WorldWideScience

Sample records for angle silicon array

  1. TIARA: a large solid angle silicon array for direct reaction studies with radioactive beams

    CERN Document Server

    Labiche, M; Lemmon, R C; Timis, C N; Orr, N A; Fernandez-Dominguez, B; Chapman, R; Achouri, N L; Amzal, N; Appleton, S; Ashwood, N I; Baldwin, T D; Burns, M; Caballero, L; Cacitti, J; Casadjian, J M; Chartier, M; Curtis, N; Faiz, K; De France, G; Freer, M; Gautier, J M; Gelletly, W; Iltis, G; Lecornu, B; Liang, X; Marry, C; Merrer, Y; Moores, G; Olivier, L; Pain, S D; Pucknell, V F E; Raine, B; Rejmund, M; Rubio, B; Saillant, F; Savajols, H; Sorlin, O; Spohr, K; Theisen, Ch; Voltolini, G; Warner, D D

    2009-01-01

    A compact, quasi-4pi position sensitive silicon array, TIARA, designed to study direct reactions induced by radioactive beams in inverse kinematics is described here. The Transfer and Inelastic All-angle Reaction Array (TIARA) consists of 8 resistive-strip silicon detectors forming an octagonal barrel around the target and a set of double-sided silicon-strip annular detectors positioned at each end of the barrel. The detector was coupled to the gamma-ray array EXOGAM and the spectrometer VAMOS at the GANIL Laboratory to demonstrate the potential of such an apparatus with radioactive beams. The 14N(d,p)15N reaction, well known in normal kinematics, has been carried out in inverse kinematics for that purpose. The observation of the 15N ground state and excited states at 7.16 and 7.86 MeV is presented here as well as the comparison of the measured proton angular distributions with DWBA calculations. Transferred l-values are in very good agreement with both theoretical calculations and previous experimental resul...

  2. Wide angle and broadband antireflection properties for a silicon nanotip array

    Science.gov (United States)

    Huang, Yi-Fan; Jen, Yi-Jun; Chen, Kuei-Hsien; Chen, Li-Chyong

    2008-08-01

    Biomimetic structures provided important clues for nano-synthesis in pursuit of enhanced performances. Here, we report a wide angle and broadband antireflection is observed on a 6-inch silicon nanotip array (SiNTs) substrate fabricated using a single step electron cyclotron resonance plasma etching technique. This subwavelength structure consists of the SiNTs with apex and bottom diameter of ~5 nm and ~200 nm, respectively, length of ~1600 nm and density of 109/cm2. This aperiodic array of SiNTs with geometry designed in the sub-wavelength level to demonstrate a low hemispherical reflectance of Dobrowolski. This near ideal antireflection property suggests enhanced performances in renewable energy, and electro-optical devices in defense applications.

  3. Silicon Heat Pipe Array

    Science.gov (United States)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better

  4. OPTIMIZATION OF TILT ANGLE FOR PHOTOVOLTAIC ARRAY

    OpenAIRE

    Ashok Kumar; N.S.Thakur,; Rahul Makade,; Maneesh Kumar Shivhar

    2011-01-01

    The performance of a solar radiation conversion system is affected by its tilt angle with the horizontal plane, thus photovoltaic array need to be tilted at the correct angle to maximize the performance of the System, This paper deals with the determination of optimum tilt angle for solar PV array in order to maximize incident solar irradiance. The model starts by calculating the monthly averaged daily solar irradiation components (direct, diffuse, ground- eflected) absorbed by the solar PV a...

  5. The high granularity and large solid angle detection array EXPADES

    International Nuclear Information System (INIS)

    Highlights: • We realized a detection array for Exotic Radioactive Ion Beams. • High granularity (32 × 32 pixels 2 × 2 mm wide for 8 telescopes). • High solid angle (8 telescopes 64 × 64 mm wide in a cylindrical configuration covering up to 2.6 sr). • We tested each component of the array by both alpha particles and in-beam environment. • We measured the angular distribution for 17O elastic scattering on a 58Ni target. -- Abstract: The EXPADES (EXotic PArticle DEtection System) detector array consists of 16 Double Side Silicon Strip Detectors (DSSSD) with active areas of 64 × 64 mm2, arranged in 8 ΔE (40/50 μm)–E (300 μm) telescopes. All detector faces are segmented into 32 × 2-mm wide strips, ensuring a 2 × 2 mm2 pixel configuration. Eight ionization chambers can be alternatively used as ΔE stages or, if needed, as an additional third layer for more complex triple telescopes. The signals from silicon ΔE layers and from ionization chambers are read by standard electronics, while innovative 32-channel ASIC chips are employed for the readout of the E stages. The results of off-line tests with alpha sources and from the first in-beam experiment with a 17O beam are presented

  6. The high granularity and large solid angle detection array EXPADES

    Energy Technology Data Exchange (ETDEWEB)

    Strano, E., E-mail: estrano@pd.infn.it [Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN – Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Anastasio, A. [INFN – Sezione di Napoli, Via Cintia, I-80126 Napoli (Italy); Bettini, M. [INFN – Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Boiano, A. [INFN – Sezione di Napoli, Via Cintia, I-80126 Napoli (Italy); Boiano, C. [INFN – Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Cassese, C. [INFN – Sezione di Napoli, Via Cintia, I-80126 Napoli (Italy); Castellani, L.; Corti, D. [INFN – Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Di Meo, P. [INFN – Sezione di Napoli, Via Cintia, I-80126 Napoli (Italy); Galet, G. [Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Glodariu, T. [NIPNE, Str. Reactorului No. 30, P.O. Box MG-6, Bucharest-Magurele (Romania); Grebosz, J. [IFJ PAN, ul. Radzikowskiego 152, 31-342 Kraków (Poland); Guglielmetti, A. [Dipartimento di Fisica, Università di Milano, Via Celoria 16, I-20133 Milano (Italy); INFN – Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); La Commara, M. [Dipartimento di Scienze Fisiche, Università di Napoli, Via Cintia, I-80126 Napoli (Italy); INFN – Sezione di Napoli, Via Cintia, I-80126 Napoli (Italy); Manea, C. [INFN – Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Mazzocco, M.; Molini, P. [Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN – Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nicoletto, M. [INFN – Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); and others

    2013-12-15

    Highlights: • We realized a detection array for Exotic Radioactive Ion Beams. • High granularity (32 × 32 pixels 2 × 2 mm wide for 8 telescopes). • High solid angle (8 telescopes 64 × 64 mm wide in a cylindrical configuration covering up to 2.6 sr). • We tested each component of the array by both alpha particles and in-beam environment. • We measured the angular distribution for {sup 17}O elastic scattering on a {sup 58}Ni target. -- Abstract: The EXPADES (EXotic PArticle DEtection System) detector array consists of 16 Double Side Silicon Strip Detectors (DSSSD) with active areas of 64 × 64 mm{sup 2}, arranged in 8 ΔE (40/50 μm)–E (300 μm) telescopes. All detector faces are segmented into 32 × 2-mm wide strips, ensuring a 2 × 2 mm{sup 2} pixel configuration. Eight ionization chambers can be alternatively used as ΔE stages or, if needed, as an additional third layer for more complex triple telescopes. The signals from silicon ΔE layers and from ionization chambers are read by standard electronics, while innovative 32-channel ASIC chips are employed for the readout of the E stages. The results of off-line tests with alpha sources and from the first in-beam experiment with a {sup 17}O beam are presented.

  7. Integration of Antenna Array with Multicrystalline Silicon Solar Cell

    OpenAIRE

    O'Conchubhair, Oisin; McEvoy, Patrick; Ammann, Max

    2015-01-01

    The integration of a low-profile antenna array with a multicrystalline silicon solar cell capable of powering a low-power wireless sensor at 2.45 GHz is reported. Lattice bus bars on the cell are exploited to minimize antenna shadows from low-profile antennas and transmission lines for a higher output power. The dual inverted-F array improves gain, and beam switching enables the array to sweep a wider coverage angle with larger beamwidths compared to other solar integrated antennas.

  8. Range-Angle-Dependent Beamforming by Frequency Diverse Array Antenna

    OpenAIRE

    Wen-Qin Wang; Huaizong Shao; Jingye Cai

    2012-01-01

    This paper proposes a range-angle-dependent beamforming for frequency diverse array (FDA) antenna systems. Unlike conventional phased-array antenna, the FDA antenna employs a small amount of frequency increment compared to the carrier frequency across the array elements. The use of frequency increment generates an antenna pattern that is a function of range, time and angle. The range-angle-dependent beamforming allows the FDA antenna to transmit energy over a desired range or angle. This prov...

  9. Angle-independent structural colors of silicon

    DEFF Research Database (Denmark)

    Højlund-Nielsen, Emil; Weirich, Johannes; Nørregaard, Jesper;

    2014-01-01

    Structural colors are optical phenomena of physical origin, where microscale and nanoscale structures determine the reflected spectrum of light. Artificial structural colors have been realized within recent years. However, multilayer structures require substantial fabrication. Instead we considered...... one-layer surface textures of silicon.We explored four patterns of square structures in a square lattice with periods of 500, 400, 300, and 200 nm. The reflectivity and daylight-colors were measured and compared with simulations based on rigorously coupledwave analysis with excellent agreement. Based...... on the 200-nm periodic pattern, it was found that angle-independent specular colors up to 60 deg of incidence may be provided. The underlying mechanisms include (1) the suppression of diffraction and (2) a strong coupling of light to localized surface states. The strong coupling yields absorption...

  10. Time-derivative adaptive silicon photoreceptor array

    OpenAIRE

    Delbrück, Tobi; Mead, Carver A.

    1991-01-01

    We designed and tested a two-dimensional silicon receptor array constructed from pixels that temporally high-pass filter the incident image. There are no surround interactions in the array; all pixels operate independently except for their correlation due to the input image. The high- pass output signal is computed by sampling the output of an adaptive, high-gain, logarithmic photoreceptor during the scanout of the array. After a pixel is sampled, the output of the pixel is reset to a fixed v...

  11. Silicon-CsI detector array for heavy-ion reactions

    CERN Document Server

    Norbeck, E; Pogodin, P I; Cheng, Y W; Ingram, F D; Bjarki, O; Grévy, S; Magestro, D J; Molen, A M V; Westfall, G D

    2000-01-01

    An array of 60 silicon-CsI(Tl) detector telescopes has been developed along with associated electronics. The close packing of the telescopes required novel designs for the photodiodes and the silicon DELTA E detectors. Newly developed electronics include preamplifiers, shaping amplifiers, test pulse circuitry, and a module to monitor leakage currents in the silicon diodes. The array covers angles from 5 deg. to 18 deg. in the 4 pi Array at the National Superconducting Cyclotron Laboratory at Michigan State University. It measures protons to 150 MeV and has isotopic resolution for intermediate mass nuclei.

  12. Integrated Arrays on Silicon at Terahertz Frequencies

    Science.gov (United States)

    Chattopadhayay, Goutam; Lee, Choonsup; Jung, Cecil; Lin, Robert; Peralta, Alessandro; Mehdi, Imran; Llombert, Nuria; Thomas, Bertrand

    2011-01-01

    In this paper we explore various receiver font-end and antenna architecture for use in integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies and use of novel integrated antennas with silicon micromachining are reported. We report novel stacking of micromachined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages which easily leads to the development of 2- dimensioanl multi-pixel receiver front-ends in the terahertz frequency range. We also report an integrated micro-lens antenna that goes with the silicon micro-machined front-end. The micro-lens antenna is fed by a waveguide that excites a silicon lens antenna through a leaky-wave or electromagnetic band gap (EBG) resonant cavity. We utilized advanced semiconductor nanofabrication techniques to design, fabricate, and demonstrate a super-compact, low-mass submillimeter-wave heterodyne frontend. When the micro-lens antenna is integrated with the receiver front-end we will be able to assemble integrated heterodyne array receivers for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.

  13. Silicon microneedles array with biodegradable tips for transdermal drug delivery

    CERN Document Server

    Chen, B; Tay, Francis; Wong, Y T; Iliescu, C

    2008-01-01

    This paper presents the fabrication process, characterization results and basic functionality of silicon microneedles array with biodegradable tips. In order to avoid the main problems related to silicon microneedles : broking of the top part of the needles inside the skin, a simple solution can be fabrication of microneedles array with biodegradable tips. The silicon microneedles array was fabricated by using reactive ion etching while the biodegradable tips were performed using and anodization process that generates selectively porous silicon only on the top part of the skin. The paper presents also the results of in vitro release of calcein using microneedles array with biodegradable tips

  14. Lorentz angle measurements in silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, V.; Boer, W. de E-mail: wim.de.boer@cern.ch; Bol, J.; Dierlamm, A.; Grigoriev, E.; Hauler, F.; Heising, S.; Herz, O.; Jungermann, L.; Keraenen, R.; Koppenhoefer, M.; Roederer, F.; Schneider, T

    2002-02-01

    In this paper we study the Lorentz angles of both electrons and holes in magnetic fields up to 8 T and temperatures between 77 and 300 K. This is done before and after irradiating a detector with 21 MeV protons up to a fluence of 10{sup 13}/cm{sup 2}, which is equivalent to {approx}2.8x10{sup 13}/cm{sup 2} 1 MeV neutrons.

  15. Nanophotonic production, modulation and switching of ions by silicon microcolumn arrays

    Science.gov (United States)

    Vertes, Akos; Walker, Bennett N.

    2013-09-10

    The production and use of silicon microcolumn arrays that harvest light from a laser pulse to produce ions are described. The systems of the present invention seem to behave like a quasi-periodic antenna array with ion yields that show profound dependence on the plane of laser light polarization and the angle of incidence. By providing photonic ion sources, this enables enhanced control of ion production on a micro/nano scale and direct integration with miniaturized analytical devices.

  16. Nanophotonic production, modulation and switching of ions by silicon microcolumn arrays

    Science.gov (United States)

    Vertes, Akos; Walker, Bennett N.

    2012-02-07

    The production and use of silicon microcolumn arrays that harvest light from a laser pulse to produce ions are described. The systems of the present invention seem to behave like a quasi-periodic antenna array with ion yields that show profound dependence on the plane of laser light polarization and the angle of incidence. By providing photonic ion sources, this enables enhanced control of ion production on a micro/nano scale and direct integration with miniaturized analytical devices.

  17. Angle-resolved diffraction grating biosensor based on porous silicon

    Science.gov (United States)

    Lv, Changwu; Jia, Zhenhong; Liu, Yajun; Mo, Jiaqing; Li, Peng; Lv, Xiaoyi

    2016-03-01

    In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensor was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.

  18. Aluminum-jointed silicon dioxide octagon nanohelix array with desired complex refractive index.

    Science.gov (United States)

    Jen, Yi-Jun; Chen, Chien-Chi; Jheng, Ci-Yao

    2014-06-15

    In this Letter, glancing angle deposition is used to form an aluminum-jointed silicon dioxide octagon nanohelix array as a 3D nanostructured thin film. As a sculptured metal-dielectric composite, the film exhibits a complex refractive index of near unity with a small imaginary part. This structured film is demonstrated as an efficient light absorber to absorb light in a broad band and over a wide range of angles for both polarization states. PMID:24978492

  19. Silicon-based wire electrode array for neural interfaces

    International Nuclear Information System (INIS)

    Objectives. Metal-wire electrode arrays are widely used to record and stimulate neurons. Commonly, these devices are fabricated from a long insulated metal wire by cutting it into the proper length and using the cross-section as the electrode site. The assembly of a micro-wire electrode array with regular spacing is difficult. With the help of micro-machine technology, a silicon-based wire electrode array (SWEA) is proposed to simplify the assembling process and provide a wire-type electrode with tapered tips. Approach. Silicon wires with regular spacing coated with metal are generated from a silicon wafer through micro-fabrication and are ordered into a 3D array. A silicon wafer is cut into a comb-like structure with hexagonal teeth on both sides by anisotropic etching. To establish an array of silicon-based linear needles through isotropic wet etching, the diameters of these hexagonal teeth are reduced; their sharp edges are smoothed out and their tips are sharpened. The needle array is coated with a layer of parylene after metallization. The tips of the needles are then exposed to form an array of linear neural electrodes. With these linear electrode arrays, an array of area electrodes can be fabricated. Main results. A 6  ×  6 array of wire-type electrodes based on silicon is developed using this method. The time required to manually assemble the 3D array decreases significantly with the introduction of micro-fabricated 2D array. Meanwhile, the tip intervals in the 2D array are accurate and are controlled at no more than 1%. The SWEA is effective both in vitro and in vivo. Significance. Using this method, the SWEA can be batch-prepared in advance along with its parameters, such as spacing, length, and diameter. Thus, neural scientists can assemble proper electrode arrays in a short time. (paper)

  20. Broadband high efficiency silicon nanowire arrays with radial diversity within diamond-like geometrical distribution for photovoltaic applications.

    Science.gov (United States)

    Al-Zoubi, Omar H; Said, Tarek M; Alher, Murtadha Abdulmueen; El-Ghazaly, Samir; Naseem, Hameed

    2015-07-27

    In this study we report novel silicon nanowire (SiNW) array structures that have near-unity absorption spectrum. The design of the new SiNW arrays is based on radial diversity of nanowires with periodic diamond-like array (DLA) structures. Different array structures are studied with a focus on two array structures: limited and broad diversity DLA structures. Numerical electromagnetic modeling is used to study the light-array interaction and to compute the optical properties of SiNW arrays. The proposed arrays show superior performance over other types of SiNW arrays. Significant enhancement of the array absorption is achieved over the entire solar spectrum of interest with significant reduction of the amount of material. The arrays show performance independent of angle of incidence up to 70 degrees, and polarization. The proposed arrays achieved ultimate efficiency as high as 39% with filling fraction as low as 19%. PMID:26367679

  1. Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    We have fabricated porous silicon nanopillar arrays over large areas with a rapid, simple, and low-cost technique. The porous silicon nanopillars show unique longitudinal features along their entire length and have porosity with dimensions on the single-nanometer scale. Both Raman spectroscopy and photoluminescence data were used to determine the nanocrystallite size to be <3 nm. The porous silicon nanopillar arrays also maintained excellent ensemble properties, reducing reflection nearly fivefold from planar silicon in the visible range without any optimization, and approaching superhydrophobic behavior with increasing aspect ratio, demonstrating contact angles up to 138°. Finally, the porous silicon nanopillar arrays were made into sensitive surface-enhanced Raman scattering (SERS) substrates by depositing metal onto the pillars. The SERS performance of the substrates was demonstrated using a chemical dye Rhodamine 6G. With their multitude of properties (i.e., antireflection, superhydrophobicity, photoluminescence, and sensitive SERS), the porous silicon nanopillar arrays described here can be valuable in applications such as solar harvesting, electrochemical cells, self-cleaning devices, and dynamic biological monitoring. (paper)

  2. Silicon pin diode array hybrids for charged particle detection

    International Nuclear Information System (INIS)

    This paper reports on the design of silicon PIN diode array hybrids for use as charged particle detectors. A brief summary of the need for vertex detectors is presented. Circuitry, block diagrams and device specifications are included

  3. Research on silicon microchannel arrays oxide insulation technology

    Science.gov (United States)

    Wu, Ke-xin; Duanmu, Qingduo; Wang, Guozheng; Yang, Ji-kai; Kou, Yang-qiang

    2015-03-01

    Silicon microchannel plates (Si-MCP) is widely used in the photomultiplier, night vision, X- ray intensifier and other areas. In order to meet the requirements of high voltage electron multiplier, Si-MCP need to prepare a layer of silicon dioxide in the microchannel to improve the insulating properties. There are many methods for preparing SiO2 layer, such as thermal growth, magnetron sputtering method and chemical vapor deposition etc. The thermal oxidation method is often used for preparation of insulating layer that it grows film thickness uniformity, compact structure, simple process and so on. There will be bending deformation phenomenon of silicon microchannel arrays in high temperature oxidation process. The warpage of Si-MCP has brought great for difficulties of subsequent processing. Silicon crystals has the properties of plastic deformation at high temperature, this article take full advantage of this properties by which the already bending deformation of silicon microchannel arrays can be restored to flat.

  4. Silicon Field Emission Arrays Coated with CNx Thin Films

    Institute of Scientific and Technical Information of China (English)

    Chen Min-gan; Chen Ming-an; Li Jin-chai; Li Jin-chai; Liu Chuan-sheng; Liu Chuan-sheng; Ma You-peng; Ma You-peng; Lu Xian-feng; Lu Xian-feng; Ye Ming-sheng; Ye Ming-sheng

    2003-01-01

    Arrays of silicon micro-tips were made by etching the p-type (1 0 0) silicon wafers which had SiO2 masks with alkaline solution. The density of the micro-tips is 2 ×104 cm-2. The Scanning Electron Microscope (SEM) photos showed that the tips in these arrays are uniform and orderly.The CNx thin film, with the thickness of 1.27μm was deposited on the silicon micro-tip arrays by using the middle frequency magnetron sputtering technology. The SEM photos showed that the films on the tips are smoothly without particles. Keeping the sharpness of the tips will benefit the properties of field emission. The X-ray photoelectron spectrum (XPS) showed that carbon, nitrogen and oxygen are the three major elements in the surfaces of the films. The percents of them are C: 69.5 %, N: 12.6 % and O: 17.9 %. The silicon arrays coated with CNx thin films had shown a good field emission characterization. The emission current intensity reached 3.2 mA/cm2 at 32.8 V/μm, so it can be put into use. The result showed that the silicon arrays coated with CNx thin films are likely to be good field emission cathode.The preparation and the characterization of the samples were discussed in detail.

  5. Silicon Field Emission Arrays Coated with CNx Thin Films

    Institute of Scientific and Technical Information of China (English)

    ChertMing-an; LiJin-chai; LiuChuan-sheng; MaYou-peng; LuXlan-feng; YeMing-sheng

    2003-01-01

    Arrays of silicon micro-tips were made by etching the p-type (1 0 0) silicon wafers which had SiO2 masks with alkaline solution. The density of the micro-tips is 2 ×104 cm-2. The Scanning Electron Microscope (SEM) photos showed that the tips in these arrays are uniform and orderly.The CNx thin film, with the thickness of 1.27μm was deposited on the silicon micro-tip arrays by using the middle frequency magnetron sputtering technology. The SEM photos showed that the films on the tips are smoothly without particles. Keeping the sharpness of the tips will benefit the properties of field emission. The X-ray photoelectron spectrum (XPS) showed that carbon, nitrogen and oxygen are the three major elements in the surfaces of the films. The percents of them are C: 69.5 %, N: 12. 6 % and O: 17.9 %. The silicon arrays coated with CNx thin films had shown a good field emission characterization. The emission current intensity reached 3. 2 mA/cm2 at 32.8 V/μm, so it can be put into use. The result showed that the silicon arrays coated with CNx thin films are likely to be good field emission cathode.The preparation and the characterization of the samples were discussed in detail.

  6. Experimental study on silicon micro-heat pipe arrays

    Energy Technology Data Exchange (ETDEWEB)

    Launay, S.; Sartre, V.; Lallemand, M. [Institut National des Sciences Appliquees, Villeurbanne (France). Centre de Thermique

    2004-02-01

    In this study, micro-heat pipe arrays etched into silicon wafers have been investigated for electronic cooling purposes. Micro-heat pipes of triangular cross-section and with liquid arteries were fabricated by wet anisotropic etching with a KOH solution. The microchannels (230 {mu}m wide) are closed by molecular bonding of a plain wafer with the grooved one. A test bench was developed for the micro-heat pipe filling and the thermal characterisation. The temperature profile on the silicon surface is deduced from experimental measurements. The results show that with the artery micro-heat pipe array, filled with methanol, the effective thermal conductivity of the silicon wafer is significantly improved compared to massive silicon. (author)

  7. Directional imbibition on a chemically patterned silicon micropillar array.

    Science.gov (United States)

    Jokinen, Ville

    2016-01-20

    Directional imbibition of oils (hexadecane, tetradecane, and dodecane) and water is demonstrated on a chemically patterned silicon micropillar array. Four different directional imbibition types are shown: unidirectional, two types of bidirectional and tridirectional imbibition. The surfaces consist of a silicon micropillar array with an overlaid surface chemistry pattern. This configuration leads to anisotropic wetting behaviour into various directions of the advancing meniscus. Due to the free energy landscape obtained, the advancing meniscus gets pinned in some directions (determined by the surface chemistry pattern) while it is free to move to the remaining directions. The conditions for directional imbibition and design criteria for the surfaces are derived and discussed. PMID:26576647

  8. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The ISPA tube is a position-sensitive photon detector. It belongs to the family of hybrid photon detectors (HPD), recently developed by CERN and INFN with leading photodetector firms. HPDs confront in a vacuum envelope a photocathode and a silicon detector. This can be a single diode or a pixelized detector. The electrons generated by the photocathode are efficiently detected by the silicon anode by applying a high-voltage difference between them. ISPA tube can be used in high-energy applications as well as bio-medical and imaging applications.

  9. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    Application components of ISPA tubes are shown: the CERN-developed anode chip, special windows for gamma and x-ray detection, scintillating crystal and fibre arrays for imaging and tracking of ionizing particles.

  10. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The bump-bonded silicon pixel detector, developed at CERN by the EP-MIC group, is shown here in its ceramic carrier. Both represent the ISPA-tube anode. The chip features between 1024 (called OMEGA-1) and 8196 (ALICE-1) active pixels.

  11. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    On the table, under the scrutiny of some collaboration members, an ISPA tube (upper-left of the table) with some of its application components is shown: they consist of the CERN-developed anode chip, special windows for gamma and x-ray detection, scintillating crystal and fibre arrays for imaging and tracking of ionizing particles.

  12. Lorentz angle measurements in irradiated silicon detectors between 77 and 300 K

    Energy Technology Data Exchange (ETDEWEB)

    Boer, W. de; Bol, J.; Dierlamm, A.; Grigoriev, E.; Hauler, F.; Heising, S. E-mail: stephan.heising@cern.ch; Herz, O.; Jungermann, L.; Keraenen, R.; Koppenhoefer, M.; Roederer, F.; Schneider, T

    2001-04-01

    Future experiments are using silicon detectors in a high radiation environment and in high magnetic fields. The radiation tolerance of silicon improves by cooling it to temperatures of approximately 130 K. Charge carriers generated in silicon by traversing particles are deflected due to the Lorentz force. We present measurements of the Lorentz angle in irradiated silicon detectors between 77 and 300 K. These results and the ones obtained from non-irradiated detectors are compared with simulations.

  13. Arrays of ultrathin silicon solar microcells

    Science.gov (United States)

    Rogers, John A.; Rockett, Angus A.; Nuzzo, Ralph; Yoon, Jongseung; Baca, Alfred

    2015-08-11

    Provided are solar cells, photovoltaics and related methods for making solar cells, wherein the solar cell is made of ultrathin solar grade or low quality silicon. In an aspect, the invention is a method of making a solar cell by providing a solar cell substrate having a receiving surface and assembling a printable semiconductor element on the receiving surface of the substrate via contact printing. The semiconductor element has a thickness that is less than or equal to 100 .mu.m and, for example, is made from low grade Si.

  14. Silicon Array for Multi-particle Emission

    Institute of Scientific and Technical Information of China (English)

    XU; Xin-xing; LIN; Cheng-jian; SUN; Li-jie; BAO; Peng-fei; YANG; Lei; YANG; Feng; ZHANG; Huan-qiao; LIU; Zu-hua; JIA; Hui-ming; MA; Nan-ru

    2013-01-01

    Remarkable progress in the study of two-proton emission has been made in recent years.One of the next destinations is the realization of high-precision direct measurements of decay-energy and emission-angle correlations inβ-delayed two-proton(β2p)emission.We have studiedβ2p correlated emission of the ground state of 26P at the proton drip line with the direct measurement at the National

  15. Photoluminescence Properties of Silicon Nanowires and Carbon Nanotube-Silicon Nanowire Composite Arrays

    Institute of Scientific and Technical Information of China (English)

    李梦轲; 陆梅; 孔令斌; 王成伟; 郭新勇; 力虎林

    2002-01-01

    Composite arrays of multi-wall carbon nanotubes (MWNTs) and silicon nanowires (SiNWs) are fabricated by means of the chemical vapour deposition method in porous anodic aluminium oxide (AAO) templates. The results of the scanning electron microscopy, high-resolution transmission electron microscopy, and transmission electron microscopy have shown that SiNWs are successful nested or filled in the hollow cavities of synthesized MWNT arrays in AAO templates to form MWNT-SiNW composite arrays. The photoluminescence (PL) intensity degradation and a blueshift of PL peak position, usually created from the chemical instability of the SiNW surfaces, are decreased and eliminated clearly in the composite arrays. The composite arrays of MWNTs-SiNWs exhibit more enhanced intensity and stability of PL performance than the SiNW arrays deposited in AAO templates.

  16. The Surface Photovoltage Mechanism of a Silicon Nanoporous Pillar Array

    Science.gov (United States)

    Hu, Zhen-Gang; Tian, Yong-Tao; Li, Xin-Jian

    2013-08-01

    The surface photovoltage (SPV) mechanism of a silicon nanoporous pillar array (Si-NPA) is investigated by using SPV spectroscopy in different external electric fields. Through comparisons with the SPV spectrum of single crystal silicon (sc-Si), the silicon nano-crystallite (nc-Si)/SiOx nanostructure of Si-NPA is proved to be capable of producing obvious SPV in the wavelength range 300-580 nm. The SPV for the sc-Si layer and the nc-Si/SiOx nanostructure has shown certain contrary characters in different external electric fields. Through analysis, the localized states in the amorphous SiOx matrix are believed to dominate the SPV for the nc-Si/SiOx nanostructure.

  17. Amorphous Silicon 16—bit Array Photodetector①

    Institute of Scientific and Technical Information of China (English)

    ZHANGShaoqiang; XUZhongyang; 等

    1997-01-01

    An amorphous silicon 16-bit array photodetector with the a-SiC/a-Si heterojunction diode is presented.The fabrication processes of the device were studied systematically.By the optimum of the diode structure and the preparation procedures,the diode with Id<10-12A/mm2 and photocurrentIp≥0.35A/W has been obtained at the wavelength of 632nm.

  18. Silicon nanoporous pillar array and its surface copper deposition

    Institute of Scientific and Technical Information of China (English)

    FU Xiaonan; CHAI Huadou; LI Xinjian

    2005-01-01

    Silicon nanoporous pillar array (Si-NPA) has been prepared by a hydrothermal etching technique. Using Si-NPA as substrate, a Cu/Si-NPA nanocomposite thin film has been obtained with immersion plating method. Morphological and structural analysis indicates that Si-NPA is a typical structural composite system characterized by a triple hierarchical structure, i. e. the array of micron-sized silicon pillars, the nanopores densely distributed on the surface of the pillars, and the silicon nanocrystallites that constitute the pore walls. Cu/Si-NPA inherits the morphological characteristics of Si-NPA. The compactability of the deposited copper nanoparticles varies alternatively with the local geometrical features of Si-NPA and forms a quasi-periodical pattern. Such an experimental phenomenon is attributed to the velocity dependence of the copper deposition upon the local geometrical features of Si-NPA. These results indicate that Si-NPA might be used as an ideal template for preparing specially patterned, structured or functionalized metal/ silicon nanocomposite systems.

  19. Silicon drift photodetector arrays for the HICAM gamma camera

    International Nuclear Information System (INIS)

    Silicon drift detectors (SDDs) have shown to be a competitive device for the readout of scintillators with respect to conventional photodetectors, thanks to their high quantum efficiency and low electronics noise. Recently, they have been successfully employed in first small prototypes of Anger cameras to achieve sub-millimeter spatial resolution in gamma-ray imaging. To cover larger formats of Anger cameras, in particular in the framework of the HICAM project, specially focused on human imaging, we have developed new SDD arrays of larger active areas. To assemble photodetector planes of several cm2, we have designed a basic unit composed by a linear array of 5 SDDs of 1 cm2 active area each. In this work, we present the results of the experimental characterization of these photodetector arrays in direct X-ray detection to evaluate the electronics noise, as well as gamma-ray detection with a scintillator.

  20. Deployable aerospace PV array based on amorphous silicon alloys

    Science.gov (United States)

    Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey

    1989-01-01

    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.

  1. Stable divergence angles of a magnetic dipole spiral array

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.D.; Bursill, L.A.

    1996-03-01

    An analytical model is introduced for Douady and Couder`s [1992] experiment, where phyllotactic patterns appear as a dynamical result of the interaction between magnetic dipoles. The difference equation for the divergence angle (i.e. the angle between successive radial vectors) is obtained by solving the equations of motion with a second nearest neighbour (SNN) approximation. A one dimensional map analysis as well as a comprehensive analytical proof shows that the divergence angle always converges to a single attractor regardless of the initial conditions. This attractor is approximately the Fibonacci angle ({approx} 138 deg) within variations due to a growth factor {mu} of the pattern. The system is proved to be stable with the SNN approximation. Further analysis with a third nearest neighbour approximation (TNN) shows extra linearly stable attractors may appear around the Lucas angle at {approx} 99.5 deg. 7 refs., 5 figs.

  2. A silicon array detector for high-energy betas

    International Nuclear Information System (INIS)

    The detection of significant levels of certain gamma and beta emitting isotopes could allow on-site Inspection teams working under the Comprehensive Test Ban Treaty to localize probable vent and fissure locations. Thus, sophisticated drilling and radionuclide measurements could then be made more effectively allowing for a higher probability of correctly identifying a nuclear event. In order to address this need we have developed a silicon array coupled with a Nal for detecting gammas, high-energy betas, and beta-gamma coincidences. The pursuit of this detection method is now viable since large-area, high-purity silicon wafers are now commercially available making this layered, large-area technique technically and economically feasible. We have designed, constructed, and tested a prototype detector system and we will present out initial test data

  3. Wide-Angle X-Band Antenna Array with Novel Radiating Elements

    Directory of Open Access Journals (Sweden)

    R. Chernobrovkin

    2008-06-01

    Full Text Available An antenna array with wide-angle beam steering is presented in this paper. The antenna consists of dielectrically filled open-ended waveguides with a new type of excitation as individual radiators. The characteristics of the radiator have been analyzed. The novel radiator has a wide beamwidth and the frequency band of around 21%. Following the computational modeling and experimental investigations the characteristics of the antenna array for scan angles up to 50° are discussed.

  4. Demonstration of lasercom and spatial tracking with a silicon Geiger-mode APD array

    Science.gov (United States)

    Yarnall, Timothy M.; Horkley, Benjamin W.; Garg, Ajay S.; Hamilton, Scott A.

    2016-03-01

    We present a demonstration of a high-rate photon counting receiver with the potential to act as a spatial tracker based on a silicon Geiger-mode avalanche photodiode array (GM-APD). This array enables sensitive high-rate optical communication in the visible and near infrared regions of the spectrum. The array contains 1024 elements arranged in a 32x32 pixel square. This large number of elements supports high data rates through the mitigation of blocking losses and associated data rate limitations created by the reset time of an individual Geiger-mode detector. Measurement of bit error rates demonstrate that receiver sensitivities of 2.55 dB (detected) photons-per-bit for 78.8 Mb/s on-off-keying and -0.46 dB (detected) photons-per-bit for 19.4 Mb/s 16-ary pulse-position modulation are accessible with strong forward error correction. Additionally, the array can record the spatial coordinates of each detection event. By computing the centroid of the distribution of spatial detections it is possible to determine the angle-of-arrival of the detected photons. These levels of performance imply that Si GM-APD arrays are excellent candidates for a variety of free space lasercom applications ranging from atmospheric communication in the 1 micron or 780 nm spectral windows to underwater communication in the 480 nm to 520 nm spectral window

  5. Optimized antireflective silicon nanostructure arrays using nanosphere lithography

    Science.gov (United States)

    Lee, Dohaeng; Bae, Jiwoong; Hong, Soonwook; Yang, Hwichul; Kim, Young-Beom

    2016-05-01

    Broadband optical antireflective arrays of sub-wavelength structures were fabricated on silicon substrates using colloidal nanosphere lithography in conjunction with reactive ion etching. The morphology of the nanostructures, including the shape, base diameter and height, was precisely controlled by modifying the conventional process of nanosphere lithography. We investigated their effects on the optical characteristics based on experimentally measured reflectance performance. The Si nanostructure arrays demonstrated optical antireflection performance with an average reflectance of about 1% across the spectral range from 300 to 800 nm, i.e. near-ultraviolet to visible wavelengths. This fabrication method can be used to create a large surface area and offers a promising approach for antireflective applications.

  6. Silicone Brushes: Omniphobic Surfaces with Low Sliding Angles.

    Science.gov (United States)

    Wooh, Sanghyuk; Vollmer, Doris

    2016-06-01

    Losing contact: Omniphobic surfaces can be readily produced by acid-catalyzed graft polycondensation of dimethyldimethoxysilane (PDMS). Droplets show a very small contact angle hysteresis as well as a low sliding angle of only a few degrees. The nm-thick PDMS layer is neither easily washed away nor depleted. This method offers a novel approach towards the preparation of super-liquid-repelling surfaces. PMID:27159802

  7. Composite silicon nanostructure arrays fabricated on optical fibre by chemical etching of multicrystal silicon film

    International Nuclear Information System (INIS)

    Integrating nanostructures onto optical fibers presents a promising strategy for developing new-fashioned devices and extending the scope of nanodevices’ applications. Here we report the first fabrication of a composite silicon nanostructure on an optical fiber. Through direct chemical etching using an H2O2/HF solution, multicrystal silicon films with columnar microstructures are etched into a vertically aligned, inverted-cone-like nanorod array embedded in a nanocone array. A faster dissolution rate of the silicon at the void-rich boundary regions between the columns is found to be responsible for the separation of the columns, and thus the formation of the nanostructure array. The morphology of the nanorods primarily depends on the microstructure of the columns in the film. Through controlling the microstructure of the as-grown film and the etching parameters, the structural control of the nanostructure is promising. This fabrication method can be extended to a larger length scale, and it even allows roll-to-roll processing. (paper)

  8. Silicon nitride Micromesh Bolometer Array for Submillimeter Astrophysics.

    Science.gov (United States)

    Turner, A D; Bock, J J; Beeman, J W; Glenn, J; Hargrave, P C; Hristov, V V; Nguyen, H T; Rahman, F; Sethuraman, S; Woodcraft, A L

    2001-10-01

    We present the design and performance of a feedhorn-coupled bolometer array intended for a sensitive 350-mum photometer camera. Silicon nitride micromesh absorbers minimize the suspended mass and heat capacity of the bolometers. The temperature transducers, neutron-transmutation-doped Ge thermistors, are attached to the absorber with In bump bonds. Vapor-deposited electrical leads address the thermistors and determine the thermal conductance of the bolometers. The bolometer array demonstrates a dark noise-equivalent power of 2.9 x 10(-17) W/ radicalHz and a mean heat capacity of 1.3 pJ/K at 390 mK. We measure the optical efficiency of the bolometer and feedhorn to be 0.45-0.65 by comparing the response to blackbody calibration sources. The bolometer array demonstrates theoretical noise performance arising from the photon and the phonon and Johnson noise, with photon noise dominant under the design background conditions. We measure the ratio of total noise to photon noise to be 1.21 under an absorbed optical power of 2.4 pW. Excess noise is negligible for audio frequencies as low as 30 mHz. We summarize the trade-offs between bare and feedhorn-coupled detectors and discuss the estimated performance limits of micromesh bolometers. The bolometer array demonstrates the sensitivity required for photon noise-limited performance from a spaceborne, passively cooled telescope. PMID:18364768

  9. Measurement of small angle based on a (1 0 0) silicon wafer and heterodyne interferometer

    Science.gov (United States)

    Hsieh, Meng-Chang; Lin, Jiun-You; Chen, Yu-Fong; Chang, Chia-Ou

    2016-06-01

    In this paper, a new optical material application and a heterodyne interferometer are proposed for measuring small angles. In the proposed interferometer, the optical material is a (1 0 0) silicon wafer applied to compose a new architecture of small angle sensor. The small angle measurement used the phase difference which is dependent on the incident angle at the silicon wafer surface to deduce the angular variation. The proposed architecture is simple and uses the common path method to compare test and reference signals; thus, small angles can be easily and accurately measured by estimating the phase difference. The experimental results demonstrate the feasibility of this method. The angular resolution and sensitivity levels superior to 7 × 10-5° (1.3 × 10-6 rad) and 150 (deg/deg), respectively, were attainable in a dynamic range of 0.45°.

  10. Method of rotation angle measurement in machine vision based on calibration pattern with spot array

    International Nuclear Information System (INIS)

    We propose a method of rotation angle measurement with high precision in machine vision. An area scan CCD camera, imaging lens, and calibration pattern with a spot array make up the measurement device for measuring the rotation angle. The calibration pattern with a spot array is installed at the rotation part, and the CCD camera is set at a certain distance from the rotation components. The coordinates of the spots on the calibration pattern is acquired through the vision image of the calibration pattern captured by the CCD camera. At the initial position of the calibration pattern, the camera is calibrated with the spot array; the mathematical model of distortion error of the CCD camera is built. With the equation of coordinate rotation measurement, the rotation angle of the spot array is detected. In the theoretic simulation, noise of different levels is added to the coordinates of the spot array. The experiment results show that the measurement device can measure the rotation angle precisely with a noncontact method. The standard deviation of rotation angle measurement is smaller than 3 arc sec. The measurement device can measure both microangles and large angles.

  11. Contact Angles and Surface Tension of Germanium-Silicon Melts

    Science.gov (United States)

    Croell, A.; Kaiser, N.; Cobb, S.; Szofran, F. R.; Volz, M.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Precise knowledge of material parameters is more and more important for improving crystal growth processes. Two important parameters are the contact (wetting) angle and the surface tension, determining meniscus shapes and surface-tension driven flows in a variety of methods (Czochralski, EFG, floating-zone, detached Bridgman growth). The sessile drop technique allows the measurement of both parameters simultaneously and has been used to measure the contact angles and the surface tension of Ge(1-x)Si(x) (0 less than or equal to x less than or equal to 1.3) alloys on various substrate materials. Fused quartz, Sapphire, glassy carbon, graphite, SiC, carbon-based aerogel, pyrolytic boron nitride (pBN), AIN, Si3N4, and polycrystalline CVD diamond were used as substrate materials. In addition, the effect of different cleaning procedures and surface treatments on the wetting behavior were investigated. Measurements were performed both under dynamic vacuum and gas atmospheres (argon or forming gas), with temperatures up to 1100 C. In some experiments, the sample was processed for longer times, up to a week, to investigate any changes of the contact angle and/or surface tension due to slow reactions with the substrate. For pure Ge, stable contact angles were found for carbon-based substrates and for pBN, for Ge(1-x)Si(x) only for pBN. The highest wetting angles were found for pBN substrates with angles around 170deg. For the surface tension of Ge, the most reliable values resulted in gamma(T) = (591- 0.077 (T-T(sub m)) 10(exp -3)N/m. The temperature dependence of the surface tension showed similar values for Ge(1-x)Si(x), around -0.08 x 10(exp -3)N/m K, and a compositional dependence of 2.2 x 10(exp -3)N/m at%Si.

  12. Polarization rotator of arbitrary angle based on simple slot-array

    Science.gov (United States)

    Liu, Xiaoming; Cao, Xiaohang; Yu, Junsheng; Chen, Xiaodong; Yao, Yuan; Qi, Limei; Chen, Zhijiao; Zhou, Jun

    2015-12-01

    A novel polarization rotator of arbitrary angle was proposed and realized based on simple slot arrays. To achieve the rotation of an arbitrary angle α, the slots on the first layer have to be at an angle of α to the slots on the second layer. Consequently, 90° rotation can be realized using two perpendicularly oriented slot arrays, which overturns the conventional notion of that perpendicular slot arrays are not possible to pass electromagnetic wave. In addition, such structure provides the same bandwidth comparing to its counterpart utilized for frequency selective surface (FSS). Furthermore, such structure is much easier to be fabricated compared to the substrate integrated waveguide (SIW) array. Moreover, low insertion loss can be achieved based on metallic material.

  13. Polarization rotator of arbitrary angle based on simple slot-array

    Directory of Open Access Journals (Sweden)

    Xiaoming Liu

    2015-12-01

    Full Text Available A novel polarization rotator of arbitrary angle was proposed and realized based on simple slot arrays. To achieve the rotation of an arbitrary angle α, the slots on the first layer have to be at an angle of α to the slots on the second layer. Consequently, 90° rotation can be realized using two perpendicularly oriented slot arrays, which overturns the conventional notion of that perpendicular slot arrays are not possible to pass electromagnetic wave. In addition, such structure provides the same bandwidth comparing to its counterpart utilized for frequency selective surface (FSS. Furthermore, such structure is much easier to be fabricated compared to the substrate integrated waveguide (SIW array. Moreover, low insertion loss can be achieved based on metallic material.

  14. Ordered arrays of silicon pillars with controlled height and aspect ratio

    International Nuclear Information System (INIS)

    We report the fabrication of ordered arrays of silicon pillars via a combination of nanosphere lithography (NSL) and reactive ion etching (RIE). For NSL we used monolayers of silica particles self-assembled onto silicon substrates as masks for the deposition of hexagonal arrays of chromium nanoislands. By changing the amount of the deposited metal we fabricated arrays of nanoislands with different size and spacing. By using these arrays as masks for RIE, silicon pillars with different height (up to 1100 nm) and aspect ratio (up to 12:1) could be obtained

  15. Smart integration of silicon nanowire arrays in all-silicon thermoelectric micro-nanogenerators

    Science.gov (United States)

    Fonseca, Luis; Santos, Jose-Domingo; Roncaglia, Alberto; Narducci, Dario; Calaza, Carlos; Salleras, Marc; Donmez, Inci; Tarancon, Albert; Morata, Alex; Gadea, Gerard; Belsito, Luca; Zulian, Laura

    2016-08-01

    Micro and nanotechnologies are called to play a key role in the fabrication of small and low cost sensors with excellent performance enabling new continuous monitoring scenarios and distributed intelligence paradigms (Internet of Things, Trillion Sensors). Harvesting devices providing energy autonomy to those large numbers of microsensors will be essential. In those scenarios where waste heat sources are present, thermoelectricity will be the obvious choice. However, miniaturization of state of the art thermoelectric modules is not easy with the current technologies used for their fabrication. Micro and nanotechnologies offer an interesting alternative considering that silicon in nanowire form is a material with a promising thermoelectric figure of merit. This paper presents two approaches for the integration of large numbers of silicon nanowires in a cost-effective and practical way using only micromachining and thin-film processes compatible with silicon technologies. Both approaches lead to automated physical and electrical integration of medium-high density stacked arrays of crystalline or polycrystalline silicon nanowires with arbitrary length (tens to hundreds microns) and diameters below 100 nm.

  16. Preparation of Periodically Arrayed Silicon Microwires Using Simple Patterning Process.

    Science.gov (United States)

    Kim, Changheon; Lim, Sangwoo; Jeong, Chaehwan

    2015-11-01

    The silicon (Si) microwires were fabricated by microsphere lithography using polystyrene (PS) beads monolayer. The Si wafer tailored into 40 x 40 mm2 was used as a substrate. The monolayer of 2.0 μm-sized PS beads was formed on substrates through convective assembly method. PS beads on substrates were tailored into smaller sizes by O2 plasma treatment using reactive ion etching (RIE). This controllable re-sizing process gave an opportunity to prepare the wire-array with various radii of Si microwires fabricated by using inductively coupled plasma (ICP)-etching. The convective assembly process was monitored in real-time through an optical microscope with a CCD camera. PS beads and structures of Si microwires were characterized using a scanning electron microscope (SEM) and the optical property was measured by the UV-Vis spectroscopy. PMID:26726546

  17. Static and dynamic characterization of robust superhydrophobic surfaces built from nano-flowers on silicon micro-post arrays

    KAUST Repository

    Chen, Longquan

    2010-09-01

    Superhydrophobic nano-flower surfaces were fabricated using MEMS technology and microwave plasma-enhanced chemical vapor deposition (MPCVD) of carbon nanotubes on silicon micro-post array surfaces. The nano-flower structures can be readily formed within 1-2 min on the micro-post arrays with the spacing ranging from 25 to 30 μm. The petals of the nano-flowers consisted of clusters of multi-wall carbon nanotubes. Patterned nano-flower structures were characterized using various microscopy techniques. After MPCVD, the apparent contact angle (160 ± 0.2°), abbreviated as ACA (defined as the measured angle between the apparent solid surface and the tangent to the liquid-fluid interface), of the nano-flower surfaces increased by 139% compared with that of the silicon micro-post arrays. The measured ACA of the nano-flower surface is consistent with the predicted ACA from a modified Cassie-Baxter equation. A high-speed CCD camera was used to study droplet impact dynamics on various micro/nanostructured surfaces. Both static testing (ACA and sliding angle) and droplet impact dynamics demonstrated that, among seven different micro/nanostructured surfaces, the nano-flower surfaces are the most robust superhydrophobic surfaces. © 2010 IOP Publishing Ltd.

  18. Static and dynamic characterization of robust superhydrophobic surfaces built from nano-flowers on silicon micro-post arrays

    International Nuclear Information System (INIS)

    Superhydrophobic nano-flower surfaces were fabricated using MEMS technology and microwave plasma-enhanced chemical vapor deposition (MPCVD) of carbon nanotubes on silicon micro-post array surfaces. The nano-flower structures can be readily formed within 1–2 min on the micro-post arrays with the spacing ranging from 25 to 30 µm. The petals of the nano-flowers consisted of clusters of multi-wall carbon nanotubes. Patterned nano-flower structures were characterized using various microscopy techniques. After MPCVD, the apparent contact angle (160 ± 0.2°), abbreviated as ACA (defined as the measured angle between the apparent solid surface and the tangent to the liquid–fluid interface), of the nano-flower surfaces increased by 139% compared with that of the silicon micro-post arrays. The measured ACA of the nano-flower surface is consistent with the predicted ACA from a modified Cassie–Baxter equation. A high-speed CCD camera was used to study droplet impact dynamics on various micro/nanostructured surfaces. Both static testing (ACA and sliding angle) and droplet impact dynamics demonstrated that, among seven different micro/nanostructured surfaces, the nano-flower surfaces are the most robust superhydrophobic surfaces

  19. Develop silicone encapsulation systems for terrestrial silicon solar arrays. First quarterly progress report, February 15, 1978--June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-10

    This study is directed toward the development of a cost effective encapsulation system for photovoltaic modules using silicone based materials. This is a cooperative effort between Dow Corning, the major supplier of silicones and silicone intermediates, and Spectrolab a leading photovoltaic array manufacturer. The total contract effort has been divided into four tasks: technology review, generation of screening concepts, assessment of encapsulation concepts, and evaluation of encapsulation concepts. A review of technology pertinent to the use and weatherability of silicone based materials and a plan for screening encapsulation concepts are presented. The technology review covered: the performance of clear silicones in weathering and stress environments, photovoltaic industry experience with silicone materials used in photovoltaic systems, and silicones used in the protection of electronic devices.

  20. Wide-viewing-angle three-dimensional display system using HOE lens array

    Science.gov (United States)

    Takahashi, Hideya; Fujinami, Hiromitsu; Yamada, Kenji

    2006-02-01

    Integral imaging has the problem of the limitation of viewing angle. This paper describes a wide-viewing-angle 3D display system using holographic optical element (HOE) lens array. This display system consists of a flat HOE lens array and a projector. However, the axis of each elemental HOE lens is eccentric. Since every axis of the elemental HOE lens is convergent, the flat HOE lens array works as a virtual curved lens array. Thus, this display system has a wide viewing angle. On the other hand, generally, in a integral imaging system each elemental lens has its corresponding area on the display panel. To prevent the image flipping, the elemental image that exceeds the corresponding area is discarded. Therefore, the number of the elemental images is limited and the viewing angle is limited. In the proposed system, since the HOE lens array is flat and the light rays from the projector are parallel, the elemental image does not exceed the corresponding area and the flipped images are not observed. Also, the configuration of this display system is simple. The principle of the proposed system is explained and the experimental result is presented.

  1. Comparison of steering angle and bandwidth for various phased array antenna concepts

    Science.gov (United States)

    Bonjour, Romain; Singleton, Matthew; Leuchtmann, Pascal; Leuthold, Juerg

    2016-08-01

    In this paper we compare different integratable ultra-fast tunable true-time delay concepts with respect to their performances in a phased array system. The performances of the schemes are assessed with respect to the supported range, i.e. the range within which beam steering for a given fractional bandwidth can be achieved with a gain flatness better than 3 dB. We also compare the array gain as of function of steering angle and fractional bandwidth.

  2. Graded index and randomly oriented core-shell silicon nanowires for broadband and wide angle antireflection

    Directory of Open Access Journals (Sweden)

    P. Pignalosa

    2011-09-01

    Full Text Available Antireflection with broadband and wide angle properties is important for a wide range of applications on photovoltaic cells and display. The SiOx shell layer provides a natural antireflection from air to the Si core absorption layer. In this work, we have demonstrated the random core-shell silicon nanowires with both broadband (from 400nm to 900nm and wide angle (from normal incidence to 60º antireflection characteristics within AM1.5 solar spectrum. The graded index structure from the randomly oriented core-shell (Air/SiOx/Si nanowires may provide a potential avenue to realize a broadband and wide angle antireflection layer.

  3. Angled microfiber arrays as low-modulus, low Poisson's ratio compliant substrates

    International Nuclear Information System (INIS)

    This paper presents a novel fabrication method for producing high-aspect-ratio, angled polymer microfiber arrays by directional pulling of polyethylene from low-aspect-ratio, microporous polycarbonate templates. These arrays represent a novel substrate for electrostatic sensors and actuators because they are characterized by low stiffness (<24 kPa effective elastic modulus), low Poisson's ratio (effectively zero at low strains), and very low density (<1% of solid polyethylene). Validation of these properties is presented by developing a model based on elastica theory, and by performing experiments using a parallel-plate electrostatic actuator fabricated with a fiber array as the dielectric and return spring. (paper)

  4. Angle-Polarization Estimation for Coherent Sources with Linear Tripole Sensor Arrays.

    Science.gov (United States)

    Wang, Kun; He, Jin; Shu, Ting; Liu, Zhong

    2016-01-01

    We propose a parallel factor (PARAFAC) analysis-based angle and polarization estimation algorithm for multiple coherent sources using a uniformly-spaced linear tripole sensor array. By forming a PARAFAC model using the spatial signature of the tripole array, the new algorithm requires neither spatial smoothing nor vector-field smoothing to decorrelate the signal coherency. We also establish that the angle-polarization parameters of K coherent signals can be uniquely determined by PARAFAC analysis, as long as the number of tripoles L ≥ 2K - 1 . In addition, the proposed algorithm can offer enhanced angle and polarization estimation accuracy by extending the interspacing of the tripoles beyond a half wavelength. PMID:26907273

  5. Angle-Polarization Estimation for Coherent Sources with Linear Tripole Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Kun Wang

    2016-02-01

    Full Text Available We propose a parallel factor (PARAFAC analysis-based angle and polarization estimation algorithm for multiple coherent sources using a uniformly-spaced linear tripole sensor array. By forming a PARAFAC model using the spatial signature of the tripole array, the new algorithm requires neither spatial smoothing nor vector-field smoothing to decorrelate the signal coherency. We also establish that the angle-polarization parameters of K coherent signals can be uniquely determined by PARAFAC analysis, as long as the number of tripoles L ≥ 2K − 1 . In addition, the proposed algorithm can offer enhanced angle and polarization estimation accuracy by extending the interspacing of the tripoles beyond a half wavelength.

  6. Silicon nanopillar arrays with SiO2 overlayer for biosensing application

    OpenAIRE

    Choudhury, B. Dev; Casquel del Campo, Rafael; Bañuls, María José; Sanza Gutierrez, Francisco Javier; Laguna Heras, Maria Fe; Holgado Bolaños, Miguel; Puchades, Rosa; Maquieira, Ángel; Angulo Barrios, Carlos; Anand, S.

    2014-01-01

    We present the fabrication of silicon dioxide (SiO2) coated silicon nanopillar array structures and demonstrate their application as sensitive optical biosensors. Colloidal lithography, plasma dry etching and deposition processes are used to fabricate SiO2 coated Si nanopillar arrays with two different diameters and periods. Proof of concept bio recognition experiments are carried out with the bovine serum albumin (BSA)/antiBSA model system using Fourier transform visible and IR spectrometry ...

  7. Small angle X-ray scattering study of oxygen precipitation in silicon

    International Nuclear Information System (INIS)

    Czochralski-grown dislocation-free silicon is used in the semiconductor industry almost exclusively for manufacturing VLSI devices. Such material contains small quantities (∼20 ppm) of dissolved oxygen, which can have a crucial effect on the properties of produced devices. Therefore it is of great importance to study its precipitation in a silicon matrix after given thermal treatment. The small angle X-ray scattering (SAXS) technique was used to study oxygen precipitation in monocrystalline silicon samples. We used 8 and 16 keV radiation to overcome the high absorption at low energies. A series of samples has been prepared with controlled sequence of oxygen nucleation and precipitation phase and measured with SAXS. It is shown that this low contrast changes in standard wafers can be investigated using synchrotron radiation

  8. Incidence angle and spectral effects on vertical junction silicon solar cell capacitance

    OpenAIRE

    SANE, MOUSTAPHA; ŞAHİN, Gökhan; BARRO, Fabé Idrissa; MAIGA, Amadou Seidou

    2014-01-01

    The aim of this work is to present a theoretical study of a vertical junction silicon solar cell under monochromatic illumination. By solving the continuity equation and using a one-dimensional model in frequency modulation, we derive the analytical expressions of both excess minority carrier density and photovoltage. Based on these expressions, the solar cell capacitance was calculated; we then exhibited the effects of both illumination wavelength and incidence angle on the solar cell capaci...

  9. INVESTIGATION ON SILICON SOLAR CELL CAPACITANCE AND ITS DEPENDENCE ON BOTH TEMPERATURE AND INCIDENCE ANGLE

    OpenAIRE

    Moustapha Sané

    2014-01-01

    The aim of this work is to investigate a theoretical study of a vertical junction silicon solar cell capacitance under monochromatic illumination. By solving the continuity equation and using a one dimensional model in frequency modulation, we derive the analytical expressions of both excess minority carrier density and photovoltage. Based on these expressions, the solar cell capacitance was calculated; we then exhibited the effects of both temperature and incidence angle on the solar cell ca...

  10. The Indiana silicon sphere 4π charged-particle detector array

    International Nuclear Information System (INIS)

    A low threshold charged particle detector array for the study of fragmentation processes in light-ion-induced reactions has been constructed and successfully implemented at the IUCF and Saturne II accelerators. The array consists of 162-triple-element detector telescopes mounted in a spherical geometry and covering 74% of 4π in solid angle. Telescope elements are composed of (1) an axial-field gas ionization chamber operated with C3F8 gas; (2) a 0.5 mm thick passivated silicon detector, and (3) a 2.8 cm thick CsI(Tl) scintillation crystal with photodiode readout. Discrete element identification is obtained for ejectiles up to Z similar 16 over the dynamic range 0.7≤E/A≤95 MeV/nucleon. Isotopes are also distinguished for H, He, Li and Be ejectiles with 8< or ∼E/A< or ∼95 MeV. Custom-designed electronics are employed for bias supplies and linear signal processing. Data are acquired via a CAMAC/VME/Ethernet system. (orig.)

  11. The Indiana silicon sphere 4 π charged-particle detector array

    Science.gov (United States)

    Kwiatkowski, K.; Bracken, D. S.; Morley, K. B.; Brzychczyk, J.; Foxford, E. Renshaw; Komisarcik, K.; Viola, V. E.; Yoder, N. R.; Dorsett, J.; Poehlman, J.; Madden, N.; Ottarson, J.

    1995-02-01

    A low threshold charged particle detector array for the study of fragmentation processes in light-ion-induced reactions has been constructed and successfully implemented at the IUCF and Saturne II accelerators. The array consists of 162-triple-element detector telescopes mounted in a spherical geometry and covering 74% of 4π in solid angle. Telescope elements are composed of (1) an axial-field gas ionization chamber operated with C3F8 gas; (2) a 0.5 mm thick passivated silicon detector, and (3) a 2.8 cm thick CsI(TI) scintillation crystal with photodiode readout. Discrete element identification is obtained for ejectiles up to Z ~ 16 over the dynamic range 0.7 <= E/A <= 95 MeV/nucleon. Isotopes are also distinguished for H, He, Li and Be ejectiles with 8 <~ E/A <~ 95 MeV. Custom-designed electronics are employed for bias supplies and linear signal processing. Data are acquired via a CAMAC/VME/Ethernet system.

  12. The Indiana silicon sphere 4{pi} charged-particle detector array

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowski, K. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF; Bracken, D.S. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF; Morley, K.B. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF; Brzychczyk, J. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF; Renshaw Foxford, E. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF; Komisarcik, K. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF; Viola, V.E. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF; Yoder, N.R. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF; Dorsett, J. [Department of Chemistry Technical Services, Indiana University, Bloomington, IN 47405 (United States); Poehlman, J. [Department of Chemistry Technical Services, Indiana University, Bloomington, IN 47405 (United States); Madden, N. [Consultant, Livermore, CA (United States); Ottarson, J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)

    1995-06-15

    A low threshold charged particle detector array for the study of fragmentation processes in light-ion-induced reactions has been constructed and successfully implemented at the IUCF and Saturne II accelerators. The array consists of 162-triple-element detector telescopes mounted in a spherical geometry and covering 74% of 4{pi} in solid angle. Telescope elements are composed of (1) an axial-field gas ionization chamber operated with C{sub 3}F{sub 8} gas; (2) a 0.5 mm thick passivated silicon detector, and (3) a 2.8 cm thick CsI(Tl) scintillation crystal with photodiode readout. Discrete element identification is obtained for ejectiles up to Z similar 16 over the dynamic range 0.7{<=}E/A{<=}95 MeV/nucleon. Isotopes are also distinguished for H, He, Li and Be ejectiles with 8< or {approx}E/A< or {approx}95 MeV. Custom-designed electronics are employed for bias supplies and linear signal processing. Data are acquired via a CAMAC/VME/Ethernet system. (orig.).

  13. Fluorinion transfer in silver-assisted chemical etching for silicon nanowires arrays

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Tianyu; Xu, Youlong, E-mail: ylxu@mail.xjtu.edu.cn; Zhang, Zhengwei; Mao, Shengchun

    2015-08-30

    Graphical abstract: - Highlights: • How Ag transfers F{sup −} to the adjacent Si atom was investigated and deduced by DFT at atomic scale. • Three-electrode CV tests proved the transferring function of Ag in the etching reaction. • Uniform SiNWAs were fabricated on unpolished silicon wafers with KOH pretreatment. - Abstract: Uniform silicon nanowires arrays (SiNWAs) were fabricated on unpolished rough silicon wafers through KOH pretreatment followed by silver-assisted chemical etching (SACE). Density functional theory (DFT) calculations were used to investigate the function of silver (Ag) at atomic scale in the etching process. Among three adsorption sites of Ag atom on Si(1 0 0) surface, Ag(T4) above the fourth-layer surface Si atoms could transfer fluorinion (F{sup −}) to adjacent Si successfully due to its stronger electrostatic attraction force between Ag(T4) and F{sup −}, smaller azimuth angle of F−Ag(T4)−Si, shorter bond length of F−Si compared with F−Ag. As F{sup −} was transferred to adjacent Si by Ag(T4) one by one, the Si got away from the wafer in the form of SiF{sub 4} when it bonded with enough F{sup −} while Ag(T4) was still attached onto the Si wafer ready for next transfer. Cyclic voltammetry tests confirmed that Ag can improve the etching rate by transferring F{sup −} to Si.

  14. Controlled Evolution of Silicon Nanocone Arrays Induced by Ar+ Sputtering at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    LI Qin-Tao; LI Zhi-Gang; XIE Qiao-Ling; GONG Jin-Long; ZHU De-Zhang

    2009-01-01

    Controlled evolution of silicon nanocone arrays induced by Ar+ sputtering at room temperature, using the coating carbon as a mask, is demonstrated. The investigation of scanning electron microscopy indicates that the morphology of silicon nanostructures can be controlled by adjusting the thickness of the coating carbon film.Increasing the thickness of the coating carbon film from 50-6Onm, 250-300nm and 750-800nm to 150Onm, the morphologies of silicon nanostructures are transformed from smooth surface ripple, coarse surface ripple and surface ripple with densely distributed nanocones to nanocone arrays with a high density of about 1 × 109-2 × 109 cm-2.

  15. Synthesize of barium ferrite nanowire array by self-fabricated porous silicon template

    Science.gov (United States)

    Zheng, Hui; Han, Mangui; Deng, Jiangxia; Zheng, Liang; Wu, Jun; Deng, Longjiang; Qin, Huibin

    2014-08-01

    In this work, we synthesize barium ferrite (BaFe12O19) nanowire array in porous silicon template. The porous silicon templates are prepared via gold-assisted chemical etching method. The gold (Au) nanoparticles with mean diameter of 30 nm and distance of 100 nm were ordered on the surface of Si substrate through the Polystyrene (510000)-block-poly (2-vinylpyridine) (31000) (PS510000-b-P2VP31000) diblock copolymer. Porous silicon templates with mean diameter of 500 nm and distance between the pores of 500 nm were fabricated by two etching steps. BaFe12O19 nanowires with mean diameter of 200 nm were synthesized into a porous silicon template by a sol-gel method. Magnetic hysteresis loops show an isotropic feature of the BaFe12O19 nanowires array. The coercivity (Hc) and squareness ratio (Mr/Ms) of nanowire arrays are 2560 Oe and 0.6, respectively.

  16. Silicon Nanoridge Array Waveguides for Nonlinear and Sensing Applications

    CERN Document Server

    Puckett, Matthew W; Vallini, Felipe; Shahin, Shiva; Monifi, Faraz; Barrina, Peter N; Mehravar, Soroush; Kieu, Khanh; Fainman, Yeshaiahu

    2015-01-01

    We fabricate and characterize waveguides composed of closely spaced and longitudinally oriented silicon ridges etched into silicon-on-insulator wafers. Through both guided mode and bulk measurements, we demonstrate that the patterning of silicon waveguides on such a deeply subwavelength scale is desirable for nonlinear and sensing applications alike. The proposed waveguide geometry simultaneously exhibits comparable propagation loss to similar schemes proposed in literature, an enhanced effective third-order nonlinear susceptibility, and high sensitivity to perturbations in its environment.

