WorldWideScience

Sample records for angle resolved xps

  1. Formation of complexes between functionalized chitosan membranes and copper: A study by angle resolved XPS

    Energy Technology Data Exchange (ETDEWEB)

    Jurado-López, Belén [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain); Vieira, Rodrigo Silveira [Chemical Engineering Department, Universidade Federal do Ceará, UFC, 60455-760 Fortaleza, CE (Brazil); Rabelo, Rodrigo Balloni; Beppu, Marisa Masumi [School of Chemical Engineering, University of Campinas, UNICAMP, P.O. Box 6066, 13081-970 Campinas, SP (Brazil); Casado, Juan [Departamento de Química-Física, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain); Rodríguez-Castellón, Enrique, E-mail: castellon@uma.es [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain)

    2017-01-01

    Chitosan is a biopolymer with potential applications in various fields. Recently, it has been used for heavy metals removal like copper, due to the presence of amino and hydroxyl groups in its structure. Chitosan membranes were crosslinked with epichlorohydrin and bisoxirano and functionalized with chelating agents, such as iminodiacetic acid, aspartic acid and tris-(2-amino-ethyl) polyamine. These membranes were used for copper adsorption and the formed complexes were characterized. Thermal and crystalline properties of chitosan membranes were studied by TG-DCS and X-ray diffraction. Raman, XPS and FT-IR data confirmed that copper is linked to the modified chitosan membranes by the amino groups. The oxidation state of copper-chitosan membranes were also studied by angle resolved XPS, and by UV–Vis diffuse reflectance spectroscopy. - Highlights: • Chitosan membranes were crosslinked with epichlorohydrin and bisoxirano and functionalized with chelating agents. • The chelating agent were iminodiacetic acid, aspartic acid and tris-(2-amino-ethyl) polyamine. • The functionalized membranes were used for copper adsorption and studied by ARXPS, Raman, TG-DCS, FT-IR and XRD. • Spectroscopic data confirmed that copper is linked to the modified chitosan membranes by the amino groups.

  2. Angle-resolved XPS analysis and characterization of monolayer and multilayer silane films for DNA coupling to silica.

    Science.gov (United States)

    Shircliff, Rebecca A; Stradins, Paul; Moutinho, Helio; Fennell, John; Ghirardi, Maria L; Cowley, Scott W; Branz, Howard M; Martin, Ina T

    2013-03-26

    We measure silane density and Sulfo-EMCS cross-linker coupling efficiency on aminosilane films by high-resolution X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) measurements. We then characterize DNA immobilization and hybridization on these films by (32)P-radiometry. We find that the silane film structure controls the efficiency of the subsequent steps toward DNA hybridization. A self-limited silane monolayer produced from 3-aminopropyldimethylethoxysilane (APDMES) provides a silane surface density of ~3 nm(-2). Thin (1 h deposition) and thick (19 h deposition) multilayer films are generated from 3-aminopropyltriethoxysilane (APTES), resulting in surfaces with increased roughness compared to the APDMES monolayer. Increased silane surface density is estimated for the 19 h APTES film, due to a ∼32% increase in surface area compared to the APDMES monolayer. High cross-linker coupling efficiencies are measured for all three silane films. DNA immobilization densities are similar for the APDMES monolayer and 1 h APTES. However, the DNA immobilization density is double for the 19 h APTES, suggesting that increased surface area allows for a higher probe attachment. The APDMES monolayer has the lowest DNA target density and hybridization efficiency. This is attributed to the steric hindrance as the random packing limit is approached for DNA double helices (dsDNA, diameter ≥ 2 nm) on a plane. The heterogeneity and roughness of the APTES films reduce this steric hindrance and allow for tighter packing of DNA double helices, resulting in higher hybridization densities and efficiencies. The low steric hindrance of the thin, one to two layer APTES film provides the highest hybridization efficiency of nearly 88%, with 0.21 dsDNA/nm(2). The XPS data also reveal water on the cross-linker-treated surface that is implicated in device aging.

  3. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    Keywords. Condensed matter physics; high-c superconductivity; electronic properties; photoemission spectroscopy; angle resolved photoemission spectroscopy; cuprates; films; strain; pulsed laser deposition.

  4. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (< 30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-c superconductors (HTSC) under different degrees of epitaxial (compressive vs. tensile) strain.

  5. Angle-resolved photoemission extended fine structure

    International Nuclear Information System (INIS)

    Barton, J.J.

    1985-03-01

    Measurements of the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the S(1s) core level of a c(2 x 2)S/Ni(001) are analyzed to determine the spacing between the S overlayer and the first and second Ni layers. ARPEFS is a type of photoelectron diffraction measurement in which the photoelectron kinetic energy is swept typically from 100 to 600 eV. By using this wide range of intermediate energies we add high precision and theoretical simplification to the advantages of the photoelectron diffraction technique for determining surface structures. We report developments in the theory of photoelectron scattering in the intermediate energy range, measurement of the experimental photoemission spectra, their reduction to ARPEFS, and the surface structure determination from the ARPEFS by combined Fourier and multiple-scattering analyses. 202 refs., 67 figs., 2 tabs

  6. Indoor Measurement of Angle Resolved Light Absorption by Black Silicon

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Iandolo, Beniamino; Davidsen, Rasmus Schmidt

    2017-01-01

    Angle resolved optical spectroscopy of photovoltaic (PV) samples gives crucial information on PV panels under realistic working conditions. Here, we introduce measurements of angle resolved light absorption by PV cells, performed indoors using a collimated high radiance broadband light source. Our...... indoor method offers a significant simplification as compared to measurements by solar trackers. As a proof-of-concept demonstration, we show characterization of black silicon solar cells. The experimental results showed stable and reliable optical responses that makes our setup suitable for indoor......, angle resolved characterization of solar cells....

  7. Photoemission Electron Spectroscopy IV: Angle-resolved photoemission spectroscopy

    OpenAIRE

    Lee, J. D.; Nagatomi, T. (Translator); Mizutani, G. (Translator); Endo, K. (Translation Supervisor)

    2010-01-01

    The angle-resolved photoemission spectroscopy (ARPES) is a powerful experimental tool to probe themomentum-resolved electronic structure, i.e., the electronic band dispersion ε(k), of solids and their surfaces. ARPES is also an ideal tool to address the question concerning the electron correlation effect on quasiparticle excitations in the low-dimensional (one- or two-dimensional) correlated electron systems. In this issue, we briefly introduce representative studies of ARPES and their fruitf...

  8. Quantification of the toxic hexavalent chromium content in an organic matrix by X-ray photoelectron spectroscopy (XPS) and ultra-low-angle microtomy (ULAM)

    Energy Technology Data Exchange (ETDEWEB)

    Greunz, Theresia, E-mail: theresia.greunz@jku.at [Christian Doppler Laboratory for Microscopic and Spectroscopic Material Characterisation (CDL-MS-MACH), Center for Surface and Nanoanalytics (ZONA), Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Duchaczek, Hubert; Sagl, Raffaela [voestalpine Stahl GmbH, voestalpine-Straße 3, 4031 Linz (Austria); Duchoslav, Jiri; Steinberger, Roland [Christian Doppler Laboratory for Microscopic and Spectroscopic Material Characterisation (CDL-MS-MACH), Center for Surface and Nanoanalytics (ZONA), Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Strauß, Bernhard [voestalpine Stahl GmbH, voestalpine-Straße 3, 4031 Linz (Austria); Stifter, David [Christian Doppler Laboratory for Microscopic and Spectroscopic Material Characterisation (CDL-MS-MACH), Center for Surface and Nanoanalytics (ZONA), Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria)

    2017-02-28

    Highlights: • Common methods are not suitable for a reliable determination of Cr(VI) in organic coatings on steel. • Our proposed method is a combination of XPS and ultra-low-angle microtomy (ULAM). • The results allow referring to legal regulations of the Cr(VI) concentration. • For this method no accurate sample parameters are required. - Abstract: Cr(VI) is known for its corrosion inhibitive properties and is, despite legal regulations, still a potential candidate to be added to thin (1–3 μm) protective coatings applied on, e.g., electrical steel as used for transformers, etc. However, Cr(VI) is harmful to the environment and to the human health. Hence, a reliable quantification of it is of decisive interest. Commonly, an alkaline extraction with a photometric endpoint detection of Cr(VI) is used for such material systems. However, this procedure requires an accurate knowledge on sample parameters such as dry film thickness and coating density that are occasionally associated with significant experimental errors. We present a comprehensive study of a coating system with a defined Cr(VI) pigment concentration applied on electrical steel. X-ray photoelectron spectroscopy (XPS) was employed to resolve the elemental chromium concentration and the chemical state. Turning to the fact that XPS is extremely surface sensitive (<10 nm) and that the lowest commonly achievable lateral resolution is a number of times higher than the coating thickness (∼2 μm), a bulk analysis was achieved with XPS line scans on extended wedge-shaped tapers through the coating. For that purpose a special sample preparation step performed on an ultra-microtome was required prior to analysis. Since a temperature increase leads to a reduction of Cr(VI) we extend our method on samples, which were subjected to different curing temperatures. We show that our proposed approach now allows to determine the elemental and Cr(VI) concentration and distribution inside the coating.

  9. Angle-resolved photoluminescence spectrum of a uniform phosphor layer

    Science.gov (United States)

    Fujieda, Ichiro; Ohta, Masamichi

    2017-10-01

    A photoluminescence spectrum depends on an emission angle due to self-absorption in a phosphor material. Assuming isotropic initial emission and Lambert-Beer's law, we have derived simple expressions for the angle-resolved spectra emerging from the top and bottom surfaces of a uniform phosphor layer. The transmittance of an excitation light through the phosphor layer can be regarded as a design parameter. For a strongly-absorbing phosphor layer, the forward flux is less intense and more red-shifted than the backward flux. The red-shift is enhanced as the emission direction deviates away from the plane normal. When we increase the transmittance, the backward flux decreases monotonically. The forward flux peaks at a certain transmittance value. The two fluxes become similar to each other for a weakly-absorbing phosphor layer. We have observed these behaviors in experiment. In a practical application, self-absorption decreases the efficiency of conversion and results in angle-dependent variations in chromaticity coordinates. A patterned phosphor layer with a secondary optical element such as a remote reflector alleviates these problems.

  10. Angle-resolved photoluminescence spectrum of a uniform phosphor layer

    Directory of Open Access Journals (Sweden)

    Ichiro Fujieda

    2017-10-01

    Full Text Available A photoluminescence spectrum depends on an emission angle due to self-absorption in a phosphor material. Assuming isotropic initial emission and Lambert-Beer’s law, we have derived simple expressions for the angle-resolved spectra emerging from the top and bottom surfaces of a uniform phosphor layer. The transmittance of an excitation light through the phosphor layer can be regarded as a design parameter. For a strongly-absorbing phosphor layer, the forward flux is less intense and more red-shifted than the backward flux. The red-shift is enhanced as the emission direction deviates away from the plane normal. When we increase the transmittance, the backward flux decreases monotonically. The forward flux peaks at a certain transmittance value. The two fluxes become similar to each other for a weakly-absorbing phosphor layer. We have observed these behaviors in experiment. In a practical application, self-absorption decreases the efficiency of conversion and results in angle-dependent variations in chromaticity coordinates. A patterned phosphor layer with a secondary optical element such as a remote reflector alleviates these problems.

  11. Constant Matrix Element Approximation to Time-Resolved Angle-Resolved Photoemission Spectroscopy

    Directory of Open Access Journals (Sweden)

    James K. Freericks

    2016-11-01

    Full Text Available We discuss several issues associated with employing a constant matrix element approximation for the coupling of light to multiband electrons in the context of time-resolved angle-resolved photoemission spectroscopy (TR-ARPES. In particular, we demonstrate that the “constant matrix element approximation” —even when reasonable—only holds for specific choices of the one-electron basis, and changing to other bases, requires including nonconstant corrections to the matrix element. We also discuss some simplifying approximations, where a constant matrix element is employed in multiple bases, and the consequences of this further approximation (especially with respect to the calculated TR-ARPES signal becoming negative. We also discuss issues related to gauge invariance of the final spectra.

  12. Angle-resolved photoelectron cross section of CF4

    International Nuclear Information System (INIS)

    Carlson, T.A.; Fahlman, A.; Svensson, W.A.; Krause, M.O.; Whitley, T.A.; Grimm, F.A.; Piancastelli, M.N.; Taylor, J.W.

    1984-01-01

    Partial photoelectron cross sections sigma and angular distribution parameters β were obtained for the first five valence orbitals in CF 4 : 1t 1 , 4t 2 , 1e, 3t 2 , and 4a 1 , as a function of photon energy from 17 to 70 eV. These data were taken with the aid of angle-resolved photoelectron spectroscopy and synchrotron radiation. The results were compared with earlier data on CCl 4 . Substantial differences were found. These are explained partly in terms of the absence of a Cooper minimum with a fluorine compound as opposed to the presence of a Cooper minimum with chlorine compounds and partly in terms of the position of shape resonances. Data on CF 4 were also compared with recent calculations of Stephens et al., who used the multiple-scattering Xα method. Structure in the photoelectron spectrum of CF 4 lying on the low energy side of the third band was identified as due to autoionization and evidence is given as to its specific nature

  13. Precision angle-resolved autoionization resonances in Ar and Ne

    Energy Technology Data Exchange (ETDEWEB)

    Berrah, N.; Langer, B.; Gorczyca, T.W. [Western Michigan Univ., Kalamazoo, MI (United States)] [and others

    1997-04-01

    Theoretical work has shown that the electron angular distribution and the shape of the autoionization resonances are crucial to the understanding of certain types of electron-electron correlation. Autoionization resonances in Ne (Ar) result from the decay of the excited discrete state Ne{sup *} 2s2p{sup 6} np (Ar{sup *} 3s3p{sup 6} np) into the continuum state Ne{sup +} 2s{sup 2}2p{sup 5} + e{sup {minus}} (ks,kd) (Ar{sup +} 3s{sup 2}3p{sup 5} + e{sup {minus}} (ks,kd)). Since the continuum can also be reached by direct photoionization, both paths add coherently, giving rise to interferences that produce the characteristic Beutler-Fano line shape. In this work, the authors report on quantitative angle-resolved electron spectrometry studies of (a) the Ne 2s{sup 2}2p{sup 6} {r_arrow} 2s2p{sup 6} np (n=3-5) autoionizing resonances and the 2s{sup 2}2p{sup 6} {r_arrow} 2p{sup 4}3s3p doubly excited resonance, (b) the Ar 3s{sup 2}3p{sup 6} {r_arrow} 3s3p{sup 6} np (n=4-9) autoionization resonances and extended R-matrix calculations of the angular-distribution parameters for both Ne and Ar measurements. Their results are compared with previous theoretical work by Taylor.

  14. New Light Source Setup for Angle Resolved Light Absorption measurement of PV samples

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light.......Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light....

  15. New Light Source Setup for Angle Resolved Light Absorption measurement of PV sample

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light.......Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light....

  16. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari Deibert [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc,max ~95 K and (Bi1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc,max 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major di erences in the band structure. First, the Fermi surface segments close to ( π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is consistent with

  17. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari Deibert [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc, max ≈ 95 K and (Bi 1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc, max ≈ 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major differences in the band structure. First, the Fermi surface segments close to (π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is

  18. Time-Resolved Small-Angle X-Ray Scattering

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Besselink, R.; Stawski, Tomasz; Castricum, H.L.; Levy, D.; Zayat, M.

    2015-01-01

    This chapter focuses on time-resolved studies of nanostructure development in sol-gel liquids, that is, diluted sols, wet gels, and drying thin fffilms. The most commonly investigated classes of sol-gel materials are silica, organically modified silica, template-directed mesostructured silica,

  19. Angle Resolved Performance Measurements on PV Glass and Modules

    DEFF Research Database (Denmark)

    Juutilainen, Line Tollund; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    The angular response of PV-modules has significant impact on the energy production. This is especially pronounced in BIPV where installation angles often are far from optimal. Nevertheless, a gain in energy yield may be obtained by choosing a proper glass as superstrate. In this work we present t...

  20. Angle-resolved photoelectron spectrometry: new electron optics and detection system

    International Nuclear Information System (INIS)

    Hoof, H.A. van.

    1980-01-01

    A new spectrometer system is described, designed to measure angle-resolved energy distributions of photoemitted electrons efficiently. Some results are presented of measurements on a Si(001) surface. (Auth.)

  1. Angle-resolved photoemission spectroscopy with quantum gas microscopes

    Science.gov (United States)

    Bohrdt, A.; Greif, D.; Demler, E.; Knap, M.; Grusdt, F.

