Technology Data Exchange (ETDEWEB)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Yanagisawa, Susumu; Kadekawa, Yukihiro [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan)

    2014-02-14

    By means of the first-principles density-functional theory, we investigate the effect of relative atom displacement in the crystal unit cell, namely, internal strain on the valence-band dispersion of strained silicon, and find close correlation of this effect with variation in the specific bond angles due to internal strain. We consider the [111] ([110]) band dispersion for (111) ((110)) biaxial tensility and [111] ([110]) uniaxial compression, because remarkably small values of hole effective mass m* can be obtained in this dispersion. Under the practical condition of no normal stress, biaxial tensility (uniaxial compression) involves additional normal compression (tensility) and internal strain. With an increase in the internal-strain parameter, the energy separation between the highest and second-highest valence bands becomes strikingly larger, and the highest band with conspicuously small m* extends remarkably down to a lower energy region, until it intersects or becomes admixed with the second band. This is closely correlated with the change in the specific bond angles, and this change can reasonably explain the above enlargement of the band separation.

  13. SU-E-J-91: Novel Epitaxial Silicon Array for Quality Assurance in Photon and Proton Therapy

    International Nuclear Information System (INIS)

    Talamonti, C; Zani, M; Scaringella, M; Bruzzi, M; Bucciolini, M; Menichelli, D; Friedl, F

    2014-01-01

    Purpose: to demonstrate suitability of a novel silicon array for measuring the dose properties of highly conformal photon and proton beams. Methods: prototype under test is a 24cm long linear array prototype, although the underlying technology is suitable to construct 2D arrays as well. It is based on a 64pixels monolithic sensor with 1mm pixel pitch, made of epitaxial ptype silicon. Thanks to design modularity, more sensors can be placed side by side without breaking pixel pitch. Flattened and unflattened photon beams, as well as proton radiation from a cyclotron in pencil beam scanning mode, were considered. Measurements of beam characteristics as percentage depth doses, dose profiles, output factors and energy response, which are necessary to deliver radiation with high precision and reliability, were performed. Results: Dose rate independence with photons was verified in the dose per pulse range 0.03 to 2mGy. Results clearly indicate nondependence of the detector sensitivity both for flattened and unflattened beams, with a variation of at most 0.5percentage. OFs were obtained for field with a lateral size ranging from 0.8cm to 16cm and the results are in good agreement with ion chamber A1SL, max difference less than 1.5percentage. Field sizes and beam penumbra were measured and compared to EBT film results. Concerning proton beams, sensitivity independence on dose rate was verified by changing the beam current in the interval 2-130Gy/s. Field sizes and beam penumbra measurements are in agreement with data taken with a scintillating 2D array with 0.5mm resolution IBA Lynx, and a better penumbra definition than an array of ionization chambers IBA MatriXX is reached. Conclusion: The device is a novel and valuable tool for QA both for photon and proton dose delivery. All measurements demonstrated its capability to measure with high spatial resolution many crucial properties of the RT beam

  14. SU-E-J-91: Novel Epitaxial Silicon Array for Quality Assurance in Photon and Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Talamonti, C; Zani, M; Scaringella, M; Bruzzi, M; Bucciolini, M [University of Florence, Firenze (Italy); Menichelli, D; Friedl, F [IBA Dosimetry, Schwarzenbruck, Bavaria (Germany)

    2014-06-01

    Purpose: to demonstrate suitability of a novel silicon array for measuring the dose properties of highly conformal photon and proton beams. Methods: prototype under test is a 24cm long linear array prototype, although the underlying technology is suitable to construct 2D arrays as well. It is based on a 64pixels monolithic sensor with 1mm pixel pitch, made of epitaxial ptype silicon. Thanks to design modularity, more sensors can be placed side by side without breaking pixel pitch. Flattened and unflattened photon beams, as well as proton radiation from a cyclotron in pencil beam scanning mode, were considered. Measurements of beam characteristics as percentage depth doses, dose profiles, output factors and energy response, which are necessary to deliver radiation with high precision and reliability, were performed. Results: Dose rate independence with photons was verified in the dose per pulse range 0.03 to 2mGy. Results clearly indicate nondependence of the detector sensitivity both for flattened and unflattened beams, with a variation of at most 0.5percentage. OFs were obtained for field with a lateral size ranging from 0.8cm to 16cm and the results are in good agreement with ion chamber A1SL, max difference less than 1.5percentage. Field sizes and beam penumbra were measured and compared to EBT film results. Concerning proton beams, sensitivity independence on dose rate was verified by changing the beam current in the interval 2-130Gy/s. Field sizes and beam penumbra measurements are in agreement with data taken with a scintillating 2D array with 0.5mm resolution IBA Lynx, and a better penumbra definition than an array of ionization chambers IBA MatriXX is reached. Conclusion: The device is a novel and valuable tool for QA both for photon and proton dose delivery. All measurements demonstrated its capability to measure with high spatial resolution many crucial properties of the RT beam.

  15. Monolithic InGaAs Nanowire Array Lasers on Silicon-on-Insulator Operating at Room Temperature.

    Science.gov (United States)

    Kim, Hyunseok; Lee, Wook-Jae; Farrell, Alan C; Morales, Juan S D; Senanayake, Pradeep; Prikhodko, Sergey V; Ochalski, Tomasz J; Huffaker, Diana L

    2017-06-14

    Chip-scale integrated light sources are a crucial component in a broad range of photonics applications. III-V semiconductor nanowire emitters have gained attention as a fascinating approach due to their superior material properties, extremely compact size, and capability to grow directly on lattice-mismatched silicon substrates. Although there have been remarkable advances in nanowire-based emitters, their practical applications are still in the early stages due to the difficulties in integrating nanowire emitters with photonic integrated circuits. Here, we demonstrate for the first time optically pumped III-V nanowire array lasers monolithically integrated on silicon-on-insulator (SOI) platform. Selective-area growth of InGaAs/InGaP core/shell nanowires on an SOI substrate enables the nanowire array to form a photonic crystal nanobeam cavity with superior optical and structural properties, resulting in the laser to operate at room temperature. We also show that the nanowire array lasers are effectively coupled with SOI waveguides by employing nanoepitaxy on a prepatterned SOI platform. These results represent a new platform for ultracompact and energy-efficient optical links and unambiguously point the way toward practical and functional nanowire lasers.

  16. Fabrication and doping of silicon micropillar arrays for solar light harvesting

    NARCIS (Netherlands)

    Elbersen, R.

    2015-01-01

    Silicon is a widely used material in the photovoltaic industry, and its advantageous properties and availability ensure that it can play an important role in the transition to a sustainable production of energy. Apart from already commercially available PV cells, silicon can also take part in new

  17. Enhancement of hydrogenated amorphous silicon solar cells with front-surface hexagonal plasmonic arrays from nanoscale lithography

    Science.gov (United States)

    Zhang, Chenlong; Gwamuri, Jephias; Cvetanovic, Sandra; Sadatgol, Mehdi; Guney, Durdu O.; Pearce, Joshua M.

    2017-07-01

    The study first uses numerical simulations of hexagonal triangle and sphere arrays to optimize the performance of hydrogenated amorphous silicon (a-Si:H) photovoltaic devices. The simulations indicated the potential for a sphere array to provide optical enhancement (OE) up to 7.4% compared to a standard cell using a nanosphere radius of 250 nm and silver film thickness of 50 nm. Next a detailed series of a-Si:H cells were fabricated and tested for quantum efficiency and characteristic and current-voltage (I-V) profiles using a solar simulator. Triangle and sphere array based cells, as well as the uncoated reference cells are analyzed and the results find that the simulation does not precisely predict the observed enhancement, but it forecasts a trend and can be used to guide fabrication. In general, the measured OE follows the simulated trend: (1) for triangular arrays no enhancement is observed and as the silver thickness increases the more degradation of the cell; (2) for annealed arrays both measured and simulated OE occur with the thinner silver thickness. Measured efficiency enhancement reached 20.2% and 10.9% for nanosphere diameter D = 500 nm, silver thicknesses h = 50 nm and 25 nm, respectively. These values, which surpass simulation results, indicate that this method is worth additional investigation.

  18. Reduction of Cr(VI) to Cr(III) using silicon nanowire arrays under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fellahi, Ouarda [Institut d' Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Avenue Poincaré—BP 70478, 59652 Villeneuve d' Ascq Cedex (France); Centre de Recherche en Technologie des Semi-conducteurs pour l' Energétique-CRTSE 02, Bd Frantz Fanon, BP. 140, Alger 7 Merveilles (Algeria); Barras, Alexandre [Institut d' Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Avenue Poincaré—BP 70478, 59652 Villeneuve d' Ascq Cedex (France); Pan, Guo-Hui [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Dong Nanhu Road, Changchun 130033 (China); Coffinier, Yannick [Institut d' Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Avenue Poincaré—BP 70478, 59652 Villeneuve d' Ascq Cedex (France); Hadjersi, Toufik [Centre de Recherche en Technologie des Semi-conducteurs pour l' Energétique-CRTSE 02, Bd Frantz Fanon, BP. 140, Alger 7 Merveilles (Algeria); Maamache, Mustapha [Laboratoire de Physique Quantique et Systèmes Dynamiques, Département de Physique, Université de Sétif, Sétif 19000 (Algeria); Szunerits, Sabine [Institut d' Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Avenue Poincaré—BP 70478, 59652 Villeneuve d' Ascq Cedex (France); and others

    2016-03-05

    Highlights: • Cr(VI) reduction to Cr(III) using silicon nanowires decorated with Cu nanoparticles. • The reduction takes place at room temperature and neutral pH under visible light. • The photocatalytic reduction was enhanced by addition of adipic or citric acid. - Abstract: We report an efficient visible light-induced reduction of hexavalent chromium Cr(VI) to trivalent Cr(III) by direct illumination of an aqueous solution of potassium dichromate (K{sub 2}Cr{sub 2}O{sub 7}) in the presence of hydrogenated silicon nanowires (H-SiNWs) or silicon nanowires decorated with copper nanoparticles (Cu NPs-SiNWs) as photocatalyst. The SiNW arrays investigated in this study were prepared by chemical etching of crystalline silicon in HF/AgNO{sub 3} aqueous solution. The Cu NPs were deposited on SiNW arrays via electroless deposition technique. Visible light irradiation of an aqueous solution of K{sub 2}Cr{sub 2}O{sub 7} (10{sup −4} M) in presence of H-SiNWs showed that these substrates were not efficient for Cr(VI) reduction. The reduction efficiency achieved was less than 10% after 120 min irradiation at λ > 420 nm. Addition of organic acids such as citric or adipic acid in the solution accelerated Cr(VI) reduction in a concentration-dependent manner. Interestingly, Cu NPs-SiNWs was found to be a very efficient interface for the reduction of Cr(VI) to Cr(III) in absence of organic acids. Almost a full reduction of Cr(VI) was achieved by direct visible light irradiation for 140 min using this photocatalyst.

  19. Reduction of Cr(VI) to Cr(III) using silicon nanowire arrays under visible light irradiation

    International Nuclear Information System (INIS)

    Fellahi, Ouarda; Barras, Alexandre; Pan, Guo-Hui; Coffinier, Yannick; Hadjersi, Toufik; Maamache, Mustapha; Szunerits, Sabine

    2016-01-01

    Highlights: • Cr(VI) reduction to Cr(III) using silicon nanowires decorated with Cu nanoparticles. • The reduction takes place at room temperature and neutral pH under visible light. • The photocatalytic reduction was enhanced by addition of adipic or citric acid. - Abstract: We report an efficient visible light-induced reduction of hexavalent chromium Cr(VI) to trivalent Cr(III) by direct illumination of an aqueous solution of potassium dichromate (K 2 Cr 2 O 7 ) in the presence of hydrogenated silicon nanowires (H-SiNWs) or silicon nanowires decorated with copper nanoparticles (Cu NPs-SiNWs) as photocatalyst. The SiNW arrays investigated in this study were prepared by chemical etching of crystalline silicon in HF/AgNO 3 aqueous solution. The Cu NPs were deposited on SiNW arrays via electroless deposition technique. Visible light irradiation of an aqueous solution of K 2 Cr 2 O 7 (10 −4 M) in presence of H-SiNWs showed that these substrates were not efficient for Cr(VI) reduction. The reduction efficiency achieved was less than 10% after 120 min irradiation at λ > 420 nm. Addition of organic acids such as citric or adipic acid in the solution accelerated Cr(VI) reduction in a concentration-dependent manner. Interestingly, Cu NPs-SiNWs was found to be a very efficient interface for the reduction of Cr(VI) to Cr(III) in absence of organic acids. Almost a full reduction of Cr(VI) was achieved by direct visible light irradiation for 140 min using this photocatalyst.

  20. Phase 2 of the automated array assembly task of the Low-Cost Silicon Solar Array Project. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, M.G.; Grenon, L.P.; Pastirik, E.M.; Pryor, R.A.; Sparks, T.G.

    1978-11-01

    This report presents the results of investigations and analyses of an advanced process sequence for manufacturing high efficiency solar cells and modules in a cost-effective manner. The entire process sequence is presented and discussed step by step. Emphasis is on process simplicity and minimizing consumed materials. The process sequence incorporates texture etching, plasma processes for damage removal and patterning, ion implantation, low pressure silicon nitride deposition, and plated metal. A reliable module design is presented. Specific process step developments are presnted. Further, a detailed cost analysis has been performed to indicate future areas of fruitful cost reduction effort. Finally, recommendations for advanced investigations are presented.

  1. Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach.

    Science.gov (United States)

    Xu, D-X; Vachon, M; Densmore, A; Ma, R; Delâge, A; Janz, S; Lapointe, J; Li, Y; Lopinski, G; Zhang, D; Liu, Q Y; Cheben, P; Schmid, J H

    2010-08-15

    We report a silicon-on-insulator ring resonator biosensor array with one output port, using wavelength division multiplexing as the addressing scheme. With the use of on-chip referencing for environmental drift cancellation, simultaneous monitoring of multiplexed molecular bindings is demonstrated, with a resolution of 0.3 pg/mm(2) (40 ag of total mass) for protein concentrations over 4 orders of magnitude down to 20 pM. Reactions are measured over time periods as long as 3 h with high stability.

  2. Low earth orbit durability of protected silicone for refractive photovoltaic concentrator arrays

    Science.gov (United States)

    McCollum, Timothy A.; deGroh, Kim K.

    1995-01-01

    Photovoltaic power systems with novel refractive silicone solar concentrators are being developed for use in low Earth orbit (LEO). Because of the vulnerability of silicones to atomic oxygen and ultraviolet radiation, these lenses are coated with a multilayer metal oxide protective coating. The objective of this work was to evaluate the effects of atomic oxygen and thermal exposures on multilayer coated silicone. Samples were exposed to high-fluence ground-laboratory and low-fluence in-space atomic oxygen. Ground testing resulted in decreases in both total and specular transmittance, while in-space exposure resulted in only small decreases in specular transmittance. A contamination film, attributed to exposed silicone at coating crack sites, was found to cause transmittance decreases during ground testing. Propagation of coating cracks was found to be the result of sample heating during exposure. The potential for silicone exposure, with the resulting degradation of optical properties from silicone contamination, indicates that this multilayer coated silicone is not durable for LEO space applications where thermal exposures will cause coating crack development and propagation.

  3. SERS activity of Au nanoparticles coated on an array of carbon nanotube nested into silicon nanoporous pillar

    International Nuclear Information System (INIS)

    Jiang Weifen; Zhang Yanfeng; Wang Yusheng; Xu Lei; Li Xinjian

    2011-01-01

    A novel composite structure, Au nanoparticles coated on a nest-shaped array of carbon nanotube nested into a silicon nanoporous pillar array (Au/NACNT/Si-NPA), was fabricated for surface-enhanced Raman scattering (SERS). The morphology of the Au/NACNT/Si-NPA composite structure was characterized with the aid of scanning electron microscopy, X-ray diffraction instrumentation and Transmission electron microscopy. Compared with SERS of rhodamine 6G (R6G) adsorbed on SERS-active Au substrate reported, the SERS signals of R6G adsorbed on these gold nanoparticles were obviously improved. This was attributed to the enlarged specific surface area for adsorption of target molecules brought by the nest-shaped CNTs structure.

  4. Novel Gas Sensor Arrays Based on High-Q SAM-Modified Piezotransduced Single-Crystal Silicon Bulk Acoustic Resonators

    Directory of Open Access Journals (Sweden)

    Yuan Zhao

    2017-06-01

    Full Text Available This paper demonstrates a novel micro-size (120 μm × 200 μm piezoelectric gas sensor based on a piezotransduced single-crystal silicon bulk acoustic resonator (PSBAR. The PSBARs operate at 102 MHz and possess high Q values (about 2000, ensuring the stability of the measurement. A corresponding gas sensor array is fabricated by integrating three different self-assembled monolayers (SAMs modified PSBARs. The limit of detection (LOD for ethanol vapor is demonstrated to be as low as 25 ppm with a sensitivity of about 1.5 Hz/ppm. Two sets of identification code bars based on the sensitivities and the adsorption energy constants are utilized to successfully discriminate isopropanol (IPA, ethanol, hexane and heptane vapors at low and high gas partial pressures, respectively. The proposed sensor array shows the potential to form a portable electronic nose system for volatile organic compound (VOC differentiation.

  5. Chemiluminescence lateral flow immunoassay cartridge with integrated amorphous silicon photosensors array for human serum albumin detection in urine samples.

    Science.gov (United States)

    Zangheri, Martina; Di Nardo, Fabio; Mirasoli, Mara; Anfossi, Laura; Nascetti, Augusto; Caputo, Domenico; De Cesare, Giampiero; Guardigli, Massimo; Baggiani, Claudio; Roda, Aldo

    2016-12-01

    A novel and disposable cartridge for chemiluminescent (CL)-lateral flow immunoassay (LFIA) with integrated amorphous silicon (a-Si:H) photosensors array was developed and applied to quantitatively detect human serum albumin (HSA) in urine samples. The presented analytical method is based on an indirect competitive immunoassay using horseradish peroxidase (HRP) as a tracer, which is detected by adding the luminol/enhancer/hydrogen peroxide CL cocktail. The system comprises an array of a-Si:H photosensors deposited on a glass substrate, on which a PDMS cartridge that houses the LFIA strip and the reagents necessary for the CL immunoassay was optically coupled to obtain an integrated analytical device controlled by a portable read-out electronics. The method is simple and fast with a detection limit of 2.5 mg L -1 for HSA in urine and a dynamic range up to 850 mg L -1 , which is suitable for measuring physiological levels of HSA in urine samples and their variation in different diseases (micro- and macroalbuminuria). The use of CL detection allowed accurate and objective analyte quantification in a dynamic range that extends from femtomoles to picomoles. The analytical performances of this integrated device were found to be comparable with those obtained using a charge-coupled device (CCD) as a reference off-chip detector. These results demonstrate that integrating the a-Si:H photosensors array with CL-LFIA technique provides compact, sensitive and low-cost systems for CL-based bioassays with a wide range of applications for in-field and point-of-care bioanalyses. Graphical Abstract A novel integrated portable device was developed for direct quantitative detection of human serum albumin (HSA) in urine samples, exploiting a chemiluminescence lateral flow immunoassay (LFIA). The device comprises a cartridge that holds the LFIA strip and all the reagents necessary for the analysis, an array of amorphous silicon photosensors, and a custom read-out electronics.

  6. Template-Growth of Highly Ordered Carbon Nanotube Arrays on Silicon POSTPRINT

    National Research Council Canada - National Science Library

    Yin, Aijun; Tzolov, Marian; Cardimona, David A; Xu, Jimmy

    2006-01-01

    .... The uniformity is ensured through the growth within the highly ordered nanopores or an alumina oxide template, which is in turn formed on silicon through anodization of aluminum of unprecedented...

  7. Integrated X-ray and charged particle active pixel CMOS sensor arrays using an epitaxial silicon sensitive region

    Energy Technology Data Exchange (ETDEWEB)

    Kleinfelder, Stuart; Bichsel, Hans; Bieser, Fred; Matis, Howard S.; Rai, Gulshan; Retiere, Fabrice; Weiman, Howard; Yamamoto, Eugene

    2002-07-01

    Integrated CMOS Active Pixel Sensor (APS) arrays have been fabricated and tested using X-ray and electron sources. The 128 by 128 pixel arrays, designed in a standard 0.25 micron process, use a {approx}10 micron epitaxial silicon layer as a deep detection region. The epitaxial layer has a much greater thickness than the surface features used by standard CMOS APS, leading to stronger signals and potentially better signal-to-noise ratio (SNR). On the other hand, minority carriers confined within the epitaxial region may diffuse to neighboring pixels, blur images and reduce peak signal intensity. But for low-rate, sparse-event images, centroid analysis of this diffusion may be used to increase position resolution. Careful trade-offs involving pixel size and sense-node area verses capacitance must be made to optimize overall performance. The prototype sensor arrays, therefore, include a range of different pixel designs, including different APS circuits and a range of different epitaxial layer contact structures. The fabricated arrays were tested with 1.5 GeV electrons and Fe-55 X-ray sources, yielding a measured noise of 13 electrons RMS and an SNR for single Fe-55 X-rays of greater than 38.

  8. Low-temperature growth of well-aligned zinc oxide nanorod arrays on silicon substrate and their photocatalytic application

    Directory of Open Access Journals (Sweden)

    Azam A

    2014-04-01

    Full Text Available Ameer Azam,1 Saeed Salem Babkair21Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia; 2Center of Nanotechnology, Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi ArabiaAbstract: Well-aligned and single-crystalline zinc oxide (ZnO nanorod arrays were grown on silicon (Si substrate using a wet chemical route for the photodegradation of organic dyes. Structural analysis using X-ray diffraction, high-resolution transmission electron microscopy, and selected area electron diffraction confirmed the formation of ZnO nanorods grown preferentially oriented in the (001 direction and with a single phase nature with a wurtzite structure. Field emission scanning electron microscopy and transmission electron microscopy micrographs showed that the length and diameter of the well-aligned rods were about ~350–400 nm and ~80–90 nm, respectively. Raman scattering spectra of ZnO nanorod arrays revealed the characteristic E2 (high mode that is related to the vibration of oxygen atoms in the wurtzite ZnO. The photodegradation of methylene blue (MB using ZnO nanorod arrays was performed under ultraviolet light irradiation. The results of photodegradation showed that ZnO nanorod arrays were capable of degrading ~80% of MB within 60 minutes of irradiation, whereas ~92% of degradation was achieved in 120 minutes. Complete degradation of MB was observed after 270 minutes of irradiation time. Owing to enhanced photocatalytic degradation efficiency and low-temperature growth method, prepared ZnO nanorod arrays may open up the possibility for the successful utilization of ZnO nanorod arrays as a future photocatalyst for environmental remediation.Keywords: ZnO, nanorods, XRD, photodegradation

  9. Performance of a PET detector module utilizing an array of silicon photodiodes to identify the crystal of interaction

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.; Nutt, R.; Digby, W.M.; Williams, C.W.; Andreaco, M.

    1993-01-01

    The authors initial performance results for a new multi-layer PET detector module consisting of an array of 3 mm square by 30 mm deep BGO crystals coupled on one end to a single photomultiplier tube and on the opposite end to an array of 3 mm square silicon photodiodes. The photomultiplier tube provides an accurate timing pulse and energy discrimination for all the crystals in the module, while the silicon photodiodes identify the crystal of interaction. When a single BGO crystal at +25 C is excited with 511 keV photons, the authors measure a photodiode signal centered at 700 electrons (e - ) with noise of 375 e - fwhm. When a four crystal/photodiode module is excited with a collimated line source of 511 keV photons, the crystal of interaction is correctly identified 82% of the time. The misidentification rate can be greatly reduced and an 8 x 8 crystal/photodiode module constructed by using thicker depletion layer photodiodes or cooling to 0 C

  10. Development of advanced methods for continuous Czochralski growth. Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    Science.gov (United States)

    Wolfson, R. G.; Sibley, C. B.

    1978-01-01

    The three components required to modify the furnace for batch and continuous recharging with granular silicon were designed. The feasibility of extended growth cycles up to 40 hours long was demonstrated by a recharge simulation experiment; a 6 inch diameter crystal was pulled from a 20 kg charge, remelted, and pulled again for a total of four growth cycles, 59-1/8 inch of body length, and approximately 65 kg of calculated mass.

  11. A novel lab-on-chip platform with integrated solid phase PCR and Supercritical Angle Fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection

    DEFF Research Database (Denmark)

    Hung, Tran Quang; Chin, Wai Hoe; Sun, Yi

    2016-01-01

    technology. In this paper, we addressed this challenge by combining the SP-PCR with super critical angle fluorescence (SAF) microlens array embedded in a microchip. We fabricated miniaturized SAF microlens array as part of a microfluidic chamber in thermoplastic material and performed multiplexed SP......-PCR directly on top of the SAF microlens array. Attribute to the high fluorescence collection efficiency of the SAF microlens array, the SP-PCR assay on the LOC platform demonstrated a high sensitivity of 1.6 copies/µL, comparable to off-chip detection using conventional laser scanner. The combination of SP......-PCR and SAF microlens array allows for on-chip highly sensitive and multiplexed pathogen detection with low-cost and compact optical components. The LOC platform would be widely used as a high-throughput biosensor to analyze food, clinical and environmental samples....

  12. Enhanced field emission from ZnO nanowire arrays utilizing MgO buffer between seed layer and silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Si [The Key Laboratory for Magnetism and Magnetic Materials of MOE, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Chen, Jiangtao [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Mid. Road, Lanzhou 730000 (China); Liu, Jianlin [Quantum Structures Laboratory, Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521 (United States); Qi, Jing, E-mail: qijing@lzu.edu.cn [The Key Laboratory for Magnetism and Magnetic Materials of MOE, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, Yuhua, E-mail: wyh@lzu.edu.cn [Department of Material Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2016-11-30

    Highlights: • We obtained ZnO nanowire arrays grown on ZnO seed layer on Si with MgO buffer. • FE properties of ZnO nanowire arrays grown on ZnO seed layer on Si with MgO buffer is better than that without MgO buffer. • With MgO buffer, the ZnO seed layer shows lower top-bottom resistance and better electron transport. • The enhanced field emission properties can be attributed to good electron transport in seed layer, good nanowire alignment because of MgO buffer. - Abstract: Field emitters based on ZnO nanowires and other nanomaterials are promising high-brightness electron sources for field emission display, microscopy and other applications. The performance of a ZnO nanowire field emitter is linked to the quality, conductivity and alignment of the nanowires on a substrate, therefore requiring ways to improve these parameters. Here, ZnO nanowire arrays were grown on ZnO seed layer on silicon substrate with MgO buffer between the seed layer and Si. The turn-on field and enhancement factor of these nanowire arrays are 3.79 V/μm and 3754, respectively. These properties are improved greatly compared to those of ZnO nanowire arrays grown on ZnO seed layer without MgO buffer, which are 5.06 V/μm and 1697, respectively. The enhanced field emission properties can be attributed to better electron transport in seed layer, and better nanowire alignment because of MgO buffer.

  13. A study on the edge chipping according to spindle speed and inclination angle of workpiece in laser-assisted milling of silicon nitride

    Science.gov (United States)

    Woo, Wan-Sik; Lee, Choon-Man

    2018-02-01

    Ceramics are difficult to machine due to their high hardness and brittleness. As an effective method for machining ceramics, laser-assisted machining (LAM) has been studied by many researchers. In particular, many studies of methods to improve the machinability of silicon nitride using LAM have been performed. However, there is little research on the effect of the inclination angle of the workpiece, because varying the angle increases the difficulty of controlling the laser preheating and tool path. This paper investigates the effect of preheating temperature, spindle speed and inclination angle of the workpiece on edge chipping of silicon nitride in an effort to obtain an enhanced surface finish using laser-assisted milling (LAMill). The machining conditions were determined by considering the parameters that can reduce edge chipping using related theory. Experimental results showed a reduction in edge chipping based on increases in preheating temperature, spindle speed and inclination angle of the workpiece. Also, by increasing the spindle speed and the inclination angle of the workpiece, surface roughness was decreased due to reduction in the cutting force. The energy efficiency of LAMill by comparing the specific cutting energy according to the machining conditions is analyzed.

  14. Microstructure of amorphous-silicon-based solar cell materials by small-angle x-ray scattering. Annual subcontract report, 6 April 1994--5 April 1995

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, D.L. [Colorado School of Mines, Golden, CO (United States)

    1995-08-01

    The general objective of this research is to provide detailed microstructural information on the amorphous-silicon-based, thin-film materials under development for improved multijunction solar cells. The experimental technique used is small-angle x-ray scattering (SAXS) providing microstructural data on microvoid fractions, sizes, shapes, and their preferred orientations. Other microstructural features such as alloy segregation, hydrogen-rich clusters and alloy short-range order are probed.

  15. Low-energy nuclear physics with high-segmentation silicon arrays

    International Nuclear Information System (INIS)

    Betts, R.R.; Univ. of Illinois, Chicago, IL

    1994-01-01

    A brief history is given of silicon detectors leading up to the development of ion-implanted strip detectors. Two examples of their use in low energy nuclear physics are discussed; the search for exotic alpha-chain states in 24 Mg and studies of anomalous positron-electron pairs produced in collisions of very heavy ions

  16. The Fabrication of Arrays of Single Ions in Silicon via Ion Implantation

    Science.gov (United States)

    2014-02-01

    coherence and electron nuclear double resonance of Bi donors in natural Si. Physical Review Letters, 105:067601, 2010. [225] T. Sekiguchi, M. Steger ...Exchange in silicon-based quantum computer architechture. Physical Review Letters, 88(2):027903, 2002. [246] A. Yang, M. Steger , T. Sekiguchi, M. L. W

  17. Large-Area, UV-Optimized, Back-Illuminated Silicon Photomultiplier Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Large-area (3m2), UV-sensitive focal plane arrays are needed for observation of air showers from ultra-high energy cosmic rays (JEM-EUSO) as well as for...

  18. Facile Passivation of Silicon Nanowires Array as Stable Photoanode in Aqueous Electrolytes.

    Science.gov (United States)

    Zhang, Xiaojie; He, Junhui

    2018-04-01

    We herein report a facile approach to passivate Si(100) nanowires (SiNWs) array by methylation and poly(3,4-ethylenedioxythiophene) (PEDOT) coating as stable photoanode in aqueous electrolytes. The photoanode was stable in both acid and base electrolytes. This facile approach deals with both the dangling bond and the anti-corrosion protection of SiNWs array. A combination of microstructural characterization, photoelectrochemical (PEC) measurements and electrochemical impedance spectroscopy (EIS) analysis were employed to confirm the methyl-terminated SiNWs/PEDOT (CH3-SiNWs/PEDOT) array structure and the role of methylation in enhancing the photocurrent of SiNWs array photoanode. It was found that the methylation increased the donor concentration and significantly decreased the charge transfer impedance (Rct), which means that the methylation facilitates majority transport and collection, and thus may account for the PEC enhancement.

  19. Magnetic field dependent small-angle neutron scattering on a Co nanorod array: evidence for intraparticle spin misalignment

    Science.gov (United States)

    Günther, A.; Bick, J.-P.; Szary, P.; Honecker, D.; Dewhurst, C. D.; Keiderling, U.; Feoktystov, A. V.; Tschöpe, A.; Birringer, R.; Michels, A.

    2014-01-01

    The structural and magnetic properties of a cobalt nanorod array have been studied by means of magnetic field dependent small-angle neutron scattering (SANS). Measurement of the unpolarized SANS cross section dΣ/dΩ of the saturated sample in the two scattering geometries where the applied magnetic field H is either perpendicular or parallel to the wavevector k i of the incoming neutron beam allows one to separate nuclear from magnetic SANS, without employing the usual sector-averaging procedure. The analysis of the SANS data in the saturated state provides structural parameters (rod radius and centre-to-centre distance) that are in good agreement with results from electron microscopy. Between saturation and the coercive field, a strong field dependence of dΣ/dΩ is observed (in both geometries), which cannot be explained using the conventional expression of the magnetic SANS cross section of magnetic nanoparticles in a homogeneous nonmagnetic matrix. The origin of the strong field dependence of dΣ/dΩ is believed to be related to intradomain spin misalignment, due to magnetocrystalline and magnetoelastic anisotropies and magnetostatic stray fields. PMID:24904245

  20. Magnetic field dependent small-angle neutron scattering on a Co nanorod array: evidence for intraparticle spin misalignment.

    Science.gov (United States)

    Günther, A; Bick, J-P; Szary, P; Honecker, D; Dewhurst, C D; Keiderling, U; Feoktystov, A V; Tschöpe, A; Birringer, R; Michels, A

    2014-06-01

    The structural and magnetic properties of a cobalt nanorod array have been studied by means of magnetic field dependent small-angle neutron scattering (SANS). Measurement of the unpolarized SANS cross section dΣ/dΩ of the saturated sample in the two scattering geometries where the applied magnetic field H is either perpendicular or parallel to the wavevector k i of the incoming neutron beam allows one to separate nuclear from magnetic SANS, without employing the usual sector-averaging procedure. The analysis of the SANS data in the saturated state provides structural parameters (rod radius and centre-to-centre distance) that are in good agreement with results from electron microscopy. Between saturation and the coercive field, a strong field dependence of dΣ/dΩ is observed (in both geometries), which cannot be explained using the conventional expression of the magnetic SANS cross section of magnetic nanoparticles in a homogeneous nonmagnetic matrix. The origin of the strong field dependence of dΣ/dΩ is believed to be related to intradomain spin misalignment, due to magnetocrystalline and magnetoelastic anisotropies and magnetostatic stray fields.

  1. Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells.

    Science.gov (United States)

    Zhou, Suqiong; Yang, Zhenhai; Gao, Pingqi; Li, Xiaofeng; Yang, Xi; Wang, Dan; He, Jian; Ying, Zhiqin; Ye, Jichun

    2016-12-01

    Crystalline silicon thin film (c-Si TF) solar cells with an active layer thickness of a few micrometers may provide a viable pathway for further sustainable development of photovoltaic technology, because of its potentials in cost reduction and high efficiency. However, the performance of such cells is largely constrained by the deteriorated light absorption of the ultrathin photoactive material. Here, we report an efficient light-trapping strategy in c-Si TFs (~20 μm in thickness) that utilizes two-dimensional (2D) arrays of inverted nanopyramid (INP) as surface texturing. Three types of INP arrays with typical periodicities of 300, 670, and 1400 nm, either on front, rear, or both surfaces of the c-Si TFs, are fabricated by scalable colloidal lithography and anisotropic wet etch technique. With the extra aid of antireflection coating, the sufficient optical absorption of 20-μm-thick c-Si with a double-sided 1400-nm INP arrays yields a photocurrent density of 39.86 mA/cm(2), which is about 76 % higher than the flat counterpart (22.63 mA/cm(2)) and is only 3 % lower than the value of Lambertian limit (41.10 mA/cm(2)). The novel surface texturing scheme with 2D INP arrays has the advantages of excellent antireflection and light-trapping capabilities, an inherent low parasitic surface area, a negligible surface damage, and a good compatibility for subsequent process steps, making it a good alternative for high-performance c-Si TF solar cells.

  2. Superparamagnetic iron oxide nanoparticle attachment on array of micro test tubes and microbeakers formed on p-type silicon substrate for biosensor applications

    Directory of Open Access Journals (Sweden)

    Raja Sufi

    2011-01-01

    Full Text Available Abstract A uniformly distributed array of micro test tubes and microbeakers is formed on a p-type silicon substrate with tunable cross-section and distance of separation by anodic etching of the silicon wafer in N, N-dimethylformamide and hydrofluoric acid, which essentially leads to the formation of macroporous silicon templates. A reasonable control over the dimensions of the structures could be achieved by tailoring the formation parameters, primarily the wafer resistivity. For a micro test tube, the cross-section (i.e., the pore size as well as the distance of separation between two adjacent test tubes (i.e., inter-pore distance is typically approximately 1 μm, whereas, for a microbeaker the pore size exceeds 1.5 μm and the inter-pore distance could be less than 100 nm. We successfully synthesized superparamagnetic iron oxide nanoparticles (SPIONs, with average particle size approximately 20 nm and attached them on the porous silicon chip surface as well as on the pore walls. Such SPION-coated arrays of micro test tubes and microbeakers are potential candidates for biosensors because of the biocompatibility of both silicon and SPIONs. As acquisition of data via microarray is an essential attribute of high throughput bio-sensing, the proposed nanostructured array may be a promising step in this direction.

  3. Progress report on the use of hybrid silicon pin diode arrays in high energy physics

    International Nuclear Information System (INIS)

    Shapiro, S.L.; Jernigan, J.G.; Arens, J.F.

    1990-05-01

    We report on the successful effort to develop hybrid PIN diode arrays and to demonstrate their potential as components of vertex detectors. Hybrid pixel arrays have been fabricated by the Hughes Aircraft Co. by bump-bonding readout chips developed by Hughes to an array of PIN diodes manufactured by Micron Semiconductor Inc. These hybrid pixel arrays were constructed in two configurations. One array format has 10 x 64 pixels, each 120 μm square; and the other format has 256 x 156 pixels, each 30 μm square. In both cases, the thickness of the PIN diode layer is 300 μm. Measurements of detector performance show that excellent position resolution can be achieved by interpolation. By determining the centroid of the charge cloud which spreads charge into a number of neighboring pixels, a spatial resolution of a few microns has been attained. The noise has been measured to be about 300 electrons (rms) at room temperature, as expected from KTC and dark current considerations, yielding a signal-to-noise ratio of about 100 for minimum ionizing particles. 4 refs., 17 figs

  4. A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement

    OpenAIRE

    Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2016-01-01

    Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multi...

  5. Nanowire arrays in multicrystalline silicon thin films on glass: a promising material for research and applications in nanotechnology.

    Science.gov (United States)

    Schmitt, Sebastian W; Schechtel, Florian; Amkreutz, Daniel; Bashouti, Muhammad; Srivastava, Sanjay K; Hoffmann, Björn; Dieker, Christel; Spiecker, Erdmann; Rech, Bernd; Christiansen, Silke H

    2012-08-08

    Silicon nanowires (SiNW) were formed on large grained, electron-beam crystallized silicon (Si) thin films of only ∼6 μm thickness on glass using nanosphere lithography (NSL) in combination with reactive ion etching (RIE). Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) studies revealed outstanding structural properties of this nanomaterial. It could be shown that SiNWs with entirely predetermined shapes including lengths, diameters and spacings and straight side walls form independently of their crystalline orientation and arrange in ordered arrays on glass. Furthermore, for the first time grain boundaries could be observed in individual, straightly etched SiNWs. After heat treatment an electronic grade surface quality of the SiNWs could be shown by X-ray photoelectron spectroscopy (XPS). Integrating sphere measurements show that SiNW patterning of the multicrystalline Si (mc-Si) starting thin film on glass substantially increases absorption and reduces reflection, as being desired for an application in thin film photovoltaics (PV). The multicrystalline SiNWs directly mark a starting point for research not only in PV but also in other areas like nanoelectronics, surface functionalization, and nanomechanics.