  17. Continuum framework for dislocation structure, energy and dynamics of dislocation arrays and low angle grain boundaries

    Science.gov (United States)

    Zhu, Xiaohong; Xiang, Yang

    2014-09-01

    We present a continuum framework for dislocation structure, energy and dynamics of dislocation arrays and low angle grain boundaries that are allowed to be nonplanar or nonequilibrium. In our continuum framework, we define a dislocation density potential function on the dislocation array surface or grain boundary to describe the orientation dependent continuous distribution of dislocations in a very simple and accurate way. The continuum formulations incorporate both the long-range dislocation interaction and the local dislocation line energy, and are derived from the discrete dislocation model. The continuum framework recovers the classical Read-Shockley energy formula when the long-range elastic fields of the low angle grain boundaries are canceled out. Applications of our continuum framework in this paper are focused on dislocation structures on static planar and nonplanar low angle grain boundaries and misfitting interfaces. We present two methods under our continuum framework for this purpose, including the method based on the Franks formula and the energy minimization method. We show that for any (planar or nonplanar) low angle grain boundary, the Franks formula holds if and only if the long-range stress field in the continuum model is canceled out, and it does not necessarily hold for a total energy minimum dislocation structure.

  18. Field Emission from Amorphous carbon Nitride Films Deposited on silicon Tip Arrays

    Institute of Scientific and Technical Information of China (English)

    李俊杰; 郑伟涛; 孙龙; 卞海蛟; 金曾孙; 赵海峰; 宋航; 孟松鹤; 赫晓东; 韩杰才

    2003-01-01

    Amorphous carbon nitride films (a-CNx) were deposited on silicon tip arrays by rf magnetron sputtering in pure nitrogen atmosphere. The field emission property of carbon nitride films on Si tips was compared with that of carbon nitride on silicon wafer. The results show that field emission property of carbon nitride films deposited on silicon tips can be improved significantly in contrast with that on wafer. It can be explained that field emission is sensitive to the local curvature and geometry, thus silicon tips can effectively promote field emission property of a-CNx films. In addition, the films deposited on silicon tips have a smaller effective work function ( F = 0.024 eV)of electron field emission than that on silicon wafer ( F = 0.060 e V), which indicates a significant enhancement of the ability of electron field emission from a-CNx films.

  19. Beam Tilt-Angle Estimation for Monopole End-Fire Array Mounted on a Finite Ground Plane

    OpenAIRE

    Jia Cao; Zhenghui Xue; Meng Cao

    2015-01-01

    A modified method for the beam tilt-angle estimation of monopole end-fire array mounted on finite ground plane is proposed. In the simplified model, the monopole array and ground plane are approximated to two line sources of transverse and longitudinal electric current, respectively. It is deduced that the beam tilt angle is a function about the length of ground plane in front of array Lg, the length of monopole array La, and the phase constant βα. After verifying the optimizing principle of ...

  20. W-band Phased Array Systems using Silicon Integrated Circuits

    Science.gov (United States)

    Kim, Sang Young

    This thesis presents the silicon-based on-chip W-band phased array systems. An improved quadrature all-pass filter (QAF) and its implementation in 60--80 GHz active phase shifter using 0.13 microm SiGe BiCMOS technology is presented. It is demonstrated that with the inclusion of an Rs/R in the high Q branches of C and L, the sensitivity to the loading capacitance, therefore the I/Q phase and amplitude errors are minimized. This technique is especially suited for wideband millimeter-wave circuits where the loading capacitance (CL) is comparable to the filter capacitance (C). A prototype 60--80 GHz active phased shifter using the improved QAF is demonstrated. The overall chip size is 1.15 x 0.92 mm2 with the power consumption of 108 mW. The measured S11 and S22 are switches is demonstrated. The phase shifter is based on a low-pass pi-network. The chip size is 0.45 x 0.3 mm2 without pads and consumes virtually no power. The measured S11 and S22 is 8 dBm and the simulated IIP3 is > 22 dBm. A low-power 76--84 GHz 4-element phased array receiver using the designed passive phase shifter is presented. The power consumption is minimized by using a single-ended design and alternating the amplifiers and phase shifter cells to result in a low noise figure at a low power consumption. A variable gain amplifier and the 11° phase shifter are used to correct for the rms gain and phase errors at different operating frequencies. The overall chip size is 2.0 x 2.7 mm2 with the current consumption of 18 mA/channel with 1.8 V supply voltage. The measured S11 and S 22 is chip coupling is circuits are designed differentially to result in less sensitivity to packaging effect and high channel-to-channel isolation. The overall chip size is 5.0 x 5.8 mm 2 with the power consumption of 500--600 mA from 2 V supply voltage. The measured S11 and S22 for all 16 phase states is 10 dB for 76.4--90 GHz with the rms gain error of -45 dB. The measured NF is 11.2--13 dB at 77--87 GHz at the maximum

  1. Structure and field emission of graphene layers on top of silicon nanowire arrays

    Science.gov (United States)

    Huang, Bohr-Ran; Chan, Hui-Wen; Jou, Shyankay; Chen, Guan-Yu; Kuo, Hsiu-An; Song, Wan-Jhen

    2016-01-01

    Monolayer graphene was grown on copper foils and then transferred on planar silicon substrates and on top of silicon nanowire (SiNW) arrays to form single- to quadruple-layer graphene films. The morphology, structure, and electron field emission (FE) of these graphene films were investigated. The graphene films on the planar silicon substrates were continuous. The single- to triple-layer graphene films on the SiNW arrays were discontinuous and while the quadruple-layer graphene film featured a mostly continuous area. The Raman spectra of the graphene films on the SiNW arrays showed G and Gʹ bands with a singular-Lorentzian shape together with a weak D band. The D band intensity decreased as the number of graphene layers increased. The FE efficiency of the graphene films on the planar silicon substrates and the SiNW arrays varied with the number of graphene layers. The turn-on field for the single- to quadruple-layer graphene films on planar silicon substrates were 4.3, 3.7, 3.5 and 3.4 V/μm, respectively. The turn-on field for the single- to quadruple-layer graphene films on SiNW arrays decreased to 3.9, 3.3, 3.0 and 3.3 V/μm, respectively. Correlation of the FE with structure and morphology of the graphene films is discussed.

  2. Dependence of the output parameters of the polycrystalline silicon (cast) solar cell on the incident radiation angle

    International Nuclear Information System (INIS)

    The decrease in output parameters of polycrystalline silicon (CAST) solar cells with increasing angle of incidence has been investigated. The distribution of the surface photon, reflection losses and effective junction depth are modeled, by taking in the front surface recombination velocity< It is shown that that angle of incidence radiation is depended on the increase of the surface recombination velocity.(Author)

  3. Micro-Textured Black Silicon Wick for Silicon Heat Pipe Array

    Science.gov (United States)

    Yee, Karl Y.; Sunada, Eric T.; Ganapathi, Gani B.; Manohara, Harish; Homyk, Andrew; Prina, Mauro

    2013-01-01

    Planar, semiconductor heat arrays have been previously proposed and developed; however, this design makes use of a novel, microscale black silicon wick structure that provides increased capillary pumping pressure of the internal working fluid, resulting in increased effective thermal conductivity of the device, and also enables operation of the device in any orientation with respect to the gravity vector. In a heat pipe, the efficiency of thermal transfer from the case to the working fluid is directly proportional to the surface area of the wick in contact with the fluid. Also, the primary failure mechanism for heat pipes operating within the temperature range of interest is inadequate capillary pressure for the return of fluid from the condenser to the wick. This is also what makes the operation of heat pipes orientation-sensitive. Thus, the two primary requirements for a good wick design are a large surface area and high capillary pressure. Surface area can be maximized through nanomachined surface roughening. Capillary pressure is largely driven by the working fluid and wick structure. The proposed nanostructure wick has characteristic dimensions on the order of tens of microns, which promotes menisci of very small radii. This results in the possibility of enormous pumping potential due to the inverse proportionality with radius. Wetting, which also enhances capillary pumping, can be maximized through growth of an oxide layer or material deposition (e.g. TiO2) to create a superhydrophilic surface.

  4. Small-angle scatter tomography with a photon-counting detector array

    Science.gov (United States)

    Pang, Shuo; Zhu, Zheyuan; Wang, Ge; Cong, Wenxiang

    2016-05-01

    Small-angle x-ray scatter imaging has a high intrinsic contrast in cancer research and other applications, and provides information on molecular composition and micro-structure of the tissue. In general, the implementations of small-angle coherent scatter imaging can be divided into two main categories: direct tomography and angular dispersive computerized tomography. Based on the recent development of energy-discriminative photon-counting detector array, here we propose a computerized tomography setup based on energy-dispersive measurement with a photon-counting detector array. To show merits of the energy-dispersive approach, we have performed numerical tests with a phantom containing various tissue types, in comparison with the existing imaging approaches. The results show that with an energy resolution of ~6 keV, the energy dispersive tomography system with a broadband tabletop x-ray would outperform the angular dispersive system, which makes the x-ray small-angle scatter tomography promising for high-specificity tissue imaging.

  5. Optical absorption enhancement in submicrometre crystalline silicon films with nanotexturing arrays for solar photovoltaic applications

    International Nuclear Information System (INIS)

    Optical absorption enhancement in submicrometre silicon films with three types of nanotexturing arrays, i.e. a column-shaped nanohole (CLNH), and a cone-shaped nanohole (CNNH) and an inverted cone-shaped nanohole (I-CNNH) array, is studied via simulation. The ultimate efficiency, which is a function of the type of array, film thickness, array period and filling fraction, is optimized. We find that in all the CNNH (or I-CNNH) arrays with the same film thickness and the same period, the ones having a filling fraction equal to the critical value of 1 − π/12 correspond to the highest ultimate efficiencies. For a given type of array and film thickness, the ultimate efficiency is optimized over the array period and filling fraction, which is defined as the optimized ultimate efficiency (OUE). In the three types of nanotextured silicon films with the same thickness in the range 250–2000 nm, the CNNH arrays show the highest optimized ultimate efficiency (OUE); however, the CLNH arrays show the highest OUEs when the film thickness is equal to 125 and 62.5 nm, and when the film thickness is in the range 500–2000 nm, the I-CNNH arrays show the lowest OUEs. The OUEs of 250 nm, 500 nm, 1000 nm and 2000 nm thick CNNH array textured silicon films are 19.88%, 28.51%, 34.06% and 39.53%, respectively. For the CNNH array, when the film thickness is reduced from 2000 nm to one-eighth, the OUE is only reduced to half its value. (paper)

  6. Dynamic Conformations of Nucleosome Arrays in Solution from Small-Angle X-ray Scattering

    Science.gov (United States)

    Howell, Steven C.

    Chromatin conformation and dynamics remains unsolved despite the critical role of the chromatin in fundamental genetic functions such as transcription, replication, and repair. At the molecular level, chromatin can be viewed as a linear array of nucleosomes, each consisting of 147 base pairs (bp) of double-stranded DNA (dsDNA) wrapped around a protein core and connected by 10 to 90 bp of linker dsDNA. Using small-angle X-ray scattering (SAXS), we investigated how the conformations of model nucleosome arrays in solution are modulated by ionic condition as well as the effect of linker histone proteins. To facilitate ensemble modeling of these SAXS measurements, we developed a simulation method that treats coarse-grained DNA as a Markov chain, then explores possible DNA conformations using Metropolis Monte Carlo (MC) sampling. This algorithm extends the functionality of SASSIE, a program used to model intrinsically disordered biological molecules, adding to the previous methods for simulating protein, carbohydrates, and single-stranded DNA. Our SAXS measurements of various nucleosome arrays together with the MC generated models provide valuable solution structure information identifying specific differences from the structure of crystallized arrays.

  7. Design of a silicon avalanche photodiode pixel with integrated laser diode using back-illuminated crystallographically etched silicon-on-sapphire with monolithically integrated microlens for dual-mode passive and active imaging arrays

    Science.gov (United States)

    Stern, Alvin G.

    2010-08-01

    There is a growing need in scientific research applications for dual-mode, passive and active 2D and 3D LADAR imaging methods. To fill this need, an advanced back-illuminated silicon avalanche photodiode (APD) design is presented using a novel silicon-on-sapphire substrate incorporating a crystalline aluminum nitride (AlN) antireflective layer between the silicon and R-plane sapphire. This allows integration of a high quantum efficiency silicon APD with a gallium nitride (GaN) laser diode in each pixel. The pixel design enables single photon sensitive, solid-state focal plane arrays (FPAs) with wide dynamic range, supporting passive and active imaging capability in a single FPA. When (100) silicon is properly etched with TMAH solution, square based pyramidal frustum or mesa arrays result with the four mesa sidewalls of the APD formed by (111) silicon planes that intersect the (100) planes at a crystallographic angle, φ c = 54.7°. The APD device is fabricated in the mesa using conventional silicon processing technology. The GaN laser diode is fabricated by epitaxial growth inside of an inverted, etched cavity in the silicon mesa. Microlenses are fabricated in the thinned, and AR-coated sapphire substrate. The APDs share a common, front-side anode contact, and laser diodes share a common cathode. A low resistance (Al) or (Cu) metal anode grid fills the space between pixels and also inhibits optical crosstalk. SOS-APD arrays are flip-chip bump-bonded to CMOS readout ICs to produce hybrid FPAs. The square 27 μm emitter-detector pixel achieves SNR > 1 in active detection mode for Lambert surfaces at 1,000 meters.

  8. A floating 3D silicon microprobe array for neural drug delivery compatible with electrical recording

    International Nuclear Information System (INIS)

    This paper reports on the design, fabrication, assembly and characterization of a three-dimensional silicon-based floating microprobe array for localized drug delivery to be applied in neuroscience research. The microprobe array is composed of a silicon platform into which up to four silicon probe combs with needle-like probe shafts can be inserted. Two dedicated positions in the array allow the integration of combs for drug delivery. The implemented comb variants feature 8 mm long probe shafts with two individually addressable microchannels incorporated in a single shaft or distributed to two shafts. Liquid supply to the array is realized by a highly flexible 250 µm thick multi-lumen microfluidic cable made from polydimethylsiloxane (PDMS). The specific design concept of the slim-base platform enables floating implantation of the array in the small space between brain and skull. In turn, the flexible cable mechanically decouples the array from any microfluidic interface rigidly fixed to the skull. After assembly of the array, full functionality is demonstrated and characterized at infusion rates from 1 to 5 µL min−1. Further, the effect of a parylene-C coating on the water vapour and osmotic liquid water transport through the PDMS cable walls is experimentally evaluated by determining the respective transmission rates including the water vapour permeability of the used PDMS type.

  9. Periodic nano/micro-hole array silicon solar cell

    OpenAIRE

    Lai, Guan-Yu; Kumar, Dinesh P; Pei, Zingway

    2014-01-01

    In this study, we applied a metal catalyst etching method to fabricate a nano/microhole array on a Si substrate for application in solar cells. In addition, the surface of an undesigned area was etched because of the attachment of metal nanoparticles that is dissociated in a solution. The nano/microhole array exhibited low specular reflectance (

  10. Dense nanoimprinted silicon nanowire arrays with passivated axial p-i-n junctions for photovoltaic applications

    Science.gov (United States)

    Zhang, Peng; Liu, Pei; Siontas, Stylianos; Zaslavsky, A.; Pacifici, D.; Ha, Jong-Yoon; Krylyuk, S.; Davydov, A. V.

    2015-03-01

    We report on the fabrication and photovoltaic characteristics of vertical arrays of silicon axial p-i-n junction nanowire (NW) solar cells grown by vapor-liquid-solid (VLS) epitaxy. NW surface passivation with silicon dioxide shell is shown to enhance carrier recombination time, open-circuit voltage (VOC), short-circuit current density (JSC), and fill factor (FF). The photovoltaic performance of passivated individual NW and NW arrays was compared under 532 nm laser illumination with power density of ˜10 W/cm2. Higher values of VOC and FF in the NW arrays are explained by enhanced light trapping. In order to verify the effect of NW density on light absorption and hence on the photovoltaic performance of NW arrays, dense Si NW arrays were fabricated using nanoimprint lithography to periodically arrange the gold seed particles prior to epitaxial growth. Compared to sparse NW arrays fabricated using VLS growth from randomly distributed gold seeds, the nanoimprinted NW array solar cells show a greatly increased peak external quantum efficiency of ˜8% and internal quantum efficiency of ˜90% in the visible spectral range. Three-dimensional finite-difference time-domain simulations of Si NW periodic arrays with varying pitch (P) confirm the importance of high NW density. Specifically, due to diffractive scattering and light trapping, absorption efficiency close to 100% in the 400-650 nm spectral range is calculated for a Si NW array with P = 250 nm, significantly outperforming a blanket Si film of the same thickness.

  11. Automatic Release of Silicon Nanowire Arrays with a High Integrity for Flexible Electronic Devices

    OpenAIRE

    Luo Wu; Shuxin Li; Weiwei He; Dayong Teng; Ke Wang; Changhui Ye

    2014-01-01

    Automatic release and vertical transferring of silicon/silicon oxide nanowire arrays with a high integrity are demonstrated by an Ag-assisted ammonia etching method. By adding a water steaming step between Ag-assisted HF/H2O2 and ammonia etching to form a SiOx protective layer sheathing Si nanowires, we can tune the composition of the nanowires from SiOx (0 ≤ x ≤ 2) to Si nanowires. Ag plays a key role to the neat and uniform release of Si/SiOx nanowire arrays from Si wafer in the ammonia etc...

  12. Amorphous silicon sensor arrays for X-ray and document imaging

    International Nuclear Information System (INIS)

    Large area amorphous silicon image sensor arrays are important for X-ray medical imaging and document scanning as well as a variety of other applications where large sensor size is required. The paper first summarizes the present state of the flat panel X-ray imager technology, and compares the two main approaches for X-ray detection. The authors then describe the performance of a new, large area, high resolution, radiographic imager based o a single amorphous silicon array with 2,304 x 3,200 pixels, and an active area of 30 x 40 cm (12 x 16 inches)

  13. Efficiency improvement of silicon solar cells enabled by ZnO nanowhisker array coating

    OpenAIRE

    Yu, Xuegong; Wang, Dong; Lei, Dong; Li, Genhu; Yang, Deren

    2012-01-01

    An efficient antireflection coating is critical for the improvement of silicon solar cell performance via increased light coupling. Here, we have grown well-aligned ZnO nanowhisker (NW) arrays on Czochralski silicon solar cells by a seeding-growth two-step process. It is found that the ZnO NWs have a great effect on the macroscopic antireflection effect and, therefore, improves the solar cell performance. The ZnO NW array-coated solar cells display a broadband reflection suppression from 500 ...

  14. Large scale low cost fabrication of diameter controllable silicon nanowire arrays

    International Nuclear Information System (INIS)

    We report on a novel solution etching method to fabricate vertically aligned aperiodic silicon nanowire (SiNW) arrays. We begin with a simple dewetting process to fabricate a monolayer of well-spaced metal particles in situ on a silicon wafer. The particles function as a sacrificial template to pattern a Ti/Au catalyst film into a metal mesh and the size of particles directly determines the diameter of SiNW. A conventional metal-assisted chemical etching process is then carried out with the obtained metal mesh as a catalyst to realize a vertically aligned SiNW array at a large scale and low cost. (papers)

  15. Fully integrated hybrid silicon free-space beam steering source with 32-channel phased array

    Science.gov (United States)

    Hulme, J. C.; Doylend, J. K.; Heck, M. J. R.; Peters, J. D.; Davenport, M. L.; Bovington, J. T.; Coldren, L. A.; Bowers, J. E.

    2014-03-01

    Free-space beam steering using optical phased arrays is a promising method for implementing free-space communication links and Light Detection and Ranging (LIDAR) without the sensitivity to inertial forces and long latencies which characterize moving parts. Implementing this approach on a silicon-based photonic integrated circuit adds the additional advantage of working with highly developed CMOS processing techniques. In this work we discuss our progress in the development of a fully integrated 32 channel PIC with a widely tunable diode laser, a waveguide phased array, an array of fast phase modulators, an array of hybrid III-V/silicon amplifiers, surface gratings, and a graded index lens (GRIN) feeding an array of photodiodes for feedback control. The PIC has been designed to provide beam steering across a 15°x5° field of view with 0.6°x0.6° beam width and background peaks suppressed 15 dB relative to the main lobe within the field of view for arbitrarily chosen beam directions. Fabrication follows the hybrid silicon process developed at UCSB with modifications to incorporate silicon diodes and a GRIN lens.

  16. Laser desorption ionization and peptide sequencing on laser induced silicon microcolumn arrays

    Science.gov (United States)

    Vertes, Akos; Chen, Yong

    2011-12-27

    The present invention provides a method of producing a laser-patterned silicon surface, especially silicon wafers for use in laser desorption ionization (LDI-MS) (including MALDI-MS and SELDI-MS), devices containing the same, and methods of testing samples employing the same. The surface is prepared by subjecting a silicon substrate to multiple laser shots from a high-power picosecond or femtosecond laser while in a processing environment, e.g., underwater, and generates a remarkable homogenous microcolumn array capable of providing an improved substrate for LDI-MS.

  17. Highly efficient ultrathin-film amorphous silicon solar cells on top of imprinted periodic nanodot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wensheng, E-mail: yws118@gmail.com; Gu, Min, E-mail: mgu@swin.edu.au [Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Tao, Zhikuo [College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Ong, Thiam Min Brian [Plasma Sources and Application Center, NIE, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)

    2015-03-02

    The addressing of the light absorption and conversion efficiency is critical to the ultrathin-film hydrogenated amorphous silicon (a-Si:H) solar cells. We systematically investigate ultrathin a-Si:H solar cells with a 100 nm absorber on top of imprinted hexagonal nanodot arrays. Experimental evidences are demonstrated for not only notable silver nanodot arrays but also lower-cost ITO and Al:ZnO nanodot arrays. The measured external quantum efficiency is explained by the simulation results. The J{sub sc} values are 12.1, 13.0, and 14.3 mA/cm{sup 2} and efficiencies are 6.6%, 7.5%, and 8.3% for ITO, Al:ZnO, and silver nanodot arrays, respectively. Simulated optical absorption distribution shows high light trapping within amorphous silicon layer.

  18. Automatic Release of Silicon Nanowire Arrays with a High Integrity for Flexible Electronic Devices

    Science.gov (United States)

    Wu, Luo; Li, Shuxin; He, Weiwei; Teng, Dayong; Wang, Ke; Ye, Changhui

    2014-01-01

    Automatic release and vertical transferring of silicon/silicon oxide nanowire arrays with a high integrity are demonstrated by an Ag-assisted ammonia etching method. By adding a water steaming step between Ag-assisted HF/H2O2 and ammonia etching to form a SiOx protective layer sheathing Si nanowires, we can tune the composition of the nanowires from SiOx (0 ≤ x ≤ 2) to Si nanowires. Ag plays a key role to the neat and uniform release of Si/SiOx nanowire arrays from Si wafer in the ammonia etching process. The vertical Si nanowire array device, with both sides having high-quality Ohmic contact, can be transferred to arbitrary substrates, especially on a flexible substrate. The method developed here offers a facile method to realize flexible Si nanowire array functional devices. PMID:24487460

  19. Automatic release of silicon nanowire arrays with a high integrity for flexible electronic devices.

    Science.gov (United States)

    Wu, Luo; Li, Shuxin; He, Weiwei; Teng, Dayong; Wang, Ke; Ye, Changhui

    2014-01-01

    Automatic release and vertical transferring of silicon/silicon oxide nanowire arrays with a high integrity are demonstrated by an Ag-assisted ammonia etching method. By adding a water steaming step between Ag-assisted HF/H2O2 and ammonia etching to form a SiOx protective layer sheathing Si nanowires, we can tune the composition of the nanowires from SiOx (0 ≤ x ≤ 2) to Si nanowires. Ag plays a key role to the neat and uniform release of Si/SiOx nanowire arrays from Si wafer in the ammonia etching process. The vertical Si nanowire array device, with both sides having high-quality Ohmic contact, can be transferred to arbitrary substrates, especially on a flexible substrate. The method developed here offers a facile method to realize flexible Si nanowire array functional devices. PMID:24487460

  20. Highly efficient ultrathin-film amorphous silicon solar cells on top of imprinted periodic nanodot arrays

    International Nuclear Information System (INIS)

    The addressing of the light absorption and conversion efficiency is critical to the ultrathin-film hydrogenated amorphous silicon (a-Si:H) solar cells. We systematically investigate ultrathin a-Si:H solar cells with a 100 nm absorber on top of imprinted hexagonal nanodot arrays. Experimental evidences are demonstrated for not only notable silver nanodot arrays but also lower-cost ITO and Al:ZnO nanodot arrays. The measured external quantum efficiency is explained by the simulation results. The Jsc values are 12.1, 13.0, and 14.3 mA/cm2 and efficiencies are 6.6%, 7.5%, and 8.3% for ITO, Al:ZnO, and silver nanodot arrays, respectively. Simulated optical absorption distribution shows high light trapping within amorphous silicon layer

  1. Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution.

    Science.gov (United States)

    Bao, Xiao-Qing; Fatima Cerqueira, M; Alpuim, Pedro; Liu, Lifeng

    2015-07-01

    We demonstrate the first example of silicon nanowire array photocathodes coupled with hollow spheres of the emerging earth-abundant cobalt phosphide catalysts. Compared to bare silicon nanowire arrays, the hybrid electrodes exhibit significantly improved photoelectrochemical performance toward the solar-driven H2 evolution reaction. PMID:26050844

  2. Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution

    OpenAIRE

    Bao, Xiao-Qing; Cerqueira, M. F.; Alpuim, P.; Liu, Lifeng

    2015-01-01

    We demonstrate the first example of silicon nanowire array photocathodes coupled with hollow spheres of the emerging earth-abundant cobalt phosphide catalysts. Compared to bare silicon nanowire arrays, the hybrid electrodes exhibit significantly improved photoelectrochemical performance toward the solar-driven H2 evolution reaction.

  3. Fabrication of porous silicon by metal-assisted etching using highly ordered gold nanoparticle arrays

    OpenAIRE

    Scheeler, Sebastian P; Ullrich, Simon; Kudera, Stefan; Pacholski, Claudia

    2012-01-01

    A simple method for the fabrication of porous silicon (Si) by metal-assisted etching was developed using gold nanoparticles as catalytic sites. The etching masks were prepared by spin-coating of colloidal gold nanoparticles onto Si. An appropriate functionalization of the gold nanoparticle surface prior to the deposition step enabled the formation of quasi-hexagonally ordered arrays by self-assembly which were translated into an array of pores by subsequent etching in HF solution containing H...

  4. Design and test of reliable high strength ingressive polycrystalline silicon microgripper arrays

    International Nuclear Information System (INIS)

    We present the design and validation of a micromachined gripper array that enables reliable transmission of forces of at least 14 mN. The gripper is constructed with polycrystalline silicon (polysilicon), a brittle material, and is compatible with polysilicon surface micromachining. Two ingressive snap-and-lock array designs are presented. After developing design guidelines, it is shown that the first gripper array is functional. However, a risk remains that the gripper array rather than the tensile bar that it grips in its intended application fails. Therefore, an improved geometry is designed and it is shown that it is robust with respect to failure. Scanning confocal Raman imaging directly confirms that the local peak tensile stresses in the robust gripper array are approximately 50% of the lower bound material strength, and also resolves a 25% stress variation across the array. (paper)

  5. Design and test of reliable high strength ingressive polycrystalline silicon microgripper arrays

    Science.gov (United States)

    Hazra, S. S.; Beuth, J. L.; Myers, G. A.; DelRio, F. W.; de Boer, M. P.

    2015-01-01

    We present the design and validation of a micromachined gripper array that enables reliable transmission of forces of at least 14 mN. The gripper is constructed with polycrystalline silicon (polysilicon), a brittle material, and is compatible with polysilicon surface micromachining. Two ingressive snap-and-lock array designs are presented. After developing design guidelines, it is shown that the first gripper array is functional. However, a risk remains that the gripper array rather than the tensile bar that it grips in its intended application fails. Therefore, an improved geometry is designed and it is shown that it is robust with respect to failure. Scanning confocal Raman imaging directly confirms that the local peak tensile stresses in the robust gripper array are approximately 50% of the lower bound material strength, and also resolves a 25% stress variation across the array.

  6. Rice-straw-like structure of silicon nanowire arrays for a hydrogen gas sensor

    International Nuclear Information System (INIS)

    A rice-straw-like silicon nanowire (SiNW) array was developed for hydrogen gas sensing applications. The straight-aligned SiNW array sensor was first fabricated by the metal-assisted electroless etching (MAEE) technique. Rice-straw-like SiNW arrays were formed using a repeated MAEE technique. Hydrogen sensing characteristics were measured for gas concentrations from 20 to 1000 ppm at room temperature. The rice-straw-like SiNW-array-based hydrogen gas sensor performed with low noise and a high response (232.5%) for 1000 ppm hydrogen gas. It was found that the rice-straw-like SiNW-array hydrogen gas sensor had a much better response (approximately 2.5 times) than the straight-aligned SiNW-array sensor. The rice-straw-like SiNW-array structure effectively increased the surface area and the concentration of silicon oxide, which provided additional binding sites for gas molecules. Thus, the rice-straw-like SiNW-array-based hydrogen gas sensor possessed good sensing properties and has the potential for mass production of sensing devices. (paper)

  7. Wide-angle antireflection ZnO films on bullet-like nanostructures of multi-crystalline silicon

    International Nuclear Information System (INIS)

    Nanosphere lithography and antireflection coating techniques have been applied to fabricate wide-angle antireflection structures on multicrystalline silicon substrates. Self-assembled 550-nm SiO2 nanospheres were arranged periodically to act as a mask to block the inductively coupled plasma dry etching and form bulletlike nanostructures on the surface of the multicrystalline silicon wafer. Then a 65-nm-thick zinc oxide film was deposited on the nanostructures using the atomic layer deposition method. The results show that when applying the nanostructure with a ZnO film the average reflectivity of the multicrystalline silicon wafer can be decreased from 36% to 0.65% in the wavelength range from 400 nm to 850 nm for an incident angle of 8 deg. . When the incident angle reaches 60 deg. the average reflectivity of the sample becomes less than 4.6%.

  8. Fabrication of Large-Area Hierarchical Structure Array Using Siliconized-Silsesquioxane as a Nanoscale Etching Barrier.

    Science.gov (United States)

    Lee, Bong Kuk; Baek, In-Bok; Kim, Yarkyeon; Jang, Won Ick; Yoon, Yong Sun; Yu, Han Young

    2015-06-24

    A material approach to fabricate a large-area hierarchical structure array is presented. The replica molding and oxygen (O2) plasma etching processes were combined to fabricate a large-area hierarchical structure array. Liquid blends consisting of siliconized silsesquioxane acrylate (Si-SSQA), ethylene glycol dimethacrylate (EGDMA), and photoinitiator are developed as a roughness amplifying material during O2 plasma etching. Microstructures composed of the Si-SSQA/EGDMA mixtures are fabricated by replica molding. Nanoscale roughness on molded microstructures is realized by O2 etching. The nanoscale roughness on microstructures is efficiently controlled by varying the etching time and the weight ratio of Si-SSQA to EGDMA. The hierarchical structures fabricated by combining replica molding and O2 plasma etching showed superhydrophilicity with long-term stability, resulting in the formation of hydroxyl-terminated silicon oxide layer with the reorientation limit. On the other hand, the hierarchical structures modified with a perfluorinated monolayer showed superhydrophobicity. The increment of water contact angles is consistent with increment of the nano/microroughness of hierarchical structures and decrement of the top contact area of water/hierarchical structures. PMID:26047057

  9. The automated array assembly task of the low-cost silicon solar array project, phase 2

    Science.gov (United States)

    Coleman, M. G.; Pryor, R. A.; Sparks, T. G.; Legge, R.; Saltzman, D. L.

    1980-01-01

    Several specific processing steps as part of a total process sequence for manufacturing silicon solar cells were studied. Ion implantation was identified as the preferred process step for impurity doping. Unanalyzed beam ion implantation was shown to have major cost advantages over analyzed beam implantation. Further, high quality cells were fabricated using a high current unanalyzed beam. Mechanically masked plasma patterning of silicon nitride was shown to be capable of forming fine lines on silicon surfaces with spacings between mask and substrate as great as 250 micrometers. Extensive work was performed on advances in plated metallization. The need for the thick electroless palladium layer was eliminated. Further, copper was successfully utilized as a conductor layer utilizing nickel as a barrier to copper diffusion into the silicon. Plasma etching of silicon for texturing and saw damage removal was shown technically feasible but not cost effective compared to wet chemical etching techniques.

  10. A Silicon-Germanium Single Chip Receiver for S-band Phased Array Radars

    NARCIS (Netherlands)

    Heij, W. de; Boer, A. de; Hek, A.P. de; Vliet, F.E. van

    2011-01-01

    A Silicon-Germanium single chip receiver has been developed for S-band phased array radars with 2-D digital beamforming. The complete receiver chain from the S-band RF input up to the low-IF output has been integrated on a single SiGe chip. The only external components required to complete the recei

  11. Performance of a TiN-coated monolithic silicon pin-diode array under mechanical stress

    CERN Document Server

    VanDevender, B A; Myers, A W; Amsbaugh, J F; Howe, M A; Leber, M L; Robertson, R G H; Tolich, K; Van Wechel, T D; Wall, B L; 10.1016/j.nima.2012.01.033

    2012-01-01

    The Karlsruhe Tritium Neutrino Experiment (KATRIN) will detect tritium beta- decay electrons that pass through its electromagnetic spectrometer with a highly- segmented monolithic silicon pin-diode focal-plane detector (FPD). This pin-diode array will be on a single piece of 500-{\\mu}m-thick silicon, with contact between titanium nitride (TiN) coated detector pixels and front-end electronics made by spring-loaded pogo pins. The pogo pins will exert a total force of up to 50N on the detector, deforming it and resulting in mechanical stress up to 50 MPa in the silicon bulk. We have evaluated a prototype pin-diode array with a pogo-pin connection scheme similar to the KATRIN FPD. We find that pogo pins make good electrical contact to TiN and observe no effects on detector resolution or reverse-bias leakage current which can be attributed to mechanical stress.

  12. Ordered arrays of embedded Ga nanoparticles on patterned silicon substrates

    International Nuclear Information System (INIS)

    We fabricate site-controlled, ordered arrays of embedded Ga nanoparticles on Si, using a combination of substrate patterning and molecular-beam epitaxial growth. The fabrication process consists of two steps. Ga droplets are initially nucleated in an ordered array of inverted pyramidal pits, and then partially crystallized by exposure to an As flux, which promotes the formation of a GaAs shell that seals the Ga nanoparticle within two semiconductor layers. The nanoparticle formation process has been investigated through a combination of extensive chemical and structural characterization and theoretical kinetic Monte Carlo simulations. (papers)

  13. Ordered arrays of embedded Ga nanoparticles on patterned silicon substrates.

    Science.gov (United States)

    Bollani, M; Bietti, S; Frigeri, C; Chrastina, D; Reyes, K; Smereka, P; Millunchick, J M; Vanacore, G M; Burghammer, M; Tagliaferri, A; Sanguinetti, S

    2014-05-23

    We fabricate site-controlled, ordered arrays of embedded Ga nanoparticles on Si, using a combination of substrate patterning and molecular-beam epitaxial growth. The fabrication process consists of two steps. Ga droplets are initially nucleated in an ordered array of inverted pyramidal pits, and then partially crystallized by exposure to an As flux, which promotes the formation of a GaAs shell that seals the Ga nanoparticle within two semiconductor layers. The nanoparticle formation process has been investigated through a combination of extensive chemical and structural characterization and theoretical kinetic Monte Carlo simulations. PMID:24784353

  14. Materials preparation and fabrication of pyroelectric polymer/silicon MOSFET detector arrays. Final report

    International Nuclear Information System (INIS)

    The authors have delivered several 64-element linear arrays of pyroelectric elements fully integrated on silicon wafers with MOS readout devices. They have delivered detailed drawings of the linear arrays to LANL. They have processed a series of two inch wafers per submitted design. Each two inch wafer contains two 64 element arrays. After spin-coating copolymer onto the arrays, vacuum depositing the top electrodes, and polarizing the copolymer films so as to make them pyroelectrically active, each wafer was split in half. The authors developed a thicker oxide coating separating the extended gate electrode (beneath the polymer detector) from the silicon. This should reduce its parasitic capacitance and hence improve the S/N. They provided LANL three processed 64 element sensor arrays. Each array was affixed to a connector panel and selected solder pads of the common ground, the common source voltage supply connections, the 64 individual drain connections, and the 64 drain connections (for direct pyroelectric sensing response rather than the MOSFET action) were wire bonded to the connector panel solder pads. This entails (64 + 64 + 1 + 1) = 130 possible bond connections per 64 element array. This report now details the processing steps and the progress of the individual wafers as they were carried through from beginning to end

  15. A micromachined silicon parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT)

    Science.gov (United States)

    Cho, Young Y.; Chang, Cheng-Chung; Wang, Lihong V.; Zou, Jun

    2015-03-01

    To achieve real-time photoacoustic tomography (PAT), massive transducer arrays and data acquisition (DAQ) electronics are needed to receive the PA signals simultaneously, which results in complex and high-cost ultrasound receiver systems. To address this issue, we have developed a new PA data acquisition approach using acoustic time delay. Optical fibers were used as parallel acoustic delay lines (PADLs) to create different time delays in multiple channels of PA signals. This makes the PA signals reach a single-element transducer at different times. As a result, they can be properly received by single-channel DAQ electronics. However, due to their small diameter and fragility, using optical fiber as acoustic delay lines poses a number of challenges in the design, construction and packaging of the PADLs, thereby limiting their performances and use in real imaging applications. In this paper, we report the development of new silicon PADLs, which are directly made from silicon wafers using advanced micromachining technologies. The silicon PADLs have very low acoustic attenuation and distortion. A linear array of 16 silicon PADLs were assembled into a handheld package with one common input port and one common output port. To demonstrate its real-time PAT capability, the silicon PADL array (with its output port interfaced with a single-element transducer) was used to receive 16 channels of PA signals simultaneously from a tissue-mimicking optical phantom sample. The reconstructed PA image matches well with the imaging target. Therefore, the silicon PADL array can provide a 16× reduction in the ultrasound DAQ channels for real-time PAT.

  16. Photonic light trapping in silicon nanowire arrays: deriving and overcoming the physical limitations

    CERN Document Server

    Schmitt, Sebastian W

    2016-01-01

    Hexagonally aligned, free-standing silicon nanowire (SiNW) arrays serve as photonic resonators which, as compared to a silicon (Si) thin film, do not only absorb more visible (VIS) and near-infrared (NIR) light, but also show an inherent photonic light concentration that enhances their performance as solar absorbers. Using numerical simulations we show, how light concentration is induced by high optical cross sections of the individual SiNWs but cannot be optimized independently of the SiNW array absorption. While an ideal spatial density exists, for which the SiNW array absorption for VIS and NIR wavelengths reaches a maximum, the spatial correlation of SiNWs in an array suppresses the formation of optical Mie modes responsible for light concentration. We show that different from SiNWs with straight sidewalls, arrays of inverted silicon nanocones (SiNCs) permit to avoid the mode suppression. In fact they give rise to an altered set of photonic modes which is induced by the spatial correlation of SiNCs in the...

  17. Surface second harmonic generation from silicon pillar arrays with strong geometrical dependence.

    Science.gov (United States)

    Choudhury, B Dev; Sahoo, Pankaj K; Sanatinia, R; Andler, Guillermo; Anand, S; Swillo, M

    2015-05-01

    We present experimental demonstration and analysis of enhanced surface second harmonic generation (SHG) from hexagonal arrays of silicon pillars. Three sets of Si pillar samples with truncated cone-shaped pillar arrays having periods of 500, 1000, and 2000 nm, and corresponding average diameters of 200, 585 and 1550 nm, respectively, are fabricated by colloidal lithography and plasma dry etching. We have observed strong dependence of SHG intensity on the pillar geometry. Pillar arrays with a 1000 nm period and a 585 nm average diameter give more than a one order of magnitude higher SHG signal compared to the other two samples. We theoretically verified the dependence of SHG intensity on pillar geometry by finite difference time domain simulations in terms of the surface normal E-field component. The enhanced surface SHG light can be useful for nonlinear silicon photonics, surface/interface characterization, and optical biosensing. PMID:25927787

  18. Gamma-ray imaging detectors based on silicon drift detectors arrays coupled to a single scintillator

    International Nuclear Information System (INIS)

    Arrays of Silicon Drift Detectors (SDDs) coupled to a single scintillator, according to the Anger Camera scheme, can be successfully employed in gamma-ray imaging. The low value of output capacitance of a SDD allows to reach a lower electronics noise with respect to conventional silicon photodiodes used in scintillation detection. A small prototype of gamma camera with sub-millimeter resolution has been realized by using a monolithic array of small SDDs (5 mm2 each unit) with on-chip JFET. For the realization of gamma cameras of larger areas based on single units assembled in array, SDDs of 30 mm2 of area with external JFET have been also experimented

  19. Phonon processes in vertically aligned silicon nanowire arrays produced by low-cost all-solution galvanic displacement method

    Science.gov (United States)

    Banerjee, Debika; Trudeau, Charles; Gerlein, Luis Felipe; Cloutier, Sylvain G.

    2016-03-01

    The nanoscale engineering of silicon can significantly change its bulk optoelectronic properties to make it more favorable for device integration. Phonon process engineering is one way to enhance inter-band transitions in silicon's indirect band structure alignment. This paper demonstrates phonon localization at the tip of silicon nanowires fabricated by galvanic displacement using wet electroless chemical etching of a bulk silicon wafer. High-resolution Raman micro-spectroscopy reveals that such arrayed structures of silicon nanowires display phonon localization behaviors, which could help their integration into the future generations of nano-engineered silicon nanowire-based devices such as photodetectors and solar cells.

  20. Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining.

    Science.gov (United States)

    Deng, Zefang; Yang, Qing; Chen, Feng; Meng, Xiangwei; Bian, Hao; Yong, Jiale; Shan, Chao; Hou, Xun

    2015-05-01

    In this Letter, a novel fabrication of large-area concave microlens array (MLA) on silicon is demonstrated by combination of high-speed laser scanning, which would result in single femtosecond laser pulse ablation on surface of silicon, and subsequent wet etching. Microscale concave microlenses with tunable dimensions and accessional aspherical profile are readily obtained on the 1  cm × 1  cm silicon film, which are useful as optical elements for infrared (IR) applications. The aperture diameter and height of the microlens were characterized and the results reveal that they are both proportional to the laser scanning speed. Moreover, the optical property of high-performance silicon MLAs as a reflective homogenizer was investigated for the visible wavelength, and it can be easily extended to IR light. PMID:25927750

  1. Vertically Integrated MEMS SOI Composite Porous Silicon-Crystalline Silicon Cantilever-Array Sensors: Concept for Continuous Sensing of Explosives and Warfare Agents

    Science.gov (United States)

    Stolyarova, Sara; Shemesh, Ariel; Aharon, Oren; Cohen, Omer; Gal, Lior; Eichen, Yoav; Nemirovsky, Yael

    This study focuses on arrays of cantilevers made of crystalline silicon (c-Si), using SOI wafers as the starting material and using bulk micromachining. The arrays are subsequently transformed into composite porous silicon-crystalline silicon cantilevers, using a unique vapor phase process tailored for providing a thin surface layer of porous silicon on one side only. This results in asymmetric cantilever arrays, with one side providing nano-structured porous large surface, which can be further coated with polymers, thus providing additional sensing capabilities and enhanced sensing. The c-Si cantilevers are vertically integrated with a bottom silicon die with electrodes allowing electrostatic actuation. Flip Chip bonding is used for the vertical integration. The readout is provided by a sensitive Capacitance to Digital Converter. The fabrication, processing and characterization results are reported. The reported study is aimed towards achieving miniature cantilever chips with integrated readout for sensing explosives and chemical warfare agents in the field.

  2. Joint Angle and Delay Estimation (JADE) in Antenna Array CDMA Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The estimate of signals parameters is very important in wireless communications. In this paper, we combine subspace-based blind channel estimation algorithm with the extension of the JADE-WSF algorithm to jointly estimate the Angles-of-Arrival (AOAs) and delays of multipath signals arriving at an antenna array in Code Division Multiple Access (CDMA) systems. Our approach uses a collection of estimates of a consistent chip-sample of space-time vector channel. The channel estimates are assumed to have constant path AOA and delay over a finite number of symbols. Unlike the traditional MUltiple SIgnal Classification (MUSIC) and Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) algorithms for the estimation of signals parameters, the proposed method can work when the number of paths exceeds the number of antennas. The Cramer-Rao Bound (CRB) and simulations are provided.

  3. A new angle for probing field-aligned irregularities with the Murchison Widefield Array

    CERN Document Server

    Loi, Shyeh Tjing; Cairns, Iver H; Trott, Cathryn M; Hurley-Walker, Natasha; Feng, Lu; Hancock, Paul J; Kaplan, David L

    2016-01-01

    Electron density irregularities in the ionosphere are known to be magnetically anisotropic, preferentially elongated along the lines of force. While many studies of their morphology have been undertaken by topside sounding and whistler measurements, it is only recently that detailed regional-scale reconstructions have become possible, enabled by the advent of widefield radio telescopes. Here we present a new approach for visualising and studying field-aligned irregularities (FAIs), which involves transforming interferometric measurements of TEC gradients onto a magnetic shell tangent plane. This removes the perspective distortion associated with the oblique viewing angle of the irregularities from the ground, facilitating the decomposition of dynamics along and across magnetic field lines. We apply this transformation to the dataset of Loi et al. [2015a], obtained on 15 October 2013 by the Murchison Widefield Array (MWA) radio telescope and displaying prominent FAIs. We study these FAIs in the new reference f...

  4. Silicon material task. Part 3: Low-cost silicon solar array project

    Science.gov (United States)

    Roques, R. A.; Coldwell, D. M.

    1977-01-01

    The feasibility of a process for carbon reduction of low impurity silica in a plasma heat source was investigated to produce low-cost solar-grade silicon. Theoretical aspects of the reaction chemistry were studied with the aid of a computer program using iterative free energy minimization. These calculations indicate a threshold temperature exists at 2400 K below which no silicon is formed. The computer simulation technique of molecular dynamics was used to study the quenching of product species.

  5. Mode hybridization and conversion in silicon-on-insulator nanowires with angled sidewalls.

    Science.gov (United States)

    Dai, Daoxin; Zhang, Ming

    2015-12-14

    The mode property and light propagation in a tapered silicon-on-insulator (SOI) nanowire with angled sidewalls is analyzed. Mode hybridization is observed and mode conversion between the TM fundamental mode and higher-order TE modes happens when light propagates in a waveguide taper which is used very often in the design of photonic integrated devices. This mode conversion ratio is possible to be very high (even close to 100%) when the taper is long enough to be adiabatic, which might be useful for some applications of multimode photonics. When the mode conversion is undesired to avoid any excess loss as well as crosstalk for photonic integrated circuits, one can depress the mode conversion by compensating the vertical asymmetry in the way of reducing the sidewall angle or introducing an optimal refractive index for the upper-cladding. It is also possible to eliminate the undesired mode conversion almost and improve the desired mode conversion greatly by introducing an abrupt junction connecting two sections with different widths to jump over the mode hybridization region. PMID:26699034

  6. A Measurement of Lorentz Angle and Spatial Resolution of Radiation Hard Silicon Pixel Sensors

    CERN Document Server

    Gorelov, I; Hoeferkamp, M; Seidel, S C; Ciocio, A; Einsweiler, Kevin F; Gilchriese, M G D; Joshi, A; Kleinfelder, S A; Marchesini, R; Milgrome, O; Palaio, N; Pengg, F X; Richardson, J; Zizka, G; Ackers, M; Fischer, P; Keil, M; Meuser, S; Stockmanns, T; Treis, J; Wermes, N; Gössling, C; Hügging, F G; Wüstenfeld, J; Wunstorf, R; Barberis, D; Beccherle, R; Cervetto, M; Darbo, G; Gagliardi, G; Gemme, C; Morettini, P; Netchaeva, P; Osculati, B; Parodi, F; Rossi, L; Dao, K; Fasching, D; Blanquart, L; Breugnon, P; Calvet, D; Clemens, J C; Delpierre, P A; Hallewell, G D; Laugier, D; Mouthuy, T; Rozanov, A N; Trouilleau, C; Valin, I; Aleppo, M; Andreazza, A; Caccia, M; Lari, T; Meroni, C; Ragusa, F; Troncon, C; Vegni, G; Rohe, T; Boyd, G; Severini, H; Skubic, P L; Snow, J; Sícho, P; Tomasek, L; Vrba, V; Holder, M; Lipka, D; Ziolkowski, M; Cauz, D; D'Auria, S; del Papa, C; Grassman, H; Santi, L; Becks, K H; Gerlach, P; Grah, C; Gregor, I; Harenberg, T; Linder, C

    2002-01-01

    Silicon pixel sensors developed by the ATLAS collaboration to meet LHC requirements and to withstand hadronic irradiation to fluences of up to $10^{15} n_eq/cm^{2}$ have been evaluated using a test beam facility at CERN providing a magnetic field. The Lorentz angle was measured and found to alter from 9.0 deg. before irradiation, when the detectors operated at 150 V bias at B=1.48 T, to 3.1 deg after irradiation and operating at 600 V bias at 1.01 T. In addition to the effect due to magnetic field variation, this change is explained by the variation of the electric field inside the detectors arising from the different bias conditions. The depletion depths of irradiated sensors at various bias voltages were also measured. At 600 V bias 280 micron thick sensors depleted to ~200 micron after irradiation at the design fluence of 1 10^{15} 1 MeV n_eq/cm2 and were almost fully depleted at a fluence of 0.5 * 10^{15} 1 MeV n_eq/cm2. The spatial resolution was measured for angles of incidence between 0 deg and 30 deg....

  7. Structure-thermal property correlation of aligned silicon dioxide nanorod arrays

    Science.gov (United States)

    Zhu, Jie; Zhu, Yu; Wu, Xuewang; Song, Helun; Zhang, Yaohui; Wang, Xiaojia

    2016-06-01

    Quantitative characterization of thermal properties of nanorod (NR) arrays appears to be challenging due to the complex combination of high volume of air voids, anisotropy, and structural non-uniformity. This work investigates the structure-thermal property correlation of arrays consisting of either vertically aligned or slanted silicon dioxide (SiO2) NRs, fabricated by the dynamic shadowing growth technique. We apply the frequency-dependent time-domain thermoreflectance method to quantify the thermal properties of SiO2 NR arrays that may possess inhomogeneity along the depth direction. The effective thermal conductivities of four SiO2 NR array films and one reference capping layer for the SiO2 NR array are obtained. The impact of the structure on the effective thermal conductivities of the SiO2 NR array is discussed. The lowest effective thermal conductivity among all samples in this work is found to be 0.13 W m-1 K-1 for the slanted NR array. We attribute the reduction in the effective thermal conductivity of the NR array to the discontinuous nature of SiO2 NRs, which reduces the density of the thermal transport channels and thus prevents heat flux from propagating downwards along the through-plane direction. The results from this work facilitate the potential applications of NR-array-based thermal insulators for micro-thermal devices.

  8. Quantitative measurements of C-reactive protein using silicon nanowire arrays

    Directory of Open Access Journals (Sweden)

    Min-Ho Lee

    2008-03-01

    Full Text Available Min-Ho Lee, Kuk-Nyung Lee, Suk-Won Jung, Won-Hyo Kim, Kyu-Sik Shin, Woo-Kyeong SeongKorea Electronics Technology Institute, Gyeonggi, KoreaAbstract: A silicon nanowire-based sensor for biological application showed highly desirable electrical responses to either pH changes or receptor-ligand interactions such as protein disease markers, viruses, and DNA hybridization. Furthermore, because the silicon nanowire can display results in real-time, it may possess superior characteristics for biosensing than those demonstrated in previously studied methods. However, despite its promising potential and advantages, certain process-related limitations of the device, due to its size and material characteristics, need to be addressed. In this article, we suggest possible solutions. We fabricated silicon nanowire using a top-down and low cost micromachining method, and evaluate the sensing of molecules after transfer and surface modifications. Our newly designed method can be used to attach highly ordered nanowires to various substrates, to form a nanowire array device, which needs to follow a series of repetitive steps in conventional fabrication technology based on a vapor-liquid-solid (VLS method. For evaluation, we demonstrated that our newly fabricated silicon nanowire arrays could detect pH changes as well as streptavidin-biotin binding events. As well as the initial proof-of-principle studies, C-reactive protein binding was measured: electrical signals were changed in a linear fashion with the concentration (1 fM to 1 nM in PBS containing 1.37 mM of salts. Finally, to address the effects of Debye length, silicon nanowires coupled with antigen proteins underwent electrical signal changes as the salt concentration changed.Keywords: silicon nanowire array, C-reactive protein, vapor-liquid-solid method

  9. Fabrication and electron field-emission of carbon nanofibers grown on silicon nanoporous pillar array

    International Nuclear Information System (INIS)

    Highlights: ► Carbon nanofibers were grown on silicon nanoporous pillar array by a CVD method.► Low turn-on field, high density and stable FE current were obtained in CNTs/Si-NPA.► Defects in CNTs and Si array substrate contributes the excellent FE property. - Abstract: Random orientation carbon nanofibers (CNFs) were grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition (CVD) method with acetylene (C2H2) as carbon precursor and Ni as the catalyst. The synthesized CNFs were mainly composed of amorphous carbon and disordered graphite layers with a core–shell like structure. And, the tangled CNFs and the regular silicon-pillar array formed a nanometer-micron hierarchy structure. The electron field-emission (FE) property of CNFs/Si-NPA was measured and low turn-on field, high-density and stable FE current, high enhancement factor were obtained. The outstanding FE performance of the CNFs/Si-NPA emitters was attributed to the random orientation and defects of CNFs, the undulate surface of the Si-NPA substrate.

  10. Graded index and randomly oriented core-shell silicon nanowires with broadband and wide angle antireflection for photovoltaic cell applications

    CERN Document Server

    Pignalosa, P; Qiao, L; Tseng, M; Yi, Yasha

    2011-01-01

    Antireflection with broadband and wide angle properties is important for a wide range of applications on photovoltaic cells and display. The SiOx shell layer provides a natural antireflection from air to the Si core absorption layer. In this work, we have demonstrated the random core-shell silicon nanowires with both broadband (from 400nm to 900nm) and wide angle (from normal incidence to 60\\degree) antireflection characteristics within AM1.5 solar spectrum. The graded index structure from the randomly oriented core-shell (Air/SiOx/Si) nanowires may provide a potential avenue to realize a broadband and wide angle antireflection layer.

  11. Phase 2 of the array automated assembly task for the low cost silicon solar array project

    Science.gov (United States)

    Petersen, R. C.

    1980-01-01

    Studies were conducted on several fundamental aspects of electroless nickel/solder metallization for silicon solar cells. A process, which precedes the electroless nickel plating with several steps of palladium plating and heat treatment, was compared directly with single step electroless nickel plating. Work was directed toward answering specific questions concerning the effect of silicon surface oxide on nickel plating, effects of thermal stresses on the metallization, sintering of nickel plated on silicon, and effects of exposure to the plating solution on solar cell characteristics. The process was found to be extremely lengthy and cumbersome, and was also found to produce a product virtually identical to that produced by single step electroless nickel plating, as shown by adhesion tests and electrical characteristics of cells under illumination.

  12. Improved surface-enhanced Raman scattering of patterned gold nanoparticles deposited on silicon nanoporous pillar arrays

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Weifen, E-mail: gingerwfj@yahoo.com.cn [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Li Xingfu; Cai Hongtao [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Li Xinjian [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2011-07-01

    Large-area silicon nanoporous pillar arrays (Si-NPA) uniformly coated with gold nanoparticles was synthesized, and surface-enhanced Raman scattering of rhodamine 6G adsorbed on these gold nanoparticles were studied and compared. It's found that Au/Si-NPA substrate has a significantly high Raman signal sensitivity and good homogeneity. These are attributed to gold nanoparticles with narrow particle-size distribution uniformly coated on the surface and to the enlarged specific surface area for adsorption of target molecules brought by the porous silicon pillars.

  13. Integrated optical dual-cantilever arrays in silica on silicon.

    Science.gov (United States)

    Cooper, Peter A; Carpenter, Lewis G; Mennea, Paolo L; Holmes, Christopher; Gates, James C; Smith, Peter G R

    2014-12-29

    A dual cantilever device has been demonstrated which can operate as a force sensor or variable attenuator. The device is fabricated using physical micromachining techniques that do not require cleanroom class facilities. The response of the device to mechanical actuation is measured, and shown to be well described by conventional fiber optic angular misalignment theory. The device has the potential to be utilized within integrated optical components for sensors or attenuators. An array of devices was fabricated with potential for parallel operation. PMID:25607148

  14. Energy requirement for the production of silicon solar arrays

    Science.gov (United States)

    Lindmayer, J.; Wihl, M.; Scheinine, A.; Rosenfield, T.; Wrigley, C. Y.; Morrison, A.; Anderson, J.; Clifford, A.; Lafky, W.

    1977-01-01

    The results of a study to investigate the feasibility of manufacturing photovoltaic solar array modules by the use of energy obtained from similar or identical photovoltaic sources are presented. The primary objective of this investigation was the characterization of the energy requirements of current and developing technologies which comprise the photovoltaic field. For cross-checking the energies of prevailing technologies data were also used and the wide-range assessment of alternative technologies included different refinement methods, various ways of producing light sheets, semicrystalline cells, etc. Energy data are utilized to model the behavior of a future solar breeder plant under various operational conditions.

  15. Beam Tilt-Angle Estimation for Monopole End-Fire Array Mounted on a Finite Ground Plane

    Directory of Open Access Journals (Sweden)

    Jia Cao

    2015-01-01

    Full Text Available A modified method for the beam tilt-angle estimation of monopole end-fire array mounted on finite ground plane is proposed. In the simplified model, the monopole array and ground plane are approximated to two line sources of transverse and longitudinal electric current, respectively. It is deduced that the beam tilt angle is a function about the length of ground plane in front of array Lg, the length of monopole array La, and the phase constant βα. After verifying the optimizing principle of monopole end-fire array, a 10-element monopole Yagi-Uda antenna satisfying Hansen-Woodyard condition is designed and measured for the analysis. By comparison and analysis, the value of βα is demonstrated to be the key point of the proposed method. And a slow wave monopole array is proved to be able to achieve a low beam tilt angle from end-fire with only a short-length ground plane.

  16. Self-Assembled Wire Arrays and ITO Contacts for Silicon Nanowire Solar Cell Applications

    Institute of Scientific and Technical Information of China (English)

    YANG Cheng; ZHANG Gang; LEE Dae-Young; LI Hua-Min; LIM Young-Dae; Y00 Won Jong; PARK Young-Jun; KIM Jong-Min

    2011-01-01

    Self-assembly of silicon nanowire(SiNW)arrays is studied using SF6/02 plasma treatment. The self-assembly method can be applied to single- and poly-crystalline Si substrates. Plasma conditions can control the length and diameter of the SiNW arrays. Lower reflectance of the wire arrays over the wavelength range 200-1100nm is obtained. The conducting transparent indium-tin-oxide(ITO) electrode can be fully coated on the self-assembled SiNW arrays by sputtering. The ITO-coated SiNW solar cells show the same low surface light reflectance and a higher carrier collection efficiency than SiNW solar cells without ITO coating. An efficiency enhancement of around 3 times for ITO coated SiNW solar cells is demonstrated via experiments.

  17. Synthesis, structure and photoelectrochemical properties of single crystalline silicon nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Dalchiele, E.A., E-mail: dalchiel@fing.edu.u [Instituto de Fisica, Facultad de Ingenieria, Herrera y Reissig 565, C.C. 30, 11000 Montevideo (Uruguay); Martin, F.; Leinen, D. [Laboratorio de Materiales y Superficie (Unidad Asociada al CSIC), Departamentos de Fisica Aplicada and Ingenieria Quimica, Universidad de Malaga, Campus de Teatinos s/n, E29071 Malaga (Spain); Marotti, R.E. [Instituto de Fisica, Facultad de Ingenieria, Herrera y Reissig 565, C.C. 30, 11000 Montevideo (Uruguay); Ramos-Barrado, J.R. [Laboratorio de Materiales y Superficie (Unidad Asociada al CSIC), Departamentos de Fisica Aplicada and Ingenieria Quimica, Universidad de Malaga, Campus de Teatinos s/n, E29071 Malaga (Spain)

    2010-01-31

    In the present work, n-type silicon nanowire (n-SiNW) arrays have been synthesized by self-assembly electroless metal deposition (EMD) nanoelectrochemistry. The synthesized n-SiNW arrays have been submitted to scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and optical studies. Initial probes of the solar device conversion properties and the photovoltaic parameters such as short-circuit current, open-circuit potential, and fill factor of the n-SiNW arrays have been explored using a liquid-junction in a photoelectrochemical (PEC) system under white light. Moreover, a direct comparison between the PEC performance of a polished n-Si(100) and the synthesized n-SiNW array photoelectrodes has been done. The PEC performance was significantly enhanced on the n-SiNWs photoelectrodes compared with that on polished n-Si(100).

  18. Self-Assembled Wire Arrays and ITO Contacts for Silicon Nanowire Solar Cell Applications

    International Nuclear Information System (INIS)

    Self-assembly of silicon nanowire (SiNW) arrays is studied using SF6/O2 plasma treatment. The self-assembly method can be applied to single- and poly-crystalline Si substrates. Plasma conditions can control the length and diameter of the SiNW arrays. Lower reflectance of the wire arrays over the wavelength range 200–1100 nm is obtained. The conducting transparent indium-tin-oxide (ITO) electrode can be fully coated on the self-assembled SiNW arrays by sputtering. The ITO-coated SiNW solar cells show the same low surface light reflectance and a higher carrier collection efficiency than SiNW solar cells without ITO coating. An efficiency enhancement of around 3 times for ITO coated SiNW solar cells is demonstrated via experiments. (physics of gases, plasmas, and electric discharges)

  19. Corporate array of micromachined dipoles on silicon wafer for 60 GHz communication systems

    KAUST Repository

    Sallam, M. O.

    2013-03-01

    In this paper, an antenna array operating at 60 GHz and realized on 0.675 mm thick silicon substrate is presented. The array is constructed using four micromachined half-wavelength dipoles fed by a corporate feeding network. Isolation between the antenna array and its feeding network is achieved via a ground plane. This arrangement leads to maximizing the broadside radiation with relatively high front-to-back ratio. Simulations have been carried out using both HFSS and CST, which showed very good agreement. Results reveal that the proposed antenna array has good radiation characteristics, where the directivity, gain, and radiation efficiency are around 10.5 dBi, 9.5 dBi, and 79%, respectively. © 2013 IEEE.

  20. Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator

    OpenAIRE

    Van Acoleyen, Karel; Bogaerts, Wim; Jágerská, Jana; Le Thomas, Nicolas; Houdré, Romuald; Baets, Roel

    2009-01-01

    Optical phased arrays are versatile components enabling rapid and precise beam steering. An integrated approach is followed in which a 1D optical phased array is fabricated on silicon-on-insulator. The optical phased array consists of 16 parallel grating couplers spaced 2 mu m apart. Steering in one direction is done thermo-optically by means of a titanium electrode on top of the structure using the phased array principle, while steering in the other direction is accomplished by wavelength tu...

  1. A novel silicon array designed for intraoperative charged particle imaging

    International Nuclear Information System (INIS)

    A novel Si-PIN imaging array is under investigation for a charged particle (beta, positron, or alpha) sensitive intraoperative camera to be used for (residual) tumor identification during surgery. This class of collimator-less nuclear imaging device has a higher signal response for direct interactions than its scintillator-optical detector-based counterparts. Monte Carlo simulations with 635 keV betas were performed, yielding maximum and projected ranges of 1.64 and 0.55 mm in Si. Up to 90% of these betas were completely absorbed in the first 0.30 mm. Based on these results, 300 μm thick prototype Si detector arrays were designed in a 16x16 crossed-grid arrangement with 0.8 mm wide orthogonal strips on 1.0 mm pitch. A NIM- and CAMAC-based high-density data acquisition and processing system was used to collect the list mode data. The system was calibrated by comparisons of measured spectra to energy deposition simulations or by direct measurement of various >100 keV conversion electron or beta emitters. Mean electronic noise per strip was 2 pixel size, and measurements of beta emitting point and line sources yielded FWHM resolutions of 1.5 (lateral) and 2.5 mm (diagonal), respectively, with the larger widths due to particle range blurring effects. Deconvolution of the finite source size yielded intrinsic resolutions that corresponded to the image pixel size. Transmission images of circle and line phantoms with various hole sizes and pitch were resolved with either pure beta or positron irradiation without a background correction. This novel semiconductor imaging device facilitates high charged particle and low gamma sensitivity, high signal/noise ratio, and allows for compact design to potentially aid surgical guidance by providing in situ images of clinical relevance

  2. Develop silicone encapsulation systems for terrestrial silicon solar arrays. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    This work resulted in two basic accomplishments. The first was the identification of DOW CORNING Q1-2577 as a suitable encapsulant material for use in cost effective encapsulation systems. The second was the preparation of a silicon-acrylic cover material containing a durable ultraviolet screening agent for the protection of photo-oxidatively sensitive polymers. The most expeditious method of fabrication is one in which the encapsulant material performs the combined function of adhesive, pottant, and outer cover. The costs of the encapsulant can be minimized by using it as a thin conformal coating. One encapsulation system using silicones was identified which provided protection to photovoltaic cells and survived the JPL qualification tests. This encapsulation system uses DOW CORNING Q1-2577, a conformal coating from Dow Corning, as the combined adhesive, pottant and cover material. The lowest cost encapsulation system using Q1-2577 had Super Dorlux as the substrate structural member. The overall material cost of this encapsulation system is 0.74 cents/ft/sup 2/ (1980 dollars) based on current material prices, which could decrease with increased production of Q1-2577. Subsequent to identifying the best silicone encapsulation system, a silicone acrylic cover material containing a durable ultraviolet screening agent was prepared and its effectiveness in protecting photo-oxidatively sensitive polymers was demonstrated.