    2018-03-01

    Quantum gas microscopes are a promising tool to study interacting quantum many-body systems and bridge the gap between theoretical models and real materials. So far, they were limited to measurements of instantaneous correlation functions of the form 〈O ̂(t ) 〉 , even though extensions to frequency-resolved response functions 〈O ̂(t ) O ̂(0 ) 〉 would provide important information about the elementary excitations in a many-body system. For example, single-particle spectral functions, which are usually measured using photoemission experiments in electron systems, contain direct information about fractionalization and the quasiparticle excitation spectrum. Here, we propose a measurement scheme to experimentally access the momentum and energy-resolved spectral function in a quantum gas microscope with currently available techniques. As an example for possible applications, we numerically calculate the spectrum of a single hole excitation in one-dimensional t -J models with isotropic and anisotropic antiferromagnetic couplings. A sharp asymmetry in the distribution of spectral weight appears when a hole is created in an isotropic Heisenberg spin chain. This effect slowly vanishes for anisotropic spin interactions and disappears completely in the case of pure Ising interactions. The asymmetry strongly depends on the total magnetization of the spin chain, which can be tuned in experiments with quantum gas microscopes. An intuitive picture for the observed behavior is provided by a slave-fermion mean-field theory. The key properties of the spectra are visible at currently accessible temperatures.

  2. Simulation and Measurement of Angle Resolved Reflectance from Black Si Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Wu, Kaiyu; Schmidt, Michael Stenbæk

    2015-01-01

    In this work angle-resolved reflectance from nanostructured Si surfaces realized by maskless RIE texturing has been simulated and measured. The simulation and experimental measurement data show the same trend. Experimentally a total reflectance below 1% for incident angles below 30o and specular...

  3. A high performance angle-resolving electron spectrometer

    CERN Document Server

    Rossnagel, K; Skibowski, M; Harm, S

    2001-01-01

    We report on our new versatile photoelectron spectrometer Angular Spectrometer for Photoelectrons with High Energy REsolution (ASPHERE) which is part of beamline W3.2 (photon energies from 5 to 40 eV) but also compatible with beamline BW3 (40-1500 eV) at the Hamburger Synchrotronstrahlungslabor (HASYLAB). ASPHERE is a 180 deg. spherical analyzer (r sub 0 =100 mm) with a four-element input lens and is mounted on a two-axes goniometer with computer-controlled stepper motors which enables sequential angle-scanned measurements. The input lens is equipped with an iris aperture so that the angular resolution can be continuously adjusted from 0.2 deg. to 5 deg. sign . The fringe field of the condenser has been corrected for by tilting the angle of the input lens against the base plane of the hemispheres resulting in an overall energy resolution of 10 meV. To improve the speed of data acquisition three standard channeltron detectors are installed in the image plane of the analyzer which will be replaced by a multidet...

  4. Angle-resolved imaging of single-crystal materials with MeV helium ions

    International Nuclear Information System (INIS)

    Strathman, M.D.; Baumann, S.

    1992-01-01

    The simplest form of angle-resolved mapping for single-crystal materials is the creation of a channeling angular scan. Several laboratories have expanded this simple procedure to include mapping as a function of two independent tilts. These angle-resolved images are particularly suited to the assessment of crystal parameters including disorder, lattice location of impurities, and lattice stress. This paper will describe the use of the Charles Evans and Associates RBS-400 scattering chamber for acquisition, display, and analysis of angle-resolved images obtained from backscattered helium ions. Typical data acquisition times are 20 min for a ±2deg X-Y tilt scan with 2500 pixels (8/100deg resolution), and 10 nC per pixel. In addition, we will present a method for automatically aligning crystals for channeling measurements based on this imaging technology. (orig.)

  5. Energy and angle resolved ion scattering spectroscopy: new possibilities for surface analysis

    International Nuclear Information System (INIS)

    Hellings, G.J.A.

    1986-01-01

    In this thesis the design and development of a novel, very sensitive and high-resolving spectrometer for surface analysis is described. This spectrometer is designed for Energy and Angle Resolved Ion Scattering Spectroscopy (EARISS). There are only a few techniques that are sensitive enough to study the outermost atomic layer of surfaces. One of these techniques, Low-Energy Ion Scattering (LEIS), is discussed in chapter 2. Since LEIS is destructive, it is important to make a very efficient use of the scattered ions. This makes it attractive to simultaneously carry out energy and angle dependent measurements (EARISS). (Auth.)

  6. Time-resolved small-angle neutron scattering study on soap-free emulsion polymerization

    International Nuclear Information System (INIS)

    Motokawa, Ryuhei; Koizumi, Satoshi; Hashimoto, Takeji; Nakahira, Takayuki; Annaka, Masahiko

    2006-01-01

    We investigated an aqueous soap-free emulsion polymerization process of Poly(N-isopropylacrylamide)-block-poly(ethylene glycol) by ultra-small-angle and time-resolved small-angle neutron scattering methods. The results indicate that the compartmentalization of chain end radicals into solid-like micelle cores crucially leads to the quasi-living behavior of the radical polymerization by prohibiting recombination process

  7. Angle resolved characterization of nanostructured and conventionally textured silicon solar cells

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Ormstrup, Jeppe; Ommen, Martin Lind

    2015-01-01

    current, open circuit voltage, fill factor (FF) and power conversion efficiency are each measured as function of the relative incident angle between the solar cell and the light source. The relative incident angle is varied from 0° to 90° in steps of 10° in orthogonal axes, such that each solar cell......We report angle resolved characterization of nanostructured and conventionally textured silicon solar cells. The nanostructured solar cells are realized through a single step, mask-less, scalable reactive ion etching (RIE) texturing of the surface. Photovoltaic properties including short circuit...

  8. Gauge invariance in the theoretical description of time-resolved angle-resolved pump/probe photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Freericks, J. K.; Krishnamurthy, H. R.; Sentef, M. A.; Devereaux, T. P.

    2015-10-01

    Nonequilibrium calculations in the presence of an electric field are usually performed in a gauge, and need to be transformed to reveal the gauge-invariant observables. In this work, we discuss the issue of gauge invariance in the context of time-resolved angle-resolved pump/probe photoemission. If the probe is applied while the pump is still on, one must ensure that the calculations of the observed photocurrent are gauge invariant. We also discuss the requirement of the photoemission signal to be positive and the relationship of this constraint to gauge invariance. We end by discussing some technical details related to the perturbative derivation of the photoemission spectra, which involve processes where the pump pulse photoexcites electrons due to nonequilibrium effects.

  9. Electronic structure studies of BaFe2As2 by angle-resolved photoemission spectroscopy

    NARCIS (Netherlands)

    Fink, J.; Thirupathaiah, R.; Ovsyannikov, R.; Dürr, H.A.; Follath, R.; Huang, Y.; de Jong, S.; Golden, M.S.; Zhang, Y.Z.; Jeschke, H.O.; Valentí, R.; Felser, C.; Dastjani Farahani, S.; Rotter, M.; Johrendt, D.

    2009-01-01

    We report high resolution angle-resolved photoemission spectroscopy (ARPES) studies of the electronic structure of BaFe2As2, which is one of the parent compounds of the Fe-pnictide superconductors. ARPES measurements have been performed at 20 and 300 K, corresponding to the orthorhombic

  10. Review of RDC Soft Computing Techniques for Accurate Measurement of Resolver Rotor Angle

    Directory of Open Access Journals (Sweden)

    Chandra Mohan Reddy Sivappagari

    2013-03-01

    Full Text Available A resolver is a position sensor or transducer that measures the instantaneous angular position of the rotating shaft to which it is attached. Resolver produces two amplitude modulated signals; SIN and COS as output signals. These two signals need to be demodulated and converted to digital signals before they can be used for control. There are several techniques available in the literature to measure the rotor shaft angle. This paper focuses on the design of both hardware and software based resolver to digital converter (RDC techniques available in the literature. This literature review helps the researchers to know about all these methods and plan future work on RDCs to improve the angle tracking performance.

  11. Combined angle-resolved X-ray photoelectron spectroscopy, density functional theory and kinetic study of nitridation of gallium arsenide

    Science.gov (United States)

    Mehdi, H.; Monier, G.; Hoggan, P. E.; Bideux, L.; Robert-Goumet, C.; Dubrovskii, V. G.

    2018-01-01

    The high density of interface and surface states that cause the strong Fermi pinning observed on GaAs surfaces can be reduced by depositing GaN ultra-thin films on GaAs. To further improve this passivation, it is necessary to investigate the nitridation phenomena by identifying the distinct steps occurring during the process and to understand and quantify the growth kinetics of GaAs nitridation under different conditions. Nitridation of the cleaned GaAs substrate was performed using N2 plasma source. Two approaches have been combined. Firstly, an AR-XPS (Angle Resolved X-ray Photoelectron Spectroscopy) study is carried out to determine the chemical environments of the Ga, As and N atoms and the composition depth profile of the GaN thin film which allow us to summarize the nitridation process in three steps. Moreover, the temperature and time treatment have been investigated and show a significant impact on the formation of the GaN layer. The second approach is a refined growth kinetic model which better describes the GaN growth as a function of the nitridation time. This model clarifies the exchange mechanism of arsenic with nitrogen atoms at the GaN/GaAs interface and the phenomenon of quasi-saturation of the process observed experimentally.

  12. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    International Nuclear Information System (INIS)

    Marczynski-Buehlow, Martin

    2012-01-01

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of FEL pulse

  13. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marczynski-Buehlow, Martin

    2012-01-30

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of

  14. Pitch angle resolved measurements of escaping charged fusion products in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Zweben, S.J.

    1989-01-01

    Measurements of the flux of charged fusion products escaping from the TFTR plasma have been made with a new type of detector which can resolve the particle flux vs. pitch angle, energy, and time. The design of this detector is described, and results from the 1987 TFTR run are presented. These results are roughly consistent with predictions from a simple first-orbit particle loss model with respect to the pitch angle, energy, time, and plasma current dependence of the signals. 11 refs., 9 figs.

  15. Bogoliubov Angle, Particle-Hole Mixture and Angular Resolved Photoemission Spectroscopy in Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Balatsky, A.

    2010-05-04

    Superconducting excitations - Bogoliubov quasiparticles - are the quantum mechanical mixture of negatively charged electron (-e) and positively charged hole (+e). We propose a new observable for Angular Resolved Photoemission Spectroscopy (ARPES) studies that is the manifestation of the particle-hole entanglement of the superconducting quasiparticles. We call this observable a Bogoliubov angle. This angle measures the relative weight of particle and hole amplitude in the superconducting (Bogoliubov) quasiparticle. We show how this quantity can be measured by comparing the ratio of spectral intensities at positive and negative energies.

  16. The ALOISA end station at Elettra: a novel multicoincidence spectrometer for angle resolved APECS

    CERN Document Server

    Gotter, R; Morgante, A; Cvetko, D; Floreano, L; Tommasini, F; Stefani, G

    2001-01-01

    Coincidence measurements have been extensively performed in atomic and molecular physics since early 1970s. To apply this methodology to solids and surfaces has been a major target since early days, but the long average time needed to complete a coincidence experiment has hampered its attainment. In particular the coincidence technique has not been yet applied in an angle resolved way such for studying the momentum correlation in the ejection of electron pairs from solid surfaces. The experimental chamber at the ALOISA beamline at Elettra, by means of a set of seven homemade electron analyzers, is the first apparatus able to perform Angle Resolved - Auger Photoelectron Coincidence Spectroscopy (AR-APECS) from solid surfaces. In the typical setup ten different pairs of coincident electrons can be measured simultaneously, so reducing the acquisition time by one order of magnitude.

  17. Angle-resolved ion TOF spectrometer with a position sensitive detector

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Norio [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Heiser, F.; Wieliczec, K.; Becker, U.

    1996-07-01

    A angle-resolved ion time-of-flight mass spectrometer with a position sensitive anode has been investigated. Performance of this spectrometer has been demonstrated by measuring an angular distribution of a fragment ion pair, C{sup +} + O{sup +}, from CO at the photon energy of 287.4 eV. The obtained angular distribution is very close to the theoretically expected one. (author)

  18. Mapping unoccupied electronic states of freestanding graphene by angle-resolved low-energy electron transmission

    OpenAIRE

    Wicki Flavio; Longchamp Jean-Nicolas; Latychevskaia Tatiana; Escher Conrad; Fink Hans-Werner

    2016-01-01

    We report angle-resolved electron transmission measurements through freestanding graphene sheets in the energy range of 18 to 30 eV above the Fermi level. The measurements are carried out in a low-energy electron point source microscope, which allows simultaneously probing the transmission for a large angular range. The characteristics of low-energy electron transmission through graphene depend on its electronic structure above the vacuum level. The experimental technique described here allow...

  19. Electronic structure of Sr2RuO4 studied by angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Iwasawa, H.; Aiura, Y.; Saitoh, T.; Yoshida, Y.; Hase, I.; Ikeda, S.I.; Bando, H.; Kubota, M.; Ono, K.

    2007-01-01

    Electronic structure of the monolayer strontium ruthenate Sr 2 RuO 4 was investigated by high-resolution angle-resolved photoemission spectroscopy. We present photon-energy (hν) dependence of the electronic structure near the Fermi level along the ΓM line. The hν dependence has shown a strong spectral weight modulation of the Ru 4d xy and 4d zx bands

  20. Study of High Temperature Superconductors with Angle-Resolved Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Lisa

    2003-05-13

    The Angle Resolved Photoemission Spectroscopy (ARPES) recently emerged as a powerful tool for the study of highly correlated materials. This thesis describes the new generation of ARPES experiment, based on the third generation synchrotron radiation source and utilizing very high resolution electron energy and momentum analyzer. This new setup is used to study the physics of high temperature superconductors. New results on the Fermi surfaces, dispersions, scattering rate and superconducting gap in high temperature superconductors are presented.

  1. Angle-resolved reflection spectroscopy of high-quality PMMA opal crystal

    Science.gov (United States)

    Nemtsev, Ivan V.; Tambasov, Igor A.; Ivanenko, Alexander A.; Zyryanov, Victor Ya.

    2018-02-01

    PMMA opal crystal was prepared by a simple hybrid method, which includes sedimentation, meniscus formation and evaporation. We investigated three surfaces of this crystal by angle-resolved reflective light spectroscopy and SEM study. The angle-resolved reflective measurements were carried out in the 400-1100 nm range. We have determined the high-quality ordered surface of the crystal region. Narrow particle size distribution of the surface has been revealed. The average particle diameter obtained with SEM was nearly 361 nm. The most interesting result was that reflectivity of the surface turned out up to 98% at normal light incidence. Using a fit of dependences of the maximum reflectivity wavelength from an angle based on the Bragg-Snell law, the wavelength of maximum 0° reflectivity, the particle diameter and the fill factor have been determined. For the best surface maximum reflectivity wavelength of a 0° angle was estimated to be 869 nm. The particle diameter and fill factor were calculated as 372 nm and 0.8715, respectively. The diameter obtained by fitting is in excellent agreement with the particle diameter obtained with SEM. The reflectivity maximum is assumed to increase significantly when increasing the fill factor. We believe that using our simple approach to manufacture PMMA opal crystals will significantly increase the fabrication of high-quality photonic crystal templates and thin films.

  2. The complementary nature of x-ray photoelectron spectroscopy and angle-resolved x-ray diffraction part II: Analysis of oxides on dental alloys

    Science.gov (United States)

    Kerber, S. J.; Barr, T. L.; Mann, G. P.; Brantley, W. A.; Papazoglou, E.; Mitchell, J. C.

    1998-06-01

    X-ray photoelectron spectroscopy (XPS) and angle-resolved x-ray diffraction (ARXRD) were used to analyze the oxide layer on three palladium-gallium-based dental casting alloys. The oxide layers were approximately 10 Μm thick. The use of the techniques helped to determine which mechanism was responsible for oxide formation—either (a) oxide layer growth via diffusion of oxygen through the scale to the metal, causing the scale to grow at the metal-oxide interface, or (b) an oxide layer formed by metal ions diffusing through the scale to the surface and reacting with oxygen, causing the scale to grow at the oxide-air interface. The oxide growth mechanisms were correlated to previous layer adhesion results determined with biaxial flexure testing.

  3. An experimentalist's guide to the matrix element in angle resolved photoemission

    International Nuclear Information System (INIS)

    Moser, Simon

    2017-01-01

    Highlights: • An introduction to the art of angle resolved photoemission is presented. • Matrix element effects are described by a nearly free electron final state model. • ARPES spectral weight of a Bloch band can be calculated from the Fourier transform of its Wannier orbital. • Experimental handedness and improper polarization introduce dichroism. • Instructive showcases from modern ARPES are discussed in detail. - Abstract: Angle resolved photoemission spectroscopy (ARPES) is commonly known as a powerful probe of the one-electron removal spectral function in ordered solid state. With increasing efficiency of light sources and spectrometers, experiments over a wide range of emission angles become more and more common. Consequently, the angular variation of ARPES spectral weight – often times termed “matrix element effect” – enters as an additional source of information. In this tutorial, we develop a simple but instructive free electron final state approach based on the three-step model to describe the intensity distribution in ARPES. We find a compact expression showing that the ARPES spectral weight of a given Bloch band is essentially determined by the momentum distribution (the Fourier transform) of its associated Wannier orbital – times a polarization dependent pre-factor. While the former is giving direct information on the symmetry and shape of the electronic wave function, the latter can give rise to surprising geometric effects. We discuss a variety of modern and instructive experimental showcases for which this simplistic formalism works astonishingly well and discuss the limits of this approach.