  6. Fabrication of three-dimensional MIS nano-capacitor based on nano-imprinted single crystal silicon nanowire arrays

    KAUST Repository

    Zhai, Yujia

    2012-11-26

    We report fabrication of single crystalline silicon nanowire based-three-dimensional MIS nano-capacitors for potential analog and mixed signal applications. The array of nanowires is patterned by Step and Flash Imprint Lithography (S-FIL). Deep silicon etching (DSE) is used to form the nanowires with high aspect ratio, increase the electrode area and thus significantly enhance the capacitance. High-! dielectric is deposited by highly conformal atomic layer deposition (ALD) Al2O3 over the Si nanowires, and sputtered metal TaN serves as the electrode. Electrical measurements of fabricated capacitors show the expected increase of capacitance with greater nanowire height and decreasing dielectric thickness, consistent with calculations. Leakage current and time-dependent dielectric breakdown (TDDB) are also measured and compared with planar MIS capacitors. In view of greater interest in 3D transistor architectures, such as FinFETs, 3D high density MIS capacitors offer an attractive device technology for analog and mixed signal applications. - See more at: http://www.eurekaselect.com/105099/article#sthash.EzeJxk6j.dpuf

  7. Minimizing Isolate Catalyst Motion in Metal-Assisted Chemical Etching for Deep Trenching of Silicon Nanohole Array.

    Science.gov (United States)

    Kong, Lingyu; Zhao, Yunshan; Dasgupta, Binayak; Ren, Yi; Hippalgaonkar, Kedar; Li, Xiuling; Chim, Wai Kin; Chiam, Sing Yang

    2017-06-21

    The instability of isolate catalysts during metal-assisted chemical etching is a major hindrance to achieve high aspect ratio structures in the vertical and directional etching of silicon (Si). In this work, we discussed and showed how isolate catalyst motion can be influenced and controlled by the semiconductor doping type and the oxidant concentration ratio. We propose that the triggering event in deviating isolate catalyst motion is brought about by unequal etch rates across the isolate catalyst. This triggering event is indirectly affected by the oxidant concentration ratio through the etching rates. While the triggering events are stochastic, the doping concentration of silicon offers a good control in minimizing isolate catalyst motion. The doping concentration affects the porosity at the etching front, and this directly affects the van der Waals (vdWs) forces between the metal catalyst and Si during etching. A reduction in the vdWs forces resulted in a lower bending torque that can prevent the straying of the isolate catalyst from its directional etching, in the event of unequal etch rates. The key understandings in isolate catalyst motion derived from this work allowed us to demonstrate the fabrication of large area and uniformly ordered sub-500 nm nanoholes array with an unprecedented high aspect ratio of ∼12.

  8. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.

    Science.gov (United States)

    Suner, Selim; Fellows, Matthew R; Vargas-Irwin, Carlos; Nakata, Gordon Kenji; Donoghue, John P

    2005-12-01

    Multiple-electrode arrays are valuable both as a research tool and as a sensor for neuromotor prosthetic devices, which could potentially restore voluntary motion and functional independence to paralyzed humans. Long-term array reliability is an important requirement for these applications. Here, we demonstrate the reliability of a regular array of 100 microelectrodes to obtain neural recordings from primary motor cortex (MI) of monkeys for at least three months and up to 1.5 years. We implanted Bionic (Cyberkinetics, Inc., Foxboro, MA) silicon probe arrays in MI of three Macaque monkeys. Neural signals were recorded during performance of an eight-direction, push-button task. Recording reliability was evaluated for 18, 35, or 51 sessions distributed over 83, 179, and 569 days after implantation, respectively, using qualitative and quantitative measures. A four-point signal quality scale was defined based on the waveform amplitude relative to noise. A single observer applied this scale to score signal quality for each electrode. A mean of 120 (+/- 17.6 SD), 146 (+/- 7.3), and 119 (+/- 16.9) neural-like waveforms were observed from 65-85 electrodes across subjects for all recording sessions of which over 80% were of high quality. Quantitative measures demonstrated that waveforms had signal-to-noise ratio (SNR) up to 20 with maximum peak-to-peak amplitude of over 1200 microv with a mean SNR of 4.8 for signals ranked as high quality. Mean signal quality did not change over the duration of the evaluation period (slope 0.001, 0.0068 and 0.03; NS). By contrast, neural waveform shape varied between, but not within days in all animals, suggesting a shifting population of recorded neurons over time. Arm-movement related modulation was common and 66% of all recorded neurons were tuned to reach direction. The ability for the array to record neural signals from parietal cortex was also established. These results demonstrate that neural recordings that can provide movement

  9. Microchannel-connected SU-8 honeycombs by single-step projection photolithography for positioning cells on silicon oxide nanopillar arrays

    International Nuclear Information System (INIS)

    Larramendy, Florian; Paul, Oliver; Blatche, Marie Charline; Mazenq, Laurent; Laborde, Adrian; Temple-Boyer, Pierre

    2015-01-01

    We report on the fabrication, functionalization and testing of SU-8 microstructures for cell culture and positioning over large areas. The microstructure consists of a honeycomb arrangement of cell containers interconnected by microchannels and centered on nanopillar arrays designed for promoting cell positioning. The containers have been dimensioned to trap single cells and, with a height of 50 µm, prevent cells from escaping. The structures are fabricated using a single ultraviolet photolithography exposure with focus depth in the lower part of the SU-8 resist. With optimized process parameters, microchannels of various aspect ratios are thus produced. The cell containers and microchannels serve for the organization of axonal growth between neurons. The roughly 2 µm-high and 500 nm-wide nanopillars are made of silicon oxide structured by deep reactive ion etching. In future work, beyond their cell positioning purpose, the nanopillars could be functionalized as sensors. The proof of concept of the novel microstructure for organized cell culture is given by the successful growth of interconnected PC12 cells. Promoted by the honeycomb geometry, a dense network of interconnections between the cells has formed and the intended intimate contact of cells with the nanopillar arrays was observed by scanning electron microscopy. This proves the potential of these new devices as tools for the controlled cell growth in an interconnected container system with well-defined 3D geometry. (paper)

  10. Fabrication process for CMUT arrays with polysilicon electrodes, nanometre precision cavity gaps and through-silicon vias

    Science.gov (United States)

    Due-Hansen, J.; Midtbø, K.; Poppe, E.; Summanwar, A.; Jensen, G. U.; Breivik, L.; Wang, D. T.; Schjølberg-Henriksen, K.

    2012-07-01

    Capacitive micromachined ultrasound transducers (CMUTs) can be used to realize miniature ultrasound probes. Through-silicon vias (TSVs) allow for close integration of the CMUT and read-out electronics. A fabrication process enabling the realization of a CMUT array with TSVs is being developed. The integrated process requires the formation of highly doped polysilicon electrodes with low surface roughness. A process for polysilicon film deposition, doping, CMP, RIE and thermal annealing that resulted in a film with sheet resistance of 4.0 Ω/□ and a surface roughness of 1 nm rms has been developed. The surface roughness of the polysilicon film was found to increase with higher phosphorus concentrations. The surface roughness also increased when oxygen was present in the thermal annealing ambient. The RIE process for etching CMUT cavities in the doped polysilicon gave a mean etch depth of 59.2 ± 3.9 nm and a uniformity across the wafer ranging from 1.0 to 4.7%. The two presented processes are key processes that enable the fabrication of CMUT arrays suitable for applications in for instance intravascular cardiology and gastrointestinal imaging.

  11. Fabrication process for CMUT arrays with polysilicon electrodes, nanometre precision cavity gaps and through-silicon vias

    International Nuclear Information System (INIS)

    Due-Hansen, J; Poppe, E; Summanwar, A; Jensen, G U; Breivik, L; Wang, D T; Schjølberg-Henriksen, K; Midtbø, K

    2012-01-01

    Capacitive micromachined ultrasound transducers (CMUTs) can be used to realize miniature ultrasound probes. Through-silicon vias (TSVs) allow for close integration of the CMUT and read-out electronics. A fabrication process enabling the realization of a CMUT array with TSVs is being developed. The integrated process requires the formation of highly doped polysilicon electrodes with low surface roughness. A process for polysilicon film deposition, doping, CMP, RIE and thermal annealing that resulted in a film with sheet resistance of 4.0 Ω/□ and a surface roughness of 1 nm rms has been developed. The surface roughness of the polysilicon film was found to increase with higher phosphorus concentrations. The surface roughness also increased when oxygen was present in the thermal annealing ambient. The RIE process for etching CMUT cavities in the doped polysilicon gave a mean etch depth of 59.2 ± 3.9 nm and a uniformity across the wafer ranging from 1.0 to 4.7%. The two presented processes are key processes that enable the fabrication of CMUT arrays suitable for applications in for instance intravascular cardiology and gastrointestinal imaging. (paper)

  12. Electrochemical detection of dopamine using arrays of liquid-liquid micro-interfaces created within micromachined silicon membranes

    International Nuclear Information System (INIS)

    Berduque, Alfonso; Zazpe, Raul; Arrigan, Damien W.M.

    2008-01-01

    The detection of protonated dopamine by differential pulse voltammetry (DPV) and square wave voltammetry (SWV) at arrays of micro-interfaces between two immiscible electrolyte solutions (μITIES) is presented. Microfabricated porous silicon membranes (consisting of eight pores, 26.6 μm in radius and 500 μm pore-pore separation, in a hexagonal layout) were prepared by photolithographic and etching procedures. The membrane pores were fabricated with hydrophobic internal walls so that the organic phase filled the pores and created the liquid interface at the aqueous side of the membrane. These were used for harnessing the benefits of three-dimensional diffusion to the interface and for interface stabilisation. The liquid-liquid interface provides a simple method to overcome the major problem in the voltammetric detection of dopamine at solid electrodes due to the co-existence of ascorbate at higher concentrations. Selectivity for dopamine over ascorbate was achieved by the use of dibenzo-18-crown-6 (DB18C6) for the facilitated ion transfer of dopamine across the μITIES array. Under these conditions, the presence of ascorbate in excess did not interfere in the detection of dopamine and the lowest concentration detectable was ca. 0.5 μM. In addition, the drawback of current signal saturation (non-linear increase of the peak current with the concentration of dopamine) observed at conventional (millimetre-sized) liquid-liquid interfaces was overcome using the microfabricated porous membranes

  13. Development of a 2D array silicon detector magic plate for the dosimetric verification of IMRT treatment delivery

    International Nuclear Information System (INIS)

    Wong, J.H.D.; Fuduli, Iolanda; Lerch, M.L.F.; Petasecca, Marco; Metcalfe, P.E.

    2011-01-01

    Full text: We have developed an IMRT and VMAT dosimetry system for pre-treatment and during treatment verification. The 'Magic Plate' (MP) diode array was designed and prototyped by the CMRP and ICCe. It is a 2D diode array that can be used for in phantom dose measurement and can also function as a transmission detector for in vivo measurements during patient treatment. The prototype MP comprises of II x 11 silicon diodes mounted on a 0.6 mm Kapton substrate. Detectors are spaced 1 cm apart with sensitive volumes of 0.5 x 0.5 x 0.05 mm'. Phantom measurements were performed using the MP located at isocentre in the cavity of an l'mRT phantom. For fluence measurements in transmission mode the MP was mounted on the linac accessory slot. The detector was characterized and a nine field head and neck IMRT test plan was delivered. Measurements were compared with EBT2 films and Pinnacle predicted dose distributions. The 3%/3 mm gamma criteria was used for comparison. Average pass rates for the MP versus Pinnacle and MP versus EBT2 were 82.9 and 88.1 % in the phantom. Gamma analysis of MP versus EBT2 when used as transmission detectors gave a pass rate of 94.8%. The prototype MP design shows promise as IMRT dosimetric system. Future work involves refining the acquisition system, further detailed characterization, Monte Carlo simulation of the detector and its application to VMAT.

  14. Determining the thickness of aliphatic alcohol monolayers covalently attached to silicon oxide surfaces using angle-resolved X-ray photoelectron spectroscopy

    Science.gov (United States)

    Lee, Austin W. H.; Kim, Dongho; Gates, Byron D.

    2018-04-01

    The thickness of alcohol based monolayers on silicon oxide surfaces were investigated using angle-resolved X-ray photoelectron spectroscopy (ARXPS). Advantages of using alcohols as building blocks for the formation of monolayers include their widespread availability, ease of handling, and stability against side reactions. Recent progress in microwave assisted reactions demonstrated the ease of forming uniform monolayers with alcohol based reagents. The studies shown herein provide a detailed investigation of the thickness of monolayers prepared from a series of aliphatic alcohols of different chain lengths. Monolayers of 1-butanol, 1-hexanol, 1-octanol, 1-decanol, and 1-dodecanol were each successfully formed through microwave assisted reactions and characterized by ARXPS techniques. The thickness of these monolayers consistently increased by ∼1.0 Å for every additional methylene (CH2) within the hydrocarbon chain of the reagents. Tilt angles of the molecules covalently attached to silicon oxide surfaces were estimated to be ∼35° for each type of reagent. These results were consistent with the observations reported for thiol based or silane based monolayers on either gold or silicon oxide surfaces, respectively. The results of this study also suggest that the alcohol based monolayers are uniform at a molecular level.

  15. Thermal Characterization of Dynamic Silicon Cantilever Array Sensors by Digital Holographic Microscopy

    Directory of Open Access Journals (Sweden)

    Marjan Zakerin

    2017-05-01

    Full Text Available In this paper, we apply a digital holographic microscope (DHM in conjunction with stroboscopic acquisition synchronization. Here, the temperature-dependent decrease of the first resonance frequency (S1(T and Young’s elastic modulus (E1(T of silicon micromechanical cantilever sensors (MCSs are measured. To perform these measurements, the MCSs are uniformly heated from T0 = 298 K to T = 450 K while being externally actuated with a piezo-actuator in a certain frequency range close to their first resonance frequencies. At each temperature, the DHM records the time-sequence of the 3D topographies for the given frequency range. Such holographic data allow for the extracting of the out-of-plane vibrations at any relevant area of the MCSs. Next, the Bode and Nyquist diagrams are used to determine the resonant frequencies with a precision of 0.1 Hz. Our results show that the decrease of resonance frequency is a direct consequence of the reduction of the silicon elastic modulus upon heating. The measured temperature dependence of the Young’s modulus is in very good accordance with the previously-reported values, validating the reliability and applicability of this method for micromechanical sensing applications.

  16. Silicon-on-ceramic coating process. Silicon sheet growth development for the Large-Area Silicon Sheet and Cell Development Tasks of the Low-Cost Silicon Solar Array Project. Quarterly report No. 8, December 28, 1977--March 28, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, P.W. Zook, J.D.; Heaps, J D; Maclolek, R B; Koepke, B; Butter, C D; Schult, S B

    1978-04-20

    A research program to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating inexpensive ceramic substrates with a thin layer of polycrystalline silicon is described. The coating methods to be developed are directed toward a minimum-cost process for producing solar cells with a terrestrial conversion efficiency of 12 percent or greater. By applying a graphite coating to one face of a ceramic substrate, molten silicon can be caused to wet only that graphite-coated face and produce uniform thin layers of large-grain polycrystalline silicon; thus, only a minimal quantity of silicon is consumed. A dip-coating method for putting silicon on ceramic (SOC) has been shown to produce solar-cell-quality sheet silicon. This method and a continuous coating process also being investigated have excellent scale-up potential which offers an outstanding cost-effective way to manufacture large-area solar cells. A variety of ceramic materials have been dip-coated with silicon. The investigation has shown that mullite substrates containing an excess of SiO/sub 2/ best match the thermal expansion coefficient of silicon and hence produce the best SOC layers. With such substrates, smooth and uniform silicon layers 25 cm/sup 2/ in area have been achieved with single-crystal grains as large as 4 mm in width and several cm in length. Solar cells with areas from 1 to 10 cm/sup 2/ have been fabricated from material withas-grown surface. Recently, an antireflection (AR) coating has been applied to SOC cells. Conversion efficiencies greater than 9% have been achieved without optimizing series resistance characteristics. Such cells typically have open-circuit voltages and short-circuit current densities of 0.51 V and 20 mA/cm/sup 2/, respectively.

  17. Silicon photonics fiber-to-the-home transceiver array based on transfer-printing-based integration of III-V photodetectors.

    Science.gov (United States)

    Zhang, Jing; De Groote, Andreas; Abbasi, Amin; Loi, Ruggero; O'Callaghan, James; Corbett, Brian; Trindade, António José; Bower, Christopher A; Roelkens, Gunther

    2017-06-26

    A 4-channel silicon photonics transceiver array for Point-to-Point (P2P) fiber-to-the-home (FTTH) optical networks at the central office (CO) side is demonstrated. A III-V O-band photodetector array was integrated onto the silicon photonic transmitter through transfer printing technology, showing a polarization-independent responsivity of 0.39 - 0.49 A/W in the O-band. The integrated PDs (30 × 40 μm 2 mesa) have a 3 dB bandwidth of 11.5 GHz at -3 V bias. Together with high-speed C-band silicon ring modulators whose bandwidth is up to 15 GHz, operation of the transceiver array at 10 Gbit/s is demonstrated. The use of transfer printing for the integration of the III-V photodetectors allows for an efficient use of III-V material and enables the scalable integration of III-V devices on silicon photonics wafers, thereby reducing their cost.

  18. Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array

    International Nuclear Information System (INIS)

    Álvarez, V; Cárcel, S; Cervera, A; Díaz, J; Ferrario, P; Gil, A; Borges, F I G; Conde, C A N; Dias, T H V T; Fernandes, L M P; Freitas, E D C; Castel, J; Cebrián, S; Dafni, T; Egorov, M; Gehman, V M; Goldschmidt, A; Esteve, R; Evtoukhovitch, P; Ferreira, A L

    2013-01-01

    NEXT-DEMO is a high-pressure xenon gas TPC which acts as a technological test-bed and demonstrator for the NEXT-100 neutrinoless double beta decay experiment. In its current configuration the apparatus fully implements the NEXT-100 design concept. This is an asymmetric TPC, with an energy plane made of photomultipliers and a tracking plane made of silicon photomultipliers (SiPM) coated with TPB. The detector in this new configuration has been used to reconstruct the characteristic signature of electrons in dense gas, demonstrating the ability to identify the MIP and ''blob'' regions. Moreover, the SiPM tracking plane allows for the definition of a large fiducial region in which an excellent energy resolution of 1.82% FWHM at 511 keV has been measured (a value which extrapolates to 0.83% at the xenon Q ββ )

  19. Characterization of silicon isotropic etch by inductively coupled plasma etcher for microneedle array fabrication

    International Nuclear Information System (INIS)

    Ji, J; Tay, F E H; Miao Jianmin; Sun Jianbo

    2006-01-01

    This work investigates the isotropic etching properties in inductively coupled plasma (ICP) etcher for microneedle arrays fabrication. The effects of process variables including powers, gas and pressure on needle structure generation are characterized by factorial design of experiment (DOE). The experimental responses of vertical etching depth, lateral etching length, ratio of vertical etching depth to lateral etching length and photoresist etching rate are reported. The relevance of the etching variables is also presented. The obtained etching behaviours for microneedle structure generation will be applied to develop recipes to fabricate microneedles in designed dimensions

  20. Characterization of silicon isotropic etch by inductively coupled plasma etcher for microneedle array fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Ji, J [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Tay, F E H [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Miao Jianmin [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technologica l University, 50 Nanyang Avenue, 639798 (Singapore); Sun Jianbo [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technologica l University, 50 Nanyang Avenue, 639798 (Singapore)

    2006-04-01

    This work investigates the isotropic etching properties in inductively coupled plasma (ICP) etcher for microneedle arrays fabrication. The effects of process variables including powers, gas and pressure on needle structure generation are characterized by factorial design of experiment (DOE). The experimental responses of vertical etching depth, lateral etching length, ratio of vertical etching depth to lateral etching length and photoresist etching rate are reported. The relevance of the etching variables is also presented. The obtained etching behaviours for microneedle structure generation will be applied to develop recipes to fabricate microneedles in designed dimensions.

  1. Dependence of black fragment azimuthal and projected angular distributions on polar angle in silicon-emulsion collisions at 4.5A GeV/c

    International Nuclear Information System (INIS)

    Liu Fuhu; Abd Allah, Nabil N.; Singh, B.K.

    2004-01-01

    The experimental results of dependence of black fragment azimuth (φ) and projected angle (ψ) distributions on polar angle θ in silicon-emulsion collisions at 4.5A GeV/c (the Dubna momentum) are reported. There are two regions of enhancement around φ=±90 deg. for different θ ranges. These enhancements are due to directed (v 1 ) and elliptic (v 2 ) flows. The v 1 and v 2 dependence of values on θ shows that the directed flow is weak and the elliptic flow is strong in these collisions. A multisource ideal gas model is used to describe the experimental results of dependence. The Monte Carlo calculated results are approximately in agreement with the experimental data

  2. Micromirror arrays for object selection

    Science.gov (United States)

    Waldis, Severin; Zamkotsian, Frederic; Clerc, Pierre-Andre; Zickar, Michael; Noell, Wilfried; de Rooij, Nico

    2007-10-01

    We report on micromirror arrays being developed for object selection in Multi Object Spectrographs for astronomical applications. The micromirrors are etched in bulk single crystal silicon whereas the cantilever type suspension is realized by surface micromachining. One micromirror element is 100μm × 200μm in size. The micromirrors are actuated electrostatically by electrodes located on a second chip. The use of silicon on insulator (SOI) wafers for both mirror and electrode chip ensures thermal compatibility for cryogenic operation. A system of multiple landing beams has been developed, which passively locks the mirror at a well defined tilt angle when actuated. The mechanical tilt angle obtained is 20° at a pull-in voltage of 90V. Measurements with an optical profiler showed that the tilt angle of the actuated and locked mirror is stable with a precision of one arc minute over a range of 15V. This locking system makes the tilt angle merely independent from process variations across the wafer and thus provides uniform tilt angle over the whole array. The precision on tilt angle from mirror to mirror measured is one arc minute. The surface quality of the mirrors in actuated state is better than 10nm peak-to-valley and the local roughness is around 1nm RMS. Preliminary cryogenic tests showed that the micromirror device sustains 120K without any structural damage.

  3. Low cost solar array project. Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    Science.gov (United States)

    1980-01-01

    Technical activities are reported in the design of process, facilities, and equipment for producing silicon at a rate and price comensurate with production goals for low cost solar cell modules. The silane-silicone process has potential for providing high purity poly-silicon on a commercial scale at a price of fourteen dollars per kilogram by 1986, (1980 dollars). Commercial process, economic analysis, process support research and development, and quality control are discussed.

  4. A novel lab-on-chip platform with integrated solid phase PCR and Supercritical Angle Fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection.

    Science.gov (United States)

    Hung, Tran Quang; Chin, Wai Hoe; Sun, Yi; Wolff, Anders; Bang, Dang Duong

    2017-04-15

    Solid-phase PCR (SP-PCR) has become increasingly popular for molecular diagnosis and there have been a few attempts to incorporate SP-PCR into lab-on-a-chip (LOC) devices. However, their applicability for on-line diagnosis is hindered by the lack of sensitive and portable on-chip optical detection technology. In this paper, we addressed this challenge by combining the SP-PCR with super critical angle fluorescence (SAF) microlens array embedded in a microchip. We fabricated miniaturized SAF microlens array as part of a microfluidic chamber in thermoplastic material and performed multiplexed SP-PCR directly on top of the SAF microlens array. Attribute to the high fluorescence collection efficiency of the SAF microlens array, the SP-PCR assay on the LOC platform demonstrated a high sensitivity of 1.6 copies/µL, comparable to off-chip detection using conventional laser scanner. The combination of SP-PCR and SAF microlens array allows for on-chip highly sensitive and multiplexed pathogen detection with low-cost and compact optical components. The LOC platform would be widely used as a high-throughput biosensor to analyze food, clinical and environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Theoretical investigation of the noise performance of active pixel imaging arrays based on polycrystalline silicon thin film transistors.

    Science.gov (United States)

    Koniczek, Martin; Antonuk, Larry E; El-Mohri, Youcef; Liang, Albert K; Zhao, Qihua

    2017-07-01

    Active matrix flat-panel imagers, which typically incorporate a pixelated array with one a-Si:H thin-film transistor (TFT) per pixel, have become ubiquitous by virtue of many advantages, including large monolithic construction, radiation tolerance, and high DQE. However, at low exposures such as those encountered in fluoroscopy, digital breast tomosynthesis and breast computed tomography, DQE is degraded due to the modest average signal generated per interacting x-ray relative to electronic additive noise levels of ~1000 e, or greater. A promising strategy for overcoming this limitation is to introduce an amplifier into each pixel, referred to as the active pixel (AP) concept. Such circuits provide in-pixel amplification prior to readout as well as facilitate correlated multiple sampling, enhancing signal-to-noise and restoring DQE at low exposures. In this study, a methodology for theoretically investigating the signal and noise performance of imaging array designs is introduced and applied to the case of AP circuits based on low-temperature polycrystalline silicon (poly-Si), a semiconductor suited to manufacture of large area, radiation tolerant arrays. Computer simulations employing an analog circuit simulator and performed in the temporal domain were used to investigate signal characteristics and major sources of electronic additive noise for various pixel amplifier designs. The noise sources include photodiode shot noise and resistor thermal noise, as well as TFT thermal and flicker noise. TFT signal behavior and flicker noise were parameterized from fits to measurements performed on individual poly-Si test TFTs. The performance of three single-stage and three two-stage pixel amplifier designs were investigated under conditions relevant to fluoroscopy. The study assumes a 20 × 20 cm 2 , 150 μm pitch array operated at 30 fps and coupled to a CsI:Tl x-ray converter. Noise simulations were performed as a function of operating conditions, including

  6. A low-power, high-speed, 9-channel germanium-silicon electro-absorption modulator array integrated with digital CMOS driver and wavelength multiplexer.

    Science.gov (United States)

    Krishnamoorthy, A V; Zheng, X; Feng, D; Lexau, J; Buckwalter, J F; Thacker, H D; Liu, F; Luo, Y; Chang, E; Amberg, P; Shubin, I; Djordjevic, S S; Lee, J H; Lin, S; Liang, H; Abed, A; Shafiiha, R; Raj, K; Ho, R; Asghari, M; Cunningham, J E

    2014-05-19

    We demonstrate the first germanium-silicon C-band electro-absorption based waveguide modulator array and echelle-grating-based silicon wavelength multiplexer integrated with a digital CMOS driver circuit. A 9-channel, 10Gbps SiGe electro-absorption wavelength-multiplexed modulator array consumed a power of 5.8mW per channel while being modulated at 10.25Gbps by 40nm CMOS drivers delivering peak-to-peak voltage swings of 2V, achieving a modulation energy-efficiency of ~570fJ/bit including drivers. Performance up to 25Gbps on a single-channel SiGe modulator and CMOS driver is also reported.

  7. Structural and Electrochemical Investigation during the First Charging Cycles of Silicon Microwire Array Anodes for High Capacity Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2013-02-01

    Full Text Available Silicon microwire arrays embedded in Cu present exceptional performance as anode material in Li ion batteries. The processes occurring during the first charging cycles of batteries with this anode are essential for good performance. This paper sheds light on the electrochemical and structural properties of the anodes during the first charging cycles. Scanning Electron Microscopy, X-ray diffractommetry, and fast Fourier transformation impedance spectroscopy are used for the characterization. It was found that crystalline phases with high Li content are obtained after the first lithiation cycle, while for the second lithiation just crystalline phases with less Li are observable, indicating that the lithiated wires become amorphous upon cycling. The formation of a solid electrolyte interface of around 250 nm during the first lithiation cycle is evidenced, and is considered a necessary component for the good cycling performance of the wires. Analog to voltammetric techniques, impedance spectroscopy is confirmed as a powerful tool to identify the formation of the different Si-Li phases.

  8. Controlled growth of MoS2 nanopetals on the silicon nanowire array using the chemical vapor deposition method

    Science.gov (United States)

    Chen, Shang-Min; Lin, Yow-Jon

    2018-01-01

    In order to get a physical/chemical insight into the formation of nanoscale semiconductor heterojunctions, MoS2 flakes are deposited on the silicon nanowire (SiNW) array by chemical vapor deposition (CVD). In this study, H2O2 treatment provides a favorable place where the formation of Sisbnd O bonds on the SiNW surfaces that play important roles (i.e., the nucleation centers, catalyst control centers or ;seeds;) can dominate the growth of MoS2 on the SiNWs. Using this configuration, the effect of a change in the S/MoO3 mass ratio (MS/MMoO3) on the surface morphology of MoS2 is studied. It is shown that an increase in the value of MS/MMoO3 leads to the increased nucleation rate, increasing the size of MoS2 nanopetals. This study provides valuable scientific information for directly CVD-grown edge-oriented MoS2/SiNWs heterojunctions for various nanoscale applications, including hydrogen evolution reaction and electronic and optoelectronic devices.

  9. Structural and Electrochemical Investigation during the First Charging Cycles of Silicon Microwire Array Anodes for High Capacity Lithium Ion Batteries.

    Science.gov (United States)

    Quiroga-González, Enrique; Carstensen, Jürgen; Föll, Helmut

    2013-02-22

    Silicon microwire arrays embedded in Cu present exceptional performance as anode material in Li ion batteries. The processes occurring during the first charging cycles of batteries with this anode are essential for good performance. This paper sheds light on the electrochemical and structural properties of the anodes during the first charging cycles. Scanning Electron Microscopy, X-ray diffractommetry, and fast Fourier transformation impedance spectroscopy are used for the characterization. It was found that crystalline phases with high Li content are obtained after the first lithiation cycle, while for the second lithiation just crystalline phases with less Li are observable, indicating that the lithiated wires become amorphous upon cycling. The formation of a solid electrolyte interface of around 250 nm during the first lithiation cycle is evidenced, and is considered a necessary component for the good cycling performance of the wires. Analog to voltammetric techniques, impedance spectroscopy is confirmed as a powerful tool to identify the formation of the different Si-Li phases.

  10. Hierarchical structures of carbon nanotubes and arrays of chromium-capped silicon nanopillars: formation and electrical properties.

    Science.gov (United States)

    Koch, Stefan; Joshi, Ravi K; Noyong, Michael; Timper, Jan; Schneider, Jörg J; Simon, Ulrich

    2012-09-10

    The formation of stochastically oriented carbon-nanotube networks on top of an array of free-standing chromium-capped silicon nanopillars is reported. The combination of nanosphere lithography and chemical vapor deposition enables the construction of nanostructures that exhibit a hierarchical sequence of structural sizes. Metallic chromium serves as an etching mask for Si-pillar formation and as a nucleation site for the formation of carbon nanotubes through the chemical vapor deposition of ethene, ethanol, and methane, respectively, thereby bridging individual pillars from top to top. Iron and cobalt were applied onto the chromium caps as catalysts for CNT growth and the influence of different carbon sources and different gas-flow rates were investigated. The carbon nanotubes were structurally characterized and their DC electrical properties were studied by in situ local- and ex situ macroscopic measurements, both of which reveal their semiconductor properties. This process demonstrates how carbon nanotubes can be integrated into Si-based semiconductors and, thus, this process may be used to form high-surface-area sensors or new porous catalyst supports with enhanced gas-permeation properties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Silicon Wafer-Based Platinum Microelectrode Array Biosensor for Near Real-Time Measurement of Glutamate in Vivo

    Directory of Open Access Journals (Sweden)

    Nigel T. Maidment

    2008-08-01

    Full Text Available Using Micro-Electro-Mechanical-Systems (MEMS technologies, we have developed silicon wafer-based platinum microelectrode arrays (MEAs modified with glutamate oxidase (GluOx for electroenzymatic detection of glutamate in vivo. These MEAs were designed to have optimal spatial resolution for in vivo recordings. Selective detection of glutamate in the presence of the electroactive interferents, dopamine and ascorbic acid, was attained by deposition of polypyrrole and Nafion. The sensors responded to glutamate with a limit of detection under 1μM and a sub-1-second response time in solution. In addition to extensive in vitro characterization, the utility of these MEA glutamate biosensors was also established in vivo. In the anesthetized rat, these MEA glutamate biosensors were used for detection of cortically-evoked glutamate release in the ventral striatum. The MEA biosensors also were applied to the detection of stress-induced glutamate release in the dorsal striatum of the freely-moving rat.

  12. Direct Detection of Transcription Factors in Cotyledons during Seedling Development Using Sensitive Silicon-Substrate Photonic Crystal Protein Arrays1[OPEN

    Science.gov (United States)

    Jones, Sarah I.; Tan, Yafang; Shamimuzzaman, Md; George, Sherine; Cunningham, Brian T.; Vodkin, Lila

    2015-01-01

    Transcription factors control important gene networks, altering the expression of a wide variety of genes, including those of agronomic importance, despite often being expressed at low levels. Detecting transcription factor proteins is difficult, because current high-throughput methods may not be sensitive enough. One-dimensional, silicon-substrate photonic crystal (PC) arrays provide an alternative substrate for printing multiplexed protein microarrays that have greater sensitivity through an increased signal-to-noise ratio of the fluorescent signal compared with performing the same assay upon a traditional aminosilanized glass surface. As a model system to test proof of concept of the silicon-substrate PC arrays to directly detect rare proteins in crude plant extracts, we selected representatives of four different transcription factor families (zinc finger GATA, basic helix-loop-helix, BTF3/NAC [for basic transcription factor of the NAC family], and YABBY) that have increasing transcript levels during the stages of seedling cotyledon development. Antibodies to synthetic peptides representing the transcription factors were printed on both glass slides and silicon-substrate PC slides along with antibodies to abundant cotyledon proteins, seed lectin, and Kunitz trypsin inhibitor. The silicon-substrate PC arrays proved more sensitive than those performed on glass slides, detecting rare proteins that were below background on the glass slides. The zinc finger transcription factor was detected on the PC arrays in crude extracts of all stages of the seedling cotyledons, whereas YABBY seemed to be at the lower limit of their sensitivity. Interestingly, the basic helix-loop-helix and NAC proteins showed developmental profiles consistent with their transcript patterns, indicating proof of concept for detecting these low-abundance proteins in crude extracts. PMID:25635113

  13. Fabrication and photoelectrochemical properties of silicon nanowires/g-C{sub 3}N{sub 4} core/shell arrays

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhen [Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China); Institute of Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China); Ma, Ge [Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China); Chen, Zhihong, E-mail: chenzhihong1227@sina.com [Shenyang Institute of Automation, Guangzhou, Chinese Academy of Sciences, Guangzhou 511458 (China); Zhang, Yongguang [Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130 (China); Zhang, Zhe [Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China); Gao, Jinwei [Institute of Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China); Meng, Qingguo; Yuan, Mingzhe [Shenyang Institute of Automation, Guangzhou, Chinese Academy of Sciences, Guangzhou 511458 (China); Wang, Xin, E-mail: wangxin@scnu.edu.cn [Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China); Liu, Jun-ming [Institute of Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China); Zhou, Guofu [Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China)

    2017-02-28

    Highlights: • A novel Silicon Nanowires/g-C{sub 3}N{sub 4} core/shell arrays photoanode prepared by a mild and inexpensive metal-catalyzed electroless etching (MCEE) process followed by liquid atomic layer deposition (LALD), wiich is a facile and low-cost method. • In comparison with FTO/g-C{sub 3}N{sub 4} and Si NWs samples, the Si NWs/g-C{sub 3}N{sub 4} samples showed significantly enhanced photocurrent which could be attributed to the SiNWs-based core/shell structure. • A systematical PEC mechanism of the Si NWs/g-C{sub 3}N{sub 4} was proposed is this manuscript. - Abstract: A photoelectrochemical (PEC) cell made of metal-free carbon nitride (g-C{sub 3}N{sub 4}) @siliconnanowire(Si NW) arrays (denoted as Si NWs/g-C{sub 3}N{sub 4}) is presented in this work. The as-prepared photoelectrodes with different mass contents of g-C{sub 3}N{sub 4} have been synthesized via a metal-catalyzed electroless etching (MCEE), liquid atomic layer deposition (LALD) and annealing methods. The amount of g-C{sub 3}N{sub 4} on the Si NW arrays can be controlled by tuning the concentration of the cyanamide solution used in the LALD procedure. The dense and vertically aligned Si NWs/g-C{sub 3}N{sub 4} core/shell nanostructures were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). In comparison with FTO/g-C{sub 3}N{sub 4} and Si NW samples, the Si NWs/g-C{sub 3}N{sub 4} samples showed significantly enhanced photocurrents over the entire potential sweep range. Electrochemical impedance spectroscopy (EIS) was conducted to investigate the properties of the charge transfer process, and the results indicated that the enhanced PEC performance may be due to the increased photo-generated interfacial charge transfer between the Si NWs and g-C{sub 3}N{sub 4}. The photocurrent density reached 45 μA/cm{sup 2} under 100 mW/cm{sup 2} (AM 1.5 G) illumination at 0 V (vs. Pt) in neutral Na{sub 2}SO{sub 4} solution (pH ∼ 7

  14. Integration of silicon-based neural probes and micro-drive arrays for chronic recording of large populations of neurons in behaving animals.

    Science.gov (United States)

    Michon, Frédéric; Aarts, Arno; Holzhammer, Tobias; Ruther, Patrick; Borghs, Gustaaf; McNaughton, Bruce; Kloosterman, Fabian

    2016-08-01

    Understanding how neuronal assemblies underlie cognitive function is a fundamental question in system neuroscience. It poses the technical challenge to monitor the activity of populations of neurons, potentially widely separated, in relation to behaviour. In this paper, we present a new system which aims at simultaneously recording from a large population of neurons from multiple separated brain regions in freely behaving animals. The concept of the new device is to combine the benefits of two existing electrophysiological techniques, i.e. the flexibility and modularity of micro-drive arrays and the high sampling ability of electrode-dense silicon probes. Newly engineered long bendable silicon probes were integrated into a micro-drive array. The resulting device can carry up to 16 independently movable silicon probes, each carrying 16 recording sites. Populations of neurons were recorded simultaneously in multiple cortical and/or hippocampal sites in two freely behaving implanted rats. Current approaches to monitor neuronal activity either allow to flexibly record from multiple widely separated brain regions (micro-drive arrays) but with a limited sampling density or to provide denser sampling at the expense of a flexible placement in multiple brain regions (neural probes). By combining these two approaches and their benefits, we present an alternative solution for flexible and simultaneous recordings from widely distributed populations of neurons in freely behaving rats.

  15. Silicon on ceramic process. Silicon sheet growth development for the Large-Area Silicon Sheet Task of the Low-Cost Silicon Solar Array Project. Annual report No. 2, September 17, 1976--September 19, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Zook, J.D.; Heaps, J.D.; Maciolek, R.B.; Koepke, B.; Butter, C.D.; Schuldt, S.B.

    1977-09-30

    The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. In the past year significant progress was made in all areas of the program. The physical and chemical properties of the standard mullite refractory used for the majority of the coating runs (McDanel MV20 and Coors S1SI) have been characterized. A number of experimental compositions have been identified and procured from Coors. Characterization of the standard compositions revealed that the thermal expansion of mullite depends on both relative amounts of glass phase and on the impurity level in the glass. Since the thermal expansion in mullite exceeds that of silicon, the silicon coating should be in a state of compression. This was confirmed by x-ray measurements. After modifying and cleaning the dip-coating facility, silicon on ceramic (SOC) solar cells were fabricated which demonstrate that the SOC process can produce silicon of solar cell quality. SOC cells having 1 cm/sup 2/ active areas demonstrated measured conversion efficiencies as high as 7.2 percent. Typical open-ciruit voltages (V/sub oc/) and short-circuit current densities (J/sub sc/) were 0.51 volt and 20 mA/cm/sup 2/, respectively. Since the active surface of these solar cells is a highly reflective ''as-grown'' surface, one can expect improvement in J/sub sc/ after an anti-reflection (AR) coating is applied. Results of an economic analysis of the SOC process are presented.

  16. Continuous Czochralski growth: Silicon sheet growth development of the large area sheet task of the low cost silicon solar array project

    Science.gov (United States)

    Johnson, C. M.

    1980-12-01

    The growth of 100 kg of silicon single crystal material, ten cm in diameter or greater, and 150 kg of silicon single crystal material 15 cm or greater utilizing one common silicon container material (one crucible) is investigated. A crystal grower that is recharged with a new supply of polysilicon material while still under vacuum and at temperatures above the melting point of silicon is developed. It accepts large polysilicon charges up to 30 kg, grows large crystal ingots (to 15 cm diameter and 25 kg in weight), and holds polysilicon material for recharging (rod or lump) while, at the same time, growing crystal ingots. Special equipment is designed to recharge polysilicon rods, recharge polysilicon lumps, and handle and store large, hot silicon crystal ingots. Many continuous crystal growth runs were performed lasting as long as 109 hours and producing as many as ten crystal ingots, 15 cm with weights progressing to 27 kg.