  3. Silicon crystallization in nanodot arrays organized by block copolymer lithography

    Energy Technology Data Exchange (ETDEWEB)

    Perego, Michele, E-mail: michele.perego@mdm.imm.cnr.it; Andreozzi, Andrea; Seguini, Gabriele [IMM-CNR, Laboratorio MDM (Italy); Schamm-Chardon, Sylvie; Castro, Celia; BenAssayag, Gerard [Université de Toulouse, nMat Group, CEMES-CNRS (France)

    2014-12-15

    Asymmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA) block copolymers are used to fabricate nanoporous PS templates with different pore diameter depending on the specific substrate neutralization protocol. The resulting polymeric templates are used as masks for the subsequent deposition of a thin (h = 5 nm) amorphous Si layer by electron beam evaporation. After removal of the polymeric film and of the silicon excess, well-defined hexagonally packed amorphous Si nanodots are formed on the substrate. Their average diameter (d < 20 nm), density (1.2 × 10{sup 11} cm{sup −2}), and lateral distribution closely mimic the original nanoporous template. Upon capping with SiO{sub 2} and high temperature annealing (1050 °C, N{sub 2}), each amorphous Si nanodot rearranges in agglomerates of Si nanocrystals (d < 4 nm). The average diameter and shape of these Si nanocrystals strongly depend on the size of the initial Si nanodot.

  4. Silicon crystallization in nanodot arrays organized by block copolymer lithography

    International Nuclear Information System (INIS)

    Asymmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA) block copolymers are used to fabricate nanoporous PS templates with different pore diameter depending on the specific substrate neutralization protocol. The resulting polymeric templates are used as masks for the subsequent deposition of a thin (h = 5 nm) amorphous Si layer by electron beam evaporation. After removal of the polymeric film and of the silicon excess, well-defined hexagonally packed amorphous Si nanodots are formed on the substrate. Their average diameter (d < 20 nm), density (1.2 × 1011 cm−2), and lateral distribution closely mimic the original nanoporous template. Upon capping with SiO2 and high temperature annealing (1050 °C, N2), each amorphous Si nanodot rearranges in agglomerates of Si nanocrystals (d < 4 nm). The average diameter and shape of these Si nanocrystals strongly depend on the size of the initial Si nanodot

  5. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    Science.gov (United States)

    Flores, J. L.; Martel, I.; Jiménez, R.; Galán, J.; Salmerón, P.

    2016-09-01

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from 12C up to 84Kr, yielding higher discrimination rates than any other previously reported.

  6. Large-area 2D periodic crystalline silicon nanodome arrays on nanoimprinted glass exhibiting photonic band structure effects

    International Nuclear Information System (INIS)

    Two-dimensional silicon nanodome arrays are prepared on large areas up to 50 cm2 exhibiting photonic band structure effects in the near-infrared and visible wavelength region by downscaling a recently developed fabrication method based on nanoimprint-patterned glass, high-rate electron-beam evaporation of silicon, self-organized solid phase crystallization and wet-chemical etching. The silicon nanodomes, arranged in square lattice geometry with 300 nm lattice constant, are optically characterized by angular resolved reflection measurements, allowing the partial determination of the photonic band structure. This experimentally determined band structure agrees well with the outcome of three-dimensional optical finite-element simulations. A 16% photonic bandgap is predicted for an optimized geometry of the silicon nanodome arrays. By variation of the duration of the selective etching step, the geometry as well as the optical properties of the periodic silicon nanodome arrays can be controlled systematically. (paper)

  7. A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement.

    Science.gov (United States)

    Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2016-01-01

    Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates. PMID:26763827

  8. Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon

    KAUST Repository

    Frost, Thomas

    2014-08-13

    A silicon-based laser, preferably electrically pumped, has long been a scientific and engineering goal. We demonstrate here, for the first time, an edge-emitting InGaN/GaN disk-in-nanowire array electrically pumped laser emitting in the green (λ = 533 nm) on (001) silicon substrate. The devices display excellent dc and dynamic characteristics with values of threshold current density, differential gain, T0 and small signal modulation bandwidth equal to 1.76 kA/cm2, 3 × 10-17 cm2, 232 K, and 5.8 GHz respectively under continuous wave operation. Preliminary reliability measurements indicate a lifetime of 7000 h. The emission wavelength can be tuned by varying the alloy composition in the quantum disks. The monolithic nanowire laser on (001)Si can therefore address wide-ranging applications such as solid state lighting, displays, plastic fiber communication, medical diagnostics, and silicon photonics. © 2014 American Chemical Society.

  9. A pseudo 3D glass microprobe array: glass microprobe with embedded silicon for alignment and electrical interconnection during assembly

    International Nuclear Information System (INIS)

    This study presents a process for the assembling of a pseudo 3D glass microprobe array. A glass microprobe with embedded silicon (ES) is batch fabricated by a glass reflow process. The silicon fixture and carrier for the assembly are also batch fabricated by silicon micromachining processes. First, the chips with a glass microprobe array are bonded by parylene-C to form the pseudo 3D glass microprobe array. The pseudo 3D microprobe array is then mounted on the silicon carrier. ES is employed for alignment during the assembly, and also acts as the electrical routing for signal recording. In application, the impedance of this glass microprobe is measured, and at 1 kHz it is 1.1 MΩ. Action potentials from rat brain cortex are also successfully recorded.

  10. Generic technological platform for microfabricating silicon nitride micro- and nanopipette arrays

    OpenAIRE

    Guenat, Olivier T.; Generelli, Silvia; Dadras, Mohammad-Mehdi; Berdondini, L.; De Rooij, Nicolaas F; Koudelka-Hep, Milena

    2007-01-01

    In this paper, the design and the characterization of batch fabricated SixNy micropipette arrays with diameters ranging from 6 µm down to 250 nm are described. The process used to fabricate the micromachined pipettes includes a deep reactive ion etching step, followed by the deposition of two successive layers, a thermal oxide layer and a low stress, low pressure chemical vapor deposited silicon nitride layer, respectively. The diameter of the micropipettes could be modulated simply by choosi...

  11. Microcrystalline silicon: Strain gauge and sensor arrays on flexible substrate for the measurement of high deformations

    OpenAIRE

    Kervran, Y.; De Sagazan, O.; Crand, S.; Coulon, N.; Mohammed-Brahim, T.; Brel, O

    2015-01-01

    This paper presents strain sensor arrays on flexible substrates able to measure local deformation induced by radii of curvature of few millimeters. Sensors use n-type doped microcrystalline silicon (μc-Si) as piezoresistive material, directly deposited on polyimide sheets at 165 °C. Sensitivity of individual sensors was investigated under tensile and compressive bending at various radii of curvature, down to 5 mm. A Transmission Line Method was used to extract the resistivity for each radius....

  12. Development of silicon-germanium visible-near infrared arrays

    Science.gov (United States)

    Zeller, John W.; Rouse, Caitlin; Efstathiadis, Harry; Haldar, Pradeep; Lewis, Jay S.; Dhar, Nibir K.; Wijewarnasuriya, Priyalal; Puri, Yash R.; Sood, Ashok K.

    2016-05-01

    Photodetectors based on germanium which do not require cooling and can provide good near-infrared (NIR) detection performance offer a low-cost alternative to conventional infrared sensors based on material systems such as InGaAs, InSb, and HgCdTe. As a result of the significant difference in thermal expansion coefficients between germanium and silicon, tensile strain incorporated into Ge epitaxial layers deposited on Si utilizing specialized growth processes can extend the operational range of detection to 1600 nm and longer wavelengths. We have fabricated Ge based PIN photodetectors on 300 mm diameter Si wafers to take advantage of high throughput, large-area complementary metal-oxide semiconductor (CMOS) technology. This device fabrication process involves low temperature epitaxial deposition of Ge to form a thin p+ (boron) Ge seed/buffer layer, and subsequent higher temperature deposition of a thicker Ge intrinsic layer. This is followed by selective ion implantation of phosphorus of various concentrations to form n+ Ge regions, deposition of a passivating oxide cap, and then top copper contacts to complete the PIN detector devices. Various techniques including transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) have been employed to characterize the material and structural properties of the epitaxially grown layers and fabricated detector devices, and these results are presented. The I-V response of the photodetector devices with and without illumination was also measured, for which the Ge based photodetectors consistently exhibited low dark currents of around ~1 nA at -1 V bias.

  13. Silicon microhole arrays architecture for stable and efficient photoelectrochemical cells using ionic liquids electrolytes

    Science.gov (United States)

    Shen, Xiaojuan; Chen, Ling; Li, Junnan; Zhao, Jie

    2016-06-01

    Silicon microhole arrays (SiMHs) structure is constructed and fabricated by a low-cost maskless anodic etching process, which is applied as the photoanode for the silicon photoelectrochemical (PEC) cells. The depths of silicon microhole arrays can be independently controlled by the etching time. The light-scattering properties are also investigated. Additionally, surface morphology analysis show that large hole diameters of SiMHs is very favourable for the full-filling of ionic liquids electrolyte. Therefore, better electrochemical contact as well as high ionic conductivity of the ionic liquids electrolyte renders the PEC SiMHs solar cells to exhibit more excellent performance. After optimization, the maximum PCE could be achieved at 4.04% for the SiMHs cell. The performance of the SiMHs cell is highly comparable to that of silicon nanowires cell. More importantly, the liquid-state electrolyte is confined in the unique microhole structure, which can obviously prevent the leakage of the ionic liquids electrolyte, resulting in much better long-term stability than the reference devices. These preliminary results validate the concept of interpenetrating networks with semiconductor structure/ILs junction to develop stable and efficient PEC cells.

  14. Adjustable fragmentation in laser desorption/ionization from laser-induced silicon microcolumn arrays.

    Science.gov (United States)

    Chen, Yong; Vertes, Akos

    2006-08-15

    Laser-induced silicon microcolumn arrays (LISMA) were developed as matrix-free substrates for soft laser desorption/ionization mass spectrometry (SLDI-MS). When low-resistivity silicon wafers were irradiated in air, sulfur hexafluoride, or water environment with multiple pulses from a 3 x omega mode-locked Nd:YAG laser, columnar structures were formed on the surface. The radii of curvature of the column tips varied with the processing environment, ranging from approximately 120 nm in water, to nitrogen laser, the microcolumn arrays obtained in water environment readily produced molecular ions for peptides and synthetic polymers at low laser fluence. These surfaces demonstrated the best ion yield among the three arrays. The threshold laser fluence and ion yield were comparable to those observed in matrix-assisted laser desorption/ionization. Low-femtomole sensitivity and approximately 6000 Da mass range were achieved. At elevated laser fluence, efficient in-source decay was observed and extensive peptide sequence information was extracted from the resulting mass spectra. The versatility of LISMA was attributed to confinement effects due to the submicrometer morphology and to the surface, thermal, and optical properties of processed silicon. PMID:16906730

  15. Nanoscale phosphorous atom arrays created using STM for the fabricaton of a silicon-based quantum computer

    Science.gov (United States)

    O'Brien, J. L.; Schofield, S. R.; Simmons, M. Y.; Clark, Robert G.; Dzurak, Andrew S.; Curson, N. J.; Kane, Bruce E.; McAlpine, N. S.; Hawley, Marilyn E.; Brown, Geoffrey W.

    2001-11-01

    Quantum computers offer the promise of formidable computational power for certain tasks. Of the various possible physical implementations of such a device, silicon based architectures are attractive for their scalability and ease of integration with existing silicon technology. These designs use either the electron or nuclear spin state of single donor atoms to store quantum information. Here we describe a strategy to fabricate an array of single phosphorus atoms in silicon for the construction of such a silicon based quantum computer. We demonstrate the controlled placement of single phosphorus bearing molecules on a silicon surface. This has been achieved by patterning a hydrogen mono-layer resist with a scanning tunneling microscope (STM) tip and exposing the patterned surface to phosphine (PH3) molecules. We also describe preliminary studies into a process to incorporate these surface phosphorus atoms into the silicon crystal at the array sites.

  16. Fabrication of silicon nanotip arrays with high aspect ratio by cesium chloride self-assembly and dry etching

    OpenAIRE

    Xinshuai Zhang; Jing Liu; Bo Wang; Tianchong Zhang; Futing Yi

    2014-01-01

    Nanotip arrays with high aspect ratio, which have attracted much attention due to their potential applications, have been fabricated by many methods. Dry etching combined with self-assembly masks is widely used because of the convenience of dry etching and high throughput of self-assembly. In this paper, we report a method combining Cesium Chloride (CsCl) self-assembly with inductively coupled plasma (ICP) dry etching to fabricate silicon nanotip arrays with high aspect ratio and silicon nano...

  17. Hypersonic phononic stopbands at small angles of wave incidence in porous silicon multilayers

    Science.gov (United States)

    Aliev, Gazi N.; Goller, Bernhard

    2015-08-01

    We report theoretical simulation and experimental observation of the mode conversion effect in a hypersonic distributed Bragg reflector of porous silicon. Acoustic transmission of longitudinal waves through the multilayered structure has been measured in the frequency range 0-3 GHz. It is found that the measured transmittance at the gap frequencies is always higher than that theoretically predicted for normal incidence. We attribute this to non-perpendicular wave propagation that was not deliberately sought, which subsequently increases the center gap transmittance due to the mode conversion effect. Oblique incidence with angles of about 1° results in truncated gap depth in acoustic transmission spectra from about  -80 dB, and deeper, to about  -40 dB and shallower. The spectra were simulated by employing the stiffness matrix method. Porosity-dependent acoustic viscous damping was included in the calculations. A way to optimize reflectors in the frequency range, where the forbidden gaps for longitudinal and shear waves overlap, is discussed.

  18. Topological investigation of electronic silicon nanoparticulate aggregates using ultra-small-angle X-ray scattering

    International Nuclear Information System (INIS)

    The network topology of two types of silicon nanoparticles, produced by high energy milling and pyrolysis of silane, in layers deposited from inks on permeable and impermeable substrates has been quantitatively characterized using ultra-small-angle X-ray scattering, supported by scanning electron microscopy observations. The milled particles with a highly polydisperse size distribution form agglomerates, which in turn cluster to form larger aggregates with a very high degree of aggregation. Smaller nanoparticles with less polydisperse size distribution synthesized by thermal catalytic pyrolysis of silane form small open clusters. The Sauter mean diameters of the primary particles of the two types of nanoparticles were obtained from USAXS particle volume to surface ratio, with values of ∼41 and ∼21 nm obtained for the high energy milled and pyrolysis samples, respectively. Assuming a log-normal distribution of the particles, the geometric standard deviation of the particles was calculated to be ∼1.48 for all the samples, using parameters derived from the unified fit to the USAXS data. The flow properties of the inks and substrate combination lead to quantitative changes in the mean particle separation, with slowly curing systems with good capillary flow resulting in denser networks with smaller aggregates and better contact between particles.

  19. Fabrication of silicon nanowire arrays by macroscopic galvanic cell-driven metal catalyzed electroless etching in aerated HF solution.

    Science.gov (United States)

    Liu, Lin; Peng, Kui-Qing; Hu, Ya; Wu, Xiao-Ling; Lee, Shuit-Tong

    2014-03-01

    Macroscopic galvanic cell-driven metal catalyzed electroless etching (MCEE) of silicon in aqueous hydrofluoric acid (HF) solution is devised to fabricate silicon nanowire (SiNW) arrays with dissolved oxygen acting as the one and only oxidizing agent. The key aspect of this strategy is the use of a graphite or other noble metal electrode that is electrically coupled with silicon substrate. PMID:24323873

  20. Millimeter-scale and large-angle self-collimation in a photonic crystal composed of silicon nanorods

    CERN Document Server

    Li, Hao; Li, Wei; Lin, Xulin; Qiu, Chao; Sheng, Zhen; Wang, Xi; Zou, Shichang; Gan, Fuwan

    2013-01-01

    We report the observation of a large-angle self-collimation phenomenon occurring in photonic crystals composed of nanorods. Electromagnetic waves incident onto such photonic crystals from directions covering a wide-range of incident angles become highly localized along a single array of rods, which results in narrow-beam propagation without divergence. A propagation length of 0.4 mm is experimentally observed over the wavelength range of 1540 nm to 1570 nm, even in the large incident angle case, which is a very considerable length scale for on-chip optical interconnection.

  1. Bundle Block Adjustment of Airborne Three-Line Array Imagery Based on Rotation Angles

    Directory of Open Access Journals (Sweden)

    Yongjun Zhang

    2014-05-01

    Full Text Available In the midst of the rapid developments in electronic instruments and remote sensing technologies, airborne three-line array sensors and their applications are being widely promoted and plentiful research related to data processing and high precision geo-referencing technologies is under way. The exterior orientation parameters (EOPs, which are measured by the integrated positioning and orientation system (POS of airborne three-line sensors, however, have inevitable systematic errors, so the level of precision of direct geo-referencing is not sufficiently accurate for surveying and mapping applications. Consequently, a few ground control points are necessary to refine the exterior orientation parameters, and this paper will discuss bundle block adjustment models based on the systematic error compensation and the orientation image, considering the principle of an image sensor and the characteristics of the integrated POS. Unlike the models available in the literature, which mainly use a quaternion to represent the rotation matrix of exterior orientation, three rotation angles are directly used in order to effectively model and eliminate the systematic errors of the POS observations. Very good experimental results have been achieved with several real datasets that verify the correctness and effectiveness of the proposed adjustment models.

  2. Bilayer–metal assisted chemical etching of silicon microwire arrays for photovoltaic applications

    Directory of Open Access Journals (Sweden)

    R. W. Wu

    2016-02-01

    Full Text Available Silicon microwires with lateral dimension from 5 μm to 20 μm and depth as long as 20 μm are prepared by bilayer metal assisted chemical etching (MaCE. A bilayer metal configuration (Metal 1 / Metal 2 was applied to assist etching of Si where metal 1 acts as direct catalyst and metal 2 provides mechanical support. Different metal types were investigated to figure out the influence of metal catalyst on morphology of etched silicon. We find that silicon microwires with vertical side wall are produced when we use Ag/Au bilayer, while cone–like and porous microwires formed when Pt/Au is applied. The different micro-/nano-structures in as-etched silicon are demonstrated to be due to the discrepancy of work function of metal catalyst relative to Si. Further, we constructed a silicon microwire arrays solar cells in a radial p–n junction configurations in a screen printed aluminum paste p–doping process.

  3. Bilayer-metal assisted chemical etching of silicon microwire arrays for photovoltaic applications

    Science.gov (United States)

    Wu, R. W.; Yuan, G. D.; Wang, K. C.; Wei, T. B.; Liu, Z. Q.; Wang, G. H.; Wang, J. X.; Li, J. M.

    2016-02-01

    Silicon microwires with lateral dimension from 5 μm to 20 μm and depth as long as 20 μm are prepared by bilayer metal assisted chemical etching (MaCE). A bilayer metal configuration (Metal 1 / Metal 2) was applied to assist etching of Si where metal 1 acts as direct catalyst and metal 2 provides mechanical support. Different metal types were investigated to figure out the influence of metal catalyst on morphology of etched silicon. We find that silicon microwires with vertical side wall are produced when we use Ag/Au bilayer, while cone-like and porous microwires formed when Pt/Au is applied. The different micro-/nano-structures in as-etched silicon are demonstrated to be due to the discrepancy of work function of metal catalyst relative to Si. Further, we constructed a silicon microwire arrays solar cells in a radial p-n junction configurations in a screen printed aluminum paste p-doping process.

  4. A large-area monolithic array of silicon drift detectors for medical imaging

    International Nuclear Information System (INIS)

    Monolithic arrays of silicon drift detectors (SDDs) have been recently proposed to be used with scintillators for high-position-resolution γ-ray imaging applications. Thanks to the low electronics noise due to the small value of the output capacitance, the SDD offers better noise performances with respect to conventional photodiodes of the same geometry. Small monolithic arrays of SDDs have been used as photodetector of the scintillation light in a first prototype of Anger Camera for γ-ray imaging characterized by an intrinsic resolution better than 0.3 mm. In this work, we present a new large-area monolithic array of SDDs. It consists of a single chip composed of 77 single hexagonal units, each one with an active area of 8.7 mm2, for a total active area of the device of 6.7 cm2. It represents the largest monolithic array of SDDs with on-chip JFETs produced up to now for X-ray and γ-ray detection. The results achieved in the experimental characterization of a first prototype of the detector array are presented, both with X and visible photons. The energy resolution measured at 6 keV with the single unit of the array is of 142 eV at -10 oC, while a QE>90% was measured at λ=550 nm

  5. Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon microcolumn arrays

    International Nuclear Information System (INIS)

    Due to their optical properties and morphology, thin films formed of nanoparticles are potentially new platforms for soft laser desorption/ionization (SLDI) mass spectrometry. Thin films of gold nanoparticles (with 12±1 nm particle size) were prepared by evaporation-driven vertical colloidal deposition and used to analyze a series of directly deposited polypeptide samples. In this new SLDI method, the required laser fluence for ion detection was equal or less than what was needed for matrix-assisted laser desorption/ionization (MALDI) but the resulting spectra were free of matrix interferences. A silicon microcolumn array-based substrate (a.k.a. black silicon) was developed as a new matrix-free laser desorption ionization surface. When low-resistivity silicon wafers were processed with a 22 ps pulse length 3xω Nd:YAG laser in air, SF6 or water environment, regularly arranged conical spikes emerged. The radii of the spike tips varied with the processing environment, ranging from approximately 500 nm in water, to ∼2 μm in SF6 gas and to ∼5 μm in air. Peptide mass spectra directly induced by a nitrogen laser showed the formation of protonated ions of angiotensin I and II, substance P, bradykinin fragment 1-7, synthetic peptide, pro14-arg, and insulin from the processed silicon surfaces but not from the unprocessed areas. Threshold fluences for desorption/ionization were similar to those used in MALDI. Although compared to silicon nanowires the threshold laser pulse energy for ionization is significantly (∼10x) higher, the ease of production and robustness of microcolumn arrays offer complementary benefits

  6. Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon microcolumn arrays

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yong [Department of Chemistry, George Washington University, Washington, DC 20052 (United States); Luo Guanghong [Department of Chemistry, George Washington University, Washington, DC 20052 (United States); Diao Jiajie [Department of Physics, George Washington University, Washington, DC 20052 (United States); Chornoguz, Olesya [Department of Chemistry, George Washington University, Washington, DC 20052 (United States); Reeves, Mark [Department of Physics, George Washington University, Washington, DC 20052 (United States); Vertes, Akos [Department of Chemistry, George Washington University, Washington, DC 20052 (United States)

    2007-04-15

    Due to their optical properties and morphology, thin films formed of nanoparticles are potentially new platforms for soft laser desorption/ionization (SLDI) mass spectrometry. Thin films of gold nanoparticles (with 12{+-}1 nm particle size) were prepared by evaporation-driven vertical colloidal deposition and used to analyze a series of directly deposited polypeptide samples. In this new SLDI method, the required laser fluence for ion detection was equal or less than what was needed for matrix-assisted laser desorption/ionization (MALDI) but the resulting spectra were free of matrix interferences. A silicon microcolumn array-based substrate (a.k.a. black silicon) was developed as a new matrix-free laser desorption ionization surface. When low-resistivity silicon wafers were processed with a 22 ps pulse length 3x{omega} Nd:YAG laser in air, SF{sub 6} or water environment, regularly arranged conical spikes emerged. The radii of the spike tips varied with the processing environment, ranging from approximately 500 nm in water, to {approx}2 {mu}m in SF{sub 6} gas and to {approx}5 {mu}m in air. Peptide mass spectra directly induced by a nitrogen laser showed the formation of protonated ions of angiotensin I and II, substance P, bradykinin fragment 1-7, synthetic peptide, pro14-arg, and insulin from the processed silicon surfaces but not from the unprocessed areas. Threshold fluences for desorption/ionization were similar to those used in MALDI. Although compared to silicon nanowires the threshold laser pulse energy for ionization is significantly ({approx}10x) higher, the ease of production and robustness of microcolumn arrays offer complementary benefits.

  7. High-performance uncooled amorphous silicon video graphics array and extended graphics array infrared focal plane arrays with 17-μm pixel pitch

    Science.gov (United States)

    Tissot, Jean-Luc; Tinnes, Sébastien; Durand, Alain; Minassian, Christophe; Robert, Patrick; Vilain, Michel; Yon, Jean-Jacques

    2011-06-01

    The high level of accumulated expertise by ULIS and CEA/LETI on uncooled microbolometers made from amorphous silicon with 45, 35, and 25 μm enables ULIS to develop video graphics array (VGA) and extended graphics array (XGA) infrared focal plane array (IRFPA) formats with 17-μm pixel pitch to fulfill every application. These detectors keep all the recent innovations developed on the 25-μm pixel-pitch read out integrated circuit (ROIC) (detector configuration by serial link, low power consumption, and wide electrical dynamic range). The specific appeal of these units lies in the high spatial resolution it provides while keeping the small thermal time constant. The reduction of the pixel pitch turns the VGA array into a product well adapted for high-resolution and compact systems and the XGA a product well adapted for high-resolution imaging systems. High electro-optical performances have been demonstrated with noise equivalent temperature difference (NETD) ROIC design. This technology node paves the way to high-end products as well as low-end, compact, smaller formats, such as 320 × 240 and 160 × 120 or smaller.

  8. Broadband High Efficiency Fractal-Like and Diverse Geometry Silicon Nanowire Arrays for Photovoltaic Applications

    Science.gov (United States)

    AL-Zoubi, Omar H.

    Solar energy has many advantages over conventional sources of energy. It is abundant, clean and sustainable. One way to convert solar energy directly into electrical energy is by using the photovoltaic solar cells (PVSC). Despite PVSC are becoming economically competitive, they still have high cost and low light to electricity conversion efficiency. Therefore, increasing the efficiency and reducing the cost are key elements for producing economically more competitive PVSC that would have significant impact on energy market and saving environment. A significant percentage of the PVSC cost is due to the materials cost. For that, thin films PVSC have been proposed which offer the benefits of the low amount of material and fabrication costs. Regrettably, thin film PVSC show poor light to electricity conversion efficiency because of many factors especially the high optical losses. To enhance conversion efficiency, numerous techniques have been proposed to reduce the optical losses and to enhance the absorption of light in thin film PVSC. One promising technique is the nanowire (NW) arrays in general and the silicon nanowire (SiNW) arrays in particular. The purpose of this research is to introduce vertically aligned SiNW arrays with enhanced and broadband absorption covering the entire solar spectrum while simultaneously reducing the amount of material used. To this end, we apply new concept for designing SiNW arrays based on employing diversity of physical dimensions, especially radial diversity within certain lattice configurations. In order to study the interaction of light with SiNW arrays and compute their optical properties, electromagnetic numerical modeling is used. A commercial numerical electromagnetic solver software package, high frequency structure simulation (HFSS), is utilized to model the SiNW arrays and to study their optical properties. We studied different geometries factors that affect the optical properties of SiNW arrays. Based on this study, we

  9. Research on analytical model and design formulas of permanent magnetic bearings based on Halbach array with arbitrary segmented magnetized angle

    Science.gov (United States)

    Wang, Nianxian; Wang, Dongxiong; Chen, Kuisheng; Wu, Huachun

    2016-07-01

    The bearing capacity of permanent magnetic bearings can be improved efficiently by using the Halbach array magnetization. However, the research on analytical model of Halbach array PMBs with arbitrary segmented magnetized angle has not been developed. The application of Halbach array PMBs has been limited by the absence of the analytical model and design formulas. In this research, the Halbach array PMBs with arbitrary segmented magnetized angle has been studied. The magnetization model of bearings is established. The magnetic field distribution model of the permanent magnet array is established by using the scalar magnetic potential model. On the basis of this, the bearing force model and the bearing stiffness model of the PMBs are established based on the virtual displacement method. The influence of the pair of magnetic rings in one cycle and the structure parameters of PMBs on the maximal bearing capacity and support stiffness characteristics are studied. The reference factors for the design process of PMBs have been given. Finally, the theoretical model and the conclusions are verified by the finite element analysis.

  10. Fabrication of silicon nanotip arrays with high aspect ratio by cesium chloride self-assembly and dry etching

    Directory of Open Access Journals (Sweden)

    Xinshuai Zhang

    2014-03-01

    Full Text Available Nanotip arrays with high aspect ratio, which have attracted much attention due to their potential applications, have been fabricated by many methods. Dry etching combined with self-assembly masks is widely used because of the convenience of dry etching and high throughput of self-assembly. In this paper, we report a method combining Cesium Chloride (CsCl self-assembly with inductively coupled plasma (ICP dry etching to fabricate silicon nanotip arrays with high aspect ratio and silicon nanotip arrays with aspect ratio 15 have been achieved after optimization of all parameters.

  11. A two dimensional silicon detectors array for quality assurance in stereotactic radiotherapy: MagicPlate-512

    Energy Technology Data Exchange (ETDEWEB)

    Aldosari, A. H.; Petasecca, M., E-mail: marcop@uow.edu.au; Espinoza, A.; Newall, M.; Fuduli, I.; Porumb, C.; Alshaikh, S.; Alrowaili, Z. A.; Weaver, M.; Metcalfe, P.; Lerch, M. L. F.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500 (Australia); Carolan, M. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia and Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500 (Australia); Perevertaylo, V. [SPA-BIT, KIEV 02232 (Ukraine)

    2014-09-15

    Purpose: Silicon diode arrays are commonly implemented in radiation therapy quality assurance applications as they have a number of advantages including: real time operation (compared to the film) and high spatial resolution, large dynamic range and small size (compared to ionizing chambers). Most diode arrays have detector pitch that is too coarse for routine use in small field applications. The goal of this work is to characterize the two-dimensional monolithic silicon diode array named “MagicPlate-512” (MP512) designed for QA in stereotactic body radiation therapy (SBRT) and stereotactic radio surgery (SRS). Methods: MP512 is a silicon monolithic detector manufactured on ap-type substrate. An array contains of 512 pixels with size 0.5 × 0.5 mm{sup 2} and pitch 2 mm with an overall dimension of 52 × 52 mm{sup 2}. The MP512 monolithic detector is wire bonded on a printed circuit board 0.5 mm thick and covered by a thin layer of raisin to preserve the silicon detector from moisture and chemical contamination and to protect the bonding wires. Characterization of the silicon monolithic diode array response was performed, and included pixels response uniformity, dose linearity, percent depth dose, output factor, and beam profiling for beam sizes relevant to SBRT and SRS and depth dose response in comparison with ionization chamber. Results: MP512 shows a good dose linearity (R{sup 2} = 0.998) and repeatability within 0.2%. The measured depth dose response for field size of 10 × 10 cm{sup 2} agreed to within 1.3%, when compared to a CC13 ionization chamber for depths in PMMA up to 30 cm. The output factor of a 6 MV Varian 2100EX medical linac beam measured by MP512 at the isocenter agrees to within 2% when compared to PTW diamond, Scanditronix point EDD-2 diode and MOSkin detectors for field sizes down to 1 × 1 cm{sup 2}. An over response of 4% was observed for square beam size smaller than 1 cm when compared to EBT3 films, while the beam profiles (FWHM) of MP

  12. A two dimensional silicon detectors array for quality assurance in stereotactic radiotherapy: MagicPlate-512

    International Nuclear Information System (INIS)

    Purpose: Silicon diode arrays are commonly implemented in radiation therapy quality assurance applications as they have a number of advantages including: real time operation (compared to the film) and high spatial resolution, large dynamic range and small size (compared to ionizing chambers). Most diode arrays have detector pitch that is too coarse for routine use in small field applications. The goal of this work is to characterize the two-dimensional monolithic silicon diode array named “MagicPlate-512” (MP512) designed for QA in stereotactic body radiation therapy (SBRT) and stereotactic radio surgery (SRS). Methods: MP512 is a silicon monolithic detector manufactured on ap-type substrate. An array contains of 512 pixels with size 0.5 × 0.5 mm2 and pitch 2 mm with an overall dimension of 52 × 52 mm2. The MP512 monolithic detector is wire bonded on a printed circuit board 0.5 mm thick and covered by a thin layer of raisin to preserve the silicon detector from moisture and chemical contamination and to protect the bonding wires. Characterization of the silicon monolithic diode array response was performed, and included pixels response uniformity, dose linearity, percent depth dose, output factor, and beam profiling for beam sizes relevant to SBRT and SRS and depth dose response in comparison with ionization chamber. Results: MP512 shows a good dose linearity (R2 = 0.998) and repeatability within 0.2%. The measured depth dose response for field size of 10 × 10 cm2 agreed to within 1.3%, when compared to a CC13 ionization chamber for depths in PMMA up to 30 cm. The output factor of a 6 MV Varian 2100EX medical linac beam measured by MP512 at the isocenter agrees to within 2% when compared to PTW diamond, Scanditronix point EDD-2 diode and MOSkin detectors for field sizes down to 1 × 1 cm2. An over response of 4% was observed for square beam size smaller than 1 cm when compared to EBT3 films, while the beam profiles (FWHM) of MP512 match to within 2% the data

  13. Design and development of compact readout electronics with silicon photomultiplier array for a compact imaging detector

    International Nuclear Information System (INIS)

    This work aims at developing compact readout electronics for a compact imaging detector module with silicon photomultiplier (SPM) array. The detector module consists of a LYSO crystal array coupling with a SensL's 4 × 4 SPM array. A compact multiplexed readout based on a discretized positioning circuit (DPC) was developed to reduce the readout channels from 16 to 4 outputs. Different LYSO crystal arrays of 4 × 4, 8 × 8 and 12 × 12 with pixel sizes of 3.2, 1.6 and 1.0 mm respectively, have been tested with the compact readout board using a 137Cs source. The initial results show that the compact imaging detector module with the compact multiplexed readout could clearly resolve 1 mm × 1 mm × 10 mm LYSO scintillation crystal array except those at the edges. The detector's intrinsic spatial resolution up to 1 mm can be achieved with the 3 mm × 3 mm size SPMArray4 through light sharing and compact multiplexed readout. Our results indicate that this detector module is feasible for the development of high-resolution compact PET. (authors)

  14. Conjugated polymer–silicon nanowire array hybrid Schottky diode for solar cell application

    International Nuclear Information System (INIS)

    The hybrid Schottky diode based on silicon nanowire arrays (SiNWs) and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) has been fabricated for high performance solar cells. The length of SiNWs on a silicon substrate, which is prepared by metal-assisted chemical etching, can be tuned by adjusting the length of the etching time. In addition, the average distances between the adjacent silicon nanowires can be controlled by changing the immersing time in a saturated PCl5 solution. The hybrid devices are made from the SiNWs with different wire lengths and various distances between adjacent wires by spin-casting PEDOT:PSS on the silicon substrates. It is found that the length and density play leading roles in the electric output characteristics. The device made from SiNWs with optimum morphology can achieve a power conversion efficiency of 7.3%, which is much improved in comparison with that of the planar one. The measurement of the transient photovoltage decay and the analysis of the current versus voltage curve indicate that the charge recombination process is a dominant factor on the device performance. (paper)

  15. Broadband absorptance enhancement of silicon nanowire arrays with germanium as the substrate

    Science.gov (United States)

    Wang, Han; Xia, Xin-Lin

    2013-08-01

    A composite structure with silicon nanowire arrays on germanium substrate is proposed as a good candidate for highly efficient solar cells. The Bruggeman approximation considering anisotropic wave propagating in uniaxial media is employed to calculate the radiative properties. Meantime, finite-difference time-domain (FDTD) method is used to verify for both normal and oblique incidence. It is found that the composite structure has superior absorption characteristics over thin Si film, particularly near the bandgap. With a thickness only of 4 μm, the composite structure improved the absorptance to above 0.6 across the whole wavelength band with the lattice constant of 100 nm, and the ultimate efficiency about 10% is higher than that of infinite bulk silicon, owing to the combined effects of suppressed reflection and high light trapping capability. To better understand the absorption enhancement process in the composite structure, the photogeneration profiles are provided by using FDTD method.

  16. Integration of field emitter array and thin-film transistor using polycrystalline silicon process technology

    International Nuclear Information System (INIS)

    We present the monolithic integration of a gated polycrystalline silicon field emitter array (poly-Si FEA) and a thin-film transistor(TFT) on an insulating substrate for active-matrix field emission displays (AMFEDs). The TFT was designed to have low off-state currents even at a high drain voltage. Amorphous silicon has been used as a starting material of the poly-Si FEA for improving surface smoothness and uniformity of the tips, and the gate holes have been formed by using an etch-back process. The integrated poly-Si TFT controlled electron emissions of the poly-Si FEA actively, resulting in great improvement in the emission reliability along with a low-voltage control, below 15 V, of field emission, The developed technology has potential applications in AMFEDs on glass substrates

  17. Integration of field emitter array and thin-film transistor using polycrystalline silicon process technology

    CERN Document Server

    Song, Y H; Kang, S Y; Park Jeong Man; Cho, K I

    1998-01-01

    We present the monolithic integration of a gated polycrystalline silicon field emitter array (poly-Si FEA) and a thin-film transistor(TFT) on an insulating substrate for active-matrix field emission displays (AMFEDs). The TFT was designed to have low off-state currents even at a high drain voltage. Amorphous silicon has been used as a starting material of the poly-Si FEA for improving surface smoothness and uniformity of the tips, and the gate holes have been formed by using an etch-back process. The integrated poly-Si TFT controlled electron emissions of the poly-Si FEA actively, resulting in great improvement in the emission reliability along with a low-voltage control, below 15 V, of field emission, The developed technology has potential applications in AMFEDs on glass substrates.

  18. Comparison of ordered and disordered silicon nanowire arrays: experimental evidence of photonic crystal modes.

    Science.gov (United States)

    Dhindsa, Navneet; Saini, Simarjeet S

    2016-05-01

    We experimentally compared the reflectance between ordered and disordered silicon nanowires to observe the evidence of photonic crystal modes. For similar diameters, the resonance peaks for the ordered nanowires at a spacing of 400 nm was at a shorter wavelength than the disordered nanowires, consistent to the excitation of photonic crystal modes. Furthermore, the resonant wavelength didn't shift while changing the density of the disordered nanowires, whereas there was a significant shift observed in the ordered ones. At an ordered spacing of 800 nm, the resonance wavelength approached that of the disordered structures, indicating that the ordered structures were starting to behave like individual waveguides. To our knowledge, this is the first direct experimental observation of photonic crystal modes in vertical periodic silicon nanowire arrays. PMID:27128070

  19. Development of a silicon strip detector array for nuclear structure physics

    International Nuclear Information System (INIS)

    The Edinburgh nuclear physics group has been exploiting some of the unique features of silicon strip detectors (SSDs) in a variety of nuclear structure experiments using high energy photons and heavy-ion projectiles. Current experimental applications make use of large area (≅ 4-25 cm2), totally depleted SSDs with depletion thicknesses in the range ≅ 150-1000 μm and strip pitches of 2000 μm. In addition, two new device configurations are currently undergoing evaluation tests for future applications. These configurations are: (i) double-sided silicon strip detectors (i.e. ''quasi-pixel'' devices), and (ii) position sensitive silicon strip detectors. Silicon strip detectors are potentially a powerful tool for nuclear structure physics applications where charged particle detection is required. It is possible to construct charged particle detection systems with good energy and position resolution, large solid angle and high data throughput. To date however, it has not been possible to fully exploit the potential of SSDs because of the high cost and limited availability of appropriate instrumentation. To overcome this problem we are developing low cost hybrid microelectronic instrumentation in collaboration with the SERC Rutherford-Appleton Laboratory. (orig.)

  20. Electronic transport mechanisms in scaled gate-all-around silicon nanowire transistor arrays

    International Nuclear Information System (INIS)

    Low-frequency noise is used to study the electronic transport in arrays of 14 nm gate length vertical silicon nanowire devices. We demonstrate that, even at such scaling, the electrostatic control of the gate-all-around is sufficient in the sub-threshold voltage region to confine charges in the heart of the wire, and the extremely low noise level is comparable to that of high quality epitaxial layers. Although contact noise can already be a source of poor transistor operation above threshold voltage for few nanowires, nanowire parallelization drastically reduces its impact

  1. Micro-contacting of single and periodically arrayed columnar silicon structures by focused ion beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, F., E-mail: felice.friedrich@tu-berlin.de; Herfurth, N.; Teodoreanu, A.-M.; Boit, C. [TU Berlin, FG HLB/PVcomB, Sekr. E4, Einsteinufer 19, D-10587 Berlin (Germany); Sontheimer, T.; Preidel, V.; Rech, B. [Helmholtz-Zentrum Berlin für Materialien und Energie, E-IS, Kekuléstr. 5, D-12489 Berlin (Germany)

    2014-06-16

    Micron-sized, periodic crystalline Silicon columns on glass substrate were electrically contacted with a transparent conductive oxide front contact and a focused ion beam processed local back contact. Individual column contacts as well as arrays of >100 contacted columns were processed. Current-voltage characteristics of the devices were determined. By comparison with characteristics obtained from adapted device simulation, the absorber defect density was reconstructed. The contacting scheme allows the fabrication of testing devices in order to evaluate the electronic potential of promising semiconductor microstructures.

  2. Characterization of a highly-segmented silicon prototype for the TRACE array

    Directory of Open Access Journals (Sweden)

    Gelain M.

    2014-03-01

    Full Text Available In view of the construction of novel and high-sensitive instrumentation for the emerging ISOL facilities new prototypes have being implemented and tested. The contribution focuses at the investigation of the detection efficiency of an innovative silicon-pad prototype, which is the key element for the construction of the TRACE array, pursued for the SPES facility based at the Legnaro National Laboratories (Italy. The inter-pad size has been estimated by using a commercial 100-MHz-14-bit CAEN digitizer for sampling the signals obtained by an alpha-source scan over the inter-pad region.

  3. Micro-contacting of single and periodically arrayed columnar silicon structures by focused ion beam techniques

    International Nuclear Information System (INIS)

    Micron-sized, periodic crystalline Silicon columns on glass substrate were electrically contacted with a transparent conductive oxide front contact and a focused ion beam processed local back contact. Individual column contacts as well as arrays of >100 contacted columns were processed. Current-voltage characteristics of the devices were determined. By comparison with characteristics obtained from adapted device simulation, the absorber defect density was reconstructed. The contacting scheme allows the fabrication of testing devices in order to evaluate the electronic potential of promising semiconductor microstructures.

  4. Enhanced Field Emission from Well-Patterned Silicon Nanoporous Pillar Arrays

    Institute of Scientific and Technical Information of China (English)

    FU Xiao-Nan; LI Xin-Jian

    2006-01-01

    @@ The silicon nanoporous pillar array (Si-NPA) is synthesized by using hydrothermal etching method, and the electron field emission properties are studied. The results show that Si-NPA has a low turn-on field of 1.48 V/μm at the emission current of 0.1 μA and its field emission is relatively stable. The field emission enhancement of Si-NPA is believed to originate from its unique morphology and structure. Our finding demonstrates that the Si-NPA is a promising candidate material for field emission applications.

  5. Development of a multichannel integrated circuit for Silicon Photo-Multiplier arrays readout

    OpenAIRE

    Comerma Montells, Albert

    2014-01-01

    [eng] The aim of this thesis is to present a solution for the readout of Silicon Photo-Multipliers (SiPMs) arrays improving currently implemented systems. Using as a starting point previous designs with similar objectives a novel current mode input stage has been designed and tested. To start with the design a valid model has been used to generate realistic output from the SiPMs depending on light input. Design has been performed in first place focusing in general applications for medical ...

  6. Biocompatibility of silicon-based arrays of electrodes coupled to organotypic hippocampal brain slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, J; Thiébaud, P;

    2001-01-01

    In this study we examined the passive biocompatibility of a three-dimensional microelectrode array (MEA), designed to be coupled to organotypic brain slice cultures for multisite recording of electrophysiological signals. Hippocampal (and corticostriatal) brain slices from 1-week-old (and newborn......-methyl-D-aspartate (NMDA) and the neurotoxin trimethyltin (TMT), as demonstrated by the cellular uptake of propidium iodide (PI), which was used as a reproducible and quantifiable marker for neuronal degeneration. We conclude that organotypic brain slice cultures can grow on silicon-based three-dimensional microelectrode...

  7. The fabrication of highly ordered block copolymer micellar arrays: control of the separation distances of silicon oxide dots.

    Science.gov (United States)

    Yoo, Hana; Park, Soojin

    2010-06-18

    We demonstrate the fabrication of highly ordered silicon oxide dotted arrays prepared from polydimethylsiloxane (PDMS) filled nanoporous block copolymer (BCP) films and the preparation of nanoporous, flexible Teflon or polyimide films. Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) films were annealed in toluene vapor to enhance the lateral order of micellar arrays and were subsequently immersed in alcohol to produce nano-sized pores, which can be used as templates for filling a thin layer of PDMS. When a thin layer of PDMS was spin-coated onto nanoporous BCP films and thermally annealed at a certain temperature, the PDMS was drawn into the pores by capillary action. PDMS filled BCP templates were exposed to oxygen plasma environments in order to fabricate silicon oxide dotted arrays. By addition of PS homopolymer to PS-b-P2VP copolymer, the separation distances of micellar arrays were tuned. As-prepared silicon oxide dotted arrays were used as a hard master for fabricating nanoporous Teflon or polyimide films by spin-coating polymer precursor solutions onto silicon patterns and peeling off. This simple process enables us to fabricate highly ordered nanoporous BCP templates, silicon oxide dots, and flexible nanoporous polymer patterns with feature size of sub-20 nm over 5 cm x 5 cm. PMID:20498523

  8. Fabrication of silicon nanowire arrays by near-field laser ablation and metal-assisted chemical etching

    Science.gov (United States)

    Brodoceanu, D.; Alhmoud, H. Z.; Elnathan, R.; Delalat, B.; Voelcker, N. H.; Kraus, T.

    2016-02-01

    We present an elegant route for the fabrication of ordered arrays of vertically-aligned silicon nanowires with tunable geometry at controlled locations on a silicon wafer. A monolayer of transparent microspheres convectively assembled onto a gold-coated silicon wafer acts as a microlens array. Irradiation with a single nanosecond laser pulse removes the gold beneath each focusing microsphere, leaving behind a hexagonal pattern of holes in the gold layer. Owing to the near-field effects, the diameter of the holes can be at least five times smaller than the laser wavelength. The patterned gold layer is used as catalyst in a metal-assisted chemical etching to produce an array of vertically-aligned silicon nanowires. This approach combines the advantages of direct laser writing with the benefits of parallel laser processing, yielding nanowire arrays with controlled geometry at predefined locations on the silicon surface. The fabricated VA-SiNW arrays can effectively transfect human cells with a plasmid encoding for green fluorescent protein.

  9. Plasmon enhanced broadband optical absorption in ultrathin silicon nanobowl array for photoactive devices applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Rui-Nan; Peng, Kui-Qing, E-mail: kq-peng@bnu.edu.cn; Hu, Bo; Hu, Ya; Zhang, Fu-Qiang [Department of Physics and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing 100875 (China); Lee, Shuit-Tong [Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123 (China)

    2015-07-06

    Both photonic and plasmonic nanostructures are key optical components of photoactive devices for light harvesting, enabling solar cells with significant thickness reduction, and light detectors capable of detecting photons with sub-band gap energies. In this work, we study the plasmon enhanced broadband light absorption and electrical properties of silicon nanobowl (SiNB) arrays. The SiNB-metal photonic-plasmonic nanostructure-based devices exhibited superior light-harvesting ability across a wide range of wavelengths up to the infrared regime well below the band edge of Si due to effective optical coupling between the SiNB array and incident sunlight, as well as electric field intensity enhancement around metal nanoparticles due to localized surface plasmon resonance. The photonic-plasmonic nanostructure is expected to result in infrared-light detectors and high-efficiency solar cells by extending light-harvesting to infrared frequencies.

  10. Surface-assisted laser desorption/ionization mass spectrometry using ordered silicon nanopillar arrays.

    Science.gov (United States)

    Alhmoud, Hashim Z; Guinan, Taryn M; Elnathan, Roey; Kobus, Hilton; Voelcker, Nicolas H

    2014-11-21

    Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is ideally suited for the high-throughput analysis of small molecules in bodily fluids (e.g. saliva, urine, and blood plasma). A key application for this technique is the testing of drug consumption in the context of workplace, roadside, athlete sports and anti-addictive drug compliance. Here, we show that vertically-aligned ordered silicon nanopillar (SiNP) arrays fabricated using nanosphere lithography followed by metal-assisted chemical etching (MACE) are suitable substrates for the SALDI-MS detection of methadone and small peptides. Porosity, length and diameter are fabrication parameters that we have explored here in order to optimize analytical performance. We demonstrate the quantitative analysis of methadone in MilliQ water down to 32 ng mL(-1). Finally, the capability of SiNP arrays to facilitate the detection of methadone in clinical samples is also demonstrated. PMID:25268849

  11. Photosensor Characterization for the Cherenkov Telescope Array: Silicon Photomultiplier versus Multi-Anode Photomultiplier Tube

    CERN Document Server

    Bouvier, Aurelien; Johnson, Caitlin; Kuznetsov, Andrey; Williams, David; Otte, Nepomuk; Strausbaugh, Robert; Hidaka, Naoya; Tajima, Hiroyasu; Hinton, Jim; White, Richard; Errando, Manel; Mukherjee, Reshmi

    2013-01-01

    Photomultiplier tube technology has been the photodetector of choice for the technique of imaging atmospheric Cherenkov telescopes since its birth more than 50 years ago. Recently, new types of photosensors are being contemplated for the next generation Cherenkov Telescope Array. It is envisioned that the array will be partly composed of telescopes using a Schwarzschild-Couder two mirror design never built before which has significantly improved optics. The camera of this novel optical design has a small plate scale which enables the use of compact photosensors. We present an extensive and detailed study of the two most promising devices being considered for this telescope design: the silicon photomultiplier and the multi-anode photomultiplier tube. We evaluated their most critical performance characteristics for imaging gamma-ray showers, and we present our results in a cohesive manner to clearly evaluate the advantages and disadvantages that both types of device have to offer in the context of GeV-TeV gamma...

  12. Fabrication of High Aspect Ratio Micro-Penning-Malmberg Gold Plated Silicon Trap Arrays

    CERN Document Server

    Narimannezhad, Alireza; Weber, Marc H; Lynn, Kelvin G

    2013-01-01

    Acquiring a portable high density charged particles trap might consist of an array of micro-Penning-Malmberg traps (microtraps) with substantially lower end barriers potential than conventional Penning-Malmberg traps [1]. We report on the progress of the fabrication of these microtraps designed for antimatter storage such as positrons. The fabrication of large length to radius aspect ratio (1000:1) microtrap arrays involved advanced techniques including photolithography, deep reactive ion etching (DRIE) of silicon wafers to achieve through-vias, gold sputtering of the wafers on the surfaces and inside the vias, and thermal compression bonding of the wafers. This paper describes the encountered issues during fabrication and addresses geometry errors and asymmetries. In order to minimize the patch effects on the lifetime of the trapped positrons, the bonded stacks were gold electroplated to achieve a uniform gold surface. We show by simulation and analytical calculation that how positrons confinement time depen...

  13. Influences of temperature and etching voltage on the surface morphology of photo-electro-chemical etching for silicon microchannel arrays

    Science.gov (United States)

    Zhang, Yao; Duanmu, Qingduo; Yu, Feng-yuan; Liang, Yong-zhao; Chai, Jin; Wang, Guo-zheng; Yang, Ji-kai

    2013-08-01

    The application fields of high aspect ratio Si microchannel arrays have increased considerably, for example, Si microchannel plates, MEMS devices and so on. By the method of photo-electrochemical etching (PEC), Si microchannel arrays are prepared using n-Si wafer covered by anti-corrosion layers and initiation array pits. The dark current intensity curve of an n-type silicon wafer was presented in aqueous HF. The relationship among temperature, etching voltage and carrier transportation was presented. The influences of temperature and etching voltage on the surface morphology of silicon microchannel arrays were researched. The perfect Si microchannel arrays structure with the pore depth of 297 μm, the pore size of 3 μm and the aspect ratio of 99 was obtained by the method of reducing etching voltage gradually.

  14. Preparing magnetic yttrium iron garnet nanodot arrays by ultrathin anodic alumina template on silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Hui; Han, Mangui, E-mail: han-mangui@yahoo.com; Deng, Longjiang [National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zheng, Liang; Zheng, Peng; Qin, Huibin [Institute of Electron Device and Application, Hangzhou Dianzi University, Hangzhou 310008 (China); Wu, Qiong [Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou 310018 (China)

    2015-08-10

    Ultrahigh density periodically ordered magnetic yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) nanodot arrays have been prepared by pulsed laser deposition through an ultrathin alumina mask (UTAM). UTAM having periodically ordered circularly shaped holes with 350 nm in diameter, 450 nm in inter-pore distance, and 700 nm in height has been prepared on silicon substrate. Furthermore, the microstructure and magnetic properties of YIG nanodot arrays have been characterized. Nanodot arrays with a sharp distribution in diameter centered at 340 nm with standard deviation of 10 nm have been fabricated. Moreover, typical hysteresis loops and ferromagnetic resonance spectra in in-plane and out-of-plane revealed that this unique structure greatly influences the magnetics properties of YIG. First, coercivity of YIG nanodot arrays in in-plane was increased about from 15 Oe of YIG films to 500 Oe. Then, the degree of uniformity about nanodot height decided that two or more resonance peaks in out-of-plane were detected in the spectra. The peak-to-peak linewidth values were about 94 Oe and 40 Oe in the parallel and perpendicular directions, respectively, which indicated that the values were larger by the two-magnon scattering. Consequently, this pattering method creates opportunities for studying physics in oxide nanomagnets and may be applied in spin-wave devices.

  15. A low-profile three-dimensional neural probe array using a silicon lead transfer structure

    Science.gov (United States)

    Cheng, Ming-Yuan; Je, Minkyu; Tan, Kwan Ling; Lim Tan, Ee; Lim, Ruiqi; Yao, Lei; Li, Peng; Park, Woo-Tae; Phua, Eric Jian Rong; Lip Gan, Chee; Yu, Aibin

    2013-09-01

    This paper presents a microassembly method for low-profile three-dimensional probe arrays for neural prosthesis and neuroscience applications. A silicon (Si) lead transfer structure, Si interposer, is employed to form electrical connections between two orthogonal planes—the two dimensional probes and the dummy application-specific integrated circuit (ASIC) chip. In order to hold the probe array and facilitate the alignment of probes during assembly, a Si platform is designed to have through-substrate slots for the insertion of probes and cavities for holding the Si interposers. The electrical interconnections between the probes and the dummy ASIC chip are formed by solder reflow, resulting in greatly improved throughput in the proposed assembly method. Moreover, since the backbone of the probe can be embedded inside the cavity of the Si platform, the profile of the probe array above the cortical surface can be controlled within 750 µm. This low-profile allows the probe array not to touch the skull after it is implanted on the brain. The impedance of the assembled probe is also measured and discussed.

  16. A low-profile three-dimensional neural probe array using a silicon lead transfer structure

    International Nuclear Information System (INIS)

    This paper presents a microassembly method for low-profile three-dimensional probe arrays for neural prosthesis and neuroscience applications. A silicon (Si) lead transfer structure, Si interposer, is employed to form electrical connections between two orthogonal planes—the two dimensional probes and the dummy application-specific integrated circuit (ASIC) chip. In order to hold the probe array and facilitate the alignment of probes during assembly, a Si platform is designed to have through-substrate slots for the insertion of probes and cavities for holding the Si interposers. The electrical interconnections between the probes and the dummy ASIC chip are formed by solder reflow, resulting in greatly improved throughput in the proposed assembly method. Moreover, since the backbone of the probe can be embedded inside the cavity of the Si platform, the profile of the probe array above the cortical surface can be controlled within 750 µm. This low-profile allows the probe array not to touch the skull after it is implanted on the brain. The impedance of the assembled probe is also measured and discussed. (paper)

  17. Monolithic arrays of silicon drift detectors for medical imaging applications and related CMOS readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Fiorini, C. [Politecnico di Milano, Dipartimento di Elettronica e Informazione, Milan (Italy) and INFN, Sezione di Milano, Milan (Italy)]. E-mail: carlo.fiorini@polimi.it; Longoni, A. [Politecnico di Milano, Dipartimento di Elettronica e Informazione, Milan (Italy); INFN, Sezione di Milano, Milan (Italy); Porro, M. [Politecnico di Milano, Dipartimento di Ingegneria Nucleare, Milan (Italy); INFN, Sezione di Milano, Milan (Italy); Perotti, F. [Istituto di Astrofisica Spaziale e Fisica Cosmica - INAF, Milan (Italy); Lechner, P. [PNSensors, Munich (Germany); Strueder, L. [MPI fuer Extraterrestrische Physik Halbleiterlabor, Munich (Germany)

    2006-05-01

    Monolithic arrays of Silicon Drift Detectors (SDDs) have been recently proposed to be used with scintillators for high-position-resolution {gamma}-ray imaging applications. Thanks to the low electronics noise due to the small value of the output capacitance, the SDD offers better performances with respect to conventional photodiodes of the same geometry. We show the results achieved with a small monolithic array of SDDs, each one with a front-end JFET integrated at its center, used as photodetector in a first prototype of Anger Camera. An intrinsic resolution better than 200 {mu}m has been achieved with this prototype. Moreover, we describe a new monolithic array of SDDs composed of 77 single hexagonal units, each one with an active area of 8.7 mm{sup 2}, for a total active area of the device of 6.7 cm{sup 2}. Finally, the basic principles and the first results of the CMOS readout chip specifically designed for the readout of the signals from SDDs arrays are presented.

  18. Monolithic arrays of silicon drift detectors for medical imaging applications and related CMOS readout electronics

    International Nuclear Information System (INIS)

    Monolithic arrays of Silicon Drift Detectors (SDDs) have been recently proposed to be used with scintillators for high-position-resolution γ-ray imaging applications. Thanks to the low electronics noise due to the small value of the output capacitance, the SDD offers better performances with respect to conventional photodiodes of the same geometry. We show the results achieved with a small monolithic array of SDDs, each one with a front-end JFET integrated at its center, used as photodetector in a first prototype of Anger Camera. An intrinsic resolution better than 200 μm has been achieved with this prototype. Moreover, we describe a new monolithic array of SDDs composed of 77 single hexagonal units, each one with an active area of 8.7 mm2, for a total active area of the device of 6.7 cm2. Finally, the basic principles and the first results of the CMOS readout chip specifically designed for the readout of the signals from SDDs arrays are presented

  19. Evaluation of Matrix9 silicon photomultiplier array for small-animal PET

    International Nuclear Information System (INIS)

    Purpose: The MatrixSL-9-30035-OEM (Matrix9) from SensL is a large-area silicon photomultiplier (SiPM) photodetector module consisting of a 3 × 3 array of 4 × 4 element SiPM arrays (total of 144 SiPM pixels) and incorporates SensL’s front-end electronics board and coincidence board. Each SiPM pixel measures 3.16 × 3.16 mm2 and the total size of the detector head is 47.8 × 46.3 mm2. Using 8 × 8 polished LSO/LYSO arrays (pitch 1.5 mm) the performance of this detector system (SiPM array and readout electronics) was evaluated with a view for its eventual use in small-animal positron emission tomography (PET). Methods: Measurements of noise, signal, signal-to-noise ratio, energy resolution, flood histogram quality, timing resolution, and array trigger error were obtained at different bias voltages (28.0–32.5 V in 0.5 V intervals) and at different temperatures (5 °C–25 °C in 5 °C degree steps) to find the optimal operating conditions. Results: The best measured signal-to-noise ratio and flood histogram quality for 511 keV gamma photons were obtained at a bias voltage of 30.0 V and a temperature of 5 °C. The energy resolution and timing resolution under these conditions were 14.2% ± 0.1% and 4.2 ± 0.1 ns, respectively. The flood histograms show that all the crystals in the 1.5 mm pitch LSO array can be clearly identified and that smaller crystal pitches can also be resolved. Flood histogram quality was also calculated using different center of gravity based positioning algorithms. Improved and more robust results were achieved using the local 9 pixels for positioning along with an energy offset calibration. To evaluate the front-end detector readout, and multiplexing efficiency, an array trigger error metric is introduced and measured at different lower energy thresholds. Using a lower energy threshold greater than 150 keV effectively eliminates any mispositioning between SiPM arrays. Conclusions: In summary, the Matrix9 detector system can resolve

  20. Improved photo-stability of silicon nanobelt arrays by atomic layer deposition for efficient photocatalytic hydrogen evolution

    Science.gov (United States)

    Bao, Xiao-Qing; Liu, Lifeng

    2014-12-01

    Silicon nanostructures have recently drawn great interest for use as photocathodes to produce hydrogen through water photoelectrolysis. Despite the high photocurrent observed, nanostructured Si photocathodes usually exhibit poor photo-stability in aqueous solution and rapidly deactivate. Herein, we report that by coating a thin titania protection layer using atomic layer deposition (ALD), the photo-stability of silicon nanobelt arrays fabricated by metal assisted chemical etching can be markedly improved. The photocurrent loss of the silicon nanobelt array photoelectrode coated with a 3 nm titania layer is found to be much lower than that of the electrode without a titania coating. We also demonstrate that the 3 nm titania coated Si nanobelt arrays can sustain more than twelve hours without a significant loss in photocurrent under operation conditions before it eventually fails. The possible failure mechanism is preliminarily investigated.

  1. Fabrication of porous silicon by metal-assisted etching using highly ordered gold nanoparticle arrays.

    Science.gov (United States)

    Scheeler, Sebastian P; Ullrich, Simon; Kudera, Stefan; Pacholski, Claudia

    2012-01-01

    A simple method for the fabrication of porous silicon (Si) by metal-assisted etching was developed using gold nanoparticles as catalytic sites. The etching masks were prepared by spin-coating of colloidal gold nanoparticles onto Si. An appropriate functionalization of the gold nanoparticle surface prior to the deposition step enabled the formation of quasi-hexagonally ordered arrays by self-assembly which were translated into an array of pores by subsequent etching in HF solution containing H2O2. The quality of the pattern transfer depended on the chosen preparation conditions for the gold nanoparticle etching mask. The influence of the Si surface properties was investigated by using either hydrophilic or hydrophobic Si substrates resulting from piranha solution or HF treatment, respectively. The polymer-coated gold nanoparticles had to be thermally treated in order to provide a direct contact at the metal/Si interface which is required for the following metal-assisted etching. Plasma treatment as well as flame annealing was successfully applied. The best results were obtained for Si substrates which were flame annealed in order to remove the polymer matrix - independent of the substrate surface properties prior to spin-coating (hydrophilic or hydrophobic). The presented method opens up new resources for the fabrication of porous silicon by metal-assisted etching. Here, a vast variety of metal nanoparticles accessible by well-established wet-chemical synthesis can be employed for the fabrication of the etching masks. PMID:22876790

  2. Gold nano-island arrays on silicon as SERS active substrate for organic molecule detection

    International Nuclear Information System (INIS)

    Gold islands forming highly controlled arrays have been fabricated by two potential step electrochemical deposition method using nanopatterned Si surface templates. In the present work, the Raman scattering studies realized using 11-mercaptoundecanoic probe molecule showed that such structures exhibit an enhanced Raman signal compared with nanostructured physical deposited thin gold film on flat silicon substrate and can be valued as surface-enhanced Raman scattering substrates. Besides the more appropriate management of nano-island arrays distribution, the high ratio of their Raman signals can be explain by the epitaxial-like growth mechanism of the metallic nano-islands, clearly showed by X-ray diffraction studies. Furthermore, the substrates enabled reproducibility and stability detection due to the chemically assembling of organothiol molecules, the X-ray photoelectron spectroscopy studies confirming formation of the thiolate species which corresponds to Au-S bonds, and also, the unwanted ‘hot-spots’ are missing, which make them suitable for high sensitivity biosensing applications. - Highlights: • Gold nano-islands are electrochemical deposited on nanopatterned silicon. • The X-ray diffraction studies revealed the epitaxial-like growth mechanism. • Enhanced Raman signal of Au nano-islands was observed compared with Au nano-film

  3. Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication.

    Science.gov (United States)

    Saini, Gaurav; Gates, Richard; Asplund, Matthew C; Blair, Steve; Attavar, Sachin; Linford, Matthew R

    2009-06-21

    The selective adsorption of reagents is often essential for bioarray and lab-on-a-chip type devices. As the starting point for a bioarray, alkyl monolayer terminated silicon shards were photopatterned in a few nanoseconds with thousands of wells (spots) using an optical element, a microlens array. Polyallylamine (PAAm), a primary amine containing polymer, adsorbed with little selectivity to the spots, i.e., silicon oxide, over the hydrophobic background. However, at appropriate concentrations, addition of a cationic surfactant to the PAAm deposition solution, cetyltrimethylammonium chloride, prevented the nonspecific adsorption of PAAm onto the hydrophobic monolayer, while directing it effectively to the active spots on the device. A nonionic surfactant was less effective in preventing the nonspecific adsorption of PAAm onto the hydrophobic monolayer. The localized reactions/interactions of adsorbed PAAm with four species that are useful for bioconjugate chemistry: glutaric anhydride, phenylenediisothiocyanate, biotin NHS ester, and an oligonucleotide (DNA) were shown in the spots of an array. The reactivity of PAAm was further demonstrated with an isocyanate. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) played an important role in confirming selective surface reactivity and adsorption. X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry, and wetting confirmed PAAm reactivity on planar substrates. PMID:19495464

  4. Photoemission and photo-field-emission from photocathodes with arrays of silicon tips under continuous and pulsed lasers action

    International Nuclear Information System (INIS)

    The electron machines's development and improvement go through the discovery of new electron sources of high brightness. After reminding the interests in studying silicon cathodes with array of tips as electron sources, I describe, in the three steps model, the main phenomenological features related to photoemission and photoemission and photo-field-emission from a semi-conductor. the experimental set-ups used for the measurements reported in chapter four, five and six are described in chapter three. In chapter three. In chapter four several aspects of photo-field-emission in continuous and nanosecond regimes, studied on the Clermont-Ferrand's test bench are tackled. We have measured quantum efficacies of 0.4 percent in the red (1.96 eV). Temporal responses in the nanoseconds range (10 ns) were observed with the Nd: YLF laser. With the laser impinging at an oblique angle we obtained ratios of photocurrent to dark current of the order of twenty. The issue of the high energy extracted photocurrent saturation is addressed and I give a preliminary explanation. In collaboration with the L.A.L. (Laboratoire de l'Accelerateur Lineaire) some tests with shortened pulsed laser beam (Nd: YAG laser 35 ps) were performed. Satisfactory response times have been obtained within the limitation of the scope (400 ps). (authors). 101 refs. 93 figs., 27 tabs., 3 photos., 1 append

  5. Synthesis, Characterization and Kinetics of Epitaxial-Oriented Silicon Nanowire Arrays on Si Substrates

    Science.gov (United States)

    Wang, Z. L.; Bao, J. K.; Wan, Y. T.; Xia, W. W.; Wang, Y. W.; Sha, J.