  4. Electronic structure of superconducting Bi2212 crystal by angle resolved ultra violet photoemission

    International Nuclear Information System (INIS)

    Saini, N.L.; Shrivastava, P.; Garg, K.B.

    1993-01-01

    The electronic structure of a high quality superconducting Bi 2 Sr 2 CaCu 2 Osub(8+δ) (Bi2212) single crystal is studied by angle resolved ultra violet photoemission (ARUPS) using He I (21.2 eV). Our results appear to show two bands crossing the Fermi level in ΓX direction of the Brillouin zone as reported by Takahashi et al. The bands at higher binding energy do not show any appreciable dispersion. The nature of the states near the Fermi level is discussed and the observed band structure is compared with the band structure calculations. (author)

  5. Determination of electronic states in crystalline semiconductors and metals by angle-resolved photoemission

    International Nuclear Information System (INIS)

    Mills, K.A.

    1979-08-01

    An important part of the theoretical description of the solid state is band structure, which relies on the existence of dispersion relations connecting the electronic energy and wavevector in materials with translational symmetry. These relations determine the electronic behavior of such materials. The elaboration of accurate band structures, therefore, is of considerable fundamental and practical importance. Angle-resolved photoemission (ARP) spectroscopy provides the only presently available method for the detailed experimental investigation of band structures. This work is concerned with its application to both semiconducting and metallic single crystals

  6. Linear and circular dichroism in angle resolved Fe 3p photomission. Revision 1

    International Nuclear Information System (INIS)

    Tamura, E.; Waddill, G.D.; Tobin, J.G.; Sterne, P.A.

    1994-01-01

    Using a recently developed spin-polarized, fully relativistic, multiple scattering approach based on the layer KKR Green function method, we have reproduced the Fe 3p angle-resolved soft x-ray photoemission spectra and analyzed the associated large magnetic dichroism effects for excitation with both linearly and circularly polarized light. Comparison between theory and experiment yields a spin-orbit splitting of 1.0--1.2 eV and an exchange splitting of 0.9-- 1.0 eV for Fe 3p. These values are 50--100% larger than those hitherto obtained experimentally

  7. Dynamics of Molecular Orientation Observed Using Angle Resolved Photoemission Spectroscopy during Deposition of Pentacene on Graphite.

    Science.gov (United States)

    Park, Sang Han; Kwon, Soonnam

    2016-04-19

    A real-time method to observe both the structural and the electronic configuration of an organic molecule during deposition is reported for the model system of pentacene on graphite. Structural phase transition of the thin films as a function of coverage is monitored by using in situ angle resolved photoemission spectroscopy (ARPES) results to observe the change of the electronic configuration at the same time. A photoemission theory that uses independent atomic center approximations is introduced to identify the molecular orientation from the ARPES technique. This study provides a practical insight into interpreting ARPES data regarding dynamic changes of molecular orientation during initial growth of molecules on a well-defined surface.

  8. Robust depth selectivity in mesoscopic scattering regimes using angle-resolved measurements.

    Science.gov (United States)

    González-Rodríguez, P; Kim, A D; Moscoso, M

    2013-03-01

    We study optical imaging of tissues in the mesoscopic scattering regime in which light multiply scatters in tissues but is not fully diffusive. We use the radiative transport equation to model light propagation and an ℓ1-optimization method to solve the inverse source problem. We show that recovering the location and strength of several point-like sources that are close to each other is not possible when using angle-averaged measurements. The image reliability is limited by a spatial scale that is on the order of the transport mean-free path, even under the most ideal conditions. However, by using just a few angle-resolved measurements, the proposed method is able to overcome this limitation.

  9. Setup for angle-resolved electron spectrometry using monochromatised synchrotron radiation

    International Nuclear Information System (INIS)

    Derenbach, H.; Franke, C.; Malutzki, R.; Wachter, A.; Schmidt, V.

    1987-01-01

    An apparatus is described which is well suited for angle-resolved electron spectrometry of free atoms and molecules using monochromatised synchrotron radiation. Two variations are presented, one for room temperature gaseous species, the other for metallic vapours. The analyser is of the cylindrical mirror type, designed, however, so as to accept with one sector the entire source volume independently of the photon beam diameter. It can be equipped with a positon-sensitive detector instead of a channeltron, which extends its potentiality. The system consists of up to three cylindrical mirror sector analysers (CMAs) where a double-sector CMA can be rotated around the photon beam direction, allowing angular distribution measurements, and another sector CMA is mounted in a fixed position providing a signal for reference purposes. A detailed description and experimental tests are given for the performance of the CMA, i.e. its imaging properties, resolution and transmissions, as well as for possible instrumental asymmetries affecting angle-resolved experiments. (orig.)

  10. Design of angle-resolved illumination optics using nonimaging bi-telecentricity for 193 nm scatterfield microscopy.

    Science.gov (United States)

    Sohn, Martin Y; Barnes, Bryan M; Silver, Richard M

    2018-03-01

    Accurate optics-based dimensional measurements of features sized well-below the diffraction limit require a thorough understanding of the illumination within the optical column and of the three-dimensional scattered fields that contain the information required for quantitative metrology. Scatterfield microscopy can pair simulations with angle-resolved tool characterization to improve agreement between the experiment and calculated libraries, yielding sub-nanometer parametric uncertainties. Optimized angle-resolved illumination requires bi-telecentric optics in which a telecentric sample plane defined by a Köhler illumination configuration and a telecentric conjugate back focal plane (CBFP) of the objective lens; scanning an aperture or an aperture source at the CBFP allows control of the illumination beam angle at the sample plane with minimal distortion. A bi-telecentric illumination optics have been designed enabling angle-resolved illumination for both aperture and source scanning modes while yielding low distortion and chief ray parallelism. The optimized design features a maximum chief ray angle at the CBFP of 0.002° and maximum wavefront deviations of less than 0.06 λ for angle-resolved illumination beams at the sample plane, holding promise for high quality angle-resolved illumination for improved measurements of deep-subwavelength structures using deep-ultraviolet light.

  11. Momentum-resolved electronic structure at a buried interface from soft X-ray standing-wave angle-resolved photoemission

    NARCIS (Netherlands)

    Gray, A.X.; Minar, J.; Plucinski, L.; Huijben, Mark; Bostwick, A.; Rotenberg, E.; Yang, S.-H.; Braun, J.; Winkelmann, A.; Conti, G.; Eiteneer, D.; Rattanachata, A.; Greer, A.A.; Ciston, J.; Ophus, C.; Rijnders, Augustinus J.H.M.; Blank, David H.A.; Doennig, D.; Pentcheva, R.; Kortright, J.B.; Schneider, C.M.; Ebert, H.; Fadley, C.S.

    2013-01-01

    Angle-resolved photoemission spectroscopy (ARPES) is a powerful technique for the study of electronic structure, but it lacks a direct ability to study buried interfaces between two materials. We address this limitation by combining ARPES with soft X-ray standing-wave (SW) excitation (SWARPES), in

  12. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), Sede di Perugia, c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, I-06123 Perugia (Italy); Montoncello, F.; Giovannini, L. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via G. Saragat 1, I-44122 Ferrara (Italy); Madami, M.; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Ding, J.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-06-29

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.

  13. High Resolution Angle Resolved Photoemission Studies on Quasi-Particle Dynamics in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Leem, C.S.

    2010-06-02

    We obtained the spectral function of the graphite H point using high resolution angle resolved photoelectron spectroscopy (ARPES). The extracted width of the spectral function (inverse of the photo-hole lifetime) near the H point is approximately proportional to the energy as expected from the linearly increasing density of states (DOS) near the Fermi energy. This is well accounted by our electron-phonon coupling theory considering the peculiar electronic DOS near the Fermi level. And we also investigated the temperature dependence of the peak widths both experimentally and theoretically. The upper bound for the electron-phonon coupling parameter is 0.23, nearly the same value as previously reported at the K point. Our analysis of temperature dependent ARPES data at K shows that the energy of phonon mode of graphite has much higher energy scale than 125K which is dominant in electron-phonon coupling.

  14. A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Harter, John W.; Monkman, Eric J.; Shai, Daniel E.; Nie Yuefeng; Uchida, Masaki; Burganov, Bulat; Chatterjee, Shouvik; King, Philip D. C.; Shen, Kyle M.

    2012-01-01

    We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to ∼7 eV, delivering under typical conditions >10 12 ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

  15. Modeling angle-resolved photoemission of graphene and black phosphorus nano structures.

    Science.gov (United States)

    Park, Sang Han; Kwon, Soonnam

    2016-05-10

    Angle-resolved photoemission spectroscopy (ARPES) data on electronic structure are difficult to interpret, because various factors such as atomic structure and experimental setup influence the quantum mechanical effects during the measurement. Therefore, we simulated ARPES of nano-sized molecules to corroborate the interpretation of experimental results. Applying the independent atomic-center approximation, we used density functional theory calculations and custom-made simulation code to compute photoelectron intensity in given experimental setups for every atomic orbital in poly-aromatic hydrocarbons of various size, and in a molecule of black phosphorus. The simulation results were validated by comparing them to experimental ARPES for highly-oriented pyrolytic graphite. This database provides the calculation method and every file used during the work flow.

  16. Dimensional Crossover in a Charge Density Wave Material Probed by Angle-Resolved Photoemission Spectroscopy

    Science.gov (United States)

    Nicholson, C. W.; Berthod, C.; Puppin, M.; Berger, H.; Wolf, M.; Hoesch, M.; Monney, C.

    2017-05-01

    High-resolution angle-resolved photoemission spectroscopy data reveal evidence of a crossover from one-dimensional (1D) to three-dimensional (3D) behavior in the prototypical charge density wave (CDW) material NbSe3 . In the low-temperature 3D regime, gaps in the electronic structure are observed due to two incommensurate CDWs, in agreement with x-ray diffraction and electronic-structure calculations. At higher temperatures we observe a spectral weight depletion that approaches the power-law behavior expected in one dimension. From the warping of the quasi-1D Fermi surface at low temperatures, we extract the energy scale of the dimensional crossover. This is corroborated by a detailed analysis of the density of states, which reveals a change in dimensional behavior dependent on binding energy. Our results offer an important insight into the dimensionality of excitations in quasi-1D materials.

  17. Observation of cross-shaped anisotropy in spin-resolved small-angle neutron scattering

    Science.gov (United States)

    Michels, Andreas; Honecker, Dirk; Döbrich, Frank; Dewhurst, Charles D.; Suzuki, Kiyonori; Heinemann, André

    2012-05-01

    We report the results of spin-resolved small-angle neutron scattering (SANS) experiments on the two-phase nanocrystalline alloy NANOPERM. At a saturating applied magnetic field of 1.27T we observe a cross-shaped angular anisotropy in the non-spin-flip SANS cross section Σ++. This feature—for this class of materials only visible at saturation in Σ++—is attributed to the specific ratio of nuclear to magnetic scattering being smaller than unity. Analysis of the non-spin-flip and spin-flip cross sections provides the nuclear and magnetic SANS and allows us to estimate the magnitude of the respective scattering-length density contrast at the interphase between the nanoparticles and the amorphous magnetic matrix.

  18. Angle-resolved photoemission studies of the superconducting gap symmetry in Fe-based superconductors

    Directory of Open Access Journals (Sweden)

    Y.-B. Huang

    2012-12-01

    Full Text Available The superconducting gap is the fundamental parameter that characterizes the superconducting state, and its symmetry is a direct consequence of the mechanism responsible for Cooper pairing. Here we discuss about angle-resolved photoemission spectroscopy measurements of the superconducting gap in the Fe-based high-temperature superconductors. We show that the superconducting gap is Fermi surface dependent and nodeless with small anisotropy, or more precisely, a function of the momentum location in the Brillouin zone. We show that while this observation seems inconsistent with weak coupling approaches for superconductivity in these materials, it is well supported by strong coupling models and global superconducting gaps. We also suggest that a smaller lifetime of the superconducting Cooper pairs induced by the momentum dependent interband scattering inherent to these materials could affect the residual density of states at low energies, which is critical for a proper evaluation of the superconducting gap.

  19. Angle-resolved photoemission spectra of graphene from first-principles calculations.

    Science.gov (United States)

    Park, Cheol-Hwan; Giustino, Feliciano; Spataru, Catalin D; Cohen, Marvin L; Louie, Steven G

    2009-12-01

    Angle-resolved photoemission spectroscopy (ARPES) is a powerful experimental technique for directly probing electron dynamics in solids. The energy versus momentum dispersion relations and the associated spectral broadenings measured by ARPES provide a wealth of information on quantum many-body interaction effects. In particular, ARPES allows studies of the Coulomb interaction among electrons (electron-electron interactions) and the interaction between electrons and lattice vibrations (electron-phonon interactions). Here, we report ab initio simulations of the ARPES spectra of graphene including both electron-electron and electron-phonon interactions on the same footing. Our calculations reproduce some of the key experimental observations related to many-body effects, including the indication of a mismatch between the upper and lower halves of the Dirac cone.

  20. A brief update of angle-resolved photoemission spectroscopy on a correlated electron system.

    Science.gov (United States)

    Lee, W S; Vishik, I M; Lu, D H; Shen, Z-X

    2009-04-22

    In this paper, we briefly summarize the capabilities of state-of-the-art angle-resolved photoemission spectroscopy (ARPES) in the field of experimental condensed matter physics. Due to the advancement of the detector technology and the high flux light sources, ARPES has become a powerful tool to study the low energy excitations of solids, especially those novel quantum materials in which many-body physics are at play. To benchmark today's state-of-the-art ARPES technique, we demonstrate that the precision of today's ARPES has advanced to a regime comparable to the bulk-sensitive de Haas-van Alphen (dHvA) measurements. Finally, as an example of new discoveries driven by the advancement of the ARPES technique, we summarize some of our recent ARPES measurements on underdoped high-T(c) superconducting cuprates, which have provided further insight into the complex pseudogap problem.

  1. Integrated experimental setup for angle resolved photoemission spectroscopy of transuranic materials.

    Science.gov (United States)

    Graham, Kevin S; Joyce, John J; Durakiewicz, Tomasz

    2013-09-01

    We have developed the Angle Resolved Photoemission Spectroscopy (ARPES) system for transuranic materials. The ARPES transuranic system is an endstation upgrade to the Laser Plasma Light Source (LPLS) at Los Alamos National Laboratory. The LPLS is a tunable light source for photoemission with a photon energy range covering the vacuum ultraviolet (VUV) and soft x-ray regions (27-140 eV). The LPLS was designed and developed for transuranic materials. Transuranic photoemission is currently not permitted at the public synchrotrons worldwide in the VUV energy range due to sample encapsulation requirements. With the addition of the ARPES capability to the LPLS system there is an excellent opportunity to explore new details centered on the electronic structure of actinide and transuranic materials.

  2. Angle-resolved photoemission spectroscopy for the study of two-dimensional materials

    Science.gov (United States)

    Mo, Sung-Kwan

    2017-03-01

    Quantum systems in confined geometries allow novel physical properties that cannot easily be attained in their bulk form. These properties are governed by the changes in the band structure and the lattice symmetry, and most pronounced in their single layer limit. Angle-resolved photoemission spectroscopy (ARPES) is a direct tool to investigate the underlying changes of band structure to provide essential information for understanding and controlling such properties. In this review, recent progresses in ARPES as a tool to study two-dimensional atomic crystals have been presented. ARPES results from few-layer and bulk crystals of material class often referred as "beyond graphene" are discussed along with the relevant developments in the instrumentation.

  3. Direct observation of superconducting gaps in MgB 2 by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Souma, S.; Machida, Y.; Sato, T.; Takahashi, T.; Matsui, H.; Wang, S.-C.; Ding, H.; Kaminski, A.; Campuzano, J. C.; Sasaki, S.; Kadowaki, K.

    2004-08-01

    High-resolution angle-resolved photoemission spectroscopy has been carried out to clarify the anomalous superconductivity of MgB 2. We observed three bands crossing the Fermi level, which are ascribed to B2p-σ, π and surface bands. We have succeeded for the first time in directly observing the superconducting gaps of these bands separately. We have found that the superconducting-gap sizes of σ and surface bands are 6.5 ± 0.5 and 6.0 ± 0.5 meV, respectively, while that of the π band is much smaller (1.5 ± 0.5 meV). The present experimental result unambiguously demonstrates the validity of the two-band superconductivity in MgB 2.

  4. Direct observation of superconducting gaps in MgB2 by angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Souma, S.; Machida, Y.; Sato, T.; Takahashi, T.; Matsui, H.; Wang, S.-C.; Ding, H.; Kaminski, A.; Campuzano, J.C.; Sasaki, S.; Kadowaki, K.