  17. Bio-Inspired Wide-Angle Broad-Spectrum Cylindrical Lens Based on Reflections from Micro-Mirror Array on a Cylindrical Elastomeric Membrane

    Directory of Open Access Journals (Sweden)

    Chi-Chieh Huang

    2014-06-01

    Full Text Available We present a wide-angle, broad-spectrum cylindrical lens based on reflections from an array of three-dimensional, high-aspect-ratio micro-mirrors fabricated on a cylindrical elastomeric substrate, functionally inspired by natural reflecting superposition compound eyes. Our device can perform one-dimensional focusing and beam-shaping comparable to conventional refraction-based cylindrical lenses, while avoiding chromatic aberration. The focal length of our cylindrical lens is 1.035 mm, suitable for micro-optical systems. Moreover, it demonstrates a wide field of view of 152° without distortion, as well as modest spherical aberrations. Our work could be applied to diverse applications including laser diode collimation, barcode scanning, holography, digital projection display, microlens arrays, and optical microscopy.

  18. A CdZnTe array for the detection of explosives in baggage by energy-dispersive X-ray diffraction signatures at multiple scatter angles

    CERN Document Server

    Malden, C H

    2000-01-01

    CdZnTe detectors were used to collect energy-dispersive diffraction spectra at a range of scatter angles, from sheets of explosives hidden in baggage. It is shown that the combined information from these 'signatures' can be used to determine whether an explosive sample is present or not. The geometrical configuration of the collimation and the position of the baggage within the scanner must be taken into careful consideration when optimising the capabilities of such a system. The CdZnTe array lends itself well to the detection of explosives in baggage since multiple signals may be collected simultaneously providing more rapid detection than achieved using a single detector.

  19. Spectroscopy study of imaging devices based on silicon Pixel Array Detector coupled to VATAGP7 read-out chips

    International Nuclear Information System (INIS)

    Linhart, V; Lacasta, C; Llosa, G; Stankova, V; Burdette, D; Chessi, E; Cochran, E; Honscheid, K; Kagan, H; Weilhammer, P; Cindro, V; Grosicar, B; Mikuz, M; Studen, A; Zontar, D; Clinthorne, N H

    2011-01-01

    Spectroscopic and timing response studies have been conducted on a detector module consisting of a silicon Pixel Array Detector bonded on two VATAGP7 read-out chips manufactured by Gamma-Medica Ideas using laboratory gamma sources and the internal calibration facilities (the calibration system of the read-out chips). The performed tests have proven that the chips have (i) non-linear calibration curves which can be approximated by power functions, (ii) capability to measure the energy of photons with energy resolution better than 2 keV (exact range and resolution depend on experimental setup), (iii) the internal calibration facility which provides 6 out of 16 available internal calibration charges within our region of interest (spanning the Compton edge of 511 keV photons). The peaks induced by the internal calibration facility are suitable for a fit of the calibration curves. However, they are not suitable for measurements of equivalent noise charge because their full width at half maximum varies with their amplitude. These facts indicate that the VATAGP7 chips are useful and precise tools for a wide variety of spectroscopic devices. We have also explored time walk of the module and peaking time of the spectroscopy signals provided by the chips. We have observed that (iv) the time walk is caused partly by the peaking time of the signals provided by the fast shaper of the chips and partly by the timing uncertainty related to the varying position of the photon interaction, (v) the peaking time of the spectroscopy signals provided by the chips increases with increasing pulse height.

  20. Performance evaluation of a sub-millimeter spatial resolution PET detector module using a digital silicon photomultiplier coupled LGSO array

    Energy Technology Data Exchange (ETDEWEB)

    Leem, Hyun Tae [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Choi, Yong, E-mail: ychoi@sogang.ac.kr [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Kim, Kyu Bom; Lee, Sangwon [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Yamamoto, Seiichi [Department of Medical Technology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Yeom, Jung-Yeol, E-mail: jungyeol@korea.ac.kr [School of Biomedical Engineering, Korea University, Seoul (Korea, Republic of)

    2017-02-21

    In positron emission tomography (PET) for breast, brain and small animal imaging, the spatial resolution of a PET detector is crucial to obtain high quality PET images. In this study, a PET detector for sub-millimeter spatial resolution imaging purpose was assembled using 4×4 pixels of a digital silicon photomultiplier (dSiPM, DPC-3200-22-44, Philips) coupled with a 15×15 LGSO array with BaSO{sub 4} reflector, and a 1 mm thick acrylic light guide for light distribution between the dSiPM pixels. The active area of each dSiPM pixel was 3.2×3.9 mm{sup 2} and the size of each LGSO scintillator element was 0.7×0.7×6 mm{sup 3}. In this paper, we experimentally demonstrated the performance of the PET detector by measuring the energy resolution, 2D flood map, peak to valley (P/V) ratio, and coincidence resolving time (CRT). All measurements were performed at a temperature of 10±1 ℃. The average energy resolution was 15.6% (without correcting for saturation effects) at 511 keV and the best CRT was 242±5 ps. The 2D flood map obtained with an energy window of 400–600 keV demonstrated clear identification of all pixels, and the average P/V ratio of the X- and Y-directions were 7.31 and 7.81, respectively. This study demonstrated that the PET detector could be suitable for application in high resolution PET while achieving good timing resolution.

  1. Silicon materials task of the low cost solar array project (Phase III). Effect of impurities and processing on silicon solar cells. Fifteenth quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, R.H.; Davis, J.R.; Blais, P.D.; Rohatgi, A.; Campbell, R.B.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.

    1979-07-01

    The overall objective of this program is to define the effects of impurities, various thermochemical processes, and any impurity-process interactions on the performance of terrestrial silicon solar cells. The results of the study form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost-benefit relationships for the use of less pure, less costly Solar Grade silicon. The first reported determinations of the segregation coefficients of tungsten, tantalum, and cobalt for the Czochralski pulling of silicon single crystals were performed. Sensitive neutron activation analysis was used to determine the metal impurity content of the silicon (C/sub S/) while atomic absorption was used to measure the metal content of the residual liquid (C/sub L/) from which the doped crystals were grown. Gettering of Ti-doped silicon wafers improves cell performance by 1 to 2% (absolute) for the highest temperatures and longest times. The measured profile for Ti centers formed after an 850/sup 0/C gettering operation was fitted by a mathematical expression for the out-diffusion of an impurity species. By means of cell performance data and the newly-measured segregation coefficients curves were computed to predict the variation in cell efficiency with impurity concentration for Mo, Ta, W, Nb, and Co, materials commonly employed in the construction of high temperature silicon processing equipment. Using data for second and third generation n-base ingots the cell performance curves were updated for single impurities in n-type silicon. Most impurities degrade n-base cells less than p-base devices. The effect is larges for Mo, Al, Mn, Ti, and V while Fe and Cr behave much the same in both types of solar cells. In contrast Ni and Cu both degrade n-base devices (apparently by a junction mechanism) more severely than p-base cells. (WHK)

  2. MCF10A and MDA-MB-231 human breast basal epithelial cell co-culture in silicon micro-arrays.

    Science.gov (United States)

    Nikkhah, Mehdi; Strobl, Jeannine S; Schmelz, Eva M; Roberts, Paul C; Zhou, Hui; Agah, Masoud

    2011-10-01

    We developed istotropically etched silicon chip micro-arrays for co-culture of metastatic human breast cancer (MDA-MB-231) and non-tumorigenic human breast (MCF10A) cells. The micro-arrays were fabricated using a single-mask, single-etch step process. Each chip contained a 16×16 array of cavities 140 μm wide by 60 μm deep separated by planar silicon surfaces. Cells occupied 97-100% of the etched cavities. The cavities were enriched three-fold in MDA-MB-231 cells relative to the seeding ratio of, MDA-MB-231(1): MCF10A(10) cells. Micro co-cultures comprised of both MCF10A and MDA-MB-231 cells formed in 26% of cavities and contained 2-10 cells per cavity. Heterotropic cell interactions were seen in co-culture, and sites of these interactions were enriched with vinculin spikes. A selective morphological response to the histone deacetylase inhibitor (HDI), SAHA (suberoylanilide hydroxamic acid), occurred in MDA-MB-231 cells which was quantified by significant increases in cell length and cell area on flat surfaces and in the number of stretched cells inside the etched cavities. The morphology of MCF10A cells was unaltered in response to SAHA. Real time imaging showed the formation of highly dynamic and randomly orienting cytoplasmic extensions in MDA-MB-231 cells 1h after adding SAHA; this is the first report of a rapid, morphological response in breast tumor cells to a histone deacetylase inhibitor. The findings demonstrate the utility of etched silicon micro-arrays for the propagation of human breast cell co-cultures and the application of HDI as a potential marker to distinguish metastatic breast cancer cells in a background of normal breast cell types. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Tracking efficiency and charge sharing of 3D silicon sensors at different angles in a 1.4T magnetic field

    CERN Document Server

    Gjersdal, H; Slaviec, T; Sandaker, H; Tsung, J; Bolle, E; Da Via, C; Wermes, N; Borri, M; Grinstein, S; Nordahl, P; Hugging, F; Dorholt, O; Rohne, O; La Rosa, A; Sjobaek, K; Tsybychev, D; Mastroberardino, A; Fazio, S; Su, D; Young, C; Hasi, J; Grenier, P; Hansson, P; Jackson, P; Kenney, C; Kocian, M

    2011-01-01

    A 3D silicon sensor fabricated at Stanford with electrodes penetrating throughout the entire silicon wafer and with active edges was tested in a 1.4 T magnetic field with a 180 GeV/c pion beam at the CERN SPS in May 2009. The device under test was bump-bonded to the ATLAS pixel FE-I3 readout electronics chip. Three readout electrodes were used to cover the 400 pm long pixel side, this resulting in a p-n inter-electrode distance of similar to 71 mu m. Its behavior was confronted with a planar sensor of the type presently installed in the ATLAS inner tracker. Time over threshold, charge sharing and tracking efficiency data were collected at zero and 15 angles with and without magnetic field. The latest is the angular configuration expected for the modules of the Insertable B-Layer (IBL) currently under study for the LHC phase 1 upgrade expected in 2014. (C) 2010 Elsevier B.V. All rights reserved.

  4. Design of a High-Performance Micro Integrated Surface Plasmon Resonance Sensor Based on Silicon-On-Insulator Rib Waveguide Array

    Directory of Open Access Journals (Sweden)

    Dengpeng Yuan

    2015-07-01

    Full Text Available Based on silicon-on-insulator (SOI rib waveguide with large cross-section, a micro integrated surface plasmon resonance (SPR biochemical sensor platform is proposed. SPR is excited at the deeply etched facet of the bend waveguide by the guiding mode and a bimetallic configuration is employed. With the advantages of SOI rib waveguide and the silicon microfabrication technology, an array of the SPR sensors can be composed to implement wavelength interrogation of the sensors’ output signal, so the spectrometer or other bulky and expensive equipment are not necessary, which enables the SPR sensor to realize the miniaturization and integration of the entire sensing system. The performances of the SPR sensor element are verified by using the two-dimensional finite-different time-domain method. The parameters of the sensor element and the array are optimized for the achievement of high performance for biochemical sensing application. As a typical example, a single bimetallic SPR sensor with 3 nm Au over 32 nm Al possesses a high sensitivity of 3.968 × 104 nm/RIU, a detection-accuracy of 14.7 μm−1. For a uniparted SPR sensor, it can achieve a detection limit of 5.04 × 10−7 RIU. With the relative power measurement accuracy of 0.01 dB, the refractive index variation of 1.14 × 10−5 RIU can be detected by the SPR sensor array.

  5. Manipulation of extinction spectra of P3HT/PMMA medium arrays on silicon substrate containing self-assembled gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ming-Chung [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333-02, Taiwan (China); Chen, Shih-Wen; Li, Jia-Han [Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei 106-17, Taiwan (China); Chou, Yi; Lin, Jhih-Fong [Department of Materials Science and Engineering, National Taiwan University, Taipei 106-17, Taiwan (China); Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei 106-17, Taiwan (China); Su, Wei-Fang, E-mail: suwf@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 106-17, Taiwan (China)

    2012-11-15

    In this study, we report a simple novel approach to modulate the extinction spectra of P3HT/PMMA by manipulating the medium arrays on a substrate that is coated with self-assembled gold nanoparticles. The 20 nm gold nanoparticles were synthesized and then self-assembled on the APTMS/silicon substrate surface by immersing the substrate into the gold colloid suspension. A high-resolution P3HT/PMMA photoluminescent electron beam resist was used to fabricate various square hole arrays on the substrate containing gold nanoparticles. The P3HT/PMMA medium composition causes the blue shifts in the extinction peaks of up to 40.6 nm by decreasing the period from 500 nm to 200 nm for P3HT/PMMA square hole arrays with a diameter of 100 nm. The magnitude of blue shift is directly proportional to the product of the changes of medium refractive index and the array structure factor. These peak shifts and intensity of extinction spectra for various P3HT/PMMA medium arrays are well described by the finite-difference time-domain (FDTD) simulation results. Since this simple cost-effective technique can tune the extinction spectrum of medium and adding the gold nanoparticles can give more functionalities for sensing applications, such as surface-enhanced Raman scattering (SERS), that provides good opportunities for the design and fabrication of new optoelectronic devices and sensors. Highlights: Black-Right-Pointing-Pointer We can tune the extinction spectra of P3HT/PMMA by manipulating the medium arrays. Black-Right-Pointing-Pointer These optical behaviors of P3HT/PMMA medium arrays are well described by FDTD simulation results. Black-Right-Pointing-Pointer Adding the Au nanoparticles can give more functionalities for sensing applications.

  6. Manipulation of extinction spectra of P3HT/PMMA medium arrays on silicon substrate containing self-assembled gold nanoparticles

    International Nuclear Information System (INIS)

    Wu, Ming-Chung; Chen, Shih-Wen; Li, Jia-Han; Chou, Yi; Lin, Jhih-Fong; Chen, Yang-Fang; Su, Wei-Fang

    2012-01-01

    In this study, we report a simple novel approach to modulate the extinction spectra of P3HT/PMMA by manipulating the medium arrays on a substrate that is coated with self-assembled gold nanoparticles. The 20 nm gold nanoparticles were synthesized and then self-assembled on the APTMS/silicon substrate surface by immersing the substrate into the gold colloid suspension. A high-resolution P3HT/PMMA photoluminescent electron beam resist was used to fabricate various square hole arrays on the substrate containing gold nanoparticles. The P3HT/PMMA medium composition causes the blue shifts in the extinction peaks of up to 40.6 nm by decreasing the period from 500 nm to 200 nm for P3HT/PMMA square hole arrays with a diameter of 100 nm. The magnitude of blue shift is directly proportional to the product of the changes of medium refractive index and the array structure factor. These peak shifts and intensity of extinction spectra for various P3HT/PMMA medium arrays are well described by the finite-difference time-domain (FDTD) simulation results. Since this simple cost-effective technique can tune the extinction spectrum of medium and adding the gold nanoparticles can give more functionalities for sensing applications, such as surface-enhanced Raman scattering (SERS), that provides good opportunities for the design and fabrication of new optoelectronic devices and sensors. Highlights: ► We can tune the extinction spectra of P3HT/PMMA by manipulating the medium arrays. ► These optical behaviors of P3HT/PMMA medium arrays are well described by FDTD simulation results. ► Adding the Au nanoparticles can give more functionalities for sensing applications.

  7. Small signal modulation characteristics of red-emitting (λ = 610 nm) III-nitride nanowire array lasers on (001) silicon

    KAUST Repository

    Jahangir, Shafat

    2015-02-16

    The small signal modulation characteristics of an InGaN/GaN nanowire array edge- emitting laser on (001) silicon are reported. The emission wavelength is 610 nm. Lattice matched InAlN cladding layers were incorporated in the laser heterostructure for better mode confinement. The suitability of the nanowire lasers for use in plastic fiber communication systems with direct modulation is demonstrated through their modulation bandwidth of f-3dB,max = 3.1 GHz, very low values of chirp (0.8 Å) and α-parameter, and large differential gain (3.1 × 10-17 cm2).

  8. Heat exchanger-ingot casting/slicing process, phase 1: Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    Science.gov (United States)

    Schmid, F.; Khattak, C. P.

    1977-01-01

    A controlled growth, heat-flow and cool-down process is described that yielded silicon with a high degree of single crystallinity. Even when the seed melted out, very large grains formed. Solar cell samples made from cast material yielded conversion efficiency of over 9%. Representative characterizations of grown silicon demonstrated a dislocation density of less than 100/sq cm and a minority carrier diffusion length of 31 micron. The source of silicon carbide in silicon ingots was identified to be from graphite retainers in contact with silica crucibles. Higher growth rates were achieved with the use of a graphite plug at the bottom of the silica crucible.

  9. Process research of non-cz silicon material. Low cost solar array project, cell and module formation research area

    Science.gov (United States)

    1982-01-01

    Liquid diffusion masks and liquid applied dopants to replace the CVD Silox masking and gaseous diffusion operations specified for forming junctions in the Westinghouse baseline process sequence for producing solar cells from dendritic web silicon were investigated.

  10. 1H-detected 1H- 1H correlation spectroscopy of a stereo-array isotope labeled amino acid under fast magic-angle spinning

    Science.gov (United States)

    Takahashi, Hiroki; Kainosho, Masatsune; Akutsu, Hideo; Fujiwara, Toshimichi

    2010-04-01

    The combined use of selective deuteration, stereo-array isotope labeling (SAIL), and fast magic-angle spinning effectively suppresses the 1H-1H dipolar couplings in organic solids. This method provided the high-field 1H NMR linewidths comparable to those achieved by combined rotation and multiple-pulse spectroscopy. This technique was applied to two-dimensional 1H-detected 1H-1H polarization transfer CHH experiments of valine. The signal sensitivity for the 1H-detected CHH experiments was greater than that for the 13C-detected 1H-1H polarization transfer experiments by a factor of 2-4. We obtained the 1H-1H distances in SAIL valine by CHH experiments with an accuracy of about 0.2 Å by using a theory developed for 1H-1H polarization transfer in 13C-labeled organic compounds.

  11. Array Automated Assembly Task Low Cost Silicon Solar Array Project. Phase 2. Annual technical report, September 20, 1977-December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Sang S.; Jones, Gregory T.; Allison, Kimberly L.

    1978-01-01

    This program was conducted to develop and demonstrate those solar cells and module process steps which have the technological readiness or capability to achieve the 1986 LSA goals. Results are reported. Seventeen process groups were investigated. Very promising results were achieved. A laserscribe computer program was developed. It demonstrated that silicon solar cells could be trimmed and holed by laser without causing mechanical defects (i.e., microcracks) nor any major degradation in solar cell electrical performance. The silicon wafer surface preparation task demonstrated a low-cost, high throughput texturizing process readily adaptable to automation. Performance verification tests of a laser scanning system showed a limited capability to detect hidden cracks or defects in solar cells. A general review of currently available thick film printing equipment provided the indication that state-of-the-art technology can adequately transform the capability of current printing machines to the elevated rate of 7200 wafers per hour. The LFE System 8000 silicon nitride plasma deposition system with the inclusion of minor equipment modifications was shown to be consistent with the 1986 LSA pricing goals. The performance verification test of the silicon nitride A.R. coating process provided the result that texturized, A.R. coated solar cells display a 14.1% improvement in electrical performance over identical solar cells without an A.R. coating. A new electroless nickel plating system was installed and demonstrated a low-cost, high throughput process readily adaptable to automation. A multiple wafer dipping method was investigated and operational parameters defined. A flux removal method consisting of a three stage D.I. water cascade rinse system with ultrasonic agitator was found to be very promising. Also, a SAMICS cost analysis was performed. (WHK)

  12. Low cost solar array project: Experimental process system development unit for producing semiconductor-grade silicon using silane-to-silicon process

    Science.gov (United States)

    1980-01-01

    The design, fabrication, and installation of an experimental process system development unit (EPSDU) were analyzed. Supporting research and development were performed to provide an information data base usable for the EPSDU and for technological design and economical analysis for potential scale-up of the process. Iterative economic analyses were conducted for the estimated product cost for the production of semiconductor grade silicon in a facility capable of producing 1000-MT/Yr.

  13. Low Cost Solar Array Project. Feasibility of the silane process for producing semiconductor-grade silicon. Final report, October 1975-March 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The commercial production of low-cost semiconductor-grade silicon is an essential requirement of the JPL/DOE (Department of Energy) Low-Cost Solar Array (LSA) Project. A 1000-metric-ton-per-year commercial facility using the Union Carbide Silane Process will produce molten silicon for an estimated price of $7.56/kg (1975 dollars, private financing), meeting the DOE goal of less than $10/kg. Conclusions and technology status are reported for both contract phases, which had the following objectives: (1) establish the feasibility of Union Carbide's Silane Process for commercial application, and (2) develop an integrated process design for an Experimental Process System Development Unit (EPSDU) and a commercial facility, and estimate the corresponding commercial plant economic performance. To assemble the facility design, the following work was performed: (a) collection of Union Carbide's applicable background technology; (b) design, assembly, and operation of a small integrated silane-producing Process Development Unit (PDU); (c) analysis, testing, and comparison of two high-temperature methods for converting pure silane to silicon metal; and (d) determination of chemical reaction equilibria and kinetics, and vapor-liquid equilibria for chlorosilanes.

  14. Silicon-on-ceramic process: silicon sheet growth and device development for the Large-Area Silicon Sheet and Cell Development Tasks of the Low-Cost Solar Array Project. Quarterly report No. 11, January 1-March 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, P.W.; Zook, J.D.; Heaps, J.D.; Grung, B.L.; Koepke, B.; Schuldt, S.B.

    1979-04-30

    The purpose of the research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating inexpensive ceramic substrates with a thin layer of polycrystalline silicon. The coating methods to be developed are directed toward a minimum-cost process for producing solar cells with a terrestrial conversion efficiency of 12 percent or greater. By applying a graphite coating to one face of a ceramic substrate, molten silicon can be caused to wet only that graphite-coated face and produce uniform thin layers of large-grain polycrystalline silicon; thus, only a minimal quantity of silicon is consumed. A dip-coating method for putting silicon on ceramic (SOC) has been shown to produce solar-cell-quality sheet silicon. This method and a continuous coating process also being investigated have excellent scale-up potential which offers an outstanding, cost-effective way to manufacture large-area solar cells. Results and accomplishments are described.

  15. Silicon-on ceramic process. Silicon sheet growth and device developmentt for the Large-Area Silicon Sheet Task of the Low-Cost Solar Array Project. Quarterly report No. 13, October 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, P W; Zook, J D; Grung, B L; McHenry, K; Schuldt, S B

    1980-02-15

    Research on the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating inexpensive ceramic substrates with a thin layer of polycrystalline silicon is reported. The coating methods to be developed are directed toward a minimum-cost process for producing solar cells with a terrestrial conversion efficiency of 11 percent or greater. By applying a graphite coating to one face of a ceramic substrate, molten silicon can be caused to wet only that graphite-coated face and produce uniform thin layers of large-grain polycrystalline silicon; thus, only a minimal quantity of silicon is consumed. A variety of ceramic materials have been dip coated with silicon. The investigation has shown that mullite substrates containing an excess of SiO/sub 2/ best match the thermal expansion coefficient of silicon and hence produce the best SOC layers. With such substrates, smooth and uniform silicon layers 25 cm/sup 2/ in area have been achieved with single-crystal grains as large as 4 mm in width and several cm in length. Crystal length is limited by the length of the substrate. The thickness of the coating and the size of the crystalline grains are controlled by the temperature of the melt and the rate at which the substrate is withdrawn from the melt. The solar-cell potential of this SOC sheet silicon is promising. To date, solar cells with areas from 1 to 10 cm/sup 2/ have been fabricated from material with an as-grown surface. Conversion efficiencies of about 10 percent with antireflection (AR) coating have been achieved. Such cells typically have open-circuit voltage and short-circuit current densities of 0.55V and 23 mA/cm/sup 2/, respectively.

  16. Efficient silicon PIC mode multiplexer using grating coupler array with aluminum mirror for few-mode fiber

    DEFF Research Database (Denmark)

    Ding, Yunhong; Yvind, Kresten

    2015-01-01

    We demonstrate a silicon PIC mode multiplexer using grating couplers. An aluminum mirror is introduced for coupling efficiency improvement. A highest coupling efficiency of –10.6 dB with 3.7 dB mode dependent coupling loss is achieved.......We demonstrate a silicon PIC mode multiplexer using grating couplers. An aluminum mirror is introduced for coupling efficiency improvement. A highest coupling efficiency of –10.6 dB with 3.7 dB mode dependent coupling loss is achieved....

  17. Small-angle x-ray scattering studies of microvoids in amorphous-silicon-based semiconductors. Final subcontract report, 1 February 1991--31 January 1994

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, D.L.; Jone, S.J.; Chen, Y. [Colorado School of Mines, Golden, CO (United States)

    1994-07-01

    This report describes work performed to provide new details of the microstructure for the size scale from about 1 nm to 30 nm in high-quality hydrogenated amorphous-silicon and related alloys prepared by current state-of-the-art deposition methods as well as by new and emerging deposition technologies. The purpose of this work is to help determine the role of microvoids and other density fluctuations in controlling the opto-electronic and photovoltaic properties. The approach involved collaboration with several groups that supplied relevant systematic sets of samples and the associated opto-electronic/photovoltaic data to help address particular issues. The small-angle X-ray scattering (SAXS) technique, as developed during this project, was able to provide microstructural information with a high degree of sensitivity not available from other methods. It is particularly sensitive to microvoids or H-rich microdomains and to the presence of oriented microstructures. The latter is readily associated with columnar-type growth and can even be observed in premature stages not detectable by transmission electron microscopy. Flotation density measurements provided important complementary data. Systematic correlations demonstrated that material with more SAXS-detected microstructure has to-electronic and photovoltaic properties and increased degradation under light soaking. New results related to alloy randomness emerged from our ability to measure the difffuse scattering component of the SAXS.

  18. The effect of lance geometry and carbon coating of silicon lances on propidium iodide uptake in lance array nanoinjection of HeLa 229 cells

    International Nuclear Information System (INIS)

    Sessions, John W; Hanks, Brad W; Jensen, Brian D; Lindstrom, Dallin L; Hope, Sandra

    2016-01-01

    Connecting technology to biologic discovery is a core focus of non-viral gene therapy biotechnologies. One approach that leverages both the physical and electrical function of microelectromechanical systems (MEMS) in cellular engineering is a technology previously described as lance array nanoinjection (LAN). In brief, LAN consists of a silicon chip measuring 2 cm by 2 cm that has been etched to contain an array of 10 μm tall, solid lances that are spaced every 10 μm in a grid pattern. This array of lances is used to physically penetrate hundreds of thousands of cells simultaneously and to then electrically deliver molecular loads into cells. In this present work, two variables related to the microfabrication of the silicon lances, namely lance geometry and coating, are investigated. The purpose of both experimental variables is to assess these parameters’ effect on propidium iodide (PI), a cell membrane impermeable dye, uptake to injected HeLa 229 cells. For the lance geometry experimentation, three different microfabricated lance geometries were used which include a flat/narrow (FN, 1 μm diameter), flat/wide (FW, 2–2.5 μm diameter), and pointed (P, 1 μm diameter) lance geometries. From these tests, it was shown that the FN lances had a slightly better cell viability rate of 91.73% and that the P lances had the best PI uptake rate of 75.08%. For the lance coating experimentation, two different lances were fabricated, both silicon etched lances with some being carbon coated (CC) in a  <100 nm layer of carbon and the other lances being non-coated (Si). Results from this experiment showed no significant difference between lance types at three different nanoinjection protocols (0V, +1.5V DC, and  +5V Pulsed) for both cell viability and PI uptake rates. One exception to this is the comparison of CC/5V Pul and Si/5V Pul samples, where the CC/5V Pul samples had a cell viability rate 5% higher. Both outcomes were unexpected and reveal how to better

  19. Low cost solar array project. Cell and module formation research area. Process research of non-CZ silicon material

    Science.gov (United States)

    1983-02-01

    Liquid diffusion masks and liquid dopants to replace the more expensive CVD SiO2 mask and gaseous diffusion processes were investigated. Silicon pellets were prepared in the silicon shot tower; and solar cells were fabricated using web grown where the pellets were used as a replenishment material. Verification runs were made using the boron dopant and liquid diffusion mask materials. The average of cells produced in these runs was 13%. The relationship of sheet resistivity, temperature, gas flows, and gas composition for the diffusion of the P-8 liquid phosphorus solution was investigated. Solar cells processed from web grown from Si shot material were evaluated, and results qualified the use of the material produced in the shot tower for web furnace feed stock.

  20. Monolithic integration of a silicon nanowire field-effect transistors array on a complementary metal-oxide semiconductor chip for biochemical sensor applications.

    Science.gov (United States)

    Livi, Paolo; Kwiat, Moria; Shadmani, Amir; Pevzner, Alexander; Navarra, Giulio; Rothe, Jörg; Stettler, Alexander; Chen, Yihui; Patolsky, Fernando; Hierlemann, Andreas

    2015-10-06

    We present a monolithic complementary metal-oxide semiconductor (CMOS)-based sensor system comprising an array of silicon nanowire field-effect transistors (FETs) and the signal-conditioning circuitry on the same chip. The silicon nanowires were fabricated by chemical vapor deposition methods and then transferred to the CMOS chip, where Ti/Pd/Ti contacts had been patterned via e-beam lithography. The on-chip circuitry measures the current flowing through each nanowire FET upon applying a constant source-drain voltage. The analog signal is digitized on chip and then transmitted to a receiving unit. The system has been successfully fabricated and tested by acquiring I-V curves of the bare nanowire-based FETs. Furthermore, the sensing capabilities of the complete system have been demonstrated by recording current changes upon nanowire exposure to solutions of different pHs, as well as by detecting different concentrations of Troponin T biomarkers (cTnT) through antibody-functionalized nanowire FETs.

  1. Lateral electrical transport, optical properties and photocurrent measurements in two-dimensional arrays of silicon nanocrystals embedded in SiO2

    Directory of Open Access Journals (Sweden)

    Gardelis Spiros

    2011-01-01

    Full Text Available Abstract In this study we investigate the electronic transport, the optical properties, and photocurrent in two-dimensional arrays of silicon nanocrystals (Si NCs embedded in silicon dioxide, grown on quartz and having sizes in the range between less than 2 and 20 nm. Electronic transport is determined by the collective effect of Coulomb blockade gaps in the Si NCs. Absorption spectra show the well-known upshift of the energy bandgap with decreasing NC size. Photocurrent follows the absorption spectra confirming that it is composed of photo-generated carriers within the Si NCs. In films containing Si NCs with sizes less than 2 nm, strong quantum confinement and exciton localization are observed, resulting in light emission and absence of photocurrent. Our results show that Si NCs are useful building blocks of photovoltaic devices for use as better absorbers than bulk Si in the visible and ultraviolet spectral range. However, when strong quantum confinement effects come into play, carrier transport is significantly reduced due to strong exciton localization and Coulomb blockade effects, thus leading to limited photocurrent.

  2. Silicon-on ceramic process. Silicon sheet growth and device development for the large-area silicon sheet and cell development tasks of the low-cost solar array project. Quarterly report No. 12, April 2, 1979-June 29, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, P.W.; Zook, J.D.; Heaps, J.D.; Grung, B.L.; Koepke, B.; Schuldt, S.B.

    1979-07-31

    The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon. We plan to do this by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. During the quarter, significant progress was demonstrated in several areas: (1) a 10-cm/sup 2/ cell having 9.9 percent conversion efficiency (AM1, AR) was fabricated; (2) the Honeywall-sponsored SCIM coating development succeeded in producing a 225-cm/sup 2/ layer of sheet silicon (18 inches x 2 inches); and (3) 100 ..mu..m-thick coatings at pull speed of 0.15 cm/sec wer$obta9ned, although apoproximately 50 percent of the layer exhibited dendritic growth. Other results and accomplishments during the quarter are reported in detail. (WHK)

  3. Dip coating process. Silicon sheet growth development for the large-area silicon sheet task of the Low Cost Silicon Solar Array Project. Quarterly report No. 5, December 18, 1976--March 21, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Zook, J.D.; Heaps, J.D.; Maciolek, R.B.; Koepke, B.; Butter, C.D.; Schuldt, S.B.

    1977-03-31

    Ceramic substrates can be coated with a thin layer of large-grain polycrystalline silicon by a dip-coating process. The silicon-on-ceramic (SOC) material appears to be quite promising as a low-cost cell material but requires somewhat special fabrication procedure since the contacts to both the n- and p-layers are now made on the front surface. Solar cells have been made on SOC material and on single-crystal control samples. Photodiodes 0.01 to 0.1 cm/sup 2/ made on substrates coated with vitreous carbon prior to dip coating with silicon showed the best efficiency of SOC material to date, namely over 6 percent uncorrected and about 12 percent inherent efficiency. Etching procedures have indicated that the dislocation density varies from almost 10/sup 7/ cm/sup -2/ to almost dislocation-free material, assuming that all etch pits are due to dislocations. EBIC measurements procedures were also improved, and it was found that diodes appear to be fairly uniform in EBIC response. A new SOC coating facility is being designed which will coat larger substrates in a continuous manner. The purpose is to minimize the contamination problem by reducing the contact area of the substrate with molten silicon. By having much larger throughput, it will also demonstrate the scale-up potential of the silicon-on-ceramic process. Portions of the new facility are under construction. An attempt has been made to model the economics of a large-scale facility for coating ceramic panels with silicon. A first iteration based on available parameters estimates showed that major cost items were poly Si ($2.90 per square meter), labor and burden ($2.50 per square meter), and the ceramic substrate ($2.50 per square meter), for a total price of about $11 per square meter.

  4. Phase 2. Array automated assembly task, low cost silicon solar array project. Quarterly technical report no. 2, April 1--June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Gregory T.; Rhee, Sang S.; Allison, Kimberly L.

    1978-01-01

    Data was gathered and analysis continued on seventeen process groups. Five process groups were completed. They include: solar cell test data acquisition, plasma etching of resist, laser trimming and holing operation, wafer surface preparation and wafer printing. Preliminary results to date show very promising results for other task groups. Silicon nitride antireflective coating equipment with modifications has high potential for low-cost automation. An electroless nickel plating system has been designed and is under construction to demonstrate the processing of 1500 wafers per hour. The conceptual design of two fully automated laser trimming and holing lines has been completed and has very promising low-cost, high volume potential. The spray-on dopant model equipment construction is nearly completed. Preliminary spray-on tests have shown very good results. Dopants can be sprayed on without wafer edge overlap and good dopant uniformity can be achieved. SAMICS has been applied to most process groups. It has been very effective in analyzing process steps for low-cost potential for meeting the LSA 1986 goals.

  5. Silicon on ceramic process. Silicon sheet growth for Large-Area Silicon Sheet Task of the Low-Cost Solar Array Project. Annual report No. 4, September 29, 1978-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, P W; Zook, J D; Heaps, J D; Koepke, B; Grung, B L; Schuldt, S B

    1979-10-31

    The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. The effort is divided into several areas of investigation in order to most efficiently meet the goals of the program. These areas include: (1) dip-coating; (2) continuous coating; (3) material characterization; (4) cell fabrication; and (5) theoretical analysis. Progress in all areas of the program is reported in detail. (WHK)

  6. Vertically aligned carbon nanotube field emitter arrays with Ohmic base contact to silicon by Fe-catalyzed chemical vapor deposition

    NARCIS (Netherlands)

    Morassutto, M.; Tiggelaar, Roald M.; Smithers, M.A.; Smithers, M.A.; Gardeniers, Johannes G.E.

    2016-01-01

    Abstract In this study, dense arrays of aligned carbon nanotubes are obtained by thermal catalytic chemical vapor deposition, using Fe catalyst dispersed on a thin Ta layer. Alignment of the carbon nanotubes depends on the original Fe layer thickness from which the catalyst dispersion is obtained by

  7. Dip-coating process. Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project. Quarterly report No. 7

    Energy Technology Data Exchange (ETDEWEB)

    Zook, J.D.; Heaps, J.D.; Maciolek, R.B.; Koepke, B.; Butter, C.D.; Schuldt, S.B.

    1977-12-30

    The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. During the past quarter, significant progress was demonstrated in several areas. Seeded growth of silicon-on-ceramic (SOC) with an EFG ribbon seed was demonstrated. Different types of mullite received from Coors were successfully coated with silicon. A new method of deriving minority carrier diffusion length, L/sub n/, from spectral response measurements was evaluated. ECOMOD cost projections were found to be in good agreement with the interim SAMIS method proposed by JPL. On the less positive side, there was a decrease in cell performance which is believed to be due to an unidentified source of impurities. Also, operation of the new coating system fell behind schedule but is expected to improve in the coming quarter, since construction has now been completed.

  8. Dip coating process. Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project. Quarterly report No. 6, March 22, 1977--June 24, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Zook, J.D.; Heaps, J.D.; Maciolek, R.B.; Koepke, B.; Butter, C.D.; Schuldt, S.B.

    1977-06-30

    The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress was made in silicon on ceramic (SOC) solar cell performance. SOC cells having 1 cm/sup 2/ active areas demonstrated measured conversion efficiencies as high as 7.2 percent. Typical open circuit voltages (V/sub oc/) and short circuit current densities (J/sub sc/) were 0.51 volt and 20 mA/cm/sup 2/ respectively. Since the active surface of these solar cells is a highly reflective ''as-grown'' surface, one can expect improvement in J/sub sc/ after an anti-reflection (AR) coating is applied. It is significant that single-crystal comparison cells, also measured without benefit of an AR coating, had efficiencies in the 8.5 percent range with typical V/sub oc/'s and J/sub sc/'s of 0.54 volt and 23 mA/cm/sup 2/, respectively. Therefore, improvement in cell design and junction diffusion techniques should increase the efficiency of both the SOC and single-crystal cells. During this quarter the dip coating facility was inadvertently contaminated, but has since been restored to a purity level exceeding its original state. With this facility, silicon coatings were grown with a single-crystal seed attached to the substrate. Single-crystal silicon was not forthcoming, but the results were nonetheless encouraging. Several of the carbon coating types tried appear promising, including one which has high purity and can be applied uniformly by swab or airbrush.

  9. Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex

    Science.gov (United States)

    Chestek, Cynthia A.; Gilja, Vikash; Nuyujukian, Paul; Foster, Justin D.; Fan, Joline M.; Kaufman, Matthew T.; Churchland, Mark M.; Rivera-Alvidrez, Zuley; Cunningham, John P.; Ryu, Stephen I.; Shenoy, Krishna V.

    2011-08-01

    Cortically-controlled prosthetic systems aim to help disabled patients by translating neural signals from the brain into control signals for guiding prosthetic devices. Recent reports have demonstrated reasonably high levels of performance and control of computer cursors and prosthetic limbs, but to achieve true clinical viability, the long-term operation of these systems must be better understood. In particular, the quality and stability of the electrically-recorded neural signals require further characterization. Here, we quantify action potential changes and offline neural decoder performance over 382 days of recording from four intracortical arrays in three animals. Action potential amplitude decreased by 2.4% per month on average over the course of 9.4, 10.4, and 31.7 months in three animals. During most time periods, decoder performance was not well correlated with action potential amplitude (p > 0.05 for three of four arrays). In two arrays from one animal, action potential amplitude declined by an average of 37% over the first 2 months after implant. However, when using simple threshold-crossing events rather than well-isolated action potentials, no corresponding performance loss was observed during this time using an offline decoder. One of these arrays was effectively used for online prosthetic experiments over the following year. Substantial short-term variations in waveforms were quantified using a wireless system for contiguous recording in one animal, and compared within and between days for all three animals. Overall, this study suggests that action potential amplitude declines more slowly than previously supposed, and performance can be maintained over the course of multiple years when decoding from threshold-crossing events rather than isolated action potentials. This suggests that neural prosthetic systems may provide high performance over multiple years in human clinical trials.

  10. Multispectral absorptance from large-diameter InAsSb nanowire arrays in a single epitaxial growth on silicon

    Science.gov (United States)

    Robson, Mitchell; Azizur-Rahman, Khalifa M.; Parent, Daniel; Wojdylo, Peter; Thompson, David A.; LaPierre, Ray R.