    The fabrication of vertical-oriented, high aspect ratio silicon nanowires (SiNWs) with controllable density and length is of interest for the development of nanowire-based electronics and photovoltaic devices. Here we reported a both simple and economical method for synthesizing large-area epitaxial-oriented SiNW arrays, which was achieved on the Si (111) substrates by Au catalyzed vapor-liquid-solid mechanism using the conventional chemical vapor deposition furnace system. Their morphologies and microstructures were investigated with scanning electron microscopy and transmission electron microscopy, respectively. The results showed that most of nanowires were vertically grown on substrates, their density and length can be well controlled. As-grown SiNW is composed of a single crystalline silicon core and a thin amorphous silicon oxide coating layer. Furthermore, their growth kinetics was discussed in detail. It indicates that there are both the substrate-nanowire Si adatom surface diffusion and the slight radial growth during the upgrowth of nanowire, and besides, the migration of Au on the sidewall of nanowire was also found for such epitaxial-oriental SiNWs.

  6. Design of a prototype microchannel plate detector with cooled amorphous silicon array readout for neutron radiography

    International Nuclear Information System (INIS)

    High-performance large-area imaging detectors for fast neutrons in the 5-14 MeV energy range do not exist at present. The aim of this project is to combine microchannel plates or MCPs (or similar electron multiplication structures) traditionally used in image intensifiers and X-ray detectors with amorphous silicon pixel arrays to produce a composite converter and intensifier position-sensitive imaging system. This detector will provide an order of magnitude improvement in image resolution when compared with current millimetre resolution limits obtained using phosphor- or scintillator-based hydrogen-rich converters. In this study the detection of fast neutrons is based on neutron capture in silicon rather than proton recoil in hydrogen-rich converters. This will reduce the effect that light spreading has on image resolution when using conventional phosphor-based converters. The threshold in the silicon capture cross-section will reduce the effect of neutron scatter on the detectability of small features in fast neutron radiographs. In this study we highlight the prototype detector design, present its main advantages and the current status of the detector build phase

  7. Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial

    International Nuclear Information System (INIS)

    Structuring at subwavelength scales brings out artificial media with anomalous optical features called metamaterials. All-dielectric metamaterials have high potential for practical applications over the whole electromagnetic spectrum owing to low loss and optical isotropy. Here, we report subwavelength silicon through-hole arrays as an all-dielectric gradient index metamaterial with broadband THz operation. The unit cell consists of a single subwavelength through-hole on highly resistive monocrystalline silicon. Depending on the fill-factor and period, the effective index was linearly modulated at 0.3–1.6 THz. The experimental results also demonstrate silicon gradient refractive index (Si-GRIN) lenses with parabolic index profiles through the spatial modification of a single unit cell along the radial direction. Si-GRIN lenses either focus 0.4–1.6 THz beam to the diffraction-limit or serve as a flat and thin solid immersion lens on the backside of THz photoconductive antenna for highly efficient pulse extraction. This all-dielectric gradient index metamaterial opens up opportunities for integrated THz GRIN optics.

  8. Contact angle anomalies indicate that surface-active eluates from silicone coatings inhibit the adhesive mechanisms of fouling organisms.

    Science.gov (United States)

    Meyer, Anne; Baier, Robert; Wood, Christina Darkangelo; Stein, Judith; Truby, Kathryn; Holm, Eric; Montemarano, Jean; Kavanagh, Christopher; Nedved, Brian; Smith, Celia; Swain, Geoff; Wiebe, Deborah

    2006-01-01

    Silicone coatings with critical surface tensions (CST) between 20 and 30 mN m-1 more easily release diverse types of biofouling than do materials of higher and lower CST. Oils added to these coatings selectively further diminish the attachment strengths of different marine fouling organisms, without significantly modifying the initial CST. In a search for the mechanisms of this improved biofouling resistance, the interfacial instabilities of four silicone coatings were characterised by comprehensive contact angle analyses, using up to 12 different diagnostic fluids selected to mimic the side chain chemistries of the common amino acids of bioadhesive proteins. The surfaces of painted steel test panels were characterised both before and after exposure to freshwater, brackish water, and seawater over periods ranging from 9 months to nearly 4 years. Contact angle measurements demonstrated significant surface activity of the oil-amended coatings both before and after long-term underwater exposure. The surface activity of the control (coating without oil) increased as a result of underwater exposure, consistent with mild surface chain scission and hydrolysis imparting a self-surfactancy to the coating and providing a weak boundary layer promoting continuing easy release of attaching foulants. Coatings with additives that most effectively reduced biofouling showed both initial and persistent contact angle anomalies for the test liquid, thiodiglycol, suggesting lower-shear biofouling release mechanisms based upon diminished bioadhesive crosslinking by interfering with hydrogen- and sulfhydryl bonds. Swelling of the silicone elastomeric coatings by hydrocarbon fluids was observed for all four coatings, before and after immersion. PMID:17178574

  9. OPTIMAL BEAM STEERING ANGLES OF A SENSOR ARRAY FOR A MULTIPLE SOURCE SCENARIO

    Directory of Open Access Journals (Sweden)

    Sanghyouk Cho

    2016-01-01

    Full Text Available We present the gradient and Hessian of the trace of the multivariate Cramér-Rao bound (CRB formula for unknown impinging angles of plane waves with non-unitary beamspace measurements,. These gradient and Hessian can be used to find the optimal beamspace transformation matrix, i.e., the optimum beamsteering angles, using the Newton-Raphson iteration. These trace formulas are particularly useful to deal with the multiple source senario. We also show the mean squred error (MSE performance gain of the optimally steered beamspace measurements compared with the usuall DFT steered measurements, when the angle of arrivals (AOAs are estimated with stochastic maximum likelihood (SMLE algorithm.

  10. Comparative anomalous small-angle X-ray scattering study of hotwire and plasma grown amorphous silicon-germanium alloys

    OpenAIRE

    Goerigk, G.; Williamson, D. L.

    2001-01-01

    The nanostructure of hydrogenated amorphous silicon-germanium alloys, a-Si1-xGex:H, prepared by the hotwire deposition technique (x=0.06-0.79) and by the plasma enhanced chemical vapor deposition technique (x=0 and 0.50) was analyzed by anomalous small-angle x-ray scattering experiments. For all alloys with x >0 the Ge component was found to be inhomogeneously distributed with correlation lengths of about 1 nm. A systematic increase of the separated scattering was found due to the increasing ...

  11. Impact ionization in high resistivity silicon induced by an intense terahertz field enhanced by an antenna array

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Iwaszczuk, Krzysztof; Zalkovskij, Maksim;

    2015-01-01

    antenna array. The carrier multiplication is probed by the frequency shift of the resonance of the antenna array due to the change of the local refractive index of the substrate. Experimental results and simulations show that the carrier density in silicon increases by over seven orders of magnitude in......We report on the observation of ultrafast impact ionization and carrier generation in high resistivity silicon induced by intense subpicosecond terahertz transients. Local terahertz peak electric fields of several MV cm−1 are obtained by field enhancement in the near field of a resonant metallic...

  12. Imaging performance of silicon photomultipliers coupled to BGO and CsI:Na arrays

    International Nuclear Information System (INIS)

    The aim of this study is to investigate the imaging performance of a silicon photomultiplier array (ArraySL-4) photodetector for possible PET and potentially SPECT applications using BGO and CsI(Na) pixellated scintillators. Our main objectives are: i) the comparison of the ArraySL-4 to the older version SensL's SPMArray4 photo detector in terms of energy resolution and peak to valley ratio of a row profile in the flood image and ii) the study of the effect of different coupling schemes using ultra transmitting glass windows of various thicknesses. We acquired raw images from two pixellated scintillators (BGO with 2 × 2×5 mm3 and CsI:Na with 1 × 1×5 mm3 pixel sizes) irradiated with 511 keV and 1274.5 keV γ-rays from a 22Na source. The SiPM array detector allowed the clear visualization of the discrete 2 × 2 mm2 pixellated BGO and 1 × 1 mm2 CsI:Na scintillator elements at room temperature (no cooling). The energy resolution of the new SensL ArraySL-4 detector for the 2 × 2×5 mm3 BGO pixellated scintillator array is improved for rather 6 percentage points (energy resolution improvement equal to 22%) and the peak to valley ratio is measured higher for both scintillator arrays (for BGO 68% (1.7 × ) and for CsI:Na 154% (2.5 × )) compared with SPMArray4. The clear identification of the 1 × 1 mm2 CsI:Na scintillator elements provides evidence that the combination of those SiPMs with even smaller arrays can be used as an efficient imaging detector module. Optical coupling significantly improves image uniformity, while the use of BK7 ultra transmitting glass window with 1.35 mm thickness provided the best measure energy resolution equal to 21.5%

  13. The effects of oxygen plasma and humidity on surface roughness, water contact angle and hardness of silicon, silicon dioxide and glass

    International Nuclear Information System (INIS)

    For heterogeneous integration in many More-than-Moore applications, surface preparation is the key step to realizing well-bonded multiple substrates for electronics, photonics, fluidics and/or mechanical components without a degradation in performance. Therefore, it is critical to understand how various processing and environmental conditions affect their surface properties. In this paper, we investigate the effects of oxygen plasma and humidity on some key surface properties such as the water contact angle, roughness and hardness of three materials: silicon (Si), silicon dioxide (SiO2) and glass, and their impact on bondability. The low surface roughness, high surface reactivity and high hydrophilicity of Si, SiO2 and glass at lower activation times can result in better bondability. Although, the surface reactivity of plasma-ambient-humidity-treated Si and SiO2 is considerably reduced, their reduction of roughness and increase of hydrophilicity may enable good bonding at low temperature heating due to augmented hydroxyl groups. The decrease of hardness of Si and SiO2 with increased activation time is attributed to higher surface roughness and the formation of amorphous layers of Si. While contact angle and surface roughness results show a correlation with bondability, the role of hardness on bondability requires further investigation. (paper)

  14. BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance.

    Science.gov (United States)

    Nolta, Nicholas F; Christensen, Michael B; Crane, Paul D; Skousen, John L; Tresco, Patrick A

    2015-01-01

    The clinical usefulness of brain machine interfaces that employ penetrating silicon microelectrode arrays is limited by inconsistent performance at chronic time points. While it is widely believed that elements of the foreign body response (FBR) contribute to inconsistent single unit recording performance, the relationships between the FBR and recording performance have not been well established. To address this shortfall, we implanted 4X4 Utah Electrode Arrays into the cortex of 28 young adult rats, acquired electrophysiological recordings weekly for up to 12 weeks, used quantitative immunohistochemical methods to examine the intensity and spatial distribution of neural and FBR biomarkers, and examined whether relationships existed between biomarker distribution and recording performance. We observed that the FBR was characterized by persistent inflammation and consisted of typical biomarkers, including presumptive activated macrophages and activated microglia, astrogliosis, and plasma proteins indicative of blood-brain-barrier disruption, as well as general decreases in neuronal process distribution. However, unlike what has been described for recording electrodes that create only a single penetrating injury, substantial brain tissue loss generally in the shape of a pyramidal lesion cavity was observed at the implantation site. Such lesions were also observed in stab wounded animals indicating that the damage was caused by vascular disruption at the time of implantation. Using statistical approaches, we found that blood-brain barrier leakiness and astrogliosis were both associated with reduced recording performance, and that tissue loss was negatively correlated with recording performance. Taken together, our data suggest that a reduction of vascular damage at the time of implantation either by design changes or use of hemostatic coatings coupled to a reduction of chronic inflammatory sequela will likely improve the recording performance of high density

  15. A Stable Flexible Silicon Nanowire Array as Anode for High-Performance Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Highlights: • A flexible SiNW array in PDMS structure is designed and fabricated as Li-ion battery anode material. • The aggregation and fracture of SiNWs are alleviated by the flexible PDMS skeleton during the process of charge and discharge. • The loose SiO2 shells coating on the SiNWscould form the protective layer in charge/discharge. • The as-obtain flexible SiNW array/PDMS composite exhibits a much better cycling stability. - Abstract: A Silicon nanowire (SiNW) array inserted into flexible poly-dimethylsiloxane (SiNW array/PDMS) composite structure as anode with high capacity and long-term cycling stability is synthesized by a cost-effective and scalable method. In this structure, the aggregation and fracture of SiNWs are alleviated by the flexible PDMS skeleton. Act as the main active component, the SiNWs are coated by loose SiO2 shells. These loose SiO2 shells not only provide space for the large volume changes of SiNW, but also react with the electrolyte and form the stable protective layer during the processes of the lithiation and delithiation. These two functions could improve the cycling stability and columbic efficiency of the SiNWs. The as-obtain flexible SiNW array/PDMS composite structure exhibits excellent long-term cycling stability with a specific capacity of 887.2 mA·h·g−1 and capacity retention of ∼83.4% over 350 cycles at 0.5 C rate compared with the fifteenth cycle. The design of this new structure provides a potential way for developing other functional composite materials

  16. The status of lightweight photovoltaic space array technology based on amorphous silicon solar cells

    Science.gov (United States)

    Hanak, Joseph J.; Kaschmitter, Jim

    1991-01-01

    Ultralight, flexible photovoltaic (PV) array of amorphous silicon (a-Si) was identified as a potential low cost power source for small satellites. A survey was conducted of the status of the a-Si PV array technology with respect to present and future performance, availability, cost, and risks. For existing, experimental array blankets made of commercial cell material, utilizing metal foil substrates, the Beginning of Life (BOL) performance at Air Mass Zero (AM0) and 35 C includes total power up to 200 W, power per area of 64 W/sq m and power per weight of 258 W/kg. Doubling of power per weight occurs when polyimide substrates are used. Estimated End of Life (EOL) power output after 10 years in a nominal low earth orbit would be 80 pct. of BOL, the degradation being due to largely light induced effects (-10 to -15 pct.) and in part (-5 pct.) to space radiation. Predictions for the year 1995 for flexible PV arrays, made on the basis of published results for rigid a-Si modules, indicate EOL power output per area and per weight of 105 W/sq m and 400 W/kg, respectively, while predictions for the late 1990s based on existing U.S. national PV program goals indicate EOL values of 157 W/sq m and 600 W/kg. Cost estimates by vendors for 200 W ultralight arrays in volume of over 1000 units range from $100/watt to $125/watt. Identified risks include the lack of flexible, space compatible encapsulant, the lack of space qualification effort, recent partial or full acquisitions of US manufacturers of a-Si cells by foreign firms, and the absence of a national commitment for a long range development program toward developing of this important power source for space.

  17. Development of silicon monolithic arrays for dosimetry in external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Bisello, Francesca, E-mail: francesca.bisello@iba-group.com [IBA Dosimetry GmbH, Schwarzenbruck (Germany); Friedrich-Alexander Universität Erlangen—Nürnberg, Erlangen (Germany); Menichelli, David [IBA Dosimetry GmbH, Schwarzenbruck (Germany); Scaringella, Monica [University of Florence, Firenze (Italy); INFN—Florence Division, Sesto Fiorentino (Italy); Talamonti, Cinzia; Zani, Margherita; Bucciolini, Marta [University of Florence, Firenze (Italy); Azienda Ospedaliera Unversitaria Careggi, Firenze (Italy); Bruzzi, Mara [University of Florence, Firenze (Italy); INFN—Florence Division, Sesto Fiorentino (Italy)

    2015-10-01

    New tools for dosimetry in external beam radiotherapy have been developed during last years in the framework of the collaboration among the University of Florence, INFN Florence and IBA Dosimetry. The first step (in 2007) was the introduction in dosimetry of detector solutions adopted from high energy physics, namely epitaxial silicon as the base detector material and a guard ring in diode design. This allowed obtaining state of the art radiation hardness, in terms of sensitivity dependence on accumulated dose, with sensor geometry particularly suitable for the production of monolithic arrays with modular design. Following this study, a 2D monolithic array has been developed, based on 6.3×6.3 cm{sup 2} modules with 3 mm pixel pitch. This prototype has been widely investigated and turned out to be a promising tool to measure dose distributions of small and IMRT fields. A further linear array prototype has been recently design with improve spatial resolution (1 mm pitch) and radiation hardness. This 24 cm long device is constituted by 4×64 mm long modules. It features low sensitivity changes with dose (0.2%/kGy) and dose per pulse (±1% in the range 0.1–2.3 mGy/pulse, covering applications with flattened and unflattened photon fields). The detector has been tested with very satisfactory results as a tool for quality assurance of linear accelerators, with special regards to small fields, and proton pencil beams. In this contribution, the characterization of the linear array with unflattened MV X-rays, {sup 60}Co radiation and 226 MeV protons is reported. - Highlights: • A silicon monolithic 1D array with 1 mm pixel pitch was developed. • The detector was characterized with {sup 60}Co, unflattened MV X-rays, 226 MeV protons. • Dose linearity in clinical relevance range and dose profiles were measured. • The detector performs good agreement with reference detectors. • The technology is suitable in dose profiling in MV X-ray and proton therapy.

  18. Fabrication of 721-pixel silicon lens array of a microwave kinetic inductance detector camera

    Science.gov (United States)

    Mitsui, Kenji; Nitta, Tom; Okada, Norio; Sekimoto, Yutaro; Karatsu, Kenichi; Sekiguchi, Shigeyuki; Sekine, Masakazu; Noguchi, Takashi

    2015-04-01

    We have been developed a lens-integrated superconducting camera for millimeter and submillimeter astronomy. High-purity silicon (Si) is suitable for the lens array of the microwave kinetic inductance detector camera due to its high refractive index and low dielectric loss at low temperatures. The camera is an antenna-coupled Al coplanar waveguide on a Si substrate. Thus the lens and the device are made of the same material. We report a fabrication method of a 721-pixel Si lens array with an antireflection (AR) coating. The Si lens array was fabricated with an ultraprecision cutting machine. It uses TiAlN-coated carbide end mills attached with a high-speed spindle. The shape accuracy was less than 50 μm peak-to-valley and the surface roughness was arithmetic average roughness (Ra) of 1.8 μm. The mixed epoxy was used as an AR coating to adjust the refractive index. It was shaved to yield a thickness of 185 μm for 220 GHz. Narrow grooves were made between the lenses to prevent cracking due to the different thermal expansion coefficients of Si and the epoxy. The surface roughness of the AR coating was Ra of 2.4 to 4.2 μm.

  19. Simulation Analysis on Photoelectric Conversion Characteristics of Silicon Nanowire Array Photoelectrodes

    Science.gov (United States)

    Zhao, Yong; Yu, Jin; Fang, Li-Guang; Zheng, Jun; Wang, Hui-Qin; Yuan, Ji-Ren; Wu, Shaolong; Cheng, Guo-An

    2015-06-01

    Semiconductor nanowire photoelectrochemical cells have attracted extensive attention in the light-conversion field owing to the low-cost preparation, excellent optical absorption, and short distance of carrier collection. Although there are numbers of experimental investigations to improve the device performance, the understanding of the detailed process of photoelectric conversion needs to be further improved. In this work, a thorough optoelectronic simulation is employed to figure out how the nanowire diameter, doping concentration, and illumination wavelength affect the photoelectric conversion characteristics of the silicon nanowire array photoelectrodes. We find that two balances should be carefully weighted between optical absorption and photogenerated-carrier collection, along with between short-circuit photocurrent density and open-circuit voltage. For the small-diameter nanowire array photoelectrodes, the overall absorption is higher than that of the larger-diameter ones with the most contribution from the nanowires. However, the substrate shows increasing absorption with increasing illumination wavelength. Higher doping density leads to a larger open-circuit voltage; while lower doping density can guarantee a relatively higher short-circuit photocurrent. To obtain high-light-conversion-efficiency photoelectrodes, the doping density should be carefully chosen with considerations of illumination wavelength and surface recombination. Suppressing the surface recombination velocity can effectively enhance the short-circuit photocurrent (open-circuit voltage) for the lightly (heavily) doped nanowire array photoelectrodes. Our systematical results provide a theoretical guidance for the photoelectrochemical devices based on semiconductor nanostructures.

  20. Aluminum oxide passivated radial junction sub-micrometre pillar array textured silicon solar cells

    International Nuclear Information System (INIS)

    We report radial, p–n junction, sub-micrometre, pillar array textured solar cells, fabricated on an n-type Czochralski silicon wafer. Relatively simple processing schemes such as metal-assisted chemical etching and spin on dopant techniques were employed for the fabrication of the proposed solar cells. Atomic layer deposition (ALD) grown aluminum oxide (Al2O3) was employed as a surface passivation layer on the B-doped emitter surface. In spite of the fact that the sub-micrometre pillar array textured surface has a relatively high surface-to-volume ratio, we observed an open circuit voltage (VOC) and a short circuit current density (JSC) as high as 572 mV and 29.9 mA cm−2, respectively, which leads to a power conversion efficiency in excess of 11.30%, for the optimized structure of the solar cell described herein. Broadband omnidirectional antireflection effects along with the light trapping property of the sub-micrometre, pillar array textured surface and the excellent passivation quality of the ALD-grown Al2O3 on the B-doped emitter surface were responsible for the enhanced electrical performance of the proposed solar cells. (paper)

  1. Sensitive refractive index sensing with tunable sensing range and good operation angle-polarization-tolerance using graphene concentric ring arrays

    International Nuclear Information System (INIS)

    A highly tunable refractive index sensor with excellent performance and good operation angle-polarization-tolerance is proposed and demonstrated numerically by means of the finite element method. The proposed sensor consists of a planar regular array of paired graphene concentric ring resonators sandwiched between a substrate and a sensing medium. Numerical calculation results show that a high sensitivity of 9.59 µm per refractive index unit and figure of merit of 5.82 can be reached for lower sensing medium refractive indices. The introduction of graphene in this sensor can enhance the absorption of biomolecules and make the sensing range actively tunable. Therefore, it can be conveniently used for possible detection of the refractive index variation of gases, liquids or mixed solutions. Also, we predict that a multi-channel sensor can be achieved by introducing several graphene concentric ring resonators into each unit cell of the array. (paper)

  2. Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography

    Directory of Open Access Journals (Sweden)

    Jian Pan

    2011-12-01

    Full Text Available We report experimentally that for a particular high-symmetry planar periodic arrangement of metal double-triangle nanoparticle arrays fabricated via angle resolved nanosphere lithography, both anti-symmetric and symmetric magnetic resonances can be explicitly excited at off-normal incidence. Further, we demonstrate that the underlying mechanism for the formation of these two modes is a result of direct interactions with the incident electric and magnetic fields, respectively. As a consequence, with increasing the incident angle there is a relatively small blue-shift in the transmission for the electric-field induced anti-symmetric mode, while a remarkable red-shift is observed for the magnetic-field induced symmetric mode.

  3. Ordered array of ω particles in β-Ti matrix studied by small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Nanosized particles of ω phase in a β-Ti alloy were investigated by small-angle X-ray scattering using synchrotron radiation. We demonstrated that the particles are spontaneously weakly ordered in a three-dimensional cubic array along the 〈100〉-directions in the β-Ti matrix. The small-angle scattering data fit well to a three-dimensional short-range-order model; from the fit we determined the evolution of the mean particle size and mean distance between particles during ageing. The self-ordering of the particles is explained by elastic interaction between the particles, since the relative positions of the particles coincide with local minima of the interaction energy. We performed numerical Monte Carlo simulation of the particle ordering and we obtained a good agreement with the experimental data

  4. Formation of Mach angle profiles during wet etching of silica and silicon nitride materials

    Science.gov (United States)

    Ghulinyan, M.; Bernard, M.; Bartali, R.; Pucker, G.

    2015-12-01

    In integrated circuit technology peeling of masking photoresist films is a major drawback during the long-timed wet etching of materials. It causes an undesired film underetching, which is often accompanied by a formation of complex etch profiles. Here we report on a detailed study of wedge-shaped profile formation in a series of silicon oxide, silicon oxynitride and silicon nitride materials during wet etching in a buffered hydrofluoric acid (BHF) solution. The shape of etched profiles reflects the time-dependent adhesion properties of the photoresist to a particular material and can be perfectly circular, purely linear or a combination of both, separated by a knee feature. Starting from a formal analogy between the sonic boom propagation and the wet underetching process, we model the wedge formation mechanism analytically. This model predicts the final form of the profile as a function of time and fits the experimental data perfectly. We discuss how this knowledge can be extended to the design and the realization of optical components such as highly efficient etch-less vertical tapers for passive silicon photonics.

  5. Effect of acid vapor etching on morphological and opto-electric properties of flat silicon and silicon nanowire arrays: A comparative study

    Science.gov (United States)

    Amri, Chohdi; Ouertani, Rachid; Hamdi, Abderrahmen; Ezzaouia, Hatem

    2016-03-01

    In this paper, we report a comparative study between porous silicon (pSi) and porous silicon nanowires (pSiNWs). Acid Vapor Etching (AVE) treatment has been used to perform porous structure on flat Si and SiNWs array substrates respectively. SiNW structure is prepared by the widely used Silver catalyzed etching method. SEM and TEM images show that AVE treatment induces porous structure in the whole Si wafer and the SiNW sidewall. Comparatively to pSi, pSiNWs exhibit a low reflectivity in the whole spectral range which decreases with etching duration. However, the reflectivity of pSi changes with porous layer thickness. Both pSi and pSiNWs exhibit a significant PL peak situated at 2 eV. PL peaks are attributed to the quantum confinement effect in the silicon nanocrystallites (SiNCs). We discussed the significant enhancement in the peak intensities and a shift toward lower energy displayed in Raman spectra for both pSi and pSiNWs. We reported a correlative study of the AVE treatment effect on the minority carrier life time of flat silicon and SiNW arrays with the passivation effect of chemical induced silicon oxides highlighted by FTIR spectra.

  6. Towards doubling solar harvests using wide-angle, broad-band microfluidic beam steering arrays.

    Science.gov (United States)

    DiDomenico, Leo D

    2015-11-30

    This paper introduces Microfluidic Beam Steering (MBS), which is a new technique for electronically steering light having multiple octaves of bandwidth, any polarization state and incidence from any direction of the sky without significant restrictions due to physical area, optical loss and power handling capacity. It is based on optical elements comprising both transparent solids and electronically controllable fluids to control Total Internal Reflection (TIR), refraction and/or diffraction from micro-structured surfaces within a transparent solid. A TIR-based MBS is discussed in the context of solar energy and its potential to significantly increase annual energy harvests from solar arrays situated on fixed areas like roofs. The advantages and challenges associated with analog and digital MBS systems are discussed and early-stage MBS hardware is demonstrated. Finally, an analytic model of sun-tracking is provided to formally establish the potential for MBS to increase annual solar energy harvests by approximately 45% more than conventional 0-Degree Of Freedom (0-DOF) solar arrays, 62% more than 1-DOF arrays and 233% more than 2-DOF arrays, all at 20% atmospheric aerosol scattering. PMID:26698790

  7. A Silicon-Based Nanothin Film Solid Oxide Fuel Cell Array with Edge Reinforced Support for Enhanced Thermal Mechanical Stability.

    Science.gov (United States)

    Baek, Jong Dae; Yu, Chen-Chiang; Su, Pei-Chen

    2016-04-13

    A silicon-based micro-solid oxide fuel cell (μ-SOFC) with electrolyte membrane array embedded in a thin silicon supporting membrane, featuring a unique edge reinforcement structure, was demonstrated by utilizing simple silicon micromachining processes. The square silicon supporting membrane, fabricated by combining deep reactive ion etching and through-wafer wet etching processes, has thicker edges and corners than the center portion of the membrane, which effectively improved the mechanical stability of the entire fuel cell array during cell fabrication and cell operation. The 20 μm thick single crystalline silicon membrane supports a large number of 80 nm thick free-standing yttria-stabilized zirconia (YSZ) electrolytes. The fuel cell array was stably maintained at the open circuit voltage (OCV) of 1.04 V for more than 30 h of operation at 350 °C. A high peak power density of 317 mW/cm(2) was obtained at 400 °C. During a rigorous in situ thermal cycling between 150 and 400 °C at a fast cooling and heating rate of 25 °C/min, the OCV of the μ-SOFC recovered to its high value of 1.07 V without any drop caused by membrane failure, which justifies the superior thermal stability of this novel cell architecture. PMID:26990604

  8. Microfabrication of an Implantable silicone Microelectrode array for an epiretinal prosthesis

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, M

    2003-06-10

    Millions of people suffering from diseases such as retinitis pigmentosa and macular degeneration are legally blind due to the loss of photoreceptor function. Fortunately a large percentage of the neural cells connected to the photoreceptors remain viable, and electrical stimulation of these cells has been shown to result in visual perception. These findings have generated worldwide efforts to develop a retinal prosthesis device, with the hope of restoring vision. Advances in microfabrication, integrated circuits, and wireless technologies provide the means to reach this challenging goal. This dissertation describes the development of innovative silicone-based microfabrication techniques for producing an implantable microelectrode array. The microelectrode array is a component of an epiretinal prosthesis being developed by a multi-laboratory consortium. This array will serve as the interface between an electronic imaging system and the human eye, directly stimulating retinal neurons via thin film conducting traces. Because the array is intended as a long-term implant, vital biological and physical design requirements must be met. A retinal implant poses difficult engineering challenges due to the size of the intraocular cavity and the delicate retina. Not only does it have to be biocompatible in terms of cytotoxicity and degradation, but it also has to be structurally biocompatible, with regard to smooth edges and high conformability; basically mimicking the biological tissue. This is vital to minimize stress and prevent physical damage to the retina. Also, the device must be robust to withstand the forces imposed on it during fabrication and implantation. In order to meet these biocompatibility needs, the use of non-conventional microfabrication materials such as silicone is required. This mandates the enhancement of currently available polymer-based fabrication techniques and the development of new microfabrication methods. Through an iterative process, devices

  9. An Antireflective Nanostructure Array Fabricated by Nanosilver Colloidal Lithography on a Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Park Seong-Je

    2010-01-01

    Full Text Available Abstract An alternative method is presented for fabricating an antireflective nanostructure array using nanosilver colloidal lithography. Spin coating was used to produce the multilayered silver nanoparticles, which grew by self-assembly and were transformed into randomly distributed nanosilver islands through the thermodynamic action of dewetting and Oswald ripening. The average size and coverage rate of the islands increased with concentration in the range of 50–90 nm and 40–65%, respectively. The nanosilver islands were critically affected by concentration and spin speed. The effects of these two parameters were investigated, after etching and wet removal of nanosilver residues. The reflection nearly disappeared in the ultraviolet wavelength range and was 17% of the reflection of a bare silicon wafer in the visible range.

  10. Sensitive and Selective Detection of HIV-1 RRE RNA Using Vertical Silicon Nanowire Electrode Array

    Science.gov (United States)

    Lee, Jaehyung; Hong, Min-Ho; Han, Sanghun; Na, Jukwan; Kim, Ilsoo; Kwon, Yong-Joon; Lim, Yong-beom; Choi, Heon-Jin

    2016-07-01

    In this study, HIV-1 Rev response element (RRE) RNA was detected via an Au-coated vertical silicon nanowire electrode array (VSNEA). The VSNEA was fabricated by combining bottom-up and top-down approaches and then immobilized by artificial peptides for the recognition of HIV-1 RRE. Differential pulse voltammetry (DPV) analysis was used to measure the electrochemical response of the peptide-immobilized VSNEA to the concentration and types of HIV-1 RRE RNA. DPV peaks showed linearity to the concentration of RNA with a detection limit down to 1.513 fM. It also showed the clear different peaks to the mutated HIV-1 RRE RNA. The high sensitivity and selectivity of VSNEA for the detection of HIV-1 RRE RNA may be attributed to the high surface-to-volume ratio and total overlap diffusion mode of ions of the one-dimensional nanowire electrodes.

  11. Growth of two-dimensional arrays of uncapped gold nanoparticles on silicon substrates

    Indian Academy of Sciences (India)

    Anindya Das; Soma Das; A K Raychaudhuri

    2008-06-01

    A method of preparing large area patterned 2D arrays of uncapped gold (Au) nanoparticles has been developed. The pattern has been formed using self-assembly of uncapped Au nanoparticles. The Au nanoparticles were synthesized via toluene/water two phase systems using a reducing agent and colloidal solution of Au nanoparticles was produced. These nanoparticles have been prepared without using any kind of capping agent. Analysis by TEM showed discrete Au nanoparticles of 4 nm average diameter. AFM analysis also showed similar result. The TEM studies showed that these nanoparticles formed self-assembled coherent patterns with dimensions exceeding 500 nm. Spin coating on silicon substrate by suitably adjusting the speed can self-assemble these nanoparticles to lengths exceeding 1 m.

  12. Sensitive and Selective Detection of HIV-1 RRE RNA Using Vertical Silicon Nanowire Electrode Array.

    Science.gov (United States)

    Lee, Jaehyung; Hong, Min-Ho; Han, Sanghun; Na, Jukwan; Kim, Ilsoo; Kwon, Yong-Joon; Lim, Yong-Beom; Choi, Heon-Jin

    2016-12-01

    In this study, HIV-1 Rev response element (RRE) RNA was detected via an Au-coated vertical silicon nanowire electrode array (VSNEA). The VSNEA was fabricated by combining bottom-up and top-down approaches and then immobilized by artificial peptides for the recognition of HIV-1 RRE. Differential pulse voltammetry (DPV) analysis was used to measure the electrochemical response of the peptide-immobilized VSNEA to the concentration and types of HIV-1 RRE RNA. DPV peaks showed linearity to the concentration of RNA with a detection limit down to 1.513 fM. It also showed the clear different peaks to the mutated HIV-1 RRE RNA. The high sensitivity and selectivity of VSNEA for the detection of HIV-1 RRE RNA may be attributed to the high surface-to-volume ratio and total overlap diffusion mode of ions of the one-dimensional nanowire electrodes. PMID:27448026

  13. Microstructure and blue photoluminescence enhancement of silicon nanoporous pillar array embedded in ferroelectric barium strontium titanate

    International Nuclear Information System (INIS)

    A silicon nanoporous pillar array (Si-NPA) with micrometer/nanometer hierarchical structure was fabricated by hydrothermal etching, followed by spin-coating barium strontium titanate (BST) on Si-NPA substrate. The photoluminescence (PL) spectra of the Si-NPA and BST/Si-NPA thin film were investigated. The emission band of freshly prepared Si-NPA located at ∼630 nm, and a blueshift at ∼425 nm as well as degradation in intensity after annealing at 600 deg. C for 1 h was observed, which might be explained by a quantum confinement effect model. BST ferroelectric material provided a static-electric field and induced the excited carriers in Si-NPA to migrate toward the opposite direction and recombine in an interfacial oxide layer. Therefore, BST enhanced blue emission of Si-NPA as well as passivated Si-NPA

  14. Capacitive humidity sensing properties of carbon nanotubes grown on silicon nanoporous pillar array

    Institute of Scientific and Technical Information of China (English)

    JIANG WeiFen; XIAO ShunHua; ZHANG HuanYun; DONG YongFen; LI XinJian

    2007-01-01

    Multi-walled carbon nanotubes (CNTs) were grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition method, and the structural and capacitive humidity sensing properties of CNT/Si-NPA were studied. It was found that with the relative humidity (RH) changing from 11% to 95%, a device response of ~480% was achieved at the frequency of 50000 Hz, and a linear device response curve could be obtained by adopting longitudinal logarithmic coordinate. The response/recovery times were measured to be ~20 s and ~10 s, respectively, which indicated a rather fast response/recovery rate. The adsorption-desorption dynamic cycle experiments demonstrated the high measurement reproducibility of CNT/Si-NPA sensors. These excellent performances were attributed to the unique surface structure, morphology and chemical inertness of CNT/Si-NPA.

  15. Fabrication of an array of silicon microscales for the monitoring of chemical processes

    International Nuclear Information System (INIS)

    We present the fabrication and demonstration of a two-dimensional array of scales micromachined in silicon. Each scale consists of a platform suspended by a spring. The mass present on the platform of each scale is measured from a distance by a camera, which is imaging the fringe pattern that arises from optical interference in an air gap under each scale. A diffractive lens at the bottom of the gap separates the fringe signal from unwanted reflections and directs the fringe signal towards the camera. When a mass deflects a scale platform downwards, the gap narrows at the scale centre and the fringe pattern gets tighter. Operation at temperatures as high as 700 °C was demonstrated, which makes the presented device useful for the monitoring of high-temperature chemical processes. (paper)

  16. Spin-on-doping for output power improvement of silicon nanowire array based thermoelectric power generators

    International Nuclear Information System (INIS)

    The output power of a silicon nanowire array (NWA)-bulk thermoelectric power generator (TEG) with Cu contacts is improved by spin-on-doping (SOD). The Si NWAs used in this work are fabricated via metal assisted chemical etching (MACE) of 0.01–0.02 Ω cm resistivity n- and p-type bulk, converting ∼4% of the bulk thickness into NWs. The MACE process is adapted to ensure crystalline NWs. Current-voltage and Seebeck voltage-temperature measurements show that while SOD mainly influences the contact resistance in bulk, it influences both contact resistance and power factor in NWA-bulk based TEGs. According to our experiments, using Si NWAs in combination with SOD increases the output power by an order of 3 under the same heating power due to an increased power factor, decreased thermal conductivity of the NWA and reduced Si-Cu contact resistance.

  17. Surface-enhanced Raman scattering of patterned copper nanostructure electrolessly plated on arrayed nanoporous silicon pillars

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Weifen; Shan Wenwen; Ling Hong; Wang Yusheng [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Cao Yanxia [College of Materials Engineering, Zhengzhou University, Zhengzhou 450052, People' s Republic of China (China); Li Xinjian, E-mail: gingerwfj@yahoo.com.c [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2010-10-20

    A new synthesized composite structure, a patterned copper/silicon nanoporous pillar array (Cu/Si-NPA) made by depositing Cu on Si-NPA using an immersion plating method, can be used as a surface-enhanced Raman scattering (SERS) substrate. Its surface component and morphology were analyzed by x-ray diffraction and field-emission scanning electron microscopy, respectively. It was found that the surface was Cu with two kinds of crystal structures: a continuous film composed of Cu nanocrystallites covering the Si-NPA, and a quasi-regular, interconnected network composed of loop-chains of Cu crystallites, with the size in the range of several tens of nanometer to 300 nm, surrounding the porous Si pillars. The composite structure is strongly SERS active using rhodamine 6G as probe molecules, which is mainly due to the patterned hierarchical Cu structure.

  18. Application of silicon zig-zag wall arrays for anodes of Li-ion batteries

    Science.gov (United States)

    Li, G. V.; Rumyantsev, A. M.; Levitskii, V. S.; Beregulin, E. V.; Zhdanov, V. V.; Terukov, E. I.; Astrova, E. V.

    2016-01-01

    Cyclic tests of anodes based on zigzag wall arrays fabricated by the electrochemical etching and post-anodization treatment of silicon have been performed. Compared with anodes based on nanowires and planar thin films, these structures have several advantages. An ex situ analysis of the morphology and structural transformations in a material subjected to cyclic lithiation was conducted by electron microscopy and micro-Raman spectroscopy. The effect of geometrical parameters and a cycling mode on the degradation rate was studied. It is shown that a significant rise in the cycle life of the anode can be obtained by the restriction of the inserted amount of lithium. The anode, subjected to galvanostatic cycling at a rate С/2.8 at a limited charge capacity of 1000 mA · h g-1, demonstrates no degradation after 1200 cycles.

  19. Photon counting pixel and array in amorphous silicon technology for large area digital medical imaging applications

    Science.gov (United States)

    Yazdandoost, Mohammad Y.; Shin, Kyung W.; Safavian, Nader; Taghibakhsh, Farhad; Karim, Karim S.

    2010-04-01

    A single photon counting Voltage Controlled Oscillator (VCO) based pixel architecture in amorphous silicon (a-Si) technology is reported for large area digital medical imaging. The VCO converts X-ray generated input charge into an output oscillating frequency signal. Experimental results for an in-house fabricated VCO circuit in a-Si technology are presented and external readout circuits to extract the image information from the VCO's frequency output are discussed. These readout circuits can be optimized to reduce the fixed pattern noise and fringing effects in an imaging array containing many such VCO pixels. Noise estimations, stability simulations and measurements for the fabricated VCO are presented. The reported architecture is particularly promising for large area photon counting applications (e.g. low dose fluoroscopy, dental computed tomography (CT)) due to its very low input referred electronic noise, high sensitivity and ease of fabrication in low cost a-Si technology.

  20. Periodic molybdenum disc array for light trapping in amorphous silicon layer

    Science.gov (United States)

    Wang, Jiwei; Yang, Kang; Chen, Haiyan; Deng, Changkai; Li, Dongdong; Chen, Xiaoyuan; Ren, Wei

    2016-05-01

    We demonstrate the light trapping effect in amorphous silicon (a-Si:H) layer by inserting a layer of periodic molybdenum disc array (MDA) between the a-Si:H layer and the quartz substrate, which forms a three-layer structure of Si/MDA/SiO2. The MDA layer was fabricated by a new cost-effective method based on nano-imprint technology. Further light absorption enhancement was realized through altering the topography of MDA by annealing it at 700°C. The mechanism of light absorption enhancement in a-Si:H interfaced with MDA was analyzed, and the electric field distribution and light absorption curve of the different layers in the Si/MDA structure under light illumination of different wavelengths were simulated by employing numerical finite difference time domain (FDTD) solutions.

  1. Capacitive humidity sensing properties of carbon nanotubes grown on silicon nanoporous pillar array

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Multi-walled carbon nanotubes (CNTs) were grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition method, and the structural and capacitive humidity sensing properties of CNT/Si-NPA were studied. It was found that with the relative humidity (RH) changing from 11% to 95%, a device re-sponse of ~480% was achieved at the frequency of 50000 Hz, and a linear device response curve could be obtained by adopting longitudinal logarithmic coordinate. The response/recovery times were measured to be ~20 s and ~10 s, respectively, which indicated a rather fast response/recovery rate. The adsorption-desorption dynamic cycle experiments demonstrated the high measurement reproducibility of CNT/Si-NPA sensors. These excellent performances were attributed to the unique surface structure, morphology and chemical inertness of CNT/Si-NPA.

  2. Synthesis, characterization and application of electroless metal assisted silicon nanowire arrays

    Science.gov (United States)

    Sahoo, Sumanta Kumar; Marikani, Arumugam

    2015-12-01

    Vertically aligned silicon nanowire arrays (SiNWs) have been synthesized by electroless metal deposition process. The fabricated SiNWs have an average diameter of 75 nm and 3.5-4.0 μm length, as confirmed from scanning electron microscopy. A characteristic asymmetric peak broadening at 520 cm-1 from Raman spectroscopy was obtained for the SiNWs as compared to the bulk silicon crystal due to phonon confinement. The as-prepared SiNWs exhibit good electron field-emission properties with turn-on field of about 8.26 V μm-1 at a current density of 4.9 μA cm-2. The SiNWs was functionalized by coating with a thin gold metallic film for 60 s, and then used as bio-probe for the detection of bovine serum albumin (BSA) protein molecules. From the linear sweep voltammetry analysis, the Au coated SiNWs, exhibit linear response to the BSA analyte with increase in concentration. The minimum detection limit of the protein molecule was calculated of about 1.16 μM by the as-synthesized SiNWs probe.

  3. An investigation into the fabrication and combustion performance of porous silicon nanoenergetic array chips

    Science.gov (United States)

    Wang, Shouxu; Shen, Ruiqi; Ye, Yinghua; Hu, Yan

    2012-11-01

    An investigation into the ignitions and combustions of porous silicon (PS) nanoenergetic material array chips (nECs) at different ignition voltages was performed. The PS nECs were fabricated by integrating PS nanoenergetic material (nEMs) matrices and Cr-microbridges (microigniters) on the surface of silicon substrates. The combustion of PS nECs was in ambient air. Its ignition and combustion were investigated by a testing system and an optical high-speed camera. Experimental results revealed that the combustion delay time of PS nEMs increased from 8.0 × 10-5 s to 1.1 × 10-4 s with the decrement of ignition voltages from 140 to 80 V. The scope of ignition energy ranged from 0.153 to 0.287 mJ by calculations. The reaction type was deflagration, from the analysis of the high-speed video of PS nECs. The comprehensive experimental results indicated that the combustion of PS nECs was ignited by the synergic effect of the heat and the plasma. The ignition experiments suggested that Cr-microbridges were reliable igniters to trigger the self-sustained combustion of PS nECs. The strong plume of flame emitted from the surface of PS nECs indicated that the PS nECs may be applied as micro/nano igniter chips and microthruster chips.

  4. Cascaded active silicon microresonator array cross-connect circuits for WDM networks-on-chip

    Science.gov (United States)

    Poon, Andrew W.; Xu, Fang; Luo, Xianshu

    2008-02-01

    We propose a design of an optical switch on a silicon chip comprising a 5 × 5 array of cascaded waveguide-crossing-coupled microring resonator-based switches for photonic networks-on-chip applications. We adopt our recently demonstrated design of multimode-interference (MMI)-based wire waveguide crossings, instead of conventional plain waveguide crossings, for the merits of low loss and low crosstalk. The microring resonator is integrated with a lateral p-i-n diode for carrier-injection-based GHz-speed on-off switching. All 25 microring resonators are assumed to be identical within a relatively wide resonance line width. The optical circuit switch can employ a single wavelength channel or multiple wavelength channels that are spaced by the microring resonator free spectral range. We analyze the potential performance of the proposed photonic network in terms of (i) light path cross-connections loss budget, and (ii) DC on-off power consumption for establishing a light path. As a proof-of-concept, our initial experiments on cascaded passive silicon MMI-crossing-coupled microring resonators demonstrate 3.6-Gbit/s non-return-to-zero data transmissions at on- and off-resonance wavelengths.

  5. Small-angle neutron scattering from oxygen precipitates in silicon annealed at low temperatures

    International Nuclear Information System (INIS)

    SANS has been used to measure the diffusion coefficient of oxygen in silicon in the temperature range 500-550 deg C. The results show that the oxygen diffusion is enhanced by a factor of ∼10 or less above the normal diffusion line, D (cm2s-1) = 0.13exp(-2.53eV/kT). A diffusion line of D(cm2s-1) = 6x10-5exp(-1.86eV/kT) fits the new results together with previous SANS data. The results suggest that this is an effective diffusion coefficient between normal interstitial oxygen diffusion and possibly the diffusion of oxygen dimers. This work is consistent with more recent work by other authors. SANS has been used to study the spatial dependence of precipitates across the diameter of 8-inch crystals grown in the 1980's and 1990's. The results show that Czochralski silicon grown today no longer suffers from the inhomogeneous precipitate growth across the crystal diameter observed in the 1980's. Temperature dependent scattering observed at Q∼0.2A-1 was found to be due to inelastic processes using time-of-flight measurements on SANS. This inelastic scattering can cloud the elastic scattering from weakly scattering precipitates. The time-of-flight chopper on SANS was used to separate the elastic and inelastic events on samples annealed at 500 and 525 deg C. The results showed that the Guinier radius of the precipitates was of the order of ∼10A and suggested oxygen diffusion close to normal oxygen diffusion in silicon at 525 deg C. An improvement in background levels should enable better measurements on silicon annealed at lower temperatures using this new technique. An energy analysis of the inelastic scattering showed that these were due to Umklapp processes where neutrons were gaining energy from phonons, at Q∼0.4A-1 and energy transfer of ∼13meV. (author)

  6. Compositionally-graded silicon-copper helical arrays as anodes for lithium-ion batteries

    Science.gov (United States)

    Polat, Deniz B.; Keles, Ozgul; Amine, Khalil

    2016-02-01

    Restrictions in silicon based anodes have been the subject of many researches for years. As an innovative approach, we have adopted ion assisted deposition technique to glancing angle deposition method and have used compositionally-graded structuring. A unique helical shaped gradient film has been produced in which the Cu/Si atomic ratio decreases from the bottom to the top of the coating. With such a unique film (high surface area) more spaces have been created promoting mechanical integrity and reaction between active materials (silicon) with lithium ions. The highly adherent film is formed as a result of ion assisted deposition process and the gradual change in Cu/Si atomic ratio diverts stress through the helices. To compare the performance of the SiCu electrode, a pure Si film is deposited in the same experimental condition. Galvanostatic test results show that although the film with pure Si helices fails after 30th cycles, the compositionally graded anode exhibits a capacity of 1228 mAh g-1 at the 100th cycles with 99.5% coulombic efficiencies when cycled at 100 mA g-1, and delivers 815 mAh g-1 when cycled with a rate of 400 mA g-1.

  7. Simple, Fast, and Cost-Effective Fabrication of Wafer-Scale Nanohole Arrays on Silicon for Antireflection

    Directory of Open Access Journals (Sweden)

    Di Di

    2014-01-01

    Full Text Available A simple, fast, and cost-effective method was developed in this paper for the high-throughput fabrication of nanohole arrays on silicon (Si, which is utilized for antireflection. Wafer-scale polystyrene (PS monolayer colloidal crystal was developed as templates by spin-coating method. Metallic shadow mask was prepared by lifting off the oxygen etched PS beads from the deposited chromium film. Nanohole arrays were fabricated by Si dry etching. A series of nanohole arrays were fabricated with the similar diameter but with different depth. It is found that the maximum depth of the Si-hole was determined by the diameter of the Cr-mask. The antireflection ability of these Si-hole arrays was investigated. The results show that the reflection decreases with the depth of the Si-hole. The deepest Si-hole arrays show the best antireflection ability (reflection 600 nm, which was about 28 percent of the nonpatterned silicon wafer’s reflection. The proposed method has the potential for high-throughput fabrication of patterned Si wafer, and the low reflectivity allows the application of these wafers in crystalline silicon solar cells.

  8. Influence of gallium ion beam acceleration voltage on the bend angle of amorphous silicon cantilevers

    Science.gov (United States)

    Kozeki, Takahiro; Phan, Hoang-Phuong; Viet Dao, Dzung; Inoue, Shozo; Namazu, Takahiro

    2016-06-01

    This paper describes a plastic reshaping technique for Si thin membranes by using focused ion beam (FIB) processing. FIB is used to locally pattern and implant Ga ions into the membranes. The combination of Ga ion doping and alkali wet etching enables us to fabricate nanometer-thick Ga-ion-doped amorphous Si membranes, which can be bent upward at arbitrary angle by controlling the FIB beam irradiation condition. The bending mechanism is discussed in the light of Ga ions implanted depth from the membrane surface. By using this technique, a micrometer-sized chute structure with several different angles is produced.

  9. SHARC: Silicon Highly-segmented Array for Reactions and Coulex used in conjunction with the TIGRESS {gamma}-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Diget, C A; Fox, S P; Adsley, P; Fulton, B R [Department of Physics, University of York, York, YO10 5DD (United Kingdom); Smith, A [School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL (United Kingdom); Williams, S; Ball, G C; Churchman, R M; Dech, J; Valentino, D Di; Djongolov, M [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Porter-Peden, M [Department of Physics, Colorado School of Mines, Golden, CO 80401 (United States); Achouri, L [Laboratoire de Physique Corpusculaire, IN2P3-CNRS, ISMRA et Universite de Caen, F-14050 Caen (France); Al-Falou, H; Austin, R A E [Department of Astronomy and Physics, Saint Mary' s University, Halifax, NS, B3H 3C3 (Canada); Blackmon, J C [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Brown, S; Catford, W N [Department of Physics, University of Surrey, Guildford, GU2 5XH (United Kingdom); Chen, A A; Chen, J, E-mail: christian.diget@york.ac.uk [Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1 (Canada)

    2011-02-01

    The combination of {gamma}-ray spectroscopy and charged-particle spectroscopy is a powerful tool for the study of nuclear reactions with beams of nuclei far from stability. This paper presents a new silicon detector array, SHARC, the Silicon Highly-segmented Array for Reactions and Coulex. The array is used at the radioactive-ion-beam facility at TRIUMF (Canada), in conjunction with the TIGRESS {gamma}-ray spectrometer, and is built from custom Si-strip detectors utilising a fully digital readout. SHARC has more than 50% efficiency, approximately 1000-strip segmentation, angular resolutions of {Delta}{theta} {approx} 1.3 deg. and {Delta}{phi} {approx} 3.5 deg., 25-30 keV energy resolution, and thresholds of 200 keV for up to 25 MeV particles. SHARC is now complete, and the experimental program in nuclear astrophysics and nuclear structure has commenced.

  10. Fabrication of silicon carbide nanowires/carbon nanotubes heterojunction arrays by high-flux Si ion implantation.

    Science.gov (United States)

    Liu, Huaping; Cheng, Guo-An; Liang, Changlin; Zheng, Ruiting

    2008-06-18

    An array of silicon carbide nanowire (SiCNW)-carbon nanotube (CNT) heterojunctions was fabricated by high-flux Si ion implantation into a multi-walled carbon nanotube (MWCNT) array with a metal vapor vacuum arc (MEVVA) ion source. Under Si irradiation, the top part of a CNT array was gradually transformed into an amorphous nanowire array with increasing Si dose while the bottom part still remained a CNT structure. X-ray photoelectron spectroscopy (XPS) analysis shows that the SiC compound was produced in the nanowire part even at the lower Si dose of 5 × 10(16) ions cm(-2), and the SiC amount increased with increasing the Si dose. Therefore, the fabrication of a SiCNW-CNT heterojunction array with the MEVVA technique has been successfully demonstrated. The corresponding formation mechanism of SiCNWs was proposed. PMID:21825818

  11. Evaluation of Matrix9 silicon photomultiplier array for small-animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Du, Junwei, E-mail: jwdu@ucdavis.edu; Schmall, Jeffrey P.; Yang, Yongfeng; Di, Kun; Roncali, Emilie; Mitchell, Gregory S. [Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, California 95616 (United States); Buckley, Steve; Jackson, Carl [SensL Technologies Ltd., 6800 Airport Business Park, Cork (Ireland); Cherry, Simon R. [Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, California, 95616 (United States)

    2015-02-15

    Purpose: The MatrixSL-9-30035-OEM (Matrix9) from SensL is a large-area silicon photomultiplier (SiPM) photodetector module consisting of a 3 × 3 array of 4 × 4 element SiPM arrays (total of 144 SiPM pixels) and incorporates SensL’s front-end electronics board and coincidence board. Each SiPM pixel measures 3.16 × 3.16 mm{sup 2} and the total size of the detector head is 47.8 × 46.3 mm{sup 2}. Using 8 × 8 polished LSO/LYSO arrays (pitch 1.5 mm) the performance of this detector system (SiPM array and readout electronics) was evaluated with a view for its eventual use in small-animal positron emission tomography (PET). Methods: Measurements of noise, signal, signal-to-noise ratio, energy resolution, flood histogram quality, timing resolution, and array trigger error were obtained at different bias voltages (28.0–32.5 V in 0.5 V intervals) and at different temperatures (5 °C–25 °C in 5 °C degree steps) to find the optimal operating conditions. Results: The best measured signal-to-noise ratio and flood histogram quality for 511 keV gamma photons were obtained at a bias voltage of 30.0 V and a temperature of 5 °C. The energy resolution and timing resolution under these conditions were 14.2% ± 0.1% and 4.2 ± 0.1 ns, respectively. The flood histograms show that all the crystals in the 1.5 mm pitch LSO array can be clearly identified and that smaller crystal pitches can also be resolved. Flood histogram quality was also calculated using different center of gravity based positioning algorithms. Improved and more robust results were achieved using the local 9 pixels for positioning along with an energy offset calibration. To evaluate the front-end detector readout, and multiplexing efficiency, an array trigger error metric is introduced and measured at different lower energy thresholds. Using a lower energy threshold greater than 150 keV effectively eliminates any mispositioning between SiPM arrays. Conclusions: In summary, the Matrix9 detector system

  12. Implementing Silicon Nanoribbon Field-Effect Transistors as Arrays for Multiple Ion Detection.

    Science.gov (United States)

    Stoop, Ralph L; Wipf, Mathias; Müller, Steffen; Bedner, Kristine; Wright, Iain A; Martin, Colin J; Constable, Edwin C; Fanget, Axel; Schönenberger, Christian; Calame, Michel

    2016-01-01

    Ionic gradients play a crucial role in the physiology of the human body, ranging from metabolism in cells to muscle contractions or brain activities. To monitor these ions, inexpensive, label-free chemical sensing devices are needed. Field-effect transistors (FETs) based on silicon (Si) nanowires or nanoribbons (NRs) have a great potential as future biochemical sensors as they allow for the integration in microscopic devices at low production costs. Integrating NRs in dense arrays on a single chip expands the field of applications to implantable electrodes or multifunctional chemical sensing platforms. Ideally, such a platform is capable of detecting numerous species in a complex analyte. Here, we demonstrate the basis for simultaneous sodium and fluoride ion detection with a single sensor chip consisting of arrays of gold-coated SiNR FETs. A microfluidic system with individual channels allows modifying the NR surfaces with self-assembled monolayers of two types of ion receptors sensitive to sodium and fluoride ions. The functionalization procedure results in a differential setup having active fluoride- and sodium-sensitive NRs together with bare gold control NRs on the same chip. Comparing functionalized NRs with control NRs allows the compensation of non-specific contributions from changes in the background electrolyte concentration and reveals the response to the targeted species. PMID:27164151

  13. Quantifying the Traction Force of a Single Cell by Aligned Silicon Nanowire Array

    KAUST Repository

    Li, Zhou

    2009-10-14

    The physical behaviors of stationary cells, such as the morphology, motility, adhesion, anchorage, invasion and metastasis, are likely to be important for governing their biological characteristics. A change in the physical properties of mammalian cells could be an indication of disease. In this paper, we present a silicon-nanowire-array based technique for quantifying the mechanical behavior of single cells representing three distinct groups: normal mammalian cells, benign cells (L929), and malignant cells (HeLa). By culturing the cells on top of NW arrays, the maximum traction forces of two different tumor cells (HeLa, L929) have been measured by quantitatively analyzing the bending of the nanowires. The cancer cell exhibits a larger traction force than the normal cell by ∼20% for a HeLa cell and ∼50% for a L929 cell. The traction forces have been measured for the L929 cells and mechanocytes as a function of culture time. The relationship between cells extending area and their traction force has been investigated. Our study is likely important for studying the mechanical properties of single cells and their migration characteristics, possibly providing a new cellular level diagnostic technique. © 2009 American Chemical Society.

  14. Pulse shape discrimination using EJ-299-33 plastic scintillator coupled with a Silicon Photomultiplier array

    International Nuclear Information System (INIS)

    Recent developments in organic plastic scintillators capable of pulse shape discrimination (PSD) have gained much interest. Novel photon detectors, such as Silicon Photomultipliers (SiPMs), offer numerous advantages and can be used as an alternative to conventional photo multiplier tubes (PMTs) in many applications. In this work, we evaluate the PSD performance of the EJ-299-33 plastic scintillator coupled with a SiPM array. 2D PSD plots as well as the Figure of Merit (FOM) parameters are presented to demonstrate the PSD capability of EJ-299-33 using a SiPM as the light sensor. The best FOM of 0.76 was observed with a 1.0 MeVee (MeV-electron-equivalent) energy threshold, despite the high noise level of the SiPM array. A high-speed digital oscilloscope was used to acquire data, which was then processed offline in MATLAB. A performance comparison between two different PSD algorithms was carried out. The dependence of PSD quality on the sampling rate was also evaluated, stimulated by the interest to implement this setup for handheld applications where power consumption is crucial

  15. Pulse shape discrimination using EJ-299-33 plastic scintillator coupled with a Silicon Photomultiplier array

    Science.gov (United States)

    Liao, Can; Yang, Haori

    2015-07-01

    Recent developments in organic plastic scintillators capable of pulse shape discrimination (PSD) have gained much interest. Novel photon detectors, such as Silicon Photomultipliers (SiPMs), offer numerous advantages and can be used as an alternative to conventional photo multiplier tubes (PMTs) in many applications. In this work, we evaluate the PSD performance of the EJ-299-33 plastic scintillator coupled with a SiPM array. 2D PSD plots as well as the Figure of Merit (FOM) parameters are presented to demonstrate the PSD capability of EJ-299-33 using a SiPM as the light sensor. The best FOM of 0.76 was observed with a 1.0 MeVee (MeV-electron-equivalent) energy threshold, despite the high noise level of the SiPM array. A high-speed digital oscilloscope was used to acquire data, which was then processed offline in MATLAB. A performance comparison between two different PSD algorithms was carried out. The dependence of PSD quality on the sampling rate was also evaluated, stimulated by the interest to implement this setup for handheld applications where power consumption is crucial.

  16. Pulse shape discrimination using EJ-299-33 plastic scintillator coupled with a Silicon Photomultiplier array

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Can; Yang, Haori, E-mail: haori.yang@oregonstate.edu

    2015-07-21

    Recent developments in organic plastic scintillators capable of pulse shape discrimination (PSD) have gained much interest. Novel photon detectors, such as Silicon Photomultipliers (SiPMs), offer numerous advantages and can be used as an alternative to conventional photo multiplier tubes (PMTs) in many applications. In this work, we evaluate the PSD performance of the EJ-299-33 plastic scintillator coupled with a SiPM array. 2D PSD plots as well as the Figure of Merit (FOM) parameters are presented to demonstrate the PSD capability of EJ-299-33 using a SiPM as the light sensor. The best FOM of 0.76 was observed with a 1.0 MeVee (MeV-electron-equivalent) energy threshold, despite the high noise level of the SiPM array. A high-speed digital oscilloscope was used to acquire data, which was then processed offline in MATLAB. A performance comparison between two different PSD algorithms was carried out. The dependence of PSD quality on the sampling rate was also evaluated, stimulated by the interest to implement this setup for handheld applications where power consumption is crucial.

  17. Bacteria detection based on its blockage effect on silicon nanopore array.

    Science.gov (United States)

    Tang, Yanyan; Li, Zhen; Luo, Qiaohui; Liu, Jingqing; Wu, Jianmin

    2016-05-15

    Bacteria detection plays an important role in the guarantee of food and water safety. This work proposed a new sensing strategy for the rapid detection of bacteria based on its blockage effect on nanopore array, which was prepared from electrochemically etched silicon. With the assistance of microfluidic technology, the nanopore array attached with Escherichia coli antibody can selectively and rapidly capture E. coli bacteria, resulting in the decrease of pore accessibility. The signal of pore blockage can be measured by in-direct Fourier Transformed Reflectometric Interference Spectroscopy (FT-RIS). The pore blockage signal has a linear relationship with the logarithm of bacterial density in aqueous sample within the range from 10(3) to 10(7)cfuml(-1). Due to the specific interaction between the antibody and target bacteria, only the E. coli sample displayed significant pore blockage effect, whereas the non-target bacteria, Nox and P17, almost did not show any pore blockage effect. The strategy established in this work might be pervasively applied in the rapid detection of target bacteria and cell in a label-free manner. PMID:26774087

  18. Silicon Photomultiplier Research and Development Studies for the Large Size Telescope of the Cherenkov Telescope Array

    CERN Document Server

    Rando, Riccardo; Dazzi, Francesco; De Angelis, Alessandro; Dettlaff, Antonios; Dorner, Daniela; Fink, David; Fouque, Nadia; Grundner, Felix; Haberer, Werner; Hahn, Alexander; Hermel, Richard; Korpar, Samo; Mezek, Gašper Kukec; Maier, Ronald; Manea, Christian; Mariotti, Mosè; Mazin, Daniel; Mehrez, Fatima; Mirzoyan, Razmik; Podkladkin, Sergey; Reichardt, Ignasi; Rhode, Wolfgang; Rosier, Sylvie; Schultz, Cornelia; Stella, Carlo; Teshima, Masahiro; Wetteskind, Holger; Zavrtanik, Marko

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the the next generation facility of imaging atmospheric Cherenkov telescopes; two sites will cover both hemispheres. CTA will reach unprecedented sensitivity, energy and angular resolution in very-high-energy gamma-ray astronomy. Each CTA array will include four Large Size Telescopes (LSTs), designed to cover the low-energy range of the CTA sensitivity ($\\sim$20 GeV to 200 GeV). In the baseline LST design, the focal-plane camera will be instrumented with 265 photodetector clusters; each will include seven photomultiplier tubes (PMTs), with an entrance window of 1.5 inches in diameter. The PMT design is based on mature and reliable technology. Recently, silicon photomultipliers (SiPMs) are emerging as a competitor. Currently, SiPMs have advantages (e.g. lower operating voltage and tolerance to high illumination levels) and disadvantages (e.g. higher capacitance and cross talk rates), but this technology is still young and rapidly evolving. SiPM technology has a strong pot...

  19. Development and characterisation of a silicon PIN diode array based highly sensitive portable continuous radon monitor

    International Nuclear Information System (INIS)

    This paper discusses the development and characterisation of a portable and highly sensitive continuous radon monitor (CRM) based on an array of in-house developed silicon PIN diode detectors. The development of this system was initiated in view of the limitations of the available similar radon measurement systems with regards to low sensitivity. The system utilises a hemispherical metal chamber (1 L capacity) for active air sampling. A quantitative estimation of radon concentration is carried out through alpha spectroscopy of electro-deposited 222Rn decay products on the detector surface. The system was successfully tested and characterised in laboratory conditions. The characterisation experiments included optimisation of sensitivity, calibration with respect to linearity and a study of the influence of humidity on its performance. The novel PIN diode array design yields a high sensitivity of 1.76 ± 0.003 counts h−1/(Bq m−3) at a relative humidity level of 10% in the sampled air, which is more than two times as high as that reported for similar commercial systems. This instrument displayed a minimum detectable activity level of 0.80 Bq m−3. (paper)

  20. Optimal and Local Connectivity Between Neuron and Synapse Array in the Quantum Dot/Silicon Brain

    Science.gov (United States)

    Duong, Tuan A.; Assad, Christopher; Thakoor, Anikumar P.