    2004-01-01

    High-resolution angle-resolved photoemission spectroscopy has been carried out to clarify the anomalous superconductivity of MgB 2 . We observed three bands crossing the Fermi level, which are ascribed to B2p-σ, π and surface bands. We have succeeded for the first time in directly observing the superconducting gaps of these bands separately. We have found that the superconducting-gap sizes of σ and surface bands are 6.5 ± 0.5 and 6.0 ± 0.5 meV, respectively, while that of the π band is much smaller (1.5 ± 0.5 meV). The present experimental result unambiguously demonstrates the validity of the two-band superconductivity in MgB 2

  5. Tunable vacuum ultraviolet laser based spectrometer for angle resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Rui; Mou, Daixiang; Wu, Yun; Huang, Lunan; Kaminski, Adam [Division of Materials Science and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); McMillen, Colin D.; Kolis, Joseph [Department of Chemistry, Clemson University, Clemson, South Carolina 29634 (United States); Giesber, Henry G.; Egan, John J. [Advanced Photonic Crystals LLC, Fort Mill, South Carolina 29708 (United States)

    2014-03-15

    We have developed an angle-resolved photoemission spectrometer with tunable vacuum ultraviolet laser as a photon source. The photon source is based on the fourth harmonic generation of a near IR beam from a Ti:sapphire laser pumped by a CW green laser and tunable between 5.3 eV and 7 eV. The most important part of the set-up is a compact, vacuum enclosed fourth harmonic generator based on potassium beryllium fluoroborate crystals, grown hydrothermally in the US. This source can deliver a photon flux of over 10{sup 14} photon/s. We demonstrate that this energy range is sufficient to measure the k{sub z} dispersion in an iron arsenic high temperature superconductor, which was previously only possible at synchrotron facilities.

  6. Angle-resolved and resonant photoemission spectroscopy of rare-earth and actinide intermetallics

    Science.gov (United States)

    Reihl, Bruno

    1985-07-01

    In this paper, some aspects of our angle-resolved and resonant photoemission work on rare-earth and actinide intermetallics will be summarized. The systems specifically mentioned are Gd(0001), UIr 3(100), UN(100), UO 2, α-γ- Ce 0.9Th 0.1, U xTh 1- xSb, USb xTe 1- x, UPd 3, UCu xNi 5- x, CeCu 2Si 2, UBe 13, U 2Zn 17 , SmAl 2, EuPd 13, YbBe 13, TmS, Yb xY 1- xAl 2, EuPd 2Si 2, TmSe, and UAs xSe 1- x.

  7. Time-resolved small-angle neutron scattering of a micelle-to-vesicle transition

    Energy Technology Data Exchange (ETDEWEB)

    Egelhaaf, S.U. [Institut Max von Laue - Paul Langevin (ILL), 38 -Grenoble (France); Schurtenberger, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-04-01

    Amphiphilic molecules spontaneously self-assemble in solution to form a variety of aggregates. Only limited information is available on the kinetics of the structural transitions as well as on the existence of non-equilibrium or metastable states. Aqueous mixtures of lecithin and bile salt are very interesting biological model-systems which exhibit a spontaneous transition from polymer-like mixed micelles to vesicles upon dilution. The small-angle neutron scattering (SANS) instrument D22, with its very high neutron flux and the broad range of scattering vectors covered in a single instrumental setting, allowed us for the first time to perform time-resolved scattering experiments in order to study the micelle-to-vesicle transition. The temporal evolution of the aggregate structures were followed and detailed information was obtained even on molecular length-scales. (author). 5 refs.

  8. Fourier-domain angle-resolved low coherence interferometry for clinical detection of dysplasia

    Science.gov (United States)

    Terry, Neil G.; Zhu, Yizheng; Wax, Adam

    2010-02-01

    Improved methods for detecting dysplasia, or pre-cancerous growth are a current clinical need, particularly in the esophagus. The currently accepted method of random biopsy and histological analysis provides only a limited examination of tissue in question while being coupled with a long time delay for diagnosis. Light scattering spectroscopy, in contrast, allows for inspection of the cellular structure and organization of tissue in vivo. Fourier-domain angle-resolved low-coherence interferometry (a/LCI) is a novel light scattering spectroscopy technique that provides quantitative depth-resolved morphological measurements of the size and optical density of the examined cell nuclei, which are characteristic biomarkers of dysplasia. Previously, clinical viability of the a/LCI system was demonstrated through analysis of ex vivo human esophageal tissue in Barrett's esophagus patients using a portable a/LCI, as was the development of a clinical a/LCI system. Data indicating the feasibility of the technique in other organ sites (colon, oral cavity) will be presented. We present an adaptation of the a/LCI system that will be used to investigate the presence of dysplasia in vivo in Barrett's esophagus patients.

  9. Detection of intestinal dysplasia using angle-resolved low coherence interferometry

    Science.gov (United States)

    Terry, Neil; Zhu, Yizheng; Thacker, Julie K. M.; Migaly, John; Guy, Cynthia; Mantyh, Christopher R.; Wax, Adam

    2011-10-01

    Angle-resolved low coherence interferometry (a/LCI) is an optical biopsy technique that allows for depth-resolved, label-free measurement of the average size and optical density of cell nuclei in epithelial tissue to assess the tissue health. a/LCI has previously been used clinically to identify the presence of dysplasia in Barrett's Esophagus patients undergoing routine surveillance. We present the results of a pilot, ex vivo study of tissues from 27 patients undergoing partial colonic resection surgery, conducted to evaluate the ability of a/LCI to identify dysplasia. Performance was determined by comparing the nuclear morphology measurements with pathological assessment of co-located physical biopsies. A statistically significant correlation between increased average nuclear size, reduced nuclear density, and the presence of dysplasia was noted at the basal layer of the epithelium, at a depth of 200 to 300 μm beneath the tissue surface. Using a decision line determined from a receiver operating characteristic, a/LCI was able to separate dysplastic from healthy tissues with a sensitivity of 92.9% (13/14), a specificity of 83.6% (56/67), and an overall accuracy of 85.2% (69/81). The study illustrates the extension of the a/LCI technique to the detection of intestinal dysplasia, and demonstrates the need for future in vivo studies.

  10. Structural studies of molecular and metallic overlayers using angle- resolved photoemission extended fine structure

    International Nuclear Information System (INIS)

    Huang, Z.

    1992-10-01

    Angle-resolved photoemission extended fine structure (ARPEFS) was used to study molecular and metallic overlayers on metal surfaces through analysis of p2mg(2x1)CO/Ni(110) and the p(2x2)K/Ni(111) adsorption. For the dense p2mg(2x1)CO/Ni(110) surface layer, photoemission intensities from C 1s level were measured in three directions at photoelectron kinetic energies 60-400 eV. Using multiple-scattering spherical-wave (MSSW) modeling, it was found that CO molecules are adsorbed on short-bridge sites, with adjacent CO along the [110] direction displaced alternatively in opposite directions towards the [001] azimuths to form a zigzag chain geometry. The tilt angle is 16±2 degree from the surface normal for the direction linking the C atom and the center of the Ni bridge. The carbon C-Ni interatomic distance was determined to be 1.94±0.02 Angstrom. The first- to second-layer spacing of Ni is 1.27±0.04 Angstrom, up from 1.10 Angstrom for the clean Ni(110) surface, but close to the 1.25 Angstrom Ni interlayer spacing in the bulk. The C-O bond length and tilt angle were varied within small ranges (1.10--1.20 Angstrom and 15--23 degrees) in our MSSW simulations. Best agreement between experiment and simulations was achieved at 1.16 Angstrom and 19 degrees. This yields an O-O distance of 2.95 Angstrom for the two nearest CO molecules, (van der Waals' radius ∼ 1.5 Angstrom for oxygen). Two different partial-wave phase-shifts were used in MSSW, and structural results from both are in very good agreement. For the p(2x2)K/Ni(111) overlayer, ARPEFS χ(k) curves from K 1s level measured along [111] and [771] at 130K showed that the K atoms are preferentially adsorbed on the atop sites, in agreement with a LEED study of the same system

  11. High-resolution angle-resolved photoemission investigation of potassium and phosphate tungsten bronzes

    International Nuclear Information System (INIS)

    Paul, Sanhita; Kumari, Spriha; Raj, Satyabrata

    2016-01-01

    Highlights: • Electronic structure of potassium and phosphate tungsten bronzes. • Origin of transport anomalies in bronzes. • Flat segments of Fermi surfaces are connected by a nesting vector, q. • Nesting driven charge-density wave is responsible for the anomalies. - Abstract: We have performed high-resolution angle-resolved photoemission spectroscopy (ARPES) and density functional ab initio theoretical calculation to study the electronic structure of potassium (K 0.25 WO 3 ) and phosphate (P 4 W 12 O 44 ) tungsten bronzes. We have experimentally determined the band dispersions and Fermi surface topology of these bronzes and compared with our theoretical calculations and a fair agreement has been seen between them. Our experimental as well as theoretical investigation elucidates the origin of transport anomalies in these bronzes. The Fermi surfaces of these bronzes consist of flat patches, which can be connected with each other by a constant nesting wave vector, q. The scattering wave vectors found from diffraction measurements match with these nesting vectors and the anomalies in the transport properties of these bronzes can be well explained by the evolution of charge-density wave with a partial nesting between the flat segments of the Fermi surfaces.

  12. Angle-resolved photoemission spectroscopy of rare earth LaSb{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Michiardi, Matteo; Arnold, Fabian; Faerch Fisher, Karl Frederik; Svane, Axel; Bianchi, Marco; Brummerstedt Iversen, Bo; Hofmann, Philip [Aarhus University (Denmark); Shwetha, G.; Kanchana, V. [IIT-Hyderabad (India); Ganapathy, Vaitheeswaran [University of Hyderabad (India)

    2016-07-01

    Several rare earth diantimonides have been found to exhibit intriguing electronic properties such as anisotropic linear and non-saturating magnetoresistance. Among these materials, LaSb{sub 2} is not only considered for application in magnetoresistive devices but it is also found to be superconducting at low temperatures and it is investigated as candidate material to host charge density wave phases. Despite the several studies on its transport properties, the electronic structure of LaSb{sub 2} is still largely unknown. Here we present an angle-resolved photoemission spectroscopy and ab-initio calculation study of LaSb{sub 2}(001). The observed band structure is found to be in good agreement with theoretical predictions. Our results reveal that LaSb{sub 2} is a semimetal with a strongly nested two-dimensional Fermi surface. The low energy spectrum is characterized by four massive hole pockets and by four shallow, strongly directional, electron pockets that exhibit Dirac-like dispersion. We speculate on the possibility that this peculiar electronic structure drives the magnetoresistance to its quantum limit, explaining its unconventional behavior.

  13. A flexible setup for angle-resolved X-ray fluorescence spectrometry with laboratory sources

    Energy Technology Data Exchange (ETDEWEB)

    Spanier, M., E-mail: mspanier@physik.tu-berlin.de; Herzog, C.; Grötzsch, D.; Kramer, F.; Mantouvalou, I.; Malzer, W.; Kanngießer, B. [Institute for Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Lubeck, J.; Weser, J.; Streeck, C.; Beckhoff, B. [Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin (Germany)

    2016-03-15

    X-ray fluorescence (XRF) analysis is one of the standard tools for the analysis of stratified materials and is widely applied for the investigation of electronics and coatings. The composition and thickness of the layers can be determined quantitatively and non-destructively. Recent work showed that these capabilities can be extended towards retrieving stratigraphic information like concentration depth profiles using angle-resolved XRF (ARXRF). This paper introduces an experimental sample chamber which was developed as a multi-purpose tool enabling different measurement geometries suited for transmission measurements, conventional XRF, ARXRF, etc. The chamber was specifically designed for attaching all kinds of laboratory X-ray sources for the soft and hard X-ray ranges as well as various detection systems. In detail, a setup for ARXRF using an X-ray tube with a polycapillary X-ray lens as source is presented. For such a type of setup, both the spectral and lateral characterizations of the radiation field are crucial for quantitative ARXRF measurements. The characterization is validated with the help of a stratified validation sample.

  14. Growth of mesoporous silica nanoparticles monitored by time-resolved small-angle neutron scattering.

    Science.gov (United States)

    Hollamby, Martin J; Borisova, Dimitriya; Brown, Paul; Eastoe, Julian; Grillo, Isabelle; Shchukin, Dmitry

    2012-03-06

    Since the first development of surfactant-templated mesoporous silicas, the underlying mechanisms behind the formation of their structures have been under debate. Here, for the first time, time-resolved small-angle neutron scattering (tr-SANS) is applied to study the complete formation of mesoporous silica nanoparticles. A distinct advantage of this technique is the ability to detect contributions from the whole system, enabling the visualization not only of particle genesis and growth but also the concurrent changes to the coexistent micelle population. In addition, using contrast-matching tr-SANS, it is possible to highlight the individual contributions from the silica and surfactant. An analysis of the data agrees well with the previously proposed "current bun" model describing particle growth: Condensing silica oligomers adsorb to micelles, reducing intermicellar repulsion and resulting in aggregation to form initial particle nuclei. From this point, the growth occurs in a cooperative manner, with condensing silica filling the gaps between further aggregating micelles. The mechanistic results are discussed with respect to different reaction conditions by changing either the concentration of the silica precursor or the temperature. In doing so the importance of in situ techniques is highlighted, in particular, tr-SANS, for mechanism elucidation in the broad field of materials science.

  15. Angle-resolved photoemission spectroscopy studies of metallic surface and interface states of oxide insulators

    Science.gov (United States)

    Plumb, Nicholas C.; Radović, Milan

    2017-11-01

    Over the last decade, conducting states embedded in insulating transition metal oxides (TMOs) have served as gateways to discovering and probing surprising phenomena that can emerge in complex oxides, while also opening opportunities for engineering advanced devices. These states are commonly realized at thin film interfaces, such as the well-known case of LaAlO3 (LAO) grown on SrTiO3 (STO). In recent years, the use of angle-resolved photoemission spectroscopy (ARPES) to investigate the k-space electronic structure of such materials led to the discovery that metallic states can also be formed on the bare surfaces of certain TMOs. In this topical review, we report on recent studies of low-dimensional metallic states confined at insulating oxide surfaces and interfaces as seen from the perspective of ARPES, which provides a direct view of the occupied band structure. While offering a fairly broad survey of progress in the field, we draw particular attention to STO, whose surface is so far the best-studied, and whose electronic structure is probably of the most immediate interest, given the ubiquitous use of STO substrates as the basis for conducting oxide interfaces. The ARPES studies provide crucial insights into the electronic band structure, orbital character, dimensionality/confinement, spin structure, and collective excitations in STO surfaces and related oxide surface/interface systems. The obtained knowledge increases our understanding of these complex materials and gives new perspectives on how to manipulate their properties.

  16. Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser.

    Science.gov (United States)

    He, Yu; Vishik, Inna M; Yi, Ming; Yang, Shuolong; Liu, Zhongkai; Lee, James J; Chen, Sudi; Rebec, Slavko N; Leuenberger, Dominik; Zong, Alfred; Jefferson, C Michael; Moore, Robert G; Kirchmann, Patrick S; Merriam, Andrew J; Shen, Zhi-Xun

    2016-01-01

    We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10 MHz, provides a flux of 2 × 10(12) photons/s, and enables photoemission with energy and momentum resolutions better than 2 meV and 0.012 Å(-1), respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2 meV. The setup reaches electron momenta up to 1.2 Å(-1), granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors, and iron-based superconductors.

  17. Field-angle-resolved anisotropy in superconducting CeCoIn5 using realistic Fermi surfaces

    Science.gov (United States)

    Das, Tanmoy; Vorontsov, A. B.; Vekhter, I.; Graf, Matthias J.

    2013-05-01

    We compute the field-angle-resolved specific heat and thermal conductivity using realistic model band structures for the heavy-fermion superconductor CeCoIn5 to identify the gap structure and location of nodes. We use a two-band tight-binding parametrization of the band dispersion as input for the self-consistent calculations in the quasiclassical formulation of the superconductivity. Systematic analysis shows that modest in-plane anisotropy in the density of states and Fermi velocity in tetragonal crystals significantly affects the fourfold oscillations in thermal quantities, when the magnetic field is rotated in the basal plane. The Fermi-surface anisotropy substantially shifts the location of the lines in the H-T plane, where the oscillations change sign compared to quasicylindrical model calculations. In particular, at high fields, the anisotropy and sign reversal are found even for isotropic gaps. Our findings imply that a simultaneous analysis of the specific heat and thermal conductivity, with an emphasis on the low-energy sector, is needed to restrict potential pairing scenarios in multiband superconductors. We discuss the impact of our results on recent measurements of the Ce-115 family, namely, CeTIn5 with T= Co, Rh, Ir.

  18. Valence-band structure of cubic CdS as determined by angle-resolved photoemission

    Science.gov (United States)

    Stampfl, A. P. J.; Hofmann, Ph.; Schaff, O.; Bradshaw, A. M.