    2017-12-01

    Vertical III-V nanowires are capable of resonant absorption at specific wavelengths by tuning the nanowire diameter, thereby exceeding the absorption of equivalent thin films. These properties may be exploited to fabricate multispectral infrared (IR) photodetectors, directly integrated with Si, without the need for spectral filters or vertical stacking of heterostructures as required in thin film devices. In this study, multiple InAsSb nanowire arrays were grown simultaneously on Si by molecular beam epitaxy with nanowire diameter controlled by the nanowire period (spacing between nanowires). This is the first such study of patterned InAsSb nanowires where control of nanowire diameter and multispectral absorption are demonstrated. The antimony flux was used to control axial and radial growth rates using a selective-area catalyst-free growth method, achieving large diameters, spanning 440–520 nm, which are necessary for optimum IR absorption. Fourier transform IR spectroscopy revealed IR absorptance peaks due to the HE11 resonance of the nanowire arrays in agreement with optical simulations. Due to the dependence of the HE11 resonance absorption on nanowire diameter, multispectral absorption was demonstrated in a single material system and a single epitaxial growth step without the need for bandgap tuning. This work demonstrates the potential of InAsSb nanowires for multispectral photodetectors and sensor arrays in the short-wavelength IR region.

  11. Photo-Electrical Characterization of Silicon Micropillar Arrays with Radial p/n Junctions Containing Passivation and Anti-Reflection Coatings

    NARCIS (Netherlands)

    Vijselaar, Wouter; Elbersen, R.; Tiggelaar, Roald M.; Gardeniers, Han; Huskens, Jurriaan

    2017-01-01

    In order to assess the contributions of anti-reflective and passivation effects in microstructured silicon-based solar light harvesting devices, thin layers of aluminum oxide (Al2O3), silicon dioxide (SiO2), silicon-rich silicon nitride (SiNx), and indium tin oxide (ITO), with a thickness ranging

  12. Development of a silicon drift detector array: an x-ray fluorescence spectrometer for remote surface mapping

    Science.gov (United States)

    Gaskin, Jessica A.; Carini, Gabriella A.; Chen, Wei; De Geronimo, Gianluigi; Elsner, Ronald F.; Keister, Jeffrey W.; Kramer, Georgiana; Li, Zheng; Ramsey, Brian D.; Rehak, Pavel; Siddons, D. Peter

    2009-08-01

    Over the past three years NASA Marshall Space Flight Center has been collaborating with Brookhaven National Laboratory to develop a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) intended for fine surface mapping of the light elements of the moon. The value of fluorescence spectrometry for surface element mapping is underlined by the fact that the technique has recently been employed by three lunar orbiter missions; Kaguya, Chandrayaan-1, and Chang'e. The SDD-XRS instrument we have been developing can operate at a low energy threshold (i.e. is capable of detecting Carbon), comparable energy resolution to Kaguya (<150 eV at 5.9 keV) and an order of magnitude lower power requirement, making much higher sensitivities possible. Furthermore, the intrinsic radiation resistance of the SDD makes it useful even in radiation-harsh environments such as that of Jupiter and its surrounding moons.

  13. Development of a Silicon Drift Detector Array: An X-ray Fluorescence Spectrometer for Remote Surface Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Gaskin, J.A.; De Geronimo, G.; Carini, G.A.; Chen, W.; Elsner, R.F.; Kramer, G.; Keister, J.W.; Li, Z.; Ramsey, B.D.; Rehak, P.; Siddons, D.P.

    2009-09-11

    Over the past three years NASA Marshall Space Flight Center has been collaborating with Brookhaven National Laboratory to develop a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) intended for fine surface mapping of the light elements of the moon. The value of fluorescence spectrometry for surface element mapping is underlined by the fact that the technique has recently been employed by three lunar orbiter missions; Kaguya, Chandrayaan-1, and Chang'e. The SDD-XRS instrument we have been developing can operate at a low energy threshold (i.e. is capable of detecting Carbon), comparable energy resolution to Kaguya (<150 eV at 5.9 keV) and an order of magnitude lower power requirement, making much higher sensitivities possible. Furthermore, the intrinsic radiation resistance of the SDD makes it useful even in radiation-harsh environments such as that of Jupiter and its surrounding moons.

  14. Development of a Silicon Drift Detector Array: An X-ray Fluorescence Spectrometer for Remote Surface Mapping

    International Nuclear Information System (INIS)

    Gaskin, J.A.; De Geronimo, G.; Carini, G.A.; Chen, W.; Elsner, R.F.; Kramer, G.; Keister, J.W.; Li, Z.; Ramsey, B.D.; Rehak, P.; Siddons, D.P.

    2009-01-01

    Over the past three years NASA Marshall Space Flight Center has been collaborating with Brookhaven National Laboratory to develop a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) intended for fine surface mapping of the light elements of the moon. The value of fluorescence spectrometry for surface element mapping is underlined by the fact that the technique has recently been employed by three lunar orbiter missions; Kaguya, Chandrayaan-1, and Chang'e. The SDD-XRS instrument we have been developing can operate at a low energy threshold (i.e. is capable of detecting Carbon), comparable energy resolution to Kaguya (<150 eV at 5.9 keV) and an order of magnitude lower power requirement, making much higher sensitivities possible. Furthermore, the intrinsic radiation resistance of the SDD makes it useful even in radiation-harsh environments such as that of Jupiter and its surrounding moons.

  15. Flat-plate solar array project. Task 1: Silicon material. Investigation of the hydrochlorination of SiC14

    Science.gov (United States)

    Mui, J. Y. P.

    1982-01-01

    A two inch diameter stainless steel reactor was designed and built to operate at pressures up to 500 psig for the experimental studies on the hydrochlorination of SiCl4 and metallurgical grade (m.g.) silicon metal to SiHCl3. In order to clearly see the effect of pressure, the experiments were carried out at low reactor pressures of 73 psig and 150 psig, respectively. A large pressure effect on the hydrochlorination reaction was observed between the results of the low pressure experiments and the results of the high pressure experiments. In general, higher pressure produces a higher conversion of SiHCl3, but at a lower reaction rate. The effect of temperature on the reaction rate was studied at 73 psig. Higher reaction temperature gave a higher conversion and a higher reaction rate. Samples of the materials used to construct the hydrochlorination reactor were prepared for corrosion tests.

  16. Synthesis of silicon oxide microropes on the copper substrate with SiO2 interlayer

    Science.gov (United States)

    Baranov, E.; Khmel, S.; Zamchiy, A.; Shatskiy, E.

    2017-11-01

    Nanostructuring of the surface is a promising technology for the processes of boiling. In this paper, we synthesized array of “microropes” from silicon oxide nanowires on the copper substrate with a silicon oxide intermediate layer by gas-jet electron beam plasma CVD method. The morphology for the synthesis time of 2 minutes 30 seconds and 5 minutes was obtained. The water droplet on the silicon oxide nanowires shows the measured contact angles 14° and 10° for deposition times of 5 min and 2 min 30 sec, respectively.

  17. Silicon-on ceramic process: silicon sheet growth and device development for the large-area silicon sheet task of the Low-Cost Solar Array Project. Quarterly report NO. 15, April 1, 1980-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, A B; Zook, J D; Grung, B L; McHenry, K; Schuldt, S B; Chapman, P W

    1980-07-31

    The objective of this research is to investigate the technical feasibility of producing solar-cell-quality sheet silicon which could meet the DOE cost goals. The Honeywell approach is to coat one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Results and accomplishments which occurred during the quarter can be summarized as follows: (1) two major problems associated with SCIM-coating wide (10-cm) substrates were identified and solved; (2) the longitudinal temperature profile in SCIM-II has been improved to prevent substrate warping, buckling, and cracking; (3) the transverse temperature profile in SCIM II has been improved to produce more uniform coatings; (4) a strategy to eliminate effects of thermal stress has been developed; (5) the best SOC cell has a total-area conversion efficiency of 10.5% (AM1, AR), for a cell area of 5 cm/sup 2/; (6) a number of experiments are being investigated for improving cell efficiency; (7) for the slow-cooldown experiment, the average efficiency of 29 AR-coated cells was 9.9%, with a standard deviation of 0.3%; (8) encouraging results were obtained on SOC material that had been treated in a hydrogen plasma at Sandia; and (9) thermal modeling has proven to be beneficial in designing modifications of SCIM II.

  18. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    International Nuclear Information System (INIS)

    Heib, F.; Hempelmann, R.; Munief, W.M.; Ingebrandt, S.; Fug, F.; Possart, W.; Groß, K.; Schmitt, M.

    2015-01-01

    Highlights: • Analysis of the triple line motion on surfaces with nanoscale surface topographies. • Analysis of the triple line motion is performed in sub-pixel resolution. • A special fitting and statistical approach for contact angle analysis is applied. • The analyses result set of contact angle data which is independent of “user-skills”. • Characteristically density distributions in dependence on the surface properties. - Abstract: Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θ a and the receding θ r contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple line dis

  19. A new lithium-ion battery using 3D-array nanostructured graphene-sulfur cathode and silicon oxide-based anode.

    Science.gov (United States)

    Benítez, Almudena; Di Lecce, Daniele; Elia, Giuseppe Antonio; Caballero, Álvaro; Morales, Julián; Hassoun, Jusef

    2018-02-28

    In this work we report an efficient lithium-ion battery using enhanced sulfur-based cathode and silicon oxide-based anode as novel energy-storage system. The sulfur-carbon composite, exploiting graphene carbon with 3D array (3DG-S), is synthesized by reduction step and microwave-assisted solvothermal technique and fully characterized in terms of structure, morphology, thereby revealing suitable features for lithium-cell application. Electrochemical tests indicate the 3DG-S electrode as very stable and performing cathode in lithium half-cell, with capacity ranging from 1200 to 1000 mAh g-1 at C/10 and 1C rates, respectively. Remarkably, the Li-alloying anode, namely a LiySiOx-C prepared by the sol-gel method and lithiated by surface treatment, shows a suitable performance in lithium half-cell using an electrolyte designed for lithium-sulfur battery. The LiySiOx-C/3DG-S battery reveals very promising results with a capacity of about 460 mAh gS-1 delivered at average voltage of about 1.5 V over 200 cycles, suggesting the characterized materials as suitable candidates for low-cost and high-energy storage application. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Experimental evaluation of the stability and mechanical behavior of contacts in silicon carbide for the design of the basic angle monitoring system of GAIA

    NARCIS (Netherlands)

    Veggel, A.A. van; Berkhout, W.J.; Schalkx, M.K.; Wielders, A.A.; Rosielle, P.C.J.N.; Nijmeijer, H.

    2005-01-01

    The satellite GAIA will be launched in ca. 2010 to make a 3-D map of our Galaxy. The payload module of the satellite will carry two astrometric telescopes amongst other instrumentation. The optical bench and astrometric telescopes will be constructed for a large part in Silicon Carbide (SiC). A

  1. Self-Anchored Catalyst Interface Enables Ordered Via Array Formation from Submicrometer to Millimeter Scale for Polycrystalline and Single-Crystalline Silicon.

    Science.gov (United States)

    Kim, Jeong Dong; Kim, Munho; Kong, Lingyu; Mohseni, Parsian K; Ranganathan, Srikanth; Pachamuthu, Jayavel; Chim, Wai Kin; Chiam, Sing Yang; Coleman, James J; Li, Xiuling

    2018-03-14

    Defying text definitions of wet etching, metal-assisted chemical etching (MacEtch), a solution-based, damage-free semiconductor etching method, is directional, where the metal catalyst film sinks with the semiconductor etching front, producing 3D semiconductor structures that are complementary to the metal catalyst film pattern. The same recipe that works perfectly to produce ordered array of nanostructures for single-crystalline Si (c-Si) fails completely when applied to polycrystalline Si (poly-Si) with the same doping type and level. Another long-standing challenge for MacEtch is the difficulty of uniformly etching across feature sizes larger than a few micrometers because of the nature of lateral etching. The issue of interface control between the catalyst and the semiconductor in both lateral and vertical directions over time and over distance needs to be systematically addressed. Here, we present a self-anchored catalyst (SAC) MacEtch method, where a nanoporous catalyst film is used to produce nanowires through the pinholes, which in turn physically anchor the catalyst film from detouring as it descends. The systematic vertical etch rate study as a function of porous catalyst diameter from 200 to 900 nm shows that the SAC-MacEtch not only confines the etching direction but also enhances the etch rate due to the increased liquid access path, significantly delaying the onset of the mass-transport-limited critical diameter compared to nonporous catalyst c-Si counterpart. With this enhanced mass transport approach, vias on multistacks of poly-Si/SiO 2 are also formed with excellent vertical registry through the polystack, even though they are separated by SiO 2 which is readily removed by HF alone with no anisotropy. In addition, 320 μm square through-Si-via (TSV) arrays in 550 μm thick c-Si are realized. The ability of SAC-MacEtch to etch through poly/oxide/poly stack as well as more than half millimeter thick silicon with excellent site specificity for a wide

  2. A study of the feasibility and performance of an active/passive imager using silicon focal plane arrays and incoherent continuous wave laser diodes

    Science.gov (United States)

    Vollmerhausen, Richard H.

    This dissertation describes an active/passive imager (API) that provides reliable, nighttime, target acquisition in a man-portable package with effective visual range of about 4 kilometers. The reflective imagery is easier to interpret than currently used thermal imagery. Also, in the active mode, the API provides performance equivalent to the big-aperture, thermal systems used on weapons platforms like tanks and attack helicopters. This dissertation describes the research needed to demonstrate both the feasibility and utility of the API. Part of the research describes implementation of a silicon focal plane array (SFPA) capable of both active and passive imaging. The passive imaging mode exceeds the nighttime performance of currently fielded, man-portable sensors. Further, when scene illumination is insufficient for passive imaging, the low dark current of SFPA makes it possible to use continuous wave laser diodes (CWLD) to add an active imaging mode. CWLD have advantages of size, efficiency, and improved eye safety when compared to high peak-power diodes. Because of the improved eye safety, the API provides user-demanded features like video output and extended range gates in the active as well as passive imaging modes. Like any other night vision device, the API depends on natural illumination of the scene for passive operation. Although it has been known for decades that "starlight" illumination is actually from diffuse airglow emissions, the research described in this dissertation provides the first estimates of the global and temporal variation of ground illumination due to airglow. A third related element of the current research establishes the impact of atmospheric aerosols on API performance. We know from day experience that atmospheric scattering of sunlight into the imager line-of-sight can blind the imager and drastically degrade performance. Atmospheric scattering of sunlight is extensively covered in the literature. However, previous literature did not

  3. Flat-plate solar array project. Task 1: Silicon material: Investigation of the hydrochlorination of SiC1sub4

    Science.gov (United States)

    Mui, J. Y. P.

    1981-01-01

    A two inch-diameter stainless steel reactor was designed to operate at pressure up to 500 psig and at temperature up to 600 C in order to study the hydrochlorination of silicon tetrachloride and metallurgical grade (m.g.) silicon metal to trichlorosilane. The hydrochlorination apparatus is described and operation safety and pollution control are discussed.

  4. ELECTROMAGNETIC SCATTERING AND ANTENNA TECHNOLOGY (EMSAT) Task Order 0003: Design of a Circularly Polarized, 20 60 GHZ Active Phased Array for Wide Angle Scanning

    Science.gov (United States)

    2017-08-08

    the band and for scan angles up to 60° from normal. The antenna efficiency and axial ratio degrade by 1 dB at some points near the edges of the band...Prescribed by ANSI Std. Z39-18 i Approved for public release; distribution is unlimited Table of Contents Section Page 1.0 Summary...51 6.4 Estimating Finite Polarizer Edge Effects

  5. High-power, ultralow-mass solar arrays: FY-77 solar arrays technology readiness assessment report, volume 2

    Science.gov (United States)

    Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.

    1978-01-01

    Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.

  6. Photoemission and photo-field-emission from photocathodes with arrays of silicon tips under continuous and pulsed lasers action; Photoemission et photoemission de champ a partir de photocathodes a reseaux de pointes de silicium sous l`action de lasers continus et pulses

    Energy Technology Data Exchange (ETDEWEB)

    Laguna, M.

    1995-11-01

    The electron machines`s development and improvement go through the discovery of new electron sources of high brightness. After reminding the interests in studying silicon cathodes with array of tips as electron sources, I describe, in the three steps model, the main phenomenological features related to photoemission and photoemission and photo-field-emission from a semi-conductor. the experimental set-ups used for the measurements reported in chapter four, five and six are described in chapter three. In chapter three. In chapter four several aspects of photo-field-emission in continuous and nanosecond regimes, studied on the Clermont-Ferrand`s test bench are tackled. We have measured quantum efficacies of 0.4 percent in the red (1.96 eV). Temporal responses in the nanoseconds range (10 ns) were observed with the Nd: YLF laser. With the laser impinging at an oblique angle we obtained ratios of photocurrent to dark current of the order of twenty. The issue of the high energy extracted photocurrent saturation is addressed and I give a preliminary explanation. In collaboration with the L.A.L. (Laboratoire de l`Accelerateur Lineaire) some tests with shortened pulsed laser beam (Nd: YAG laser 35 ps) were performed. Satisfactory response times have been obtained within the limitation of the scope (400 ps). (authors). 101 refs. 93 figs., 27 tabs., 3 photos., 1 append.

  7. Nucleation of small angle boundaries

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1996-12-01

    Full Text Available The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition...

  8. Use of hydroxypropylmethylcellulose 2% for removing adherent silicone oil from silicone intraocular lenses

    OpenAIRE

    Wong , S Chien; Ramkissoon , Yashin D; Lopez , Mauricio; Page , Kristopher; Parkin , Ivan P; Sullivan , Paul M

    2009-01-01

    Abstract Background / aims: To investigate the effect of hydroxypropylmethylcellulose (HPMC) on the physical interaction (contact angle) between silicone oil and a silicone intraocular lens (IOL). Methods: In vitro experiments were performed, to determine the effect of HPMC (0.5%, 1% or 2%), with or without an additional simple mechanical manoeuvre, on the contact angle of silicone oil at the surface of both silicone and acrylic (control) IOLs. A balanced salt solu...

  9. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.

    2010-06-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  10. Polymer-grafted-platinum nanoparticles: from three-dimensional small-angle neutron scattering study to tunable two-dimensional array formation.

    Science.gov (United States)

    Carrot, Géraldine; Gal, François; Cremona, Christelle; Vinas, Jérôme; Perez, Henri

    2009-01-06

    Nanohybrid objects based on polymer and platinum nanoparticles are of great interest for applications in fuel cells or as biosensors. The polymer part can help first to stabilize and to organize the particles, second to increase the amount of chemical functions available in the organic corona, and, finally, to improve or to mask the properties of the particles. The method to introduce the polymer consists of using both the "grafting from" technique and controlled radical polymerization (atom transfer radical polymerization). Small-angle neutron scattering (SANS) is a well-suited technique for the study of these objects, particularly due to the possibility to use contrast matching to see either the particle or the polymer corona. Polymerization kinetics was followed by SANS and the polymer corona spectra showed a plateau at small q which attested that the objects are individual and well-dispersed. These systems were exempt of free polymers, so the characterization via SANS could lead to quantitative data such as the radius of gyration of the object, the amount of grafted chains and the molecular weight of the chains, using a star model to fit the data. Langmuir films have then been obtained directly from the polymer-grafted-nanoparticles solutions, and compression isotherms have been recorded followed by transmission electron microscopy (TEM) characterization of the films at different pressures. A good correlation has therefore been observed from the distances between objects calculated using the compression isotherms or observed via TEM and the objects' dimensions determined from SANS study.

  11. Small-angle x-ray scattering studies of microvoids in amorphous-silicon-based semiconductors. Annual subcontract report, February 1, 1992--January 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, D L; Jones, S J; Chen, Y [Colorado School of Mines, Golden, CO (United States)

    1994-05-01

    Our general objectives are to provide new details of the microstructure for the size scale from about 1 to 30 nm in high-quality a-Si:H and related alloys prepared by current state-of-the-art deposition methods as well as by new and emerging deposition technologies and thereby help determine the role of microvoids and other density fluctuations in controlling the opto-electronic properties. More specifically, the objectives are to determine whether the presence of microstructure as detected by small-angle x-ray scattering (SAXS) (1) limits the photovoltaic properties of device-quality a-Si:H, (2) plays a role in determining the photo-stability of a-Si:H, and (3) is responsible for degradation of the photovoltaic properties due to alloying with Ge, C and other constituents. The approach involves collaboration with several groups that can supply relevant systematic sets of samples and the associated opto-electronic data to help address these issues. Since the SAXS technique has not been a standard characterization technique for thin-film materials, and was recently set up at CSM with support by NREL, the project involves considerable development of the method with regard to standardizing the procedures, minimizing substrate influences and implementing improved data reduction and modeling methodology. Precise, highly reproducible, and accurate results are being sought in order to allow useful, reliable, and sensitive comparisons of materials deposited under different conditions, by different methods, and by different systems that represent the same nominal method.

  12. Laser-zone Growth in a Ribbon-to-ribbon (RTR) Process Silicon Sheet Growth Development for the Large Area Silicon Sheet Task of the Low Cost Solar Array Project

    Science.gov (United States)

    Baghdadi, A.; Gurtler, R. W.; Legge, R.; Sopori, B.; Rice, M. J.; Ellis, R. J.

    1979-01-01

    A technique for growing limited-length ribbons continually was demonstrated. This Rigid Edge technique can be used to recrystallize about 95% of the polyribbon feedstock. A major advantage of this method is that only a single, constant length silicon ribbon is handled throughout the entire process sequence; this may be accomplished using cassettes similar to those presently in use for processing Czochralski waters. Thus a transition from Cz to ribbon technology can be smoothly affected. The maximum size being considered, 3 inches x 24 inches, is half a square foot, and will generate 6 watts for 12% efficiency at 1 sun. Silicon dioxide has been demonstrated as an effective, practical diffusion barrier for use during the polyribbon formation.

  13. Linear self-assembly and grafting of gold nanorods into arrayed micrometer-long nanowires on a silicon wafer via a combined top-down/bottom-up approach.

    Science.gov (United States)

    Lestini, Elena; Andrei, Codrin; Zerulla, Dominic

    2018-01-01

    Macroscopically long wire-like arrangements of gold nanoparticles were obtained by controlled evaporation and partial coalescence of an aqueous colloidal solution of capped CTAB-Au nanorods onto a functionalised 3-mercaptopropyl trimethoxysilane (MPTMS) silicon substrate, using a removable, silicon wafer with a hydrophobic surface that serves as a "handrail" for the initial nanorods' linear self-assembly. The wire-like structures display a quasi-continuous pattern by thermal annealing of the gold nanorods when the solvent (i.e. water) is evaporated at temperatures rising from 20°C to 140°C. Formation of both single and self-replicating parallel 1D-superstructures consisting of two or even three wires is observed and explained under such conditions.

  14. Metasurface Enabled Wide-Angle Fourier Lens.

    Science.gov (United States)

    Liu, Wenwei; Li, Zhancheng; Cheng, Hua; Tang, Chengchun; Li, Junjie; Zhang, Shuang; Chen, Shuqi; Tian, Jianguo

    2018-04-19

    Fourier optics, the principle of using Fourier transformation to understand the functionalities of optical elements, lies at the heart of modern optics, and it has been widely applied to optical information processing, imaging, holography, etc. While a simple thin lens is capable of resolving Fourier components of an arbitrary optical wavefront, its operation is limited to near normal light incidence, i.e., the paraxial approximation, which puts a severe constraint on the resolvable Fourier domain. As a result, high-order Fourier components are lost, resulting in extinction of high-resolution information of an image. Other high numerical aperture Fourier lenses usually suffer from the bulky size and costly designs. Here, a dielectric metasurface consisting of high-aspect-ratio silicon waveguide array is demonstrated experimentally, which is capable of performing 1D Fourier transform for a large incident angle range and a broad operating bandwidth. Thus, the device significantly expands the operational Fourier space, benefitting from the large numerical aperture and negligible angular dispersion at large incident angles. The Fourier metasurface will not only facilitate efficient manipulation of spatial spectrum of free-space optical wavefront, but also be readily integrated into micro-optical platforms due to its compact size. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Micromachined silicon acoustic delay line with improved structural stability and acoustic directivity for real-time photoacoustic tomography

    Science.gov (United States)

    Cho, Young; Kumar, Akhil; Xu, Song; Zou, Jun

    2017-03-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. However, as its length increases to provide longer delay time, the delay line becomes more vulnerable to structural instability due to reduced mechanical stiffness. In addition, the small cross-section area of the delay line results in a large acoustic acceptance angle and therefore poor directivity. To address these two issues, this paper reports the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, a new tapered design for the input terminal of the delay line was also investigate to improve its acoustic directivity by reducing the acoustic acceptance angle. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.

  16. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  17. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50

  18. Photoelectrochemistry of Semiconductor Nanowire Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Mallouk, Thomas E; Redwing, Joan M

    2009-11-10

    This project supported research on the growth and photoelectrochemical characterization of semiconductor nanowire arrays, and on the development of catalytic materials for visible light water splitting to produce hydrogen and oxygen. Silicon nanowires were grown in the pores of anodic aluminum oxide films by the vapor-liquid-solid technique and were characterized electrochemically. Because adventitious doping from the membrane led to high dark currents, silicon nanowire arrays were then grown on silicon substrates. The dependence of the dark current and photovoltage on preparation techniques, wire diameter, and defect density was studied for both p-silicon and p-indium phosphide nanowire arrays. The open circuit photovoltage of liquid junction cells increased with increasing wire diameter, reaching 350 mV for micron-diameter silicon wires. Liquid junction and radial p-n junction solar cells were fabricated from silicon nano- and microwire arrays and tested. Iridium oxide cluster catalysts stabilized by bidentate malonate and succinate ligands were also made and studied for the water oxidation reaction. Highlights of this project included the first papers on silicon and indium phosphide nanowire solar cells, and a new procedure for making ligand-stabilized water oxidation catalysts that can be covalently linked to molecular photosensitizers or electrode surfaces.

  19. Photovoltaic module and array performance characterization methods for all system operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    King, D.L.

    1996-12-31

    This paper provides new test methods and analytical procedures for characterizing the electrical performance of photovoltaic modules and arrays. The methods use outdoor measurements to provide performance parameters both at standard reporting conditions and for all operating conditions encountered by typical photovoltaic systems. Improvements over previously used test methods are identified, and examples of the successful application of the methodology are provided for crystalline- and amorphous-silicon modules and arrays. This work provides an improved understanding of module and array performance characteristics, and perhaps most importantly, a straight- forward yet rigorous model for predicting array performance at all operating conditions. For the first time, the influences of solar irradiance, operating temperature, solar spectrum, solar angle-of- incidence, and temperature coefficients are all addressed in a practical way that will benefit both designers and users of photovoltaics.

  20. Simple and polarization-independent Dammann grating based on all-dielectric nanorod array

    Science.gov (United States)

    Yang, Sen; Li, Chuang; Liu, Tongming; Da, Haixia; Feng, Rui; Tang, Donghua; Sun, Fangkui; Ding, Weiqiang

    2017-09-01

    In this work, we comprehensively investigate a Dammann grating (DG) that can generate a 5 × 5 diffraction spot array with an extending angle of 18^\\circ × 18^\\circ around the fiber communication wavelength of 1550 {nm}. The DG is a simple metasurface structure composed of a silicon cuboid nanorod array on a silica substrate, and only two different sizes of nanorods with square cross-sections and uniform spatial orientations are used. These simple units and this configuration are favorable in practice, and the C4 symmetry cross section of the nanorods ensures the polarization-independent operation of the DG. The phase modulation of the nanorods is achieved by the guiding mode propagating in them rather than electric or magnetic Mie-type resonance, which makes the design of the cuboid nanorods easy and robust. More importantly, the two-dimensional nanorod array is generated from a one-dimensional array, which further decreases the design and fabrication complexity.

  1. Scoliosis angle

    International Nuclear Information System (INIS)

    Marklund, T.

    1978-01-01

    The most commonly used methods of assessing the scoliotic deviation measure angles that are not clearly defined in relation to the anatomy of the patient. In order to give an anatomic basis for such measurements it is proposed to define the scoliotic deviation as the deviation the vertebral column makes with the sagittal plane. Both the Cobb and the Ferguson angles may be based on this definition. The present methods of measurement are then attempts to measure these angles. If the plane of these angles is parallel to the film, the measurement will be correct. Errors in the measurements may be incurred by the projection. A hypothetical projection, called a 'rectified orthogonal projection', is presented, which correctly represents all scoliotic angles in accordance with these principles. It can be constructed in practice with the aid of a computer and by performing measurements on two projections of the vertebral column; a scoliotic curve can be represented independent of the kyphosis and lordosis. (Auth.)

  2. Laser-zone growth in a ribbon-to-ribbon (RTR) process silicon sheet growth development for the large area silicon sheet task of the low-cost solar array project. Annual report, October 1, 1977--September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Baghdadi, A.; Gurtler, R.W.; Legge, R.; Sopori, B.; Ellis, R.J.

    1978-01-01

    A new calculation is included of the effects of thermal stresses during growth on silicon ribbon quality. Thermal stress distributions are computed for ribbon growth under a variety of temperature profiles. It is shown that the width dependence is not as large as had previously been assumed. Under practical growth conditions, the stresses are actually often below the yield point. It is also shown that, for the thermal profiles presently in use, buckling is probable for widths greater than 4 - 6 cm. Two ideal temperature profiles are described which could result in ribbons grown without either high dislocation generation or buckling. A growth rate of 55 cm/sup 2//min with a single ribbon was achieved. The growth of RTR ribbon with a fairly uniform parallel dendritic structure was also demonstrated. Encouraging results were obtained with two approaches for reducing the Mo impurity level in polycrystalline feedstock. Neutron Activation Analysis has shown that the Mo level can be reduced to below the level of detection by etching the polycrystalline ribbon surface. Coating the Mo substrate with Si/sub 3/N/sub 4/ does not affect thermal shear separation of the polyribbon (Si/sub 3/N/sub 4/ is a well-known diffusion barrier); this process shows promise of improving cell efficiencies and also increasing the useful life of the molybdenum substrate. A number of solar cells have been fabricated on RTR silicon grownfrom CVD feedstock.

  3. Investigation of test methods, material properties, and processes for solar cell encapsulants. Encapsulation task of the low-cost silicon solar array project

    Science.gov (United States)

    1977-01-01

    During this quarter, flat-plate solar collector systems were considered and six basic construction elements were identified: outer coatings, superstrates, pottants, substrates, undercoats, and adhesives. Materials surveys were then initiated to discover either generic classes or/and specific products to function as each construction element. Cost data included in the surveys permit ready evaluation of each material. Silicones, fluorocarbons, glass, and acrylic polymers have the highest inherent weatherability of materials studied to date. Only acrylics, however, combine low costs, environmental resistance, and potential processability. This class will receive particular emphasis.

  4. Compact dynamic microfluidic iris array

    Science.gov (United States)

    Kimmle, Christina; Doering, Christoph; Steuer, Anna; Fouckhardt, Henning

    2011-09-01

    A dynamic microfluidic iris is realized. Light attenuation is achieved by absorption of an opaque liquid (e.g. black ink). The adjustment of the iris diameter is achieved by fluid displacement via a transparent elastomer (silicone) half-sphere. This silicone calotte is hydraulically pressed against a polymethylmethacrylate (PMMA) substrate as the bottom window, such that the opaque liquid is squeezed away, this way opening the iris. With this approach a dynamic range of more than 60 dB can be achieved with response times in the ms to s regime. The design allows the realization of a single iris as well as an iris array. So far the master for the molded silicone structure was fabricated by precision mechanics. The aperture diameter was changed continuously from 0 to 8 mm for a single iris and 0 to 4 mm in case of a 3 x 3 iris array. Moreover, an iris array was combined with a PMMA lens array into a compact module, the distance of both arrays equaling the focal length of the lenses. This way e.g. spatial frequency filter arrays can be realized. The possibility to extend the iris array concept to an array with many elements is demonstrated. Such arrays could be applied e.g. in light-field cameras.

  5. Noncovalent antibody immobilization on porous silicon combined with miniaturized solid-phase extraction (SPE) for array based immunoMALDI assays.

    Science.gov (United States)

    Yan, Hong; Ahmad-Tajudin, Asilah; Bengtsson, Martin; Xiao, Shoujun; Laurell, Thomas; Ekström, Simon

    2011-06-15

    This paper presents a new strategy to combine the power of antibody based capturing of target species in complex samples with the benefits of microfluidic reverse phase sample preparation on an integrated sample enrichment target (RP-ISET) and the analysis speed of MALDI MS. The immunoaffinity step is performed on an in-house developed 3D-structured high surface area porous silicon (PSi) matrix, which allows efficient antibody immobilization by surface adsorption without any coupling agents in 30-60 min. The hydrophilic nature of the porous silicon surface at the molecular level displays a low adsorption of background peptides when exposed to complex digests or plasma samples, improving the conditions for the antigen specific extraction and subsequent readout. At the same time, the hydrophobic behavior, due to the nanostructured surface, of the PSi material facilitates liquid confinement during the assay. Using a footprint conforming to the standard for 384 well microplates, direct adaption of the protocol into standard sample handling robots is possible. The performance of the proposed immunoaffinity PSi-ISET immunoMALDI (iMALDI) assay was evaluated by specific detection of angiotensin I at a 10 femtomol level in diluted plasma samples (10 μL, 1 nM).

  6. Angle-independent structural colors of silicon

    DEFF Research Database (Denmark)

    Højlund-Nielsen, Emil; Weirich, Johannes; Nørregaard, Jesper

    2014-01-01

    Structural colors are optical phenomena of physical origin, where microscale and nanoscale structures determine the reflected spectrum of light. Artificial structural colors have been realized within recent years. However, multilayer structures require substantial fabrication. Instead we considered...... in the visual spectrum, causing robust colors to be defined for a large angular interval. The result is a manifestation of a uniformly defined color, similar to pigment-based colors. These mechanisms hold potential for color engineering and can be used to explain and predict the structural-color appearance...

  7. The use of cosmic-ray muons in the energy calibration of the Beta-decay Paul Trap silicon-detector array

    Energy Technology Data Exchange (ETDEWEB)

    Hirsh, T. Y.; Perez Galvan, A.; Burkey, M.; Aprahamian, A.; Buchinger, F.; Caldwell, S.; Clark, J. A.; Gallant, A.; Heckmaier, E.; Levand, A. F.; Savard, G.

    2018-04-01

    This article presents an approach to calibrate the energy response of double-sided silicon strip detectors (DSSDs) for low-energy nuclear-science experiments by utilizing cosmic-ray muons. For the 1-mm-thick detectors used with the Beta-decay Paul Trap, the minimum-ionizing peak from these muons provides a stable and time-independent in situ calibration point at around 300 keV, which supplements the calibration data obtained above 3 MeV from sources. The muon-data calibration is achieved by comparing experimental spectra with detailed Monte Carlo simulations performed using GEANT4 and CRY codes. This additional information constrains the calibration at lower energies, resulting in improvements in quality and accuracy.

  8. The use of cosmic-ray muons in the energy calibration of the Beta-decay Paul Trap silicon-detector array

    Science.gov (United States)

    Hirsh, T. Y.; Pérez Gálvan, A.; Burkey, M. T.; Aprahamian, A.; Buchinger, F.; Caldwell, S.; Clark, J. A.; Gallant, A. T.; Heckmaier, E.; Levand, A. F.; Marley, S. T.; Morgan, G. E.; Nystrom, A.; Orford, R.; Savard, G.; Scielzo, N. D.; Segel, R.; Sharma, K. S.; Siegl, K.; Wang, B. S.

    2018-04-01

    This article presents an approach to calibrate the energy response of double-sided silicon strip detectors (DSSDs) for low-energy nuclear-science experiments by utilizing cosmic-ray muons. For the 1-mm-thick detectors used with the Beta-decay Paul Trap, the minimum-ionizing peak from these muons provides a stable and time-independent in situ calibration point at around 300 keV, which supplements the calibration data obtained above 3 MeV from α sources. The muon-data calibration is achieved by comparing experimental spectra with detailed Monte Carlo simulations performed using GEANT4 and CRY codes. This additional information constrains the calibration at lower energies, resulting in improvements in quality and accuracy.

  9. Encapsulation task of the low-cost silicon solar array project. Investigation of test methods, material properties, and processes for solar cell encapsulants

    Science.gov (United States)

    Willis, P. B.; Baum, B.; White, R. A.

    1978-01-01

    The results of an investigation of solar module encapsulation systems applicable to the Low-Cost Solar Array Project 1986 cost and performance goals are presented. Six basic construction elements were identified and their specific uses in module construction defined. A uniform coating basis was established for each element. The survey results were also useful in revealing price ranges for classes of materials and estimating the cost allocation for each element within the encapsulating cost goal. The six construction elements were considered to be substrates, superstrates, pottants, adhesives, outer covers and back covers.

  10. Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling

    KAUST Repository

    Wang, Songlin

    2015-04-09

    We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems.

  11. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  12. Tiny incident light angle sensor

    Science.gov (United States)

    Mitrenga, D.; Schädel, M.; Winzer, A. T.; Völlmeke, S.; Preuß, K. D.; Freitag, J.; Brodersen, O.

    2017-05-01

    A novel device for detecting the intensity and the angles of incoming light is presented. The silicon chip with 1 mm edge length comprises a segmented photo diode with four active areas within the inclined surfaces of a deep etched cavity. Simple signal difference analysis of these signals allow for accurate azimuth and inclination measurement in the range of 0 to 360° and 0 to 55°, respectively. Using an artificial neural network (ANN) calibration strategy the operation range of inclination can be increased up to 85° with typical angle errors below 2°. In this report we present details on design, fabrication, signal analysis and calibration strategies.

  13. Performances of a β-delayed neutron detection array at Peking University

    Science.gov (United States)

    Lou, Jianling; Li, Zhihuan; Ye, Yanlin; Hua, Hui; Faisal, Q. J.; Jiang, Dongxing; Li, Xiangqing; Zhang, Shuangquan; Zheng, Tao; Ge, Yucheng; Kong, Zan; Song, Yushou; Lv, Linhui; Li, Chen; Lu, Fei; Fan, Fengying; Li, Zhongyu; Cao, Zhongxin; Ma, Liying; Li, Qite; Xiao, Jun

    2009-07-01

    A β-delayed neutron detection array composed of a neutron sphere and two neutron walls was constructed in the State Key Laboratory of Nuclear Physics and Technology at Peking University. Recently the performances of this detection array were largely improved and tested with a Co60 source, cosmic rays and C16 and N17 radioactive beams. The Tyvek 1056D paper and silicone grease were chosen for the reflection and coupling materials, respectively. For the neutron sphere with large detection solid angle (30% of 4π steradian), the intrinsic efficiency is about 14.1% at a neutron energy of 1 MeV and the detection threshold is about 350 keV; for the neutron walls with flexible setup, these values are 36.5% and 200 keV, respectively. The combined array of neutron sphere and neutron walls has successfully been applied to measure the β-delayed neutrons emitted from neutron-rich unstable nuclei.

  14. Investigation of test methods, material properties, and processes for solar cell encapsulants. Encapsulation task of the Low-Cost Silicon Solar Array project. Thirteenth quarterly progress report, May 12, 1979-August 12, 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Springborn Laboratories is engaged in a study of evaluating potentially useful encapsulating materials for Task 3 of the Low-Cost Silicon Solar Array project (LSA) funded by DOE. The goal of this program is to identify, evaluate, and recommend encapsulant materials and processes for the product of cost-effective, long-life solar cell modules. Current technical activities are directed primarily towards the development of a solar module encapsulation technology that employs ethylene/vinyl acetate copolymer as the pottant. Due to the surface tack of EVA, a slip sheet of release paper is required between each layer to prevent the plies from adhering. Manufacturers were surveyed and a source for inexpensive release paper in roll form was identified. A survey of separator materials was also conducted. Corrosion studies using a standard salt spray test were used to determine the degree of protection offered to a variety of metals by encapsulation in EVA pottant. Due to the low surface hardness of EVA and the remaining sensitivity to ultraviolet light, outer covers are required to prevent soiling and improve the weatherability. Two candidate films (Korad 212 and Tedlar UT) have been identified for this function. These films are somewhat scratch and abrasion sensitive, however, and their useful life can be prolonged with the application of thin layers of abrasion resistant hard coats. A survey of manufacturers of these coatings was performed and the products compared. Field trials of outdoor performance must be performed to fully assess the durability of these coatings.