    2010-01-01

    This innovation is used to connect between synapse and neuron arrays using nanowire in quantum dot and metal in CMOS (complementary metal oxide semiconductor) technology to enable the density of a brain-like connection in hardware. The hardware implementation combines three technologies: 1. Quantum dot and nanowire-based compact synaptic cell (50x50 sq nm) with inherently low parasitic capacitance (hence, low dynamic power approx.l0(exp -11) watts/synapse), 2. Neuron and learning circuits implemented in 50-nm CMOS technology, to be integrated with quantum dot and nanowire synapse, and 3. 3D stacking approach to achieve the overall numbers of high density O(10(exp 12)) synapses and O(10(exp 8)) neurons in the overall system. In a 1-sq cm of quantum dot layer sitting on a 50-nm CMOS layer, innovators were able to pack a 10(exp 6)-neuron and 10(exp 10)-synapse array; however, the constraint for the connection scheme is that each neuron will receive a non-identical 10(exp 4)-synapse set, including itself, via its efficacy of the connection. This is not a fully connected system where the 100x100 synapse array only has a 100-input data bus and 100-output data bus. Due to the data bus sharing, it poses a great challenge to have a complete connected system, and its constraint within the quantum dot and silicon wafer layer. For an effective connection scheme, there are three conditions to be met: 1. Local connection. 2. The nanowire should be connected locally, not globally from which it helps to maximize the data flow by sharing the same wire space location. 3. Each synapse can have an alternate summation line if needed (this option is doable based on the simple mask creation). The 10(exp 3)x10(exp 3)-neuron array was partitioned into a 10-block, 10(exp 2)x10(exp 3)-neuron array. This building block can be completely mapped within itself (10,000 synapses to a neuron).

  1. Signal encoding method for a time-of-flight PET detector using a silicon photomultiplier array

    International Nuclear Information System (INIS)

    The silicon photomultiplier (SiPM) is a promising photosensor for magnetic resonance (MR) compatible time-of-flight (TOF) positron emission tomography (PET) scanners. The compact size of the SiPM allows direct one-to-one coupling between the scintillation crystal and the photosensor, yielding better timing and energy resolutions than the light sharing methods that have to be used in photomultiplier tube (PMT) PET systems. However, the one-to-one coupling scheme requires a huge volume of readout and processing electronics if no electric signal multiplexing or encoding scheme is properly applied. In this paper, we develop an electric signal encoding scheme for SiPM array based TOF PET detector blocks with the aim of reducing the complexity and volume of the signal readout and processing electronics. In an M×N SiPM array, the output signal of each channel in the SiPM array is divided into two signal lines. These output lines are then tied together in row and column lines. The row and column signals are used to measure the energy and timing information (or vice versa) of each incident gamma-ray event, respectively. Each SiPM channel was directly coupled to a 3×3×20 mm3 LGSO crystal. The reference detector, which was used to measure timing, consisted of an R9800 PMT and a 4×4×10 mm3 LYSO crystal and had a single time resolution of ∼200 ps (FWHM). Leading edge discriminators were used to determine coincident events. Dedicated front-end electronics were developed, and the timing and energy resolutions of SiPM arrays with different array sizes (4×4, 8×8, and 12×12) were compared. Breakdown voltage of each SiPM channel was measured using energy spectra within various bias voltages. Coincidence events were measured using a 22Na point source. The average coincidence time resolution of 4×4, 8×8, and 12×12 SiPM arrays were 316 ps, 320 ps, and 335 ps (FWHM), respectively. The energy resolution of 4×4, 8×8, and 12×12 SiPM arrays were 11.8%, 12.5%, and 12.8% (FWHM

  2. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    Science.gov (United States)

    Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.

    2016-02-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.

  3. Small-angle neutron scattering from oxygen precipitates in silicon annealed at low temperatures

    CERN Document Server

    Cheung, J Y

    2001-01-01

    at 525 deg C. An improvement in background levels should enable better measurements on silicon annealed at lower temperatures using this new technique. An energy analysis of the inelastic scattering showed that these were due to Umklapp processes where neutrons were gaining energy from phonons, at Q approx 0.4A sup - sup 1 and energy transfer of approx 13meV. SANS has been used to measure the diffusion coefficient of oxygen in silicon in the temperature range 500-550 deg C. The results show that the oxygen diffusion is enhanced by a factor of approx 10 or less above the normal diffusion line, D (cm sup 2 s sup - sup 1) = 0.13exp(-2.53eV/kT). A diffusion line of D(cm sup 2 s sup - sup 1) = 6x10 sup - sup 5 exp(-1.86eV/kT) fits the new results together with previous SANS data. The results suggest that this is an effective diffusion coefficient between normal interstitial oxygen diffusion and possibly the diffusion of oxygen dimers. This work is consistent with more recent work by other SANS has been used to stu...

  4. Delta-Doping at Wafer Level for High Throughput, High Yield Fabrication of Silicon Imaging Arrays

    Science.gov (United States)

    Hoenk, Michael E. (Inventor); Nikzad, Shoulch (Inventor); Jones, Todd J. (Inventor); Greer, Frank (Inventor); Carver, Alexander G. (Inventor)

    2014-01-01

    Systems and methods for producing high quantum efficiency silicon devices. A silicon MBE has a preparation chamber that provides for cleaning silicon surfaces using an oxygen plasma to remove impurities and a gaseous (dry) NH3 + NF3 room temperature oxide removal process that leaves the silicon surface hydrogen terminated. Silicon wafers up to 8 inches in diameter have devices that can be fabricated using the cleaning procedures and MBE processing, including delta doping.

  5. Enhanced reflection from inverse tapered nanocone arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiang-Tian; Dai, Qing, E-mail: daiq@nanoctr.cn [National Center for Nanoscience and Technology, Beijing 100190 (China); Butt, Haider, E-mail: h.butt@bham.ac.uk; Deng, Sunan [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Yetisen, Ali K.; Cruz Vasconcellos, Fernando da [Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT (United Kingdom); Kangwanwatana, Chuan; Montelongo, Yunuen; Qasim, Malik M.; Wilkinson, Timothy D. [Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)

    2014-08-04

    We computationally and experimentally demonstrate enhanced reflection effects displayed by silicon-based inverted nanocone arrays. A 3D finite element model is used to characterize the optical properties of the nanocone arrays with respect to the change in polarization and incident angles. The nanocone arrays are fabricated by e-beam lithography in hexagonal and triangular geometries with a lattice constant of 300 nm. The fabricated devices show a two-fold increase in reflection compared with bare silicon surface, as well as a strong diffraction within the visible and near-infrared spectra. The nanocone arrays may find a variety of applications from optical devices to energy conservation technologies.

  6. Characterization of a submillimeter high-angular-resolution camera with a monolithic silicon bolometer array for the Caltech Submillimeter Observatory

    OpenAIRE

    Wang, Nina; Hunter, T. R.; Benford, D. J.; Serabyn, E.; Lis, D.C.; Phillips, T. G.; Moseley, S. H.; Bpyce, K.; Szymkowiak, A.; C. Allen; Mott, B.; Gygax, J.

    1996-01-01

    We constructed a 24-pixel bolometer camera operating in the 350- and 450-µm atmospheric windows for the Caltech Submillimeter Observatory (CSO). This instrument uses a monolithic silicon bolometer array that is cooled to approximately 300 mK by a single-shot 3 He refrigerator. First-stage amplification is provided by field-effect transistors at approximately 130 K. The sky is imaged onto the bolometer array by means of several mirrors outside the Dewar and a cold off-axis elliptical mirror in...

  7. A high performance three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection

    Science.gov (United States)

    Xu, Chenlong; Song, Zhiqian; Xiang, Qun; Jin, Jian; Feng, Xinjian

    2016-03-01

    We describe here a high performance oxygen-rich three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection. We demonstrate that its linear detection upper limit is 30 mM, more than 15 times higher than that can be obtained on the normal enzyme-electrode. Notably, the three-phase enzyme electrode output is insensitive to the significant oxygen level fluctuation in analyte solution.We describe here a high performance oxygen-rich three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection. We demonstrate that its linear detection upper limit is 30 mM, more than 15 times higher than that can be obtained on the normal enzyme-electrode. Notably, the three-phase enzyme electrode output is insensitive to the significant oxygen level fluctuation in analyte solution. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08370b

  8. Structural analysis of textured silicon surfaces after ion implantation under tilted angle

    International Nuclear Information System (INIS)

    We present structural investigations of implant-induced crystal defects after ion implantation of boron on randomly textured Si(001) and subsequent annealing. We find that the use of a tilt angle and screening oxide impacts the local doping profiles as well as the resulting defect distribution after annealing. Ion implantation of boron with a dose of 2 · 1015 cm−2 on a sample tilted by 6° towards <100> results in 3 different local ion doses: 7.6 · 1014 cm−2 for those sides of the pyramids which are tilted into the ion beam, 5.3 × 1014 cm−2 for those sides which are tilted out of the beam and 1.7 × 1015 cm−2 for the valleys in between the pyramids. This difference in ion dose is mirrored by the local defect densities observed after annealing. (paper)

  9. 硅纳米线阵列的制备及其光电应用%Preparation and Optoelectronic Applications of Silicon Nanowire Arrays

    Institute of Scientific and Technical Information of China (English)

    刘莉; 曹阳; 贺军辉; 杨巧文

    2013-01-01

    Recent years, silicon nanowire arrays have aroused extensive attention among scientists and engineers due to their unique characteristics such as excellent antireflection in both wide wavelength range and wide incidence angle and their great potentials in the field of optoelectronics. This paper reviews the latest research progress in preparation of silicon nanowire arrays and their optoelectronic applications. The preparation methods that have been verified are classified mainly into two categories, i. e. , " bottom-up " and" top-down", including template-assisted chemical vapor deposition, chemical vapor deposition combined with Langmuir-Blodgett technology and metal-catalyzed chemical etching. The third method is at the present time the most frequently used as well as the simplest one, and is discussed in detail in respect of the etching steps, mechanism and controlling parameters. As for the optoelectronic applications of silicon nanowire arrays, this review mainly describes those in photodetectors, conventional solar cells, photoelectrochemical solar cells, photocatalytic water splitting, and photocatalytic degradation of organic pollutants. Finally, an outlook is made about how to improve the photoelectrical conversion efficiency and avoid the corrosion of silicon nanowire arrays, which indicates that surface modification and resulting properties may be a future research direction for silicon nanowire arrays research.%近年来,硅纳米线阵列在宽波段、宽入射角范围内优异的减反射性能及其在光电领域的巨大应用前景引起了相关研究者的广泛关注.本文综述了国内外硅纳米线阵列的制备及其在光电应用方面的最新研究进展.关于硅纳米线阵列的制备方法,主要从“自下而上”和“自上而下”两大类出发,分别阐述了模板辅助的化学气相沉积法、化学气相沉积结合Langmuir-Blodgett技术法和金属催化化学刻蚀法,其中重点介绍了目前使用最为

  10. Silicon-Based Antenna-Coupled Polarization-Sensitive Millimeter-Wave Bolometer Arrays for Cosmic Microwave Background Instruments

    CERN Document Server

    Rostem, Karwan; Appel, John W; Bennett, Charles L; Brown, Ari; Chang, Meng-Ping; Chuss, David T; Colazo, Felipe A; Costen, Nick; Denis, Kevin L; Essinger-Hileman, Tom; Hu, Ron; Marriage, Tobias A; Moseley, Samuel H; Stevenson, Thomas R; U-Yen, Kongpop; Wollack, Edward J; Xu, Zhilei

    2016-01-01

    We describe feedhorn-coupled polarization-sensitive detector arrays that utilize monocrystalline silicon as the dielectric substrate material. Monocrystalline silicon has a low-loss tangent and repeatable dielectric constant, characteristics that are critical for realizing efficient and uniform superconducting microwave circuits. An additional advantage of this material is its low specific heat. In a detector pixel, two Transition-Edge Sensor (TES) bolometers are antenna-coupled to in-band radiation via a symmetric planar orthomode transducer (OMT). Each orthogonal linear polarization is coupled to a separate superconducting microstrip transmission line circuit. On-chip filtering is employed to both reject out-of-band radiation from the upper band edge to the gap frequency of the niobium superconductor, and to flexibly define the bandwidth for each TES to meet the requirements of the application. The microwave circuit is compatible with multi-chroic operation. Metalized silicon platelets are used to define th...

  11. The influence of passivation and photovoltaic properties of α-Si:H coverage on silicon nanowire array solar cells.

    Science.gov (United States)

    Li, Kuntang; Wang, Xiuqin; Lu, Pengfei; Ding, Jianning; Yuan, Ningyi

    2013-01-01

    Silicon nanowire (SiNW) arrays for radial p-n junction solar cells offer potential advantages of light trapping effects and quick charge collection. Nevertheless, lower open circuit voltages (Voc) lead to lower energy conversion efficiencies. In such cases, the performance of the solar cells depends critically on the quality of the SiNW interfaces. In this study, SiNW core-shell solar cells have been fabricated by growing crystalline silicon (c-Si) nanowires via the metal-assisted chemical etching method and by depositing hydrogenated amorphous silicon (α-Si:H) via the plasma-enhanced chemical vapor deposition (PECVD) method. The influence of deposition parameters on the coverage and, consequently, the passivation and photovoltaic properties of α-Si:H layers on SiNW solar cells have been analyzed. PMID:24059343

  12. Carbon-coated silicon nanotube arrays on carbon cloth as a hybrid anode for lithium-ion batteries

    Science.gov (United States)

    Wang, Wei; Gu, Lin; Qian, Haolei; Zhao, Ming; Ding, Xi; Peng, Xinsheng; Sha, Jian; Wang, Yewu

    2016-03-01

    Silicon hollow nanostructure has been considered as one of the most promising material for commercial application in lithium-ion batteries due to its significant improvement of cycling stability. The fabricated hybrid structures, carbon-coated silicon nanotube arrays on carbon cloth substrate, with a high surface area and short electron collection pathway have been directly used as anode electrodes without any additional binder. The electrodes exhibit high capacity, excellent rate capability and good cycling stability. The discharge capacity of the hybrid electrode (the deposition time of silicon shell: 5 min) keeps stable, and after 100 cycles, the discharge capacities still remain 3654 mAh g-1 at the rate of 0.5 C.

  13. Structural and Electrochemical Investigation during the First Charging Cycles of Silicon Microwire Array Anodes for High Capacity Lithium Ion Batteries

    OpenAIRE

    Helmut Föll; Jürgen Carstensen; Enrique Quiroga-González

    2013-01-01

    Silicon microwire arrays embedded in Cu present exceptional performance as anode material in Li ion batteries. The processes occurring during the first charging cycles of batteries with this anode are essential for good performance. This paper sheds light on the electrochemical and structural properties of the anodes during the first charging cycles. Scanning Electron Microscopy, X-ray diffractommetry, and fast Fourier transformation impedance spectroscopy are used for the characterization. I...

  14. Tailoring the Mechanical Properties of High-Aspect-Ratio Carbon Nanotube Arrays using Amorphous Silicon Carbide Coatings

    OpenAIRE

    Poelma, R.H.; Morana, B.; Vollebregt, S.; Schlangen, H.E.J.G.; Van Zeijl, H.W.; Fan, X.; Zhang, G. Q.

    2014-01-01

    The porous nature of carbon nanotube (CNT) arrays allows for the unique opportunity to tailor their mechanical response by the infiltration and deposition of nanoscale conformal coatings. Here, we fabricate novel photo-lithographically defined CNT pillars that are conformally coated with amorphous silicon carbide (a-SiC) to strengthen the interlocking of individual CNTs at junctions using low pressure chemical vapor deposition (LPCVD). We further quantify the mechanical response by performing...

  15. Rectification and electroluminescence of nanostructured GaN/Si heterojunction based on silicon nanoporous pillar array

    Science.gov (United States)

    Wang, Xiao-Bo; Li, Yong; Yan, Ling-Ling; Li, Xin-Jian

    2015-10-01

    A GaN/Si nanoheterojunction is prepared through growing GaN nanocrystallites (nc-GaN) on a silicon nanoporous pillar array (Si-NPA) by a chemical vapor deposition (CVD) technique at a relatively low temperature. The average size of nc-GaN is determined to be ˜10 nm. The spectral measurements disclose that the photoluminescence (PL) from GaN/Si-NPA is composed of an ultraviolet (UV) band and a broad band spanned from UV to red region, with the feature that the latter band is similar to that of electroluminescence (EL). The electron transition from the energy levels of conduction band and, or, shallow donors to that of deep acceptors of GaN is indicated to be responsible for both the broad-band PL and the EL luminescence. A study of the I-V characteristic shows that at a low forward bias, the current across the heterojunction is contact-limited while at a high forward bias it is bulk-limited, which follows the thermionic emission model and space-charge-limited current (SCLC) model, respectively. The bandgap offset analysis indicates that the carrier transport is dominated by electron injection from n-GaN into the p-Si-NPA, and the EL starts to appear only when holes begin to be injected from Si-NPA into GaN with biases higher than a threshold voltage. Project supported by the National Natural Science Foundation of China (Grant No. 61176044).

  16. Desarrollo de un circuito integrado de múltiples canales para Silicon fotomultiplicador arrays lectura

    CERN Document Server

    Comerma i Montells, Albert

    2013-10-31

    The aim of this thesis is to present a solution for the readout of Silicon Photo-Multipliers (SiPMs) arrays improving currently implemented systems. Using as a starting point previous designs with similar objectives a novel current mode input stage has been designed and tested. To start with the design a valid model has been used to generate realistic output from the SiPMs depending on light input. Design has been performed in first place focusing in general applications for medical imaging Positron Emission Tomography (PET) and then using the same topology for a more constrained design in particle detectors (upgrade of Tracker detector at LHCb experiment). A 16 channel ASIC for PET applications including the novel input stage has demonstrated an excellent timing measurement with good energy resolution measurement and pile-up detection. This document starts with the analysis of the requirements needed to fit such a system. Followed by a detailed description of the input stage and analog processing. Signal is ...

  17. Gain compensation technique by bias correction in arrays of Silicon Photomultipliers using fully differential fast shaper

    Science.gov (United States)

    Baszczyk, M.; Dorosz, P.; Glab, S.; Kucewicz, W.; Mik, L.; Sapor, M.

    2016-07-01

    Proposed algorithm compensates the gain by changing the bias voltage of Silicon Photomultipliers (SiPM). The signal from SiPM is amplified in fully differential preamplifier then is formed in time by the fully differential fast shaper. The compensation method was tested with four channels common cathode multi-pixel photon counter from Hamamatsu. The measurement system requires only one high voltage power supply. The polarization voltage is adjusted individually in each channel indirectly by tuning the output common mode voltage (VOCM) of fully differential amplifier. The changes of VOCM affect the input voltage through the feedback network. Actual gain of the SiPM is calculated by measuring the mean amplitude of the signal resulting from detection of single photoelectron. The VOCM is adjusted by DAC so as to reach the desired value of gain by each channel individually. The advantage of the algorithm is the possibility to set the bias of each SiPM in the array independently so they all could operate in very similar conditions (have similar gain and dark count rate). The algorithm can compensate the variations of gain of SiPM by using thermally generated pulses. There is no need to use additional current to voltage conversion which could introduce extra noises.

  18. Disordered array of Au covered Silicon nanowires for SERS biosensing combined with electrochemical detection.

    Science.gov (United States)

    Convertino, Annalisa; Mussi, Valentina; Maiolo, Luca

    2016-01-01

    We report on highly disordered array of Au coated silicon nanowires (Au/SiNWs) as surface enhanced Raman scattering (SERS) probe combined with electrochemical detection for biosensing applications. SiNWs, few microns long, were grown by plasma enhanced chemical vapor deposition on common microscope slides and covered by Au evaporated film, 150 nm thick. The capability of the resulting composite structure to act as SERS biosensor was studied via the biotin-avidin interaction: the Raman signal obtained from this structure allowed to follow each surface modification step as well as to detect efficiently avidin molecules over a broad range of concentrations from micromolar down to the nanomolar values. The metallic coverage wrapping SiNWs was exploited also to obtain a dual detection of the same bioanalyte by electrochemical impedance spectroscopy (EIS). Indeed, the SERS signal and impedance modifications induced by the biomolecule perturbations on the metalized surface of the NWs were monitored on the very same three-electrode device with the Au/SiNWs acting as both working electrode and SERS probe. PMID:27112197

  19. Fabrication of microlens array on silicon surface using electrochemical wet stamping technique

    Science.gov (United States)

    Lai, Lei-Jie; Zhou, Hang; Zhu, Li-Min

    2016-02-01

    This paper focuses on the fabrication of microlens array (MLA) on silicon surface by taking advantage of a novel micromachining approach, the electrochemical we stamping (E-WETS). The E-WETS allows the direct imprinting of MLA on an agarose stamp into the substrate through a selective anodic dissolution process. The pre-patterned agarose stamp can direct and supply the solution preferentially on the contact area between the agarose stamp and the substrate, to which the electrochemical reaction is confined. The anodic potential vs. saturated calomel electrode is optimized and 1.5 V is chosen as the optimum value for the electrochemical polishing of p-Si. A refractive MLA on a PMMA mold is successfully transferred onto the p-Si surface. The machining deviations of the fabricated MLA from those on the mold are 0.44% in diameter and 2.1% in height respectively, and the machining rate in HF is around 1.1 μm/h. The surface roughness of the fabricated MLA is less than 12 nm owing to the electrochemical polishing process. The results demonstrate that E-WETS is a promising approach to fabricate MLA on p-Si surface with high accuracy and efficiency.

  20. Thermally responsive silicon nanowire arrays for native/denatured-protein separation

    Science.gov (United States)

    Wang, Hongwei; Wang, Yanwei; Yuan, Lin; Wang, Lei; Yang, Weikang; Wu, Zhaoqiang; Li, Dan; Chen, Hong

    2013-03-01

    We present our findings of the selective adsorption of native and denatured proteins onto thermally responsive, native-protein resistant poly(N-isopropylacrylamide) (PNIPAAm) decorated silicon nanowire arrays (SiNWAs). The PNIPAAm-SiNWAs surface, which shows very low levels of native-protein adsorption, favors the adsorption of denatured proteins. The amount of denatured-protein adsorption is higher at temperatures above the lower critical solution temperature (LCST) of PNIPAAm. Temperature cycling surrounding the LCST, which ensures against thermal denaturation of native proteins, further increases the amount of denatured-protein adsorption. Moreover, the PNIPAAm-SiNWAs surface is able to selectively adsorb denatured protein even from mixtures of different protein species; meanwhile, the amount of native proteins in solution is kept nearly at its original level. It is believed that these results will not only enrich current understanding of protein interactions with PNIPAAm-modified SiNWAs surfaces, but may also stimulate applications of PNIPAAm-SiNWAs surfaces for native/denatured protein separation.

  1. X-ray imaging performance of scintillator-filled silicon pore arrays

    International Nuclear Information System (INIS)

    The need for fine detail visibility in various applications such as dental imaging, mammography, but also neurology and cardiology, is the driver for intensive efforts in the development of new x-ray detectors. The spatial resolution of current scintillator layers is limited by optical diffusion. This limitation can be overcome by a pixelation, which prevents optical photons from crossing the interface between two neighboring pixels. In this work, an array of pores was etched in a silicon wafer with a pixel pitch of 50 μm. A very high aspect ratio was achieved with wall thicknesses of 4-7 μm and pore depths of about 400 μm. Subsequently, the pores were filled with Tl-doped cesium iodide (CsI:Tl) as a scintillator in a special process, which includes powder melting and solidification of the CsI. From the sample geometry and x-ray absorption measurement the pore fill grade was determined to be 75%. The scintillator-filled samples have a circular active area of 16 mm diameter. They are coupled with an optical sensor binned to the same pixel pitch in order to measure the x-ray imaging performance. The x-ray sensitivity, i.e., the light output per absorbed x-ray dose, is found to be only 2.5%-4.5% of a commercial CsI-layer of similar thickness, thus very low. The efficiency of the pores to transport the generated light to the photodiode is estimated to be in the best case 6.5%. The modulation transfer function is 40% at 4 lp/mm and 10%-20% at 8 lp/mm. It is limited most likely by the optical gap between scintillator and sensor and by K-escape quanta. The detective quantum efficiency (DQE) is determined at different beam qualities and dose settings. The maximum DQE(0) is 0.28, while the x-ray absorption with the given thickness and fill factor is 0.57. High Swank noise is suspected to be the reason, mainly caused by optical scatter inside the CsI-filled pores. The results are compared to Monte Carlo simulations of the photon transport inside the pore array structure

  2. "In situ" hard mask materials: a new methodology for creation of vertical silicon nanopillar and nanowire arrays.

    Science.gov (United States)

    Ghoshal, Tandra; Senthamaraikannan, Ramsankar; Shaw, Matthew T; Holmes, Justin D; Morris, Michael A

    2012-12-21

    A novel, simple and in situ hard mask technology that can be used to develop high aspect ratio silicon nanopillar and nanowire features on a substrate surface is demonstrated. The technique combines a block copolymer inclusion method that generates nanodot arrays on substrate and an inductively coupled plasma (ICP) etch processing step to fabricate Si nanopillar and nanowire arrays. Iron oxide was found to be an excellent resistant mask over silicon under the selected etching conditions. Features of a very high aspect ratio can be created by this method. The nanopillars have uniform diameter and smooth sidewalls throughout their entire length. The diameter (15-27 nm) and length of the nanopillars can be tuned easily. Different spectroscopic and microscopic techniques were used to examine the morphology and size, surface composition and crystallinity of the resultant patterns. The methodology developed may have important technological applications and provide an inexpensive manufacturing route to nanodimensioned topographical patterns. The high aspect ratio of the features may have importance in the area of photonics and the photoluminescence properties are found to be similar to those of surface-oxidized silicon nanocrystals and porous silicon. PMID:23138854

  3. An Array of One-Dimensional Porous Silicon Photonic Crystal Reflector Islands for a Far-Infrared Image Detector

    International Nuclear Information System (INIS)

    With the aid of photolithography, an array of one-dimensional porous silicon photonic crystal reflector islands for a far infrared image detector ranging from 10 μm to 14 μm is successfully fabricated. Silicon nitride formed by low pressure chemical vapor deposition (LPCVD) was used as the masking layer for the island array formation. After etching, the microstructures were examined by a scanning electron microscope and the optical properties were studied by Fourier transform infrared spectroscopy, the result indicates that the multilayer structure could be obtained in the perpendicular direction via periodically alternative etching current in each pre-pattern. At the same time, the island array has a well-proportioned lateral etching effect, which is very useful for the thermal isolation in lateral orientation of the application in devices. It is concluded that regardless of the absorption of the deposition layer on the substrate, the localized photonic crystalline islands have higher reflectivity. The designed islands structure not only prevents the cracking of the porous silicon layers but is also useful for the application in the cold part for the sensor devices and the interconnection of each pixel

  4. Initial steps toward the realization of large area arrays of single photon counting pixels based on polycrystalline silicon TFTs

    Science.gov (United States)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao; Street, Robert A.; Lu, Jeng Ping

    2014-03-01

    The thin-film semiconductor processing methods that enabled creation of inexpensive liquid crystal displays based on amorphous silicon transistors for cell phones and televisions, as well as desktop, laptop and mobile computers, also facilitated the development of devices that have become ubiquitous in medical x-ray imaging environments. These devices, called active matrix flat-panel imagers (AMFPIs), measure the integrated signal generated by incident X rays and offer detection areas as large as ~43×43 cm2. In recent years, there has been growing interest in medical x-ray imagers that record information from X ray photons on an individual basis. However, such photon counting devices have generally been based on crystalline silicon, a material not inherently suited to the cost-effective manufacture of monolithic devices of a size comparable to that of AMFPIs. Motivated by these considerations, we have developed an initial set of small area prototype arrays using thin-film processing methods and polycrystalline silicon transistors. These prototypes were developed in the spirit of exploring the possibility of creating large area arrays offering single photon counting capabilities and, to our knowledge, are the first photon counting arrays fabricated using thin film techniques. In this paper, the architecture of the prototype pixels is presented and considerations that influenced the design of the pixel circuits, including amplifier noise, TFT performance variations, and minimum feature size, are discussed.

  5. Relaxing the electrostatic screening effect by patterning vertically-aligned silicon nanowire arrays into bundles for field emission application

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Yung-Jr, E-mail: yungjrhung@gmail.com [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Department of Photonics, National Sun Yat-sen University, No. 70, Lienhai Rd., Kaohsiung 80424, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, San-Liang [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Beng, Looi Choon [Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Chang, Hsuan-Chen [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Huang, Yung-Jui [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, Kuei-Yi; Huang, Ying-Sheng [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China)

    2014-04-01

    Top-down fabrication strategies are proposed and demonstrated to realize arrays of vertically-aligned silicon nanowire bundles and bundle arrays of carbon nanotube–silicon nanowire (CNT–SiNW) heterojunctions, aiming for releasing the electrostatic screening effect and improving the field emission characteristics. The trade-off between the reduction in the electrostatic screening effect and the decrease of emission sites leads to an optimal SiNW bundle arrangement which enables the lowest turn-on electric field of 1.4 V/μm and highest emission current density of 191 μA/cm{sup 2} among all testing SiNW samples. Benefiting from the superior thermal and electrical properties of CNTs and the flexible patterning technologies available for SiNWs, bundle arrays of CNT–SiNW heterojunctions show improved and highly-uniform field emission with a lower turn-on electric field of 0.9 V/μm and higher emission current density of 5.86 mA/cm{sup 2}. The application of these materials and their corresponding fabrication approaches is not limited to the field emission but can be used for a variety of emerging fields like nanoelectronics, lithium-ion batteries, and solar cells. - Highlights: • Aligned silicon nanowire (SiNW) bundle arrays are realized with top-down methods. • Growing carbon nanotubes atop SiNW bundle arrays enable uniform field emission. • A turn-on field of 0.9 V/μm and an emission current of > 5 mA/cm{sup 2} are achieved.

  6. Relaxing the electrostatic screening effect by patterning vertically-aligned silicon nanowire arrays into bundles for field emission application

    International Nuclear Information System (INIS)

    Top-down fabrication strategies are proposed and demonstrated to realize arrays of vertically-aligned silicon nanowire bundles and bundle arrays of carbon nanotube–silicon nanowire (CNT–SiNW) heterojunctions, aiming for releasing the electrostatic screening effect and improving the field emission characteristics. The trade-off between the reduction in the electrostatic screening effect and the decrease of emission sites leads to an optimal SiNW bundle arrangement which enables the lowest turn-on electric field of 1.4 V/μm and highest emission current density of 191 μA/cm2 among all testing SiNW samples. Benefiting from the superior thermal and electrical properties of CNTs and the flexible patterning technologies available for SiNWs, bundle arrays of CNT–SiNW heterojunctions show improved and highly-uniform field emission with a lower turn-on electric field of 0.9 V/μm and higher emission current density of 5.86 mA/cm2. The application of these materials and their corresponding fabrication approaches is not limited to the field emission but can be used for a variety of emerging fields like nanoelectronics, lithium-ion batteries, and solar cells. - Highlights: • Aligned silicon nanowire (SiNW) bundle arrays are realized with top-down methods. • Growing carbon nanotubes atop SiNW bundle arrays enable uniform field emission. • A turn-on field of 0.9 V/μm and an emission current of > 5 mA/cm2 are achieved

  7. Development of a Thick-film Silicon Ribbon Growth Technique for Application to Large-area Solar Cells and Arrays

    Science.gov (United States)

    Berman, P. A.

    1973-01-01

    A new technique is described for growth of large-area silicon ribbons. This technique is an edge-defined, film-fed growth process by which single crystals can be grown having a shape controlled by the outside dimensions of a shaping die, growth taking place from an extremely thin film of liquid fed by capillary action from a crucible below. The material from which the die is fabricated is very critical to the process. The die must be wet by the silicon, but adverse impurities must not be introduced into the silicon, and the die must not become degraded by the molten silicon. A breakthrough in die fabrication that has allowed the growth of silicon ribbons having dimensions of 1 cm by 30 cm with a thickness of 0.7 mm is described. The implications of this significant advancement with respect to development of photovoltaic solar arrays for wide-scale terrestrial solar-to-electric energy conversion systems are discussed.

  8. Silicon photomultiplier arrays - a novel photon detector for a high resolution tracker produced at FBK-irst, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Greim, R.; Gast, H.; Kirn, T.; Olzem, J.; Yearwood, G. Roper; Schael, S.; Zimmermann, N. [I. Physikalisches Institut B, RWTH Aachen University, 52074 Aachen (Germany); Ambrosi, G.; Azzarello, P. [Dipartimento di Fisica, Universita di Perugia, 06123 Perugia (Italy); Battiston, R. [Dipartimento di Fisica, Universita di Perugia, 06123 Perugia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, 06123 Perugia (Italy); Piemonte, C. [Fondazione Bruno Kessler - Istituto per la Ricerca Scientifica e tecnologica, 38050 Trento (Italy)

    2009-12-15

    A silicon photomultiplier (SiPM) array has been developed at FBK-irst [Piemonte C., Nucl. Instrum. Methods A, 568 (2006) 224; Piemonte C. et al., IEEE Trans. Nucl. Sci., 54 (2007) 236] having 32 channels and a dimension of 8.0x1.1mm{sup 2}. Each 250 mum wide channel is subdivided into 5x22 rectangularly arranged pixels. These sensors are developed to read out a modular high resolution scintillating fiber tracker. Key properties like breakdown voltage, gain and photon detection efficiency (PDE) are found to be homogeneous over all 32 channels of an SiPM array. This could make scintillating fiber trackers with SiPM array readout a promising alternative to available tracker technologies, if noise properties and the PDE are improved.

  9. Performance of in-pixel circuits for photon counting arrays (PCAs) based on polycrystalline silicon TFTs

    Science.gov (United States)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Street, Robert A.; Lu, Jeng Ping

    2016-03-01

    Photon counting arrays (PCAs), defined as pixelated imagers which measure the absorbed energy of x-ray photons individually and record this information digitally, are of increasing clinical interest. A number of PCA prototypes with a 1 mm pixel-to-pixel pitch have recently been fabricated with polycrystalline silicon (poly-Si)—a thin-film technology capable of creating monolithic imagers of a size commensurate with human anatomy. In this study, analog and digital simulation frameworks were developed to provide insight into the influence of individual poly-Si transistors on pixel circuit performance—information that is not readily available through empirical means. The simulation frameworks were used to characterize the circuit designs employed in the prototypes. The analog framework, which determines the noise produced by individual transistors, was used to estimate energy resolution, as well as to identify which transistors contribute the most noise. The digital framework, which analyzes how well circuits function in the presence of significant variations in transistor properties, was used to estimate how fast a circuit can produce an output (referred to as output count rate). In addition, an algorithm was developed and used to estimate the minimum pixel pitch that could be achieved for the pixel circuits of the current prototypes. The simulation frameworks predict that the analog component of the PCA prototypes could have energy resolution as low as 8.9% full width at half maximum (FWHM) at 70 keV; and the digital components should work well even in the presence of significant thin-film transistor (TFT) variations, with the fastest component having output count rates as high as 3 MHz. Finally, based on conceivable improvements in the underlying fabrication process, the algorithm predicts that the 1 mm pitch of the current PCA prototypes could be reduced significantly, potentially to between ~240 and 290 μm.

  10. Hollow silicon microneedle array based trans-epidermal antiemetic patch for efficient management of chemotherapy induced nausea and vomiting

    Science.gov (United States)

    Kharbikar, Bhushan N.; Kumar S., Harish; Kr., Sindhu; Srivastava, Rohit

    2015-12-01

    Chemotherapy Induced Nausea and Vomiting (CINV) is a serious health concern in the treatment of cancer patients. Conventional routes for administering anti-emetics (i.e. oral and parenteral) have several drawbacks such as painful injections, poor patient compliance, dependence on skilled personnel, non-affordability to majority of population (parenteral), lack of programmability and suboptimal bioavailability (oral). Hence, we have developed a trans-epidermal antiemetic drug delivery patch using out-of-plane hollow silicon microneedle array. Microneedles are pointed micron-scale structures that pierce the epidermal layer of skin to reach dermal blood vessels and can directly release the drug in their vicinity. They are painless by virtue of avoiding significant contact with dermal sensory nerve endings. This alternate approach gives same pharmacodynamic effects as par- enteral route at a sparse drug-dose requirement, hence negligible side-effects and improved patient compliance. Microneedle design attributes were derived by systematic study of human skin anatomy, natural micron-size structures like wasp-sting and cactus-spine and multi-physics simulations. We used deep reactive ion etching with Bosch process and optimized recipe of gases to fabricate high-aspect-ratio hollow silicon microneedle array. Finally, microneedle array and polydimethylsiloxane drug reservoir were assembled to make finished anti-emetic patch. We assessed microneedles mechanical stability, physico-chemical properties and performed in-vitro, ex- vivo and in-vivo studies. These studies established functional efficacy of the device in trans-epidermal delivery of anti-emetics, its programmability, ease of use and biosafety. Thus, out-of-plane hollow silicon microneedle array trans-epidermal antiemetic patch is a promising strategy for painless and effective management of CINV at low cost in mainstream healthcare.

  11. Fabrication of CoFe2O4 ferrite nanowire arrays in porous silicon template and their local magnetic properties

    Science.gov (United States)

    Hui, Zheng; Man-Gui, Han; Long-Jiang, Deng

    2016-02-01

    CoFe2O4 ferrite nanowire arrays are fabricated in porous silicon templates. The porous silicon templates are prepared via metal-assisted chemical etching with gold (Au) nanoparticles as the catalyst. Subsequently, CoFe2O4 ferrite nanowires are successfully synthesized into porous silicon templates by the sol-gel method. The magnetic hysteresis loop of nanowire array shows an isotropic feature of magnetic properties. The coercivity and squareness ratio (Mr/Ms) of ensemble nanowires are found to be 630 Oe (1 Oe, = 79.5775 A·m-1 and 0.4 respectively. However, the first-order reversal curve (FORC) is adopted to reveal the probability density function of local magnetostatic properties (i.e., interwire interaction field and coercivity). The FORC diagram shows an obvious distribution feature for interaction field and coercivity. The local coercivity with a value of about 1000 Oe is found to have the highest probability. Project supported by the National Natural Science Foundation of China (Grant No. 61271039), the Scientific Projects of Sichuan Province, China (Grant No. 2015HH0016), and the Natural Science Foundations of Zhejiang Province, China (Grant Nos. LQ12E02001 and Y107255).

  12. Large-Area, UV-Optimized, Back-Illuminated Silicon Photomultiplier Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Existing photocathode-based technologies for visible and UV instruments lack sensitivity, are bulky, and have limited reliability. Solid-state silicon...

  13. Three-dimensional evaluation of gettering ability for oxygen atoms at small-angle tilt boundaries in Czochralski-grown silicon crystals

    International Nuclear Information System (INIS)

    Three-dimensional distribution of oxygen atoms at small-angle tilt boundaries (SATBs) in Czochralski-grown p-type silicon ingots was investigated by atom probe tomography combined with transmission electron microscopy. Oxygen gettering along edge dislocations composing SATBs, post crystal growth, was observed. The gettering ability of SATBs would depend both on the dislocation strain and on the dislocation density. Oxygen atoms would agglomerate in the atomic sites under the tensile hydrostatic stress larger than about 2.0 GPa induced by the dislocations. It was suggested that the density of the atomic sites, depending on the tilt angle of SATBs, determined the gettering ability of SATBs

  14. Small-angle subgrain boundaries emanating from dislocation pile-ups in multicrystalline silicon studied with synchrotron white-beam X-ray topography

    International Nuclear Information System (INIS)

    The formation of dislocation pile-ups and related small-angle subgrain boundaries in block-cast multicrystalline silicon for photovoltaic applications has been studied by means of white-beam X-ray topography (WB-XRT). For this purpose, samples sliced perpendicular and parallel to the growth direction have been investigated in reflection and transmission geometry, respectively. During the growth process of the silicon ingot, the dislocation density increases. WB-XRT measurements revealed the formation of small-angle subgrain boundaries. The subgrains have a slightly changed orientation related to a rotation of ∼0.07–0.80° around an axis parallel to the growth direction. This tilt results from the high number of dislocations forming dislocation pile-ups and walls. The spacings between dislocations in such subgrain boundaries were found to be between 297 and 28 nm. A qualitative model for the formation of dislocation pile-ups is proposed

  15. Nanopillar array band-edge laser cavities on silicon-on-insulator for monolithic integrated light sources

    Science.gov (United States)

    Lee, Wook-Jae; Kim, Hyunseok; Farrell, Alan C.; Senanayake, Pradeep; Huffaker, Diana L.

    2016-02-01

    A simple and unique laser scheme comprised of a finite-size nanopillar array on a silicon-on-insulator grating layer is introduced for realizing an on-chip monolithically integrated light source. A photonic band-edge mode, confined by the grating substrate in the vertical direction, shows a quality factor as high as 4000. We show that the proposed laser cavity allows direct coupling into a waveguide, which is essential for monolithic integration. In addition, III-V semiconductor nanopillars are grown on a silicon-on-insulator grating substrate in order to demonstrate the feasibility of epitaxy on 3D surfaces. These results provide a practical solution for on-chip integration of a monolithic light source.

  16. Wide angle light collection with ultralow reflection and super scattering by silicon micro-nanostructures for thin crystalline silicon solar cell applications

    Science.gov (United States)

    Das, Sonali; Kundu, Avra; Saha, Hiranmay; Datta, Swapan K.

    2016-01-01

    Conventional c-Si solar cells employ micron-sized pyramids for achieving reduced reflection (˜10%) and enhanced light trapping by multiple bounces (maximum 3) of the incident light. Alternatively, bio-mimetic, moth-eye sub-wavelength nanostructures offer broadband antireflection properties (˜3%) suitable for solar cell applications in the optical regime. However, such structures do not provide any advantage in the charge carrier extraction process as radial junctions cannot be formed in such sub-wavelength dimensions and they have high surface area causing increased charged carrier recombination. The choice of the geometry for achieving optimum photon-electron harvesting for solar applications is therefore very critical. Cross-fertilization of the conventional solar cell light-trapping techniques and the sub-wavelength nanostructures results in unique micro-nanostructures (structures having sub-wavelength dimensions as well as dimensions of the order of few microns) which provide advanced light management capabilities along with the ability of realizing radial junctions. It is seen that an ultralow reflection along with wide angle light collection is obtained which enables such structures to overcome the morning, evening and winter light losses in solar cells. Further, super-scattering in the structures offer enhanced light trapping not only in the structure itself but also in the substrate housing the structure. Ray and wave optics have been used to understand the optical benefits of the structures. It is seen that the aspect ratio of the structures plays the most significant role for achieving such light management capabilities, and efficiencies as high as 12% can be attained. Experiments have been carried out to fabricate a unique micro-nanomaze-like structure instead of a periodic array of micro-nanostructures with the help of nanosphere lithography and the MacEtch technique. It is seen that randomized micro-nanomaze geometry offers very good antireflection

  17. Wide angle light collection with ultralow reflection and super scattering by silicon micro-nanostructures for thin crystalline silicon solar cell applications

    International Nuclear Information System (INIS)

    Conventional c-Si solar cells employ micron-sized pyramids for achieving reduced reflection (∼10%) and enhanced light trapping by multiple bounces (maximum 3) of the incident light. Alternatively, bio-mimetic, moth-eye sub-wavelength nanostructures offer broadband antireflection properties (∼3%) suitable for solar cell applications in the optical regime. However, such structures do not provide any advantage in the charge carrier extraction process as radial junctions cannot be formed in such sub-wavelength dimensions and they have high surface area causing increased charged carrier recombination. The choice of the geometry for achieving optimum photon–electron harvesting for solar applications is therefore very critical. Cross-fertilization of the conventional solar cell light-trapping techniques and the sub-wavelength nanostructures results in unique micro-nanostructures (structures having sub-wavelength dimensions as well as dimensions of the order of few microns) which provide advanced light management capabilities along with the ability of realizing radial junctions. It is seen that an ultralow reflection along with wide angle light collection is obtained which enables such structures to overcome the morning, evening and winter light losses in solar cells. Further, super-scattering in the structures offer enhanced light trapping not only in the structure itself but also in the substrate housing the structure. Ray and wave optics have been used to understand the optical benefits of the structures. It is seen that the aspect ratio of the structures plays the most significant role for achieving such light management capabilities, and efficiencies as high as 12% can be attained. Experiments have been carried out to fabricate a unique micro-nanomaze-like structure instead of a periodic array of micro-nanostructures with the help of nanosphere lithography and the MacEtch technique. It is seen that randomized micro-nanomaze geometry offers very good

  18. Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Soleimani-Amiri, Samaneh; Safiabadi Tali, Seied Ali; Azimi, Soheil; Sanaee, Zeinab; Mohajerzadeh, Shamsoddin, E-mail: mohajer@ut.ac.ir [Thin Film and Nanoelectronics Lab, Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran 143957131 (Iran, Islamic Republic of)

    2014-11-10

    High aspect-ratio vertical structures of amorphous silicon have been realized using hydrogen-assisted low-density plasma reactive ion etching. Amorphous silicon layers with the thicknesses ranging from 0.5 to 10 μm were deposited using radio frequency plasma enhanced chemical vapor deposition technique. Standard photolithography and nanosphere colloidal lithography were employed to realize ultra-small features of the amorphous silicon. The performance of the patterned amorphous silicon structures as a lithium-ion battery electrode was investigated using galvanostatic charge-discharge tests. The patterned structures showed a superior Li-ion battery performance compared to planar amorphous silicon. Such structures are suitable for high current Li-ion battery applications such as electric vehicles.

  19. Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    High aspect-ratio vertical structures of amorphous silicon have been realized using hydrogen-assisted low-density plasma reactive ion etching. Amorphous silicon layers with the thicknesses ranging from 0.5 to 10 μm were deposited using radio frequency plasma enhanced chemical vapor deposition technique. Standard photolithography and nanosphere colloidal lithography were employed to realize ultra-small features of the amorphous silicon. The performance of the patterned amorphous silicon structures as a lithium-ion battery electrode was investigated using galvanostatic charge-discharge tests. The patterned structures showed a superior Li-ion battery performance compared to planar amorphous silicon. Such structures are suitable for high current Li-ion battery applications such as electric vehicles

  20. Phase 2 of the automated array assembly task of the Low-Cost Silicon Solar Array Project. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, M.G.; Grenon, L.P.; Pastirik, E.M.; Pryor, R.A.; Sparks, T.G.

    1978-11-01

    This report presents the results of investigations and analyses of an advanced process sequence for manufacturing high efficiency solar cells and modules in a cost-effective manner. The entire process sequence is presented and discussed step by step. Emphasis is on process simplicity and minimizing consumed materials. The process sequence incorporates texture etching, plasma processes for damage removal and patterning, ion implantation, low pressure silicon nitride deposition, and plated metal. A reliable module design is presented. Specific process step developments are presnted. Further, a detailed cost analysis has been performed to indicate future areas of fruitful cost reduction effort. Finally, recommendations for advanced investigations are presented.

  1. Measurement of the Casimir force between a gold sphere and a silicon surface with nanoscale trench arrays.

    Science.gov (United States)

    Chan, H B; Bao, Y; Zou, J; Cirelli, R A; Klemens, F; Mansfield, W M; Pai, C S

    2008-07-18

    We report measurements of the Casimir force between a gold sphere and a silicon surface with an array of nanoscale, rectangular corrugations using a micromechanical torsional oscillator. At distances between 150 and 500 nm, the measured force shows significant deviations from the pairwise additive formulism, demonstrating the strong dependence of the Casimir force on the shape of the interacting bodies. The observed deviation, however, is smaller than the calculated values for perfectly conducting surfaces, possibly due to the interplay between finite conductivity and geometry effects. PMID:18764238

  2. Silicon Detector Arrays with Absolute Quantum Efficiency over 50% in the Far Ultraviolet for Single Photon Counting Applications

    CERN Document Server

    Nikzad, Shouleh; Greer, Frank; Jones, Todd; Jacquot, Blake; Monacos, Steve; Blacksberg, J; Hamden, Erika; Schiminovich, David; Martin, Chris; Morrissey, Patrick

    2011-01-01

    We have used Molecular Beam Epitaxy (MBE)-based delta doping technology to demonstrate near 100% internal quantum efficiency (QE) on silicon electron-multiplied Charge Coupled Devices (EMCCDs) for single photon counting detection applications. Furthermore, we have used precision techniques for depositing antireflection (AR) coatings by employing Atomic Layer Deposition (ALD) and demonstrated over 50% external QE in the far and near-ultraviolet in megapixel arrays. We have demonstrated that other device parameters such as dark current are unchanged after these processes. In this paper, we report on these results and briefly discuss the techniques and processes employed.

  3. Out-of-plane high-density piezoresistive silicon microwire/p–n diode array for force- and temperature-sensitive artificial whisker sensors

    International Nuclear Information System (INIS)

    We propose an out-of-plane high-aspect-ratio 'whisker-like' microwire array sensor for use in multisite contact force and temperature detection with high spatial resolution. Although the wire element has two terminal electrodes, the device consists of force-sensitive wire arrays where one end of the wire is attached to the substrate and the other end is free to be touched. We fabricated a force-sensitive wire array based on p-type (p-) silicon with 3 µm diameter and 30 µm length (1 Ω cm) assembled over an n-type (n-) silicon substrate (3–6 Ω cm), which resulted in a p-silicon wire/p–n diode system array. Due to the piezoresistance effect of the p-silicon wire, the electrical conductance changes upon contact of an individual wire with an object. The shift in the rectifying current–voltage (I–V) curves of the embedded p–n diode depends on the temperature through the silicon wire. Thus, the same alignment can be used as a force sensor and a temperature sensor. Both force- and temperature-sensitive microwire sensor arrays with a small detection area (∼20 µm2) and high spatial resolution (∼100 µm in pitch) have potential in numerous applications, including artificial electronic fingertips in a robot hand/prosthetics, multisite sensing of contact force, shear force, surface roughness and slip, and local temperature sensing capabilities.

  4. Flexible Near-Infrared Photovoltaic Devices Based on Plasmonic Hot-Electron Injection into Silicon Nanowire Arrays.

    Science.gov (United States)

    Liu, Dong; Yang, Dong; Gao, Yang; Ma, Jun; Long, Ran; Wang, Chengming; Xiong, Yujie

    2016-03-24

    The development of flexible near-infrared (NIR) photovoltaic (PV) devices containing silicon meets the strong demands for solar utilization, portability, and sustainable manufacture; however, improvements in the NIR light absorption and conversion efficiencies in ultrathin crystalline Si are required. We have developed an approach to improve the quantum efficiency of flexible PV devices in the NIR spectral region by integrating Si nanowire arrays with plasmonic Ag nanoplates. The Ag nanoplates can directly harvest and convert NIR light into plasmonic hot electrons for injection into Si, while the Si nanowire arrays offer light trapping. Taking the wavelength of 800 nm as an example, the external quantum efficiency has been improved by 59 % by the integration Ag nanoplates. This work provides an alternative strategy for the design and fabrication of flexible NIR PVs. PMID:26929103

  5. Growth process and mechanism of a multi-walled carbon nanotube nest deposited on a silicon nanoporous pillar array

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Weifen, E-mail: gingerwfj@yahoo.com.cn [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, No. 36 Beihuan Road, Zhengzhou 450011 (China); Jian Lv; Yang Xiaohui [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, No. 36 Beihuan Road, Zhengzhou 450011 (China); Li Xinjian [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2010-03-01

    A large scale nest array of multi-walled carbon nanotubes (NACNTs) was grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition. Through observing its macro/micromorphology and structure, ascertaining the catalyst component and its locations at different growth time by hiring field emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and selected area electron diffraction, the growth process was deduced. Its thermal properties were also investigated by using a thermogravimetric analyzer. Our experiments demonstrated that the CNTs growth by means of root-growth mechanism at the initial growth stage, then a continuous growth process with its tip open is suggested, finally, a schematic growth model of NACNT/Si-NPA was presented.

  6. SERS activity of Au nanoparticles coated on an array of carbon nanotube nested into silicon nanoporous pillar

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Weifen, E-mail: gingerwfj@yahoo.com.cn [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Zhang Yanfeng [School of Computer and Information Engeering, Henan University, Kaifeng 475004 (China); Wang Yusheng; Xu Lei [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Li Xinjian [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2011-12-15

    A novel composite structure, Au nanoparticles coated on a nest-shaped array of carbon nanotube nested into a silicon nanoporous pillar array (Au/NACNT/Si-NPA), was fabricated for surface-enhanced Raman scattering (SERS). The morphology of the Au/NACNT/Si-NPA composite structure was characterized with the aid of scanning electron microscopy, X-ray diffraction instrumentation and Transmission electron microscopy. Compared with SERS of rhodamine 6G (R6G) adsorbed on SERS-active Au substrate reported, the SERS signals of R6G adsorbed on these gold nanoparticles were obviously improved. This was attributed to the enlarged specific surface area for adsorption of target molecules brought by the nest-shaped CNTs structure.

  7. Performance of a SensL-30035-16P silicon photomultiplier array at liquid argon temperature

    International Nuclear Information System (INIS)

    Next generation multi-ton scale noble liquid experiments have the unique opportunity to discover dark matter particles at the TeV scale, reaching the sensitivity of 10−48 cm2 in the WIMP nucleon scattering cross-section. A prerequisite will be the reduction of radiogenic background sources to negligible levels. This is only possible if ultra-pure high efficiency photosensors are available for the scintillation light readout. Current experiments (e.g. Xenon, LUX, Darkside, ArDM) use cryogenic PMTs as photosensors. An attractive alternative is represented by silicon photomultiplier arrays (SiPM arrays), which show unrivalled performances in single photon detection. This paper reports on the performance of the SensL-ArrayB-30035-16P SiPM array and a custom made cryogenic front-end board at the liquid argon temperature. Its performance at VOV=3.5 V, where the PDE is maximal, are very promising in terms of SPE resolution (about 8%), dark rate (about 250 Hz) and correlated pulses (30%)

  8. Orientation-dependent nanostructure arrays based on anisotropic silicon wet-etching for repeatable surface-enhanced Raman scattering

    Science.gov (United States)

    Wang, C. G.; Wu, X. Z.; di, D.; Dong, P. T.; Xiao, R.; Wang, S. Q.

    2016-02-01

    Repeatable fabrication of sensitive plasmonic substrates through a simple procedure has become a major challenge for SERS-based sensing and imaging. Herein, a new class of high-performance SERS substrates, including pyramid, ridged-hexagon, and quasi-triangle nanostructures, is successfully fabricated based on the nanosphere lithography technique and anisotropic wet etching. Using the wafer-scale Cr-hole array as the etching mask, cavity-templates of various configurations are fabricated by the orientation-dependent wet etching technique, from where the nanostructure arrays are finally peeled-off. The anisotropic wet etching on (100), (110), and (111) silicon wafers has been systematically studied at the nanoscale revealing the formation mechanism of these cavity-templates. The peeled-off nanostructure arrays provide high-density tips and/or gaps (about 2.5 × 107 mm-2) and thus facilitate the generation of ``hot spots''. The distribution of the electromagnetic field is visualized by the finite difference time domain calculation. And the calculation results are validated by SERS characterization. The SERS enhancement factors of these substrates are in the order of 106-107, with the maximum enhancement factor of 1.32 × 107 yielded by the ridged-hexagon arrays. The proposed nanostructure arrays present excellent homogeneity and reproducibility (with the largest relative standard deviation of 16.43%) for the reason that the SERS-active substrates are peeled-off from an identical template. The cost-effective fabrication, high sensitivity, good homogeneity and well-performed reproducibility demonstrate that these orientation-dependent NSs are good candidates for SERS-based in vitro and in situ detection and biosensing.Repeatable fabrication of sensitive plasmonic substrates through a simple procedure has become a major challenge for SERS-based sensing and imaging. Herein, a new class of high-performance SERS substrates, including pyramid, ridged-hexagon, and quasi

  9. Ultra-fast Laser Synthesis of Nanopore Arrays in Silicon for Bio-molecule Separation and Detection

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, J W; Ileri, N; Letant, S E; Stroeve, P; Shirk, M; Zaidi, S; Balhorn, R L; Siders, C W

    2008-02-07

    We demonstrate that interference of ultra-fast pulses of laser light can create regular patterns in thin silicon membranes that are compatible with the formation of a uniform array of nanopores. The spacing and size of these pores can be tuned by changing the laser energy, wavelength and number of ultra-short pulses. Short pulses and wavelengths ({approx}550 nm and smaller) are needed to define controllable nanoscale features in silicon. Energy must be localized in time and space to produce the etching, ablation or amorphization effects over the {approx}100 nm length scales appropriate for definition of single pores. Although in this brief study pattern uniformity was limited by laser beam quality, a complementary demonstration reported here used continuous-wave interferometric laser exposure of photoresist to show the promise of the ultra-fast approach for producing uniform pore arrays. The diameters of these interferometrically-defined features are significantly more uniform than the diameters of pores in state-of-the-art polycarbonate track etch membranes widely used for molecular separations.

  10. Near-infrared quarter-waveplate with near-unity polarization conversion efficiency based on silicon nanowire array.

    Science.gov (United States)

    Dai, Yanmeng; Cai, Hongbing; Ding, Huaiyi; Ning, Zhen; Pan, Nan; Zhu, Hong; Shi, Qinwei; Wang, Xiaoping

    2015-04-01

    Metasurfaces made of subwavelength resonators can modify the wave front of light within the thickness much less than free space wavelength, showing great promises in integrated optics. In this paper, we theoretically show that electric and magnetic resonances supported simultaneously by a subwavelength nanowire with high refractive-index can be utilized to design metasurfaces with near-unity transmittance. Taking silicon nanowire for instance, we design numerically a near-infrared quarter-waveplate with high transmittance using a subwavelength nanowire array. The operation bandwidth of the waveplate is 0.14 μm around the center wavelength of 1.71 μm. The waveplate can convert a 45° linearly polarized incident light to circularly polarized light with conversion efficiency ranging from 94% to 98% over the operation band. The performance of quarter waveplate can in principle be tuned and improved through optimizing the parameters of nanowire arrays. Its compatibility to microelectronic technologies opens up a distinct possibility to integrate nanophotonics into the current silicon-based electronic devices. PMID:25968730

  11. Performance of a PET detector module utilizing an array of silicon photodiodes to identify the crystal of interaction

    International Nuclear Information System (INIS)

    The authors initial performance results for a new multi-layer PET detector module consisting of an array of 3 mm square by 30 mm deep BGO crystals coupled on one end to a single photomultiplier tube and on the opposite end to an array of 3 mm square silicon photodiodes. The photomultiplier tube provides an accurate timing pulse and energy discrimination for all the crystals in the module, while the silicon photodiodes identify the crystal of interaction. When a single BGO crystal at +25 C is excited with 511 keV photons, the authors measure a photodiode signal centered at 700 electrons (e-) with noise of 375 e- fwhm. When a four crystal/photodiode module is excited with a collimated line source of 511 keV photons, the crystal of interaction is correctly identified 82% of the time. The misidentification rate can be greatly reduced and an 8 x 8 crystal/photodiode module constructed by using thicker depletion layer photodiodes or cooling to 0 C

  12. Performance of a monolithic LaBr3:Ce crystal coupled to an array of silicon photomultipliers

    Science.gov (United States)

    Ulyanov, Alexei; Morris, Oran; Hanlon, Lorraine; McBreen, Sheila; Foley, Suzanne; Roberts, Oliver J.; Tobin, Isaac; Murphy, David; Wade, Colin; Nelms, Nick; Shortt, Brian; Slavicek, Tomas; Granja, Carlos; Solar, Michael

    2016-02-01

    A gamma-ray detector composed of a single 28×28×20 mm3 LaBr3:Ce crystal coupled to a custom built 4×4 array of silicon photomultipliers was tested over an energy range of 30 keV to 9.3 MeV. The silicon photomultipliers were initially calibrated using 20 ns light pulses generated by a light emitting diode. The photodetector responses measured as a function of the number of incident photons were found to be non-linear and consistent with model predictions. Using corrections for the non-linearity of the silicon photomultipliers, the detector showed a linear response to gamma-rays with energies from 100 keV to the maximum available energy of 9.3 MeV. The energy resolution was found to be 4% FWHM at 662 keV. Despite the large thickness of the scintillator (20 mm) and a 5 mm thick optical window, the detector was capable of measuring the positions of the gamma-ray interaction points. The position resolution was measured at 356 keV and was found to be 8 mm FWHM in the detector plane and 11 mm FWHM for the depth of interaction. The detector can be used as a building block of a larger calorimeter system that is capable of measuring gamma-ray energies up to tens of MeV.

  13. Both improvements of the light extraction efficiency and scattered angle of GaN-LED using sub-micron Fresnel lens array

    Science.gov (United States)

    Gu, Xinyu; Chen, Linsen; Shen, Su; Wan, Wenqiang

    2015-11-01

    With the demanding requirements for light source, light emitting diodes (LED) attracts more and more attention because of its inherent advantages such as low power consumption, high reliability and longevity. However, there are two disadvantages for LED, one is the low light extraction efficiency resulting from the total internal reflection, and the other is the relative large scattered angle. In order to improve the light extraction efficiency and collimate the out-coupling light, a sub-micron Fresnel lens array is introduced and investigated in this paper. The focal length of the proposed Fresnel lens is 3μm and the minimum width of the outmost ring is about 150nm. To calculate and analyze the light extraction efficiency and the scattered angle of LED with such Fresnel lens array structure, we optimize the parameters of the Fresnel lens, such as the depth of the Fresnel lens array structure and the thickness of the p-type gallium nitride layer by using the finite difference time domain method (FDTD). By comparing the discussed patterned GaN-based LED with that traditional flat LEDs, it can be found that significant enhancement factor of the light extraction efficiency, which is improved by 3.5 times, can be obtained and the scattered angle at half maximum can be decreased 50° from 60° with this novel Fresnel lens structure. It will be expected that the proposed sub-micron structure can find wide applications in LEDs industry.

  14. Highly-efficient and angle-independent zero-order half waveplate at broad visible wavelength based on Au nanofin array embedded in dielectric.

    Science.gov (United States)

    Ishii, Miho; Iwami, Kentaro; Umeda, Norihiro

    2016-04-18

    A Au nanofin array embedded in SiO2 was designed and fabricated to achieve an achromatic half waveplate with high transmittance at visible wavelengths. On the basis of the waveguide theory of nanogaps and the Fresnel reflection theory, nanofin array is calculated to have ideal properties for an achromatic half-waveplate in the visible band from 560 to 660 nm with the transmittance of around 50%. A Au nanofin array with a height of 830 nm and a period of 400 nm was fabricated through a sidewall-deposition process and overcoating with spin on glass. The polarization microscopy results showed that both transmittance greater than 50% and retardation of 165° at broadband wavelengths ranging from 600 to 800 nm were simultaneously achieved. It was also demonstrated that retardation had little dependence on the incident angle. PMID:27137238

  15. Silicon nanowire arrays coated with electroless Ag for increased surface-enhanced Raman scattering

    Science.gov (United States)

    Bai, Fan; Li, Meicheng; Fu, Pengfei; Li, Ruike; Gu, Tiansheng; Huang, Rui; Chen, Zhao; Jiang, Bing; Li, Yingfeng

    2015-05-01

    The ordered Ag nanorod (AgNR) arrays are fabricated through a simple electroless deposition technique using the isolated Si nanowire (SiNW) arrays as the Ag-grown scaffold. The AgNR arrays have the single-crystallized structure and the plasmonic crystal feature. It is found that the formation of the AgNR arrays is strongly dependent on the filling ratio of SiNWs. A mechanism is proposed based on the selective nucleation and the synergistic growth of Ag nanoparticles on the top of the SiNWs. Moreover, the special AgNR arrays grown on the substrate of SiNWs exhibit a detection sensitivity of 10-15M for rhodamine 6G molecules, which have the potential application to the highly sensitive surface-enhanced Raman scattering sensors.

  16. Silicon nanowire arrays coated with electroless Ag for increased surface-enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Fan Bai

    2015-05-01

    Full Text Available The ordered Ag nanorod (AgNR arrays are fabricated through a simple electroless deposition technique using the isolated Si nanowire (SiNW arrays as the Ag-grown scaffold. The AgNR arrays have the single-crystallized structure and the plasmonic crystal feature. It is found that the formation of the AgNR arrays is strongly dependent on the filling ratio of SiNWs. A mechanism is proposed based on the selective nucleation and the synergistic growth of Ag nanoparticles on the top of the SiNWs. Moreover, the special AgNR arrays grown on the substrate of SiNWs exhibit a detection sensitivity of 10−15M for rhodamine 6G molecules, which have the potential application to the highly sensitive surface-enhanced Raman scattering sensors.

  17. Orientation-dependent nanostructure arrays based on anisotropic silicon wet-etching for repeatable surface-enhanced Raman scattering.

    Science.gov (United States)

    Wang, C G; Wu, X Z; Di, D; Dong, P T; Xiao, R; Wang, S Q

    2016-02-28

    Repeatable fabrication of sensitive plasmonic substrates through a simple procedure has become a major challenge for SERS-based sensing and imaging. Herein, a new class of high-performance SERS substrates, including pyramid, ridged-hexagon, and quasi-triangle nanostructures, is successfully fabricated based on the nanosphere lithography technique and anisotropic wet etching. Using the wafer-scale Cr-hole array as the etching mask, cavity-templates of various configurations are fabricated by the orientation-dependent wet etching technique, from where the nanostructure arrays are finally peeled-off. The anisotropic wet etching on (100), (110), and (111) silicon wafers has been systematically studied at the nanoscale revealing the formation mechanism of these cavity-templates. The peeled-off nanostructure arrays provide high-density tips and/or gaps (about 2.5 × 10(7) mm(-2)) and thus facilitate the generation of "hot spots". The distribution of the electromagnetic field is visualized by the finite difference time domain calculation. And the calculation results are validated by SERS characterization. The SERS enhancement factors of these substrates are in the order of 10(6)-10(7), with the maximum enhancement factor of 1.32 × 10(7) yielded by the ridged-hexagon arrays. The proposed nanostructure arrays present excellent homogeneity and reproducibility (with the largest relative standard deviation of 16.43%) for the reason that the SERS-active substrates are peeled-off from an identical template. The cost-effective fabrication, high sensitivity, good homogeneity and well-performed reproducibility demonstrate that these orientation-dependent NSs are good candidates for SERS-based in vitro and in situ detection and biosensing. PMID:26853057

  18. Silicon on silicon: self-organized nanotip arrays formed in reactive Ar+H{sub 2} plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Levchenko, I; Ostrikov, K [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia); Huang, S Y; Xu, S, E-mail: Kostya.Ostrikov@csiro.au [Plasma Sources and Application Center, NIE, Nanyang Technological University, 637616 (Singapore)

    2010-01-15

    The formation of arrays of vertically aligned nanotips on a moderately heated (up to 500 deg. C) Si surface exposed to reactive low-temperature radio frequency (RF) Ar+H{sub 2} plasmas is studied. It is demonstrated that the nanotip surface density, aspect ratio and height dispersion strongly depend on the substrate temperature, discharge power, and gas composition. It is shown that nanotips with aspect ratios from 2.0 to 4.0 can only be produced at a higher RF power density (41.7 mW cm{sup -3}) and a hydrogen content of about 60%, and that larger aspect ratios can be achieved at substrate temperatures of about 300 deg. C. The use of higher (up to 500 deg. C) temperatures leads to a decrease of the aspect ratio but promotes the formation of more uniform arrays with the height dispersion decreasing to 1.5. At lower ({approx}20 mW cm{sup -3}) RF power density, only semispherical nanodots can be produced. Based on these experimental results, a nanotip formation scenario is proposed suggesting that sputtering, etching, hydrogen termination, and atom/radical re-deposition are the main concurrent mechanisms for the nanostructure formation. Numerical calculations of the ion flux distribution and hydrogen termination profiles can be used to predict the nanotip shapes and are in a good agreement with the experimental results. This approach can be applied to describe the kinetics of low-temperature formation of other nanoscale materials by plasma treatment.