    1997-04-01

    The valence-band structure of cubic CdS along the Γ-Σ-X direction and at all high-symmetry points has been experimentally determined using angle-resolved photoemission and compared to two local density approximation (LDA) calculations as well as to a recent quasiparticle calculation. The Cd 4d level was found to be semibandlike with an energy dispersion of up to 1 eV. The energy difference between the experimental and our calculated linear-muffin-tin orbital (LMTO) LDA energies falls, as expected, along a line of positive gradient. The quasiparticle calculation by Pollmann and co-workers fits the experimental values somewhat better than the LMTO calculation, although a difference of ~1.0 eV was still found to occur for the Cd 4d band. The self-interaction and relaxation-corrected pseudopotential LDA results by the same group give the best fit to within ~+/-0.5 eV for nearly all critical energies measured. Comparison with previously reported photoemission results on the wurtzite structure shows that energies at equivalent symmetry points agree within experimental error.

  19. Electronic properties of novel topological quantum materials studied by angle-resolved photoemission spectroscopy (ARPES)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yun [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    The discovery of quantum Hall e ect has motivated the use of topology instead of broken symmetry to classify the states of matter. Quantum spin Hall e ect has been proposed to have a separation of spin currents as an analogue of the charge currents separation in quantum Hall e ect, leading us to the era of topological insulators. Three-dimensional analogue of the Dirac state in graphene has brought us the three-dimensional Dirac states. Materials with three-dimensional Dirac states could potentially be the parent compounds for Weyl semimetals and topological insulators when time-reversal or space inversion symmetry is broken. In addition to the single Dirac point linking the two dispersion cones in the Dirac/Weyl semimetals, Dirac points can form a line in the momentum space, resulting in a topological node line semimetal. These fascinating novel topological quantum materials could provide us platforms for studying the relativistic physics in condensed matter systems and potentially lead to design of new electronic devices that run faster and consume less power than traditional, silicon based transistors. In this thesis, we present the electronic properties of novel topological quantum materials studied by angle-resolved photoemission spectroscopy (ARPES).

  20. Angle Resolved Core-Level Spectroscopy of Zr1Nb Alloy Oxidation by Oxygen, Water and Hydrogen Peroxide

    Czech Academy of Sciences Publication Activity Database

    Bastl, Zdeněk; Senkevich, A. I.; Spirovová, Ilona; Vrtílková, V.

    2002-01-01

    Roč. 34, - (2002), s. 477-480 ISSN 0142-2421 Institutional research plan: CEZ:AV0Z4040901 Keywords : Zr-Nb alloy * oxide films * angle-resolved x-ray photoelectron spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.071, year: 2002

  1. Measurements of polarization-dependent angle-resolved light scattering from individual microscopic samples using Fourier transform light scattering

    Science.gov (United States)

    Jung, JaeHwang; Kim, Jinhyung; Seo, Min-Kyo; Park, YongKeun

    2018-03-01

    We present a method to measure the vector-field light scattering of individual microscopic objects. The polarization-dependent optical field images are measured with quantitative phase imaging at the sample plane, and then numerically propagated to the far-field plane. This approach allows the two-dimensional polarization-dependent angle-resolved light scattered patterns from individual object to be obtained with high precision and sensitivity. Using this method, we present the measurements of the polarization-dependent light scattering of a liquid crystal droplet and individual silver nanowires over scattering angles of 50{\\deg}. In addition, the spectroscopic extension of the polarization-dependent angle-resolved light scattering is demonstrated using wavelength-scanning illumination.

  2. Soft X-ray angle-resolved photoemission with micro-positioning techniques for metallic V2O3

    Science.gov (United States)

    Fujiwara, Hidenori; Kiss, Takayuki; Wakabayashi, Yuki K.; Nishitani, Yoshito; Mori, Takeo; Nakata, Yuki; Kitayama, Satoshi; Fukushima, Kazuaki; Ikeda, Shinji; Fuchimoto, Hiroto; Minowa, Yosuke; Mo, Sung-Kwan; Denlinger, Jonathan D.; Allen, James W.; Metcalf, Patricia; Imai, Masaki; Yoshimura, Kazuyoshi; Suga, Shigemasa; Muro, Takayuki; Sekiyama, Akira

    2015-01-01

    Soft X-ray angle-resolved photoemission has been performed for metallic V2O3. By combining a microfocus beam (40 µm × 65 µm) and micro-positioning techniques with a long-working-distance microscope, it has been possible to observe band dispersions from tiny cleavage surfaces with a typical size of several tens of µm. The photoemission spectra show a clear position dependence, reflecting the morphology of the cleaved sample surface. By selecting high-quality flat regions on the sample surface, it has been possible to perform band mapping using both photon-energy and polar-angle dependences, opening the door to three-dimensional angle-resolved photoemission spectroscopy for typical three-dimensional correlated materials where large cleavage planes are rarely obtained. PMID:25931096

  3. Branch Point Withdrawal in Elongational Startup Flow by Time-Resolved Small Angle Neutron Scattering

    KAUST Repository

    Ruocco, N.

    2016-05-27

    We present a small angle neutron scattering (SANS) investigation of a blend composed of a dendritic polymer and a linear matrix with comparable viscosity in start-up of an elongational flow at Tg + 50. The two-generation dendritic polymer is diluted to 10% by weight in a matrix of a long well-entangled linear chains. Both components consist of mainly 1,4-cis-polyisoprene but differ in isotopic composition. The resulting scattering contrast is sufficiently high to permit time-resolved measurements of the system structure factor during the start-up phase and to follow the retraction processes involving the inner sections of the branched polymer in the nonlinear deformation response. The outer branches and the linear matrix, on the contrary, are in the linear deformation regime. The linear matrix dominates the rheological signature of the blend and the influence of the branched component can barely be detected. However, the neutron scattering intensity is predominantly that of the (branched) minority component so that its dynamics is clearly evident. In the present paper, we use the neutron scattering data to validate the branch point withdrawal process, which could not be unambiguously discerned from rheological measurements in this blend. The maximal tube stretch that the inner branches experience, before the relaxed outer arm material is incorporated into the tube is determined. The in situ scattering experiments demonstrate for the first time the leveling-off of the strain as the result of branch point withdrawal and chain retraction directly on the molecular level. We conclude that branch point motion in the mixture of architecturally complex polymers occurs earlier than would be expected in a purely branched system, presumably due to the different topological environment that the linear matrix presents to the hierarchically deep-buried tube sections. © 2016 American Chemical Society.

  4. Intra- and intercycle interference of angle-resolved electron emission in laser-assisted XUV atomic ionization

    Science.gov (United States)

    Gramajo, A. A.; Della Picca, R.; López, S. D.; Arbó, D. G.

    2018-03-01

    A theoretical study of ionization of the hydrogen atom due to an XUV pulse in the presence of an infrared (IR) laser is presented. Well-established theories are usually used to describe the laser-assisted photoelectron effect: the well-known soft-photon approximation firstly posed by Maquet et al (2007 J. Mod. Opt. 54 1847) and Kazansky’s theory in (2010 Phys. Rev. A 82, 033420). However, these theories completely fail to predict the electron emission perpendicularly to the polarization direction. Making use of a semiclassical model (SCM), we study the angle-resolved energy distribution of PEs for the case that both fields are linearly polarized in the same direction. We thoroughly analyze and characterize two different emission regions in the angle-energy domain: (i) the parallel-like region with contribution of two classical trajectories per optical cycle and (ii) the perpendicular-like region with contribution of four classical trajectories per optical cycle. We show that our SCM is able to assess the interference patterns of the angle-resolved PE spectrum in the two different mentioned regions. Electron trajectories stemming from different optical laser cycles give rise to angle-independent intercycle interferences known as sidebands. These sidebands are modulated by an angle-dependent coarse-grained structure coming from the intracycle interference of the electron trajectories born during the same optical cycle. We show the accuracy of our SCM as a function of the time delay between the IR and the XUV pulses and also as a function of the laser intensity by comparing the semiclassical predictions of the angle-resolved PE spectrum with the continuum-distorted wave strong field approximation and the ab initio solution of the time-dependent Schrödinger equation.

  5. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy.

    Science.gov (United States)

    Fujimori, Shin-ichi

    2016-04-20

    Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ~ 7 eV) or high-energy synchrotron radiations (hν >/~ 400 eV) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of CeMIn5(M = Rh, Ir, and Co) and YbRh2Si2 with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant U5f compounds such as UFeGa5, their electronic structures can be well-described by the band-structure calculation assuming that all U5f electrons are itinerant. In contrast, the band structures of localized U5f compounds such as UPd3 and UO2 are essentially explained by the localized model that treats U5f electrons as localized core states. In regards to heavy fermion U-based compounds such as the hidden-order compound URu2Si2, their electronic structures exhibit complex behaviors. Their overall band structures are generally well-explained by the band-structure calculation, whereas the states in the vicinity of EF show some deviations due to electron correlation effects. Furthermore, the electronic structures of URu2Si2 in the paramagnetic and hidden-order phases are

  6. Angle-resolved conical emission spectra from filamentation in a solid with an Airy pattern and a Gaussian laser beam.

    Science.gov (United States)

    Gong, Cheng; Li, ZiXi; Hua, LinQiang; Quan, Wei; Liu, XiaoJun

    2016-09-15

    Filamentation dynamics in fused silica are investigated using an Airy pattern and a Gaussian laser beam. The angle-resolved conical emission spectra are measured and compared with the predictions of several models. Our experimental observations are consistent with the X-waves model in both cases. This indicates that both laser beams spontaneously evolve into nonlinear X-waves and suggests a universal evolution of filaments in fused silica, regardless of the initial laser beam profile.

  7. The use of angle resolved electron and photon stimulated desorption for the determination of molecular structure at surfaces

    International Nuclear Information System (INIS)

    Madey, T.E.; Stockbauer, R.

    1983-01-01

    A brief review of recent data related to the use of angle-resolved electron stimulated desorption and photon stimulated desorption in determining the structures of molecules at surfaces is made. Examples include a variety of structural assignments based on ESIAD (electron stimulated desorption ion angular distributions), the observation of short-range local ordering effects induced in adsorbed molecules by surface impurities, and the application of photon stimulated desorption to both ionic and covalent adsorbate systems. (Author) [pt

  8. Beamline for angle-resolved photoemission spectroscopy at low-temperature constructed at NTT Atsugi R and D Center

    International Nuclear Information System (INIS)

    Suzuki, Satoru; Yamamoto, Hideki; Maeda, Fumihiko; Watanabe, Yoshio; Yamada, Koji; Kiyokura, Takanori

    2005-01-01

    A vacuum ultra-violet beamline for in situ angle-resolved photoemission spectroscopy of MBE-grown high-T c superconductors at low temperature has been constructed at beamline ABL-6B of the normal-conducting ring in the synchrotron radiation facility of the NTT Atsugi R and D Center. The constant-deviation-angle varied-line-spacing plane grating monochromator covers the energy range of 20-200 eV by using two gratings. A photon flux of the order of 10 11 s -1 with a resolving power of 2000 or more was achieved in the whole energy range. The endstation is equipped with an angle-resolved photoelectron spectrometer, an rf-stimulated He discharge lamp, a custom-designed sample manipulator for low-temperature measurements and a loadlock system for in situ measurements. Total energy resolution of about 13 meV has been obtained for the photoemission spectrum of the Au Fermi edge, in spite of the bending-magnet light source of a second-generation synchrotron radiation ring

  9. Assessment of waveguiding properties of gallium oxide nanostructures by angle resolved cathodoluminescence in a scanning electron microscope

    International Nuclear Information System (INIS)

    Nogales, Emilio; Mendez, Bianchi; Piqueras, Javier

    2011-01-01

    Cathodoluminescence (CL) of Ga 2 O 3 nanowires and planar microstructures has been studied in a scanning electron microscope, as a function of the orientation angle of the structures relative to the position of the light detection system in the microscope chamber. CL contrast shows a marked dependence on the detection angle due to the waveguiding behaviour of the structures. The angle resolved cathodoluminescence (ARCL) measurements enable to evaluate the optical losses of guided blue-ultraviolet light in nanowires with diameters in the sub-wavelength range, deposited on graphite tape or silicon. In planar, branched feather-like microstructures, ARCL images demonstrate the directional-dependant light guiding behaviour of the nano-branches. -- Highlights: → Waveguiding behaviour of gallium oxide nanowires is studied using angle resolved CL. → Quantitative analysis of optical losses in sub-wavelength nanowires is carried out. → There is a strong dependence of the optical losses on the substrate. → Directional-dependant light guiding is observed in branched planar microstructures.

  10. Study of the local structure of binary surfaces by electron diffraction (XPS, LEED)

    OpenAIRE

    Gereová, Katarína

    2006-01-01

    Study of local structure of binary surface with usage of ultra-thin film of cerium deposited on a Pd (111) single-crystal surface is presented. X-ray photoelectron spectroscopy and diffraction (XPS, XPD), angle resolved UV photoemission spectroscopy (ARUPS) and low energy electron diffraction (LEED) was used for our investigations. LEED and X-ray excited photoemission intensities results represent a surface-geometrical structure. As well, mapping of ultra-violet photoelectron intensities as a...

  11. Phase-resolved detection of the spin Hall angle by optical ferromagnetic resonance in perpendicularly magnetized thin films

    Science.gov (United States)

    Capua, Amir; Wang, Tianyu; Yang, See-Hun; Rettner, Charles; Phung, Timothy; Parkin, Stuart S. P.

    2017-02-01

    The conversion of charge current to spin current by the spin Hall effect is of considerable current interest from both fundamental and technological perspectives. Measurement of the spin Hall angle, especially for atomically thin systems with large magnetic anisotropies, is not straightforward. Here we demonstrate a hybrid phase-resolved optical-electrical ferromagnetic resonance method that we show can robustly determine the spin Hall angle in heavy-metal/ferromagnet bilayer systems with large perpendicular magnetic anisotropy. We present an analytical model of the ferromagnetic resonance spectrum in the presence of the spin Hall effect, in which the spin Hall angle can be directly determined from the changes in the amplitude response as a function of the spin current that is generated from a dc charge current passing through the heavy-metal layer. Increased sensitivity to the spin current is achieved by operation under conditions for which the magnetic potential is shallowest at the "Smit point." Study of the phase response reveals that the spin Hall angle can be reliably extracted from a simplified measurement that does not require scanning over time or magnetic field but rather only on the dc current. The method is applied to the Pt-Co/Ni/Co system whose spin Hall angle was to date characterized only indirectly and that is especially relevant for spin-orbit torque devices.

  12. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.J.

    2010-04-30

    In addition to the record high superconducting transition temperature (T{sub c}), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T{sub c}, and anomalous normal state properties above T{sub c}. In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T{sub c}. As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T{sub c} superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not

  13. Multi-angle lensless digital holography for depth resolved imaging on a chip

    Science.gov (United States)

    Su, Ting-Wei; Isikman, Serhan O.; Bishara, Waheb; Tseng, Derek; Erlinger, Anthony; Ozcan, Aydogan

    2010-01-01

    A multi-angle lensfree holographic imaging platform that can accurately characterize both the axial and lateral positions of cells located within multi-layered micro-channels is introduced. In this platform, lensfree digital holograms of the micro-objects on the chip are recorded at different illumination angles using partially coherent illumination. These digital holograms start to shift laterally on the sensor plane as the illumination angle of the source is tilted. Since the exact amount of this lateral shift of each object hologram can be calculated with an accuracy that beats the diffraction limit of light, the height of each cell from the substrate can be determined over a large field of view without the use of any lenses. We demonstrate the proof of concept of this multi-angle lensless imaging platform by using light emitting diodes to characterize various sized microparticles located on a chip with sub-micron axial and lateral localization over ~60 mm2 field of view. Furthermore, we successfully apply this lensless imaging approach to simultaneously characterize blood samples located at multi-layered micro-channels in terms of the counts, individual thicknesses and the volumes of the cells at each layer. Because this platform does not require any lenses, lasers or other bulky optical/mechanical components, it provides a compact and high-throughput alternative to conventional approaches for cytometry and diagnostics applications involving lab on a chip systems. PMID:20588819

  14. Electronic states localized at surface defects on Cu(755) studied by angle-resolved ultraviolet photoelectron spectroscopy using synchrotron radiation

    CERN Document Server

    Ogawa, K; Namba, H

    2003-01-01

    'Regularly stepped' and 'defective' surfaces of Cu(755) were prepared by low- and high-temperature annealing, respectively, of a clean specimen. Electronic states on both surfaces were studied by angle-resolved ultraviolet photoelectron spectroscopy using synchrotron radiation. On the defective Cu(755), we found a new photoelectron peak due to surface defects just below the Fermi level. The dispersion profile of the defect state is derived to be almost flat, which demonstrates the localized nature of the defects. High activity to oxygen adsorption of the defect state was revealed. (author)

  15. Critical-angle x-ray transmission grating spectrometer with extended bandpass and resolving power > 10,000

    Science.gov (United States)

    Heilmann, Ralf K.; Bruccoleri, Alexander R.; Kolodziejczak, Jeffery; Gaskin, Jessica A.; O'Dell, Stephen L.; Bhatia, Ritwik; Schattenburg, Mark L.