  15. The electrophotonic silicon biosensor

    Science.gov (United States)

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E.; Scullion, Mark G.; Krauss, Thomas F.; Johnson, Steven D.

    2016-09-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale.

  16. Deep Ultraviolet Macroporous Silicon Filters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a novel method to make deep and far UV optical filters from macroporous silicon. This type of filter consists of an array of...

  17. Micromachined silicon acoustic delay line with 3D-printed micro linkers and tapered input for improved structural stability and acoustic directivity

    International Nuclear Information System (INIS)

    Cho, Y; Kumar, A; Xu, S; Zou, J

    2016-01-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. To achieve deeper imaging depth and wider field of view, a longer delay time and therefore delay length are required. However, as the length of the delay line increases, it becomes more vulnerable to structural instability due to reduced mechanical stiffness. In this paper, we report the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, the improvement of the acoustic acceptance angle of the silicon acoustic delay lines was also investigated to better suppress the reception of unwanted ultrasound signals outside of the imaging plane. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays. (paper)

  18. Large micromirror array for multi-object spectroscopy in space

    Science.gov (United States)

    Canonica, Michael; Zamkotsian, Frédéric; Lanzoni, Patrick; Noell, Wilfried

    2017-11-01

    Multi-object spectroscopy (MOS) is a powerful tool for space and ground-based telescopes for the study of the formation and evolution of galaxies. This technique requires a programmable slit mask for astronomical object selection. We are engaged in a European development of micromirror arrays (MMA) for generating reflective slit masks in future MOS, called MIRA. The 100 x 200 μm2 micromirrors are electrostatically tilted providing a precise angle. The main requirements are cryogenic environment capabilities, precise and uniform tilt angle over the whole device, uniformity of the mirror voltage-tilt hysteresis and a low mirror deformation. A first MMA with single-crystal silicon micromirrors was successfully designed, fabricated and tested. A new generation of micromirror arrays composed of 2048 micromirrors (32 x 64) and modelled for individual addressing were fabricated using fusion and eutectic wafer-level bonding. These micromirrors without coating show a peak-to-valley deformation less than 10 nm, a tilt angle of 24° for an actuation voltage of 130 V. Individual addressing capability of each mirror has been demonstrated using a line-column algorithm based on an optimized voltage-tilt hysteresis. Devices are currently packaged, wire-bonded and integrated to a dedicated electronics to demonstrate the individual actuation of all micromirrors on an array. An operational test of this large array with gold coated mirrors has been done at cryogenic temperature (162 K): the micromirrors were actuated successfully before, during and after the cryogenic experiment. The micromirror surface deformation was measured at cryo and is below 30 nm peak-to-valley.

  19. Array of planar waveguide lasers with 50 GHz frequency spacing

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas; Laurent-Lund, Christian; Sckerl, Mads W.

    1999-01-01

    Waveguide laser arrays are demonstrated using planar silica-on-silicon technology. Excellent control over frequency separation is obtained with a single phase mask.......Waveguide laser arrays are demonstrated using planar silica-on-silicon technology. Excellent control over frequency separation is obtained with a single phase mask....

  20. Parallel alignment of bacteria using near-field optical force array for cell sorting

    Science.gov (United States)

    Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.

    2017-08-01

    This paper presents a near-field approach to align multiple rod-shaped bacteria based on the interference pattern in silicon nano-waveguide arrays. The bacteria in the optical field will be first trapped by the gradient force and then rotated by the scattering force to the equilibrium position. In the experiment, the Shigella bacteria is rotated 90 deg and aligned to horizontal direction in 9.4 s. Meanwhile, 150 Shigella is trapped on the surface in 5 min and 86% is aligned with angle < 5 deg. This method is a promising toolbox for the research of parallel single-cell biophysical characterization, cell-cell interaction, etc.

  1. Study of the Radiation Hardness of VCSEL and PIN Arrays

    CERN Document Server

    Gan, K.K.; Kagan, H.P.; Kass, R.D.; Law, A.; Rau, A.; Smith, D.S.; Lebbai, M.R.M.; Skubic, P.L.; Abi, B.; Rizardinova, F.

    2008-01-01

    The silicon trackers of the ATLAS experiment at LHC (CERN) use optical links for data transmission. VCSEL arrays operating at 850 nm are used to transmit optical signals while PIN arrays are used to convert the optical signals into electrical signals. We investigate the feasibility of using the devices at the Super LHC (SLHC). We irradiated VCSEL and GaAs PIN arrays from three vendors and silicon PIN arrays from one vendor. All arrays can be operated up to the SLHC dosage except the GaAs PIN arrays which have very low responsivities after irradiation and hence are probably not suitable for the SLHC application.

  2. Nanopore fabrication in silicon oxynitride membranes by heating Au-particles

    NARCIS (Netherlands)

    de Vreede, Lennart; Schmidt Muniz, M.; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    We report the fabrication of nanopores in a silicon oxynitride (SiON) membrane by heating a silicon rich-silicon nitride (SiRN) membrane with a gold nanoparticle array deposited on its surface. The gold nanoparticle array was realized by photolithography and the membrane by wet-etching. The entire

  3. Volumetric Flow Measurement Using an Implantable CMUT Array.

    Science.gov (United States)

    Mengli Wang; Jingkuang Chen

    2011-06-01

    This paper describes volumetric-flow velocity measurement using an implantable capacitive micromachined ultrasonic transducer (CMUT) array. The array is comprised of multiple-concentric CMUT rings for ultrasound transmission and an outmost annular CMUT array for ultrasound reception. Microelectromechanical-system (MEMS) fabrication technology allows reception CMUT on this flowmeter to be implemented with a different membrane thickness and gap height than that of transmission CMUTs, optimizing the performance of these two different kinds of devices. The silicon substrate of this 2-mm-diameter CMUT ring array was bulk micromachined to approximately 80 to 100 μm thick, minimizing tissue disruption. The blood-flow velocity was detected using pulse ultrasound Doppler by comparing the demodulated echo ultrasound with the incident ultrasound. The demodulated ultrasound signal was sampled by a pulse delayed in time domain from the transmitted burst, which corresponds to detecting the signal at a specific distance. The flow tube/vessel diameter was detected through the time-flight delay difference from near and far wall reflections, which was measured from the ultrasound pulse echo. The angle between the ultrasound beam and the flow was found by using the cross-correlation from consecutive ultrasound echoes. Artificial blood flowing through three different polymer tubes was experimented with, while keeping the same volumetric flow rate. The discrepancy in flow measurement results between this CMUT meter and a calibrated laser Doppler flowmeter is less than 5%.

  4. Micromachined droplet ejector arrays

    Science.gov (United States)

    Perçin, Gökhan; Yaralioglu, Göksenin G.; Khuri-Yakub, Butrus T.

    2002-12-01

    In this article we present a micromachined flextensional droplet ejector array used to eject liquids. By placing a fluid behind one face of a vibrating circular plate that has an orifice at its center, we achieve continuous ejection of the fluid. We present results of ejection of water and isopropanol. The ejector is harmless to sensitive fluids and can be used to eject fuels, organic polymers, photoresists, low-k dielectrics, adhesives, and chemical and biological samples. Micromachined two-dimensional array flextensional droplet ejectors were realized using planar silicon micromachining techniques. Typical resonant frequency of the micromachined device ranges from 400 kHz to 4.5 MHz. The ejections of water through a 4 μm diameter orifice at 3.45 MHz and a 10 μm diameter orifice at 2.15 MHz were demonstrated by using the developed micromachined two-dimensional array ejectors.

  5. Magnetic arrays

    Science.gov (United States)

    Trumper, D.L.; Kim, W.; Williams, M.E.

    1997-05-20

    Electromagnet arrays are disclosed which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness. 12 figs.

  6. Magnetic arrays

    Energy Technology Data Exchange (ETDEWEB)

    Trumper, David L. (Plaistow, NH); Kim, Won-jong (Cambridge, MA); Williams, Mark E. (Pelham, NH)

    1997-05-20

    Electromagnet arrays which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness.

  7. Graphene ribbon growth on structured silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Stoehr, Alexander; Link, Stefan; Starke, Ulrich [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Baringhaus, Jens; Aprojanz, Johannes; Tegenkamp, Christoph [Institut fuer Festkoerperphysik, Leibniz Universitaet Hannover (Germany); Niu, Yuran [MAX IV Laboratory, Lund University (Sweden); present address: School of Physics and Astronomy, Cardiff University (United Kingdom); Zakharov, Alexei A. [MAX IV Laboratory, Lund University (Sweden); Chen, Chaoyu; Avila, Jose; Asensio, Maria C. [Synchrotron SOLEIL and Universite Paris-Saclay, Gif sur Yvette (France)

    2017-11-15

    Structured Silicon Carbide was proposed to be an ideal template for the production of arrays of edge specific graphene nanoribbons (GNRs), which could be used as a base material for graphene transistors. We prepared periodic arrays of nanoscaled stripe-mesas on SiC surfaces using electron beam lithography and reactive ion etching. Subsequent epitaxial graphene growth by annealing is differentiated between the basal-plane mesas and the faceting stripe walls as monitored by means of atomic force microscopy (AFM). Microscopic low energy electron diffraction (μ-LEED) revealed that the graphene ribbons on the facetted mesa side walls grow in epitaxial relation to the basal-plane graphene with an armchair orientation at the facet edges. The π-band system of the ribbons exhibits linear bands with a Dirac like shape corresponding to monolayer graphene as identified by angle-resolved photoemission spectroscopy (ARPES). (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Organization of silicon nanocrystals by localized electrochemical etching

    International Nuclear Information System (INIS)

    Ayari-Kanoun, Asma; Drouin, Dominique; Beauvais, Jacques; Lysenko, Vladimir; Nychyporuk, Tetyana; Souifi, Abdelkader

    2009-01-01

    An approach to form a monolayer of organized silicon nanocrystals on a monocrystalline Si wafer is reported. Ordered arrays of nanoholes in a silicon nitride layer were obtained by combining electron beam lithography and plasma etching. Then, a short electrochemical etching current pulse led to formation of a single Si nanocrystal per each nanohole. As a result, high quality silicon nanocrystal arrays were formed with well controlled and reproducible morphologies. In future, this approach can be used to fabricate single electron devices.

  9. Physical chemistry of wet chemical anisotropic etching of silicon

    NARCIS (Netherlands)

    Elwenspoek, Michael Curt

    1995-01-01

    In this paper we explain a view to understand the anisotropy of the etching of silicon in certain wet chemical agents (such as KOH). The starting point is the assumption that the [Left angle bracket]111[Right Angle Bracket] face of silicon is a flat face, the etch rate of which is then governed by a

  10. Solar array manufacturing industry simulation

    Science.gov (United States)

    Chamberlain, R. G.; Firnett, P. J.; Kleine, B.

    1980-01-01

    Solar Array Manufacturing Industry Simulation (SAMIS) program is a standardized model of industry to manufacture silicon solar modules for use in electricity generation. Model is used to develop financial reports that detail requirements, including amounts and prices for materials, labor, facilities, and equipment required by companies.

  11. Efficient colored silicon solar modules using integrated resonant dielectric nanoscatterers

    Science.gov (United States)

    Neder, Verena; Luxembourg, Stefan L.; Polman, Albert

    2017-08-01

    We demonstrate photovoltaic modules with a bright green color based on silicon heterojunction solar cells integrated with arrays of light scattering dielectric nanoscatterers. Dense arrays of crystalline silicon nanocylinders, 100-120 nm wide, 240 nm tall, and 325 nm pitch, are made onto module cover slides using substrate-conformal soft-imprint lithography. Strong electric and magnetic dipolar Mie resonances with a narrow linewidth (Q ˜ 30) cause strong (35%-40%) specular light scattering on resonance (˜540 nm). The green color is observed over a wide range of angles (8°-75°). As the resonant nanoscatterers are transparent for the major fraction of the incident solar spectrum, the relative loss in short-circuit current is only 10%-11%. The soft-imprinted nanopatterns can be applied on full-size solar modules and integrated with conventional module encapsulation. The dielectric Mie resonances can be controlled by geometry, opening up a road for designing efficient colorful or white building-integrated photovoltaics.

  12. Angle independent velocity spectrum determination

    DEFF Research Database (Denmark)

    2014-01-01

    An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....

  13. Antifuse with a single silicon-rich silicon nitride insulating layer

    Science.gov (United States)

    Habermehl, Scott D.; Apodaca, Roger T.

    2013-01-22

    An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiN.sub.X with a nitrogen content X which is generally in the range of 0silicon. Arrays of antifuses can also be formed.

  14. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  15. An optical tunable filter array based on LCOS phase grating

    Science.gov (United States)

    Feng, Dong; Wan, Zhujun; Chen, Xu; Yan, Shijia; Luo, Zhixiang

    2018-01-01

    This paper reports an optical tunable filter array (TFA) based on a LCOS (liquid crystal on silicon) chip. The input broadband optical beam is first dispersed by a bulk grating and then incident on the LCOS chip. The LCOS chip is phase-only modulated and constructed as a dynamic reflective phase grating. The phase modulation is adjusted to meet the Littrow angle for a specified passband wavelength and thus the optical beam corresponding to this wavelength is steered to the output. The input/output optical beams are coupled to optical fibers with a dual-fiber collimator. Four dualfiber collimators are vertically aligned as the inputs/outputs and the pixels of the LCOS chip are vertically allocated as four independent zones. Thus the device can act as a 4-channel TFA, which is assembled and functionally demonstrated.

  16. Silicon nanowire transistors

    CERN Document Server

    Bindal, Ahmet

    2016-01-01

    This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI. Describes Silicon Nanowire (SNW) Transistors, as vertically constructed MOS n and p-channel transistors, with low static and dynamic power consumption and small layout footprint; Targets System-on-Chip (SoC) design, supporting very high transistor count (ULSI), minimal power consumption requiring inexpensive substrates for packaging; Enables fabrication of different types...

  17. Light trapping in horizontally aligned silicon microwire solar cells.

    Science.gov (United States)

    Martinsen, Fredrik A; Smeltzer, Benjamin K; Ballato, John; Hawkins, Thomas; Jones, Max; Gibson, Ursula J

    2015-11-30

    In this study, we demonstrate a solar cell design based on horizontally aligned microwires fabricated from 99.98% pure silicon via the molten core fiber drawing method. A similar structure consisting of 50 μm diameter close packed wires (≈ 0.97 packing density) on a Lambertian white back-reflector showed 86 % absorption for incident light of wavelengths up to 850 nm. An array with a packing fraction of 0.35 showed an absorption of 58 % over the same range, demonstrating the potential for effective light trapping. Prototype solar cells were fabricated to demonstrate the concept. Horizontal wire cells offer several advantages as they can be flexible, and partially transparent, and absorb light efficiently over a wide range of incident angles.

  18. Silicon nanowire array architecture for heterojunction electronics

    Energy Technology Data Exchange (ETDEWEB)

    Solovan, M. M., E-mail: m.solovan@chnu.edu.ua [Chernivtsi National University, Department of Electronics and Energy Engeneering (Ukraine); Brus, V. V. [Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH, Institute for Silicon Photovoltaics (Germany); Mostovyi, A. I.; Maryanchuk, P. D.; Orletskyi, I. G.; Kovaliuk, T. T. [Chernivtsi National University, Department of Electronics and Energy Engeneering (Ukraine); Abashin, S. L. [National Aerospace University “Kharkiv Aviation Institute”, Department of Physics (Ukraine)

    2017-04-15

    Photosensitive nanostructured heterojunctions n-TiN/p-Si were fabricated by means of titanium nitride thin films deposition (n-type conductivity) by the DC reactive magnetron sputtering onto nano structured single crystal substrates of p-type Si (100). The temperature dependencies of the height of the potential barrier and series resistance of the n-TiN/p-Si heterojunctions were investigated. The dominant current transport mechanisms through the heterojunctions under investigation were determined at forward and reverse bias. The heterojunctions under investigation generate open-circuit voltage V{sub oc} = 0.8 V, short-circuit current I{sub sc} = 3.72 mA/cm{sup 2} and fill factor FF = 0.5 under illumination of 100 mW/cm{sup 2}.

  19. Silicon nanowire array architecture for heterojunction electronics

    International Nuclear Information System (INIS)

    Solovan, M. M.; Brus, V. V.; Mostovyi, A. I.; Maryanchuk, P. D.; Orletskyi, I. G.; Kovaliuk, T. T.; Abashin, S. L.

    2017-01-01

    Photosensitive nanostructured heterojunctions n-TiN/p-Si were fabricated by means of titanium nitride thin films deposition (n-type conductivity) by the DC reactive magnetron sputtering onto nano structured single crystal substrates of p-type Si (100). The temperature dependencies of the height of the potential barrier and series resistance of the n-TiN/p-Si heterojunctions were investigated. The dominant current transport mechanisms through the heterojunctions under investigation were determined at forward and reverse bias. The heterojunctions under investigation generate open-circuit voltage V oc = 0.8 V, short-circuit current I sc = 3.72 mA/cm 2 and fill factor FF = 0.5 under illumination of 100 mW/cm 2 .

  20. Iron Oxide Arrays Prepared from Ferrocene- and Silsesquioxane-Containing Block Copolymers

    Directory of Open Access Journals (Sweden)

    Raita Goseki

    2012-01-01

    Full Text Available Arrays of iron oxides as precursors of iron clusters were prepared by oxygen plasma treatment of block copolymer microphase-separated nanostructures in thin films. Block copolymers composed of ferrocene-containing and silsesquioxane-containing polymethacrylate (PMAPOSS-b-PMAHFC were successfully prepared, with different molecular weights and compositions and narrow molecular weight distributions, by living anionic polymerization. The formed microphase-separated nanostructures in the bulk were characterized by wide- and small-angle X-ray scattering (WAXS and SAXS, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. Thin films were prepared from a solution of PMAPOSS-b-PMAHFC in tetrahydrofuran by spin coating onto silicon wafers. Fingerprint-type line nanostructures were formed in the PMAPOSS-b-PMAHFCs thin films after solvent annealing with carbon disulfide. Oxygen plasma treatment provided the final line arrays of iron oxides based on the formed nanostructural patterns.

  1. Calibration of a microprobe array

    International Nuclear Information System (INIS)

    Schrader, Christian; Tutsch, Rainer

    2012-01-01

    Conventional coordinate measurement machines are not well adapted to the specific needs for the measurement of mechanical microstructures that are made in a highly parallel production process. In particular, the increase of the measurement speed is addressed by using an array of microprobes to measure a number of objects in parallel. It consists of multiple microprobes that are etched into the same silicon substrate. The styli are glued onto a boss structure in the middle of a silicon membrane. To facilitate the alignment of an array and the underlying wafer, the array is mounted on three stacked rotational stages. Due to the production tolerances, the positions of the touching balls of the probes relative to their pivot have to be calibrated. The probe sensitivity is another field of calibration. This paper describes an efficient calibration procedure of the probe array which is usable for arrays with a large number of probes and different array layouts. The validation method of this procedure is explained and calibration results are discussed (paper)

  2. Micromirror array for protein micro array fabrication

    Science.gov (United States)

    Lee, Kook-Nyung; Shin, Dong-Sik; Lee, Yoon-Sik; Kim, Yong-Kweon

    2003-05-01

    We have designed, fabricated and characterized a micromirror array for protein microarray fabrication that has a simple structure, and the straightforward fabrication process for the mirror will allow the use of low-cost mirrors in protein pattern applications. The characteristics of an exposure system utilizing the micromirror array have been demonstrated by means of an experiment employing a photoresist that is in general use in the semiconductor industry. The micromirror dimensions were 54 × 54 mum2, with a 30 mum separation between mirrors, and a 5.5 mum gap from the bottom electrode so that the mirror had an approximately 10° deflection angle. The size and separation of the mirror were designed in consideration of the protein pattern size and pitch, in contrast with the commercial Texas Instruments Digital Light Processor, which is utilized in the components of projection display systems. The exposure system combined with the micromirror has been used in the photochemical synthesis of chemical ligands via protein immobilization on a chip. Several photosynthesis experiments for peptide array synthesis have been carried out using the micromirror array. Parallel experiments on photochemical ligand synthesis on a chip can easily be performed in the laboratory using this exposure system.

  3. Array Technology for Terahertz Imaging

    Science.gov (United States)

    Reck, Theodore; Siles, Jose; Jung, Cecile; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, Imran; Cooper, Ken

    2012-01-01

    Heterodyne terahertz (0.3 - 3THz) imaging systems are currently limited to single or a low number of pixels. Drastic improvements in imaging sensitivity and speed can be achieved by replacing single pixel systems with an array of detectors. This paper presents an array topology that is being developed at the Jet Propulsion Laboratory based on the micromachining of silicon. This technique fabricates the array's package and waveguide components by plasma etching of silicon, resulting in devices with precision surpassing that of current metal machining techniques. Using silicon increases the versatility of the packaging, enabling a variety of orientations of circuitry within the device which increases circuit density and design options. The design of a two-pixel transceiver utilizing a stacked architecture is presented that achieves a pixel spacing of 10mm. By only allowing coupling from the top and bottom of the package the design can readily be arrayed in two dimensions with a spacing of 10mm x 18mm.

  4. Preliminary Demonstration of Power Beaming With Non-Coherent Laser Diode Arrays

    National Research Council Canada - National Science Library

    Kare, Jordin

    1999-01-01

    A preliminary demonstration of free-space electric power transmission has been conducted using non-coherent laser diode arrays as the transmitter and standard silicon photovoltaic cell arrays as the receiver...

  5. Patterned Array of Poly(ethylene glycol) Silane Monolayer for Label-Free Detection of Dengue.

    Science.gov (United States)

    Rosly, Nor Zida; Ahmad, Shahrul Ainliah Alang; Abdullah, Jaafar; Yusof, Nor Azah

    2016-08-25

    In the present study, the construction of arrays on silicon for naked-eye detection of DNA dengue was demonstrated. The array was created by exposing a polyethylene glycol (PEG) silane monolayer to 254 nm ultraviolet (UV) light through a photomask. Formation of the PEG silane monolayer and photomodifed surface properties was thoroughly characterized by using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and contact angle measurements. The results of XPS confirmed that irradiation of ultraviolet (UV) light generates an aldehyde functional group that offers conjugation sites of amino DNA probe for detection of a specific dengue virus target DNA. Employing a gold enhancement process after inducing the electrostatic interaction between positively charged gold nanoparticles and the negatively charged target DNA hybridized to the DNA capture probe allowed to visualize the array with naked eye. The developed arrays demonstrated excellent performance in diagnosis of dengue with a detection limit as low as 10 pM. The selectivity of DNA arrays was also examined using a single base mismatch and noncomplementary target DNA.

  6. Array capabilities and future arrays

    International Nuclear Information System (INIS)

    Radford, D.

    1993-01-01

    Early results from the new third-generation instruments GAMMASPHERE and EUROGAM are confirming the expectation that such arrays will have a revolutionary effect on the field of high-spin nuclear structure. When completed, GAMMASHPERE will have a resolving power am order of magnitude greater that of the best second-generation arrays. When combined with other instruments such as particle-detector arrays and fragment mass analysers, the capabilites of the arrays for the study of more exotic nuclei will be further enhanced. In order to better understand the limitations of these instruments, and to design improved future detector systems, it is important to have some intelligible and reliable calculation for the relative resolving power of different instrument designs. The derivation of such a figure of merit will be briefly presented, and the relative sensitivities of arrays currently proposed or under construction presented. The design of TRIGAM, a new third-generation array proposed for Chalk River, will also be discussed. It is instructive to consider how far arrays of Compton-suppressed Ge detectors could be taken. For example, it will be shown that an idealised open-quote perfectclose quotes third-generation array of 1000 detectors has a sensitivity an order of magnitude higher again than that of GAMMASPHERE. Less conventional options for new arrays will also be explored

  7. Amorphous silicon based radiation detectors

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Qureshi, S.; Wildermuth, D.; Fujieda, I.; Street, R.A.

    1991-07-01

    We describe the characteristics of thin(1 μm) and thick (>30μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and γ rays. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. 13 refs., 7 figs

  8. Advanced high performance CdHgTe multiplexed arrays

    Science.gov (United States)

    Baker, I. M.; Charlton, D. E.; Arthurs, C.; Crimes, G.

    1992-12-01

    Very sensitive CdHgTe-silicon hybrid focal plane arrays for infrared applications were demonstrated in linear formats up to 1024 elements and in two dimensional arrays of up to 128 by 128 elements. The hybrid technology is based on photovoltaic, CdHgTe diode arrays coupled to full custom, CMOS, silicon multiplexing circuitry. The technology used for the next generation of advanced linear and two dimensional infrared arrays is described. The use of optical concentration for special applications is described and current progress on the 2.5 micrometer two dimensional focal plane for the HRIS (High Resolution Imaging Spectrometer) program is outlined.

  9. Semiconductor Nanomembrane based Flight Sensors and Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Phase I program would develop and demonstrate semiconductor nanomembrane (NM) based flight sensors and arrays on flexible substrates, using SOI (Silicon on...

  10. Silicon Qubits

    Energy Technology Data Exchange (ETDEWEB)

    Ladd, Thaddeus D. [HRL Laboratories, LLC, Malibu, CA (United States); Carroll, Malcolm S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-28

    Silicon is a promising material candidate for qubits due to the combination of worldwide infrastructure in silicon microelectronics fabrication and the capability to drastically reduce decohering noise channels via chemical purification and isotopic enhancement. However, a variety of challenges in fabrication, control, and measurement leaves unclear the best strategy for fully realizing this material’s future potential. In this article, we survey three basic qubit types: those based on substitutional donors, on metal-oxide-semiconductor (MOS) structures, and on Si/SiGe heterostructures. We also discuss the multiple schema used to define and control Si qubits, which may exploit the manipulation and detection of a single electron charge, the state of a single electron spin, or the collective states of multiple spins. Far from being comprehensive, this article provides a brief orientation to the rapidly evolving field of silicon qubit technology and is intended as an approachable entry point for a researcher new to this field.

  11. SNP Arrays

    Directory of Open Access Journals (Sweden)

    Jari Louhelainen

    2016-10-01

    Full Text Available The papers published in this Special Issue “SNP arrays” (Single Nucleotide Polymorphism Arrays focus on several perspectives associated with arrays of this type. The range of papers vary from a case report to reviews, thereby targeting wider audiences working in this field. The research focus of SNP arrays is often human cancers but this Issue expands that focus to include areas such as rare conditions, animal breeding and bioinformatics tools. Given the limited scope, the spectrum of papers is nothing short of remarkable and even from a technical point of view these papers will contribute to the field at a general level. Three of the papers published in this Special Issue focus on the use of various SNP array approaches in the analysis of three different cancer types. Two of the papers concentrate on two very different rare conditions, applying the SNP arrays slightly differently. Finally, two other papers evaluate the use of the SNP arrays in the context of genetic analysis of livestock. The findings reported in these papers help to close gaps in the current literature and also to give guidelines for future applications of SNP arrays.

  12. Wettability of silicone rubber maxillofacial prosthetic materials.

    Science.gov (United States)

    Waters, M G; Jagger, R G; Polyzois, G L

    1999-04-01

    Maxillofacial prosthetic materials that contact skin or mucosa should have good wettability. A material that is easily wetted will form a superior lubricating layer between the supporting tissues and, thus, reduce friction and patient discomfort. The surface energy of a maxillofacial prosthetic material will give an indication of the amount of energy available for adhesion and of the susceptibility of the material to bacterial adhesion. This study evaluated the wettability and surface energies of a range of commercially available silicone rubber maxillofacial prosthetic materials. Contact angles and surface energies were measured by using a dynamic contact angle measuring technique. Four commonly used silicone maxillofacial materials were tested and their properties compared with those of an acrylic resin denture base material and a widely used denture soft lining material. There were no significant differences in the wettability of the silicone rubber materials. All materials were significantly less wetted than the denture acrylic resin material. There were no significant differences in the surface energies of the silicone rubber materials, but all were significantly lower than denture acrylic resin material. The Cahn dynamic contact angle analyzer was a quick and reproducible method for determining the contact angles and surface energies of maxillofacial materials. Further work is needed to improve the wettability of silicone rubber materials used for maxillofacial prostheses, thus, reducing their potential to produce friction with tissues.

  13. High Efficiency mm-Wave Transmitter Array

    Science.gov (United States)

    2016-09-01

    Research Triangle Park, NC 27709-2211 Mm-waves. power amplifiers, Si integrated circuits, antenna arrays REPORT DOCUMENTATION PAGE 11. SPONSOR...Array Report Title High efficiency, high power transmitters integrated in silicon at 45, 94 and 138 GHz were developed. Our approach employs CMOS-SOI...based power amplifiers had a variety of advantages over nMOS PAs. Advancements have been reported in detail in numerous publications (13 journal

  14. Site specific isolated nanostructure array formation on a large area by broad ion beam without any mask and resist

    Science.gov (United States)

    Karmakar, Prasanta; Satpati, Biswarup

    2014-06-01

    We report the formation of isolated nanostructure arrays on a large area via broad ion beam implantation without the aid of any mask or resist. Desired ions have been implanted at specific locations of the prefabricated silicon ripple or triangular structures by exploiting the variation of local ion impact angles. We have shown that the implantation of Fe ions on an O+ ions induced pre fabricated triangular shaped patterned Si surface results in a self-organized periodic array of striped magnetic nanostructures having several micron length and about 50 nm width arranged with a spacial separation of ˜200 nm. The morphology, composition, crystalline structure, and magnetic property of these nanopatterns have been analyzed using high-resolution cross-sectional transmission electron microscopy and atomic force microscopy. A geometrical model has been proposed to explain the fundamental features of such ion-induced nanopattern structures.

  15. Evaluation of selected chemical processes for production of low-cost silocon. (Phases I and II. ) Final report, October 9, 1975--July 9, 1978. Silicon Material Task, Low-Cost Solar Array Project

    Energy Technology Data Exchange (ETDEWEB)

    Blocher, J.M. Jr.; Browning, M.F.

    1978-07-09

    The zinc reduction of silicon tetrachloride in a fluidized bed of seed particles to yield a granular product was studied along with several modifications of the thermal decomposition or hydrogen reduction of silicon tetraiodide. Although all contenders were believed to be capable of meeting the quality requirements of the LSA Project, it was concluded that only the zinc reduction of the chloride could be made economically feasible at a cost below $10/kg silicon (1975 dollars). Accordingly, subsequent effort was limited to evaluating that process. A miniplant, consisting of a 5-cm-diameter fluidized-bed reactor and associated equipment was used to study the deposition parameters, temperature, reactant composition, seed particle size, bed depth, reactant throughput, and methods of reactant introduction. It was confirmed that the permissible range of fluidized-bed temperature was limited at the lower end by zinc condensation (918 C) and at higher temperatures by rapidly decreasing conversion efficiency (by 0.1 percent per degree C from 72 percent (thermodynamic) at 927 for a stoichiometric mixture). Use of a graded bed temperature was shown to increase the conversion efficiency over that obtained in an isothermal bed. Other aspects of the process such as the condensation and fused-salt electrolysis of the ZnCl/sub 2/ by-product for recycle of zinc and chlorine were studied to provide information required for design of a 50 MT/year experimental facility, visualized as the next stage in the development. Projected silicon costs of $7.35 and $8.71 per kg (1975 dollars) for a 1000 MT/year facilitywere obtained, depending upon the number and size of the fluidized-bed reactors and ZnCl/sub 2/ electrolytic cells used. An energy payback time of 5.9 months was calculated for the product silicon.

  16. Integrated residential photovoltaic array development

    Science.gov (United States)

    Royal, G. C., III

    1981-04-01

    Sixteen conceptual designs of residential photovoltaic arrays are described. Each design concept was evaluated by an industry advisory panel using a comprehensive set of technical, economic and institutional criteria. Key electrical and mechanical concerns that effect further array subsystem development are also discussed. Three integrated array design concepts were selected by the advisory panel for further optimization and development. From these concepts a single one will be selected for detailed analysis and prototype fabrication. The three concepts selected are: (1) An array of frameless panels/modules sealed in a T shaped zipper locking neoprene gasket grid pressure fitted into an extruded aluminum channel grid fastened across the rafters. (2) An array of frameless modules pressure fitted in a series of zipper locking EPDM rubber extrusions adhesively bonded to the roof. Series string voltage is developed using a set of integral tongue connectors and positioning blocks. (3) An array of frameless modules sealed by a silicone adhesive in a prefabricated grid of rigid tape and sheet metal attached to the roof.

  17. Fabrication of thermal microphotonic sensors and sensor arrays

    Science.gov (United States)

    Shaw, Michael J.; Watts, Michael R.; Nielson, Gregory N.

    2010-10-26

    A thermal microphotonic sensor is fabricated on a silicon substrate by etching an opening and a trench into the substrate, and then filling in the opening and trench with silicon oxide which can be deposited or formed by thermally oxidizing a portion of the silicon substrate surrounding the opening and trench. The silicon oxide forms a support post for an optical resonator which is subsequently formed from a layer of silicon nitride, and also forms a base for an optical waveguide formed from the silicon nitride layer. Part of the silicon substrate can be selectively etched away to elevate the waveguide and resonator. The thermal microphotonic sensor, which is useful to detect infrared radiation via a change in the evanescent coupling of light between the waveguide and resonator, can be formed as a single device or as an array.

  18. Wettability of naturally aged silicone and EPDM composite insulators

    Energy Technology Data Exchange (ETDEWEB)

    Gubanski, S.M. (Royal Inst. of Tech., Stockholm (Sweden)); Vlastos, A.E. (Chalmers Univ. of Tech., Goeteborg (Sweden))

    1990-07-01

    This paper reports the wettability of aged surfaces and of the bulk of naturally aged silicone and EPDM insulator housings and of silicone elastomer insulator coatings studied. The samples were taken either directly from the insulators or treated by exposing them to corona discharges and/or to saline pollution. The results show that the contact angles of the silicone rubber insulator surfaces are larger than the contact angles of the RTV silicone rubber coating and of the EPDM rubber insulator surfaces, especially when the surfaces are aged. When the insulators were exposed to corona discharges, the contact angles of the silicone rubber insulators are reduced but after the exposure they recover with time. The contact angles of the EPDM rubber insulators, however, after the exposure, continue to reduce. When exposed to artificial saline pollution, the silicone rubber insulators show a limited recovery of their contact angles with time, while, when exposed to corona discharge, they show a recovery of the contact angle after the exposure. The time for recovery is dependent on the exposure time to the corona discharges.

  19. Machining of Silicon-Ribbon-Forming Dies

    Science.gov (United States)

    Menna, A. A.

    1985-01-01

    Carbon extension for dies used in forming silicon ribbon crystals machined precisely with help of special tool. Die extension has edges beveled toward narrow flats at top, with slot precisely oriented and centered between flats and bevels. Cutting tool assembled from standard angle cutter and circular saw or saws. Angle cutters cuts bevels while slot saw cuts slot between them. In alternative version, custom-ground edges or additional circular saws also cut flats simultaneously.

  20. Computer simulation of proton channelling in silicon

    Indian Academy of Sciences (India)

    2000-06-12

    Jun 12, 2000 ... The channelling of 3 MeV protons in the 110 direction of silicon has been simulated .... (3). Due to divergence the azimuthal angle for an ion Т can also be different from the mean azimuthal angle ¼. Defining the Э-axis to be along the reference ... Жis and is take on random values with the former following a.

  1. Weighted thinned linear array design with the iterative FFT technique

    CSIR Research Space (South Africa)

    Du Plessis, WP

    2011-09-01

    Full Text Available ) cyclic difference set. 2Recomputed using cubic spline interpolation. 3Shoulder in the main beam. 4Estimated from the graphs provided. 5Element positions quantised to =20. 6Scan angle limited to 20 . 7Scan angle limited to 10 . 8Positions... the lowest possible CTR of 1. Sparse arrays are similar to thinned arrays except that the positions of the antenna elements are not quantised. While this approach increases design freedom, potentially leading to improved array per- formance, periodic...

  2. Filter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  3. Silicon-on-ceramic solar cell development. Solar cell development for the cell development task of the Low-Cost Solar Array Project. Quarterly report No. 1, February 15--June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, P W; Grung, B L; Zook, J D

    1978-07-30

    The objective of this program is to investigate unique cell processing/design approaches to the successful fabrication of high-performance solar cells on silicon-on-ceramic (SOC) material. The work in the cell development area consists of two broad categories of activities: (1) the development of standard cell processing techniques, and (2) the investigation of novel device design approaches. The first area of activity has to do with the development of processing techniques for use with silicon dipped on ''slotted'' ceramic substrates. This embodiment allows us to make contact to the back surface of the silicon, thereby minimizing the front surface contact area. The second activity area is initially concerned with producing a ''stripe'' geometry cell on an unslotted ceramic substrate. The idea here is to expose the base layer for electrical contact on the top surface of the substrate and make up for the lost cell area by using an optical collector. Progress is reported.

  4. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  5. Multimodal Electrothermal Silicon Microgrippers for Nanotube Manipulation

    DEFF Research Database (Denmark)

    Nordström Andersen, Karin; Petersen, Dirch Hjorth; Carlson, Kenneth

    2009-01-01

    Microgrippers that are able to manipulate nanoobjects reproducibly are key components in 3-D nanomanipulation systems. We present here a monolithic electrothermal microgripper prepared by silicon microfabrication, and demonstrate pick-and-place of an as-grown carbon nanotube from a 2-D array onto...

  6. Plasmonic and silicon spherical nanoparticle antireflective coatings.

    Science.gov (United States)

    Baryshnikova, K V; Petrov, M I; Babicheva, V E; Belov, P A

    2016-03-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes.

  7. Micromachined silicon seismic transducers

    Energy Technology Data Exchange (ETDEWEB)

    Barron, C.C.; Fleming, J.G.; Sniegowski, J.J.; Armour, D.L.; Fleming, R.P.

    1995-08-01

    Batch-fabricated silicon seismic transducers could revolutionize the discipline of CTBT monitoring by providing inexpensive, easily depolyable sensor arrays. Although our goal is to fabricate seismic sensors that provide the same performance level as the current state-of-the-art ``macro`` systems, if necessary one could deploy a larger number of these small sensors at closer proximity to the location being monitored in order to compensate for lower performance. We have chosen a modified pendulum design and are manufacturing prototypes in two different silicon micromachining fabrication technologies. The first set of prototypes, fabricated in our advanced surface- micromachining technology, are currently being packaged for testing in servo circuits -- we anticipate that these devices, which have masses in the 1--10 {mu}g range, will resolve sub-mG signals. Concurrently, we are developing a novel ``mold`` micromachining technology that promises to make proof masses in the 1--10 mg range possible -- our calculations indicate that devices made in this new technology will resolve down to at least sub-{mu}G signals, and may even approach to 10{sup {minus}10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

  8. Developing barbed microtip-based electrode arrays for biopotential measurement.

    Science.gov (United States)

    Hsu, Li-Sheng; Tung, Shu-Wei; Kuo, Che-Hsi; Yang, Yao-Joe

    2014-07-10

    This study involved fabricating barbed microtip-based electrode arrays by using silicon wet etching. KOH anisotropic wet etching was employed to form a standard pyramidal microtip array and HF/HNO3 isotropic etching was used to fabricate barbs on these microtips. To improve the electrical conductance between the tip array on the front side of the wafer and the electrical contact on the back side, a through-silicon via was created during the wet etching process. The experimental results show that the forces required to detach the barbed microtip arrays from human skin, a polydimethylsiloxane (PDMS) polymer, and a polyvinylchloride (PVC) film were larger compared with those required to detach microtip arrays that lacked barbs. The impedances of the skin-electrode interface were measured and the performance levels of the proposed dry electrode were characterized. Electrode prototypes that employed the proposed tip arrays were implemented. Electroencephalogram (EEG) and electrocardiography (ECG) recordings using these electrode prototypes were also demonstrated.