  19. Automated Array Assembly Task In-depth Study of Silicon Wafer Surface Texturizing

    Science.gov (United States)

    Jones, G. T.; Rhee, S. S.

    1979-01-01

    Several aspects of silicon wafer surface texturizing were studied. A low cost cleaning method that utilizes recycled Freon in an ultrasonic vapor degreaser to remove organic and inorganic contaminants from the surface of silicon wafers as received from silicon suppliers was investigated. The use of clean dry air and high throughout wafer batch drying techniques was shown to lower the cost of wafer drying. A two stage texturizing process was examined for suitability in large scale production. Also, an in-depth gettering study with the two stage texturizing process was performed for the enhancement of solar cell efficiency, minimization of current versus voltage curve dispersion, and improvement in process reproducibility. The 10% efficiency improvement goal was exceeded for the near term implementation of flat plate photovoltaic cost reduction.

  20. 26+ Year Old Photovoltaic Power Plant: Degradation and Reliability Evaluation of Crystalline Silicon Modules -- South Array

    Science.gov (United States)

    Olakonu, Kolapo

    As the use of photovoltaic (PV) modules in large power plants continues to increase globally, more studies on degradation, reliability, failure modes, and mechanisms of field aged modules are needed to predict module life expectancy based on accelerated lifetime testing of PV modules. In this work, a 26+ year old PV power plant in Phoenix, Arizona has been evaluated for performance, reliability, and durability. The PV power plant, called Solar One, is owned and operated by John F. Long's homeowners association. It is a 200 kW dc, standard test conditions (STC) rated power plant comprised of 4000 PV modules or frameless laminates, in 100 panel groups (rated at 175 kW ac). The power plant is made of two center-tapped bipolar arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the south array and the other thesis presents the results obtained on the north array. Each of these two arrays is made of four sub arrays, the east sub arrays (positive and negative polarities) and the west sub arrays (positive and negative polarities), making up eight sub arrays. The evaluation and analyses of the power plant included in this thesis consists of: visual inspection, electrical performance measurements, and infrared thermography. A possible presence of potential induced degradation (PID) due to potential difference between ground and strings was also investigated. Some installation practices were also studied and found to contribute to the power loss observed in this investigation. The power output measured in 2011 for all eight sub arrays at STC is approximately 76 kWdc and represents a power loss of 62% (from 200 kW to 76 kW) over 26+ years. The 2011 measured power output for the four south sub arrays at STC is 39 kWdc and represents a power

  1. Epitaxial silicon nanowire growth catalyzed by gold dot arrays from electron beam lithography patterning using silane precursors

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Bjoern; Broenstrup, Gerald; Huebner, Uwe; Christiansen, Silke [Institut fuer Photonische Technologien e.V., Abt. Halbleiter Nanostrukturen, Jena (Germany)

    2010-07-01

    Ordered arrays of silicon nanowires (SiNWs) are promising building blocks for a variety of photonic, photovoltaic and sensor applications. In our approach to create SiNWs we use electron beam lithography (EBL) and thermal metal evaporation to create nano-patterned arrays of gold nanodots on a Si(111) wafer. These Au dots are subsequently used to catalyze the bottom-up growth of SiNWs that follow the vapor-liquid-solid (VLS) growth mechanism using silane in a CVD reactor. The grown nanowires are characterized structurally using SEM, TEM and electron backscatter diffraction (EBSD). We observe epitaxial growth of the SiNWs on the Si(111) wafer and we are able to control the growth direction to be either dominated by <111> or <112> directions by just changing the silane partial pressure. The lengths as well as the diameters of the wires are precisely controlled by the EBL Au dot patterning and CVD parameters. To predict wire diameters modelling is carried out that takes into account the EBL- and CVD-parameters and describes the observed experimental results very well. Furthermore we were able to create single crystalline Au-dot arrays which are very promising structures for surface enhanced raman spectroscopy (SERS) substrates.

  2. Gamma-ray irradiation hardness of arrayed silicon microhole-based radial p–n junction solar cells

    International Nuclear Information System (INIS)

    The γ-ray irradiation hardness of arrayed silicon microhole-based radial p–n junction (ASMRJ) solar cells (SCs) has been experimentally studied. It was found that the sidewall morphology of the microhole arrays had an important effect on the radiation hardness, so the 4 µm-pitch ASMRJ SCs with hole arrays' sidewalls both unpassivated and passivated were made and referred to as 4 µm-U-ASMRJ and -P-ASMRJ SCs, respectively. On increasing the radiation doses, in contrast with the monotonous and rapid degradation of short circuit current density and open circuit voltage for the planar SCs, these parameters for the 4 µm-U-ASMRJ SCs show a small increase in the initial stage of γ-ray irradiation and then a slow decline. Average conversion efficiency shows an initial slight ascent by 4.5%. Additionally, the average conversion efficiency for the 2 µm-U-ASMRJ SCs shows an initial slight ascent by 5.7%. When the radiation doses grow to 8 × 106 rad, the average conversion efficiency degradation rates for the 2 µm- and 4 µm-U-ASMRJ SCs are 14% and 15%, respectively, whereas it is 39% for the planar SCs. The radiation-gettering mechanism is suggested to explain the radiation-hardened properties of the U-ASMRJ SCs. (paper)

  3. Large-Area, UV-Optimized, Back-Illuminated Silicon Photomultiplier Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Large-area (3m2), UV-sensitive focal plane arrays are needed for observation of air showers from ultra-high energy cosmic rays (JEM-EUSO) as well as for...

  4. Photosensor Characterization for the Cherenkov Telescope Array: Silicon Photomultiplier versus Multi-Anode Photomultiplier Tube

    OpenAIRE

    Bouvier, Aurelien; Gebremedhin, Lloyd; Johnson, Caitlin; Kuznetsov, Andrey; Williams, David; Otte, Nepomuk; Strausbaugh, Robert; Hidaka, Naoya; Tajima, Hiroyasu; Hinton, Jim; White, Richard; Errando, Manel; Mukherjee, Reshmi

    2013-01-01

    Photomultiplier tube technology has been the photodetector of choice for the technique of imaging atmospheric Cherenkov telescopes since its birth more than 50 years ago. Recently, new types of photosensors are being contemplated for the next generation Cherenkov Telescope Array. It is envisioned that the array will be partly composed of telescopes using a Schwarzschild-Couder two mirror design never built before which has significantly improved optics. The camera of this novel optical design...

  5. Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells.

    Science.gov (United States)

    Zhou, Suqiong; Yang, Zhenhai; Gao, Pingqi; Li, Xiaofeng; Yang, Xi; Wang, Dan; He, Jian; Ying, Zhiqin; Ye, Jichun

    2016-12-01

    Crystalline silicon thin film (c-Si TF) solar cells with an active layer thickness of a few micrometers may provide a viable pathway for further sustainable development of photovoltaic technology, because of its potentials in cost reduction and high efficiency. However, the performance of such cells is largely constrained by the deteriorated light absorption of the ultrathin photoactive material. Here, we report an efficient light-trapping strategy in c-Si TFs (~20 μm in thickness) that utilizes two-dimensional (2D) arrays of inverted nanopyramid (INP) as surface texturing. Three types of INP arrays with typical periodicities of 300, 670, and 1400 nm, either on front, rear, or both surfaces of the c-Si TFs, are fabricated by scalable colloidal lithography and anisotropic wet etch technique. With the extra aid of antireflection coating, the sufficient optical absorption of 20-μm-thick c-Si with a double-sided 1400-nm INP arrays yields a photocurrent density of 39.86 mA/cm(2), which is about 76 % higher than the flat counterpart (22.63 mA/cm(2)) and is only 3 % lower than the value of Lambertian limit (41.10 mA/cm(2)). The novel surface texturing scheme with 2D INP arrays has the advantages of excellent antireflection and light-trapping capabilities, an inherent low parasitic surface area, a negligible surface damage, and a good compatibility for subsequent process steps, making it a good alternative for high-performance c-Si TF solar cells. PMID:27071681

  6. Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells

    Science.gov (United States)

    Zhou, Suqiong; Yang, Zhenhai; Gao, Pingqi; Li, Xiaofeng; Yang, Xi; Wang, Dan; He, Jian; Ying, Zhiqin; Ye, Jichun

    2016-04-01

    Crystalline silicon thin film (c-Si TF) solar cells with an active layer thickness of a few micrometers may provide a viable pathway for further sustainable development of photovoltaic technology, because of its potentials in cost reduction and high efficiency. However, the performance of such cells is largely constrained by the deteriorated light absorption of the ultrathin photoactive material. Here, we report an efficient light-trapping strategy in c-Si TFs (~20 μm in thickness) that utilizes two-dimensional (2D) arrays of inverted nanopyramid (INP) as surface texturing. Three types of INP arrays with typical periodicities of 300, 670, and 1400 nm, either on front, rear, or both surfaces of the c-Si TFs, are fabricated by scalable colloidal lithography and anisotropic wet etch technique. With the extra aid of antireflection coating, the sufficient optical absorption of 20-μm-thick c-Si with a double-sided 1400-nm INP arrays yields a photocurrent density of 39.86 mA/cm2, which is about 76 % higher than the flat counterpart (22.63 mA/cm2) and is only 3 % lower than the value of Lambertian limit (41.10 mA/cm2). The novel surface texturing scheme with 2D INP arrays has the advantages of excellent antireflection and light-trapping capabilities, an inherent low parasitic surface area, a negligible surface damage, and a good compatibility for subsequent process steps, making it a good alternative for high-performance c-Si TF solar cells.

  7. Superparamagnetic iron oxide nanoparticle attachment on array of micro test tubes and microbeakers formed on p-type silicon substrate for biosensor applications

    Directory of Open Access Journals (Sweden)

    Raja Sufi

    2011-01-01

    Full Text Available Abstract A uniformly distributed array of micro test tubes and microbeakers is formed on a p-type silicon substrate with tunable cross-section and distance of separation by anodic etching of the silicon wafer in N, N-dimethylformamide and hydrofluoric acid, which essentially leads to the formation of macroporous silicon templates. A reasonable control over the dimensions of the structures could be achieved by tailoring the formation parameters, primarily the wafer resistivity. For a micro test tube, the cross-section (i.e., the pore size as well as the distance of separation between two adjacent test tubes (i.e., inter-pore distance is typically approximately 1 μm, whereas, for a microbeaker the pore size exceeds 1.5 μm and the inter-pore distance could be less than 100 nm. We successfully synthesized superparamagnetic iron oxide nanoparticles (SPIONs, with average particle size approximately 20 nm and attached them on the porous silicon chip surface as well as on the pore walls. Such SPION-coated arrays of micro test tubes and microbeakers are potential candidates for biosensors because of the biocompatibility of both silicon and SPIONs. As acquisition of data via microarray is an essential attribute of high throughput bio-sensing, the proposed nanostructured array may be a promising step in this direction.

  8. Angle of regional and non-independent PV array%区域性非独立光伏方阵安装倾角的研究

    Institute of Scientific and Technical Information of China (English)

    魏建新; 申健

    2011-01-01

    With the wide application of PV in China, the problem of the best angle of solar array has drawn the increasing attentions. The angle calculation of the independent solar panels was discussed in this paper, the impact of the solar array angle on the wind and solar power generation system was analyzed, and the solutions to define the solar parameters according to the regional wind and PV hybrid parameters were proposed.%随着光伏发电在我国的广泛应用,光伏阵列的最佳倾角问题也越来越引起人们的重视,在论述独立太阳电池板倾角计算方法的基础上,较为深入的分析了风光互补发电系统中光伏阵列倾角对系统发电的影响,并提出了根据区域性风光互补参数确定太阳能倾角的基本解决办法.

  9. Monolithic Integrations of Slanted Silicon Nanostructures on 3D Microstructures and Their Application to Surface Enhanced Raman Spectroscopy

    OpenAIRE

    Xu, Zhida; Liu, Logan

    2014-01-01

    We demonstrated fabrication of black silicon with slanted nanocone array on both planar and 3D micro and meso scale structures produced by a high-throughput lithography-free oblique-angle plasma etching process. Nanocones with gradual change in height were created on the same piece of silicon. The relation between the slanted angle of nanocones and incident angle of directional plasma is experimentally investigated. In order to demonstrate the monolithic integration of nanostructures on micro...

  10. Verifying field-effect passivation of a SiNx layer on a silicon nanopillar array using surface photovoltage characterization

    Science.gov (United States)

    Kim, Eunah; Cho, Yunae; Sohn, Ahrum; Kim, Dong-Wook; Park, Hyeong-Ho; Kim, Joondong

    In silicon (Si) wafer based photovoltaic (PV) devices, light-trapping strategies to improve optical absorption are very important due to the indirect bandgap of Si. Surface nano-patterned Si enable omnidirectional broadband antireflection (AR) effects with the help of graded refractive index, multiple scattering, diffraction, and Mie resonance. In this work, the surface photovoltage (SPV) of periodic nanopillar (NP) arrays were investigated using Kelvin probe force microscopy (KPFM). The SPV characteristics clearly revealed that positive fixed charges in SiNx layers induced downward band bending at the Si surface and increased SPV at the NP top surface. The similar SPV value of NPs and planar counterpart suggests that field effect passivation by the dielectric layer coating could help improve PV performance of nanostructure-based Si solar cells and that KPFM measurements are useful tool for quantitative investigation of surface electrical properties of Si nanostructures.

  11. Determination of parameters for successful spray coating of silicon microneedle arrays

    OpenAIRE

    Marie G McGrath; Vrdoljak, Anto; O'Mahony, Conor; Oliveira, Jorge C.; Moore, Anne C.; Abina M. Crean

    2011-01-01

    Coated microneedle patches have demonstrated potential for effective, minimally invasive, drug and vaccine delivery. To facilitate cost-effective, industrial-scale production of coated microneedle patches, a continuous coating method which utilises conventional pharmaceutical processes is an attractive prospect. Here, the potential of spray-coating silicon microneedle patches using a conventional film-coating process was evaluated and the key process parameters which impact on coating coalesc...

  12. The giant enhancement of Fano-type resonance in a gain-assisted silicon slab array

    Institute of Scientific and Technical Information of China (English)

    Dong Zheng-Gao; Li Jia-Qi; Shao Jian; Yu Xiao-Qiang; Wang Yu-Kun; Zhai Ya

    2013-01-01

    Giant resonance enhancement is demonstrated to be due to the Fano interference in a grating waveguide composed of gain-assisted silicon slabs.The Fano mode is characterized by its ultra-narrow asymmetric spectrum,different from that of a pure electric or magnetic dipole.The simulation indicates that a sharp Fano-interfered lineshape is responsible for the giant resonance enhancement featuring the small-gain requirements.

  13. The giant enhancement of Fano-type resonance in a gain-assisted silicon slab array

    International Nuclear Information System (INIS)

    Giant resonance enhancement is demonstrated to be due to the Fano interference in a grating waveguide composed of gain-assisted silicon slabs. The Fano mode is characterized by its ultra-narrow asymmetric spectrum, different from that of a pure electric or magnetic dipole. The simulation indicates that a sharp Fano-interfered lineshape is responsible for the giant resonance enhancement featuring the small-gain requirements. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. Directional detection of fast neutrons by the Timepix pixel detector coupled to plastic scintillator with silicon photomultiplier array

    International Nuclear Information System (INIS)

    Fast neutrons are conventionally detected by scintillators of large volume, low spatial resolution and poor, if any, directional sensitivity. In this paper we present a detection technique based on the tracking of protons recoiled by fast neutrons. In this approach we use the silicon pixel detector Timepix attached in contact planar geometry to a fast plastic scintillator. The protons recoiled by neutrons in the scintillator are detected by the pixel detector while scintillation light is sensed by a 4 × 4 array of silicon photomultipliers (SiPM). Each photomultiplier is equipped with an independent amplifier and discriminator providing a fast trigger signal to the pixel detector. Variable threshold level allows adjustment of the trigger sensitivity. Single events in the pixel detector can be tagged and triggered by the scintillating detector. Position and energy sensitivity of the scintillator together with the position and the energy sensitivity of the pixel detector allow obtaining information about the position and the spectrum of the neutron source. The Timepix detector is operated with the FITPix readout interface and the Pixelman software package providing control, DAQ and online visualization. The assembled prototype has been tested with fast neutrons from a laboratory radioactive source (AmBe) and a Van de Graaff accelerator (D-T reaction). The detector architecture, comprising the Timepix device, the scintillator and the segmented SiPM, allows stacking several such units for increased detection efficiency and enhanced directional sensitivity.

  15. Fabrication of three-dimensional MIS nano-capacitor based on nano-imprinted single crystal silicon nanowire arrays

    KAUST Repository

    Zhai, Yujia

    2012-11-26

    We report fabrication of single crystalline silicon nanowire based-three-dimensional MIS nano-capacitors for potential analog and mixed signal applications. The array of nanowires is patterned by Step and Flash Imprint Lithography (S-FIL). Deep silicon etching (DSE) is used to form the nanowires with high aspect ratio, increase the electrode area and thus significantly enhance the capacitance. High-! dielectric is deposited by highly conformal atomic layer deposition (ALD) Al2O3 over the Si nanowires, and sputtered metal TaN serves as the electrode. Electrical measurements of fabricated capacitors show the expected increase of capacitance with greater nanowire height and decreasing dielectric thickness, consistent with calculations. Leakage current and time-dependent dielectric breakdown (TDDB) are also measured and compared with planar MIS capacitors. In view of greater interest in 3D transistor architectures, such as FinFETs, 3D high density MIS capacitors offer an attractive device technology for analog and mixed signal applications. - See more at: http://www.eurekaselect.com/105099/article#sthash.EzeJxk6j.dpuf

  16. Arrays of ZnO nanocolumns for 3-dimensional very thin amorphous and microcrystalline silicon solar cells

    International Nuclear Information System (INIS)

    We report on the hydrothermal growth of high quality arrays of single crystalline zinc oxide (ZnO) nanocolumns, oriented perpendicularly to the transparent conductive oxide substrate. In order to obtain precisely defined spacing and arrangement of ZnO nanocolumns over an area up to 0.5 cm2, we used electron beam lithography. Vertically aligned ZnO (multicrystalline or single crystals) nanocolumns were grown in an aqueous solution of zinc nitrate hexahydrate and hexamethylenetetramine at 95 °C, with a growth rate 0.5 ÷ 1 μm/h. The morphology of the nanostructures was visualized by scanning electron microscopy. Such nanostructured ZnO films were used as a substrate for the recently developed 3-dimensional thin film silicon (amorphous, microcrystalline) solar cell, with a high efficiency potential. The photoelectrical and optical properties of the ZnO nanocolumns and the silicon absorber layers of these type nanostructured solar cells were investigated in details. - Highlights: • Vertically-oriented ZnO nanocolumns were grown by hydrothermal method. • The ZnO nanocolumns were grown over an area of 0.5 cm2. • For precise arrangement of the ZnO nanocolumns electron beam lithography was used. • We report on 3-D design of nanostructured solar cell. • Optical thickness of nanostructured cell was three times higher compared to flat cell

  17. Fully Digital Arrays of Silicon Photomultipliers (dSiPM) - a Scalable Alternative to Vacuum Photomultiplier Tubes (PMT)

    Science.gov (United States)

    Haemisch, York; Frach, Thomas; Degenhardt, Carsten; Thon, Andreas

    Silicon Photomultipliers (SiPMs) have emerged as promising alternative to fast vacuum photomultiplier tubes (PMT). A fully digital implementation of the Silicon Photomultiplier (dSiPM) has been developed in order to overcome the deficiencies and limitations of the so far only analog SiPMs (aSiPMs). Our sensor is based on arrays of single photon avalanche photodiodes (SPADs) integrated in a standard CMOS process. Photons are detected directly by sensing the voltage at the SPAD anode using a dedicated cell electronics block next to each diode. This block also contains active quenching and recharge circuits as well as a one bit memory for the selective inhibit of detector cells. A balanced trigger network is used to propagate the trigger signal from all cells to the integrated time-to-digital converter. In consequence, photons are detected and counted as digital signals, thus making the sensor less susceptible to temperature variations and electronic noise. The integration with CMOS logic provides the added benefit of low power consumption and possible integration of data post-processing directly in the sensor. In this overview paper, we discuss the sensor architecture together with its characteristics with a focus on scalability and practicability aspects for applications in medical imaging, high energy- and astrophysics.

  18. Investigations on optoelectronic transition mechanisms of silicon nanoporous pillar array by using surface photovoltage spectroscopy and photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zhen-Gang, E-mail: huzhengang@zzu.edu.cn; Tian, Yong-Tao; Li, Xin-Jian [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450001 (China)

    2014-03-28

    We report the electronic transition mechanisms for hydrothermally prepared silicon nanoporous pillar array (Si-NPA), investigated by surface photovoltage (SPV) spectroscopy and photoluminescence (PL) spectroscopy. By comparing the SPV spectra of single crystal silicon (sc-Si) with that of Si-NPA, the silicon nano-crystallites (nc-Si)/SiO{sub x} nanostructure in the Si-NPA could produce SPV in the wavelength range of 300–580 nm. And 580 nm (∼2.14 eV) was considered as the absorption edge of the nc-Si/SiO{sub x} nanostructure. After the sample was annealed and oxidized in air at different temperatures, both the SPV in the wavelength range of 300–580 nm and the PL emission band around 690 nm from the nc-Si/SiO{sub x} nanostructure weakened and disappeared as the annealing temperature increased from 100 to 500 °C. But both the red-infrared PL band (>710 nm) and the violet-blue PL band were enhanced by increasing the annealing temperature. After 2 years of natural oxidation in air, the SPV features for sc-Si disappeared completely, and the SPV characteristics of the nc-Si/SiO{sub x} nanostructure could be clearly observed. After analysis, the Si–O structure related localized states at the nc-Si/SiO{sub x} interface dominated the electronic transitions during the red PL emission and the SPV for the nc-Si/SiO{sub x} nanostructure in Si-NPA, the red–infrared PL was due to the Si=O structure related electronic transitions, and the violet-blue PL emission could attribute to the oxygen-related defect related recombination of the photo induced carriers.

  19. Investigations on optoelectronic transition mechanisms of silicon nanoporous pillar array by using surface photovoltage spectroscopy and photoluminescence spectroscopy

    Science.gov (United States)

    Hu, Zhen-Gang; Tian, Yong-Tao; Li, Xin-Jian

    2014-03-01

    We report the electronic transition mechanisms for hydrothermally prepared silicon nanoporous pillar array (Si-NPA), investigated by surface photovoltage (SPV) spectroscopy and photoluminescence (PL) spectroscopy. By comparing the SPV spectra of single crystal silicon (sc-Si) with that of Si-NPA, the silicon nano-crystallites (nc-Si)/SiOx nanostructure in the Si-NPA could produce SPV in the wavelength range of 300-580 nm. And 580 nm (˜2.14 eV) was considered as the absorption edge of the nc-Si/SiOx nanostructure. After the sample was annealed and oxidized in air at different temperatures, both the SPV in the wavelength range of 300-580 nm and the PL emission band around 690 nm from the nc-Si/SiOx nanostructure weakened and disappeared as the annealing temperature increased from 100 to 500 °C. But both the red-infrared PL band (>710 nm) and the violet-blue PL band were enhanced by increasing the annealing temperature. After 2 years of natural oxidation in air, the SPV features for sc-Si disappeared completely, and the SPV characteristics of the nc-Si/SiOx nanostructure could be clearly observed. After analysis, the Si-O structure related localized states at the nc-Si/SiOx interface dominated the electronic transitions during the red PL emission and the SPV for the nc-Si/SiOx nanostructure in Si-NPA, the red-infrared PL was due to the Si=O structure related electronic transitions, and the violet-blue PL emission could attribute to the oxygen-related defect related recombination of the photo induced carriers.

  20. Investigations on optoelectronic transition mechanisms of silicon nanoporous pillar array by using surface photovoltage spectroscopy and photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    We report the electronic transition mechanisms for hydrothermally prepared silicon nanoporous pillar array (Si-NPA), investigated by surface photovoltage (SPV) spectroscopy and photoluminescence (PL) spectroscopy. By comparing the SPV spectra of single crystal silicon (sc-Si) with that of Si-NPA, the silicon nano-crystallites (nc-Si)/SiOx nanostructure in the Si-NPA could produce SPV in the wavelength range of 300–580 nm. And 580 nm (∼2.14 eV) was considered as the absorption edge of the nc-Si/SiOx nanostructure. After the sample was annealed and oxidized in air at different temperatures, both the SPV in the wavelength range of 300–580 nm and the PL emission band around 690 nm from the nc-Si/SiOx nanostructure weakened and disappeared as the annealing temperature increased from 100 to 500 °C. But both the red-infrared PL band (>710 nm) and the violet-blue PL band were enhanced by increasing the annealing temperature. After 2 years of natural oxidation in air, the SPV features for sc-Si disappeared completely, and the SPV characteristics of the nc-Si/SiOx nanostructure could be clearly observed. After analysis, the Si–O structure related localized states at the nc-Si/SiOx interface dominated the electronic transitions during the red PL emission and the SPV for the nc-Si/SiOx nanostructure in Si-NPA, the red–infrared PL was due to the Si=O structure related electronic transitions, and the violet-blue PL emission could attribute to the oxygen-related defect related recombination of the photo induced carriers

  1. Silicon Photomultiplier Research and Development Studies for the Large Size Telescope of the Cherenkov Telescope Array

    OpenAIRE

    Rando, Riccardo; Corti, Daniele; Dazzi, Francesco; de Angelis, Alessandro; Dettlaff, Antonios; Dorner, Daniela; Fink, David; Fouque, Nadia; Grundner, Felix; Haberer, Werner; Hahn, Alexander; Hermel, Richard; Korpar, Samo; Mezek, Gašper Kukec; Maier, Ronald

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the the next generation facility of imaging atmospheric Cherenkov telescopes; two sites will cover both hemispheres. CTA will reach unprecedented sensitivity, energy and angular resolution in very-high-energy gamma-ray astronomy. Each CTA array will include four Large Size Telescopes (LSTs), designed to cover the low-energy range of the CTA sensitivity ($\\sim$20 GeV to 200 GeV). In the baseline LST design, the focal-plane camera will be instrumented with...

  2. Silicon-Copper Helical Arrays for New Generation Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Polat, B. D.; Keles, O; Amine, K

    2015-09-22

    The helical array (with 10 atom % Cu) exhibits 3130 mAh g–1 with 83% columbic efficiency and retains 83% of its initial discharge capacity after 100th cycle. Homogeneously distributed interspaces between the helical arrays accommodate high volumetric changes upon cycling and copper atoms form a conductive network to buffer the mechanical stress generated in the electrode while minimizing electrochemical agglomeration of Si. Also, ion assistance is believed to enhance the density of the helices at the bottom thus increasing the adhesion

  3. Built-In Self-Test Circuits for Silicon Phased Array Applications /

    OpenAIRE

    Inac, Ozgur

    2013-01-01

    The thesis presents built-in self-test circuits for phased array applications, and the characterization of a 45 nm CMOS SOI technology for millimeter-wave systems. First, an X-Band phased-array RF integrated circuit with built-in self-test (BIST) capabilities is presented. The BIST is accomplished using a miniature capacitive coupler at the input of each channel and an on-chip I/Q vector receiver. Systematic effects introduced with BIST system are covered in detail and are calibrated out of t...

  4. First results of a novel Silicon Drift Detector array designed for low energy X-ray fluorescence spectroscopy

    Science.gov (United States)

    Rachevski, Alexandre; Ahangarianabhari, Mahdi; Bellutti, Pierluigi; Bertuccio, Giuseppe; Brigo, Elena; Bufon, Jernej; Carrato, Sergio; Castoldi, Andrea; Cautero, Giuseppe; Fabiani, Sergio; Giacomini, Gabriele; Gianoncelli, Alessandra; Giuressi, Dario; Guazzoni, Chiara; Kourousias, George; Liu, Chang; Menk, Ralf Hendrik; Montemurro, Giuseppe Vito; Picciotto, Antonino; Piemonte, Claudio; Rashevskaya, Irina; Shi, Yongbiao; Stolfa, Andrea; Vacchi, Andrea; Zampa, Gianluigi; Zampa, Nicola; Zorzi, Nicola

    2016-07-01

    We developed a trapezoidal shaped matrix with 8 cells of Silicon Drift Detectors (SDD) featuring a very low leakage current (below 180 pA/cm2 at 20 °C) and a shallow uniformly implanted p+ entrance window that enables sensitivity down to few hundreds of eV. The matrix consists of a completely depleted volume of silicon wafer subdivided into 4 square cells and 4 half-size triangular cells. The energy resolution of a single square cell, readout by the ultra-low noise SIRIO charge sensitive preamplifier, is 158 eV FWHM at 5.9 keV and 0 °C. The total sensitive area of the matrix is 231 mm2 and the wafer thickness is 450 μm. The detector was developed in the frame of the INFN R&D project ReDSoX in collaboration with FBK, Trento. Its trapezoidal shape was chosen in order to optimize the detection geometry for the experimental requirements of low energy X-ray fluorescence (LEXRF) spectroscopy, aiming at achieving a large detection angle. We plan to exploit the complete detector at the TwinMic spectromicroscopy beamline at the Elettra Synchrotron (Trieste, Italy). The complete system, composed of 4 matrices, increases the solid angle coverage of the isotropic photoemission hemisphere about 4 times over the present detector configuration. We report on the layout of the SDD matrix and of the experimental set-up, as well as the spectroscopic performance measured both in the laboratory and at the experimental beamline.

  5. Integration of an amorphous silicon passive pixel sensor array with a lateral amorphous selenium detector for large area indirect conversion x-ray imaging applications

    Science.gov (United States)

    Wang, Kai; Yazdandoost, Mohammad Y.; Keshavarzi, Rasoul; Shin, Kyung-Wook; Hristovski, Christos; Abbaszadeh, Shiva; Chen, Feng; Majid, Shaikh Hasibul; Karim, Karim S.

    2011-03-01

    Previously, we reported on a single-pixel detector based on a lateral a-Se metal-semiconductor-metal structure, intended for indirect conversion X-ray imaging. This work is the continuous effort leading to the first prototype of an indirect conversion X-ray imaging sensor array utilizing lateral amorphous selenium. To replace a structurally-sophisticated vertical multilayer amorphous silicon photodiode, a lateral a-Se MSM photodetector is employed which can be easily integrated with an amorphous silicon thin film transistor passive pixel sensor array. In this work, both 2×2 macro-pixel and 32×32 micro-pixel arrays were fabricated and tested along with discussion of the results.

  6. Effects of tilt angle of mirror-lamp system on shape of solid-liquid interface of silicon melt during floating zone growth using infrared convergent heating

    Science.gov (United States)

    Hossain, Md. Mukter; Watauchi, Satoshi; Nagao, Masanori; Tanaka, Isao

    2016-01-01

    The tilt effects of the mirror-lamp (M-L) system on the shape of the interface of the silicon molten zone formed during growth using the infrared convergent heating floating zone method were studied at various positions of the M-L system. The stability and the interfaces of the molten zone formed in the tilted condition were compared with those in the no tilt condition. The molten zone appeared to be more stabilized in the tilted condition than in the no tilt condition. However, the conventional parameters characterizing the interface shape such as convexities (h/r), gap and zone length (L) were almost independent of the tilt angle (θ) of the M-L system and insufficient to discuss the tilting effects on the molten zone shape. The curvature of the solid-liquid interface was affected by the θ. New characterizing parameters such as the growth interface and triple point angles (δ and TPA, respectively) were effective to quantitatively describe the tilting effects on the interface shape. With increase of the θ, the δ was decreased and the TPA was increased in both the feed and crystal sides. A silicon crystal of 45 mm in diameter was grown successfully in the tilted condition.

  7. Phase I of the automated array assembly task of the low cost silicon solar array project. Annual technical report. Motorola report No. 2258/4

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, M.G.; Pryor, R.A.; Grenon, L.A.; Lesk, I.A.

    1977-02-01

    Work performed to analyze, both technically and economically, the state of technology readiness for the automated production of solar cells and modules is compiled and reviewed critically. The long-term objective solar module characteristics include a selling price of less than $.50/peak watt and a mean-time-before-failure (MTBF) of 20 years in any terrestrial environment. While efficiency is important to attaining the cost goal, it is a most significant factor in array economics; accordingly, this program has stressed high efficiency, with a suggested cell goal of 15 percent. The analysis emphasized technical evaluation of individual process steps first, and then concentrated upon process sequences for making solar cells and modules. Further analysis was performed to yield a detailed cost study of individual process steps; this was applied to the cost analysis of potential process sequences. Potentially economical process sequences formed from process steps deemed to have high technical merit were then identified. Potentially promising technologies needing further development to achieve satisfactory maturity were then identified. It is concluded that, while specific areas of technology need advanced development and the source of silicon needs definition, no fundamentally new technology needs to be developed to permit manufacture of solar cells which will meet the 1985 LSSA Program cost goals.

  8. A CdZnTe array for the detection of explosives in baggage by energy-dispersive X-ray diffraction signatures at multiple scatter angles

    Science.gov (United States)

    Malden, Catharine H.; Speller, Robert. D.

    2000-07-01

    CdZnTe detectors were used to collect energy-dispersive diffraction spectra at a range of scatter angles, from sheets of explosives hidden in baggage. It is shown that the combined information from these `signatures' can be used to determine whether an explosive sample is present or not. The geometrical configuration of the collimation and the position of the baggage within the scanner must be taken into careful consideration when optimising the capabilities of such a system. The CdZnTe array lends itself well to the detection of explosives in baggage since multiple signals may be collected simultaneously providing more rapid detection than achieved using a single detector.

  9. A CdZnTe array for the detection of explosives in baggage by energy-dispersive X-ray diffraction signatures at multiple scatter angles

    CERN Document Server

    Malden, C H

    2000-01-01

    CdZnTe detectors were used to collect energy-dispersive diffraction spectra at a range of scatter angles, from sheets of explosives hidden in baggage. It is shown that the combined information from these 'signatures' can be used to determine whether an explosive sample is present or not. The geometrical configuration of the collimation and the position of the baggage within the scanner must be taken into careful consideration when optimising the capabilities of such a system. The CdZnTe array lends itself well to the detection of explosives in baggage since multiple signals may be collected simultaneously providing more rapid detection than achieved using a single detector.

  10. Microchannel-connected SU-8 honeycombs by single-step projection photolithography for positioning cells on silicon oxide nanopillar arrays

    International Nuclear Information System (INIS)

    We report on the fabrication, functionalization and testing of SU-8 microstructures for cell culture and positioning over large areas. The microstructure consists of a honeycomb arrangement of cell containers interconnected by microchannels and centered on nanopillar arrays designed for promoting cell positioning. The containers have been dimensioned to trap single cells and, with a height of 50 µm, prevent cells from escaping. The structures are fabricated using a single ultraviolet photolithography exposure with focus depth in the lower part of the SU-8 resist. With optimized process parameters, microchannels of various aspect ratios are thus produced. The cell containers and microchannels serve for the organization of axonal growth between neurons. The roughly 2 µm-high and 500 nm-wide nanopillars are made of silicon oxide structured by deep reactive ion etching. In future work, beyond their cell positioning purpose, the nanopillars could be functionalized as sensors. The proof of concept of the novel microstructure for organized cell culture is given by the successful growth of interconnected PC12 cells. Promoted by the honeycomb geometry, a dense network of interconnections between the cells has formed and the intended intimate contact of cells with the nanopillar arrays was observed by scanning electron microscopy. This proves the potential of these new devices as tools for the controlled cell growth in an interconnected container system with well-defined 3D geometry. (paper)

  11. X-ray tests of a microchannel plate detector and amorphous silicon pixel array readout for neutron radiography

    International Nuclear Information System (INIS)

    High-performance large area imaging detectors for fast neutrons in the 5-14 MeV energy range do not exist at present. The aim of this project is to combine microchannel plates or MCPs (or similar electron multiplication structures) traditionally used in image intensifiers and X-ray detectors with amorphous silicon (a-Si) pixel arrays to produce a composite converter and intensifier position sensitive imaging system. This detector will provide an order of magnitude improvement in image resolution when compared with current millimetre resolution limits obtained using phosphor or scintillator-based hydrogen rich converters. In this study we present the results of the initial experimental evaluation of the prototype system. This study was carried out using a medical X-ray source for the proof of concept tests, the next phase will involve neutron imaging tests. The hybrid detector described in this study is a unique development and paves the way for large area position sensitive detectors consisting of MCP or microsphere plate detectors and a-Si or polysilicon pixel arrays. Applications include neutron and X-ray imaging for terrestrial applications. The technology could be extended to space instrumentation for X-ray astronomy

  12. Influence of growth time on field emission properties from carbon nanotubes deposited on arrayed nanoporous silicon pillars

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Weifen, E-mail: gingerwfj@yahoo.com.cn [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Hao Haoshan [Department of Mathematical and Physical Sciences, Henan Institute of Engineering, Zhengzhou 451191 (China); Wang Yusheng; Xu Lei; Zhang Tianjie [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China)

    2011-05-15

    We investigated the influence of growth time on field emission properties of multi-walled carbon nanotubes deposited on silicon nanoporous pillar array (MWCNTs/Si-NPA), which were fabricated by thermal chemical vapour deposition at 800 deg. C for 5, 15 and 25 min respectively, to better understand the origins of good field emission properties. The results showed that the MWCNTs/Si-NPA grown for 15 min had the highest field emission efficiency of the three types of samples. Morphologies of the products were examined by field-emission scanning electron microscope, and the excellent field emission performance was attributed not only to the formation of a nest array of multi-walled carbon nanotubes, which would largely reduce the electrostatic shielding among the emitters and resulted in a great enhancement factor, but also to the medium MWCNTs density films, there was an ideal compromise between the emitter density and the intertube distance, which also could effectively avoid electrostatic shielding effects, along with a high emitter density.

  13. Development of a 2D array silicon detector magic plate for the dosimetric verification of IMRT treatment delivery

    International Nuclear Information System (INIS)

    Full text: We have developed an IMRT and VMAT dosimetry system for pre-treatment and during treatment verification. The 'Magic Plate' (MP) diode array was designed and prototyped by the CMRP and ICCe. It is a 2D diode array that can be used for in phantom dose measurement and can also function as a transmission detector for in vivo measurements during patient treatment. The prototype MP comprises of II x 11 silicon diodes mounted on a 0.6 mm Kapton substrate. Detectors are spaced 1 cm apart with sensitive volumes of 0.5 x 0.5 x 0.05 mm'. Phantom measurements were performed using the MP located at isocentre in the cavity of an l'mRT phantom. For fluence measurements in transmission mode the MP was mounted on the linac accessory slot. The detector was characterized and a nine field head and neck IMRT test plan was delivered. Measurements were compared with EBT2 films and Pinnacle predicted dose distributions. The 3%/3 mm gamma criteria was used for comparison. Average pass rates for the MP versus Pinnacle and MP versus EBT2 were 82.9 and 88.1 % in the phantom. Gamma analysis of MP versus EBT2 when used as transmission detectors gave a pass rate of 94.8%. The prototype MP design shows promise as IMRT dosimetric system. Future work involves refining the acquisition system, further detailed characterization, Monte Carlo simulation of the detector and its application to VMAT.

  14. Microchannel-connected SU-8 honeycombs by single-step projection photolithography for positioning cells on silicon oxide nanopillar arrays

    Science.gov (United States)

    Larramendy, Florian; Charline Blatche, Marie; Mazenq, Laurent; Laborde, Adrian; Temple-Boyer, Pierre; Paul, Oliver

    2015-04-01

    We report on the fabrication, functionalization and testing of SU-8 microstructures for cell culture and positioning over large areas. The microstructure consists of a honeycomb arrangement of cell containers interconnected by microchannels and centered on nanopillar arrays designed for promoting cell positioning. The containers have been dimensioned to trap single cells and, with a height of 50 µm, prevent cells from escaping. The structures are fabricated using a single ultraviolet photolithography exposure with focus depth in the lower part of the SU-8 resist. With optimized process parameters, microchannels of various aspect ratios are thus produced. The cell containers and microchannels serve for the organization of axonal growth between neurons. The roughly 2 µm-high and 500 nm-wide nanopillars are made of silicon oxide structured by deep reactive ion etching. In future work, beyond their cell positioning purpose, the nanopillars could be functionalized as sensors. The proof of concept of the novel microstructure for organized cell culture is given by the successful growth of interconnected PC12 cells. Promoted by the honeycomb geometry, a dense network of interconnections between the cells has formed and the intended intimate contact of cells with the nanopillar arrays was observed by scanning electron microscopy. This proves the potential of these new devices as tools for the controlled cell growth in an interconnected container system with well-defined 3D geometry.

  15. Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array

    OpenAIRE

    Esteve Bosch, Raul; MARÍ ROMERO, ANTONIO FRANCISCO; Mora Mas, Francisco José; Pérez Aparicio, José Luis; Toledo Alarcón, José Francisco; Alvarez, V.; Borges, F. I. G.; Carcel, S.; Castel, J.; Cebrian, S.; Cervera, A.; Conde, C. A. N.; Dafni, T.; T. H. V. T. Dias; Diaz, J.

    2013-01-01

    NEXT-DEMO is a high-pressure xenon gas TPC which acts as a technological test-bed and demonstrator for the NEXT-100 neutrinoless double beta decay experiment. In its current configuration the apparatus fully implements the NEXT-100 design concept. This is an asymmetric TPC, with an energy plane made of photomultipliers and a tracking plane made of silicon photomultipliers (SiPM) coated with TPB. The detector in this new configuration has been used to reconstruct the characteristic signature o...

  16. Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes

    International Nuclear Information System (INIS)

    Here we present a simple and novel approach of fabricating three dimensional (3D) n-Si nanowires (NWs) and poly(3-octylthiophene) hybrid solar cells incorporating carbon nanotubes (CNTs). Vertically aligned n-Si NWs arrays were fabricated by electroless chemical etching of a n-Si [1 1 1] wafer. n-Si NWs/poly(3-octylthiophene) hybrid solar cells were fabricated with and without functionalized CNTs incorporation. Fabricated solar cells incorporating CNTs show open circuit voltage (Voc), short circuit current density (Jsc) fill factor (FF) and conversion efficiency as 0.353, 7.85 mA cm-2, 22% and 0.61%, respectively. In fabricated devices n-Si NWs arrays form multiple heterojunctions with the polymer and provide efficient electron collection and transportation, whereas CNTs provide efficient hole transportation.

  17. Geometric dependence of antireflective nanocone arrays towards ultrathin crystalline silicon solar cells

    International Nuclear Information System (INIS)

    The antireflective characteristics of Si nanocone (NC) arrays were estimated using a theory devised for an inhomogeneous antireflection layer, and further verified by the Fourier modal method (FMM). Considering a better impedance matching from air to Si, a minimum depth of 400 nm is essentially required. Although Si NC arrays have usually been suggested to be at a base diameter of ∼300 nm for infinitely thick Si wafers, as wafers become thinner than 50 μm, the optimal base diameter of the NCs is suggested to be ∼500 nm so as to excite more resonant modes. Our simulation work indicates that geometrical parameters such as the top diameter and filling ratio of the NCs are much more sensitive in terms of optimizing the optical performance on ultrathin (∼5 μm) wafers, suggesting the need for strict control of the surface morphology in the nanostructure fabrication process. (paper)

  18. Silicon Geiger-mode avalanche photodiode arrays for photon-starved imaging

    Science.gov (United States)

    Aull, Brian F.

    2015-05-01

    Geiger-mode avalanche photodiodes (GMAPDs) are capable of detecting single photons. They can be operated to directly trigger all-digital circuits, so that detection events are digitally counted or time stamped in each pixel. An imager based on an array of GMAPDs therefore has zero readout noise, enabling quantum-limited sensitivity for photon-starved imaging applications. In this review, we discuss devices developed for 3D imaging, wavefront sensing, and passive imaging.

  19. Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI–LINAC systems

    Energy Technology Data Exchange (ETDEWEB)

    Gargett, Maegan, E-mail: mg406@uowmail.edu.au; Rosenfeld, Anatoly [Centre for Medical Radiation Physics, University of Wollongong, NSW 2522 (Australia); Oborn, Brad [Illawarra Cancer Care Centre, Wollongong Hospital, NSW 2500, Australia and Centre for Medical Radiation Physics, University of Wollongong, NSW 2522 (Australia); Metcalfe, Peter [Centre for Medical Radiation Physics, University of Wollongong, NSW 2522, Australia and Liverpool Cancer Therapy Centre and Ingham Institute, NSW 2170 (Australia)

    2015-02-15

    Purpose: MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named “magic plate,” for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. Methods: GEANT4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-line and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm{sup 3}) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm{sup 2} area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm{sup 2} photon field size. Results: The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. Conclusions: A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI

  20. Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array

    CERN Document Server

    Álvarez, V; Cárcel, S; Castel, J; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Dias, T H V T; Díaz, J; Egorov, M; Esteve, R; Evtoukhovitch, P; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gehman, V M; Gil, A; Goldschmidt, A; Gómez, H; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Iguaz, F J; Irastorza, I G; Jinete, M A; Labarga, L; Laing, A; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Martínez, A; Martínez, G; Miller, T; Moiseenko, A; Monrabal, F; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; da Luz, H Natal; Navarro, G; Nebot-Guinot, M; Nygren, D; Oliveira, C A B; Palma, R; Pérez, J; Aparicio, J L Pérez; Renner, J; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Seguí, L; Serra, L; Shuman, D; Simón, A; Sofka, C; Sorel, M; Toledo, J F; Tomás, A; Torrent, J; Tsamalaidze, Z; Veloso, J F C A; Villar, J A; Webb, R; White, J T; Yahlali, N

    2013-01-01

    NEXT-DEMO is a high-pressure xenon gas TPC which acts as a technological test-bed and demonstrator for the NEXT-100 neutrinoless double beta decay experiment. In its current configuration the apparatus fully implements the NEXT-100 design concept. This is an asymmetric TPC, with an energy plane made of photomultipliers and a tracking plane made of silicon photomultipliers (SiPM) coated with TPB. The detector in this new configuration has been used to reconstruct the characteristic signature of electrons in dense gas. Demonstrating the ability to identify the MIP and ``blob'' regions. Moreover, the SiPM tracking plane allows for the definition of a large fiducial region in which an excellent energy resolution of 1.82% FWHM at 511 keV has been measured (a value which extrapolates to 0.83% at the xenon Qbetabeta).

  1. Alumina Templates on Silicon Wafers with Hexagonally or Tetragonally Ordered Nanopore Arrays via Soft Lithography

    International Nuclear Information System (INIS)

    Due to the potential importance and usefulness, usage of highly ordered nanoporous anodized aluminum oxide can be broadened in industry, when highly ordered anodized aluminum oxide can be placed on a substrate with controlled thickness. Here we report a facile route to highly ordered nanoporous alumina with the thickness of hundreds-of-nanometer on a silicon wafer substrate. Hexagonally or tetragonally ordered nanoporous alumina could be prepared by way of thermal imprinting, dry etching, and anodization. Adoption of reusable polymer soft molds enabled the control of the thickness of the highly ordered porous alumina. It also increased reproducibility of imprinting process and reduced the expense for mold production and pattern generation. As nanoporous alumina templates are mechanically and thermally stable, we expect that the simple and cost effective fabrication through our method would be highly applicable in electronics industry

  2. Characterization of silicon isotropic etch by inductively coupled plasma etcher for microneedle array fabrication

    International Nuclear Information System (INIS)

    This work investigates the isotropic etching properties in inductively coupled plasma (ICP) etcher for microneedle arrays fabrication. The effects of process variables including powers, gas and pressure on needle structure generation are characterized by factorial design of experiment (DOE). The experimental responses of vertical etching depth, lateral etching length, ratio of vertical etching depth to lateral etching length and photoresist etching rate are reported. The relevance of the etching variables is also presented. The obtained etching behaviours for microneedle structure generation will be applied to develop recipes to fabricate microneedles in designed dimensions

  3. Wide Range pH-Tolerable Silicon@Pyrite Cobalt Dichalcogenide Microwire Array Photoelectrodes for Solar Hydrogen Evolution.

    Science.gov (United States)

    Chen, Chih-Jung; Yang, Kai-Chih; Basu, Mrinmoyee; Lu, Tzu-Hsiang; Lu, Ying-Rui; Dong, Chung-Li; Hu, Shu-Fen; Liu, Ru-Shi

    2016-03-01

    This study employed silicon@cobalt dichalcogenide microwires (MWs) as wide range pH-tolerable photocathode material for solar water splitting. Silicon microwire arrays were fabricated through lithography and dry etching technologies. Si@Co(OH)2 MWs were utilized as precursors to synthesize Si@CoX2 (X = S or Se) photocathodes. Si@CoS2 and Si@CoSe2 MWs were subsequently prepared by thermal sulfidation and hydrothermal selenization reaction of Si@Co(OH)2, respectively. The CoX2 outer shell served as cocatalyst to accelerate the kinetics of photogenerated electrons from the underlying Si MWs and reduce the recombination. Moreover, the CoX2 layer completely deposited on the Si surface functioned as a passivation layer by decreasing the oxide formation on Si MWs during solar hydrogen evolution. Si@CoS2 photocathode showed a photocurrent density of -3.22 mA cm(-2) at 0 V (vs RHE) in 0.5 M sulfuric acid electrolyte, and Si@CoSe2 MWs revealed moderate photocurrent density of -2.55 mA cm(-2). However, Si@CoSe2 presented high charge transfer efficiency in neutral and alkaline electrolytes. Continuous chronoamperometry in acid, neutral, and alkaline solutions was conducted at 0 V (vs RHE) to evaluate the photoelectrochemical durability of Si@CoX2 MWs. Si@CoS2 electrode showed no photoresponse after the chronoamperometry test because it was etched through the electrolyte. By contrast, the photocurrent density of Si@CoSe2 MWs gradually increased to -5 mA cm(-2) after chronoamperometry characterization owing to the amorphous structure generation. PMID:26859427

  4. Improved high order grating method to realize wide angle beam steering on liquid crystal optical phased array

    Science.gov (United States)

    Wu, Liang; Wang, Xiangru; Xiong, Caidong; Huang, Ziqiang; Du, Jing; Tan, Qinggui; Li, Man; Wu, Shuanghong; Qiu, Qi

    2015-11-01

    To achieve a wider scanning range of liquid crystal optical phased array (LC-OPA), in this paper, a novel method of improved high order grating (i-HOG) is proposed in one device without introducing any other devices. The method of i-HOG breaks through the traditional ideas of modulo 𝟐𝛑 phase and takes the fringe effect into account to have a multi order extension. Subsequently, the method is verified by numerical simulation showing that it realizes a scanning range of wider than 20 degrees and even wider.

  5. The use of the grey-Taguchi method for the optimization of a silicon nanowires array synthesized using electroless Ag-assisted etching

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Ai-Huei [National Chiao Tung University, Department of Mechanical Engineering (China); Wu, Wen-Fa [National Nano Device Laboratories (China); Chen, Ding-Yeng, E-mail: dnc@cc.hwh.edu.tw [Hwa Hsia Institute of Technology, Department of Mechanical Engineering (China); Hsu, Chun-Yao, E-mail: cyhsu@mail.lhu.edu.tw [Lunghwa University of Science and Technology, Department of Mechanical Engineering (China)

    2013-09-15

    A simple and convenient method for the production of silicon nanowires (SiNWs) that are single crystalline, well aligned and which have large area is direct synthesis onto p-type (100) silicon (Si) wafers, using electroless Ag-assisted etching, in which Ag is both the oxidant and the catalyst. This study proposes a method for the optimization of the etching process parameters for SiNW arrays with multiple performance characteristics, using grey-Taguchi analysis. The effect of the etching process parameters (etching time, solution (AgNO{sub 3}/HF) temperature, silver nitrate (AgNO{sub 3}) concentration and hydrogen fluoride (HF) concentration) on the length, diameter, structure, and morphology of the SiNW arrays were studied. In the confirmation runs, grey relational analysis shows that the length of the SiNW arrays is increased from 15.80 to 23.07 {mu}m, and the diameter is decreased from 76.77 to 66.65 nm. Further, the linear relationship for the SiNW arrays can be adjusted by increasing the etching time (from 15 to 45 min) and the solution temperature (from 25 to 75 Degree-Sign C). The axial orientation of the SiNWs is determined to be along the [001] direction, which is the same as that of the initial Si wafer. The large area SiNW arrays have potential applications in interconnect, bio-technology and optoelectronic devices.

  6. A Low-Power, Radiation-Resistant, Silicon-Drift-Detector Array for Extraterrestrial Element Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey B. D.; De Geronimo G.; Gaskin, J.A.; Elsner, R.F.; Chen, W.; Carini, G.A.; Keister, J.; Li, S.; Li, Z.; Siddons, D.P.; Smith, G.

    2012-02-08

    We are developing a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) for measuring the abundances of light surface elements (C to Fe) fluoresced by ambient radiation on remote airless bodies. The value of fluorescence spectrometry for surface element mapping is demonstrated by its inclusion on three recent lunar missions and by exciting new data that have recently been announced from the Messenger Mission to Mercury. The SDD-XRS instrument that we have been developing offers excellent energy resolution and an order of magnitude lower power requirement than conventional CCDs, making much higher sensitivities possible with modest spacecraft resources. In addition, it is significantly more radiation resistant than x-ray CCDs and therefore will not be subject to the degradation that befell recent lunar instruments. In fact, the intrinsic radiation resistance of the SDD makes it applicable even to the harsh environment of the Jovian system where it can be used to map the light surface elements of Europa. In this paper, we first discuss our element-mapping science-measurement goals. We then derive the necessary instrument requirements to meet these goals and discuss our current instrument development status with respect to these requirements.

  7. Tracking Efficiency and Charge Sharing of 3D Silicon Sensors at Different Angles in a 1.4T Magnetic Field

    International Nuclear Information System (INIS)

    A 3D silicon sensor fabricated at Stanford with electrodes penetrating throughout the entire silicon wafer and with active edges was tested in a 1.4 T magnetic field with a 180 GeV/c pion beam at the CERN SPS in May 2009. The device under test was bump-bonded to the ATLAS pixel FE-I3 readout electronics chip. Three readout electrodes were used to cover the 400 (micro)m long pixel side, this resulting in a p-n inter-electrode distance of ∼ 71 (micro)m. Its behavior was confronted with a planar sensor of the type presently installed in the ATLAS inner tracker. Time over threshold, charge sharing and tracking efficiency data were collected at zero and 15o angles with and without magnetic field. The latest is the angular configuration expected for the modules of the Insertable B-Layer (IBL) currently under study for the LHC phase 1 upgrade expected in 2014.

  8. Low cost solar array project. Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    Science.gov (United States)

    1980-01-01

    Technical activities are reported in the design of process, facilities, and equipment for producing silicon at a rate and price comensurate with production goals for low cost solar cell modules. The silane-silicone process has potential for providing high purity poly-silicon on a commercial scale at a price of fourteen dollars per kilogram by 1986, (1980 dollars). Commercial process, economic analysis, process support research and development, and quality control are discussed.

  9. 硅纳米线阵列的制备及光伏性能%Preparation and Photovoltaic Properties of Silicon Nanowire Arrays

    Institute of Scientific and Technical Information of China (English)

    蒋玉荣; 秦瑞平; 蔡方敏; 杨海刚; 马恒; 常方高

    2013-01-01

    在常温常压下,采用无电极金属催化化学腐蚀法在P型单晶硅片(100)基底上制备定向排列的硅纳米线阵列.研究了不同浓度硝酸银对纳米线阵列形貌、反射光谱性能的影响和具有电池雏形的硅纳米线阵列的光伏性能.结果表明:硝酸银浓度在0.02 mol/L时为最佳配比;与普通绒面电池相比,硅纳米线阵列太阳能电池的光电转换性能明显优于普通绒面电池.用光谱响应分析手段分析硅纳米线电池光伏性能的影响因素,并提出解决办法.%Large area aligned identical silicon nanowires array was prepared on mono-crystalline p-Si(100) wafers via the metal-assisted electroless etching at room temperature, 1.01 × 105Pa, The morphologies and reflection spectra of the samples prepared at different nitric acid silver concentrations were analyzed. In addition, the photovoltaic performance of solar cell silicon based on the nanowires array was investigated. The results show that the optimal concentration of nitric acid silver concentration is 0.02 mol/L. The photoelectric conversion property of solar cells based on the silicon nanowire arrays were better than that of the ordinary texturing solar cell. The photovoltaic performance of silicon nanowires array was also analyzed via the spectral response of different wavelengths.

  10. Silicon Wafer-Based Platinum Microelectrode Array Biosensor for Near Real-Time Measurement of Glutamate in Vivo

    Directory of Open Access Journals (Sweden)

    Nigel T. Maidment

    2008-08-01

    Full Text Available Using Micro-Electro-Mechanical-Systems (MEMS technologies, we have developed silicon wafer-based platinum microelectrode arrays (MEAs modified with glutamate oxidase (GluOx for electroenzymatic detection of glutamate in vivo. These MEAs were designed to have optimal spatial resolution for in vivo recordings. Selective detection of glutamate in the presence of the electroactive interferents, dopamine and ascorbic acid, was attained by deposition of polypyrrole and Nafion. The sensors responded to glutamate with a limit of detection under 1μM and a sub-1-second response time in solution. In addition to extensive in vitro characterization, the utility of these MEA glutamate biosensors was also established in vivo. In the anesthetized rat, these MEA glutamate biosensors were used for detection of cortically-evoked glutamate release in the ventral striatum. The MEA biosensors also were applied to the detection of stress-induced glutamate release in the dorsal striatum of the freely-moving rat.

  11. Structural and Electrochemical Investigation during the First Charging Cycles of Silicon Microwire Array Anodes for High Capacity Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2013-02-01

    Full Text Available Silicon microwire arrays embedded in Cu present exceptional performance as anode material in Li ion batteries. The processes occurring during the first charging cycles of batteries with this anode are essential for good performance. This paper sheds light on the electrochemical and structural properties of the anodes during the first charging cycles. Scanning Electron Microscopy, X-ray diffractommetry, and fast Fourier transformation impedance spectroscopy are used for the characterization. It was found that crystalline phases with high Li content are obtained after the first lithiation cycle, while for the second lithiation just crystalline phases with less Li are observable, indicating that the lithiated wires become amorphous upon cycling. The formation of a solid electrolyte interface of around 250 nm during the first lithiation cycle is evidenced, and is considered a necessary component for the good cycling performance of the wires. Analog to voltammetric techniques, impedance spectroscopy is confirmed as a powerful tool to identify the formation of the different Si-Li phases.

  12. Optimal Tilt Angle of Photovoltaic Arrays and Economic Allocation of Energy Storage System on Large Oil Tanker Ship

    Directory of Open Access Journals (Sweden)

    Hai Lan

    2015-10-01

    Full Text Available This study optimizes the tilt angle of photovoltaic (PV panels on a large oil tanker ship system and considers the impact of partial shading to improve the performance of the PV system. This work presents a novel method that considers the difference between the expected and real outputs of PV modules to optimize the size of energy storage system (ESS. The method also takes into account the cost of wasted power, the capital cost of the system, fuel cost and the CO2 emissions. Unlike on land, power generation using a PV on a ship depends on the date, latitude and longitude of the navigation. Accordingly, this work considers a route from Dalian in China to Aden in Yemen, accounting for the seasonal and geographical variations of solar irradiation. This proposed method adopts five conditions associated with the navigation route to model the total shipload. Various cases are discussed in detail to demonstrate the effectiveness of the proposed algorithm.

  13. Integration of silicon-based neural probes and micro-drive arrays for chronic recording of large populations of neurons in behaving animals

    Science.gov (United States)

    Michon, Frédéric; Aarts, Arno; Holzhammer, Tobias; Ruther, Patrick; Borghs, Gustaaf; McNaughton, Bruce; Kloosterman, Fabian

    2016-08-01

    Objective. Understanding how neuronal assemblies underlie cognitive function is a fundamental question in system neuroscience. It poses the technical challenge to monitor the activity of populations of neurons, potentially widely separated, in relation to behaviour. In this paper, we present a new system which aims at simultaneously recording from a large population of neurons from multiple separated brain regions in freely behaving animals. Approach. The concept of the new device is to combine the benefits of two existing electrophysiological techniques, i.e. the flexibility and modularity of micro-drive arrays and the high sampling ability of electrode-dense silicon probes. Main results. Newly engineered long bendable silicon probes were integrated into a micro-drive array. The resulting device can carry up to 16 independently movable silicon probes, each carrying 16 recording sites. Populations of neurons were recorded simultaneously in multiple cortical and/or hippocampal sites in two freely behaving implanted rats. Significance. Current approaches to monitor neuronal activity either allow to flexibly record from multiple widely separated brain regions (micro-drive arrays) but with a limited sampling density or to provide denser sampling at the expense of a flexible placement in multiple brain regions (neural probes). By combining these two approaches and their benefits, we present an alternative solution for flexible and simultaneous recordings from widely distributed populations of neurons in freely behaving rats.

  14. Investigation of Very Fast Light Detectors: Silicon Photomultiplier and Micro PMT for a Cosmic Ray Array

    Science.gov (United States)

    Cervantes, Omar; Reyes, Liliana; Hooks, Tyler; Perez, Luis; Ritt, Stefan

    2016-03-01

    To construct a cosmic detector array using 4 scintillation detectors, we investigated 2 recent light sensor technologies from Hamamatsu, as possible readout detectors. First, we investigated several homemade versions of the multipixel photon counter (MPPC) light sensors. These detectors were either biased with internal or external high voltage power supplies. We made extensive measurements to confirm for the coincidence of the MPPC devices. Each sensor is coupled to a wavelength shifting fiber (WSF) that is embedded along a plastic scintillator sheet (30cmx60cmx1/4''). Using energetic cosmic rays, we evaluated several of these homemade detector modules placed above one another in a light proof enclosure. Next, we assembled 2 miniaturized micro photomultiplier (micro PMT), a device recently marketed by Hamamatsu. These sensors showed very fast response times. With 3 WSF embedded in scintillator sheets, we performed coincidence experiments. The detector waveforms were captured using the 5GS/sec domino ring sampler, the DRS4 and our workflow using the CERN PAW package and data analysis results would be presented. Title V Grant.

  15. Array of Cu2O nano-columns fabricated by oblique angle sputter deposition and their application in photo-assisted proton reduction

    International Nuclear Information System (INIS)

    Nano-columnar arrays of Cu2O were grown by the oblique angle sputter deposition technique based on the self-shadowing principle. The as-grown nano-columnar samples are oriented along (111) direction, and they are highly transmitting in the visible range with a low reflectance. In this work, we show the photo-electrochemical activity of nano-columnar array of Cu2O, which shows a higher (∼25%) photocurrent density and a two-fold enhancement in the incident-to-photon conversion efficiency as compared to continuous thin film of Cu2O in photo-assisted proton reduction type reaction. The improvement in electrochemical activity of nano-columnar Cu2O photocathode can be attributed to the change in morphology, crystal structure, as well as electrical property, which shows a higher degree of band bending, increased donor carrier (e−) density and lower width of space charge region as revealed by capacitance measurements and Mott-Schottky analysis

  16. Mono-like silicon ingots grown on low angle misoriented seeds: Defect characterization by synchrotron X-ray diffraction imaging

    International Nuclear Information System (INIS)

    The present work studies the generation and propagation of sub-grain boundaries and dislocations in mono-like silicon ingots grown on monocrystalline seeds with a very small relative misorientation between them (<0.06° around the x, y and z axes). Special emphasis is put on the region close to the area between the seeds at the bottom of the crucible, which appears to be crucial in determining the crystalline quality of the final ingot. For this investigation, X-ray rocking curve imaging (RCI) in transmission geometry, a directly quantitative version of monochromatic beam Bragg diffraction imaging (“topography”) has been used. This technique has been developed at the European Synchrotron Radiation Facility (ESRF), beamline BM05 and allows us to visualize the spatial distribution of the lattice distortion of a single crystal. It was found that the solidified ingot takes the crystallographic orientation of the seeds without creating any distorted area at the interface. However, dislocation bunches having a strong screw component are generated between the seeds and propagate along the growth direction. Sub-grain boundaries above the top of the seeds, mainly composed of edge dislocations, were also observed. These have a detrimental influence on the minority carrier lifetime of the ingot, since, as is known, sub-grain boundaries show active recombination. In this work taking advantage of the high angular resolution and the sensitivity of the technique it was shown that a relative misorientation between the seeds (δθx, δθy, δθz) as small as 0.02° can produce cascades of dislocations that propagate and multiply higher up in the ingot becoming electrically active

  17. A new beam deflection angle amplification technique for mirage detection

    OpenAIRE

    Yarai, A.; Fukunaga, Y; Sakamoto, K; Nakanishi, T.

    1994-01-01

    A new technique has been developed for amplification of the photothermal beam deflection angle for mirage detection. This technique, based on a very simple operating principle, uses a cylindrical reflection mirror. The use of a new amplifier provided a signal-to-noise ratio approximately 10 times that obtained without the amplifier for equipment of the same size. By using the new amplifier, a mirage signal was obtained when a transistor array processed on a silicon wafer was measured.