    2016-07-01

    A number of high priority subjects in astrophysics can be addressed by a state-of-the-art soft x-ray grating spectrometer, such as the role of Active Galactic Nuclei in galaxy and star formation, characterization of the Warm-Hot Intergalactic Medium and the missing baryon problem, characterization of halos around the Milky Way and nearby galaxies, as well as stellar coronae and surrounding winds and disks. An Explorer-scale, largearea (> 1,000 cm2), high resolving power (R =λ/Δλ > 3,000) soft x-ray grating spectrometer is highly feasible based on Critical-Angle Transmission (CAT) grating technology, even for telescopes with angular resolution of 5-10 arcsec. Still, significantly higher performance can be provided by a CAT grating spectrometer on an X-ray- Surveyor-type mission. CAT gratings combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (lowmass, relaxed alignment tolerances and temperature requirements, transparent at higher energies) with minimalmission resource requirements. They are high-efficiency blazed transmission gratings that consist of freestanding, ultra-high aspect-ratio grating bars fabricated from silicon-on-insulator (SOI) wafers using advanced anisotropic dry and wet etch techniques. Blazing is achieved through grazing-incidence reflection off the smooth grating bar sidewalls. The reflection properties of silicon are well matched to the soft x-ray band, and existing silicon CAT gratings can exceed 30% absolute diffraction efficiency, with clear paths for further improvement. Nevertheless, CAT gratings with sidewalls made of higher atomic number elements allow extension of the CAT grating principle to higher energies and larger dispersion angles, thus enabling higher resolving power at shorter wavelengths. We show x-ray data from CAT gratings coated with a thin layer of platinum using atomic layer deposition, and demonstrate efficient

  16. Insights from angle-resolved photoemission spectroscopy on the metallic states of YbB6(001): E(k) dispersion, temporal changes, and spatial variation

    NARCIS (Netherlands)

    Frantzeskakis, E.; de Jong, N.; Zhang, J.X.; Zhang, X.; Li, Z.; Liang, C.L.; Wang, Y.; Varykhalov, A.; Huang, Y.K.; Golden, M.S.

    2014-01-01

    We report high-resolution angle-resolved photoelectron spectroscopy (ARPES) results on the (001) cleavage surface of YbB6, a rare-earth compound that has been recently predicted to host surface electronic states with topological character. We observe two types of well-resolved metallic states, whose

  17. Neutron Imaging of Laser Melted SS316 Test Objects with Spatially Resolved Small Angle Neutron Scattering

    Directory of Open Access Journals (Sweden)

    Adam J. Brooks

    2017-12-01

    Full Text Available A novel neutron far field interferometer is explored for sub-micron porosity detection in laser sintered stainless steel alloy 316 (SS316 test objects. The results shown are images and volumes of the first quantitative neutron dark-field tomography at various autocorrelation lengths, ξ . In this preliminary work, the beam defining slits were adjusted to an uncalibrated opening of 0.5 mm horizontal and 5 cm vertical; the images are blurred along the vertical direction. In spite of the blurred attenuation images, the dark-field images reveal structural information at the micron-scale. The topics explored include: the accessible size range of defects, potentially 338 nm to 4.5 μ m, that can be imaged with the small angle scattering images; the spatial resolution of the attenuation image; the maximum sample dimensions compatible with interferometry optics and neutron attenuation; the procedure for reduction of the raw interferogram images into attenuation, differential phase contrast, and small angle scattering (dark-field images; and the role of neutron far field interferometry in additive manufacturing to assess sub-micron porosity.

  18. Carbon Condensation during High Explosive Detonation with Time Resolved Small Angle X-ray Scattering

    Science.gov (United States)

    Hammons, Joshua; Bagge-Hansen, Michael; Nielsen, Michael; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; Fried, Larry; May, Chadd; Sinclair, Nicholas; Jensen, Brian; Gustavsen, Rick; Dattelbaum, Dana; Watkins, Erik; Firestone, Millicent; Ilavsky, Jan; van Buuren, Tony; Willey, Trevor; Lawrence Livermore National Lab Collaboration; Los Alamos National Laboratory Collaboration; Washington State University/Advanced Photon Source Team

    Carbon condensation during high-energy detonations occurs under extreme conditions and on very short time scales. Understanding and manipulating soot formation, particularly detonation nanodiamond, has attracted the attention of military, academic and industrial research. An in-situ characterization of these nanoscale phases, during detonation, is highly sought after and presents a formidable challenge even with today's instruments. Using the high flux available with synchrotron X-rays, pink beam small angle X-ray scattering is able to observe the carbon phases during detonation. This experimental approach, though powerful, requires careful consideration and support from other techniques, such as post-mortem TEM, EELS and USAXS. We present a comparative survey of carbon condensation from different CHNO high explosives. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.

  19. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering.

    Science.gov (United States)

    Jo, YoungJu; Jung, JaeHwang; Lee, Jee Woong; Shin, Della; Park, HyunJoo; Nam, Ki Tae; Park, Ji-Ho; Park, YongKeun

    2014-05-28

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.

  20. From Non-equilibrium to Equilibrium: Micellar Kinetics seen by Time-resolved Small-angle Scattering

    Science.gov (United States)

    Lund, Reidar

    The kinetic pathways of self-assembled nanostructures are not fully understood. Time-resolved small-angle X-ray/neutron scattering (TR-SAXS/SANS) is powerful technique1 that allows kinetics processes such as nucleation processes2,3 and morphological transitions4,5 to be followed with structural resolution over time scales starting from milliseconds. Neutrons offer the additional advantage of facile contrast variation through H/D substitution schemes, which also allow equilibrium processes such as molecular exchange and diffusion to be studied1 , 6 , 7. Here we will highlight the current capabilities of TR-SAS and show results on the kinetics of polymeric micelles. We will address how the understanding of kinetic pathways can be used control the nanostructure.

  1. Method to map one-dimensional electronic wave function by using multiple Brillouin zone angle resolved photoemission

    Directory of Open Access Journals (Sweden)

    Dong-Wook Lee

    2010-10-01

    Full Text Available Angle resolved photoemission spectroscopy (ARPES is a powerful tool to investigate electronic structures in solids and has been widely used in studying various materials. The electronic structure information by ARPES is obtained in the momentum space. However, in the case of one-dimensional system, we here show that we extract the real space information from ARPES data taken over multiple Brillouin zones (BZs. Intensities in the multiple BZs are proportional to the photoemission matrix element which contains information on the coefficient of the Bloch wave function. It is shown that the Bloch wave function coefficients can be extracted from ARPES data, which allows us to construct the real space wave function. As a test, we use ARPES data from proto-typical one-dimensional system SrCuO2 and construct the real space wave function.

  2. Soft X-ray angle-resolved photoemission spectroscopy of heavily boron-doped superconducting diamond films

    Directory of Open Access Journals (Sweden)

    T. Yokoya, T. Nakamura, T. Matushita, T. Muro, H. Okazaki, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, Y. Takano, M. Nagao, T. Takenouchi, H. Kawarada and T. Oguchi

    2006-01-01

    Full Text Available We have performed soft X-ray angle-resolved photoemission spectroscopy (SXARPES of microwave plasma-assisted chemical vapor deposition diamond films with different B concentrations in order to study the origin of the metallic behavior of superconducting diamond. SXARPES results clearly show valence band dispersions with a bandwidth of ~23 eV and with a top of the valence band at gamma point in the Brillouin zone, which are consistent with the calculated valence band dispersions of pure diamond. Boron concentration-dependent band dispersions near the Fermi level (EF exhibit a systematic shift of EF, indicating depopulation of electrons due to hole doping. These SXARPES results indicate that diamond bands retain for heavy boron doping and holes in the diamond band are responsible for the metallic states leading to superconductivity at low temperature. A high-resolution photoemission spectroscopy spectrum near EF of a heavily boron-doped diamond superconductor is also presented.

  3. Direct observation of superconducting gaps in MgB{sub 2} by angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Souma, S.; Machida, Y.; Sato, T.; Takahashi, T.; Matsui, H.; Wang, S.-C.; Ding, H.; Kaminski, A.; Campuzano, J.C.; Sasaki, S.; Kadowaki, K

    2004-08-01

    High-resolution angle-resolved photoemission spectroscopy has been carried out to clarify the anomalous superconductivity of MgB{sub 2}. We observed three bands crossing the Fermi level, which are ascribed to B2p-{sigma}, {pi} and surface bands. We have succeeded for the first time in directly observing the superconducting gaps of these bands separately. We have found that the superconducting-gap sizes of {sigma} and surface bands are 6.5 {+-} 0.5 and 6.0 {+-} 0.5 meV, respectively, while that of the {pi} band is much smaller (1.5 {+-} 0.5 meV). The present experimental result unambiguously demonstrates the validity of the two-band superconductivity in MgB{sub 2}.

  4. Exploring electronic structure of one-atom thick polycrystalline graphene films: A nano angle resolved photoemission study

    Science.gov (United States)

    Avila, José; Razado, Ivy; Lorcy, Stéphane; Fleurier, Romain; Pichonat, Emmanuelle; Vignaud, Dominique; Wallart, Xavier; Asensio, María C.

    2013-01-01

    The ability to produce large, continuous and defect free films of graphene is presently a major challenge for multiple applications. Even though the scalability of graphene films is closely associated to a manifest polycrystalline character, only a few numbers of experiments have explored so far the electronic structure down to single graphene grains. Here we report a high resolution angle and lateral resolved photoelectron spectroscopy (nano-ARPES) study of one-atom thick graphene films on thin copper foils synthesized by chemical vapor deposition. Our results show the robustness of the Dirac relativistic-like electronic spectrum as a function of the size, shape and orientation of the single-crystal pristine grains in the graphene films investigated. Moreover, by mapping grain by grain the electronic dynamics of this unique Dirac system, we show that the single-grain gap-size is 80% smaller than the multi-grain gap recently reported by classical ARPES. PMID:23942471

  5. Characterization of the α-SN/CDTE(110) interface by angle-resolved X-ray photoemission

    International Nuclear Information System (INIS)

    Lin, T.S.; Partin, W.J.; Chung, Y.W.

    1987-01-01

    Stoichiometric and atomically clean CdTe(110) surfaces have been prepared by suitable chemical etching, followed by argon sputtering, and sample annealing in ultra-high vacuum. Cubic (α) -tin was grown on CdTe(110) by tin evaporation from a tungsten filament at a substrate temperature of 30 0 C. Angle-resolved X-ray photoelectron spectroscopy (ARXPS) was used to determine the α-Sn growth mechanism and the composition profile of this semiconductor heterostructure nondestructively. From their analyses, the authors conclude that α-Sn grows on CdTe(110) at 30 0 C by a layer by layer mechanism and forms an abrupt junction with CdTe(110)

  6. Electronic anisotropies revealed by detwinned angle-resolved photo-emission spectroscopy measurements of FeSe

    Science.gov (United States)

    Watson, Matthew D.; Haghighirad, Amir A.; Rhodes, Luke C.; Hoesch, Moritz; Kim, Timur K.

    2017-10-01

    We report high resolution angle-resolved photo-emission spectroscopy (ARPES) measurements of detwinned FeSe single crystals. The application of a mechanical strain is used to promote the volume fraction of one of the orthorhombic domains in the sample, which we estimate to be 80 % detwinned. While the full structure of the electron pockets consisting of two crossed ellipses may be observed in the tetragonal phase at temperatures above 90 K, we find that remarkably, only one peanut-shaped electron pocket oriented along the longer a axis contributes to the ARPES measurement at low temperatures in the nematic phase, with the expected pocket along b being not observed. Thus the low temperature Fermi surface of FeSe as experimentally determined by ARPES consists of one elliptical hole pocket and one orthogonally-oriented peanut-shaped electron pocket. Our measurements clarify the long-standing controversies over the interpretation of ARPES measurements of FeSe.

  7. Nano-Angle Resolved Photoemission Spectroscopy on Topological insulator Sb2Te3 nanowires responsible of quantum transport

    Science.gov (United States)

    Avila, José; Chen, Chaoyu; Arango, Yulieth C.; Huang, Liubing; Grützmacher, Detlev; Lüth, Hans; Lu, J. Grace; Schäpers, Thomas; Asensio, Maria C.

    2017-06-01

    Using high-resolution Nano-Angle Resolved Photoemission Spectroscopy (Nano-ARPES), we have determined the electronic structure of the surface and bulk states of topological insulator Sb2Te3 nanowires, which have been also characterized by magnetoresistance measurements. The observed Aharonov-Bohm-type oscillations could be unambiguously related to the transport by topological protected surface states directly recorded by photoemission. We have measured Nano-ARPES on individual nanowires of a few nanometers wide to provide direct evidence of the existence of the nontrivial topological surface states, as well as their doping. Our findings are consistent with theoretical predictions and confirm that the surface states of intrinsically doped unidimensional topological insulator nanowires are responsible for the quantum transport.

  8. Direct Observation of Localized Spin Antiferromagnetic Transition in PdCrO2 by Angle-Resolved Photoemission Spectroscopy

    Science.gov (United States)

    Noh, Han-Jin; Jeong, Jinwon; Chang, Bin; Jeong, Dahee; Moon, Hyun Sook; Cho, En-Jin; Ok, Jong Mok; Kim, Jun Sung; Kim, Kyoo; Min, B. I.; Lee, Han-Koo; Kim, Jae-Young; Park, Byeong-Gyu; Kim, Hyeong-Do; Lee, Seongsu

    2014-01-01

    We report the first case of the successful measurements of a localized spin antiferromagnetic transition in delafossite-type PdCrO2 by angle-resolved photoemission spectroscopy (ARPES). This demonstrates how to circumvent the shortcomings of ARPES for investigation of magnetism involved with localized spins in limited size of two-dimensional crystals or multi-layer thin films that neutron scattering can hardly study due to lack of bulk compared to surface. Also, our observations give direct evidence for the spin ordering pattern of Cr3+ ions in PdCrO2 suggested by neutron diffraction and quantum oscillation measurements, and provide a strong constraint that has to be satisfied by a microscopic mechanism for the unconventional anomalous Hall effect recently reported in this system. PMID:24419488

  9. Evidence of the nature of core-level photoemission satellites using angle-resolved photoemission extended fine structure

    International Nuclear Information System (INIS)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A.

    1997-01-01

    The authors present a unique method of experimentally determining the angular momentum and intrinsic/extrinsic origin of core-level photoemission satellites by examining the satellite diffraction pattern in the Angle Resolved Photoemission Extended Fine Structure (ARPEFS) mode. They show for the first time that satellite peaks not associated with chemically differentiated atomic species display an ARPEFS intensity oscillation. They present ARPEFS data for the carbon 1s from (√3x√3)R30 CO/Cu(111) and p2mg(2xl)CO/Ni(110), nitrogen 1s from c(2x2) N 2 /Ni(100), cobalt 1s from p(1x1)Co/Cu(100), and nickel 3p from clean nickel (111). The satellite peaks and tails of the Doniach-Sunjic line shapes in all cases exhibit ARPEFS curves which indicate an angular momentum identical to the main peak and are of an intrinsic nature

  10. Evidence of the nature of core-level photoemission satellites using angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors present a unique method of experimentally determining the angular momentum and intrinsic/extrinsic origin of core-level photoemission satellites by examining the satellite diffraction pattern in the Angle Resolved Photoemission Extended Fine Structure (ARPEFS) mode. They show for the first time that satellite peaks not associated with chemically differentiated atomic species display an ARPEFS intensity oscillation. They present ARPEFS data for the carbon 1s from ({radical}3x{radical}3)R30 CO/Cu(111) and p2mg(2xl)CO/Ni(110), nitrogen 1s from c(2x2) N{sub 2}/Ni(100), cobalt 1s from p(1x1)Co/Cu(100), and nickel 3p from clean nickel (111). The satellite peaks and tails of the Doniach-Sunjic line shapes in all cases exhibit ARPEFS curves which indicate an angular momentum identical to the main peak and are of an intrinsic nature.

  11. Electronic structure of K0.5CoO2 studied by angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Usui, H.; Iwasawa, H.; Hirose, M.; Maeda, Y.; Saitoh, T.; Osada, H.; Kyomen, T.; Hanaya, M.; Aiura, Y.; Kotani, Y.; Kubota, M.; Ono, K.

    2010-01-01

    We have investigated the electronic structure of K 0.5 CoO 2 in the metallic phase by high-resolution angle-resolved photoemission spectroscopy at a low temperature. An observed Fermi surface of K 0.5 CoO 2 was a large hexagonal one around the Γ point only, with no hole pockets on the Γ-K lines which was typically predicted by band-structure calculations with local-density approximation (LDA). We also found that a modulation of the Fermi velocity, which was the largest at K point and the smallest at M point, was again opposite to the prediction by LDA band-theory. In spite of this conflicting with LDA band-theory, our results are both in agreement with what was observed in Na x CoO 2 .