  9. Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays

    International Nuclear Information System (INIS)

    Biring, Sajal; Tsai, K-T; Sur, Ujjal Kumar; Wang, Y-L

    2008-01-01

    A fast electrochemical replication technique has been developed to fabricate large-scale ultra-smooth aluminum foils by exploiting readily available large-scale smooth silicon wafers as the masters. Since the adhesion of aluminum on silicon depends on the time of surface pretreatment in water, it is possible to either detach the replicated aluminum from the silicon master without damaging the replicated aluminum and master or integrate the aluminum film to the silicon substrate. Replicated ultra-smooth aluminum foils are used for the growth of both self-organized and lithographically guided long-range ordered arrays of anodic alumina nanochannels without any polishing pretreatment

  10. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit

    DEFF Research Database (Denmark)

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld

    2016-01-01

    -division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-oninsulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7x7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror......, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained...

  11. Multispectral imaging with vertical silicon nanowires.

    Science.gov (United States)

    Park, Hyunsung; Crozier, Kenneth B

    2013-01-01

    Multispectral imaging is a powerful tool that extends the capabilities of the human eye. However, multispectral imaging systems generally are expensive and bulky, and multiple exposures are needed. Here, we report the demonstration of a compact multispectral imaging system that uses vertical silicon nanowires to realize a filter array. Multiple filter functions covering visible to near-infrared (NIR) wavelengths are simultaneously defined in a single lithography step using a single material (silicon). Nanowires are then etched and embedded into polydimethylsiloxane (PDMS), thereby realizing a device with eight filter functions. By attaching it to a monochrome silicon image sensor, we successfully realize an all-silicon multispectral imaging system. We demonstrate visible and NIR imaging. We show that the latter is highly sensitive to vegetation and furthermore enables imaging through objects opaque to the eye.

  12. Use of VCSEL arrays for parallel optical interconnects

    Science.gov (United States)

    Lebby, Michael S.; Gaw, Craig A.; Jiang, Wenbin; Kiely, Philip A.; Shieh, Chan L.; Claisse, Paul R.; Ramdani, Jamal; Hartman, Davis H.; Schwartz, Daniel B.; Grula, Jerry

    1996-04-01

    The use of vertical cavity surface emitting lasers (VCSELs) in a parallel optical interconnect for Motorola's OPTOBUSTM interconnect was made public over 1 year ago. This was the first time VCSELs were introduced into a product which took advantage of the excellent qualities of VCSELs over edge-emitting lasers. Motorola's OPTOBUSTM interconnect is a ten channel parallel bi-directional data link based on two 10 channel multimode fiber ribbons. One of the key differences in this type of interconnect compared with previous data link designs is the use of the VCSELs as the optical source for the link's fiber optic transmitter. A single 1 X 10 VCSEL array from a GaAs wafer is die attached to a 10 channel GUIDECASTTM optical interface unit which couples the emission from each laser device to its corresponding fiber ribbon channel and thus negates the use of expensive manufacturing techniques such as active alignment and pig-tailing. The OPTOBUSTM interconnect achieves its performance goals (which include low cost) via the unique characteristics of the GaAs VCSELs arrays. For example, the 850 nm devices produce a circular symmetric beam with a half angle of about 10 degrees allowing the coupling loss into the waveguide to be less than 3 dB. In addition, to maintain low manufacturing costs, each VCSEL array is individually and automatically probe tested (just as in the silicon industry) to verify that each VCSEL achieves the OPTOBUSTM interconnect's stringent electrical, optical, thermal and mechanical specifications. Typical computer generated wafer maps from automated production tooling and statistical parametric results are discussed. The combination of low threshold currents with superior thermal and optical performance allow the devices to be modulated under fixed bias conditions. Typical drive currents of 3X threshold are used to obtain nominal FDA Class 1 safety optical power levels from the GUIDECASTTM optical interface unit.

  13. Dynamic Evolution of the Evaporating Liquid-Vapor Interface in Micropillar Arrays.

    Science.gov (United States)

    Antao, Dion S; Adera, Solomon; Zhu, Yangying; Farias, Edgardo; Raj, Rishi; Wang, Evelyn N

    2016-01-19

    Capillary assisted passively pumped thermal management devices have gained importance due to their simple design and reduction in energy consumption. The performance of these devices is strongly dependent on the shape of the curved interface between the liquid and vapor phases. We developed a transient laser interferometry technique to investigate the evolution of the shape of the liquid-vapor interface in micropillar arrays during evaporation heat transfer. Controlled cylindrical micropillar arrays were fabricated on the front side of a silicon wafer, while thin-film heaters were deposited on the reverse side to emulate a heat source. The shape of the meniscus was determined using the fringe patterns resulting from interference of a monochromatic beam incident on the thin liquid layer. We studied the evolution of the shape of the meniscus on these surfaces under various operating conditions including varying the micropillar geometry and the applied heating power. By monitoring the transient behavior of the evaporating liquid-vapor interface, we accurately measured the absolute location and shape of the meniscus and calculated the contact angle and the maximum capillary pressure. We demonstrated that the receding contact angle which determines the capillary pumping limit is independent of the microstructure geometry and the rate of evaporation (i.e., the applied heating power). The results of this study provide fundamental insights into the dynamic behavior of the liquid-vapor interface in wick structures during phase-change heat transfer.

  14. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration of a tomographic array in which the object can rotate about its axis is described. The X-ray detector is a cylindrical screen perpendicular to the axis of rotation. The X-ray source has a line-shaped focus coinciding with the axis of rotation. The beam is fan-shaped with one side of this fan lying along the axis of rotation. The detector screen is placed inside an X-ray image multiplier tube

  15. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    A tomographic array with the following characteristics is described. An X-ray screen serving as detector is placed before a photomultiplier tube which itself is placed in front of a television camera connected to a set of image processors. The detector is concave towards the source and is replacable. Different images of the object are obtained simultaneously. Optical fibers and lenses are used for transmission within the system

  16. Two- to three-dimensional crossover in a dense electron liquid in silicon

    Science.gov (United States)

    Matmon, Guy; Ginossar, Eran; Villis, Byron J.; Kölker, Alex; Lim, Tingbin; Solanki, Hari; Schofield, Steven R.; Curson, Neil J.; Li, Juerong; Murdin, Ben N.; Fisher, Andrew J.; Aeppli, Gabriel

    2018-04-01

    Doping of silicon via phosphine exposures alternating with molecular beam epitaxy overgrowth is a path to Si:P substrates for conventional microelectronics and quantum information technologies. The technique also provides a well-controlled material for systematic studies of two-dimensional lattices with a half-filled band. We show here that for a dense (ns=2.8 ×1014 cm-2) disordered two-dimensional array of P atoms, the full field magnitude and angle-dependent magnetotransport is remarkably well described by classic weak localization theory with no corrections due to interaction. The two- to three-dimensional crossover seen upon warming can also be interpreted using scaling concepts developed for anistropic three-dimensional materials, which work remarkably except when the applied fields are nearly parallel to the conducting planes.

  17. Collimation: a silicon solution

    CERN Multimedia

    2007-01-01

    Silicon crystals could be used very efficiently to deflect high-energy beams. Testing at CERN has produced conclusive results, which could pave the way for a new generation of collimators. The set of five crystals used to test the reflection of the beams. The crystals are 0.75 mm wide and their alignment is adjusted with extreme precision. This figure shows the deflection of a beam by channelling and by reflection in the block of five crystals. Depending on the orientation of the crystals: 1) The beam passes without "seeing" the crystals and is not deflected 2) The beam is deflected by channelling (with an angle of around 100 μrad) 3) The beam is reflected (with an angle of around 50 μrad). The intensity of the deflected beam is illustrated by the intensity of the spot. The spot of the reflected beam is clearly more intense than that one of the channelled beam, demonstrating the efficiency of t...

  18. The HBN Angle

    Directory of Open Access Journals (Sweden)

    Harsh Bhagvatiprasad Dave

    2015-01-01

    Full Text Available Aim: The purpose of this study was to establish a new cephalometric measurement, named the Harsh Bhagvatiprasad Nita angle (HBN, to assess the sagittal jaw relationship with accuracy and reproducibility. Materials and Methods: Three hundred pretreatment lateral cephalograms (100 each of Class I, II, and III were taken from the Department of Orthodontics and Dentofacial Orthopedics of Rajasthan Dental College and Hospital, Jaipur (Rajasthan and were subdivided into skeletal Class I, II, and III based on ANB, Wits appraisal, and Beta angle. This angle uses 3 skeletal landmarks the "C" (apparent axis of the condyle, "M" (midpoint of the premaxilla, and "G" (center of the largest circle that is tangent to the internal inferior, anterior, and posterior surfaces of the mandibular symphysis. Results: The result of the mean and standard deviation for the HBN angle were calculated in all three skeletal groups. After using one-way analysis of variance and post-hoc multiple comparisons by using Tukey′s honestly significant difference, homogeneous subsets, receiver operating characteristics (ROC curve - to differentiate Class II with Class I, ROC curve - to differentiate Class III with Class I, Reliability analysis with interclass correlation of HBN angle with other angles, we obtained results that showed that a patient with a HBN angle 40° and 46° can be considered to have a Class I skeletal pattern. Conclusions: A new angle, the HBN angle, was developed as a diagnostic aid to evaluate the sagittal jaw relationship more consistently. HBN angle 40° and 46° can be considered to have a Class I skeletal pattern, a more acute HBN angle indicates a Class II skeletal pattern, and a more obtuse HBN angle indicates a Class III skeletal pattern.

  19. Microneedles array with biodegradable tips for transdermal drug delivery

    Science.gov (United States)

    Iliescu, Ciprian; Chen, Bangtao; Wei, Jiashen; Tay, Francis E. H.

    2008-12-01

    The paper presented an enhancement solution for transdermal drug delivery using microneedles array with biodegradable tips. The microneedles array was fabricated by using deep reactive ion etching (DRIE) and the biodegradable tips were made to be porous by electrochemical etching process. The porous silicon microneedle tips can greatly enhance the transdermal drug delivery in a minimum invasion, painless, and convenient manner, at the same time; they are breakable and biodegradable. Basically, the main problem of the silicon microneedles consists of broken microneedles tips during the insertion. The solution proposed is to fabricate the microneedle tip from a biodegradable material - porous silicon. The silicon microneedles are fabricated using DRIE notching effect of reflected charges on mask. The process overcomes the difficulty in the undercut control of the tips during the classical isotropic silicon etching process. When the silicon tips were formed, the porous tips were then generated using a classical electrochemical anodization process in MeCN/HF/H2O solution. The paper presents the experimental results of in vitro release of calcein and BSA with animal skins using a microneedle array with biodegradable tips. Compared to the transdermal drug delivery without any enhancer, the microneedle array had presented significant enhancement of drug release.

  20. A monolithic silicon detector telescope

    International Nuclear Information System (INIS)

    Cardella, G.; Amorini, F.; Cabibbo, M.; Di Pietro, A.; Fallica, G.; Franzo, G.; Figuera, P.; Papa, M.; Pappalardo, G.; Percolla, G.; Priolo, F.; Privitera, V.; Rizzo, F.; Tudisco, S.

    1996-01-01

    An ultrathin silicon detector (1 μm) thick implanted on a standard 400 μm Si-detector has been built to realize a monolithic telescope detector for simultaneous charge and energy determination of charged particles. The performances of the telescope have been tested using standard alpha sources and fragments emitted in nuclear reactions with different projectile-target colliding systems. An excellent charge resolution has been obtained for low energy (less than 5 MeV) light nuclei. A multi-array lay-out of such detectors is under construction to charge identify the particles emitted in reactions induced by low energy radioactive beams. (orig.)

  1. Stretchable and foldable silicon-based electronics

    KAUST Repository

    Cavazos Sepulveda, Adrian Cesar

    2017-03-30

    Flexible and stretchable semiconducting substrates provide the foundation for novel electronic applications. Usually, ultra-thin, flexible but often fragile substrates are used in such applications. Here, we describe flexible, stretchable, and foldable 500-μm-thick bulk mono-crystalline silicon (100) “islands” that are interconnected via extremely compliant 30-μm-thick connectors made of silicon. The thick mono-crystalline segments create a stand-alone silicon array that is capable of bending to a radius of 130 μm. The bending radius of the array does not depend on the overall substrate thickness because the ultra-flexible silicon connectors are patterned. We use fracture propagation to release the islands. Because they allow for three-dimensional monolithic stacking of integrated circuits or other electronics without any through-silicon vias, our mono-crystalline islands can be used as a “more-than-Moore” strategy and to develop wearable electronics that are sufficiently robust to be compatible with flip-chip bonding.

  2. Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces.

    Science.gov (United States)

    Dawood, M K; Zheng, H; Liew, T H; Leong, K C; Foo, Y L; Rajagopalan, R; Khan, S A; Choi, W K

    2011-04-05

    We describe a new method of fabricating large-area, highly scalable, "hybrid" superhydrophobic surfaces on silicon (Si) substrates with tunable, spatially selective adhesion behavior by controlling the morphologies of Si nanowire arrays. Gold (Au) nanoparticles were deposited on Si by glancing-angle deposition, followed by metal-assisted chemical etching of Si to form Si nanowire arrays. These surfaces were chemically modified and rendered hydrophobic by fluorosilane deposition. Au nanoparticles with different size distributions resulted in the synthesis of Si nanowires with very different morphologies (i.e., clumped and straight nanowire surfaces). The difference in nanowire morphology is attributed to capillary force-induced nanocohesion, which is due to the difference in nanowire porosity. The clumped nanowire surface demonstrated the lotus effect, and the straighter nanowires demonstrated the ability to pin water droplets while maintaining large contact angles (i.e., the petal effect). The high contact angles in both cases are explained by invoking the Cassie-Baxter wetting state. The high adhesion behavior of the straight nanowire surface may be explained by a combination of attractive van der Waals forces and capillary adhesion. We demonstrate the spatial patterning of both low- and high-adhesion superhydrophobicity on the same substrate by the simultaneous synthesis of clumped and straight silicon nanowires. The demonstration of hybrid superhydrophobic surfaces with spatially selective, tunable adhesion behavior on single substrates paves the way for future applications in microfluidic channels, substrates for biologically and chemically based analysis and detection where it is necessary to analyze a particular droplet in a defined location on a surface, and as a platform to study in situ chemical mixing and interfacial reactions of liquid pearls.

  3. Silicone chain extender

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a silicone chain extender, more particularly a chain extender for silicone polymers and copolymers, to a chain extended silicone polymer or copolymer and to a functionalized chain extended silicone polymer or copolymer, to a method for the preparation thereof...

  4. Silicon plasmonics at midinfrared using silicon-insulator-silicon platform

    Science.gov (United States)

    Gamal, Rania; Shafaay, Sarah; Ismail, Yehea; Swillam, Mohamed A.

    2017-01-01

    We propose devices based on doped silicon. Doped silicon is designed to act as a plasmonic medium in the midinfrared (MIR) range. The surface plasmon frequency of the doped silicon can be tuned within the MIR range, which gives rise to useful properties in the material's dispersion. We propose various plasmonic configurations that can be utilized for silicon on-chip applications in MIR. These devices have superior performance over conventional silicon devices and provide unique functionalities such as 90-sharp degree bends, T- and X-junction splitters, and stubs. These devices are CMOS-compatible and can be easily integrated with other electronic devices. In addition, the potential for biological and environmental sensing using doped silicon nanowires is demonstrated.

  5. Porous silicon technology for integrated microsystems

    Science.gov (United States)

    Wallner, Jin Zheng

    With the development of micro systems, there is an increasing demand for integrable porous materials. In addition to those conventional applications, such as filtration, wicking, and insulating, many new micro devices, including micro reactors, sensors, actuators, and optical components, can benefit from porous materials. Conventional porous materials, such as ceramics and polymers, however, cannot meet the challenges posed by micro systems, due to their incompatibility with standard micro-fabrication processes. In an effort to produce porous materials that can be used in micro systems, porous silicon (PS) generated by anodization of single crystalline silicon has been investigated. In this work, the PS formation process has been extensively studied and characterized as a function of substrate type, crystal orientation, doping concentration, current density and surfactant concentration and type. Anodization conditions have been optimized for producing very thick porous silicon layers with uniform pore size, and for obtaining ideal pore morphologies. Three different types of porous silicon materials: meso porous silicon, macro porous silicon with straight pores, and macro porous silicon with tortuous pores, have been successfully produced. Regular pore arrays with controllable pore size in the range of 2mum to 6mum have been demonstrated as well. Localized PS formation has been achieved by using oxide/nitride/polysilicon stack as masking materials, which can withstand anodization in hydrofluoric acid up to twenty hours. A special etching cell with electrolytic liquid backside contact along with two process flows has been developed to enable the fabrication of thick macro porous silicon membranes with though wafer pores. For device assembly, Si-Au and In-Au bonding technologies have been developed. Very low bonding temperature (˜200°C) and thick/soft bonding layers (˜6mum) have been achieved by In-Au bonding technology, which is able to compensate the potentially

  6. Reading Angles in Maps

    Science.gov (United States)

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…

  7. Asymmetric liquid wetting and spreading on surfaces with slanted micro-pillar arrays

    KAUST Repository

    Yang, Xiaoming

    2013-01-01

    Uni-directional liquid spreading on asymmetric silicone-fabricated nanostructured surfaces has recently been reported. In this work, uniformly deflected polydimethylsiloxane (PDMS) micro-pillars covered with silver films were fabricated. Asymmetric liquid wetting and spreading behaviors in a preferential direction were observed on the slanted micro-pillar surfaces and a micro-scale thin liquid film advancing ahead of the bulk liquid droplet was clearly observed by high-speed video imaging. It is found that the slanted micro-pillar array is able to promote or inhibit the propagation of this thin liquid film in different directions by the asymmetric capillary force. The spreading behavior of the bulk liquid was guided and finally controlled by this micro-scale liquid film. Different spreading regimes are defined by the relationship between the liquid intrinsic contact angle and the critical angles, which were determined by the pillar height, pillar deflection angle and inter-pillar spacing. © The Royal Society of Chemistry 2013.

  8. Field assisted photoemission by silicon photocathodes

    International Nuclear Information System (INIS)

    Aboubacar, A.; Dupont, M.; El Manouni, A.; Querrou, M.; Says, L.P.

    1991-01-01

    Silicon photocathodes with arrays of tips have been prepared using microlithographic techniques. Current emission due to field effect has been measured in the case of heavy and weakly doped boron Silicon. An Argon continuous laser has been used to produce photocurrent. An instantaneous current (600 μA) with a moderate laser power (83 mW), has been produced on weakly doped photocathodes. This current corresponds to an average quantum yield (purely photoelectric) of about 1.7%, and a local current density in the range of a few 10 6 A m -2

  9. Optimal reconstruction angles

    International Nuclear Information System (INIS)

    Cook, G.O. Jr.; Knight, L.

    1979-07-01

    The question of optimal projection angles has recently become of interest in the field of reconstruction from projections. Here, studies are concentrated on the n x n pixel space, where literative algorithms such as ART and direct matrix techniques due to Katz are considered. The best angles are determined in a Gauss--Markov statistical sense as well as with respect to a function-theoretical error bound. The possibility of making photon intensity a function of angle is also examined. Finally, the best angles to use in an ART-like algorithm are studied. A certain set of unequally spaced angles was found to be preferred in several contexts. 15 figures, 6 tables

  10. Lithium diffusion in silicon and induced structure disorder: A molecular dynamics study

    Directory of Open Access Journals (Sweden)

    Huanyu Wang

    2013-11-01

    Full Text Available Using molecular dynamics method, we investigate the diffusion property of lithium in different silicon structures and silicon structure's disorder extent during lithium's diffusion process. We find that the pathway and the incident angle between the direction of barrier and diffusion of lithium are also the essential factors to the lithium's diffusion property in silicon anode besides the barrier. Smaller incident angle could decrease the scattering of lithium in silicon structure effectively. Moreover, lithium diffuses easier in the Li-Si alloy structure of higher lithium concentration with deeper injection depth. The silicon's structure will be damaged gradually during the charge and discharge process. However, it will also recover to initial state to a great extent after relaxation. Therefore, the damage of lithium diffusion to silicon anode in the structure of low lithium concentration is reversible to a great degree. In addition, the silicon structure of crystal orientation perform better properties in both lithium's diffusivity and structural stability.

  11. Facile green in situ synthesis of Mg/CuO core/shell nanoenergetic arrays with a superior heat-release property and long-term storage stability.

    Science.gov (United States)

    Zhou, Xiang; Xu, Daguo; Zhang, Qiaobao; Lu, Jian; Zhang, Kaili

    2013-08-14

    We report a facile green method for the in situ synthesis of Mg/CuO core/shell nanoenergetic arrays on silicon, with Mg nanorods as the core and CuO as the shell. Mg nanorods are first prepared by glancing angle deposition. CuO is then deposited around the Mg nanorods by reactive magnetron sputtering to realize the core/shell structure. Various characterization techniques are used to investigate the prepared Mg/CuO core/shell nanoenergetic arrays, including scanning electron microscopy, transmission electron microscopy, X-ray energy dispersive spectroscopy, X-ray diffraction, and thermal analysis. Uniform mixing and intimate contact between the Mg nanorods and CuO are confirmed from both visual inspection of the morphological images and analyses of the heat-release curves. The nanoenergetic arrays exhibit a low-onset reaction temperature (∼300 °C) and high heat of reaction (∼3400 J/g). Most importantly, the nanoenergetic arrays possess long-term storage stability resulting from the stable CuO shell. This study provides a potential general strategy for the synthesis of various Mg nanorod-based stable nanoenergetic arrays.

  12. Controllable fabrication of periodic arrays of high-aspect-ratio micro-nano hierarchical structures and their superhydrophobicity

    Science.gov (United States)

    Ma, Zhibo; Jiang, Chengyu; Li, Xiangming; Ye, Fang; Yuan, Weizheng

    2013-09-01

    This paper demonstrates a flexible and controllable fabrication of vertically aligned and high-aspect-ratio (HAR) micro-nano hierarchical structures using conventional micro-technologies. We first masked the nanopatterns on a photoresist mold by shifting the same photomask, which could be performed using conventional contact microlithography. Thereby replicating nanopatterns onto an aluminium mold and successfully fabricating silicon nanopillar arrays about 300 nm in diameter and 5 µm in height via the deep reactive etching (DRIE) process. We also fabricated micro-nano hierarchical structures with variable aspect ratios using the proposed nanopattern technology and DRIE process without using any special nanopatterning equipment or techniques. The proposed method not only simplified the fabrication process but also produced HAR (higher than 15) structures. We also investigate the replica molding steps from the fabricated silicon stamp to a UV-curable polymer replica using a PDMS mold and conventional nano-imprinting, where each nanopillar diameter was 320 nm with 95% fidelity. As a result, the hierarchical structure arrays show stable superhydrophobic surface properties with a contact angle of approximately 160°. Owing to the cost efficiency of mass production and the fidelity of the strategy, the methodology could provide a general approach for fabricating complex three-dimensional periodic hierarchical structures onto a single chip and can be applied to various fields of multifunctional applications.

  13. Investigation of irradiance efficiency for LED phototherapy with different arrays

    Science.gov (United States)

    Chen, Hsi-Chao; Wu, Guo-Yang

    2010-12-01

    Red and yellow light emitting diodes (LEDs) are currently utilized as lighting sources during LED phototherapy. These LEDs were arranged on a disk with an external diameter of 70 mm with different arrays — radial, rhombus, square radial, and square rhombus arrays. The radial and square radial arrays had better irradiance efficiency than rhombus and square rhombus arrays by optical simulation. Additionally, the radial array had 76 sets of LEDs, but the square radial array had 100 sets. Thus, a mockup sample of radial array phototherapy was constructed for performance tests. The mixture efficiency of the radial array was observed at distances of 1-100 mm and lighting was well mixed when distance exceeded 50 mm by optical simulation. Irradiance variation with angle was approximated by experiment and theory at a treatment distance of 50 mm and 100 mm using the phototherapy mockup. The radial array was one good choice for LED phototherapy.

  14. Photoelectric angle converter

    Science.gov (United States)

    Podzharenko, Volodymyr A.; Kulakov, Pavlo I.

    2001-06-01

    The photo-electric angle transmitter of rotation is offered, at which the output voltage is linear function of entering magnitude. In a transmitter the linear phototransducer is used on the basis of pair photo diode -- operating amplifier, which output voltage is linear function of the area of an illuminated photosensitive stratum, and modulator of a light stream of the special shape, which ensures a linear dependence of this area from an angle of rotation. The transmitter has good frequent properties and can be used for dynamic measurements of an angular velocity and angle of rotation, in systems of exact drives and systems of autocontrol.

  15. Silicon spintronics: Progress and challenges

    International Nuclear Information System (INIS)

    Sverdlov, Viktor; Selberherr, Siegfried

    2015-01-01

    Electron spin attracts much attention as an alternative to the electron charge degree of freedom for low-power reprogrammable logic and non-volatile memory applications. Silicon appears to be the perfect material for spin-driven applications. Recent progress and challenges regarding spin-based devices are reviewed. An order of magnitude enhancement of the electron spin lifetime in silicon thin films by shear strain is predicted and its impact on spin transport in SpinFETs is discussed. A relatively weak coupling between spin and effective electric field in silicon allows magnetoresistance modulation at room temperature, however, for long channel lengths. Due to tunneling magnetoresistance and spin transfer torque effects, a much stronger coupling between the spin (magnetization) orientation and charge current is achieved in magnetic tunnel junctions. Magnetic random access memory (MRAM) built on magnetic tunnel junctions is CMOS compatible and possesses all properties needed for future universal memory. Designs of spin-based non-volatile MRAM cells are presented. By means of micromagnetic simulations it is demonstrated that a substantial reduction of the switching time can be achieved. Finally, it is shown that any two arbitrary memory cells from an MRAM array can be used to perform a logic operation. Thus, an intrinsic non-volatile logic-in-memory architecture can be realized

  16. Silicon spintronics: Progress and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Sverdlov, Viktor; Selberherr, Siegfried, E-mail: Selberherr@TUWien.ac.at

    2015-07-14

    Electron spin attracts much attention as an alternative to the electron charge degree of freedom for low-power reprogrammable logic and non-volatile memory applications. Silicon appears to be the perfect material for spin-driven applications. Recent progress and challenges regarding spin-based devices are reviewed. An order of magnitude enhancement of the electron spin lifetime in silicon thin films by shear strain is predicted and its impact on spin transport in SpinFETs is discussed. A relatively weak coupling between spin and effective electric field in silicon allows magnetoresistance modulation at room temperature, however, for long channel lengths. Due to tunneling magnetoresistance and spin transfer torque effects, a much stronger coupling between the spin (magnetization) orientation and charge current is achieved in magnetic tunnel junctions. Magnetic random access memory (MRAM) built on magnetic tunnel junctions is CMOS compatible and possesses all properties needed for future universal memory. Designs of spin-based non-volatile MRAM cells are presented. By means of micromagnetic simulations it is demonstrated that a substantial reduction of the switching time can be achieved. Finally, it is shown that any two arbitrary memory cells from an MRAM array can be used to perform a logic operation. Thus, an intrinsic non-volatile logic-in-memory architecture can be realized.

  17. Silicon spintronics: Progress and challenges

    Science.gov (United States)

    Sverdlov, Viktor; Selberherr, Siegfried

    2015-07-01

    Electron spin attracts much attention as an alternative to the electron charge degree of freedom for low-power reprogrammable logic and non-volatile memory applications. Silicon appears to be the perfect material for spin-driven applications. Recent progress and challenges regarding spin-based devices are reviewed. An order of magnitude enhancement of the electron spin lifetime in silicon thin films by shear strain is predicted and its impact on spin transport in SpinFETs is discussed. A relatively weak coupling between spin and effective electric field in silicon allows magnetoresistance modulation at room temperature, however, for long channel lengths. Due to tunneling magnetoresistance and spin transfer torque effects, a much stronger coupling between the spin (magnetization) orientation and charge current is achieved in magnetic tunnel junctions. Magnetic random access memory (MRAM) built on magnetic tunnel junctions is CMOS compatible and possesses all properties needed for future universal memory. Designs of spin-based non-volatile MRAM cells are presented. By means of micromagnetic simulations it is demonstrated that a substantial reduction of the switching time can be achieved. Finally, it is shown that any two arbitrary memory cells from an MRAM array can be used to perform a logic operation. Thus, an intrinsic non-volatile logic-in-memory architecture can be realized.

  18. Microfabricated hollow microneedle array using ICP etcher

    Science.gov (United States)

    Ji, Jing; Tay, Francis E. H.; Miao, Jianmin

    2006-04-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF6/O2 isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases.

  19. Microfabricated hollow microneedle array using ICP etcher

    International Nuclear Information System (INIS)

    Ji Jing; Tay, Francis E H; Miao Jianmin

    2006-01-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF 6 /O 2 isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases

  20. Microfabricated hollow microneedle array using ICP etcher

    Energy Technology Data Exchange (ETDEWEB)

    Ji Jing [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Tay, Francis E H [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Miao Jianmin [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2006-04-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF{sub 6}/O{sub 2} isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases.

  1. Angles in hyperbolic lattices

    DEFF Research Database (Denmark)

    Risager, Morten S.; Södergren, Carl Anders

    2017-01-01

    It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den......It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior...... of the density function in both the small and large variable limits. This extends earlier results by Boca, Pasol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension n . Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead...

  2. Medical imaging applications of amorphous silicon

    International Nuclear Information System (INIS)

    Mireshghi, A.; Drewery, J.S.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Lee, H.K.; Perez-Mendez, V.

    1994-07-01

    Two dimensional hydrogenated amorphous silicon (a-Si:H) pixel arrays are good candidates as flat-panel imagers for applications in medical imaging. Various performance characteristics of these imagers are reviewed and compared with currently used equipments. An important component in the a-Si:H imager is the scintillator screen. A new approach for fabrication of high resolution CsI(Tl) scintillator layers, appropriate for coupling to a-Si:H arrays, are presented. For nuclear medicine applications, a new a-Si:H based gamma camera is introduced and Monte Carlo simulation is used to evaluate its performance

  3. Microtextured Silicon Surfaces for Detectors, Sensors & Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Carey, JE; Mazur, E

    2005-05-19

    With support from this award we studied a novel silicon microtexturing process and its application in silicon-based infrared photodetectors. By irradiating the surface of a silicon wafer with intense femtosecond laser pulses in the presence of certain gases or liquids, the originally shiny, flat surface is transformed into a dark array of microstructures. The resulting microtextured surface has near-unity absorption from near-ultraviolet to infrared wavelengths well below the band gap. The high, broad absorption of microtextured silicon could enable the production of silicon-based photodiodes for use as inexpensive, room-temperature multi-spectral photodetectors. Such detectors would find use in numerous applications including environmental sensors, solar energy, and infrared imaging. The goals of this study were to learn about microtextured surfaces and then develop and test prototype silicon detectors for the visible and infrared. We were extremely successful in achieving our goals. During the first two years of this award, we learned a great deal about how microtextured surfaces form and what leads to their remarkable optical properties. We used this knowledge to build prototype detectors with high sensitivity in both the visible and in the near-infrared. We obtained room-temperature responsivities as high as 100 A/W at 1064 nm, two orders of magnitude higher than standard silicon photodiodes. For wavelengths below the band gap, we obtained responsivities as high as 50 mA/W at 1330 nm and 35 mA/W at 1550 nm, close to the responsivity of InGaAs photodiodes and five orders of magnitude higher than silicon devices in this wavelength region.

  4. Stable configurations of graphene on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Javvaji, Brahmanandam; Shenoy, Bhamy Maithry [Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Mahapatra, D. Roy, E-mail: droymahapatra@aero.iisc.ernet.in [Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Ravikumar, Abhilash [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal 575025 (India); Hegde, G.M. [Center for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012 (India); Rizwan, M.R. [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal 575025 (India)

    2017-08-31

    Highlights: • Simulations of epitaxial growth process for silicon–graphene system is performed. • Identified the most favourable orientation of graphene sheet on silicon substrate. • Atomic local strain due to the silicon–carbon bond formation is analyzed. - Abstract: Integration of graphene on silicon-based nanostructures is crucial in advancing graphene based nanoelectronic device technologies. The present paper provides a new insight on the combined effect of graphene structure and silicon (001) substrate on their two-dimensional anisotropic interface. Molecular dynamics simulations involving the sub-nanoscale interface reveal a most favourable set of temperature independent orientations of the monolayer graphene sheet with an angle of ∽15° between its armchair direction and [010] axis of the silicon substrate. While computing the favorable stable orientations, both the translation and the rotational vibrations of graphene are included. The possible interactions between the graphene atoms and the silicon atoms are identified from their coordination. Graphene sheet shows maximum bonding density with bond length 0.195 nm and minimum bond energy when interfaced with silicon substrate at 15° orientation. Local deformation analysis reveals probability distribution with maximum strain levels of 0.134, 0.047 and 0.029 for 900 K, 300 K and 100 K, respectively in silicon surface for 15° oriented graphene whereas the maximum probable strain in graphene is about 0.041 irrespective of temperature. Silicon–silicon dimer formation is changed due to silicon–carbon bonding. These results may help further in band structure engineering of silicon–graphene lattice.

  5. 3D, Flash, Induced Current Readout for Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Sherwood I. [Univ. of Hawaii, Honolulu, HI (United States)

    2014-06-07

    A new method for silicon microstrip and pixel detector readout using (1) 65 nm-technology current amplifers which can, for the first time with silicon microstrop and pixel detectors, have response times far shorter than the charge collection time (2) 3D trench electrodes large enough to subtend a reasonable solid angle at most track locations and so have adequate sensitivity over a substantial volume of pixel, (3) induced signals in addition to, or in place of, collected charge

  6. Electromagnetically Clean Solar Arrays

    Science.gov (United States)

    Stem, Theodore G.; Kenniston, Anthony E.

    2008-01-01

    wiring on the back of the panel. Each step increases the potential for occurrence of latent defects, loss of process control, and attrition of components. An EMCSA panel includes an integral cover made from a transparent material. The silicone cover supplants the individual cover glasses on the cells and serves as an additional unitary structural support that offers the advantage, relative to glass, of the robust, forgiving nature of the silcone material. The cover contains pockets that hold the solar cells in place during the lamination process. The cover is coated with indium tin oxide to make its surface electrically conductive, so that it serves as a contiguous, electrically grounded shield over the entire panel surface. The cells are mounted in proximity to metallic printed wiring. The painted-wiring layer comprises metal-film traces on a sheet of Kapton (or equivalent) polyimide. The traces include contact pads on one side of the sheet for interconnecting the cells. Return leads are on the opposite side of the sheet, positioned to form the return currents substantially as mirror images of, and in proximity to, the cell sheet currents, thereby minimizing magnetic moments. The printed-wiring arrangement mimics the back-wiring arrangement of conventional solar arrays, but the current-loop areas and the resulting magnetic moments are much smaller because the return-current paths are much closer to the solar-cell sheet currents. The contact pads are prepared with solder fo electrical and mechanical bonding to the cells. The pocketed cover/shield, the solar cells, the printed-wiring layer, an electrical bonding agent, a mechanical-bonding agent, a composite structural front-side face sheet, an aluminum honeycomb core, and a composite back-side face sheet are all assembled, then contact pads are soldered to the cells and the agents are cured in a single lamination process.

  7. Bias-assisted KOH etching of macroporous silicon membranes

    International Nuclear Information System (INIS)

    Mathwig, K; Geilhufe, M; Müller, F; Gösele, U

    2011-01-01

    This paper presents an improved technique to fabricate porous membranes from macroporous silicon as a starting material. A crucial step in the fabrication process is the dissolution of silicon from the backside of the porous wafer by aqueous potassium hydroxide to open up the pores. We improved this step by biasing the silicon wafer electrically against the KOH. By monitoring the current–time characteristics a good control of the process is achieved and the yield is improved. Also, the etching can be stopped instantaneously and automatically by short-circuiting Si and KOH. Moreover, the bias-assisted etching allows for the controlled fabrication of silicon dioxide tube arrays when the silicon pore walls are oxidized and inverted pores are released.

  8. A surface code quantum computer in silicon.

    Science.gov (United States)

    Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L

    2015-10-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.

  9. Performance Testing using Silicon Devices - Analysis of Accuracy: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, M.; Gotseff, P.; Myers, D.; Stoffel, T.

    2012-06-01

    Accurately determining PV module performance in the field requires accurate measurements of solar irradiance reaching the PV panel (i.e., Plane-of-Array - POA Irradiance) with known measurement uncertainty. Pyranometers are commonly based on thermopile or silicon photodiode detectors. Silicon detectors, including PV reference cells, are an attractive choice for reasons that include faster time response (10 us) than thermopile detectors (1 s to 5 s), lower cost and maintenance. The main drawback of silicon detectors is their limited spectral response. Therefore, to determine broadband POA solar irradiance, a pyranometer calibration factor that converts the narrowband response to broadband is required. Normally this calibration factor is a single number determined under clear-sky conditions with respect to a broadband reference radiometer. The pyranometer is then used for various scenarios including varying airmass, panel orientation and atmospheric conditions. This would not be an issue if all irradiance wavelengths that form the broadband spectrum responded uniformly to atmospheric constituents. Unfortunately, the scattering and absorption signature varies widely with wavelength and the calibration factor for the silicon photodiode pyranometer is not appropriate for other conditions. This paper reviews the issues that will arise from the use of silicon detectors for PV performance measurement in the field based on measurements from a group of pyranometers mounted on a 1-axis solar tracker. Also we will present a comparison of simultaneous spectral and broadband measurements from silicon and thermopile detectors and estimated measurement errors when using silicon devices for both array performance and resource assessment.

  10. Broadband acoustic phased array with subwavelength active tube array

    Science.gov (United States)

    Li, Xiao-Yan; Yang, Zhang-Zhao; Zhu, Yi-Fan; Zou, Xin-Ye; Cheng, Jian-Chun

    2018-02-01

    Acoustic metasurfaces provide a way to manipulate wavefronts at anomalous reflection or refraction angles through subwavelength structures. Here, based on the generalized Snell's refraction law for acoustic metasurfaces and the classical acoustic phased array (PA) theory, a broadband acoustic PA with a subwavelength active tube array has been proposed to form a special acoustic beam and to determine the directivity characteristics of the acoustic source. Theoretical analysis shows that the dispersionless wavefront manipulation can be realized by the gradient model of the active tube array, and a wide working frequency band can be obtained in practical applications from the simulated and experimental results. The numerical results of forming a special acoustic beam and establishing an acoustic focus model with an arbitrary focal position are consistent with the theoretical predictions. The experimental results agree well with the simulated results in the model of forming the acoustic beam of 45 ° . By combining acoustic metamaterials and conventional acoustic PA, the model of the active tube array paves a way to design a composite acoustic PA with high radiation efficiency and system robustness without the need for any complex circuit control system. This design concept is expected to be used in the design of ultrasonic therapy devices and high-efficiency transducers.

  11. Characteristics of AlN/GaN nanowire Bragg mirror grown on (001) silicon by molecular beam epitaxy

    KAUST Repository

    Heo, Junseok

    2013-10-01

    GaN nanowires containing AlN/GaN distributed Bragg reflector (DBR) heterostructures have been grown on (001) silicon substrate by molecular beam epitaxy. A peak reflectance of 70% with normal incidence at 560 nm is derived from angle resolved reflectance measurements on the as-grown nanowire DBR array. The measured peak reflectance wavelength is significantly blue-shifted from the ideal calculated value. The discrepancy is explained by investigating the reflectance of the nanoscale DBRs with a finite difference time domain technique. Ensemble nanowire microcavities with In0.3Ga 0.7N nanowires clad by AlN/GaN DBRs have also been characterized. Room temperature emission from the microcavity exhibits considerable linewidth narrowing compared to that measured for unclad In0.3Ga0.7N nanowires. The resonant emission is characterized by a peak wavelength and linewidth of 575 nm and 39 nm, respectively. © 2013 AIP Publishing LLC.

  12. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible

  13. Metamorphic hemispherical microphone array for three-dimensional acoustics

    Science.gov (United States)

    Biswas, Shantonu; Reiprich, Johannes; Cohrs, Thaden; Stauden, Thomas; Pezoldt, Joerg; Jacobs, Heiko O.