  18. Flat-plate solar array project: Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    Science.gov (United States)

    1983-01-01

    The process technology for the manufacture of semiconductor-grade silicon in a large commercial plant by 1986, at a price less than $14 per kilogram of silicon based on 1975 dollars is discussed. The engineering design, installation, checkout, and operation of an Experimental Process System Development unit was discussed. Quality control of scaling-up the process and an economic analysis of product and production costs are discussed.

  19. Effect of van der Waals forces on thermal conductance at the interface of a single-wall carbon nanotube array and silicon

    Directory of Open Access Journals (Sweden)

    Ya Feng

    2014-12-01

    Full Text Available Molecular dynamics simulations are performed to evaluate the effect of van der Waals forces among single-wall carbon nanotubes (SWNTs on the interfacial thermal conductance between a SWNT array and silicon substrate. First, samples of SWNTs vertically aligned on silicon substrate are simulated, where both the number and arrangement of SWNTs are varied. Results reveal that the interfacial thermal conductance of a SWNT array/Si with van der Waals forces present is higher than when they are absent. To better understand how van der Waals forces affect heat transfer through the interface between SWNTs and silicon, further constructs of one SWNT surrounded by different numbers of other ones are studied, and the results show that the interfacial thermal conductance of the central SWNT increases with increasing van der Waals forces. Through analysis of the covalent bonds and vibrational density of states at the interface, we find that heat transfer across the interface is enhanced with a greater number of chemical bonds and that improved vibrational coupling of the two sides of the interface results in higher interfacial thermal conductance. Van der Waals forces stimulate heat transfer at the interface.

  20. Silicon on-chip side-coupled high-Q micro-cavities for the multiplexing of high sensitivity photonic crystal integrated sensors array

    Science.gov (United States)

    Yang, Daquan; Wang, Chunhong; Yuan, Wei; Wang, Bo; Yang, Yujie; Ji, Yuefeng

    2016-09-01

    A novel two-dimensional (2D) silicon (Si) photonic crystal (PC) α-H0-slot micro-cavity with high Q-factor and high sensitivity (S) is presented. Based on the proposed α-H0-Slot micro-cavities, an optimal design of photonic crystal integrated sensors array (PC-ISA) on monolithic silicon on insulator (SOI) is displayed. By using finite-difference time-domain (FDTD) method, the simulation results demonstrate that both large S of 200 nm/RIU (RIU=refractive index unit) and high Q-factor >104 at telecom wavelength range can be achieved simultaneously. And the sensor figure of merit (FOM)>7000 is featured, an order of magnitude improvement over previous 2D PC sensors array. In addition, for the proposed 2D PC-ISA device, each sensor unit is shown to independently shift its resonance wavelength in response to the changes in refractive index (RI) and does not perturb the others. Thus, it is potentially an ideal platform for realizing ultra-compact lab-on-a-chip applications with dense arrays of functionalized spots for multiplexed sensing, and also can be used as an opto-fluidic architecture for performing highly parallel detection of biochemical interactions in aqueous environments.

  1. Preparation of well-aligned carbon nanotubes/silicon nanowires core-sheath composite structure arrays in porous anodic aluminum oxide templates

    Institute of Scientific and Technical Information of China (English)

    李梦轲; 陆梅; 王成伟; 力虎林

    2002-01-01

    The well-aligned carbon nanotubes (CNTs) arrays with opened ends were prepared in ordered pores of anodic aluminum oxide (AAO) template by the chemical vapor deposition (CVD) method. After then, silicon nanowires (SiNWs) were deposited in the hollow cavities of CNTs. By using this method, CNTs/SiNWs core-sheath composite structure arrays were synthesized successfully. Growing structures and physical properties of the CNTs/SiNWs composite structure arrays were analyzed and researched by the scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction spectrum (XRD), respectively. The field emission (FE) behavior of the CNTs/SiNWs composite structure arrays was studied based on Fowler- Nordheim tunneling mechanism and current-voltage (I -V) curve. And the photoluminescence (PL) was also characterized. Significantly, the CNTs/SiNWs core-sheath composite structure nanowire fabricated by AAO template method is characteristic of a metal/semiconductor (M/S) behavior and can be utilized to synthesize nanoscale PN junction or Schottky diode device. This process also could be useful for the fabrication of SiNWs and other nanoscale core-sheath composite structure nanowires with chemically inert interfaces for nanoscale electronic and device applications where surface oxidation is undesirable. The diameters and lengths of nanoscale composite structure arrays can be dominated easily, and the experimental result shows that the curling and twisting structures are fewer than those prepared by other synthesized methods.

  2. Manipulation of extinction spectra of P3HT/PMMA medium arrays on silicon substrate containing self-assembled gold nanoparticles

    International Nuclear Information System (INIS)

    In this study, we report a simple novel approach to modulate the extinction spectra of P3HT/PMMA by manipulating the medium arrays on a substrate that is coated with self-assembled gold nanoparticles. The 20 nm gold nanoparticles were synthesized and then self-assembled on the APTMS/silicon substrate surface by immersing the substrate into the gold colloid suspension. A high-resolution P3HT/PMMA photoluminescent electron beam resist was used to fabricate various square hole arrays on the substrate containing gold nanoparticles. The P3HT/PMMA medium composition causes the blue shifts in the extinction peaks of up to 40.6 nm by decreasing the period from 500 nm to 200 nm for P3HT/PMMA square hole arrays with a diameter of 100 nm. The magnitude of blue shift is directly proportional to the product of the changes of medium refractive index and the array structure factor. These peak shifts and intensity of extinction spectra for various P3HT/PMMA medium arrays are well described by the finite-difference time-domain (FDTD) simulation results. Since this simple cost-effective technique can tune the extinction spectrum of medium and adding the gold nanoparticles can give more functionalities for sensing applications, such as surface-enhanced Raman scattering (SERS), that provides good opportunities for the design and fabrication of new optoelectronic devices and sensors. Highlights: ► We can tune the extinction spectra of P3HT/PMMA by manipulating the medium arrays. ► These optical behaviors of P3HT/PMMA medium arrays are well described by FDTD simulation results. ► Adding the Au nanoparticles can give more functionalities for sensing applications.

  3. Manipulation of extinction spectra of P3HT/PMMA medium arrays on silicon substrate containing self-assembled gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ming-Chung [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333-02, Taiwan (China); Chen, Shih-Wen; Li, Jia-Han [Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei 106-17, Taiwan (China); Chou, Yi; Lin, Jhih-Fong [Department of Materials Science and Engineering, National Taiwan University, Taipei 106-17, Taiwan (China); Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei 106-17, Taiwan (China); Su, Wei-Fang, E-mail: suwf@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 106-17, Taiwan (China)

    2012-11-15

    In this study, we report a simple novel approach to modulate the extinction spectra of P3HT/PMMA by manipulating the medium arrays on a substrate that is coated with self-assembled gold nanoparticles. The 20 nm gold nanoparticles were synthesized and then self-assembled on the APTMS/silicon substrate surface by immersing the substrate into the gold colloid suspension. A high-resolution P3HT/PMMA photoluminescent electron beam resist was used to fabricate various square hole arrays on the substrate containing gold nanoparticles. The P3HT/PMMA medium composition causes the blue shifts in the extinction peaks of up to 40.6 nm by decreasing the period from 500 nm to 200 nm for P3HT/PMMA square hole arrays with a diameter of 100 nm. The magnitude of blue shift is directly proportional to the product of the changes of medium refractive index and the array structure factor. These peak shifts and intensity of extinction spectra for various P3HT/PMMA medium arrays are well described by the finite-difference time-domain (FDTD) simulation results. Since this simple cost-effective technique can tune the extinction spectrum of medium and adding the gold nanoparticles can give more functionalities for sensing applications, such as surface-enhanced Raman scattering (SERS), that provides good opportunities for the design and fabrication of new optoelectronic devices and sensors. Highlights: Black-Right-Pointing-Pointer We can tune the extinction spectra of P3HT/PMMA by manipulating the medium arrays. Black-Right-Pointing-Pointer These optical behaviors of P3HT/PMMA medium arrays are well described by FDTD simulation results. Black-Right-Pointing-Pointer Adding the Au nanoparticles can give more functionalities for sensing applications.

  4. Low cost silicon solar array project: Feasibility of low-cost, high-volume production of silane and pyrolysis of silane to semiconductor-grade silicon

    Science.gov (United States)

    Breneman, W. C.

    1978-01-01

    Silicon epitaxy analysis of silane produced in the Process Development Unit operating in a completely integrated mode consuming only hydrogen and metallurgical silicon resulted in film resistivities of up to 120 ohms cm N type. Preliminary kinetic studies of dichlorosilane disproportionation in the liquid phase have shown that 11.59% SiH4 is formed at equilibrium after 12 minutes contact time at 56 C. The fluid-bed reactor was operated continuously for 48 hours with a mixture of one percent silane in helium as the fluidizing gas. A high silane pyrolysis efficiency was obtained without the generation of excessive fines. Gas flow conditions near the base of the reactor were unfavorable for maintaining a bubbling bed with good heat transfer characteristics. Consequently, a porous agglomerate formed in the lower portion of the reactor. Dense coherent plating was obtained on the silicon seed particles which had remained fluidizied throughout the experiment.

  5. A Fabrication Route for Arrays of Ultra-low-Noise MoAu Transition Edge Sensors on Thin Silicon Nitride for Space Applications

    OpenAIRE

    Glowacka, D. M.; Crane, M.; Goldie, D. J.; Withington, S.

    2014-01-01

    We describe a process route to fabricate arrays of Ultra-low-Noise MoAu Transition Edge Sensors (TESs). The low thermal conductance required for space applications is achieved using 200 nm-thick Silicon Nitride (SiNx ) patterned to form long-thin legs with widths of 2.1 {\\mu}m. Using bilayers formed on SiNx islands from films with 40 nm-thick Mo and Au thicknesses in the range 30 to 280 nm deposited by dc-sputtering in ultra-high vacuum we can obtain tunable transition temperatures in the ran...

  6. Small signal modulation characteristics of red-emitting (λ = 610 nm) III-nitride nanowire array lasers on (001) silicon

    KAUST Repository

    Jahangir, Shafat

    2015-02-16

    The small signal modulation characteristics of an InGaN/GaN nanowire array edge- emitting laser on (001) silicon are reported. The emission wavelength is 610 nm. Lattice matched InAlN cladding layers were incorporated in the laser heterostructure for better mode confinement. The suitability of the nanowire lasers for use in plastic fiber communication systems with direct modulation is demonstrated through their modulation bandwidth of f-3dB,max = 3.1 GHz, very low values of chirp (0.8 Å) and α-parameter, and large differential gain (3.1 × 10-17 cm2).

  7. Preliminary study on the use of ceramic nozzle arrays in gas dynamic lasers. Final report, 1 Jan--1 Dec 1974. [Silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, L.A.; Drewry, J.E.

    1975-04-01

    One of the more difficult and costly problem areas in the development of high energy gas dynamic lasers (GDL) has been the nozzle array which is used to achieve 'freezing' of the vibrational energy mode via rapid expansion of nitrogen from high temperature plenum conditions. A model gas dynamic laser nozzle array fabricated from hot-pressed silicon nitride components has been successfully tested under thermal cycling air flow conditions to temperatures of 1150 K. Excellent dimensional stability was shown by the center nozzle of the three nozzle assembly, and post-test examination of the components revealed no degradation of the materials. These findings suggest that ceramic materials offer important benefits to GDL systems.

  8. Preparation of well-aligned carbon nanotubes/silicon nanowires core-sheath composite structure arrays in porous anodic aluminum oxide templates

    Institute of Scientific and Technical Information of China (English)

    李梦轲; 力虎林; 陆梅; 王成伟

    2002-01-01

    The well-aligned carbon nanotubes (CNTs) arrays with opened ends were prepared in ordered pores of anodic aluminum oxide (AAO) template by the chemical vapor deposition (CVD) method. After then, silicon nanowires (SiNWs) were deposited in the hollow cavities of CNTs. By using this method, CNTs/SiNWs core-sheath composite structure arrays were synthesized successfully. Growing structures and physical properties of the CNTs/SiNWs composite structure arrays were analyzed and researched by the scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction spectrum (XRD), respectively. The field emission (FE) behavior of the CNTs/SiNWs composite structure arrays was studied based on Fowler-Nordheim tunneling mechanism and current-voltage (/-V) curve. And the photoluminescence (PL) was also characterized. Significantly, the CNTs/SiNWs core-sheath composite structure nanowire fabricated by AAO template method is characteristic of a metal/semiconductor (M/S) behavior and can be

  9. Ordered silicon nanowire arrays prepared by an improved nanospheres self-assembly in combination with Ag-assisted wet chemical etching

    Science.gov (United States)

    Jia, Guobin; Westphalen, Jasper; Drexler, Jan; Plentz, Jonathan; Dellith, Jan; Dellith, Andrea; Andrä, Gudrun; Falk, Fritz

    2016-04-01

    An improved Langmuir-Blodgett self-assembly process combined with Ag-assisted wet chemical etching for the preparation of ordered silicon nanowire arrays is presented in this paper. The new process is independent of the surface conditions (hydrophilic or hydrophobic) of the substrate, allowing for depositing a monolayer of closely packed polystyrene nanospheres onto any flat surface. A full control of the morphology of the silicon nanowire is achieved. Furthermore, it is observed that the formation of porous-Si at the tips of the nanowires is closely related to the release of Ag nanoparticles from the Ag mask during the etching, which subsequently redeposit on the surface initially free of Ag, and these Ag nanoparticles catalyze the etching of the tips and lead to the porous-Si formation. This finding will help to improve the resulting nano- and microstructures to get them free of pores, and renders it a promising technology for low-cost high throughput fabrication of specific optical devices, photonic crystals, sensors, MEMS, and NEMS by substituting the costly BOSCH process. It is shown that ordered nanowire arrays free of porous structures can be produced if all sources of Ag nanoparticles are excluded, and structures with aspect ratio more than 100 can be produced.

  10. Low Cost Solar Array Project. Feasibility of the silane process for producing semiconductor-grade silicon. Final report, October 1975-March 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The commercial production of low-cost semiconductor-grade silicon is an essential requirement of the JPL/DOE (Department of Energy) Low-Cost Solar Array (LSA) Project. A 1000-metric-ton-per-year commercial facility using the Union Carbide Silane Process will produce molten silicon for an estimated price of $7.56/kg (1975 dollars, private financing), meeting the DOE goal of less than $10/kg. Conclusions and technology status are reported for both contract phases, which had the following objectives: (1) establish the feasibility of Union Carbide's Silane Process for commercial application, and (2) develop an integrated process design for an Experimental Process System Development Unit (EPSDU) and a commercial facility, and estimate the corresponding commercial plant economic performance. To assemble the facility design, the following work was performed: (a) collection of Union Carbide's applicable background technology; (b) design, assembly, and operation of a small integrated silane-producing Process Development Unit (PDU); (c) analysis, testing, and comparison of two high-temperature methods for converting pure silane to silicon metal; and (d) determination of chemical reaction equilibria and kinetics, and vapor-liquid equilibria for chlorosilanes.

  11. Low cost solar array project: Experimental process system development unit for producing semiconductor-grade silicon using silane-to-silicon process

    Science.gov (United States)

    1980-01-01

    The design, fabrication, and installation of an experimental process system development unit (EPSDU) were analyzed. Supporting research and development were performed to provide an information data base usable for the EPSDU and for technological design and economical analysis for potential scale-up of the process. Iterative economic analyses were conducted for the estimated product cost for the production of semiconductor grade silicon in a facility capable of producing 1000-MT/Yr.

  12. Flat-plate solar-array project. Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    Science.gov (United States)

    1981-01-01

    The engineering design, fabrication, assembly, operation, economic analysis, and process support R and D for an Experimental Process System Development Unit (EPSDU) are reported. About 95% of purchased equipment is received and will be reshipped to the West Coast location. The Data Collection System is completed. In the area of melting/consolidation, to the system using silicon powder transfer, melting and shotting on a pseudocontinuous basis is demonstrated. It is proposed to continue the very promising fluid bed work.

  13. L型阵列天线的测频测角实现研究%Implementation of Frequency and Angle Measurements of L-shaped Array Antenna

    Institute of Scientific and Technical Information of China (English)

    谭俊锋; 王建涛; 闫晓鹏

    2012-01-01

    基于构建的FPGA协同DSP(FPGA+DSP)异构系统提出了一种L型阵列天线的测频和测角实现方案,研究了谱峰搜索多重信号分类(MUSIC)算法和酉矩阵求根MUSIC算法的实现.2种算法的实测数据试验结果表明,谱峰搜索MUSIC算法实现简单,但处理精度受限于频域和空域的搜索精度.在同一精度量级时,酉矩阵求根MUSIC算法的处理时间只有谱峰搜索MUSIC算法的62.6%,且可以避免多维搜索,还对宽带信号具有一定的分辨率,具有较好的工程鲁棒性.%The implementation scheme of frequency and angle measurements of L-array based on the designed FPGA+DSP system is studied in this paper. The peak searching MUSIC algorithm and the unitary transformation root MUSIC algorithm are both implemented in DSP with real data, and the processing results show that the time of unitary transformation root MUSIC algorithm is faster than that of peak searching MUSIC algorithm by 62.6% at the same precision level. The unitary transformation root MUSIC algorithm can also find the wideband signal in the experimentation, which has better robustness of engineering.

  14. MagicPlate-512: A 2D silicon detector array for quality assurance of stereotactic motion adaptive radiotherapy

    International Nuclear Information System (INIS)

    Purpose: Spatial and temporal resolutions are two of the most important features for quality assurance instrumentation of motion adaptive radiotherapy modalities. The goal of this work is to characterize the performance of the 2D high spatial resolution monolithic silicon diode array named “MagicPlate-512” for quality assurance of stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) combined with a dynamic multileaf collimator (MLC) tracking technique for motion compensation. Methods: MagicPlate-512 is used in combination with the movable platform HexaMotion and a research version of radiofrequency tracking system Calypso driving MLC tracking software. The authors reconstruct 2D dose distributions of small field square beams in three modalities: in static conditions, mimicking the temporal movement pattern of a lung tumor and tracking the moving target while the MLC compensates almost instantaneously for the tumor displacement. Use of Calypso in combination with MagicPlate-512 requires a proper radiofrequency interference shielding. Impact of the shielding on dosimetry has been simulated by GEANT4 and verified experimentally. Temporal and spatial resolutions of the dosimetry system allow also for accurate verification of segments of complex stereotactic radiotherapy plans with identification of the instant and location where a certain dose is delivered. This feature allows for retrospective temporal reconstruction of the delivery process and easy identification of error in the tracking or the multileaf collimator driving systems. A sliding MLC wedge combined with the lung motion pattern has been measured. The ability of the MagicPlate-512 (MP512) in 2D dose mapping in all three modes of operation was benchmarked by EBT3 film. Results: Full width at half maximum and penumbra of the moving and stationary dose profiles measured by EBT3 film and MagicPlate-512 confirm that motion has a significant impact on the dose distribution. Motion

  15. MagicPlate-512: A 2D silicon detector array for quality assurance of stereotactic motion adaptive radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Petasecca, M., E-mail: marcop@uow.edu.au; Newall, M. K.; Aldosari, A. H.; Fuduli, I.; Espinoza, A. A.; Porumb, C. S.; Guatelli, S.; Metcalfe, P.; Lerch, M. L. F.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia and Illawarra Health Medical Research Institute, Wollongong, NSW 2522 (Australia); Booth, J. T.; Colvill, E. [School of Medicine, University of Sydney, Sydney, NSW 2006, Australia and Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia); Duncan, M.; Cammarano, D. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500 (Australia); Carolan, M. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500 (Australia); Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500 (Australia); Illawarra Health Medical Research Institute, Wollongong, NSW 2522 (Australia); Oborn, B. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500 (Australia); Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500 (Australia); Perevertaylo, V. [SPA-BIT, Kiev 02232 (Ukraine); Keall, P. J. [School of Medicine, University of Sydney, Sydney, NSW 2006 (Australia)

    2015-06-15

    Purpose: Spatial and temporal resolutions are two of the most important features for quality assurance instrumentation of motion adaptive radiotherapy modalities. The goal of this work is to characterize the performance of the 2D high spatial resolution monolithic silicon diode array named “MagicPlate-512” for quality assurance of stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) combined with a dynamic multileaf collimator (MLC) tracking technique for motion compensation. Methods: MagicPlate-512 is used in combination with the movable platform HexaMotion and a research version of radiofrequency tracking system Calypso driving MLC tracking software. The authors reconstruct 2D dose distributions of small field square beams in three modalities: in static conditions, mimicking the temporal movement pattern of a lung tumor and tracking the moving target while the MLC compensates almost instantaneously for the tumor displacement. Use of Calypso in combination with MagicPlate-512 requires a proper radiofrequency interference shielding. Impact of the shielding on dosimetry has been simulated by GEANT4 and verified experimentally. Temporal and spatial resolutions of the dosimetry system allow also for accurate verification of segments of complex stereotactic radiotherapy plans with identification of the instant and location where a certain dose is delivered. This feature allows for retrospective temporal reconstruction of the delivery process and easy identification of error in the tracking or the multileaf collimator driving systems. A sliding MLC wedge combined with the lung motion pattern has been measured. The ability of the MagicPlate-512 (MP512) in 2D dose mapping in all three modes of operation was benchmarked by EBT3 film. Results: Full width at half maximum and penumbra of the moving and stationary dose profiles measured by EBT3 film and MagicPlate-512 confirm that motion has a significant impact on the dose distribution. Motion

  16. Performance of ultra-small silicon photomultiplier array with active area of 0.12 mm×0.12 mm

    International Nuclear Information System (INIS)

    We report the performance of an ultra-small silicon photomultiplier (SiPM) line array with 7 elements of 0.12×0.12 mm2 in active area, 0.2 mm in pitch and 120 micro cells in one element. The device features an epitaxial bulk quenching resistor concept, demonstrated high geometrical fill factor of 41% and photon detection efficiency (PDE) of 25.4% in the wavelength region between 430 nm and 480 nm while retaining high micro cell density around 10 000 mm−2 and ~3 ns FWHM of dark pulses width; it also demonstrated dark count rate of less than 28.7 kHz, optical crosstalk of the order of 2% to 4%, and excellent photon number discrimination. A 0.15 mm×1.6 mm×1.6 mm lutetium yttrium oxyorthosilicate (LYSO) crystal, corresponding to the width, length and height respectively, was successfully coupled to the 1×7 SiPM array for possible ultra-highly resolved positron emission tomography (PET) applications. This novel type of device has advantages particularly for small active area since the performances, such as PDE and response speed is one of the best among SiPMs with similarly high density of micro cells. It may pave a way for this type of SiPM as a promising pixel position sensitive device in imaging sensor applications. - Highlights: • The ultra-small SiPM line array with active area of 0.12 mm×0.12 mm was presented. • The ultra-small SiPM employs the bulk silicon structure as quenching resistor. • A considerable dynamic range and PDE over 25.4% @ 430 nm to 480 nm were characterized

  17. Performance of ultra-small silicon photomultiplier array with active area of 0.12 mm×0.12 mm

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Wang; Zongde, Chen; Chenhui, Li; Ran, He; Shenyuan, Wang; Baicheng, Li; Ruiheng, Wang; Kun, Liang, E-mail: lk@bnu.edu.cn; Ru, Yang; Dejun, Han

    2015-07-01

    We report the performance of an ultra-small silicon photomultiplier (SiPM) line array with 7 elements of 0.12×0.12 mm{sup 2} in active area, 0.2 mm in pitch and 120 micro cells in one element. The device features an epitaxial bulk quenching resistor concept, demonstrated high geometrical fill factor of 41% and photon detection efficiency (PDE) of 25.4% in the wavelength region between 430 nm and 480 nm while retaining high micro cell density around 10 000 mm{sup −2} and ~3 ns FWHM of dark pulses width; it also demonstrated dark count rate of less than 28.7 kHz, optical crosstalk of the order of 2% to 4%, and excellent photon number discrimination. A 0.15 mm×1.6 mm×1.6 mm lutetium yttrium oxyorthosilicate (LYSO) crystal, corresponding to the width, length and height respectively, was successfully coupled to the 1×7 SiPM array for possible ultra-highly resolved positron emission tomography (PET) applications. This novel type of device has advantages particularly for small active area since the performances, such as PDE and response speed is one of the best among SiPMs with similarly high density of micro cells. It may pave a way for this type of SiPM as a promising pixel position sensitive device in imaging sensor applications. - Highlights: • The ultra-small SiPM line array with active area of 0.12 mm×0.12 mm was presented. • The ultra-small SiPM employs the bulk silicon structure as quenching resistor. • A considerable dynamic range and PDE over 25.4% @ 430 nm to 480 nm were characterized.

  18. The evaporation and wetting dynamics of sessile water droplets on submicron-scale patterned silicon hydrophobic surfaces

    International Nuclear Information System (INIS)

    The evaporation characteristics of 1 µl sessile water droplets on hydrophobic surfaces are experimentally examined. The proposed hydrophobic surfaces are composed of submicron diameter and 4.2 µm height silicon post arrays. A digital image analysis algorithm was developed to obtain time-dependent contact angles, contact diameters, and center heights for both non-patterned polydimethylsiloxane (PDMS) surfaces and patterned post array surfaces, which have the same hydrophobic contact angles. While the contact angles exhibit three distinct stages during evaporation in the non-patterned surface case, those in the patterned silicon post array surface case decrease linearly. In the case of post array hydrophobic surfaces, the initial contact diameter remains unchanged until the portion of the droplet above the posts completely dries out. The edge shrinking velocity of the droplet shows nonlinear characteristics, and the velocity magnitude increases rapidly near the last stage of evaporation.

  19. Exploration of maximum count rate capabilities for large-area photon counting arrays based on polycrystalline silicon thin-film transistors

    Science.gov (United States)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua

    2016-03-01

    Pixelated photon counting detectors with energy discrimination capabilities are of increasing clinical interest for x-ray imaging. Such detectors, presently in clinical use for mammography and under development for breast tomosynthesis and spectral CT, usually employ in-pixel circuits based on crystalline silicon - a semiconductor material that is generally not well-suited for economic manufacture of large-area devices. One interesting alternative semiconductor is polycrystalline silicon (poly-Si), a thin-film technology capable of creating very large-area, monolithic devices. Similar to crystalline silicon, poly-Si allows implementation of the type of fast, complex, in-pixel circuitry required for photon counting - operating at processing speeds that are not possible with amorphous silicon (the material currently used for large-area, active matrix, flat-panel imagers). The pixel circuits of two-dimensional photon counting arrays are generally comprised of four stages: amplifier, comparator, clock generator and counter. The analog front-end (in particular, the amplifier) strongly influences performance and is therefore of interest to study. In this paper, the relationship between incident and output count rate of the analog front-end is explored under diagnostic imaging conditions for a promising poly-Si based design. The input to the amplifier is modeled in the time domain assuming a realistic input x-ray spectrum. Simulations of circuits based on poly-Si thin-film transistors are used to determine the resulting output count rate as a function of input count rate, energy discrimination threshold and operating conditions.

  20. Top-down fabrication of very-high density vertically stacked silicon nanowire arrays with low temperature budget

    OpenAIRE

    Zervas, Michail; Sacchetto, Davide; De Micheli, Giovanni; Leblebici, Yusuf

    2011-01-01

    We report on a top-down complementary metal oxide semiconductor (CMOS) compatible fabrication method of ultra-high density Si nanowire (SiNW) arrays using a time multiplexed alternating process (TMAP) with low temperature budget. The flexibility of the fabrication methodology is demonstrated for curved and straight SiNW arrays with different shapes and levels. Ultra-high density SiNW arrays with round or rhombic cross-sections diameters as low as 10 nm are demonstrated for vertical and horizo...

  1. Efficient silicon PIC mode multiplexer using grating coupler array with aluminum mirror for few-mode fiber

    DEFF Research Database (Denmark)

    Ding, Yunhong; Yvind, Kresten

    2015-01-01

    We demonstrate a silicon PIC mode multiplexer using grating couplers. An aluminum mirror is introduced for coupling efficiency improvement. A highest coupling efficiency of –10.6 dB with 3.7 dB mode dependent coupling loss is achieved.......We demonstrate a silicon PIC mode multiplexer using grating couplers. An aluminum mirror is introduced for coupling efficiency improvement. A highest coupling efficiency of –10.6 dB with 3.7 dB mode dependent coupling loss is achieved....

  2. A silicon based implantable microelectrode array for electrophysiological and dopamine recording from cortex to striatum in the non-human primate brain.

    Science.gov (United States)

    Zhang, Song; Song, Yilin; Wang, Mixia; Zhang, Zhiming; Fan, Xinyi; Song, Xianteng; Zhuang, Ping; Yue, Feng; Chan, Piu; Cai, Xinxia

    2016-11-15

    Dual-mode, multielectrode recordings have become routine in rodent neuroscience research and have recently been adapted to the non-human primate. However, robust and reliable application of acute, multielectrode recording methods in monkeys especially for deep brain nucleus research remains a challenge. In this paper, We described a low cost silicon based 16-site implantable microelectrode array (MEA) chip fabricated by standard lithography technology for in vivo test. The array was 25mm long and designed to use in non-human primate models, for electrophysiological and electrochemical recording. We presented a detailed protocol for array fabrication, then showed that the device can record Spikes, LFPs and dopamine (DA) variation continuously from cortex to striatum in an esthetized monkey. Though our experiment, high-quality electrophysiological signals were obtained from the animal. Across any given microelectrode, spike amplitudes ranged from 70 to 300μV peak to peak, with a mean signal-to-noise ratio of better than 5:1. Calibration results showed the MEA probe had high sensitivity and good selectivity for DA. The DA concentration changed from 42.8 to 481.6μM when the MEA probe inserted from cortex into deep brain nucleus of striatum, which reflected the inhomogeneous distribution of DA in brains. Compared with existing methods allowing single mode (electrophysiology or electrochemistry) recording. This system is designed explicitly for dual-mode recording to meet the challenges of recording in non-human primates. PMID:27155116

  3. Effects of formation of mini-bands in two-dimensional array of silicon nanodisks with SiC interlayer for quantum dot solar cells

    International Nuclear Information System (INIS)

    A sub-10 nm, high-density, periodic silicon nanodisk (Si-ND) array with a SiC interlayer has been fabricated using a new top-down process that involves a 2D array of a bio-template etching mask and damage-free neutral beam etching. Optical and electrical measurements were carried out to clarify the formation of mini-bands due to wavefunction coupling. We found that the SiC interlayer could enhance the optical absorption coefficient in the layer of Si-NDs due to the stronger coupling of wavefunctions. Theoretical simulation also indicated that wavefunction coupling was effectively enhanced in Si-NDs with a SiC interlayer, which precisely matched the experimental results. Furthermore, the I–V properties of a 2D array of Si-NDs with a SiC interlayer were studied through conductive AFM measurements, which indicated conductivity in the structure was enhanced by strong lateral electronic coupling between neighboring Si-NDs. We confirmed carrier generation and less current degradation in the structure due to high photon absorption and conductivity by inserting the Si-NDs into p–i–n solar cells. (paper)

  4. Control of optical bandgap energy and optical absorption coefficient by geometric parameters in sub-10 nm silicon-nanodisc array structure

    International Nuclear Information System (INIS)

    A sub-10 nm, high-density, periodic silicon-nanodisc (Si-ND) array has been fabricated using a new top-down process, which involves a 2D array bio-template etching mask made of Listeria-Dps with a 4.5 nm diameter iron oxide core and damage-free neutral-beam etching (Si-ND diameter: 6.4 nm). An Si-ND array with an SiO2 matrix demonstrated more controllable optical bandgap energy due to the fine tunability of the Si-ND thickness and diameter. Unlike the case of shrinking Si-ND thickness, the case of shrinking Si-ND diameter simultaneously increased the optical absorption coefficient and the optical bandgap energy. The optical absorption coefficient became higher due to the decrease in the center-to-center distance of NDs to enhance wavefunction coupling. This means that our 6 nm diameter Si-ND structure can satisfy the strict requirements of optical bandgap energy control and high absorption coefficient for achieving realistic Si quantum dot solar cells. (paper)

  5. The effect of lance geometry and carbon coating of silicon lances on propidium iodide uptake in lance array nanoinjection of HeLa 229 cells

    Science.gov (United States)

    Sessions, John W.; Lindstrom, Dallin L.; Hanks, Brad W.; Hope, Sandra; Jensen, Brian D.

    2016-04-01

    Connecting technology to biologic discovery is a core focus of non-viral gene therapy biotechnologies. One approach that leverages both the physical and electrical function of microelectromechanical systems (MEMS) in cellular engineering is a technology previously described as lance array nanoinjection (LAN). In brief, LAN consists of a silicon chip measuring 2 cm by 2 cm that has been etched to contain an array of 10 μm tall, solid lances that are spaced every 10 μm in a grid pattern. This array of lances is used to physically penetrate hundreds of thousands of cells simultaneously and to then electrically deliver molecular loads into cells. In this present work, two variables related to the microfabrication of the silicon lances, namely lance geometry and coating, are investigated. The purpose of both experimental variables is to assess these parameters’ effect on propidium iodide (PI), a cell membrane impermeable dye, uptake to injected HeLa 229 cells. For the lance geometry experimentation, three different microfabricated lance geometries were used which include a flat/narrow (FN, 1 μm diameter), flat/wide (FW, 2-2.5 μm diameter), and pointed (P, 1 μm diameter) lance geometries. From these tests, it was shown that the FN lances had a slightly better cell viability rate of 91.73% and that the P lances had the best PI uptake rate of 75.08%. For the lance coating experimentation, two different lances were fabricated, both silicon etched lances with some being carbon coated (CC) in a  <100 nm layer of carbon and the other lances being non-coated (Si). Results from this experiment showed no significant difference between lance types at three different nanoinjection protocols (0V, +1.5V DC, and  +5V Pulsed) for both cell viability and PI uptake rates. One exception to this is the comparison of CC/5V Pul and Si/5V Pul samples, where the CC/5V Pul samples had a cell viability rate 5% higher. Both outcomes were unexpected and reveal how to better

  6. The effect of lance geometry and carbon coating of silicon lances on propidium iodide uptake in lance array nanoinjection of HeLa 229 cells

    International Nuclear Information System (INIS)

    Connecting technology to biologic discovery is a core focus of non-viral gene therapy biotechnologies. One approach that leverages both the physical and electrical function of microelectromechanical systems (MEMS) in cellular engineering is a technology previously described as lance array nanoinjection (LAN). In brief, LAN consists of a silicon chip measuring 2 cm by 2 cm that has been etched to contain an array of 10 μm tall, solid lances that are spaced every 10 μm in a grid pattern. This array of lances is used to physically penetrate hundreds of thousands of cells simultaneously and to then electrically deliver molecular loads into cells. In this present work, two variables related to the microfabrication of the silicon lances, namely lance geometry and coating, are investigated. The purpose of both experimental variables is to assess these parameters’ effect on propidium iodide (PI), a cell membrane impermeable dye, uptake to injected HeLa 229 cells. For the lance geometry experimentation, three different microfabricated lance geometries were used which include a flat/narrow (FN, 1 μm diameter), flat/wide (FW, 2–2.5 μm diameter), and pointed (P, 1 μm diameter) lance geometries. From these tests, it was shown that the FN lances had a slightly better cell viability rate of 91.73% and that the P lances had the best PI uptake rate of 75.08%. For the lance coating experimentation, two different lances were fabricated, both silicon etched lances with some being carbon coated (CC) in a  <100 nm layer of carbon and the other lances being non-coated (Si). Results from this experiment showed no significant difference between lance types at three different nanoinjection protocols (0V, +1.5V DC, and  +5V Pulsed) for both cell viability and PI uptake rates. One exception to this is the comparison of CC/5V Pul and Si/5V Pul samples, where the CC/5V Pul samples had a cell viability rate 5% higher. Both outcomes were unexpected and reveal how to better

  7. A low-temperature polycrystalline-silicon thin-film transistor micro-manipulation array with indium tin oxide micro-coils and real-time detection

    International Nuclear Information System (INIS)

    This study proposes an array for a bio-handling system consisting of microcoils on top of photodetectors fabricated by low-temperature polycrystalline-silicon thin-film transistor (LTPS-TFT) technology on a glass substrate. Using magnetic beads as the medium, the proposed system can simultaneously monitor and manipulate micrometer-sized bio-samples. In a manipulation system based on magnetic force, photo-detecting is a reliable method, immune to the interference caused by electromagnetic fields. Under 480 lux ambient white light, the sensor can detect a microbead as small as 23 µm in diameter with detectable output difference. It provides a new, easier way for handling samples on a small chip

  8. On-dimensional off-chip beam steering and shaping using optical phased arrays on silicon-on-insulator

    OpenAIRE

    Van Acoleyen, Karel; Komorowska, Katarzyna; Bogaerts, Wim; Baets, Roel

    2011-01-01

    Optical beam steering can find applications in several domains such as laser scanning, LiDAR (Light Detection And Ranging), wireless data transfer and optical switches and interconnects. As present beam steering approaches use mechanical motion such as moving mirrors or MEMS (Micro Electro Mechanical Systems) or molecular movement using liquid crystals, they are usually limited in speed and/or performance. Therefore we have studied the possibilities of the integrated silicon photonics platfor...

  9. Arrays of ZnO nanocolumns for 3-dimensional very thin amorphous and microcrystalline silicon solar cells

    Czech Academy of Sciences Publication Activity Database

    Neykova, Neda; Hruška, Karel; Holovský, Jakub; Remeš, Zdeněk; Vaněček, Milan

    2013-01-01

    Roč. 543, SEP (2013), s. 110-113. ISSN 0040-6090 R&D Projects: GA ČR(CZ) GAP108/11/0937; GA MŠk(CZ) 7E09057 Institutional support: RVO:68378271 Keywords : zinc oxide nanocolumns * hydrothermal method * thin film silicon solar cells Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.867, year: 2013 http://www.sciencedirect.com/science/article/pii/S0040609013003805

  10. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    International Nuclear Information System (INIS)

    Highlights: • Analysis of the triple line motion on surfaces with nanoscale surface topographies. • Analysis of the triple line motion is performed in sub-pixel resolution. • A special fitting and statistical approach for contact angle analysis is applied. • The analyses result set of contact angle data which is independent of “user-skills”. • Characteristically density distributions in dependence on the surface properties. - Abstract: Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θa and the receding θr contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple line dis

  11. A Fabrication Route for Arrays of Ultra-low-Noise MoAu Transition Edge Sensors on Thin Silicon Nitride for Space Applications

    CERN Document Server

    Glowacka, D M; Goldie, D J; Withington, S

    2014-01-01

    We describe a process route to fabricate arrays of Ultra-low-Noise MoAu Transition Edge Sensors (TESs). The low thermal conductance required for space applications is achieved using 200 nm-thick Silicon Nitride (SiNx ) patterned to form long-thin legs with widths of 2.1 {\\mu}m. Using bilayers formed on SiNx islands from films with 40 nm-thick Mo and Au thicknesses in the range 30 to 280 nm deposited by dc-sputtering in ultra-high vacuum we can obtain tunable transition temperatures in the range 700 to 70 mK. The sensors use large-area absorbers fabricated from high resistivity, thin-film beta-phase Ta to provide impedance-matching to incident radiation. The absorbers are patterned to reduce the heat capacity associated with the nitride support structure and include Au thermalizing features to assist the heat flow into the TES. Arrays of 400 detectors at the pixel spacing required for the long-wavelength band of the far-infrared instrument SAFARI are now being fabricated. Device yields approaching 99% are achi...

  12. A 4 π charged-particle detector array for light-ion-induced nuclear fragmentation studies

    Science.gov (United States)

    Kwiatkowski, K.; Alexander, A.; Bracken, D. S.; Brzychczyk, J.; Dorsett, J.; Ensman, R.; Renshaw Foxford, E.; Hamilton, T.; Komisarcik, K.; McDonald, K. N.; Morley, K. B.; Poehlman, J.; Powell, C.; Viola, V. E.; Yoder, N. R.; Ottarson, J.; Madden, N.

    1994-12-01

    Operating characteristics of the Indiana Silicon Sphere 4 π detector array are outlined. The detector geometry is spherical, with 90 telescopes in the forward hemisphere and 72 at backward angles, covering a total solid angle of 74% of 4π. Each telescope consists of a simple gas-ion chamber, operated with C3F8 gas, followed by a 0.5 mm thick ion-implanted silicon detector and a 28 mm CsI(Tl) crystal, readout by a photodiode. Custom-built bias supplies and NIM preamp/shaper modules were used in conjunction with commercial CFD, TDC and ADC CAMAC units.

  13. A 4[pi] charged-particle detector array for light-ion-induced nuclear fragmentation studies

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowski, K. (Departments of Chemistry and Physics and IUCF, Indiana University, Bloomington, IN 47405 (United States)); Alexander, A. (Departments of Chemistry and Physics and IUCF, Indiana University, Bloomington, IN 47405 (United States)); Bracken, D.S. (Departments of Chemistry and Physics and IUCF, Indiana University, Bloomington, IN 47405 (United States)); Brzychczyk, J. (Departments of Chemistry and Physics and IUCF, Indiana University, Bloomington, IN 47405 (United States)); Dorsett, J. (Departments of Chemistry and Physics and IUCF, Indiana University, Bloomington, IN 47405 (United States)); Ensman, R. (Departments of Chemistry and Physics and IUCF, Indiana University, Bloomington, IN 47405 (United States)); Foxford, E.R. (Departments of Chemistry and Physics and IUCF, Indiana University, Bloomington, IN 47405 (United States)); Hamilton, T. (Departments of Chemistry and Physics and IUCF, Indiana University, Bloomington, IN 47405 (United States)); Komisarcik, K. (Dep

    1994-12-30

    Operating characteristics of the Indiana Silicon Sphere 4[pi] detector array are outlined. The detector geometry is spherical, with 90 telescopes in the forward hemisphere and 72 at backward angles, covering a total solid angle of 74% of 4[pi]. Each telescope consists of a simple gas-ion chamber, operated with C[sub 3]F[sub 8] gas, followed by a 0.5 mm thick ion-implanted silicon detector and a 28 mm CsI(Tl) crystal, readout by a photodiode. Custom-built bias supplies and NIM preamp/shaper modules were used in conjunction with commercial CFD, TDC and ADC CAMAC units. ((orig.))

  14. A 4π charged-particle detector array for light-ion-induced nuclear fragmentation studies

    International Nuclear Information System (INIS)

    Operating characteristics of the Indiana Silicon Sphere 4π detector array are outlined. The detector geometry is spherical, with 90 telescopes in the forward hemisphere and 72 at backward angles, covering a total solid angle of 74% of 4π. Each telescope consists of a simple gas-ion chamber, operated with C3F8 gas, followed by a 0.5 mm thick ion-implanted silicon detector and a 28 mm CsI(Tl) crystal, readout by a photodiode. Custom-built bias supplies and NIM preamp/shaper modules were used in conjunction with commercial CFD, TDC and ADC CAMAC units. ((orig.))

  15. Multiwell cartridge with integrated array of amorphous silicon photosensors for chemiluminescence detection: development, characterization and comparison with cooled-CCD luminograph.

    Science.gov (United States)

    Mirasoli, Mara; Nascetti, Augusto; Caputo, Domenico; Zangheri, Martina; Scipinotti, Riccardo; Cevenini, Luca; de Cesare, Giampiero; Roda, Aldo

    2014-09-01

    We propose a disposable multiwell microcartridge with integrated amorphous silicon photosensors array for bio- and chemiluminescence-based bioassays, where the enzymatic reactions and the detection unit are coupled on the same glass substrate. Each well, made in a polydimethylsiloxane (PDMS) unit, hosts an enzymatic reaction that is monitored by one photosensor of the array. Photosensors were characterized in terms of their dark current background noise and response to different wavelengths of visible light in order to determine their suitability as detection devices for chemical luminescent phenomena. Calibration curves of the photosensors' response to different luminescent systems were then evaluated by using the chemiluminescent reactions catalyzed by alkaline phosphatase and horseradish peroxidase and the bioluminescent reaction catalyzed by firefly luciferase. Limits of detection in the order of attomoles for chemiluminescence enzymes and femtomoles for luciferase and sensitivities in the range between 0.007 and 0.1 pA pmol(-1) L were reached. We found that, without the need of cooling systems, the analytical performances of the proposed cartridge are comparable with those achievable with state-of-the-art thermoelectrically cooled charge-coupled device-based laboratory instrumentation. In addition, thanks to the small amount of generated output data, the proposed device allows the monitoring of long-lasting reactions with significant advantages in terms of data-storage needs, transmission bandwidth, ease of real-time signal processing and limited power consumption. Based on these results, the operation in model bioanalytical assays exploiting luminescent reactions was tested demonstrating that a-Si:H photosensors arrays, when integrated with PDMS microfluidic units, provide compact, sensitive and potentially low-cost microdevices for chemiluminescence and bioluminescence-based bioassays with a wide range of possible applications for in-field and point

  16. Bonding silicones with epoxies

    Energy Technology Data Exchange (ETDEWEB)

    Tira, J.S.

    1980-01-01

    It is shown that silicones, both room temperature vulcanizing (RTV) and millable rubber (press cured) can be successfully bonded to other materials using plasma treatment and epoxy adhesives. The plasma treatment using dry air atmosphere increases the surface energy of the silicone and thus provides a lower water contact angle. This phenomenon allows the epoxy adhesive to wet the silicone surface and ultimately bond. Bond strengths are sufficiently high to result in failures in the silicone materials rather than the adhesive bond.

  17. Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex

    Science.gov (United States)

    Chestek, Cynthia A.; Gilja, Vikash; Nuyujukian, Paul; Foster, Justin D.; Fan, Joline M.; Kaufman, Matthew T.; Churchland, Mark M.; Rivera-Alvidrez, Zuley; Cunningham, John P.; Ryu, Stephen I.; Shenoy, Krishna V.

    2011-08-01

    Cortically-controlled prosthetic systems aim to help disabled patients by translating neural signals from the brain into control signals for guiding prosthetic devices. Recent reports have demonstrated reasonably high levels of performance and control of computer cursors and prosthetic limbs, but to achieve true clinical viability, the long-term operation of these systems must be better understood. In particular, the quality and stability of the electrically-recorded neural signals require further characterization. Here, we quantify action potential changes and offline neural decoder performance over 382 days of recording from four intracortical arrays in three animals. Action potential amplitude decreased by 2.4% per month on average over the course of 9.4, 10.4, and 31.7 months in three animals. During most time periods, decoder performance was not well correlated with action potential amplitude (p > 0.05 for three of four arrays). In two arrays from one animal, action potential amplitude declined by an average of 37% over the first 2 months after implant. However, when using simple threshold-crossing events rather than well-isolated action potentials, no corresponding performance loss was observed during this time using an offline decoder. One of these arrays was effectively used for online prosthetic experiments over the following year. Substantial short-term variations in waveforms were quantified using a wireless system for contiguous recording in one animal, and compared within and between days for all three animals. Overall, this study suggests that action potential amplitude declines more slowly than previously supposed, and performance can be maintained over the course of multiple years when decoding from threshold-crossing events rather than isolated action potentials. This suggests that neural prosthetic systems may provide high performance over multiple years in human clinical trials.

  18. Low cost silicon solar array project silicon materials task: Establishment of the feasibility of a process capable of low-cost, high volume production of silane (step 1) and the pyrolysis of silane to semiconductor-grade silicon (step 2)

    Science.gov (United States)

    Breneman, W. C.; Cheung, H.; Farrier, E. G.; Morihara, H.

    1977-01-01

    A quartz fluid bed reactor capable of operating at temperatures of up to 1000 C was designed, constructed, and successfully operated. During a 30 minute experiment, silane was decomposed within the reactor with no pyrolysis occurring on the reactor wall or on the gas injection system. A hammer mill/roller-crusher system appeared to be the most practical method for producing seed material from bulk silicon. No measurable impurities were detected in the silicon powder produced by the free space reactor, using the cathode layer emission spectroscopic technique. Impurity concentration followed by emission spectroscopic examination of the residue indicated a total impurity level of 2 micrograms/gram. A pellet cast from this powder had an electrical resistivity of 35 to 45 ohm-cm and P-type conductivity.

  19. Silicon on-chip 1D photonic crystal nanobeam bandstop filters for the parallel multiplexing of ultra-compact integrated sensor array.

    Science.gov (United States)

    Yang, Daquan; Wang, Chuan; Ji, Yuefeng

    2016-07-25

    We propose a novel multiplexed ultra-compact high-sensitivity one-dimensional (1D) photonic crystal (PC) nanobeam cavity sensor array on a monolithic silicon chip, referred to as Parallel Integrated 1D PC Nanobeam Cavity Sensor Array (PI-1DPC-NCSA). The performance of the device is investigated numerically with three-dimensional finite-difference time-domain (3D-FDTD) technique. The PI-1DPC-NCSA consists of multiple parallel-connected channels of integrated 1D PC nanobeam cavities/waveguides with gap separations. On each channel, by connecting two additional 1D PC nanobeam bandstop filters (1DPC-NBFs) to a 1D PC nanobeam cavity sensor (1DPC-NCS) in series, a transmission spectrum with a single targeted resonance is achieved for the purpose of multiplexed sensing applications. While the other spurious resonances are filtered out by the stop-band of 1DPC-NBF, multiple 1DPC-NCSs at different resonances can be connected in parallel without spectrum overlap. Furthermore, in order for all 1DPC-NCSs to be integrated into microarrays and to be interrogated simultaneously with a single input/output port, all channels are then connected in parallel by using a 1 × n taper-type equal power splitter and a n × 1 S-type power combiner in the input port and output port, respectively (n is the channel number). The concept model of PI-1DPC-NCSA is displayed with a 3-parallel-channel 1DPC-NCSs array containing series-connected 1DPC-NBFs. The bulk refractive index sensitivities as high as 112.6nm/RIU, 121.7nm/RIU, and 148.5nm/RIU are obtained (RIU = Refractive Index Unit). In particular, the footprint of the 3-parallel-channel PI-1DPC-NCSA is 4.5μm × 50μm (width × length), decreased by more than three orders of magnitude compared to 2D PC integrated sensor arrays. Thus, this is a promising platform for realizing ultra-compact lab-on-a-chip applications with high integration density and high parallel-multiplexing capabilities. PMID:27464080

  20. A tunable sub-100 nm silicon nanopore array with an AAO membrane mask: reducing unwanted surface etching by introducing a PMMA interlayer

    Science.gov (United States)

    Lim, Namsoo; Pak, Yusin; Kim, Jin Tae; Hwang, Youngkyu; Lee, Ryeri; Kumaresan, Yogeenth; Myoung, Nosoung; Ko, Heung Cho; Jung, Gun Young

    2015-08-01

    Highly ordered silicon (Si) nanopores with a tunable sub-100 nm diameter were fabricated by a CF4 plasma etching process using an anodic aluminum oxide (AAO) membrane as an etching mask. To enhance the conformal contact of the AAO membrane mask to the underlying Si substrate, poly(methyl methacrylate) (PMMA) was spin-coated on top of the Si substrate prior to the transfer of the AAO membrane. The AAO membrane mask was fabricated by two-step anodization and subsequent removal of the aluminum support and the barrier layer, which was then transferred to the PMMA-coated Si substrate. Contact printing was performed on the sample with a pressure of 50 psi and a temperature of 120 °C to make a conformal contact of the AAO membrane mask to the Si substrate. The CF4 plasma etching was conducted to transfer nanopores onto the Si substrate through the PMMA interlayer. The introduced PMMA interlayer prevented unwanted surface etching of the Si substrate by eliminating the etching ions and radicals bouncing at the gap between the mask and the substrate, resulting in a smooth Si nanopore array.Highly ordered silicon (Si) nanopores with a tunable sub-100 nm diameter were fabricated by a CF4 plasma etching process using an anodic aluminum oxide (AAO) membrane as an etching mask. To enhance the conformal contact of the AAO membrane mask to the underlying Si substrate, poly(methyl methacrylate) (PMMA) was spin-coated on top of the Si substrate prior to the transfer of the AAO membrane. The AAO membrane mask was fabricated by two-step anodization and subsequent removal of the aluminum support and the barrier layer, which was then transferred to the PMMA-coated Si substrate. Contact printing was performed on the sample with a pressure of 50 psi and a temperature of 120 °C to make a conformal contact of the AAO membrane mask to the Si substrate. The CF4 plasma etching was conducted to transfer nanopores onto the Si substrate through the PMMA interlayer. The introduced PMMA interlayer

  1. Nanostructures and sensing properties of ZnO prepared using normal and oblique angle deposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chu Jin; Peng Xiaoyan; Sajjad, M. [Department of Physics, University of Puerto Rico, San Juan, 00936 (Puerto Rico); Yang Boqian [Department of Physics, University of Massachusetts Amherst, MA 01003 (United States); Feng, Peter X., E-mail: p.feng@upr.edu [Department of Physics, University of Puerto Rico, San Juan, 00936 (Puerto Rico)

    2012-02-29

    Nanostructured zinc oxide (ZnO) for gas sensing application has been prepared by using normal and oblique angle sputtering deposition techniques under different substrate temperatures. Oblique angle plasma beam deposition is demonstrated effectively growing large-area uniformly aligned and inclined ZnO nanorod arrays on catalyst-free silicon substrate due to a self-shadowing mechanism, whereas normal radio frequency sputtering deposition yields nanoparticles as island growth mode. Furthermore, the density of the nanorod arrays is dependent on the incident angle of ZnO plasma beam. With an increase of the incident flux angle, large inter spacing was induced, resulting in sparser nanorod arrays. The nanorod arrays grown with an incident angle of 70 Degree-Sign have an average diameter of {approx} 150-300 nm and length of {approx} 700-750 nm. The experimental data from characterization of the samples indicates that the obtained samples at different substrate temperatures and incident angles have wurtzite structure with a c-axis orientation. Sensing characterization reveals that the nanorod-based sensor shows higher sensitivity, faster response and recovery time, as well as better reproducibility than that of nanoparticle-based gas sensor to 100 ppm hydrogen and methane at low operating temperature below 150 Degree-Sign C due to the porosity and large grain boundaries of the nanorod arrays. It demonstrates that oblique angle of sputtering deposition is a simple, inexpensive synthesis process to get high-porosity nanostructures and as a result, improves the sensing properties of fabricated ZnO sensors, which permits us to obtain sensors with high sensitivity, low operating temperature and stability. - Highlights: Black-Right-Pointing-Pointer Surface morphology depends on the deposition angle during sputtering. Black-Right-Pointing-Pointer High quality crystalline ZnO by radio frequency sputtering obtained at 350 Degree-Sign C. Black-Right-Pointing-Pointer ZnO nanorod

  2. Arrival angle anomalies of Rayleigh waves observed at a broadband array: a systematic study based on earthquake data, full waveform simulations and noise correlations

    Science.gov (United States)

    Pedersen, H. A.; Boué, P.; Poli, P.; Colombi, A.

    2015-12-01

    Deviation of seismic surface waves from the great-circle between source and receiver is illustrated by the anomalies in the arrival angle, that is the difference between the observed backazimuth of the incident waves and the great-circle. Such arrival angle anomalies have been known for decades, but observations remain scattered. We present a systematic study of arrival angle anomalies of fundamental mode Rayleigh waves (20-100 s period interval) from 289 earthquakes and recorded by a broadband network LAPNET, located in northern Finland. These observations are compared with those of full waveform synthetic seismograms for the same events, calculated in a 3-D Earth and also compared with those of seismograms obtained by ambient noise correlation. The arrival angle anomalies for individual events are complex, and have significant variations with period. On average, the mean absolute deviation decreases from ˜9° at 20 s period to ˜3° at 100 s period. The synthetic seismograms show the same evolution, albeit with somewhat smaller deviations. While the arrival angle anomalies are fairly well simulated at long periods, the deviations at short periods are very poorly modelled, demonstrating the importance of the continuous improvement of global crustal models. At 20-30 s period, both event data and numerical simulations have strong multipathing, and relative amplitude changes between different waves will induced differences in deviations between very closely located events. The source mechanism has only limited influence on the deviations, demonstrating that they are directly linked to propagation effects, including near-field effects in the source area. This observation is confirmed by the comparison with seismic noise correlation records, that is where the surface waves correspond to those emitted by a point source at the surface, as the two types of observations are remarkably similar in the cases where earthquakes are located close to seismic stations. This

  3. Influencing Factors of Silicone Rubber Static Contact Angle Measurement%影响硅橡胶静态接触角测量结果的相关因素分析

    Institute of Scientific and Technical Information of China (English)

    徐志钮; 律方成; 张翰韬; 刘云鹏

    2012-01-01

    To improve accuracy of static contact angle measurement of silicone rubber material,the influence of various factors on accuracy of silicone rubber static contact angle measurement should be studied.Basing on a contact angle meter,digital camera and dynamic and static contact angle calculation software DSCA(dynamic static contact angle),we studied the influences of globule volume,delay time,temperature,water conductivity and sample longitudinal inclination on the static contact angle measurement according to sessile drop method.Results indicate that globule volume has little influence on the static contact angle measurement result,while different volume's globule images need different algorithms to calculate the contact angle.Static contact angle decreases with increase in delay time,however,clean,corona,and completely migration-contaminated samples have slow decrease speed,meanwhile,immersed,incompletely migration-contaminated samples have fast decrease speed.Temperature has some influences on the static contact angle measurement,static contact angle becomes small at low temperature.Water conductivity has no obvious effect on the measured static contact angle.If inclination direction is negative,the inclination may cause large error.If inclination direction is positive,in despite of large static contact angle or small static contact angle,the inclination has little influence on the measurement result of static contact angle,however,the inclined globule image will cause difficulty in automatic calculation of static contact angle.So,if a sample is taken out from low temperature condition,it must be placed to room temperature,if the sample is taken out from high temperature condition,it can be measured directly.The globule volume should be selected as 2~4 μL.The globule image should be pictured in 5 s after dripping.Deionized water should be selected,and running water or saline water with certain conductivity can be substituted.Photos should be taken when

  4. Detection of charged particles and X-rays by scintillator layers coupled to amorphous silicon photodiode arrays

    International Nuclear Information System (INIS)

    Hydrogenated amorphous silicon (a-Si:H) p-i-n diodes with transparent metallic contacts are shown to be suitable for detecting charged particles, electrons, and X-rays. When coupled to a suitable scintillator using CsI(Tl) as the scintillator we show a capability to detect minimum ionizing particles with S/N ∼20. We demonstrate such an arrangement by operating a p-i-n diode in photovoltaic mode (reverse bias). Moreover, we show that a p-i-n diode can also work as a photoconductor under forward bias and produces a gain yield of 3-8 higher light sensitivity for shaping times of 1 μs. n-i-n devices have similar optical gain as the p-i-n photoconductor for short integrating times ( < 10μs). However, n-i-n devices exhibit much higher gain for a long term integration (10ms) than the p-i-n ones. High sensitivity photosensors are very desirable for X-ray medical imaging because radiation exposure dose can be reduced significantly. The scintillator CsI layers we made have higher spatial resolution than the Kodak commercial scintillator screens due to their internal columnar structure which can collimate the scintillation light. Evaporated CsI layers are shown to be more resistant to radiation damage than the crystalline bulk CsI(Tl)

  5. Highly Disordered Array of Silicon Nanowires: an Effective and Scalable Approach for Performing and Flexible Electrochemical Biosensors.

    Science.gov (United States)

    Maiolo, Luca; Polese, Davide; Pecora, Alessandro; Fortunato, Guglielmo; Shacham-Diamand, Yosi; Convertino, Annalisa

    2016-03-01

    The direct integration of disordered arranged and randomly oriented silicon nanowires (SiNWs) into ultraflexible and transferable electronic circuits for electrochemical biosensing applications is proposed. The working electrode (WE) of a three-electrode impedance device, fabricated on a polyimide (PI) film, is modified with SiNWs covered by a thin Au layer and functionalized to bind the sensing element. The biosensing behavior is investigated through the ligand-receptor binding of biotin-avidin system. Impedance measurements show a very efficient detection of the avidin over a broad range of concentrations from hundreds of micromolar down to the picomolar values. The impedance response is modeled through a simple equivalent circuit, which takes into account the unique WE morphology and its modification with successive layers of biomolecules. This approach of exploiting highly disordered SiNW ensemble in biosensing proves to be very promising for the following three main reasons: first, the system morphology allows high sensing performance; second, these nanostructures can be built via scalable and transferable fabrication methodology allowing an easy integration on non-conventional substrates; third, reliable modeling of the sensing response can be developed by considering the morphological and surface characteristics over an ensemble of disordered NWs rather than over individual NWs. PMID:26717420

  6. Continuous Czochralski growth: silicon sheet growth development of Large Area Silicon Sheet Task of the Low-Cost Silicon Solar Array Project. Second quarterly progress report, January 1--March 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This project is directed toward the development of equipment and processes to produce single crystal solar silicon by a continuous Czochralski (CZ) method. ''Continuous'' is defined as the production of at least 100 kilograms of crystal from a single melt container. The approach to be taken is to suitably modify a Hamco CG2000 crystal grower to demonstrate that continuous CZ growth is feasible by the periodic replenishment of the melt container and the removal of grown crystals. The crystal growth facility is now complete with the exception of the poly weight/recharge system. Installation of this device on the grower will require disassembly of the facility to modify the growth chambers. In the meantime, hot filling experiments are being conducted by attaching poly rod material to the seed lift mechanism. The work has progressed to the point where a suitable means of melt replenishment has been demonstrated. A poly-crystalline rod of silicon can be lowered into the crucible and melted at rates of over 14 kg/hr. Using this method of hot filling, a 12'' x 9'' high crucible was charged with 25 kg of silicon and a zero dislocation, 22 kg crystal 11.4 cm diameter, 87 cm long, was grown. This demonstrates that five crystals grown from a 12 inch crucible can satisfy the continuous CZ criterion. A growth rate of 7.3 cm/hr was achieved corresponding to a continuous throughput of 1.1 kg/hr. An economic model using the SAMICS/IPEG guidelines has shown that the add-on cost of CZ crystal growth can meet the 1982 goals without any technical breakthroughs, but an add-on cost reduction of approximately 50% is necessary to meet the 1986 goal, assuming reasonable slicing yields.

  7. Quantitative analysis of defects in silicon: silicon sheet growth development for the Large Area Silicon Sheet Task of the Low-Cost Solar Array Project. Quarterly progress report No. 5, April 1-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Natesh, R.; Smith, J.M.; Qidwai, H.A.; Bruce, T.

    1979-07-12

    During this reporting period a computer program was written for the PDP 11/03 computer that controls the Quantimet 720 Image Analyzing System (QTM 720). This program will facilitate the analysis of silicon samples on the upgraded Quantimet 720 System. Also during this period thirty-two (32) Motorola samples were analyzed for twin boundaries, dislocation pits, and grain boundaries. A discussion of the computer program and the data obtained from the thirty-two (32) Motorola samples are given. The use of the Image Editor on the QTM 720 detected image is also described.

  8. Preparation of thin hexagonal highly-ordered anodic aluminum oxide (AAO) template onto silicon substrate and growth ZnO nanorod arrays by electrodeposition

    Science.gov (United States)

    Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Qaeed, M. A.; Bououdina, M.

    2014-12-01

    In this study, anodic aluminum oxide (AAO) templates of Aluminum thin films onto Ti-coated silicon substrates were prepared for growth of nanostructure materials. Hexagonally highly ordered thin AAO templates were fabricated under controllable conditions by using a two-step anodization. The obtained thin AAO templates were approximately 70 nm in pore diameter and 250 nm in length with 110 nm interpore distances within an area of 3 cm2. The difference between first and second anodization was investigated in details by in situ monitoring of current-time curve. A bottom barrier layer of the AAO templates was removed during dropping the voltage in the last period of the anodization process followed by a wet etching using phosphoric acid (5 wt%) for several minutes at ambient temperature. As an application, Zn nanorod arrays embedded in anodic alumina (AAO) template were fabricated by electrodeposition. Oxygen was used to oxidize the electrodeposited Zn nanorods in the AAO template at 700 °C. The morphology, structure and photoluminescence properties of ZnO/AAO assembly were analyzed using Field-emission scanning electron microscope (FESEM), Energy dispersive X-ray spectroscopy (EDX), Atomic force microscope (AFM), X-ray diffraction (XRD) and photoluminescence (PL).

  9. Fabrication of large arrays of high-aspect-ratio single-crystal silicon columns with isolated vertically aligned multi-walled carbon nanotube tips

    International Nuclear Information System (INIS)

    This paper describes the fabrication of large arrays (106 units in 1 cm2) of 100 μm tall, single-crystal silicon columns with submicron tip cross-sections. The columns are formed using thin film deposition and growth, reactive ion etching, and deep reactive ion etching. The columns can be either slightly tapered or have pencil-like morphology with nanoscaled tip diameter (41 nm). Conformal thin film coating was used to substantially and uniformly modify the porous structure and, thus, vary by orders of magnitude the fluid permeability of the structure. Gaps between the vertical pillars were varied between 9 μm and 50 nm. Isolated 45 nm diameter, 5 μm tall plasma enhanced chemical vapour deposited multi-walled carbon nanotubes (MWNTs) were grown on the top surface of the columns using a 7 nm thick evaporated Ni film as catalyst. Field emission characterization of the resulting structure was conducted and it is in agreement with scanning electron micrographs of the MWNTs

  10. A tunable sub-100 nm silicon nanopore array with an AAO membrane mask: reducing unwanted surface etching by introducing a PMMA interlayer.