  12. Crank-angle resolved imaging of biacetyl laser-induced fluorescence in an optical internal combustion engine

    Science.gov (United States)

    Smith, J. D.; Sick, V.

    2005-09-01

    The use of a frequency-tripled, diode-pumped Nd:YAG laser in combination with a CMOS camera lens-coupled to a three-stage image intensifier allowed the visualization of the fuel distribution with crank angle resolution for hundreds of consecutive engine cycles. Biacetyl, doped into iso-octane, was excited at rates of 12 kHz with 100 ns pulses. Pulse energies are high enough to allow single-pulse imaging of the vapor-phase fuel distribution for motored and fired operation in an optical engine. The repetition rate of the setup is adequate to resolve critical steps in the development of the fuel cloud around the spark plug of a direct-injection gasoline engine.

  13. Surface functional group characterization using chemical derivatization X-ray photoelectron spectroscopy (CD-XPS)

    Energy Technology Data Exchange (ETDEWEB)

    Jagst, Eda

    2011-03-18

    Chemical derivatization - X-ray photolectron spectroscopy (CD-XPS) was applied successfully in order to determine different functional groups on thin film surfaces. Different amino group carrying surfaces, prepared by spin coating, self-assembly and plasma polymerization, were successfully investigated by (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Amino groups were derivatized with the widely used primary amino group tags, pentafluorobenzaldehyde (PFB) and 4-(trifluoromethyl)-benzaldehyde (TFBA), prior to analysis. Primary amino group quantification was then carried out according to the spectroscopical data. Self-assembled monolayers (SAMs) of different terminal groups were prepared and investigated with XPS and spectra were compared with reference surfaces. An angle resolved NEXAFS measurement was applied to determine the orientation of SAMs. Plasma polymerized allylamine samples with different duty cycle, power and pressure values were prepared in order to study the effects of external plasma parameters on the primary amino group retention. CD-XPS was used to quantify the amino groups and experiments show, that the milder plasma conditions promote the retention of amino groups originating from the allylamine monomer. An interlaboratory comparison of OH group determination on plasma surfaces of polypropylene treated with oxygen plasma, was studied. The surfaces were investigated with XPS and the [OH] amount on the surfaces was calculated. (orig.)

  14. Time-resolved small angle neutron scattering measurements of asphaltene nanoparticle aggregation kinetics in incompatible crude oil mixtures

    International Nuclear Information System (INIS)

    Mason, Thomas G.; Lin, Min Y.

    2003-01-01

    We use time-resolved-small angle neutron scattering to study the kinetics of asphaltene nanoparticle aggregation in incompatible crude oil mixtures. We induce asphaltene aggregation by mixing asphaltene-rich Syrian crude oil (SACO) with a paraffinic British crude oil and observe the scattered neutron intensity, I, as a function of wave number, q, over times, t, ranging from twenty minutes to about a week. We observe a growth in I at low q as the nanoscale asphaltenes agglomerate into microscale aggregates and interpret this growth as an increase in surface scattering from the aggregates. We fit I(q,t) to an empirical model and measure the growth in the power-law exponent, α, associated with the low-q logarithmic slope of I(q). We define a time, τ α , associated with the first appearance of the aggregates when α>3; τ α increases as a function of the volume fraction, φ m , of SACO in the mixture. The surface scattering intensity initially increases and then saturates at long times when the aggregate structures no longer evolve at the length scales we probe. Based on this saturation, we define a time scale, τ I , which is larger than τ α but has essentially the same dependence on φ m . We interpret τ α (φ m ) and τ I (φ m ) in terms of a simple aggregation model based on diffusion-limited kinetics and a repulsive potential barrier that models the effective solvent quality

  15. Electronic band structure of epitaxial PbTe (111) thin films observed by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Ye, Zhenyu; Cui, Shengtao; Shu, Tianyu; Ma, Songsong; Liu, Yang; Sun, Zhe; Luo, Jun-Wei; Wu, Huizhen

    2017-04-01

    Using angle-resolved photoemission spectroscopy (ARPES), we studied bulk and surface electronic band structures of narrow-gap semiconductor lead telluride (PbTe) thin films grown by molecular beam epitaxy both perpendicular and parallel to the Γ -L direction. The comparison of ARPES data with the first-principles calculation reveals the details of band structures, orbital characters, spin-orbit splitting energies, and surface states. The photon-energy-dependent spectra show the bulk character. Both the L and Σ valence bands are observed and their energy difference is determined. The spin-orbit splitting energies at L and Γ points are 0.62 eV and 0.88 eV, respectively. The surface states below and close to the valence band maximum are identified. The valence bands are composed of a mixture of Pb 6 s and Te 5 pz orbitals with dominant in-plane even parity, which is attributed to the layered distortion in the vicinity of the PbTe (111) surface. These findings provide insights into PbTe fundamental properties and shall benefit relevant thermoelectric and optoelectronic applications.

  16. Evidence for Itinerant Carriers in an Anisotropic Narrow-Gap Semiconductor by Angle-Resolved Photoemission Spectroscopy.

    Science.gov (United States)

    Ju, Sailong; Bai, Wei; Wu, Liming; Lin, Hua; Xiao, Chong; Cui, Shengtao; Li, Zhou; Kong, Shuai; Liu, Yi; Liu, Dayong; Zhang, Guobin; Sun, Zhe; Xie, Yi

    2018-01-01

    The ability to accurately determine the electronic structure of solids has become a key prerequisite for modern functional materials. For example, the precise determination of the electronic structure helps to balance the three thermoelectric parameters, which is the biggest challenge to design high-performance thermoelectric materials. Herein, by high-resolution, angle-resolved photoemission spectroscopy (ARPES), the itinerant carriers in CsBi 4 Te 6 (CBT) are revealed for the first time. CBT is a typical anisotropic, narrow-gap semiconductor used as a practical candidate for low-temperature thermoelectric applications, and p-doped CBT series show superconductivity at relatively low carrier concentrations. The ARPES results show a significantly larger bandwidth near the Fermi surface than calculations, which means the carriers transport anisotropically and itinerantly in CBT. It is reasonable to believe that these newly discovered features of carriers in narrow-gap semiconductors are promising for designing optimal thermoelectric materials and superconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Anisotropic electronic band structure of intrinsic Si(110) studied by angle-resolved photoemission spectroscopy and first-principles calculations

    Science.gov (United States)

    Matsushita, Stephane Yu; Takayama, Akari; Kawamoto, Erina; Hu, Chunping; Hagiwara, Satoshi; Watanabe, Kazuyuki; Takahashi, Takashi; Suto, Shozo

    2017-09-01

    We have studied the electronic band structure of the hydrogen-terminated Si(110)-(1 ×1 ) [H:Si(110)-(1 ×1 )] surface using angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations in the framework of density functional theory with local density approximation (LDA). The bulk-truncated H:Si(110)-(1 ×1 ) surface is a good template to investigate the electronic band structure of the intrinsic Si(110). In the ARPES spectra, seven bulk states and one surface state due to the H-H interaction are observed clearly. The four bulk states consisting of Si 3 px y orbitals exhibit anisotropic band dispersions along the high symmetric direction of Γ ¯-X ¯ and Γ ¯-X¯' directions, where one state shows one-dimensional character. The calculated band structures show a good agreement with the experimental results except the surface state. We discuss the exact nature of electronic band structures and the applicability of LDA. We have estimated the anisotropic effective masses of electrons and holes of Si(110) for device application.

  18. Particle evolution of Composition B-3 studied by time-resolved small angle x-ray scattering

    Science.gov (United States)

    Huber, R.; Podlesak, D.; Dattelbaum, D.; Firestone, M.; Gustavsen, R.; Jensen, B.; Ringstrand, B.; Watkins, E.; Bagge-Hansen, M.; Hodgin, R.; Lauderbach, L.; Willey, T.; van Buuren, T.; Graber, T.; Rigg, P.; Sinclair, N.; Seifert, S.

    Accessing various pressures and temperatures of the carbon phase diagram through high explosive (HE) detonations, as a means of synthesis, provides an exciting opportunity to study new carbon allotropes. Carbon allotropes in HE detonations are thought to form through collision of free carbon within the detonation cloud; however direct confirmation of real-time product formation is limited due to experimental restraints. Time-resolved small angle x-ray scattering (TRSAXS) of in-line detonations provides information about particle formation behind the detonation front on the 100's of nanoseconds timescale. The only set-up of its kind in the United States is at Argonne National Laboratory at the Advanced Photon Source in the Dynamic Compression Sector (DCS). Through empirical and analytical analysis of the TRSAXS data, parameters such as particle size and morphology can be deduced with respect to time. In the case of Composition B-3 (40% TNT/60% RDX) particle formation morphs from spherical core-shell structure to an elongated structure at long times ( 2 us) under vacuum. To complete the timeline of carbon formation, the post detonation soot is also analyzed to confirm this elongated structure as the majority carbon product. LA-UR-16-28691

  19. Time-Resolved Small-Angle X-ray Scattering Reveals Millisecond Transitions of a DNA Origami Switch.

    Science.gov (United States)

    Bruetzel, Linda K; Walker, Philipp U; Gerling, Thomas; Dietz, Hendrik; Lipfert, Jan

    2018-04-11

    Self-assembled DNA structures enable creation of specific shapes at the nanometer-micrometer scale with molecular resolution. The construction of functional DNA assemblies will likely require dynamic structures that can undergo controllable conformational changes. DNA devices based on shape complementary stacking interactions have been demonstrated to undergo reversible conformational changes triggered by changes in ionic environment or temperature. An experimentally unexplored aspect is how quickly conformational transitions of large synthetic DNA origami structures can actually occur. Here, we use time-resolved small-angle X-ray scattering to monitor large-scale conformational transitions of a two-state DNA origami switch in free solution. We show that the DNA device switches from its open to its closed conformation upon addition of MgCl 2 in milliseconds, which is close to the theoretical diffusive speed limit. In contrast, measurements of the dimerization of DNA origami bricks reveal much slower and concentration-dependent assembly kinetics. DNA brick dimerization occurs on a time scale of minutes to hours suggesting that the kinetics depend on local concentration and molecular alignment.

  20. Thermal Stability of Au/NbOx/Nb and Au/Nb2O5/W Model Catalysts Studied by Angle-resolved X-ray Photoelectron Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Lykhach, Yaroslava; Plšek, Jan; Spirovová, Ilona; Bastl, Zdeněk

    2003-01-01

    Roč. 68, č. 10 (2003), s. 1791-1804 ISSN 0010-0765 R&D Projects: GA ČR GA104/02/0664 Institutional research plan: CEZ:AV0Z4040901 Keywords : model metal catalysts * angle resolved photoemission * depth profiles Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.041, year: 2003

  1. Dissimilarities between the electronic structure of chemically doped and chemically pressurized iron pnictides from an angle-resolved photoemission spectroscopy study

    NARCIS (Netherlands)

    Thirupathaiah, S.; Rienks, E.D.L.; Jeevan, H.S.; Ovsyannikov, R.; Slooten, E.; Kaas, J.; van Heumen, E.; de Jong, S.; Duerr, H.A.; Siemensmeyer, K.; Follath, R.; Gegenwart, P.; Golden, M.S.; Fink, J.

    2011-01-01

    We have studied the electronic structure of EuFe2As2-xPx using high-resolution angle-resolved photoemission spectroscopy. Upon substituting As with the isovalent P, which leads to chemical pressure and to superconductivity, we observe a nonrigid-band-like change of the electronic structure along the

  2. Dissimilarities between the electronic structure of chemically doped and chemically pressurized iron pnictides from an angle-resolved photoemission spectroscopy study

    NARCIS (Netherlands)

    Thirupathaiah, S.; Rienks, E.D.L.; Jeevan, H.S.; Ovsyannikov, R.; Slooten, E.; Kaas, J.; van Heumen, E.; de Jong, S.; Dürr, H.A.; Siemensmeyer, K.; Follath, R.; Gegenwart, P.; Golden, M.S.; Fink, J.

    2010-01-01

    We have studied the electronic structure of EuFe2As2-xPx using high resolution angle-resolved photoemission spectroscopy. Upon substituting As with the isovalent P, which leads to a chemical pressure and to superconductivity, we observe a non-rigid-band like change of the electronic structure along

  3. Angle resolved x-ray photoelectron spectroscopy (ARXPS) analysis of lanthanum oxide for micro-flexography printing

    Science.gov (United States)

    Hassan, S.; Yusof, M. S.; Embong, Z.; Maksud, M. I.

    2016-01-01

    Micro-flexography printing was developed in patterning technique from micron to nano scale range to be used for graphic, electronic and bio-medical device on variable substrates. In this work, lanthanum oxide (La2O3) has been used as a rare earth metal candidate as depositing agent. This metal deposit was embedded on Carbon (C) and Silica (Si) wafer substrate using Magnetron Sputtering technique. The choose of Lanthanum as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La2O3 deposited on the surface of Si wafer substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). The La 3d narrow scan revealed that the oxide species of this particular metal is mainly contributed by La2O3 and La(OH)3. The information of oxygen species, O2- component from O 1s narrow scan indicated that there are four types of species which are contributed from the bulk (O2-), two chemisorb component (La2O3) and La(OH)3 and physisorp component (OH). Here, it is proposed that from the adhesive and surface chemical properties of La, it is suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal for use in of micro-flexography printing practice. The review of other parameters contributing to print fine lines will also be described later.

  4. Angle resolved x-ray photoelectron spectroscopy (ARXPS) analysis of lanthanum oxide for micro-flexography printing

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, S., E-mail: suhaimihas@uthm.edu.my; Yusof, M. S., E-mail: mdsalleh@uthm.edu.my; Maksud, M. I., E-mail: midris1973@gmail.com [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor (Malaysia); Embong, Z., E-mail: zaidi@uthm.edu.my [Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor (Malaysia)

    2016-01-22

    Micro-flexography printing was developed in patterning technique from micron to nano scale range to be used for graphic, electronic and bio-medical device on variable substrates. In this work, lanthanum oxide (La{sub 2}O{sub 3}) has been used as a rare earth metal candidate as depositing agent. This metal deposit was embedded on Carbon (C) and Silica (Si) wafer substrate using Magnetron Sputtering technique. The choose of Lanthanum as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La{sub 2}O{sub 3} deposited on the surface of Si wafer substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). The La 3d narrow scan revealed that the oxide species of this particular metal is mainly contributed by La{sub 2}O{sub 3} and La(OH){sub 3}. The information of oxygen species, O{sup 2-} component from O 1s narrow scan indicated that there are four types of species which are contributed from the bulk (O{sup 2−}), two chemisorb component (La{sub 2}O{sub 3}) and La(OH){sub 3} and physisorp component (OH). Here, it is proposed that from the adhesive and surface chemical properties of La, it is suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal for use in of micro-flexography printing practice. The review of other parameters contributing to print fine lines will also be described later.

  5. Electronic structure of R Sb (R =Y , Ce, Gd, Dy, Ho, Tm, Lu) studied by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Wu, Yun; Lee, Yongbin; Kong, Tai; Mou, Daixiang; Jiang, Rui; Huang, Lunan; Bud'ko, S. L.; Canfield, P. C.; Kaminski, Adam

    2017-07-01

    We use high-resolution angle-resolved photoemission spectroscopy (ARPES) and electronic structure calculations to study the electronic properties of rare-earth monoantimonides RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu). The experimentally measured Fermi surface (FS) of RSb consists of at least two concentric hole pockets at the Γ point and two intersecting electron pockets at the X point. These data agree relatively well with the electronic structure calculations. Detailed photon energy dependence measurements using both synchrotron and laser ARPES systems indicate that there is at least one Fermi surface sheet with strong three-dimensionality centered at the Γ point. Due to the "lanthanide contraction", the unit cell of different rare-earth monoantimonides shrinks when changing the rare-earth ion from CeSb to LuSb. This results in the differences in the chemical potentials in these compounds, which are demonstrated by both ARPES measurements and electronic structure calculations. Interestingly, in CeSb, the intersecting electron pockets at the X point seem to be touching the valence bands, forming a fourfold-degenerate Dirac-like feature. On the other hand, the remaining rare-earth monoantimonides show significant gaps between the upper and lower bands at the X point. Furthermore, similar to the previously reported results of LaBi, a Dirac-like structure was observed at the Γ point in YSb, CeSb, and GdSb, compounds showing relatively high magnetoresistance. This Dirac-like structure may contribute to the unusually large magnetoresistance in these compounds.

  6. Angle-resolved spectral Fabry-Pérot interferometer for single-shot measurement of refractive index dispersion over a broadband spectrum

    Science.gov (United States)

    Dong, J. T.; Ji, F.; Xia, H. J.; Liu, Z. J.; Zhang, T. D.; Yang, L.