    2017-07-01

    This article describes the realization of a metamorphic stretchable microphone array, which can be inflated by air to morph from a planar to a hemispherical shape. The array undergoes morphological changes to adjust their receive characteristic. To realize this device, a metamorphic printed circuit board technology (m-PCB) is described. The resulting products are millimeter-thin stretchable silicone embedded and electrically interconnected electronic structures with mechanical properties, which resemble a silicone membrane. The microphone array is used to localize a sound source in a 3D space. The results of the planar orientation (resting shape), and the 3D hemispherical orientation after air inflation are compared. The inflated hemispherical microphone array proofs to be better for 3D acoustic localization and/or beam-forming.

  14. Operation of the CMS Silicon Tracker

    CERN Document Server

    Strom, Derek

    2012-01-01

    The CMS tracker is the largest silicon detector ever built, covering 200 square meters and providing an average of 14 high-precision measurements per track. The use of tracker data for reconstruction of charged particles and primary and secondary vertices requires fine-grained monitoring and calibration procedures as well as accurate alignment. Results from timing and threshold optimization, gain calibration, and Lorentz angle determination are shown and the impact on resolution and dE/dx measurements is discussed.

  15. Characterization of a patch-clamp microchannel array towards neuronal networks analysis

    DEFF Research Database (Denmark)

    Alberti, Massimo; Snakenborg, Detlef; Lopacinska, Joanna M.

    2010-01-01

    for simultaneous patch clamping of cultured cells or neurons in the same network. A disposable silicon/silicon dioxide (Si/SiO2) chip with a microhole array was integrated in a microfluidic system for cell handling, perfusion and electrical recording. Fluidic characterization showed that our PC mu CA can work...

  16. Solar cell angle of incidence corrections

    Science.gov (United States)

    Burger, Dale R.; Mueller, Robert L.

    1995-01-01

    Literature on solar array angle of incidence corrections was found to be sparse and contained no tabular data for support. This lack along with recent data on 27 GaAs/Ge 4 cm by 4 cm cells initiated the analysis presented in this paper. The literature cites seven possible contributors to angle of incidence effects: cosine, optical front surface, edge, shadowing, UV degradation, particulate soiling, and background color. Only the first three are covered in this paper due to lack of sufficient data. The cosine correction is commonly used but is not sufficient when the incident angle is large. Fresnel reflection calculations require knowledge of the index of refraction of the coverglass front surface. The absolute index of refraction for the coverglass front surface was not known nor was it measured due to lack of funds. However, a value for the index of refraction was obtained by examining how the prediction errors varied with different assumed indices and selecting the best fit to the set of measured values. Corrections using front surface Fresnel reflection along with the cosine correction give very good predictive results when compared to measured data, except there is a definite trend away from predicted values at the larger incident angles. This trend could be related to edge effects and is illustrated by a use of a box plot of the errors and by plotting the deviation of the mean against incidence angle. The trend is for larger deviations at larger incidence angles and there may be a fourth order effect involved in the trend. A chi-squared test was used to determine if the measurement errors were normally distributed. At 10 degrees the chi-squared test failed, probably due to the very small numbers involved or a bias from the measurement procedure. All other angles showed a good fit to the normal distribution with increasing goodness-of-fit as the angles increased which reinforces the very small numbers hypothesis. The contributed data only went to 65 degrees

  17. Silicon-based thin-film transistors with a high stability

    NARCIS (Netherlands)

    Stannowski, Bernd

    2002-01-01

    Thin-Film Transistors (TFTs) are widely applied as pixel-addressing devices in large-area electronics, such as active-matrix liquid-crystal displays (AMLCDs) or sensor arrays. Hydrogenated amorphous silicon (a-Si:H) and silicon nitride (a-SiNx:H) are generally used as the semiconductor and the

  18. Coupling in reflector arrays

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1968-01-01

    In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present communic......In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present...

  19. Wind loads on flat plate photovoltaic array fields

    Science.gov (United States)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads. The arrays located at the outer boundary of an array field have a protective influence on the interior arrays of the field. A significant decrease of the array wind loads were recorded in the wind tunnel test on array panels located behind a fence and/or interior to the array field compared to the arrays on the boundary and unprotected from the wind. The magnitude of this decrease was the same whether caused by a fence or upwind arrays.

  20. SAMIS - A simulation of the solar array manufacturing industry

    Science.gov (United States)

    Chamberlain, R. G.

    1976-01-01

    SAMIS is a continuing activity of the Project Analysis and Integration Task of the Low-cost Silicon Solar Array Project (LSSA). It provides a standardized procedure for producing reliable estimates of the cost of manufacturing solar arrays or their components. These estimates are based on descriptions of the manufacturing processes which are being studied and developed by LSSA subcontractors and will be used to assess the commercial viability of those processes and to set research priorities.

  1. Waferscale Electrostatic Quadrupole Array for Multiple Ion Beam Manipulation

    OpenAIRE

    Vinayakumar, K. B.; Persaud, A.; Seidl, P. A.; Ji, Q.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Lal, A.

    2018-01-01

    We report on the first through-wafer silicon-based Electrostatic Quadrupole Array (ESQA) to focus high energy ion beams. This device is a key enabler for a wafer based accelerator architecture that lends itself to orders-of-magnitude reduction in cost, volume and weight of charged particle accelerators. ESQs are a key building block in developing compact Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) [1]. In a MEQALAC electrostatic forces are used to focus ions, and elec...

  2. Near field phased array DOA and range estimation of UHF RFID tags

    NARCIS (Netherlands)

    Huiting, J.; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2015-01-01

    This paper presents a near field localization system based on a phased array for UHF RFID tags. To estimate angle and range the system uses a two-dimensional MUSIC algorithm. A four channel phased array is used to experimentally verify the estimation of angle and range for an EPC gen2 tag. The

  3. The chemistry of silicon

    CERN Document Server

    Rochow, E G; Emeléus, H J; Nyholm, Ronald

    1975-01-01

    Pergamon Texts in Organic Chemistry, Volume 9: The Chemistry of Silicon presents information essential in understanding the chemical properties of silicon. The book first covers the fundamental aspects of silicon, such as its nuclear, physical, and chemical properties. The text also details the history of silicon, its occurrence and distribution, and applications. Next, the selection enumerates the compounds and complexes of silicon, along with organosilicon compounds. The text will be of great interest to chemists and chemical engineers. Other researchers working on research study involving s

  4. Wide Angle Michelson Doppler Imaging Interferometer (WAMDII)

    Science.gov (United States)

    Roberts, B.

    1986-01-01

    The wide angle Michelson Doppler imaging interferometer (WAMDII) is a specialized type of optical Michelson interferometer working at sufficiently long path difference to measure Doppler shifts and to infer Doppler line widths of naturally occurring upper atmospheric Gaussian line emissions. The instrument is intended to measure vertical profiles of atmospheric winds and temperatures within the altitude range of 85 km to 300 km. The WAMDII consists of a Michelson interferometer followed by a camera lens and an 85 x 106 charge coupled device photodiode array. Narrow band filters in a filter wheel are used to isolate individual line emissions and the lens forms an image of the emitting region on the charge coupled device array.

  5. open angle glaucoma (poag)?

    African Journals Online (AJOL)

    there is a build up of pressure due to poor outflow of aqueous humor. The outflow obstruction could occur at the trabecular meshwork of the anterior chamber angle or subsequently in the episcleral vein due to raised venous pressure. Such build up of pressure results in glaucoma . Elevated intraocular pressure remains the ...

  6. The quadriceps angle

    DEFF Research Database (Denmark)

    Miles, James Edward; Frederiksen, Jane V.; Jensen, Bente Rona

    2012-01-01

    : Pelvic limbs from red foxes (Vulpes vulpes). METHODS: Q angles were measured on hip dysplasia (HD) and whole limb (WL) view radiographs of each limb between the acetabular rim, mid-point (Q1: patellar center, Q2: femoral trochlea), and tibial tuberosity. Errors of 0.5-2.0 mm at measurement landmarks...

  7. At Right Angles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. At Right Angles. Shailesh A Shirali. Information and Announcements Volume 17 Issue 9 September 2012 pp 920-920. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/017/09/0920-0920 ...

  8. The lateral angle revisited

    DEFF Research Database (Denmark)

    Morgan, Jeannie; Lynnerup, Niels; Hoppa, R.D.

    2013-01-01

    This article presents the results of a validation study of a previously published method of sex determination from the temporal bone. The purpose of this study was to evaluate the lateral angle method for the internal acoustic canal for accurately determining the sex of human skeletal remains usi...... method appears to be of minimal practical use in forensic anthropology and archeology....

  9. Small angle neutron scattering

    International Nuclear Information System (INIS)

    Gupta, Sanjay

    1982-01-01

    The technique of small angle neutron scattering was first used in Germany less than two decades ago. Since then it has developed very rapidly, and today it is regarded as one of the most powerful techniques in materials, chemical and biological research. During the last decade the combination of high flux reactors and sophisticated instrumentation has revolutionized the technique. This paper endeavours to present a brief but comprehensive review of small angle scattering of neutrons and its applications in solid state research. The domain in which small angle neutron scattering is particularly useful is delineated and some of the methods used in the analysis of data are discussed with special emphasis on recent developments. Typical small angle neutron scattering cameras are described. Finally some experimental results on heterogeneities in metallic systems (both static and dynamic studies), radiation damage in materials, superconductivity, magnetic materials and the technologically very important area of non-destructive testing are reviewed in order to illustrate the wide range of applicability of this technique to problems in solid state research. (author)

  10. Neutron small angle scattering

    International Nuclear Information System (INIS)

    Ibel, K.

    1975-01-01

    The neutron small-angle scattering system at the High-Flux Reactor in Grenoble consists of three major parts: the supply of cold neutrons via bent neutron guides; the small angle camera D11; and the data handling facilities. The camera D11 has an overall length of 80 m. The effective length of the camera is variable. The length of the collimator before the fixed sample position can be reduced by movable neutron guides; the secondary flight path of 40 m full length contains detector sites in various positions. Thus, a large domain of momentum transfers can be exploited. Scattering angles between 5.10 -4 and 0.5 rad and neutron wavelengths from 0.2 to 2.0 nm are available with the same instrument and the same relative resolution. A large-area position-sensitive detector is used which allows simultaneous recording of intensities scattered into different angles; it is a multiwire proportional chamber. 3808 elements of 1 cm 2 are arranged in a two-dimensional matrix. Future development comprises an increase of the limit in the count rate due to the electronic interface between the detector and on-line computer, actually at 5.10 4 per sec. by one order of magnitude

  11. At Right Angles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. At Right Angles. Shailesh A Shirali. Information and Announcements Volume 17 Issue 9 September 2012 pp 920-920. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/017/09/0920-0920 ...

  12. Biosurfactant from Lactococcus lactis 53 inhibits microbial adhesion on silicone rubber

    OpenAIRE

    Rodrigues, L. R.; Mei, Henny van der; Teixeira, J. A.; Oliveira, Rosário

    2004-01-01

    The ability of biosurfactant obtained from the probiotic bacterium Lactococcus lactis 53 to inhibit adhesion of four bacterial and two yeast strains isolated from explanted voice prostheses to silicone rubber with and without an adsorbed biosurfactant layer was investigated in a parallel-plate flow chamber. The microbial cell surfaces and the silicone rubber with and without an adsorbed biosurfactant layer were characterized using contact-angle measurements. Water contact angles indi...

  13. Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A

    OpenAIRE

    Rodrigues, L. R.; Mei, Henny van der; Banat, Ibrahim M.; Teixeira, J. A.; Oliveira, Rosário

    2006-01-01

    Prova tipográfica (In Press) Microbial adhesion of four bacterial and two yeast strains isolated from explanted voice prostheses to silicone rubber before and after conditioning with a biosurfactant obtained from the probiotic bacterium Streptococcus thermophilus A was investigated in a parallel plate flow chamber. The silicone rubber with and without an adsorbed biosurfactant layer was characterized using contact angle measurements. Water contact angles indicated that the s...

  14. Direct chemical vapour deposited grapheme synthesis on silicon oxide by controlled copper dewettting

    NARCIS (Netherlands)

    van den Beld, Wesley Theodorus Eduardus; van den Berg, Albert; Eijkel, Jan C.T.

    2015-01-01

    In this paper we present a novel method for direct uniform graphene synthesis onto silicon oxide in a controlled manner. On a grooved silicon oxide wafer is copper deposited under a slight angle and subsequently the substrate is treated by a typical graphene synthesis process. During this process

  15. Angle-selective all-dielectric Huygens’ metasurfaces

    Science.gov (United States)

    Arslan, D.; Chong, K. E.; Miroshnichenko, A. E.; Choi, D.-Y.; Neshev, D. N.; Pertsch, T.; Kivshar, Y. S.; Staude, I.

    2017-11-01

    We experimentally and numerically study the angularly resolved transmission properties of dielectric metasurfaces consisting of silicon nanodisks which support electric and magnetic dipolar Mie-type resonances in the near-infrared spectral range. First, we concentrate on Huygens’ metasurfaces which are characterised by a spectral overlap of the fundamental electric and magnetic dipole resonances of the silicon nanodisks at normal incidence. Huygens’ metasurfaces exhibit a high transmitted intensity over the spectral width of the resonances due to impedance matching, while the transmitted phase shows a variation of 2π as the wavelength is swept across the width of the resonances. We observe that the transmittance of the Huygens’ metasurfaces depends on the incidence angle and is sensitive to polarisation for non-normal incidence. As the incidence angle is increased starting from normal incidence, the two dipole resonances are shifted out of the spectral overlap and the resonant features appear as pronounced transmittance minima. Next, we consider a metasurface with an increased nanodisk radius as compared to the Huygens’ metasurface, which supports spectrally separate electric and magnetic dipole resonances at normal incidence. We show that for TM polarisation, we can shift the resonances of this metasurface into spectral overlap and regain the high resonant transmittance characteristic of Huygens’ metasurfaces at a particular incidence angle. Furthermore, both metasurfaces are demonstrated to reject all TM polarised light incident under angles other than the design overlap angle at their respective operation frequency. Our experimental observations are in good qualitative agreement with numerical calculations.

  16. Head Mounted Display with a Roof Mirror Array Fold

    Science.gov (United States)

    Olczak, Eugene (Inventor)

    2014-01-01

    The present invention includes a head mounted display (HMD) worn by a user. The HMD includes a display projecting an image through an optical lens. The HMD also includes a one-dimensional retro reflective array receiving the image through the optical lens at a first angle with respect to the display and deflecting the image at a second angle different than the first angle with respect to the display. The one-dimensional retro reflective array reflects the image in order to project the image onto an eye of the user.

  17. The Transition-Edge-Sensor Array for the Micro-X Sounding Rocket

    Science.gov (United States)

    Eckart, M. E.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Busch, Sarah Elizabeth; Chervenak J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porst, J. P.; hide

    2012-01-01

    The Micro-X sounding rocket program will fly a 128-element array of transition-edge-sensor microcalorimeters to enable high-resolution X-ray imaging spectroscopy of the Puppis-A supernova remnant. To match the angular resolution of the optics while maximizing the field-of-view and retaining a high energy resolution (< 4 eV at 1 keV), we have designed the pixels using 600 x 600 sq. micron Au/Bi absorbers, which overhang 140 x 140 sq. micron Mo/Au sensors. The data-rate capabilities of the rocket telemetry system require the pulse decay to be approximately 2 ms to allow a significant portion of the data to be telemetered during flight. Here we report experimental results from the flight array, including measurements of energy resolution, uniformity, and absorber thermalization. In addition, we present studies of test devices that have a variety of absorber contact geometries, as well as a variety of membrane-perforation schemes designed to slow the pulse decay time to match the telemetry requirements. Finally, we describe the reduction in pixel-to-pixel crosstalk afforded by an angle-evaporated Cu backside heatsinking layer, which provides Cu coverage on the four sidewalls of the silicon wells beneath each pixel.

  18. Large-scale nanophotonic phased array.

    Science.gov (United States)

    Sun, Jie; Timurdogan, Erman; Yaacobi, Ami; Hosseini, Ehsan Shah; Watts, Michael R

    2013-01-10

    Electromagnetic phased arrays at radio frequencies are well known and have enabled applications ranging from communications to radar, broadcasting and astronomy. The ability to generate arbitrary radiation patterns with large-scale phased arrays has long been pursued. Although it is extremely expensive and cumbersome to deploy large-scale radiofrequency phased arrays, optical phased arrays have a unique advantage in that the much shorter optical wavelength holds promise for large-scale integration. However, the short optical wavelength also imposes stringent requirements on fabrication. As a consequence, although optical phased arrays have been studied with various platforms and recently with chip-scale nanophotonics, all of the demonstrations so far are restricted to one-dimensional or small-scale two-dimensional arrays. Here we report the demonstration of a large-scale two-dimensional nanophotonic phased array (NPA), in which 64 × 64 (4,096) optical nanoantennas are densely integrated on a silicon chip within a footprint of 576 μm × 576 μm with all of the nanoantennas precisely balanced in power and aligned in phase to generate a designed, sophisticated radiation pattern in the far field. We also show that active phase tunability can be realized in the proposed NPA by demonstrating dynamic beam steering and shaping with an 8 × 8 array. This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide-semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips. In turn, this enables arbitrary radiation pattern generation using NPAs and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large-scale deployment in applications such as communication, laser detection and ranging, three-dimensional holography and biomedical sciences, to name just a few.

  19. Phased Array of Phased Arrays (PAPA) Laser Systems Architecture

    Science.gov (United States)

    McManamon, P. A. U. L. F.; Thompson, William

    This paper introduces and analyzes revolutionary laser system architecture capable of dramatically reducing the complexity of laser systems while simultaneously increasing capability. The architecture includes three major subsystems. The first is a phased array of laser sources. In this article, we discuss diode-pumped fiber lasers as the elements of the phased array, although other waveguide lasers can also be considered. The second provides wavefront control and electronics beam steering, as described in an IEEE Proceedings article on "Optical Phased Array Technology" [1]. The third is subaperture receiver technology. Combining these three technologies into a new laser systems architecture results in a system that has graceful degradation, can steer to as wide an angle as individual optical phased array subapertures, and can be scaled to high power and large apertures through phasing of a number of subapertures. Diode-pumped fiber lasers are appealing as laser sources because they are electrically pumped, efficient, relatively simple, and scalable to significant power levels (over 100 Watts has been demonstrated from a single diode-pumped fiber laser) [2]. The fiber laser design also lends itself to integration into a phased array. Fiber lasers have been phased. Initial phasing demonstrations have been at low power and were conducted by taking a single source, dividing it into multiple fibers, then phasing them together. To develop this technology further we need to use independent fiber lasers or fiber amplifiers, seeded by a common source, and to increase laser power. As we increase laser power, we will have to learn to cope with nonlinearities in the laser amplifiers. Optical Phased Array technology has demonstrated steering over a 90-degree field of regard [4], although this approach used additional optical components. If we use straightforward optical phased array beam steering without additional optics we can steer with high efficiency to about one-third

  20. Terahertz Array Receivers with Integrated Antennas

    Science.gov (United States)

    Chattopadhyay, Goutam; Llombart, Nuria; Lee, Choonsup; Jung, Cecile; Lin, Robert; Cooper, Ken B.; Reck, Theodore; Siles, Jose; Schlecht, Erich; Peralta, Alessandro; hide

    2011-01-01

    Highly sensitive terahertz heterodyne receivers have been mostly single-pixel. However, now there is a real need of multi-pixel array receivers at these frequencies driven by the science and instrument requirements. In this paper we explore various receiver font-end and antenna architectures for use in multi-pixel integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies has progressed very well over the past few years. Novel stacking of micro-machined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages has made it possible to design multi-pixel heterodyne arrays. One of the critical technologies to achieve fully integrated system is the antenna arrays compatible with the receiver array architecture. In this paper we explore different receiver and antenna architectures for multi-pixel heterodyne and direct detector arrays for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.

  1. Applications of the phased array technique

    International Nuclear Information System (INIS)

    Erhard, A.; Schenk, G.; Hauser, Th.; Voelz, U.

    1999-01-01

    The application of the phased array technique was limited to heavy and thick wall components as present in the nuclear industry. With the improvement of the equipment and probes other application areas are now open for the phased array technique, e.g. the inspection of the turbine blade root, weld inspection in a wall thickness range between 12 and 40 mm, inspection of aircraft components, inspection of spot welds or inspection of concretes. The aim of the use of phased array techniques has not been changed related to the first applications, i.e. the adaptation of the sound beam to the geometry by steering the angel of incidence or the skewing angle as well as the focussing of sound fields. Due to the fact, that the new applications of the phased array techniques in some cases don't leave the laboratories for the time being, the examples of this contribution will focus applications with practical background. (orig.)

  2. Sensorless PV Array Diagnostic Method for Residential PV Systems

    DEFF Research Database (Denmark)

    Sera, Dezso; Spataru, Sergiu; Mathe, Laszlo

    2011-01-01

    This work proposes a temperature and irradiance sensorless diagnostic method suitable for small residential PV installations, focusing on detection of partial shadows. The method works by detection of failures in crystalline silicone PV arrays by concomitant monitoring of some of their key...

  3. Substrate temperature control for the formation of metal nanohelices by glancing angle deposition

    International Nuclear Information System (INIS)

    Sumigawa, Takashi; Sakurai, Atsushi; Iwata, Kazuya; Chen, Shaoguang; Kitamura, Takayuki; Tanie, Hisashi

    2015-01-01

    The targets of this study are to develop a device to precisely control the temperature during glancing angle deposition, to make films consisting of low melting temperature metal nanoelements with a controlled shape (helix), and to explore the substrate temperature for controlling the nanoshapes. A vacuum evaporation system capable of both cooling a substrate and measurement of its temperature was used to form thin films consisting of arrays of Cu and Al nanohelices on silicon substrates by maintaining the substrate temperature at T s /T m  < 0.22 (T s is the substrate temperature and T m is the melting temperature of target material). The critical T s /T m to produce Cu and Al nanohelices corresponds to the transitional homologous temperature between zones I and II in the structure zone model for the solid film, where surface diffusion becomes dominant. X-ray diffraction analysis indicated that the Cu and Al nanohelix thin films were composed of coarse oriented grains with diameters of several tens of nanometers

  4. Experimental study of porous silicon shell pillars under retentive conditions

    NARCIS (Netherlands)

    de Malsche, Wim; Gardeniers, Johannes G.E.; Desmet, Gert

    2008-01-01

    Experimental measurements of the retention capacity and the band broadening in perfectly ordered porous shell pillar array columns are presented for a wide range of retention conditions and layer thicknesses. The porous silicon shells were obtained using electrochemical anodization of the solid

  5. 2-D Row-Column CMUT Arrays with an Open-Grid Support Structure

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Dahl-Petersen, Christian; Jensen, Jørgen Arendt

    2013-01-01

    Fabrication and characterization of 64 + 64 2-D row-column addressed CMUT arrays with 250 μm element pitch and 4.4 MHz center frequency in air incorporating a new design approach is presented. The arrays are comprised of two wafer bonded, structured silicon-on-insulator wafers featuring an opengr...

  6. Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method

    NARCIS (Netherlands)

    Verbaan, F.J.; Bal, S.M.; van den Berg, D.J.; Dijksman, J.A.; van Hecke, M.; Verpoorten, H.; van den Berg, Albert; Lüttge, Regina; Bouwstra, J.A.

    2008-01-01

    An electrical applicator was designed, which can pierce short microneedles into the skin with a predefined velocity. Three different shapes of microneedles were used, namely 300 mu m assembled hollow metal microneedle arrays, 300 mu m solid metal microneedle arrays and 245 mu m hollow silicon

  7. Micromachined silicon seismic accelerometer development

    Energy Technology Data Exchange (ETDEWEB)

    Barron, C.C.; Fleming, J.G.; Montague, S. [and others

    1996-08-01

    Batch-fabricated silicon seismic transducers could revolutionize the discipline of seismic monitoring by providing inexpensive, easily deployable sensor arrays. Our ultimate goal is to fabricate seismic sensors with sensitivity and noise performance comparable to short-period seismometers in common use. We expect several phases of development will be required to accomplish that level of performance. Traditional silicon micromachining techniques are not ideally suited to the simultaneous fabrication of a large proof mass and soft suspension, such as one needs to achieve the extreme sensitivities required for seismic measurements. We have therefore developed a novel {open_quotes}mold{close_quotes} micromachining technology that promises to make larger proof masses (in the 1-10 mg range) possible. We have successfully integrated this micromolding capability with our surface-micromachining process, which enables the formation of soft suspension springs. Our calculations indicate that devices made in this new integrated technology will resolve down to at least sub-{mu}G signals, and may even approach the 10{sup -10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

  8. Relationship between the angle of repose and angle of internal ...

    African Journals Online (AJOL)

    Abstract. Click on the link to view the abstract. Keywords: Angle of repose, angle of internal friction, granular materials, triaxial compression machine, moisture content. Tanzania J. Agric. Sc. (1998) Vol.1 No.2, 187-194 ...

  9. Development of an angled Si-PM-based detector unit for positron emission mammography (PEM) system

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Kouhei, E-mail: nakanishi.kouhei@c.mbox.nagoya-u.ac.jp; Yamamoto, Seiichi

    2016-11-21

    Positron emission mammography (PEM) systems have higher sensitivity than clinical whole body PET systems because they have a smaller ring diameter. However, the spatial resolution of PEM systems is not high enough to detect early stage breast cancer. To solve this problem, we developed a silicon photomultiplier (Si-PM) based detector unit for the development of a PEM system. Since a Si-PM's channel is small, Si-PM can resolve small scintillator pixels to improve the spatial resolution. Also Si-PM based detectors have inherently high timing resolution and are able to reduce the random coincidence events by reducing the time window. We used 1.5×1.9×15 mm LGSO scintillation pixels and arranged them in an 8×24 matrix to form scintillator blocks. Four scintillator blocks were optically coupled to Si-PM arrays with an angled light guide to form a detector unit. Since the light guide has angles of 5.625°, we can arrange 64 scintillator blocks in a nearly circular shape (a regular 64-sided polygon) using 16 detector units. We clearly resolved the pixels of the scintillator blocks in a 2-dimensional position histogram where the averages of the peak-to-valley ratios (P/Vs) were 3.7±0.3 and 5.7±0.8 in the transverse and axial directions, respectively. The average energy resolution was 14.2±2.1% full-width at half-maximum (FWHM). By including the temperature dependent gain control electronics, the photo-peak channel shifts were controlled within ±1.5% with the temperature from 23 °C to 28 °C. With these results, in addition to the potential high timing performance of Si-PM based detectors, our developed detector unit is promising for the development of a high-resolution PEM system.

  10. Breast Implants: Saline vs. Silicone

    Science.gov (United States)

    ... differ in material and consistency, however. Saline breast implants Saline implants are filled with sterile salt water. ... of any age for breast reconstruction. Silicone breast implants Silicone implants are pre-filled with silicone gel — ...

  11. Low atomic number coating for XEUS silicon pore optics

    DEFF Research Database (Denmark)

    Lumb, D.H.; Cooper-Jensen, Carsten P.; Krumrey, M.

    2008-01-01

    We describe a set of measurements on coated silicon substrates that are representative of the material to be used for the XEUS High Performance Pore Optics (HPO) technology. X-ray angular reflectance measurements at 2.8 and 8 keV, and energy scans of reflectance at a fixed angle representative of...

  12. Enhanced Plasmonic Light Absorption for Silicon Schottky-Barrier Photodetectors

    DEFF Research Database (Denmark)

    Hashemi, Mahdieh; Farzad, Mahmood Hosseini; Mortensen, N. Asger

    2013-01-01

    is transferred into hot carriers near the Schottky barrier. The proposed broadband photodetector with a bi-grating metallic structure on the silicon substrate enables to absorb 76 % of the infrared light in the metal with a 200-nm bandwidth, while staying insensitive to the incident angle. These results pave...

  13. Investigations of surface characterization of silicone rubber due to ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. In the present work, tracking phenomena has been studied with silicone rubber material under the. a.c. and d.c. voltages following IEC-587 standards. The surface condition of the tracked zone was analysed using wide angle X-ray diffraction (WAXD) and thermogravimetric differential thermal analysis (TG–DTA).

  14. Development of the H1 backward silicon strip detector

    International Nuclear Information System (INIS)

    Eick, W.; Hansen, K.; Lange, W.; Prell, S.; Zimmermann, W.; Bullough, M.A.; Greenwood, N.M.; Lucas, A.D.; Newton, A.M.; Wilburn, C.D.; Horisberger, R.; Pitzl, D.; Haynes, W.J.; Noyes, G.

    1996-10-01

    The development and first results are described of a silicon strip detector telescope for the HERA experiment H1 designed to measure the polar angle of deep inelastic scattered electrons at small Bjorken x and low momentum transfers Q 2 . (orig.)

  15. Parasitic antenna arrays for wireless MIMO systems

    CERN Document Server

    Kanatas, Athanasios; Papadias, Constantinos

    2014-01-01

    This  book covers a cross-section of two technologies: parasitic antenna arrays driven via analogue circuits; and MIMO technology for multi-antenna arrays.  The combination of these two technologies results in novel functionality. Relevant technical angles, ranging from theoretic to electromagnetic considerations; from analogue circuit to digital baseband control for signal generation; and from channel modeling to communication theoretic aspects are detailed by the contributors. Potential applications are considered in conjunction with current and upcoming wireless standards is provided.

  16. Performance of Thin-Window Silicon Drift Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Carini, , G.A.; Chen, W.; De Geronimo, G.; Fried, J.; Gaskin, J.A.; Keister; J.W.; Li, Z.; Ramsey, B.D.; Rehak, P.; Siddons, D.P.

    2008-10-20

    Several sets of hexagonal Silicon Drift Detector (SDD) arrays were produced at BNL and by a commercial vendor, KETEK. Each array consists of 14 independent detectors (pixels) and two additional test pixels at two of the corners. The side of the detector upon which the X-ray radiation is incident (window side) has a thin junction covering the entire active area. The opposite side (device side) contains a drift-field electrode structure in the form of a hexagonal spiral and an electron collecting anode. There are 4 guard rings surrounding the 14-pixel array area on both sides of the detector. Within each array, 7 of the pixels have an aluminum field plate - interrupted spirals that stabilize the electric potential under the Si-SiO2 interface, while the other 7 do not. The drift field in the silicon volume is controlled by three biases: one is applied to a rectifying contact, one to the detector entrance window, and the third to a contact on the outer portion of the spiral common to all pixels in the array. Some arrays have been newly measured in NSLS beam line U3C at BNL. The complete assemblies were installed in the vacuum and cooled to ?27 C. During this run, spectra for energies ranging between 400 and 900 eV were collected in several pixels, some with field plates and others without. The detailed testing results of several arrays are reported here.

  17. Critical angle laser refractometer

    International Nuclear Information System (INIS)

    Castrejon-Pita, J.R.; Morales, A.; Castrejon-Garcia, R.

    2006-01-01

    A simple laser refractometer based on the detection of the critical angle for liquids is presented. The calibrated refractometer presents up to 0.000 11 of uncertainty when the refractive index is in the range between 1.300 00 and 1.340 00. The experimental setup is easy to construct and the material needed is available at most optics laboratories. The calibration method is simple and can be used in other devices. The refractive index measurements in aqueous solutions of sodium chloride were carried out to test the device and a linear dependence between the refractive index and the salt concentration was found

  18. Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays

    Science.gov (United States)

    Li, Zheng; Chen, Wei

    2016-07-05

    A drift detector array, preferably a silicon drift detector (SDD) array, that uses a low current biasing adaptor is disclosed. The biasing adaptor is customizable for any desired geometry of the drift detector single cell with minimum drift time of carriers. The biasing adaptor has spiral shaped ion-implants that generate the desired voltage profile. The biasing adaptor can be processed on the same wafer as the drift detector array and only one biasing adaptor chip/side is needed for one drift detector array to generate the voltage profiles on the front side and back side of the detector array.

  19. Infrared detectors and arrays; Proceedings of the Meeting, Orlando, FL, Apr. 6, 7, 1988

    International Nuclear Information System (INIS)

    Dereniak, E.L.

    1988-01-01

    The papers contained in this volume provide an overview of recent advances in theoretical and experimental research related to IR detector materials and arrays. The major subject areas covered include IR Schottky barrier silicide arrays, HdCdTe developments, SPRITE technology, superlattice or bandgap-engineered devices, extrinsic silicon technology, indium antimonide technology, and pyroelectric arrays. Papers are presented on time division multiplexed time delay integration, spatial noise in staring IR focal plane arrays, pyroelectrics in a harsh environment, and testing of focal plane arrays

  20. Fluorination of silicone rubber by plasma polymerization

    Science.gov (United States)

    Fielding, Jennifer Chase

    Plasma polymerized fluorocarbon (PPFC) films were deposited onto various silicone rubber substrates, including O-rings, to decrease oil uptake. Depositions were performed using a radio frequency (rf)-powered plasma reactor and various fluorocarbon monomers, such as C2F6, C2F 5H, C3F6, and 1H,1H,2H-perfluoro-1-dodecene. PPFC films which were most promising for inhibiting oil uptake were deposited with 1H,1H,2H-perfluoro-1-dodecene, and were composed predominantly of perfluoromethylene (CF2) species. These films displayed low critical surface energies (as low as 2.7 mJ/m2), and high contact angles with oil (84°), which were correlated with the amount of CF2 species present in the film. For the films with the highest degree of CF2 (up to 67%), CF2 chains may have been oriented slightly perpendicular to the substrate and terminated by CF3 species. Adhesion of the PPFC films directly to silicone rubber was found to be poor. However, when a plasma polymerized hydrocarbon interlayer was deposited on the silicone rubber prior to the fluorocarbon films, adhesion was excellent. O-rings coated with multilayer fluorocarbon films showed 2.6% oil uptake after soaking in oil for 100 hrs at 100°C. Due to variability in data, and the low quality of the industrial grade silicone rubber, the oil uptake mechanism was determined to be from oil flowing through flaws in the film due to defects within the substrate, not from generalized diffusion through the film. This mechanism was confirmed using higher quality silicone rubber, which showed little or no oil diffusion. Therefore, this film may perform well as an oil-repelling barrier when deposited on a high quality silicone rubber.

  1. Heat-rejection design for large concentrating solar arrays

    Science.gov (United States)

    French, E. P.

    1980-01-01

    This paper considers the effect of heat rejection devices (radiators) on the performance and cost of large concentrating solar arrays for space application. Overall array characteristics are derived from the weight, cost, and performance of four major components; namely primary structure, optics/secondary structure, radiator, and solar panel. An ideal concentrator analysis is used to establish general cost and performance trends independent of specific array design. Both passive and heat-pipe radiation are evaluated, with an incremental cost-of-power approach used in the evaluation. Passive radiators are found to be more cost effective with silicon than with gallium arsenide (GaAs) arrays. Representative concentrating arrays have been evaluated for both near-term and advanced solar cell technology. Minimum cost of power is achieved at geometric concentration ratios in the range 2 to 6.

  2. Scaling of misorientation angle distributions

    DEFF Research Database (Denmark)

    Hughes, D.A.; Chrzan, D.C.; Liu, Q.

    1998-01-01

    The measurement of misorientation angle distributions following different amounts of deformation in cold-rolled aluminum and nickel and compressed stainless steel is reported. The sealing of the dislocation cell boundary misorientation angle distributions is studied. Surprisingly, the distributio...

  3. Broadband antireflection silicon carbide surface by self-assembled nanopatterned reactive-ion etching

    DEFF Research Database (Denmark)

    Ou, Yiyu; Aijaz, Imran; Jokubavicius, Valdas

    2013-01-01

    of 390x02013;784 nm is dramatically suppressed from 21.0x00025; to 1.9x00025; after introducing the pseudoperiodic nanostructures. A luminescence enhancement of 226x00025; was achieved at an emission angle of 20x000B0; on the fluorescent silicon carbide. Meanwhile, the angle-resolved photoluminescence...... study presents a considerable omnidirectional luminescence enhancement....

  4. The effect of hydrogen on the morphology of n-type silicon electrodes under electrochemical conditions

    DEFF Research Database (Denmark)

    Goldar, A.; Roser, S.J.; Caruana, D.

    2001-01-01

    We study the electrochemical roughening of a silicon electrode surface during the hydrogen evolution reaction in a fluoride electrolyte using neutron reflection. We demonstrate that as the roughening process modifies the morphology of the silicon surface we can follow the changes by observing...... the changes in the shape of the total reflection feature. We assume that the change in the morphology of the surface is due to the diffusion of hydrogen in the silicon electrode. This assumption allow us to model the changes in the reflected intensity at two different angles and find the diffusion exponent...... for the diffusion of hydrogen in the silicon lattice....

  5. Angle performance on optima MDxt

    Energy Technology Data Exchange (ETDEWEB)

    David, Jonathan; Kamenitsa, Dennis [Axcelis Technologies, Inc., 108 Cherry Hill Dr, Beverly, MA 01915 (United States)

    2012-11-06

    Angle control on medium current implanters is important due to the high angle-sensitivity of typical medium current implants, such as halo implants. On the Optima MDxt, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through six narrow slits, and any angle adjustment is made by electrostatically steering the beam, while cross-wafer beam parallelism is adjusted by changing the focus of the electrostatic parallelizing lens (P-lens). In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen prior to implant. A variety of tests were run to measure the accuracy and repeatability of Optima MDxt's angle control. SIMS profiles of a high energy, channeling sensitive condition show both the cross-wafer angle uniformity, along with the small-angle resolution of the system. Angle repeatability was quantified by running a channeling sensitive implant as a regular monitor over a seven month period and measuring the sheet resistance-to-angle sensitivity. Even though crystal cut error was not controlled for in this case, when attributing all Rs variation to angle changes, the overall angle repeatability was measured as 0.16 Degree-Sign (1{sigma}). A separate angle repeatability test involved running a series of V-curves tests over a four month period using low crystal cut wafers selected from the same boule. The results of this test showed the angle repeatability to be <0.1 Degree-Sign (1{sigma}).

  6. Variable angle correlation spectroscopy

    International Nuclear Information System (INIS)

    Lee, Y.K.; Lawrence Berkeley Lab., CA

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13 C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system

  7. Variable angle correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Kyo [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.

  8. Fiber Laser Array

    National Research Council Canada - National Science Library

    Simpson, Thomas

    2002-01-01

    ...., field-dependent, loss within the coupled laser array. During this program, Jaycor focused on the construction and use of an experimental apparatus that can be used to investigate the coherent combination of an array of fiber lasers...

  9. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  10. ALICE silicon strip module

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    This small silicon detector strip will be inserted into the inner tracking system (ITS) on the ALICE detector at CERN. This detector relies on state-of-the-art particle tracking techniques. These double-sided silicon strip modules have been designed to be as lightweight and delicate as possible as the ITS will eventually contain five square metres of these devices.

  11. Constructing metal-based structures on nanopatterned etched silicon.

    Science.gov (United States)

    Zhang, Xiaojiang; Qiao, Yinghong; Xu, Lina; Buriak, Jillian M

    2011-06-28

    Silicon surfaces with nanoscale etched patterns were obtained using polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer films as templates, followed by brief immersion in HF(aq). The resulting interfaces were comprised of pseudohexagonal arrays of pits on the silicon, whose shapes depended upon the chosen silicon orientation. The top unetched face of silicon remains capped by the native oxide, and the pit interiors are terminated by Si-H(x). Selective chemical functionalization via these two chemical handles was demonstrated to be a viable approach toward building nanostructured metal oxide and metal features within these silicon pits and on the top face. Using a series of interfacial chemical reactions, including oxidation (of Si-H(x)-terminated regions), hydrosilylation, and alkoxysilane-based chemistry on silicon oxide, the growth of metal-based structures can be spatially controlled. In the first approach, titania nanobowls were grown within the etch pits, and in the second, galvanic displacement was used to produce gold nanoparticles either within the etch pits, on the top silicon face, or both.