    Science.gov (United States)

    Lim, Namsoo; Pak, Yusin; Kim, Jin Tae; Hwang, Youngkyu; Lee, Ryeri; Kumaresan, Yogeenth; Myoung, NoSoung; Ko, Heung Cho; Jung, Gun Young

    2015-08-28

    Highly ordered silicon (Si) nanopores with a tunable sub-100 nm diameter were fabricated by a CF4 plasma etching process using an anodic aluminum oxide (AAO) membrane as an etching mask. To enhance the conformal contact of the AAO membrane mask to the underlying Si substrate, poly(methyl methacrylate) (PMMA) was spin-coated on top of the Si substrate prior to the transfer of the AAO membrane. The AAO membrane mask was fabricated by two-step anodization and subsequent removal of the aluminum support and the barrier layer, which was then transferred to the PMMA-coated Si substrate. Contact printing was performed on the sample with a pressure of 50 psi and a temperature of 120 °C to make a conformal contact of the AAO membrane mask to the Si substrate. The CF4 plasma etching was conducted to transfer nanopores onto the Si substrate through the PMMA interlayer. The introduced PMMA interlayer prevented unwanted surface etching of the Si substrate by eliminating the etching ions and radicals bouncing at the gap between the mask and the substrate, resulting in a smooth Si nanopore array. PMID:26198752

  11. Depth-of-interaction measurement in a single-layer crystal array with a single-ended readout using digital silicon photomultiplier

    International Nuclear Information System (INIS)

    We present the first experimental evaluation of a depth-of-interaction (DOI) positron emission tomography (PET) detector using a digital silicon photomultiplier (dSiPM). To measure DOI information from a mono-layer array of scintillation crystals with a single-ended readout, our group has previously proposed and developed a new method based on light spread using triangular reflectors. Since this method relies on measurement of the light distribution, dSiPM, which has a fully digital interface, has several merits for our DOI measurement. The DOI PET detector comprised of a dSiPM sensor (DPC-3200-22-44) coupled with a 14   ×   14 array of 2 mm  ×  2 mm  ×  20 mm unpolished LGSO crystals. All crystals were covered with triangular reflectors. To obtain a good performance of the DOI PET detector, several parameters of detector were selected as a preliminary experiment. Detector performance was evaluated with the selected parameters and the optimal experimental setup, and a DOI measurement was conducted by irradiating the crystal block at five DOI positions spaced at intervals of 4 mm. Maximum-likelihood estimation was employed for DOI positioning and the optimal DOI estimation scheme was also investigated in this study. As a result, the DOI PET detector showed clear crystal identification. The energy resolution (full-width at half-maximum (FWHM)) averaged over all depths was 10.21%  ±  0.15% at 511 keV, and time resolution averaged over all depths was 1198.61   ±   39.70 ps FWHM. The average DOI positioning accuracy for all depths was 74.22%  ±  6.77%, which equates to DOI resolution of 4.67 mm. Energy and DOI resolutions were uniform over all crystal positions except for the back parts of the array. Furthermore, additional simulation studies were conducted to verify the results of our DOI measurement method that is combined with dSiPM technology. In conclusion, our continuous DOI PET detector

  12. Depth-of-interaction measurement in a single-layer crystal array with a single-ended readout using digital silicon photomultiplier.

    Science.gov (United States)

    Lee, Min Sun; Lee, Jae Sung

    2015-08-21

    We present the first experimental evaluation of a depth-of-interaction (DOI) positron emission tomography (PET) detector using a digital silicon photomultiplier (dSiPM). To measure DOI information from a mono-layer array of scintillation crystals with a single-ended readout, our group has previously proposed and developed a new method based on light spread using triangular reflectors. Since this method relies on measurement of the light distribution, dSiPM, which has a fully digital interface, has several merits for our DOI measurement. The DOI PET detector comprised of a dSiPM sensor (DPC-3200-22-44) coupled with a 14   ×   14 array of 2 mm  ×  2 mm  ×  20 mm unpolished LGSO crystals. All crystals were covered with triangular reflectors. To obtain a good performance of the DOI PET detector, several parameters of detector were selected as a preliminary experiment. Detector performance was evaluated with the selected parameters and the optimal experimental setup, and a DOI measurement was conducted by irradiating the crystal block at five DOI positions spaced at intervals of 4 mm. Maximum-likelihood estimation was employed for DOI positioning and the optimal DOI estimation scheme was also investigated in this study. As a result, the DOI PET detector showed clear crystal identification. The energy resolution (full-width at half-maximum (FWHM)) averaged over all depths was 10.21%  ±  0.15% at 511 keV, and time resolution averaged over all depths was 1198.61   ±   39.70 ps FWHM. The average DOI positioning accuracy for all depths was 74.22%  ±  6.77%, which equates to DOI resolution of 4.67 mm. Energy and DOI resolutions were uniform over all crystal positions except for the back parts of the array. Furthermore, additional simulation studies were conducted to verify the results of our DOI measurement method that is combined with dSiPM technology. In conclusion, our continuous DOI PET detector

  13. Depth-of-interaction measurement in a single-layer crystal array with a single-ended readout using digital silicon photomultiplier

    Science.gov (United States)

    Lee, Min Sun; Lee, Jae Sung

    2015-08-01

    We present the first experimental evaluation of a depth-of-interaction (DOI) positron emission tomography (PET) detector using a digital silicon photomultiplier (dSiPM). To measure DOI information from a mono-layer array of scintillation crystals with a single-ended readout, our group has previously proposed and developed a new method based on light spread using triangular reflectors. Since this method relies on measurement of the light distribution, dSiPM, which has a fully digital interface, has several merits for our DOI measurement. The DOI PET detector comprised of a dSiPM sensor (DPC-3200-22-44) coupled with a 14   ×   14 array of 2 mm  ×  2 mm  ×  20 mm unpolished LGSO crystals. All crystals were covered with triangular reflectors. To obtain a good performance of the DOI PET detector, several parameters of detector were selected as a preliminary experiment. Detector performance was evaluated with the selected parameters and the optimal experimental setup, and a DOI measurement was conducted by irradiating the crystal block at five DOI positions spaced at intervals of 4 mm. Maximum-likelihood estimation was employed for DOI positioning and the optimal DOI estimation scheme was also investigated in this study. As a result, the DOI PET detector showed clear crystal identification. The energy resolution (full-width at half-maximum (FWHM)) averaged over all depths was 10.21%  ±  0.15% at 511 keV, and time resolution averaged over all depths was 1198.61   ±   39.70 ps FWHM. The average DOI positioning accuracy for all depths was 74.22%  ±  6.77%, which equates to DOI resolution of 4.67 mm. Energy and DOI resolutions were uniform over all crystal positions except for the back parts of the array. Furthermore, additional simulation studies were conducted to verify the results of our DOI measurement method that is combined with dSiPM technology. In conclusion, our continuous DOI PET detector

  14. Development of High-Performance eSWIR HgCdTe-Based Focal-Plane Arrays on Silicon Substrates

    Science.gov (United States)

    Park, J. H.; Pepping, J.; Mukhortova, A.; Ketharanathan, S.; Kodama, R.; Zhao, J.; Hansel, D.; Velicu, S.; Aqariden, F.

    2016-06-01

    We report the development of high-performance and low-cost extended short-wavelength infrared (eSWIR) focal-plane arrays (FPAs) fabricated from molecular beam epitaxial (MBE)-grown HgCdTe on Si-based substrates. High-quality n-type eSWIR HgCdTe (cutoff wavelength ˜2.68 μm at 77 K, electron carrier concentration 5.82 × 1015 cm-3) layers were grown on CdTe/Si substrates by MBE. High degrees of uniformity in composition and thickness were demonstrated over three-inch areas, and low surface defect densities (voids 9.56 × 101 cm-2, micro-defects 1.67 × 103 cm-2) were measured. This material was used to fabricate 320 × 256 format, 30 μm pitch FPAs with a planar device architecture using arsenic implantation to achieve p-type doping. The dark current density of test devices showed good uniformity between 190 K and room temperature, and high-quality eSWIR imaging from hybridized FPAs was obtained with a median dark current density of 2.63 × 10-7 A/cm2 at 193 K with a standard deviation of 1.67 × 10-7 A/cm2.

  15. Stable superhydrophobic surface of hierarchical carbon nanotubes on Si micropillar arrays

    OpenAIRE

    He, Shaoqing; Wei, Jinquan; Wang, Haifan; Sun, Deshun; Yao, Zhaohui; Fu, Chengsong; Xu, Ruiqiao; Jia, Yi; Zhu, Hongwei; Wang, Kunlin; Wu, Dehai

    2013-01-01

    It is of great importance to construct a stable superhydrophobic surface with low sliding angle (SA) for various applications. We used hydrophobic carbon nanotubes (CNTs) to construct the superhydrophobic hierarchical architecture of CNTs on silicon micropillar array (CNTs/Si-μp), which have a large contact angle of 153° to 155° and an ultralow SA of 3° to 5°. Small water droplets with a volume larger than 0.3 μL can slide on the CNTs/Si-μp with a tilted angle of approximately 5°. The CNTs gr...

  16. Photoluminescence of Carbonized Silicon Nanoporous Pillar Array%碳化的硅纳米孔柱阵列的光致发光特性

    Institute of Scientific and Technical Information of China (English)

    胡楚雄; 王小波; 闫玲玲; 蔡晓君; 李新建

    2015-01-01

    采用水热腐蚀法制备了硅纳米孔柱阵列( Si-NPA),并对其进行了不同时间的高温碳化处理。通过对样品光致发光谱进行对比分析,发现Si-NPA经碳化处理后红光发光峰消失,蓝光发射峰强度增强,同时出现一个新的紫外光发光峰。结合对Si-NPA中碳原子存在状态的拉曼分析,蓝光发射峰、紫外光发射峰被分别归因于氧化硅的缺陷发光和碳原子掺杂Si-NPA引起的缺陷发光。上述研究结果为澄清Si-NPA的发光机制以及实现其发光稳定性提供了有益的信息。%The samples of silicon nanoporous pillar array ( Si-NPA ) were prepared by a hydrothermal etching method and were carbonized at high temperature with different times. The photoluminescence ( PL) spectra of carbonized Si-NPA were measured and compared with that of freshly prepared samples. It was found that after carbonization, an ultraviolet PL peak newly appeared and the blue PL was greatly enhanced, accompanied with the disappearance of the red PL peak of Si-NPA. Combined with the Raman analysis on the existing status of carbon atoms in Si-NPA, the blue and the ultraviolet emissions were at-tributed to the PL from the defect states of silicon oxide and doping carbon atoms in Si-NPA, respective-ly. The results might provide some useful information for clarifying the PL mechanism and realizing stable PL of Si-NPA.

  17. A study of the feasibility and performance of an active/passive imager using silicon focal plane arrays and incoherent continuous wave laser diodes

    Science.gov (United States)

    Vollmerhausen, Richard H.

    This dissertation describes an active/passive imager (API) that provides reliable, nighttime, target acquisition in a man-portable package with effective visual range of about 4 kilometers. The reflective imagery is easier to interpret than currently used thermal imagery. Also, in the active mode, the API provides performance equivalent to the big-aperture, thermal systems used on weapons platforms like tanks and attack helicopters. This dissertation describes the research needed to demonstrate both the feasibility and utility of the API. Part of the research describes implementation of a silicon focal plane array (SFPA) capable of both active and passive imaging. The passive imaging mode exceeds the nighttime performance of currently fielded, man-portable sensors. Further, when scene illumination is insufficient for passive imaging, the low dark current of SFPA makes it possible to use continuous wave laser diodes (CWLD) to add an active imaging mode. CWLD have advantages of size, efficiency, and improved eye safety when compared to high peak-power diodes. Because of the improved eye safety, the API provides user-demanded features like video output and extended range gates in the active as well as passive imaging modes. Like any other night vision device, the API depends on natural illumination of the scene for passive operation. Although it has been known for decades that "starlight" illumination is actually from diffuse airglow emissions, the research described in this dissertation provides the first estimates of the global and temporal variation of ground illumination due to airglow. A third related element of the current research establishes the impact of atmospheric aerosols on API performance. We know from day experience that atmospheric scattering of sunlight into the imager line-of-sight can blind the imager and drastically degrade performance. Atmospheric scattering of sunlight is extensively covered in the literature. However, previous literature did not

  18. Scoliosis angle

    International Nuclear Information System (INIS)

    The most commonly used methods of assessing the scoliotic deviation measure angles that are not clearly defined in relation to the anatomy of the patient. In order to give an anatomic basis for such measurements it is proposed to define the scoliotic deviation as the deviation the vertebral column makes with the sagittal plane. Both the Cobb and the Ferguson angles may be based on this definition. The present methods of measurement are then attempts to measure these angles. If the plane of these angles is parallel to the film, the measurement will be correct. Errors in the measurements may be incurred by the projection. A hypothetical projection, called a 'rectified orthogonal projection', is presented, which correctly represents all scoliotic angles in accordance with these principles. It can be constructed in practice with the aid of a computer and by performing measurements on two projections of the vertebral column; a scoliotic curve can be represented independent of the kyphosis and lordosis. (Auth.)

  19. 一种宽频宽角圆极化一维相扫天线阵%A broadband wide angle circularly polarized one-dimensional phase scanning antenna array

    Institute of Scientific and Technical Information of China (English)

    陈谦; 李磊; 张小林

    2014-01-01

    基于改进型Vivaldi天线单元,采用4单元十字交叉组合构成圆极化天线,并通过增加耦合金属立柱改善天线轴比,设计了一种超宽频宽角覆盖圆极化直线阵。该天线在1.25-4.1 GHz频段电压驻波比(VSWR)小于2,在1.6-3.6 GHz频段轴比小于3 dB,在垂直扫描方向具备宽角覆盖能力,具备较高的工程应用价值。%Based on improved Vivaldi antenna unit, using four crossed units constitutes a circularly polarized antenna, further improving axial ratio (AR) by adding the coupling metal columns, an ultra-broadband wide-angle circularly polarized linear an-tenna array is designed. The voltage standing wave ratio (VSWR) of the antenna is less than 2 at the frequency range of 1.25 to 4.1 GHz. Meanwhile, the AR is less than 3 dB at the frequency range of 1.6 to 3.6 GHz. This antenna has very wide angle cover-age ability, and has high engineering value.

  20. Silicon crystal under bending

    International Nuclear Information System (INIS)

    The mechanical behavior of a silicon crystal under bending is investigated. For a crystal of length 30 mm and thickness 3 mm, to achieve the specified bend angle of 0.64 mrad, the appropriate angle of the aluminum punches is 0.96 mrad

  1. Feasibility of low-cost, high-volume production of silane and pyrolysis of silane to semiconductor-grade silicon. Low Cost Silicon Solar Array Project. Quarterly progress report, January--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Breneman, W.C.; Farrier, E.G.; Morihara, H.

    1978-01-01

    The purpose of the silane production program is to determine the feasibility and practicality of high-volume, low-cost production of silane (SiH/sub 4/) as an intermediate for obtaining solar-grade silicon metal. The process is based on the synthesis of SiH/sub 4/ by the catalytic disproportionation of chlorosilanes resulting from the reaction of hydrogen, metallurgical silicon, and silicon tetrachloride. The goal is to demonstrate the feasibility of a silane production cost of under $4.00/kg at a production rate of 1000 MT/year. The objective of the silicon production program is to establish the viability and economic feasibility of manufacturing semiconductor-grade polycrystalline silicon through the pyrolysis of silane. The silane-to-silicon conversion is to be investigated in a fluid bed reactor and a free space reactor. The purpose of the process design program is to provide JPL with engineering and economic parameters for an experimental facility capable of producing 25 metric tons of silicon per year by the pyrolysis of silane gas. An ancillary purpose is to estimate the cost of silicon produced by the same process on a scale of 1000 metric tons per year. The capacitive fluid-bed heating program is exploring the feasibility of utilizing electrical capacitive heating to control the fluidized silicon bed temperature during the heterogeneous decomposition of silane. In addition, a theoretical fluid-bed silicon deposition model is being developed to be used in a design of a fluid-bed pyrolysis process scheme. Research progress is described in detail. (WHK)

  2. The Apparent Contact Angle and Wetted Area of Active Alloys on Silicon Carbide as a Function of the Temperature and the Surface Roughness: A Multivariate Approach

    Science.gov (United States)

    Tillmann, Wolfgang; Pfeiffer, Jan; Wojarski, Lukas

    2015-08-01

    Despite the broad field of applications for active filler alloys for brazing ceramics, as well as intense research work on the wetting and spreading behavior of these alloys on ceramic surfaces within the last decades, the manufactured joints still exhibit significant variations in their properties due to the high sensitivity of the alloys to changing brazing conditions. This increases the need for investigations of the wetting and spreading behavior of filler alloys with regard to the dominating influences combined with their interdependencies, instead of solely focusing on single parameter investigations. In this regard, measurements of the wetting angle and area were conducted at solidified AgCuTi and CuSnTi alloys on SiC substrates. Based on these measurements, a regression model was generated, illustrating the influence of the brazing temperature, the roughness of the faying surfaces, the furnace atmosphere, and their interdependencies on the wetting and spreading behavior of the filler alloys. It was revealed that the behavior of the melts was significantly influenced by the varied brazing parameters, as well as by their interdependencies. This result was also predicted by the developed model and showed a high accuracy.

  3. Fabrication of high density silicon nanodot array based on soft imprinting theory%低压压印制备硅点阵结构的工艺研究

    Institute of Scientific and Technical Information of China (English)

    刘玉东; 陶伟; 王时飞; 李鑫; 王旭迪

    2013-01-01

    高密度、图形规则的硅点阵结构由于其独特的光电性能具有广泛的应用前景.本文介绍了一种以低压压印结合反应离子刻蚀制备硅点阵的方法,即利用PDMS模板通过压印复制获得PMMA掩模结构,用反应离子刻蚀在硅片表面制得高度有序的硅纳米点阵结构.实验和有限元模拟结果表明,低压压印因为毛细作用下光刻胶在模板内的充分填充可以获得良好的图形复制精度和较小的残余胶厚度,因此适于大面积高密度光刻胶结构的均匀复制.%High density and regular silicon nanodot array patterns have been widely researched in many front fields,but the fabrication still remain many problems.In this paper,we present a new method to fabricate silicon nanodot array based on soft imprinting theory.Firstly,according to soft imprinting,we got the PMMA mask by PDMS mould,after that,highly ordered silicon array patterns were obtained combining with reactive ion etching.Experimental and finite element analysis results show that,soft imprinting has a better graphic reproduction accuracy and smaller residual photoresist thickness due to the capillary force,which can lead to better filling of polymer,so it is suitable for large area uniform replication of high density photoresist structure.

  4. Single crystalline mesoporous silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hochbaum, Allon; Dargas, Daniel; Hwang, Yun Jeong; Yang, Peidong

    2009-08-18

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. The photoluminescence of these nanowires suggest they are composed of crystalline silicon with small enough dimensions such that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices. A better understanding of this electroless route to mesoporous silicon could lead to facile and general syntheses of different narrow bandgap semiconductor nanostructures for various applications.

  5. Single crystalline mesoporous silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hochbaum, A.I.; Gargas, Daniel; Jeong Hwang, Yun; Yang, Peidong

    2009-08-04

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. These porous nanowires also retain the crystallographic orientation of the wafer from which they are etched. Electron microscopy and diffraction confirm their single-crystallinity and reveal the silicon surrounding the pores is as thin as several nanometers. Confocal fluorescence microscopy showed that the photoluminescence (PL) of these arrays emanate from the nanowires themselves, and their PL spectrum suggests that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices.

  6. Making structured metals transparency for broadband and wide-incidence-angle electromagnetic waves

    Science.gov (United States)

    Fan, Renhao; Peng, Ruwen; Huang, Xianrong; Wang, Mu

    2014-03-01

    Very recently, we have demonstrated that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic (EM) waves under oblique incidence. However, the oblique-incidence geometry, is inconvenient for the technological applications. To overcome this drawback, here we instead use oblique metal gratings with optimal tilt angles to achieve normal-incidence broadband transparence for EM waves. Further we use two-dimensional periodic metallic cuboids to achieve broadband and broad-angle high transmission and antireflection. By introducing such metallic cuboids arrays into silicon solar cells, we find that high performance of light trapping in the cells can be obtained with a significant enhancement of the ultimate quantum efficiency. The structured metals, which achieve broadband and broad-angle high transmission for EM waves, may have many other potential applications, such as transparent conducting panels, white-beam polarizers, and stealth objects.

  7. Photoemission and photo-field-emission from photocathodes with arrays of silicon tips under continuous and pulsed lasers action; Photoemission et photoemission de champ a partir de photocathodes a reseaux de pointes de silicium sous l`action de lasers continus et pulses

    Energy Technology Data Exchange (ETDEWEB)

    Laguna, M.

    1995-11-01

    The electron machines`s development and improvement go through the discovery of new electron sources of high brightness. After reminding the interests in studying silicon cathodes with array of tips as electron sources, I describe, in the three steps model, the main phenomenological features related to photoemission and photoemission and photo-field-emission from a semi-conductor. the experimental set-ups used for the measurements reported in chapter four, five and six are described in chapter three. In chapter three. In chapter four several aspects of photo-field-emission in continuous and nanosecond regimes, studied on the Clermont-Ferrand`s test bench are tackled. We have measured quantum efficacies of 0.4 percent in the red (1.96 eV). Temporal responses in the nanoseconds range (10 ns) were observed with the Nd: YLF laser. With the laser impinging at an oblique angle we obtained ratios of photocurrent to dark current of the order of twenty. The issue of the high energy extracted photocurrent saturation is addressed and I give a preliminary explanation. In collaboration with the L.A.L. (Laboratoire de l`Accelerateur Lineaire) some tests with shortened pulsed laser beam (Nd: YAG laser 35 ps) were performed. Satisfactory response times have been obtained within the limitation of the scope (400 ps). (authors). 101 refs. 93 figs., 27 tabs., 3 photos., 1 append.

  8. Silicon Materials Task of the Low Cost Solar Array Project (Phase II). Eighth quarterly report, July 1, 1977--September 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, R.H.; Blais, P.D.; Davis, J.R.; Hanes, M.H.; Rai-Choudhury, P.; Rohatgi, A.; McCormick, J.R.

    1977-12-01

    The objective of Phase II of this program is to investigate the effects of various processes, metal contaminants, and contaminant-process interactions on the performance of terrestrial silicon solar cells so that purity requirements for a solar grade silicon can be delineated. The program approach consists in (1) the growth of doubly and multiply-doped silicon single crystals containing a baseline boron or phosphorus dopant and specific impurities which produce deep levels in the forbidden band gap, (2) assessment of these crystals by a battery of chemical, microstructural, electrical and solar cell tests, (3) correlation of the impurity kind and level with crystal quality and device performance, (4) delineation of the role of impurities and processing on subsequent silicon solar cell performance, and (5) determination of the combined effects of impurities and growth rate on the crystal quality and cell performance of silicon produced by both the dendritic web and Czochralski methods. The central thrust of activities this quarter was in three areas: the crystal growth of impurity-bearing ingots with different base doping types and concentrations; evaluation of the solar cell performance of n-base and p-base devices; and refinement of techniques for the analysis of solar cells subjected to various contaminants and process variations.

  9. Use of hydroxypropylmethylcellulose 2% for removing adherent silicone oil from silicone intraocular lenses

    OpenAIRE

    Wong, S Chien; Ramkissoon, Yashin D; Lopez, Mauricio; Page, Kristopher; Ivan P. Parkin; Sullivan, Paul M

    2009-01-01

    Abstract Background / aims: To investigate the effect of hydroxypropylmethylcellulose (HPMC) on the physical interaction (contact angle) between silicone oil and a silicone intraocular lens (IOL). Methods: In vitro experiments were performed, to determine the effect of HPMC (0.5%, 1% or 2%), with or without an additional simple mechanical manoeuvre, on the contact angle of silicone oil at the surface of both silicone and acrylic (control) IOLs. A balanced salt solu...

  10. Ultra-thin g-C3N4 nanosheets wrapped silicon nanowire array for improved chemical stability and enhanced photoresponse

    International Nuclear Information System (INIS)

    Highlights: • g-C3N4, as an oxygen free and metal free protective material for Si, was proposed. • g-C3N4 nanosheets wrapped Si nanowire array was synthesized. • SiNW/g-C3N4 exhibited enhancement of photoelectrochemical stability and photocurrent. - Abstract: In order to inhibit the oxidation of Si materials in aqueous solution, Si nanowire array was wrapped by ultra-thin g-C3N4 nanosheets via an electrophoresis process. Scanning electron microscopy and transmission electron microscopy images showed that g-C3N4 nanosheets were evenly distributed on the surface of Si nanowire array. X-ray diffraction patterns indicated that Si nanowire array/g-C3N4 nanosheets were composed of Si (4 0 0 crystal plane) and g-C3N4 (0 0 2 and 1 0 0 crystal planes). The cyclic voltammetry curves revealed that the corrosion of Si nanowire array was restrained under the protection of g-C3N4 nanosheets. Furthermore, the photocurrent density of Si nanowire array/g-C3N4 nanosheets increased by nearly 3 times compared to that of bare Si nanowire array due to the effective charge separation caused by the built-in electric field at the interface. This work will facilitate the applications of Si materials in aqueous solution, such as solar energy harvest and photocatalytic pollution control

  11. The TIARA Array for the Study of Nucleon Transfer Reactions

    International Nuclear Information System (INIS)

    The TIARA array is designed for the study of nucleon transfer reactions in inverse kinematics, using radioactive beams. Crucially, the energies of coincident gamma-rays will be used to give better energy resolution for final excited states than can be achieved by measuring the energies of particles alone. Thus, an extremely compact array of position sensitive silicon strips will fit inside an array of four segmented clover EXOGAM Ge detectors which can each be mounted as close as 50mm from the target. Approximately 90% of 4π is covered by 400μm silicon detectors manufactured using 6-inch technology. Particle ID is by the kinematical correlation between the angle and the deposited energy, measured in coincidence with the beam-like particle recorded near zero degrees. Construction will be complete early in 2003 and the array will be deployed initially at GANIL, in front of the VAMOS spectrometer. An early application will be the reaction d(56Ni,55Ni)t

  12. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.

    2010-06-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  13. Micro-Ball Lens Array Fabrication in Photoresist Using Ptfe Hydrophobic Effect

    CERN Document Server

    Shyu Ruey Fang; Tsai Wen Ren; Tsai Jhy Cherng

    2007-01-01

    This paper presents a simple method to fabricate micro-ball lens and its array. The key technology is to use the hydrophobic characteristics of polyterafluoroethylene (PTFE) substrate. High contact angle between melted photoresist pattern and PTFE can generate micro-ball lens and its array. PTFE thin film was spun onto a silicon wafer and dried in oven. Photoresist AZ4620 was used to pattern micro-columns with different diameters 60, 70 and 80 $\\mu$m. A thermal reflow process then was applied to melt these micro-column patterns resulted in micro-ball lens array. The achieved micro-ball lens array with diameter 98 $\\mu$m was fabricated using 80 $\\mu$m in diameter patterns. This method provides a simple fabrication process and low material cost.

  14. Removing Defects From Silicon Ribbon

    Science.gov (United States)

    Shimada, K.

    1982-01-01

    Proposal for removing impurities from silicon ribbon and sheet could be developed into an automated production-line process. New technique which combines ion-cluster bombardment, electron-gun heating, and plasma etching, could be key step in fabricating inexpensive solar-cell arrays. Silicon sheets and ribbons treated this way could have enhanced carrier lifetimes necessary for satisfactory solar-cell performance.

  15. Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling

    KAUST Repository

    Wang, Songlin

    2015-04-09

    We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems.

  16. Low cost silicon solar array project, silicon materials task. Establishment of the feasibility of a process capable of low-cost, high-volume production of silane (Step I) and the pyrolysis of silane to semiconductor-grade silicon (Step II). Quarterly progress report, October--December 1977. [Silicon tetrachlorides

    Energy Technology Data Exchange (ETDEWEB)

    Breneman, W.C.; Cheung, H.; Farrier, E.G.; Morihara, H.

    1977-01-01

    Kinetics and equilibria for the hydrogenation of silicon tetrachloride have shown that conversion to trichlorosilane is substantially increased at higher operating pressures; these results greatly improve the practicality of the overall process. An integrated process development unit for converting metallurgical silicon and hydrogen to high-purity silane has been commissioned. A quartz fluid-bed reactor capable of operating at temperatures of up to 1000/sup 0/C was designed, constructed, and successfully operated. A total of 6.7 Kg of silicon powder was produced in two separate experiments in the free-space reactor without opening the reactor between experiments. No measurable impurities were detected in the silicon powder produced by the free-space reactor, using the cathode layer emission spectroscopic technique. A 152 mm-diameter melt consolidation apparatus was attached to the free-space reactor. The first objective for the overall process was the definition of a preliminary set of functional specifications. All process design efforts are based on these specifications. Preliminary block flow diagrams and heat and material balances for every battery-limit stream were completed for the 25 MT/year experimental facility. A brief parametric study was conducted to select an optimum range of operating pressures for the distillation columns. Conceptual designs have been initiated for the hydrogenation reactor, the free-space reactor, and the consolidation system.

  17. Photoelectrochemistry of Semiconductor Nanowire Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Mallouk, Thomas E; Redwing, Joan M

    2009-11-10

    This project supported research on the growth and photoelectrochemical characterization of semiconductor nanowire arrays, and on the development of catalytic materials for visible light water splitting to produce hydrogen and oxygen. Silicon nanowires were grown in the pores of anodic aluminum oxide films by the vapor-liquid-solid technique and were characterized electrochemically. Because adventitious doping from the membrane led to high dark currents, silicon nanowire arrays were then grown on silicon substrates. The dependence of the dark current and photovoltage on preparation techniques, wire diameter, and defect density was studied for both p-silicon and p-indium phosphide nanowire arrays. The open circuit photovoltage of liquid junction cells increased with increasing wire diameter, reaching 350 mV for micron-diameter silicon wires. Liquid junction and radial p-n junction solar cells were fabricated from silicon nano- and microwire arrays and tested. Iridium oxide cluster catalysts stabilized by bidentate malonate and succinate ligands were also made and studied for the water oxidation reaction. Highlights of this project included the first papers on silicon and indium phosphide nanowire solar cells, and a new procedure for making ligand-stabilized water oxidation catalysts that can be covalently linked to molecular photosensitizers or electrode surfaces.

  18. Silicon Ingot Casting - Heat Exchanger Method (HEM). Multi-Wire Slicing - Fixed Abrasive Slicing Technique (Fast). Phase 4 Silicon Sheet Growth Development for the Large Area Sheet Task of the Low-Cost Solar Array Project

    Science.gov (United States)

    Schmid, F.

    1981-01-01

    The crystallinity of large HEM silicon ingots as a function of heat flow conditions is investigated. A balanced heat flow at the bottom of the ingot restricts spurious nucleation to the edge of the melted-back seed in contact with the crucible. Homogeneous resistivity distribution over all the ingot has been achieved. The positioning of diamonds electroplated on wirepacks used to slice silicon crystals is considered. The electroplating of diamonds on only the cutting edge is described and the improved slicing performance of these wires evaluated. An economic analysis of value added costs of HEM ingot casting and band saw sectioning indicates the projected add on cost of HEM is well below the 1986 allocation.

  19. Evaluation of selected chemical processes for production of low-cost silicon (Phase II). Silicon material task, Low-Cost Solar Array Project. Tenth quarterly progress report, January 1--March 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Blocher, J.M. Jr.; Browning, M.F.

    1978-04-30

    Progress from January 1 to March 31, 1978, is reported in design of the 50 MT/year experimental facility for the preparation of high-purity silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles to form a free-flowing granular product. The design of the experimental facility has been concluded and sent to JPL for evaluation. It is also being critiqued by an independent pilot plant design group at BCL. Detailed analyses of equipment and construction costs have led to an estimate of $1.5 million for construction of the facility in an available building at BCL. Although the design was frozen for purposes of cost estimation, some improvements have been made since, and others are contemplatd before it is necessary to freeze the design for construction. Representative flow sheets and related equipment drawings are shown.

  20. Strange and multi-strange baryon measurement in Au + Au collisions at 11.6A(GeV/c) with the silicon drift detector array from the AGS experiment E896

    CERN Document Server

    Lo Curto, G; Bellwied, R; Bennett, M; Boemi, D; Bonner, B; Caccia, Z; Caines, H; Christie, W; Cina, G; Costa, S; Crawford, H; Cronqvist, M; Debbe, R; Engelage, J; Flores, I; Greiner, L; Hallman, T; Hoffman, G; Huang, H; Humanic, T J; Igo, G; Insolia, A; Jensen, P; Judd, E; Kainz, K; Kaplan, M; Kelly, S; Kotov, I; Kunde, G; Lindstrom, P; Ljubicic, T; Llope, W J; Longacre, R; Lynn, D; Madansky, L; Mahzeh, N; Milosevich, Z; Mitchell, J T; Mitchell, J; Nehmeh, S; Nociforo, C; Paganis, S; Pandey, S U; Potenza, R; Platner, E; Riley, P; Russ, D; Saulys, A; Schambach, J; Sheen, J; Stokley, C; Sugarbaker, E R; Takahashi, J; Tang, J; Trentalange, S; Tricomi, A; Tull, C; Tuve', C; Whitfield, J; Wilson, K

    1999-01-01

    The main purpose of experiment E896 is to study the production of strange hadrons, in particular the predicted six-quark di-baryon, the H sub 0. The placement of the silicon drift detector array (SDDA) close to the target in a 6.2T magnetic field is optimized for the reconstruction of a short lived H sub 0 as well as of strange baryons (LAMBDA, LAMBDA-bar, XI sup -). Simulations show that with the present data sample a detailed study of the LAMBDA and XI sup - yields and distributions may be performed and a clear LAMBDA-bar signal might be detected. Simulations as well as a preliminary analysis of the SDDA data will be presented.

  1. Studies of an array of PbF2 Cherenkov crystals with large-area SiPM readout

    OpenAIRE

    Fienberg, A. T.; Alonzi, L. P.; Anastasi, A.; Bjorkquist, R.; Cauz, D.; Fatemi, R.; Ferrari, C.; Fioretti, A.; Frankenthal, A.; Gabbanini, C.; Gibbons, L. K.; Giovanetti, K.; Goadhouse, S. D.; Gohn, W. P.; Gorringe, T. P.

    2014-01-01

    The electromagnetic calorimeter for the new muon (g-2) experiment at Fermilab will consist of arrays of PbF2 Cherenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. We report here on measurements and simulations using 2.0 -- 4.5 GeV electrons with a 28-element prototype array. All data were obtained using fast waveform digitizers to accurately capture signal pulse shapes versus energy, impact position, angle, and crystal wrapping. The SiPMs were gain matched using a...

  2. Silicon nanodisk array with a fin field-effect transistor for time-domain weighted sum calculation toward massively parallel spiking neural networks

    Science.gov (United States)

    Tohara, Takashi; Liang, Haichao; Tanaka, Hirofumi; Igarashi, Makoto; Samukawa, Seiji; Endo, Kazuhiko; Takahashi, Yasuo; Morie, Takashi

    2016-03-01

    A nanodisk array connected with a fin field-effect transistor is fabricated and analyzed for spiking neural network applications. This nanodevice performs weighted sums in the time domain using rising slopes of responses triggered by input spike pulses. The nanodisk arrays, which act as a resistance of several giga-ohms, are fabricated using a self-assembly bio-nano-template technique. Weighted sums are achieved with an energy dissipation on the order of 1 fJ, where the number of inputs can be more than one hundred. This amount of energy is several orders of magnitude lower than that of conventional digital processors.

  3. Silicon pad detectors for the PHOBOS experiment at RHIC

    International Nuclear Information System (INIS)

    The PHOBOS experiment is well positioned to obtain crucial information about relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC), combining a multiplicity counter with a multi-particle spectrometer. The multiplicity arrays will measure the charged-particle multiplicity over the full solid angle. The spectrometer will be able to identify particles at mid-rapidity. The experiment is constructed almost exclusively of silicon pad detectors. Detectors of nine different types are configured in the multiplicity and vertex detector (22,000 channels) and two multi-particle spectrometers (120,000 channels). The overall layout of the experiment, testing of the silicon sensors and the performance of the detectors during the engineering run at RHIC in 1999 are discussed

  4. Silicone metalization

    Science.gov (United States)

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  5. Silicone metalization

    Science.gov (United States)

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  6. Ordered arrays of lead zirconium titanate nanorings

    International Nuclear Information System (INIS)

    Periodic arrays of nanorings of morphotropic phase boundary lead zirconium titanate (PZT) have been successfully fabricated using a novel self-assembly technique: close-packed monolayers of latex nanospheres were deposited onto Pt-coated silicon substrates, and then plasma cleaned to form ordered arrays of isolated nanospheres, not in contact with each other. Subsequent pulsed laser deposition of PZT, high angle argon ion etching and thermal annealing created the arrays of isolated nanorings, with diameters of ∼100 nm and wall thicknesses of ∼10 nm. Energy dispersive x-ray analysis confirms that the rings are compositionally morphotropic phase boundary PZT, and high resolution transmission electron microscopy imaging of lattice fringes demonstrates some periodicities consistent with perovskite rather than pyrochlore material. The dimensions of these nanorings, and the expected 'soft' behaviour of the ferroelectric material from which they are made, means that they offer the most likely opportunity to date for observing whether or not vortex arrangements of electrical dipoles, analogous to those seen in ferromagnetic nanostructures, actually exist

  7. Silicon Ingot Casting - Heat Exchanger Method Multi-wire Slicing - Fixed Abrasive Slicing Technique. Phase 3 Silicon Sheet Growth Development for the Large Area Sheet Task of the Low-cost Solar Array Project

    Science.gov (United States)

    Schmid, F.; Khattak, C. P.

    1979-01-01

    Several 20 cm diameter silicon ingots, up to 6.3 kg. were cast with good crystallinity. The graphite heat zone can be purified by heating it to high temperatures in vacuum. This is important in reducing costs and purification of large parts. Electroplated wires with 45 um synthetic diamonds and 30 um natural diamonds showed good cutting efficiency and lifetime. During slicing of a 10 cm x 10 cm workpiece, jerky motion occurred in the feed and rocking mechanisms. This problem is corrected and modifications were made to reduce the weight of the bladeheat by 50%.

  8. 槽式聚光系统聚光硅电池阵列特性实验研究%Characteristic Investigation of Concentration Silicon Solar Cell Arrays Based on the Trough Concentrating System

    Institute of Scientific and Technical Information of China (English)

    许玲; 李明; 李国良; 黄波; 魏生贤

    2011-01-01

    The performance tests of two types of domestic concentration silicon cell arrays with parallel and inverted square grid-line distribution based on the trough concentrating photovoltaic/thermal system have been carried out.Experimental results indicate that photoelectric efficiencies of the two selected concentration silicon solar cell arrays reach 11.42% and 13.89%.The maximum output power amplifies 16.06 times and 19.33 times respectively with energy flux concentration ratio 20 times.The temperature coefficients of Pm, FF and 77 of the two cell arrays are -0.047 W/K、 -0.45%/K、 -0.035%/K and -0.029 W/K、 -0.176%/K、 -0.105%/K respectively.All those works provide reference for choosing concentrating solar cells and optimizing performance of trough concentrating photovoltaic/ thermal system.%利用所设计的槽式聚光热电联供系统,对栅线平行分布和反方形分布的两种聚光硅太阳电池阵列进行了性能测试研究.结果表明,在能流聚光比为20倍的槽式聚光器下,两种电池阵列的光电效率分别为11.42%和13.89%,最大输出功率分别比聚光前放大16.06倍和19.33倍.两种电池阵列Pm、FF和η的温度系数分别为:-0.047 W/K、-0.45%/K、-0.035%/K;-0.029 W/K、-0.176%/K、-0.105%/K.研究结果为中低倍聚光系统聚光电池的选择和槽式聚光热电联供系统性能的优化提供参考.

  9. 基于二氧化硅球腔微电极阵列的过氧化氢生物传感器制备%Fabrication of Hydrogen Peroxide Biosensors Based on Microelectrode Array of Silicon Dioxide Cavities

    Institute of Scientific and Technical Information of China (English)

    周丽娟; 尹凡; 周宇

    2011-01-01

    A silicon dioxide (SiO2) cavities array was fabricated on indium-tin oxide (ITO) electrode surface with the template of the polystyrene (PS) particles array by using sol-gel technique. The morphology of SiO2 cavities array was highly ordered which was obtained by scanning electrode microscope. The results of electrochemistrical study showed that the cyclic voltammetric (CV) curve of SiO2 cavities array was in accordance with that of microelectrodes array. Using hemoglobin (Hb) as model protein, an amperometric biosensor for detection of H2O2 was prepared by adsorbing Hb in SiO2 cavities directly. The properties of direct electrochemistry and electrocatalysis of Hb were studied by CV method. The response of the biosensor for H2O2 was fast. A linear relationship between current response and the concentration of H2O2 ranging from 2. 03 × 10~6 to 1. 21 × 10-2 mol/L was obtained with a detection limit of 5. 73×10-7mol/L. And the apparent Michaelis-Menten constant was 0. 266 mmol/L.%以聚苯乙烯(PS)微球阵列为模板,采用溶胶-凝胶法在氧化铟锡( ITO)电极上制备了二氧化硅(SiO2)球腔阵列,扫描电镜显示此方法制备的SiO2球腔阵列高度有序.电化学研究结果表明,该球腔阵列的循环伏安曲线符合微电极阵列的电化学特点.将血红蛋白(Hb)作为氧化还原模型蛋白直接吸附于球腔内,制得电流型过氧化氢(H2O2)生物传感器,研究了Hb在该微电极阵列上的直接电化学和电催化性质.所构建的传感器对H2 O2的响应快速灵敏,其线性范围为2.03×10-6~1.21×10-5mol/L和2.03×10-5~1.21×10-2mol/L;检出限为5.73× 10-7mol/L,米氏常数为0.266 mmol/L.

  10. Low cost silicon solar array project. Task 1: Establishment of the feasibility of a process capable of low cost, high volume production of silane, SiH4

    Science.gov (United States)

    Breneman, W. C.; Mui, J. Y. P.

    1976-01-01

    The kinetics of the redistribution of dichlorosilane and trichlorosilane vapor over a tertiary amine ion exchange resin catalyst were investigated. The hydrogenation of SiCl4 to form HSiCl3 and the direct synthesis of H2SiCl2 from HCl gas and metallurgical silicon metal were also studied. The purification of SiH4 using activated carbon adsorbent was studied along with a process for storing SiH4 absorbed on carbon. The latter makes possible a higher volumetric efficiency than compressed gas storage. A mini-plant designed to produce ten pounds per day of SiH4 is described.

  11. Investigation of test methods, material properties, and processes for solar cell encapsulants. Encapsulation task of the low-cost silicon solar array project

    Science.gov (United States)

    1977-01-01

    During this quarter, flat-plate solar collector systems were considered and six basic construction elements were identified: outer coatings, superstrates, pottants, substrates, undercoats, and adhesives. Materials surveys were then initiated to discover either generic classes or/and specific products to function as each construction element. Cost data included in the surveys permit ready evaluation of each material. Silicones, fluorocarbons, glass, and acrylic polymers have the highest inherent weatherability of materials studied to date. Only acrylics, however, combine low costs, environmental resistance, and potential processability. This class will receive particular emphasis.

  12. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs)

    OpenAIRE

    Seok-Won Kang; Joe Fragala; Debjyoti Banerjee

    2015-01-01

    Bi-layer (Au-Si3N4) microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever) with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a desig...

  13. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  14. Micro-Fresnel-Zone-Plate Array on Flexible Substrate for Large Field-of-View and Focus Scanning

    Science.gov (United States)

    Moghimi, Mohammad J.; Fernandes, Jayer; Kanhere, Aditi; Jiang, Hongrui

    2015-10-01

    Field of view and accommodative focus are two fundamental attributes of many imaging systems, ranging from human eyes to microscopes. Here, we present arrays of Fresnel zone plates fabricated on a flexible substrate, which allows for the adjustment of both the field of view and optical focus. Such zone plates function as compact and lightweight microlenses and are fabricated using silicon nanowires. Inspired by compound eyes in nature, these microlenses are designed to point along various angles in order to capture images, offering an exceptionally wide field of view. Moreover, by flexing the substrate, the lens position can be adjusted, thus achieving axial focus scanning. An array of microlenses on a flexible substrate was incorporated into an optical system to demonstrate high resolution imaging of objects located at different axial and angular positions. These silicon based microlenses could be integrated with electronics and have a wide range of potential applications, from medical imaging to surveillance.

  15. Imaging antenna array at 119 µm

    OpenAIRE

    Neikirk, Dean P.; Tong, Peter P.; Rutledge, David B.; Park, Hyeon; Young, Peter E.

    1982-01-01

    A focal-plane imaging antenna array has been demonstrated at 119 µm. The array is a line of evaporated silver bow-tie antennas with bismuth microbolometer detectors on a silicon substrate. Radiation is coupled into the array by a lens placed on the back of the substrate. The bolometers are thermally isolated from the silicon substrate with a half-micron layer of polyimide. The array performance is demonstrated by coherent imaging of a series of holes at half the diffraction-limited cut-off fr...

  16. The effect of copper coating on nanocolumnar silicon anodes for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Polat, B.D., E-mail: bpolat@itu.edu.tr; Keles, O., E-mail: ozgulkeles@itu.edu.tr

    2015-08-31

    In this work, a very thin (20 nm) copper (Cu) coated silicon (Si) nanocolums are produced by an oblique angle deposition method. Galvanostatic half-cell measurements show that, the Cu coated Si nanocolumn arrays perform 1700 mAh g{sup −1} in the first cycle, then after 10 cycles its performance is stabilized to 500 mAh g{sup −1} with 99% coulombic efficiency for 90 cycles. This high performance is related to its particular morphology and physical properties: having homogenously distributed nano-sized porosities in the Cu coated film increase the mechanical tolerance of the electrode against the volumetric changes occurred during galvanostatic test, plus the ductile behavior of the Cu film holds the electrode together to prevent the electronic isolation, pulverization or delamination of the coating, moreover the formation of Cu{sub 15}Si{sub 4} intermetallic increases the mechanical resistances of the coating against the stress generated in the electrode, and the existence of the Cu top coat between the Si nanocolumns and the electrolyte changes the surface reactivity of the electrode, hence its interaction with the electrolyte leading to higher coulombic efficiency once a stable passive forms on the anode. - Highlights: • Silicon nanocolumn arrays are produced via oblique angle deposition method. • Copper layer is deposited on silicon nanocolumns to improve the anode performance. • Copper layer acts as a glue to improve the physical and the mechanical properties. • Intermetallic formation enhances cycleability of the electrode.

  17. Kilopixel X-Ray Microcalorimeter Arrays for Astrophysics: Device Performance and Uniformity

    Science.gov (United States)

    Eckart, M. E.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Busch, S. E.; Chervenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Porst, J.-P.; Sadleir, J. E.; Smith, S. J.

    2012-01-01

    We are developing kilopixel arrays of TES microcalorimeters to enable high-resolution x-ray imaging spectrometers for future x-ray observatories and laboratory astrophysics experiments. Our current array design was targeted as a prototype for the X-ray Microcalorimeter Spectrometer proposed for the International X-ray Observatory, which calls for a 40×40-pixel core array of 300 micron devices with 2.5 eV energy resolution (at 6 keV). Here we present device characterization of our 32×32 arrays, including x-ray spectral performance of individual pixels within the array. We present our results in light of the understanding that our Mo/Au TESs act as weak superconducting links, causing the TES critical current (I(sub c)) and transition shape to oscillate with applied magnetic field (B). We show I(sub c)(B) measurements and discuss the uniformity of these measurements across the array, as well as implications regarding the uniformity of device noise and response. In addition, we are working to reduce pixel-to-pixel electrical and thermal crosstalk; we present recent test results from an array that has microstrip wiring and an angle-evaporated copper backside heatsinking layer, which provides copper coverage on the four sidewalls of the silicon wells beneath each pixel.

  18. Evaluation of selected chemical processes for production of low-cost silicon (Phase II). Silicon Material Task, Low-Cost Silicon Solar Array Project. Fifth--sixth quarterly progress report, October 1, 1976--March 31, 1977. [Zinc reduction of silicon tetrachloride in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Blocher, J.M. Jr.; Browning, M.F.; Wilson, W.J.; Carmichael, D.C.

    1977-04-29

    The results of experimental work and economic analyses carried out during the first 12 months of this contract (Phase I) have led to Battelle's concentration on development of the zinc reduction of silicon tetrachloride on seed particles in a fluidized bed. A second year program (Phase II) has been initiated which consists of the design of a 25 MT/year experimental facility and supporting experiment effort. During this quarter, the effort in the plant design portion of the program has been devoted to the (1) preparation of a detailed process schematic diagram; (2) determination of material flow and energy requirements; (3) conceptual design of major equipment items, including those unique to the facility; (4) contacts with industrial companies on equipment and processes for which experience is available; and (5) initiation of contacts with Battelle pilot plant design specialists, a distillation consultant, and engineering firms. The effort in the experimental support portion of the program has included a continuation of the following studies: (1) operating parameter optimization in the miniplant, (2) reactor design, and (3) condenser system design, including supplemental condensation experiments. In addition, a new zinc feed system has been devised and evaluated, and the construction of a system sufficiently large to obtain meaningful data on the electrolytic recovery of zinc from zinc chloride has been initiated.

  19. Multicolor generation using silicon nanodisk absorber

    International Nuclear Information System (INIS)

    A multicolored matrix that spans the visible range was demonstrated by using silicon nanodisk arrays. A nanostructured silicon substrate, which featured periodic silicon nanodisk arrays of various diameters, inter-nanodisk distances, and heights, was fabricated using electron-beam lithography and reactive ion etching. These silicon nanodisks were able to support HE1m leaky modes, which depended on the diameter of the nanodisks, resulting in wavelength-dependent reflection spectra. The resonant wavelength redshifted linearly with the increasing nanodisk diameter. The output color lay in the visible range and was observed to be tunable when varying the diameter, interdistance, and height. The results of finite-difference time-domain simulations exhibited close agreement with the observed optical properties of the periodic silicon nanodisk arrays

  20. Array of planar waveguide lasers with 50 GHz frequency spacing

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas; Laurent-Lund, Christian; Sckerl, Mads W.

    1999-01-01

    Waveguide laser arrays are demonstrated using planar silica-on-silicon technology. Excellent control over frequency separation is obtained with a single phase mask.......Waveguide laser arrays are demonstrated using planar silica-on-silicon technology. Excellent control over frequency separation is obtained with a single phase mask....

  1. Volumetric Flow Measurement Using an Implantable CMUT Array.

    Science.gov (United States)

    Mengli Wang; Jingkuang Chen

    2011-06-01

    This paper describes volumetric-flow velocity measurement using an implantable capacitive micromachined ultrasonic transducer (CMUT) array. The array is comprised of multiple-concentric CMUT rings for ultrasound transmission and an outmost annular CMUT array for ultrasound reception. Microelectromechanical-system (MEMS) fabrication technology allows reception CMUT on this flowmeter to be implemented with a different membrane thickness and gap height than that of transmission CMUTs, optimizing the performance of these two different kinds of devices. The silicon substrate of this 2-mm-diameter CMUT ring array was bulk micromachined to approximately 80 to 100 μm thick, minimizing tissue disruption. The blood-flow velocity was detected using pulse ultrasound Doppler by comparing the demodulated echo ultrasound with the incident ultrasound. The demodulated ultrasound signal was sampled by a pulse delayed in time domain from the transmitted burst, which corresponds to detecting the signal at a specific distance. The flow tube/vessel diameter was detected through the time-flight delay difference from near and far wall reflections, which was measured from the ultrasound pulse echo. The angle between the ultrasound beam and the flow was found by using the cross-correlation from consecutive ultrasound echoes. Artificial blood flowing through three different polymer tubes was experimented with, while keeping the same volumetric flow rate. The discrepancy in flow measurement results between this CMUT meter and a calibrated laser Doppler flowmeter is less than 5%. PMID:23851472

  2. Deep Ultraviolet Macroporous Silicon Filters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a novel method to make deep and far UV optical filters from macroporous silicon. This type of filter consists of an array of...

  3. Integrated silicon microspectrometers

    OpenAIRE

    Kong, S. H.; Correia, J. H.; Bartek, M.; Wolffenbuttel, R.F.

    2001-01-01

    Microspectrometers, which read color and the results from analytical chemistry, are used for quality inspection in industry and agiculture. They read the chromatography results by measuring the infrared (IR) absorption of the chemical constituent between the IR source and the grating. Micromachining can implement the dispersion and detection elements in a silicon microspectrometer so that it can analyze the spectrum of incident light. The microspectrometer may either operate an array of de...

  4. Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells

    OpenAIRE

    Massiot, I.; Colin, Clément; Péré-Laperne, Nicolas; Roca I Cabarrocas, Pere; Sauvan, Christophe; Lalanne, Philippe; Pelouard, Jean-Luc; Collin, Stéphane

    2012-01-01

    International audience Broadband light trapping is numerically demonstrated in ultra-thin solar cells composed of a flat amorphous silicon absorber layer deposited on a silver mirror. A one-dimensional silver array is used to enhance light absorption in the visible spectral range with low polarization and angle dependencies. In addition, the metallic nanowires play the role of transparent electrodes. We predict a short-circuit current density of 14:6mA=cm2 for a solar cell with a 90 nm-thi...

  5. The CMS silicon tracker

    International Nuclear Information System (INIS)

    The new silicon tracker layout (V4) is presented. The system aspects of the construction are discussed together with the expected tracking performance. Because of the high radiation environment in which the detectors will operate, particular care has been devoted to the study of the characteristics of heavily irradiated detectors. This includes studies on performance (charge collection, cluster size, resolution, efficiency) as a function of the bias voltage, integrated fluence, incidence angle and temperature. (author)

  6. Silicon detectors

    International Nuclear Information System (INIS)

    The status and recent progress of silicon detectors for high energy physics is reviewed. Emphasis is put on detectors with high spatial resolution and the use of silicon detectors in calorimeters. (orig.)

  7. Chemical-vapor deposition of silicon from silane

    Science.gov (United States)

    Hsu, G. C.; Lutwack, R.; Praturi, A. K.

    1979-01-01

    Report lists tables of standard free-energy change, equilibrium constant, and heat of reaction for chemical vapor deposition (CVD) of silicon from silane over temperature range of 100 to 1000 K. Data indicates silicon CVD may be a commercially economical process for production of silicon for solar arrays and other applications.

  8. Large-Aperture Wide-Bandwidth Anti-Reflection-Coated Silicon Lenses for Millimeter Wavelengths

    Science.gov (United States)

    Datta, R.; Munson, C. D.; Niemack, M. D.; McMahon, J. J.; Britton, J.; Wollack, E. J.; Beall, J.; Devlin, M. J.; Fowler, J.; Gallardo, P.; Hubmayr, J.; Irwin, K.; Newburgh, L.; Nibarger, J. P.; Page, L.; Quijada, M. A.; Schmitt, B. L.; Staggs, S. T.; Thornton, R.; Zhang, L.

    2013-01-01

    The increasing scale of cryogenic detector arrays for sub-millimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n = 3.4, low loss, and relatively high thermal conductivity is a nearly optimal material for these purposes, but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coffecient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating. We have fabricated and coated silicon lenses as large as 33.4 cm in diameter with coatings optimized for use between 125-165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30 deg. with low cross-polarization. We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to sub-millimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth.

  9. Large-aperture Wide-bandwidth Antireflection-coated Silicon Lenses for Millimeter Wavelengths

    Science.gov (United States)

    Datta, R.; Munson, C. D.; Niemack, M. D.; McMahon, J. J.; Britton, J.; Wollack, Edward J.; Beall, J.; Devlin, M. J.; Fowler, J.; Gallardo, P.; Hubmayr, J.; Irwin, K.; Newburgh, L.; Nibarger, J. P.; Page, L.; Quijada, Manuel A.; Schmitt, B. L.; Staggs, S. T.; Thornton, R.; Zhang, L.

    2013-01-01

    The increasing scale of cryogenic detector arrays for submillimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n 3.4, low loss, and high thermal conductivity is a nearly optimal material for these purposes but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coefficient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three-axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating.We have fabricated silicon lenses as large as 33.4 cm in diameter with micromachined layers optimized for use between 125 and 165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30deg with low cross polarization.We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to submillimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth.

  10. Perception of perspective angles

    NARCIS (Netherlands)

    Erkelens, C.J.

    2015-01-01

    We perceive perspective angles, that is, angles that have an orientation in depth, differently from what they are in physical space. Extreme examples are angles between rails of a railway line or between lane dividers of a long and straight road. In this study, subjects judged perspective angles bet

  11. The effects of DRIE operational parameters on vertically aligned micropillar arrays

    International Nuclear Information System (INIS)

    Vertically aligned silicon micropillar arrays have been created by deep reactive ion etching (DRIE) and used for a number of microfabricated devices including microfluidic devices, micropreconcentrators and photovoltaic cells. This paper delineates an experimental design performed on the Bosch process of DRIE of micropillar arrays. The arrays are fabricated with direct-write optical lithography without photomask, and the effects of DRIE process parameters, including etch cycle time, passivation cycle time, platen power and coil power on profile angle, scallop depth and scallop peak-to-peak distance are studied by statistical design of experiments. Scanning electron microscope images are used for measuring the resultant profile angles and characterizing the scalloping effect on the pillar sidewalls. The experimental results indicate the effects of the determining factors, etch cycle time, passivation cycle time and platen power, on the micropillar profile angles and scallop depths. An optimized DRIE process recipe for creating nearly 90° and smooth surface (invisible scalloping) has been obtained as a result of the statistical design of experiments. (paper)

  12. Stacked Metal Silicide/Silicon Far-Infrared Detectors

    Science.gov (United States)

    Maserjian, Joseph

    1988-01-01

    Selective doping of silicon in proposed metal silicide/silicon Schottky-barrier infrared photodetector increases maximum detectable wavelength. Stacking layers to form multiple Schottky barriers increases quantum efficiency of detector. Detectors of new type enhance capabilities of far-infrared imaging arrays. Grows by molecular-beam epitaxy on silicon waferscontaining very-large-scale integrated circuits. Imaging arrays of detectors made in monolithic units with image-preprocessing circuitry.

  13. Photoluminescence and electron field-emission properties of SiC–SiO{sub 2} core–shell fibers and 3C–SiC nanowires on silicon nanoporous pillar array

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiyan, E-mail: wanghaiyan@zzuli.edu.cn [Department of Technological Physics, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Jiang, Weifen [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Kang, Liping; Li, Zijiong [Department of Technological Physics, Zhengzhou University of Light Industry, Zhengzhou 450002 (China)

    2013-03-15

    Highlights: ► SiC–SiO{sub 2} fibers and 3C–SiC nanowires were directly grown on Si-NPA. ► Violet–blue light emitting were obtained in SiC–SiO{sub 2}/Si-NPA and nw-SiC/Si-NPA. ► Enhanced field-emission property was found in nw-SiC/Si-NPA. -- Abstract: SiC–SiO{sub 2} core–shell fibers and 3C–SiC nanowires (nw-SiC) were grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition method with nickel as the catalyst. The morphology, structure and composition of SiC–SiO{sub 2}/Si-NPA and nw-SiC/Si-NPA were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. Based on the experimental results a possible growth mechanism of nw-SiC was explained. Two broad photoluminescence peaks located at ∼409 and ∼494 nm were observed both in SiC–SiO{sub 2}/Si-NPA and nw-SiC/Si-NPA when they were excited utilizing 300 nm fluorescent light at room temperature. The field-emission (FE) measurements showed that enhanced FE property was obtained in nw-SiC/Si-NPA. The excellent optical and field-emission performances of SiC–SiO{sub 2}/Si-NPA and nw-SiC/Si-NPA were mainly attributed to the quantum confinement effects in nw-SiC and the nanometer-micron hierarchy structure of the composite systems.

  14. Reflectance and surface enhanced Raman scattering (SERS) of sculptured silver films deposited at various vapor incident angles

    International Nuclear Information System (INIS)

    By using e-beam evaporation at various oblique angles, silver nanorod arrays were produced on silicon and fused silica substrates. Reflectance of P and S polarizations was measured at an incident angle of 30°, with the data analyzed by using the appropriate optical dispersive model. The surface enhanced Raman scattering (SERS) was investigated using trans-1,2-bis(4-pyridyl)ethene (BPE) as a probe molecule at an excitation wavelength of 633 nm. The Ag-coated surface become rougher as the vapor incident angle is increased. Only the sample deposited at 85° shows clear oblique column structure. Reflectance fitting confirmed the positive rexlation between roughness and deposition angle and showed an increase of porosity in the film with increasing deposition angle. The reflectance measurements also indicate that the sample deposited at 85° has a very high anisotropic effect due to the inclined column structure. In the RS scans, only the 85° samples on Si and silica substrates gave strong SERS with a similar enhancement factor, with a higher background level and noise signal from the silica substrate. (paper)

  15. Reflectance and surface enhanced Raman scattering (SERS) of sculptured silver films deposited at various vapor incident angles

    Science.gov (United States)

    Song, Shigeng; Keating, Martin; Chen, Yu; Placido, Frank

    2012-08-01

    By using e-beam evaporation at various oblique angles, silver nanorod arrays were produced on silicon and fused silica substrates. Reflectance of P and S polarizations was measured at an incident angle of 30°, with the data analyzed by using the appropriate optical dispersive model. The surface enhanced Raman scattering (SERS) was investigated using trans-1,2-bis(4-pyridyl)ethene (BPE) as a probe molecule at an excitation wavelength of 633 nm. The Ag-coated surface become rougher as the vapor incident angle is increased. Only the sample deposited at 85° shows clear oblique column structure. Reflectance fitting confirmed the positive rexlation between roughness and deposition angle and showed an increase of porosity in the film with increasing deposition angle. The reflectance measurements also indicate that the sample deposited at 85° has a very high anisotropic effect due to the inclined column structure. In the RS scans, only the 85° samples on Si and silica substrates gave strong SERS with a similar enhancement factor, with a higher background level and noise signal from the silica substrate.

  16. SWNT-array resonant MOS transistor

    OpenAIRE

    Arun, A.; Campidelli, S; Filoramo, A; Derycke, V.; Salet, P.; Ionescu, A.M.; Goffman, M.F.

    2010-01-01

    We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated siliconbased motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNTs arrays (120-150 MHz) showing that these thin horizontal arrays behave as ...

  17. Fabrication of moth-eye structures on silicon by direct six-beam laser interference lithography

    International Nuclear Information System (INIS)

    This paper presents a new method for the generation of cross-scale laser interference patterns and the fabrication of moth-eye structures on silicon. In the method, moth-eye structures were produced on a surface of silicon wafer using direct six-beam laser interference lithography to improve the antireflection performance of the material surface. The periodic dot arrays of the moth-eye structures were formed due to the ablation of the irradiance distribution of interference patterns on the wafer surface. The shape, size, and distribution of the moth-eye structures can be adjusted by controlling the wavelength, incidence angles, and exposure doses in a direct six-beam laser interference lithography setup. The theoretical and experimental results have shown that direct six-beam laser interference lithography can provide a way to fabricate cross-scale moth-eye structures for antireflection applications.

  18. Infrared-Bolometer Arrays with Reflective Backshorts

    Science.gov (United States)

    Miller, Timothy M.; Abrahams, John; Allen, Christine A.

    2011-01-01

    Integrated circuits that incorporate square arrays of superconducting-transition- edge bolometers with optically reflective backshorts are being developed for use in image sensors in the spectral range from far infrared to millimeter wavelengths. To maximize the optical efficiency (and, thus, sensitivity) of such a sensor at a specific wavelength, resonant optical structures are created by placing the backshorts at a quarter wavelength behind the bolometer plane. The bolometer and backshort arrays are fabricated separately, then integrated to form a single unit denoted a backshort-under-grid (BUG) bolometer array. In a subsequent fabrication step, the BUG bolometer array is connected, by use of single-sided indium bump bonding, to a readout device that comprises mostly a superconducting quantum interference device (SQUID) multiplexer circuit. The resulting sensor unit comprising the BUG bolometer array and the readout device is operated at a temperature below 1 K. The concept of increasing optical efficiency by use of backshorts at a quarter wavelength behind the bolometers is not new. Instead, the novelty of the present development lies mainly in several features of the design of the BUG bolometer array and the fabrication sequence used to implement the design. Prior to joining with the backshort array, the bolometer array comprises, more specifically, a square grid of free-standing molybdenum/gold superconducting-transition-edge bolometer elements on a 1.4- m-thick top layer of silicon that is part of a silicon support frame made from a silicon-on-insulator wafer. The backshort array is fabricated separately as a frame structure that includes support beams and contains a correspond - ing grid of optically reflective patches on a single-crystal silicon substrate. The process used to fabricate the bolometer array includes standard patterning and etching steps that result in the formation of deep notches in the silicon support frame. These notches are designed to

  19. Ductile cutting of silicon microstructures with surface inclination measurement and compensation by using a force sensor integrated single point diamond tool

    Science.gov (United States)

    Chen, Yuan-Liu; Cai, Yindi; Shimizu, Yuki; Ito, So; Gao, Wei; Ju, Bing-Feng

    2016-02-01

    This paper presents a measurement and compensation method of surface inclination for ductile cutting of silicon microstructures by using a diamond tool with a force sensor based on a four-axis ultra-precision lathe. The X- and Y-directional inclinations of a single crystal silicon workpiece with respect to the X- and Y-motion axes of the lathe slides were measured respectively by employing the diamond tool as a touch-trigger probe, in which the tool-workpiece contact is sensitively detected by monitoring the force sensor output. Based on the measurement results, fabrication of silicon microstructures can be thus carried out directly along the tilted silicon workpiece by compensating the cutting motion axis to be parallel to the silicon surface without time-consuming pre-adjustment of the surface inclination or turning of a flat surface. A diamond tool with a negative rake angle was used in the experiment for superior ductile cutting performance. The measurement precision by using the diamond tool as a touch-trigger probe was investigated. Experiments of surface inclination measurement and ultra-precision ductile cutting of a micro-pillar array and a micro-pyramid array with inclination compensation were carried out respectively to demonstrate the feasibility of the proposed method.

  20. Interference effects of X-ray topography in an epitaxial silicon/porous silicon/silicon system

    International Nuclear Information System (INIS)

    A semiconductor system of epitaxial silicon/porous silicon/(001) silicon was investigated using transmission electron microscopy, X-ray topography and diffraction. Diffraction rocking curves demonstrate a peak of porous silicon which is considerably shifted from a total peak of a substrate and an epitaxial film in the direction of larger Bragg angles. In X-ray topographs interference moire pictures are observed. Such pictures are usual for X-ray interferometer and indicate a high epitaxial film quality. The growth of perfect films is resulted from the small crystal lattice parameter difference (∼ 0.025%) of the porous layer and the substrate in the direction parallel to the growing surface