  12. Nanostructured silicon anodes for lithium ion rechargeable batteries.

    Science.gov (United States)

    Teki, Ranganath; Datta, Moni K; Krishnan, Rahul; Parker, Thomas C; Lu, Toh-Ming; Kumta, Prashant N; Koratkar, Nikhil

    2009-10-01

    Rechargeable lithium ion batteries are integral to today's information-rich, mobile society. Currently they are one of the most popular types of battery used in portable electronics because of their high energy density and flexible design. Despite their increasing use at the present time, there is great continued commercial interest in developing new and improved electrode materials for lithium ion batteries that would lead to dramatically higher energy capacity and longer cycle life. Silicon is one of the most promising anode materials because it has the highest known theoretical charge capacity and is the second most abundant element on earth. However, silicon anodes have limited applications because of the huge volume change associated with the insertion and extraction of lithium. This causes cracking and pulverization of the anode, which leads to a loss of electrical contact and eventual fading of capacity. Nanostructured silicon anodes, as compared to the previously tested silicon film anodes, can help overcome the above issues. As arrays of silicon nanowires or nanorods, which help accommodate the volume changes, or as nanoscale compliant layers, which increase the stress resilience of silicon films, nanoengineered silicon anodes show potential to enable a new generation of lithium ion batteries with significantly higher reversible charge capacity and longer cycle life.

  13. The solenoidal detector collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems (STS) will be fundamental components of the tracking systems for both planned major SSC experiments. The STS is physically a small part of the central tracking system and the calorimeter of the detector being proposed by the Solenoidal Detector Collaboration (SDC). Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. The STS will consist of silicon microstrip detectors and possibly silicon pixel detectors. The other two components are an outer barrel tracker, which will consist of straw tubes or scintillating fibers; and an outer intermediate angle tracker, which will consist of gas microstrips. The components are designed to work as an integrated system. Each componenet has specific strengths, but is individually incapable of providing the overall performance required by the physics goals of the SSC. The large particle fluxes, the short times between beam crossing, the high channel count, and the required very high position measurement accuracy pose challenging problems that must be solved. Furthermore, to avoid degrading the measurements, the solutions must be achieved using only a minimal amount of material. An additional constraint is that only low-Z materials are allowed. If that were not difficlut enough, the solutions must also be affordable

  14. Fabrication of a 77 GHz Rotman Lens on a High Resistivity Silicon Wafer Using Lift-Off Process

    Directory of Open Access Journals (Sweden)

    Ali Attaran

    2014-01-01

    Full Text Available Fabrication of a high resistivity silicon based microstrip Rotman lens using a lift-off process has been presented. The lens features 3 beam ports, 5 array ports, 16 dummy ports, and beam steering angles of ±10 degrees. The lens was fabricated on a 200 μm thick high resistivity silicon wafer and has a footprint area of 19.7 mm × 15.6 mm. The lens was tested as an integral part of a 77 GHz radar where a tunable X band source along with an 8 times multiplier was used as the RF source and the resulting millimeter wave signal centered at 77 GHz was radiated through a lens-antenna combination. A horn antenna with a downconverter harmonic mixer was used to receive the radiated signal and display the received signal in an Advantest R3271A spectrum analyzer. The superimposed transmit and receive signal in the spectrum analyzer showed the proper radar operation confirming the Rotman lens design.

  15. Black silicon integrated aperture

    Science.gov (United States)

    Liu, Tianbo; Dickensheets, David L.

    2017-10-01

    This paper describes the incorporation of nanotextured black silicon as an optical absorbing material into silicon-based micro-optoelectromechanical systems devices to reduce stray light and increase optical contrast during imaging. Black silicon is created through a maskless dry etch process and characterized for two different etch conditions, a cold etch performed at 0°C and a cryogenic etch performed at -110°C. We measure specular reflection at visible wavelengths to be black velvet paint used to coat optical baffles and compare favorably with other methods to produce black surfaces from nanotextured silicon or using carbon nanotubes. We illustrate the use of this material by integrating a black silicon aperture around the perimeter of a deformable focus-control mirror. Imaging results show a significant improvement in contrast and image fidelity due to the effective reduction in stray light achieved with the self-aligned black aperture.

  16. Advances in silicon nanophotonics

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Pu, Minhao

    plasma effect have been tested up to 40 Gbit/s, and hybrid evanescent silicon lasers have been realized both in the form of distributed feed-back lasers and micro-disk lasers. For enhancing the impact of silicon photonics in future ultrafast and energy-efficient all-optical signal processing, e.......g. in high-bit-rate optical communication circuits and networks, it is vital that the nonlinear optical effects of silicon are being strongly enhanced. This can among others be achieved in photonic-crystal slow-light waveguides and in nano-engineered photonic-wires (Fig. 1). In this talk I shall present some......Silicon has long been established as an ideal material for passive integrated optical circuitry due to its high refractive index, with corresponding strong optical confinement ability, and its low-cost CMOS-compatible manufacturability. However, the inversion symmetry of the silicon crystal lattice...

  17. Silicone-containing composition

    Science.gov (United States)

    Mohamed, Mustafa

    2012-01-24

    A silicone-containing composition comprises the reaction product of a first component and an excess of an isocyanate component relative to the first component to form an isocyanated intermediary. The first component is selected from one of a polysiloxane and a silicone resin. The first component includes a carbon-bonded functional group selected from one of a hydroxyl group and an amine group. The isocyanate component is reactive with the carbon-bonded functional group of the first component. The isocyanated intermediary includes a plurality of isocyanate functional groups. The silicone-containing composition comprises the further reaction product of a second component, which is selected from the other of the polysiloxane and the silicone resin. The second component includes a plurality of carbon-bonded functional groups reactive with the isocyanate functional groups of the isocyanated intermediary for preparing the silicone-containing composition.

  18. Axiom turkey genotyping array

    Science.gov (United States)

    The Axiom®Turkey Genotyping Array interrogates 643,845 probesets on the array, covering 643,845 SNPs. The array development was led by Dr. Julie Long of the USDA-ARS Beltsville Agricultural Research Center under a public-private partnership with Hendrix Genetics, Aviagen, and Affymetrix. The Turk...

  19. Performance of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon Pixel readout for Cherenkov ring detection

    CERN Document Server

    Alemi, M; Bibby, J H; Campbell, M; Duane, A; Easo, S; Gys, Thierry; Halley, A W; Piedigrossi, D; Puertolas, D; Rosso, E; Simmons, B; Snoeys, W; Websdale, David M; Wotton, S A; Wyllie, Ken H

    1999-01-01

    We report on the first test beam performance of a hybrid photon detector prototype, using binary readout electronics, intended for use in the ring imaging Cherenkov detectors of the LHCb experiment at the CERN Large Hadron Collider. The photon detector is based on a cross-focussed image intensifier tube geometry. The anode consists of a silicon pixel array bump-bonded to a binary readout chip with matching pixel electronics. The detector has been installed in a quarter-scale prototype vessel of the LHCb ring imaging Cherenkov system. Focussed ring images produced by 120 GeV/c negative pions traversing an air radiator have been recorded. The observed light yield and Cherenkov angle resolution are discussed.

  20. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed

    2014-07-29

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  1. Semiconductor nanowires directly grown on graphene--towards wafer scale transferable nanowire arrays with improved electrical contact.

    Science.gov (United States)

    Alper, John P; Gutes, Albert; Carraro, Carlo; Maboudian, Roya

    2013-05-21

    We present for the first time the growth of dense arrays of silicon and silicon carbide nanowires directly on graphene as well as methods of transferring these novel hybrids to arbitrary substrates. Improved electrical contact for SiC nanowire/graphene hybrid is demonstrated in the application of a robust supercapacitor electrode.

  2. Ageing effects on the wettability behavior of laser textured silicon

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, B. [Departamento de Engenharia Quimica e Biologica, Instituto Superior Tecnico, TU Lisbon Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Instituto Tecnologico Nuclear, Estrada Nac. 10, 2686-953 Sacavem (Portugal); Serro, A.P. [Centro de Quimica Estrutural, Instituto Superior Tecnico, TU Lisbon, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Centro de Investigacao Interdisciplinar Egas Moniz, Instituto Superior de Ciencias da Saude Egas Moniz, Quinta da Granja Monte de Caparica, 2829-511 Caparica (Portugal); Oliveira, V. [Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emidio Navarro No. 1, 1959-007 Lisboa (Portugal); ICEMS, Instituto Superior Tecnico, TU Lisbon Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Montemor, M.F. [ICEMS, Instituto Superior Tecnico, TU Lisbon Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Alves, E. [Instituto Tecnologico Nuclear, Estrada Nac. 10, 2686-953 Sacavem (Portugal); Saramago, B. [Departamento de Engenharia Quimica e Biologica, Instituto Superior Tecnico, TU Lisbon Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Centro de Quimica Estrutural, Instituto Superior Tecnico, TU Lisbon, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Colaco, R., E-mail: rogerio.colaco@ist.utl.pt [Departamento de Engenharia Quimica e Biologica, Instituto Superior Tecnico, TU Lisbon Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Centro de Quimica Estrutural, Instituto Superior Tecnico, TU Lisbon, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-01-15

    In the present work we investigate the ageing of acid cleaned femtosecond laser textured <1 0 0> silicon surfaces. Changes in the surface structure and chemistry were analysed by Rutherford backscattering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS), in order to explain the variation with time of the water contact angles of the laser textured surfaces. It is shown that highly hydrophobic silicon surfaces are obtained immediately after laser texturing and cleaning with acid solutions (water contact angle > 120{sup o}). However these surfaces are not stable and ageing leads to a decrease of the water contact angle which reaches a value of 80{sup o}. XPS analysis of the surfaces shows that the growth of the native oxide layer is most probably responsible for this behavior.

  3. Low Power Optical Phase Array Using Graphene on Silicon Photonics

    Science.gov (United States)

    2018-03-01

    Rev. 8-98) Prescribed by ANSI Std. Z39-18 ACRONYMS AFRL/RYDI i Approved for public release; distribution is unlimited. Table of Contents Section...5 2.2.2 Graphene Edge Contacts............................................................................................. 6 3...22 4.2 Graphene Edge Contacts............................................................................................... 23 5. CONCLUSIONS

  4. Small angle neutron scattering

    International Nuclear Information System (INIS)

    Dasannacharya, B.A.; Goyal, P.S.

    1997-01-01

    Small angle neutron scattering (SANS) is one of the most popular neutron scattering technique both for the basic research and as a tool in the hands of applied scientist. SANS is used for studying the structure of a material on a length scale of 10 - 1000 A. SANS is a diffraction experiment that involves scattering of a monocromatic beam of neutrons in order to obtain structural information about macromolecules and heterogeneities. This paper will discuss the design of SANS spectrometers with a special emphasis on the instruments which are better suited for medium flux reactors. The design of several different types of SANS spectrometers will be given. The optimization procedures and appropriate modifications to suit the budget and the space will be discussed. As an example, the design of a SANS spectrometer at CIRUS reactor Trombay will be given. (author)

  5. Ordered Au Nanodisk and Nanohole Arrays: Fabrication and Applications

    KAUST Repository

    Zheng, Yue Bing

    2010-01-01

    We have utilized nanosphere lithography (NSL) to fabricate ordered Au nanodisk and nanohole arrays on substrates and have studied the localized surface plasmon resonance (LSPR) of the arrays. Through these investigations, we demonstrate that the angle- dependent behavior of the LSPR in the Au nanodisk arrays enables real-time observation of exciton-plasmon couplings. In addition, we show that the NSL-fabricated Au nanohole arrays can be applied as templates for patterning micro-/nanoparticles under capillary force. The unique structural and plasmonic characteristics of the Au nanodisk and nano- hole arrays, as well as the low-cost and high-throughput NSL-based nanofabrication technique, render these arrays excellent platforms for numerous engineering applications. © 2010 by ASME.

  6. Analysis of directional dependence of the two-dimensional array of detectors 2D array seven 29 implications in the planning system

    International Nuclear Information System (INIS)

    Mora Melendez, R.; Seguro Fernandez, A.; Iborra Oquendo, M.; Urena Llinares, A.

    2013-01-01

    The main objective of our study is to find correction factors dependent on the 2D array incidence angles, and to give account of the phenomenon, allowing the Planner to faithfully reproduce data and curves measured experimentally. (Author)

  7. Developing Barbed Microtip-Based Electrode Arrays for Biopotential Measurement

    Directory of Open Access Journals (Sweden)

    Li-Sheng Hsu

    2014-07-01

    Full Text Available This study involved fabricating barbed microtip-based electrode arrays by using silicon wet etching. KOH anisotropic wet etching was employed to form a standard pyramidal microtip array and HF/HNO3 isotropic etching was used to fabricate barbs on these microtips. To improve the electrical conductance between the tip array on the front side of the wafer and the electrical contact on the back side, a through-silicon via was created during the wet etching process. The experimental results show that the forces required to detach the barbed microtip arrays from human skin, a polydimethylsiloxane (PDMS polymer, and a polyvinylchloride (PVC film were larger compared with those required to detach microtip arrays that lacked barbs. The impedances of the skin-electrode interface were measured and the performance levels of the proposed dry electrode were characterized. Electrode prototypes that employed the proposed tip arrays were implemented. Electroencephalogram (EEG and electrocardiography (ECG recordings using these electrode prototypes were also demonstrated.

  8. Characterization of spreadability of nonaqueous ethylcellulose gel matrices using dynamic contact angle.

    Science.gov (United States)

    Chow, Keat Theng; Chan, Lai Wah; Heng, Paul W S

    2008-08-01

    This study reports the characterization of spreadability of nonaqueous ethylcellulose (EC) gel matrices intended for topical drug delivery using a newly developed method based on dynamic contact angle. EC solutions were prepared using three grades of EC and propylene glycol dicaprylate/dicaprate. Dynamic contact angles of sessile drops of EC solutions on silicone elastomer were measured using a dynamic contact angle analyzer equipped with axisymmetric drop shape analysis-profile. Roughness of silicone elastomer, viscosity of EC solutions and compressibility of semisolid EC gels were determined by the atomic force microscope, cone-and-plate rheometer and tensile tester, respectively. The silicone elastomer employed as a substrate was demonstrated to have similar hydrophilic/lipophilic properties as the human skin. Spreadability of EC solutions was dependent on EC concentration, polymeric chain length and polydispersity. EC gel spreadability was governed by viscosity and the extent of gel-substrate interaction. From the apparent contact angle values, most EC gel formulations tested were found to be moderately spreadable. Linear correlation observed between spreading parameter and compressibility of EC gel verified the applicability of dynamic contact angle to characterize EC gel spreadability. Thus, the feasibility of employing dynamic contact angle as an alternative technique to measure gel spreadability was demonstrated. The spreadability demonstrated by EC gel would facilitate application on the skin indicating its potential usefulness as a topical dosage form.

  9. Development of an oxidized porous silicon vacuum microtriode

    Energy Technology Data Exchange (ETDEWEB)

    Smith, II, Don Deewayne [Texas A & M Univ., College Station, TX (United States)

    1994-05-01

    In order to realize a high-power microwave amplifier design known as a gigatron, a gated field emission array must be developed that can deliver a high-intensity electron beam at gigahertz frequencies. No existing field emission device meets the requirements for a gigatron cathode. In the present work, a porous silicon-based approach is evaluated. The use of porous silicon reduces the size of a single emitter to the nanometer scale, and a true two-dimensional array geometry can be approached. A wide number of applications for such a device exist in various disciplines. Oxidized porous silicon vacuum diodes were first developed in 1990. No systematic study had been done to characterize the performance of these devices as a function of the process parameters. The author has done the first such study, fabricating diodes from p<100>, p<111>, and n<100> silicon substrates. Anodization current densities from 11 mA/cm2 to 151 mA/cm2 were used, and Fowler-Nordheim behavior was observed in over 80% of the samples. In order to effectively adapt this technology to mainstream vacuum microelectronic applications, a means of creating a gated triodic structure must be found. No previous attempts had successfully yielded such a device. The author has succeeded in utilizing a novel metallization method to fabricate the first operational oxidized porous silicon vacuum microtriodes, and results are encouraging.

  10. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  11. Process for making silicon

    Science.gov (United States)

    Levin, Harry (Inventor)

    1987-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  12. Transformational silicon electronics

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-02-25

    In today\\'s traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry\\'s most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications. © 2014 American Chemical Society.

  13. Simulated Space Environment Effects on the Blocking Force of Silicone Adhesive

    Science.gov (United States)

    Boeder, Paul; Mikatarian, Ron; Koontz, Steve; Albyn, Keith; Finckenor, Miria

    2005-01-01

    The International Space Station (ISS) solar arrays utilize MD-944 diode tape to protect the underlying diodes in the solar array panel circuit and also provide thermal conditioning and mechanical support. The diode tape consists of silicone pressure sensitive adhesive (Dow Coming QC-7725) with a protective Kapton over-layer. On-orbit, the Kapton over-layer will erode under exposure to atomic oxygen (AO) and the underlying exposed silicone adhesive will ultimately convert, under additional AO exposure, to a glass like silicate. The current operational plan is to retract ISS solar array P6 and leave it stored under load for a long duration (6 months or more) during ISS assembly. With the Kapton over-layer eroded away, the exposed silicone adhesive must not cause the solar array to stick to itself or cause the solar array to fail during redeployment. Previous testing by Lockheed-Martin Space Systems (LMSS) characterized silicone blocking following exposure to low energy atomic oxygen (AO) in an asher facility, but this is believed to be conservative. An additional series of tests was performed by the Environmental Effects Group at MSFC under direction from the ISS Program Office Environments Team. This test series included high energy AO (5 eV), near ultraviolet (NUV) radiation and ionizing radiation, singly and in combination. Additional samples were exposed to thermal energy AO (tape samples were exposed to each environment constituent individually, put under preload for seven days and then the resulting blocking force was measured using a tensile machine. Additional samples were exposed to AO, NUV and electrons in series and then put under long term (three to ten months) preload to determine the effect of preload duration on the resulting blocking force of the silicone-to-silicone bond. Test results indicate that high energy AO, ultraviolet radiation and electron ionizing radiation exposure all reduce the blocking force for a silicone-to-silicone bond. AO exposure

  14. Handbook of solar energy data for south-facing surfaces in the United States. Volume 1: An insolation, array shadowing, and reflector augmentation model

    Science.gov (United States)

    Smith, J. H.

    1980-01-01

    A quick reference for obtaining estimates of available solar insolation for numerous locations and array angles is presented. A model and a computer program are provided which considered the effects of array shadowing reflector augmentation as design variables.

  15. Silicon applications in photonics

    Science.gov (United States)

    Jelenski, A. M.; Gawlik, G.; Wesolowski, M.

    2005-09-01

    Silicon technology enabled the miniaturization of computers and other electronic system for information storage, transmission and transformation allowing the development of the Knowledge Based Information Society. Despite the fact that silicon roadmap indicates possibilities for further improvement, already now the speed of electrons and the bandwidth of electronic circuits are not sufficient and photons are commonly utilized for signal transmission through optical fibers and purely photonic circuits promise further improvements. However materials used for these purposes II/V semiconductor compounds, glasses make integration of optoelectronic circuits with silicon complex an expensive. Therefore research on light generation, transformation and transmission in silicon is very active and recently, due to nanotechnology some spectacular results were achieved despite the fact that mechanisms of light generation are still discussed. Three topics will be discussed. Porous silicon was actively investigated due to its relatively efficient electroluminescence enabling its use in light sources. Its index of refraction, differs considerably from the index of silicon, and this allows its utilization for Bragg mirrors, wave guides and photonic crystals. The enormous surface enables several applications on medicine and biotechnology and in particular due to the effective chemo-modulation of its refracting index the design of optical chemosensors. An effective luminescence of doped and undoped nanocrystalline silicon opened another way for the construction of silicon light sources. Optical amplification was already discovered opening perspectives for the construction of nanosilicon lasers. Luminescences was observed at red, green and blue wavelengths. The used technology of silica and ion implantation are compatible with commonly used CMOS technology. Finally the recently developed and proved idea of optically pumped silicon Raman lasers, using nonlinearity and vibrations in the

  16. Steps towards silicon optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Starovoytov, A

    1999-07-01

    This thesis addresses the issue of a potential future microelectronics technology, namely the possibility of utilising the optical properties of nanocrystalline silicon for optoelectronic circuits. The subject is subdivided into three chapters. Chapter 1 is an introduction. It formulates the oncoming problem for microelectronic development, explains the basics of Integrated Optoelectronics, introduces porous silicon as a new light-emitting material and gives a brief review of other competing light-emitting material systems currently under investigation. Examples of existing porous silicon devices are given. Chapter 2 reviews the basic physics relevant to the subject of this thesis and in-forms on the present situation in this field of research, including both experimental and theoretical knowledge gained up-to-date. The chapter provides the necessary background for correct interpretation of the results reported in Chapter 3 and for a realistic decision on the direction for future work. Chapter 3 describes my own experimental and computational results within the framework of the subject, obtained at De Montfort University. These include: one-step preparation of laterally structured porous silicon with photoluminescence and microscopy characterisation, Raman spectroscopy of porous silicon, a polarisation study of the photoluminescence from porous silicon, computer simulations of the conductivity of two-component media and of laser focused atomic deposition for nanostructure fabrication. Thus, this thesis makes a dual contribution to the chosen field: it summarises the present knowledge on the possibility of utilising optical properties of nanocrystalline silicon in silicon-based electronics, and it reports new results within the framework of the subject. The main conclusion is that due to its promising optoelectronic properties nanocrystalline silicon remains a prospective competitor for the cheapest and fastest microelectronics of the next century. (author)

  17. Optical resonance problem in metamaterial arrays: a lattice dynamics approach.

    Science.gov (United States)

    Liu, Wanguo

    2016-11-30

    A systematic dynamic theory is established to deal with the optical collective resonance in metamaterial arrays. As a reference model, we consider an infinite split ring resonator (SRR) array illuminated by a linearly polarized wave and introduce an N-degree-of-freedom forced oscillator equation to simplify the coupled-mode vibration problem. We derive a strict formula of resonance frequency (RF) and its adjustable range from the steady-state response. Unlike a single SRR possesses invariant RF, it successfully explains the mechanism of RF shift effect in the SRR array when the incident angle changes. Instead of full wave analysis, only one or two adjacent resonance modes can give an accurate response line shape. Our approach is applicable for metallic arrays with any N-particle cell at all incident angles and well matched with numerical results. It provides a versatile way to study the vibration dynamics in optical periodic many-body systems.

  18. Recrystallization of polycrystalline silicon

    Science.gov (United States)

    Lall, C.; Kulkarni, S. B.; Graham, C. D., Jr.; Pope, D. P.

    1981-01-01

    Optical metallography is used to investigate the recrystallization properties of polycrystalline semiconductor-grade silicon. It is found that polycrystalline silicon recrystallizes at 1380 C in relatively short times, provided that the prior deformation is greater than 30%. For a prior deformation of about 40%, the recrystallization process is essentially complete in about 30 minutes. Silicon recrystallizes at a substantially slower rate than metals at equivalent homologous temperatures. The recrystallized grain size is insensitive to the amount of prestrain for strains in the range of 10-50%.

  19. Silicon etch process

    International Nuclear Information System (INIS)

    Day, D.J.; White, J.C.

    1984-01-01

    A silicon etch process wherein an area of silicon crystal surface is passivated by radiation damage and non-planar structure produced by subsequent anisotropic etching. The surface may be passivated by exposure to an energetic particle flux - for example an ion beam from an arsenic, boron, phosphorus, silicon or hydrogen source, or an electron beam. Radiation damage may be used for pattern definition and/or as an etch stop. Ethylenediamine pyrocatechol or aqueous potassium hydroxide anisotropic etchants may be used. The radiation damage may be removed after etching by thermal annealing. (author)

  20. Studies of an array of PbF2 Cherenkov crystals with large-area SiPM readout

    Energy Technology Data Exchange (ETDEWEB)

    Fienberg, A. T.; Alonzi, L. P.; Anastasi, A.; Bjorkquist, R.; Cauz, D.; Fatemi, R.; Ferrari, C.; Fioretti, A.; Frankenthal, A.; Gabbanini, C.; Gibbons, L. K.; Giovanetti, K.; Goadhouse, S. D.; Gohn, W. P.; Gorringe, T. P.; Hertzog, D. W.; Iacovacci, M.; Kammel, P.; Kaspar, J.; Kiburg, B.; Li, L.; Mastroianni, S.; Pauletta, G.; Peterson, D. A.; Počanić, D.; Smith, M. W.; Sweigart, D. A.; Tishchenko, V.; Venanzoni, G.; Van Wechel, T. D.; Wall, K. B.; Winter, P.; Yai, K.

    2015-05-01

    The electromagnetic calorimeter for the new muon (g-2) experiment at Fermilab will consist of arrays of PbF2 Cherenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. We report here on measurements and simulations using 2.0 -- 4.5 GeV electrons with a 28-element prototype array. All data were obtained using fast waveform digitizers to accurately capture signal pulse shapes versus energy, impact position, angle, and crystal wrapping. The SiPMs were gain matched using a laser-based calibration system, which also provided a stabilization procedure that allowed gain correction to a level of 1e-4 per hour. After accounting for longitudinal fluctuation losses, those crystals wrapped in a white, diffusive wrapping exhibited an energy resolution sigma/E of (3.4 +- 0.1) % per sqrt(E/GeV), while those wrapped in a black, absorptive wrapping had (4.6 +- 0.3) % per sqrt(E/GeV). The white-wrapped crystals---having nearly twice the total light collection---display a generally wider and impact-position-dependent pulse shape owing to the dynamics of the light propagation, in comparison to the black-wrapped crystals, which have a narrower pulse shape that is insensitive to impact position.

  1. Performance characteristics of a personal gamma spectrometer based on a SiPM array for radiation monitoring applications

    Science.gov (United States)

    Kefalidis, E.; Kandarakis, I.; David, S.

    2017-11-01

    Due to the increased radiation pollution in the environment as a result of the often nuclear accidents taking place around the world, the need for efficient, reliable, smart and handheld radiation measurement systems has been born especially in daily routine. In this study it is evaluated the angular response of two crystal non-pixelated Gd3Al2Ga3O12:Ce (GAGG:Ce) scintillators with dimensions at 10x10x10mm3 & 10x10x20mm3 under 137Cs isotope emitting at 662 keV coupled to a 4x4 discrete silicon photomultiplier array (SiPM). A symmetric resistive voltage division matrix was applied reducing the array 16 outputs to 4 analog position signals which digitized by a 4 Channel 12 bit 250 MS/s desktop waveform digitizer. The number of the evaluated angles set at 5 (0°, 45°, 90°, 135°, 180°) and a variety of measured values are presented (energy resolution, sensitivity, figure of merit etc). The encouraging results such as energy resolution about 9% and figure of merit equal to 4.11 for 10x10x10mm3 and 4.43 for 10x10x20mm3 crystal, prove that this system could build up to a compact radiation sensor for integration into mobile applications.

  2. Fluorescent Silicon Clusters and Nanoparticles

    OpenAIRE

    von Haeften, Klaus

    2017-01-01

    The fluorescence of silicon clusters is reviewed. Atomic clusters of silicon have been at the focus of research for several decades because of the relevance of size effects for material properties, the importance of silicon in electronics and the potential applications in bio-medicine. To date numerous examples of nanostructured forms of fluorescent silicon have been reported. This article introduces the principles and underlying concepts relevant for fluorescence of nanostructured silicon su...

  3. Bottom-up silicon nanowire-based thermoelectric microgenerators

    Science.gov (United States)

    Dávila, D.; Huber, R.; Hierold, C.

    2015-12-01

    In this work, bottom-up intrinsic crystalline Si nanowire arrays in combination with top-down microfabrication techniques and a vertical device architecture have been proposed to develop an all-silicon nanostructured thermoelectric generator. To fabricate this device, a suitable vertical integration of Si NWs on patterned microstructures, which define the thermoelectric legs of the generator, has been achieved by bonding top and bottom silicon structures through nanowires. The process has been proven to be a feasible approach that employs a regrowth process of the nanowires for bonding purposes.

  4. A novel low noise hydrogenated amorphous silicon pixel detector

    OpenAIRE

    Moraes, D.; Anelli, G.; Despeisse, M.; Dissertori, G.; Garrigos, A.; Jarron, P.; Kaplon. J.; Miazza, C.; Shah, Arvind; Viertel, G. M.; Wyrsch, Nicolas

    2008-01-01

    Firsts results on particle detection using a novel silicon pixel detector are presented. The sensor consists of an array of 48 square pixels with 380 μm pitch based on a n–i–p hydrogenated amorphous silicon (a-Si:H) film deposited on top of a VLSI chip. The deposition was performed by VHF-PECVD, which enables high rate deposition up to 2 nm/s. Direct particle detection using beta particles from 63Ni and 90Sr sources was performed.

  5. Generalization of the Euler Angles

    Science.gov (United States)

    Bauer, Frank H. (Technical Monitor); Shuster, Malcolm D.; Markley, F. Landis

    2002-01-01

    It is shown that the Euler angles can be generalized to axes other than members of an orthonormal triad. As first shown by Davenport, the three generalized Euler axes, hereafter: Davenport axes, must still satisfy the constraint that the first two and the last two axes be mutually perpendicular if these axes are to define a universal set of attitude parameters. Expressions are given which relate the generalized Euler angles, hereafter: Davenport angles, to the 3-1-3 Euler angles of an associated direction-cosine matrix. The computation of the Davenport angles from the attitude matrix and their kinematic equation are presented. The present work offers a more direct development of the Davenport angles than Davenport's original publication and offers additional results.

  6. Phosphorus-doped thin silica films characterized by magic-angle spinning nuclear magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Jacobsen, H.J.; Skibsted, J.; Kristensen, Martin

    2001-01-01

    Magic-angle spinning nuclear magnetic resonance spectra of 31P and 29Si have been achieved for a thin silica film doped with only 1.8% 31P and deposited by plasma enhanced chemical vapor deposition on a pure silicon wafer. The observation of a symmetric 31P chemical shift tensor is consistent...

  7. Photoluminescence and electrical properties of silicon oxide and silicon nitride superlattices containing silicon nanocrystals

    International Nuclear Information System (INIS)

    Shuleiko, D V; Ilin, A S

    2016-01-01

    Photoluminescence and electrical properties of superlattices with thin (1 to 5 nm) alternating silicon-rich silicon oxide or silicon-rich silicon nitride, and silicon oxide or silicon nitride layers containing silicon nanocrystals prepared by plasma-enhanced chemical vapor deposition with subsequent annealing were investigated. The entirely silicon oxide based superlattices demonstrated photoluminescence peak shift due to quantum confinement effect. Electrical measurements showed the hysteresis effect in the vicinity of zero voltage due to structural features of the superlattices from SiOa 93 /Si 3 N 4 and SiN 0 . 8 /Si 3 N 4 layers. The entirely silicon nitride based samples demonstrated resistive switching effect, comprising an abrupt conductivity change at about 5 to 6 V with current-voltage characteristic hysteresis. The samples also demonstrated efficient photoluminescence with maximum at ∼1.4 eV, due to exiton recombination in silicon nanocrystals. (paper)

  8. Additive Manufacturing of Overhang Structures Using Moisture-Cured Silicone with Support Material

    Directory of Open Access Journals (Sweden)

    Mohan Muthusamy

    2018-04-01

    Full Text Available Additive manufacturing (AM of soft materials has a wide variety of applications, such as customized or wearable devices. Silicone is one popular material for these applications given its favorable material properties. However, AM of silicone parts with overhang structures remains challenging due to the soft nature of the material. Overhang structures are the areas where there is no underlying structure. Typically, a support material is used and built in the underlying space so that the overhang structures can be built upon it. Currently, there is no support structure that has been used for AM of silicone. The goal of this study is to develop an AM process to fabricate silicone parts with overhang structures. We first identified and confirmed poly-vinyl alcohol (PVA, a water-soluble material, as a suitable support material for silicone by evaluating the adhesion strength between silicone and PVA. Process parameters for the support material, including critical overhang angle and minimum infill density for the support material, are identified. However, overhang angle alone is not the only determining factor for support material. As silicone is a soft material, it deflects due to its own weight when the height of the overhang structure increases. A finite element model is developed to estimate the critical overhang height paired with different overhang angles to determine whether the use of support material is needed. Finally, parts with overhang structures are printed to demonstrate the capability of the developed process.

  9. Porous Silicon Nanowires

    Science.gov (United States)

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-01-01

    In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999

  10. Topology optimization of Halbach magnet arrays using isoparametric projection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaewook, E-mail: jaewooklee@gist.ac.kr [School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 (Korea, Republic of); Nomura, Tsuyoshi [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Aichi 480-1192 (Japan); Toyota Research Institute of North America, 1555 Woodridge Avenue, Ann Arbor, MI 48105 (United States); Dede, Ercan M. [Toyota Research Institute of North America, 1555 Woodridge Avenue, Ann Arbor, MI 48105 (United States)

    2017-06-15

    Highlights: • Design method of Halbach magnet array is proposed using topology optimization. • Magnet strength and direction are simultaneously optimized by isoparametric projection. • For manufacturing feasibility of magnet, penalization and extrusion schemes are proposed. • Design results of circular shaped Halbach arrays are provided. • Halbach arrays in linear actuator are optimized to maximize magnetic force. - Abstract: Topology optimization using isoparametric projection for the design of permanent magnet patterns in Halbach arrays is proposed. Based on isoparametric shape functions used in the finite element analysis, the permanent magnet strength and magnetization directions in a Halbach array are simultaneously optimized for a given design goal. To achieve fabrication feasibility of a designed Halbach magnet array, two design schemes are combined with the isoparametric projection method. First, a penalization scheme is proposed for designing the permanent magnets to have discrete magnetization direction angles. Second, an extrusion scheme is proposed for the shape regularization of the permanent magnet segments. As a result, the method systematically finds the optimal permanent magnet patterns of a Halbach array considering manufacturing feasibility. In two numerical examples, a circular shaped permanent magnet Halbach array is designed to minimize the magnitude of the magnetic flux density and to maximize the upward direction magnetic flux density inside the magnet array. Logical extension of the method to the design of permanent magnet arrays in linear actuators is provided, where the design goal is to maximize the actuator magnetic force.

  11. Wide-angle light-trapping electrode for photovoltaic cells.

    Science.gov (United States)

    Omelyanovich, Mikhail M; Simovski, Constantin R

    2017-10-01

    In this Letter, we experimentally show that a submicron layer of a transparent conducting oxide that may serve a top electrode of a photovoltaic cell based on amorphous silicon when properly patterned by notches becomes an efficient light-trapping structure. This is so for amorphous silicon thin-film solar cells with properly chosen thicknesses of the active layers (p-i-n structure with optimal thicknesses of intrinsic and doped layers). The nanopatterned layer of transparent conducting oxide reduces both the light reflectance from the photovoltaic cell and transmittance through the photovoltaic layers for normal incidence and for all incidence angles. We explain the physical mechanism of our light-trapping effect, prove that this mechanism is realized in our structure, and show that the nanopatterning is achievable in a rather easy and affordable way that makes our method of solar cell enhancement attractive for industrial adaptations.

  12. Angle Performance on Optima XE

    International Nuclear Information System (INIS)

    David, Jonathan; Satoh, Shu

    2011-01-01

    Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were able to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1σ). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.

  13. Analysis of water microdroplet condensation on silicon surfaces

    Science.gov (United States)

    Honda, Takuya; Fujimoto, Kenya; Yoshimoto, Yuta; Mogi, Katsuo; Kinefuchi, Ikuya; Sugii, Yasuhiko; Takagi, Shu; Univ. of Tokyo Team; Tokyo Inst. of Tech. Team

    2016-11-01

    We observed the condensation process of water microdroplets on flat silicon (100) surfaces by means of the sequential visualization of the droplets using an environmental scanning electron microscope. As previously reported for nanostructured surfaces, the condensation process of water microdroplets on the flat silicon surfaces also exhibits two modes: the constant base (CB) area mode and the constant contact angle (CCA) mode. In the CB mode, the contact angle increases with time while the base diameter is constant. Subsequently, in the CCA mode, the base diameter increases with time while the contact angle remains constant. The dropwise condensation model regulated by subcooling temperature does not reproduce the experimental results. Because the subcooling temperature is not constant in the case of a slow condensation rate, this model is not applicable to the condensation of the long time scale ( several tens of minutes). The contact angle of water microdroplets ( several μm) tended to be smaller than the macro contact angle. Two hypotheses are proposed as the cause of small contact angles: electrowetting and the coalescence of sub- μm water droplets.

  14. The DELPHI silicon tracker

    CERN Document Server

    Pernegger, H

    1997-01-01

    The DELPHI collaboration has upgraded the Silicon Vertex Detector in order to cope with the physics requirements for LEP200. The new detector consists of a barrel section with three layers of microstrip detectors and a forward extension made of hybrid pixel and large pitch strip detectors. The layout of the detector and the techniques used for the different parts of the new silicon detector shall be described.

  15. Study on Silicon detectors

    International Nuclear Information System (INIS)

    Gervino, G.; Boero, M.; Manfredotti, C.; Icardi, M.; Gabutti, A.; Bagnolatti, E.; Monticone, E.

    1990-01-01

    Prototypes of Silicon microstrip detectors and Silicon large area detectors (3x2 cm 2 ), realized directly by our group, either by ion implantation or by diffusion are presented. The physical detector characteristics and their performances determined by exposing them to different radioactive sources and the results of extensive tests on passivation, where new technological ways have been investigated, are discussed. The calculation of the different terms contributing to the total dark current is reported

  16. Dynamic Silicon Nanophotonics

    Science.gov (United States)

    2013-07-31

    sensitive to fabrication imperfections and small temperature changes, therefore they are challenging to integrate into high yield mass production ... Cocoa Beach, Florida, September 2012. 15. Ali Wanis Elshaari, “Photon Manipulation in Silicon Nanophotonic Circuits,” Ph.D. Dissertation, Rochester...1.5-micron Light using Silicon Nanocrystals,” 2012 IEEE Avionics, Fiber Optics and Photonics Conference (AVFOP 2012), ThB3, Cocoa Beach, Florida

  17. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  18. The Alignment of the CMS Silicon Tracker

    CERN Document Server

    Lampen, Pekka Tapio

    2013-01-01

    The CMS all-silicon tracker consists of 16588 modules, embedded in a solenoidal magnet providing a field of B = 3.8 T. The targeted performance requires that the alignment determines the module positions with a precision of a few micrometers. Ultimate local precision is reached by the determination of sensor curvatures, challenging the algorithms to determine about 200k parameters simultaneously, as is feasible with the Millepede II program. The main remaining challenge are global distortions that systematically bias the track parameters and thus physics measurements. They are controlled by adding further information into the alignment workflow, e.g. the mass of decaying resonances or track data taken with B = 0 T. To make use of the latter and also to integrate the determination of the Lorentz angle into the alignment procedure, the alignment framework has been extended to treat position sensitive calibration parameters. This is relevant since due to the increased LHC luminosity in 2012, the Lorentz angle ex...

  19. Relationship between the Angle of Repose and Angle of Internal ...

    African Journals Online (AJOL)

    ghum and rice. The angles have a big influence on the design offlow and storage structures of ... the angles of internal friction for the same grains and same moisture contents. The data ob- tained were fed into SAS statistical software for step-wise regression analysis. A model of the ..... tion, Application and Validation of En-.

  20. A new detector array for charged particle spectroscopy

    CERN Document Server

    Cowin, R L; Chappell, S P G; Clarke, N M; Freer, M; Fulton, B R; Cunningham, R A; Curtis, N; Dillon, G; Lilley, J; Jones, C D; Lee, P; Rae, W D M

    1999-01-01

    A compact and highly segmented detector array consisting of 44 gas-silicon-caesium iodide, position sensitive, particle identification detector telescopes and up to 10 position-sensitive, silicon strip detectors has been constructed for the study of light-ion-heavy-ion reactions including cluster break-up in the energy range 5-15 MeV/nucleon. The detectors are housed in a purpose built vacuum chamber. The telescopes are placed in fixed positions, covering the forward hemisphere from 3 to 30 deg. in the laboratory with the target placed at 535 mm from the front of the telescopes or 6-52 deg. with the target placed at 215 mm. The strip detectors are placed in any of 30 fixed positions in the forward hemisphere. For 85 MeV sup 1 sup 2 C ions the telescope energy resolution (gas plus silicon) is 345 keV with an angular resolution of 0.03 deg. . Using the gas-silicon section ions with Z up to 21 can be identified. For ions that pass through the silicon isotopic identification is achieved using the silicon-CsI comb...