    2018-01-01

    An angle-resolved spectral Fabry-Pérot interferometer is reported for fast and accurate measurement of the refractive index dispersion of optical materials with parallel plate shape. The light sheet from the wavelength tunable laser is incident on the parallel plate with converging angles. The transmitted interference light for each angle is dispersed and captured by a 2D sensor, in which the rows and the columns are used to simultaneously record the intensities as a function of wavelength and incident angle, respectively. The interferogram, named angle-resolved spectral intensity distribution, is analyzed by fitting the phase information instead of finding the fringe peak locations that present periodic ambiguity. The refractive index dispersion and the physical thickness can be then retrieved from a single-shot interferogram within 18 s. Experimental results of an optical substrate standard indicate that the accuracy of the refractive index dispersion is less than 2.5  ×  10-5 and the relative uncertainty of the thickness is 6  ×  10-5 mm (3σ) due to the high stability and the single-shot measurement of the proposed system.

  7. An Angle Resolved Photoemission Study of a Mott Insulator and Its Evolution to a High Temperature Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Ronning, Filip

    2002-03-19

    One of the most remarkable facts about the high temperature superconductors is their close proximity to an antiferromagnetically ordered Mott insulating phase. This fact suggests that to understand superconductivity in the cuprates we must first understand the insulating regime. Due to material properties the technique of angle resolved photoemission is ideally suited to study the electronic structure in the cuprates. Thus, a natural starting place to unlocking the secrets of high Tc would appears to be with a photoemission investigation of insulating cuprates. This dissertation presents the results of precisely such a study. In particular, we have focused on the compound Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2}. With increasing Na content this system goes from an antiferromagnetic Mott insulator with a Neel transition of 256K to a superconductor with an optimal transition temperature of 28K. At half filling we have found an asymmetry in the integrated spectral weight, which can be related to the occupation probability, n(k). This has led us to identify a d-wave-like dispersion in the insulator, which in turn implies that the high energy pseudogap as seen by photoemission is a remnant property of the insulator. These results are robust features of the insulator which we found in many different compounds and experimental conditions. By adding Na we were able to study the evolution of the electronic structure across the insulator to metal transition. We found that the chemical potential shifts as holes are doped into the system. This picture is in sharp contrast to the case of La{sub 2-x}Sr{sub x}CuO{sub 4} where the chemical potential remains fixed and states are created inside the gap. Furthermore, the low energy excitations (ie the Fermi surface) in metallic Ca{sub 1.9}Na{sub 0.1}CuO{sub 2}Cl{sub 2} is most well described as a Fermi arc, although the high binding energy features reveal the presence of shadow bands. Thus, the results in this dissertation provide a

  8. Evidence for Anionic Excess Electrons in a Quasi-Two-Dimensional Ca2N Electride by Angle-Resolved Photoemission Spectroscopy.

    Science.gov (United States)

    Oh, Ji Seop; Kang, Chang-Jong; Kim, Ye Ji; Sinn, Soobin; Han, Moonsup; Chang, Young Jun; Park, Byeong-Gyu; Kim, Sung Wng; Min, Byung Il; Kim, Hyeong-Do; Noh, Tae Won

    2016-03-02

    Angle-resolved photoemission spectroscopy (ARPES) study of a layered electride Ca2N was carried out to reveal its quasi-two-dimensional electronic structure. The band dispersions and the Fermi-surface map are consistent with the density functional theory results except for a chemical potential shift that may originate from the high reactivity of surface excess electrons. Thus, the existence of anionic excess electrons in the interlayer region of Ca2N is strongly supported by ARPES.

  9. Applicability of magic angle for angle-resolved X-ray photoelectron spectroscopy of corrugated SiO.sub.2./sub./Si surfaces: Monte Carlo calculations

    Czech Academy of Sciences Publication Activity Database

    Olejník, Kamil; Zemek, Josef

    2008-01-01

    Roč. 602, - (2008), s. 2581-2586 ISSN 0039-6028 R&D Projects: GA ČR GA202/06/0459 Institutional research plan: CEZ:AV0Z10100521 Keywords : photoelectron spectroscopy * surface roughness * Monte Carlo calculations * magic angle * overlayer thickness Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.731, year: 2008

  10. Electronic structure studies of ferro-pnictide superconductors and their parent compounds using angle-resolved photoemission spectroscopy (ARPES)

    Energy Technology Data Exchange (ETDEWEB)

    Setti, Thirupathaiah

    2011-07-14

    The discovery of high temperature superconductivity in the iron pnictide compound LaO{sub 1-x}F{sub x}FeAs with T{sub c} = 26 K as created enormous interest in the high-T{sub c} superconductor community. So far, four prototypes of crystal structures have been found in the Fe-pnictide family. All four show a structural deformation followed or accompanied by a magnetic transition from a high temperature paramagnetic conductor to a low temperature antiferromagnetic metal whose transition temperature T{sub N} varies between the compounds. Charge carrier doping, isovalent substitution of the As atoms or the application of pressure suppresses the antiferromagnetic spin density wave (SDW) order and leads to a superconducting phase. More recently high Tc superconductivity has been also detected in iron chalchogenides with similar normal state properties. Since superconductivity is instability of the normal state, the study of normal state electronic structure in comparison with superconducting state could reveal important information on the pairing mechanism. Therefore, it is most important to study the electronic structure of these new superconductors, i.e., to determine Fermi surfaces and band dispersions near the Fermi level at the high symmetry points in order to obtain a microscopic understanding of the superconducting properties. Using the technique angle-resolved photoemission spectroscopy (ARPES) one measures the electrons ejected from a sample when photons impinge on it. In this way one can map the Fermi surface which provides useful information regarding the physics behind the Fermi surface topology of high T{sub c} superconductors. Furthermore, this technique provides information on the band dispersion, the orbital character of the bands, the effective mass, the coupling to bosonic excitations, and the superconducting gap. This emphasizes the importance of studying the electronic structure of the newly discovered Fe-pnictides using ARPES. In this work we have

  11. Sub-nanometer resolution XPS depth profiling: Sensing of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Szklarczyk, Marek, E-mail: szklarcz@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Macak, Karol; Roberts, Adam J. [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Takahashi, Kazuhiro [Kratos XPS Section, Shimadzu Corp., 380-1 Horiyamashita, Hadano, Kanagawa 259-1304 (Japan); Hutton, Simon [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Głaszczka, Rafał [Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Blomfield, Christopher [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom)

    2017-07-31

    Highlights: • Angle resolved photoelectron depth profiling of nano thin films. • Sensing atomic position in SAM films. • Detection of direction position of adsorbed molecules. - Abstract: The development of a method capable of distinguishing a single atom in a single molecule is important in many fields. The results reported herein demonstrate sub-nanometer resolution for angularly resolved X-ray photoelectron spectroscopy (ARXPS). This is made possible by the incorporation of a Maximum Entropy Method (MEM) model, which utilize density corrected electronic emission factors to the X-ray photoelectron spectroscopy (XPS) experimental results. In this paper we report on the comparison between experimental ARXPS results and reconstructed for both inorganic and organic thin film samples. Unexpected deviations between experimental data and calculated points are explained by the inaccuracy of the constants and standards used for the calculation, e.g. emission factors, scattering intensity and atomic density through the studied thickness. The positions of iron, nitrogen and fluorine atoms were determined in the molecules of the studied self-assembled monolayers. It has been shown that reconstruction of real spectroscopic data with 0.2 nm resolution is possible.

  12. Large-angle magnetization dynamics investigated by vector-resolved magnetization-induced optical second-harmonic generation

    NARCIS (Netherlands)

    Gerrits, T.; Silva, T.J.; Nibarger, J.P.; Rasing, T.H.M.

    2004-01-01

    We examine the relationship between nonlinear magnetic responses and the change in the Gilbert damping parameter alpha for patterned and unpatterned thin Permalloy films when subjected to pulsed magnetic fields. An improved magnetization-vector-resolved technique utilizing magnetization-induced

  13. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer.

    Science.gov (United States)

    Gotlieb, K; Hussain, Z; Bostwick, A; Lanzara, A; Jozwiak, C

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-E(F) spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  14. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.; Gierz, I. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Calegari, F. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Institute for Photonics and Nanotechnologies, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Li, M. T.; Lin, C. T. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Cavalleri, A. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Clarendon Laboratory, Department of Physics, University of Oxford, Parks Rd. Oxford OX1 3PU (United Kingdom)

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  15. Size effects in van der Waals clusters studied by spin and angle-resolved electron spectroscopy and multi-coincidence ion imaging

    International Nuclear Information System (INIS)

    Rolles, D; Pesic, Z D; Zhang, H; Bilodeau, R C; Bozek, J D; Berrah, N

    2007-01-01

    We have studied the valence and inner-shell photoionization of free rare-gas clusters by means of angle and spin resolved photoelectron spectroscopy and momentum resolving electron-multi-ion coincidence spectroscopy. The electron measurements probe the evolution of the photoelectron angular distribution and spin polarization parameters as a function of photon energy and cluster size, and reveal a strong cluster size dependence of the photoelectron angular distributions in certain photon energy regions. In contrast, the spin polarization parameter of the cluster photoelectrons is found to be very close to the atomic value for all covered photon energies and cluster sizes. The ion imaging measurements, which probe the fragmentation dynamics of multiply charged van der Waals clusters, also exhibit a pronounced cluster size dependence

  16. Low-temperature dynamics of magnetic colloids studied by time-resolved small-angle neutron scattering

    NARCIS (Netherlands)

    Wiedenmann, A.; Keiderling, U.; Meissner, M.; Wallacher, D.; Gähler, R.; May, R.P.; Prévost, S.; Klokkenburg, M.; Erne, B.H.; Kohlbrecher, J.

    2008-01-01

    The dynamics of ordering and relaxation processes in magnetic colloids has been studied by means of stroboscopic small angle neutron scattering techniques in an oscillating magnetic field. Surfactant stabilized ferrofluids (FFs) of Fe3O4 and Co nanoparticles have been investigated as a function of

  17. Unusually large chemical potential shift in a degenerate semiconductor: Angle-resolved photoemission study of SnSe and Na-doped SnSe

    Science.gov (United States)

    Maeda, M.; Yamamoto, K.; Mizokawa, T.; Saini, N. L.; Arita, M.; Namatame, H.; Taniguchi, M.; Tan, G.; Zhao, L. D.; Kanatzidis, M. G.

    2018-03-01

    We have studied the electronic structure of SnSe and Na-doped SnSe by means of angle-resolved photoemission spectroscopy. The valence-band top reaches the Fermi level by the Na doping, indicating that Na-doped SnSe can be viewed as a degenerate semiconductor. However, in the Na-doped system, the chemical potential shift with temperature is unexpectedly large and is apparently inconsistent with the degenerate semiconductor picture. The large chemical potential shift and anomalous spectral shape are key ingredients for an understanding of the novel metallic state with the large thermoelectric performance in Na-doped SnSe.

  18. Angle-resolved electron and ion spectroscopy apparatus on the soft X-ray photochemistry beamline BL27SU at SPring-8

    CERN Document Server

    Ueda, K; Senba, Y; Okada, K; Shimizu, Y; Chiba, H; Ohashi, H; Tamenori, Y; Okumura, H; Saitô, N; Nagaoka, S; Hiraya, A; Ishiguro, E; Ibuki, T; Suzuki, I H; Koyano, I

    2001-01-01

    We have designed and constructed the apparatus for the angular distribution measurements of photoejected electrons and ions from free molecules, as a part of the endstation of the c-branch of the beamline BL27SU, a soft X-ray photochemistry beamline at SPring-8. The experimental procedures are described in combination with the use of a capability to switch the horizontal and vertical directions of the linear polarization of the light produced by the figure-8 undulator. As a typical example of the experimental results, we present angle-resolved energetic ion yield spectra in the O 1s excitation region of CO sub 2.

  19. Structural and electronic analysis of Hf on Si(1 1 1) surface studied by XPS, LEED and XPD

    Energy Technology Data Exchange (ETDEWEB)

    Carazzolle, M.F. [Experimentelle Physik 1, Universitaet Dortmund, Otto-Hahn-Str. 4, D44221 Dortmund (Germany); Instituto de Fisica, Universidade Estadual de Campinas, C.P. 6165, 13083-970 Campinas, SP (Brazil)], E-mail: mcarazzo@ifi.unicamp.br; Schuermann, M.; Fluechter, C.R.; Weier, D. [Experimentelle Physik 1, Universitaet Dortmund, Otto-Hahn-Str. 4, D44221 Dortmund (Germany); Berges, U. [Experimentelle Physik 1, Universitaet Dortmund, Otto-Hahn-Str. 4, D44221 Dortmund (Germany); DELTA, Universitaet Dortmund, Maria-Goeppert-Mayer-Str. 2, D44227 Dortmund (Germany); Siervo, A. de [Laboratorio Nacional de Luz Sincrotron, C.P. 6192, 13084-971 Campinas, SP (Brazil); Landers, R. [Instituto de Fisica, Universidade Estadual de Campinas, C.P. 6165, 13083-970 Campinas, SP (Brazil); Laboratorio Nacional de Luz Sincrotron, C.P. 6192, 13084-971 Campinas, SP (Brazil); Kleiman, G.G. [Instituto de Fisica, Universidade Estadual de Campinas, C.P. 6165, 13083-970 Campinas, SP (Brazil); Westphal, C. [Experimentelle Physik 1, Universitaet Dortmund, Otto-Hahn-Str. 4, D44221 Dortmund (Germany); DELTA, Universitaet Dortmund, Maria-Goeppert-Mayer-Str. 2, D44227 Dortmund (Germany)

    2007-05-15

    In this work, we present a systematic electronic and structural study of the Hf-silicide formation upon annealing on Si(1 1 1) surface. The electronic structure and surface composition were determined by X-ray photoelectron spectroscopy (XPS) and angle-resolved X-ray photoelectron spectroscopy (ARXPS). To determine the atomic structure of the surface alloy we used low energy electron diffraction (LEED) and angle-resolved photoelectron diffraction (XPD). It was possible to verify that, after 600 deg. C annealing, there is alloy formation and after 700 deg. C the Hf diffusion process is predominant. Using LEED and XPD measurements we detected the ordered island formation simultaneously with alloy formation.

  20. Time- and angle-resolved x-ray diffraction to probe structural and chemical evolution during Al-Ni intermetallic reactions.

    Science.gov (United States)

    Yoo, Choong-Shik; Wei, Haoyan; Chen, Jing-Yin; Shen, Guoyin; Chow, Paul; Xiao, Yuming

    2011-11-01

    We present novel time- and angle-resolved x-ray diffraction (TARXD) capable of probing structural and chemical evolutions during rapidly propagating exothermic intermetallic reactions between Ni-Al multilayers. The system utilizes monochromatic synchrotron x-rays and a two-dimensional (2D) pixel array x-ray detector in combination of a fast-rotating diffraction beam chopper, providing a time (in azimuth) and angle (in distance) resolved x-ray diffraction image continuously recorded at a time resolution of ~30 μs over a time period of 3 ms. Multiple frames of the TARXD images can also be obtained with time resolutions between 30 and 300 μs over three to several hundreds of milliseconds. The present method is coupled with a high-speed camera and a six-channel optical pyrometer to determine the reaction characteristics including the propagation speed of 7.6 m/s, adiabatic heating rate of 4.0 × 10(6) K/s, and conductive cooling rate of 4.5 × 10(4) K/s. These time-dependent structural and temperature data provide evidences for the rapid formation of intermetallic NiAl alloy within 45 μs, thermal expansion coefficient of 1.1 × 10(-6) K for NiAl, and crystallization of V and Ag(3)In in later time. © 2011 American Institute of Physics

  1. SAXSANA: an interactive program for the analysis and monitoring of static and time-resolved small-angle X-ray solution scattering measurements.

    Science.gov (United States)

    Hiragi, Yuzuru; Sano, Yoh; Matsumoto, Tomoharu

    2003-03-01

    An interactive analytical program, SAXSANA, for small-angle X-ray scattering measurements of solutions is described. The program processes scattered data without disciplined knowledge of small-angle scattering. SAXSANA also assists in finding the best experimental conditions, thus avoiding blind runs of experiments. SAXSANA consists of the following procedures: (i) determination of the centre of scattered X-rays and moment transfer Q (Q = 4pisintheta/lambda, where 2theta is the scattering angle and lambda is the wavelength) for each measured channel; (ii) conversion of the data format to the format of Q versus scattered intensities J(Q); (iii) truncation of unnecessary data and smoothing of scattering curves by cubic-spline function; (iv) correction of the absorption effect and subtraction of the scattered intensity of the buffer (solvent) solution from that of the sample solution; (v) creation of a data file for a three-dimensional representation of time-resolved scattering curves; (vi) determination of radii of gyration by Guinier plots; (vii) determination of persistent lengths by Kratky plots; (viii) extrapolation of the small-angle part by Guinier plots; (ix) extrapolation of the wide-angle part by Porod's & Luzzati's laws for the Hankel transformation in order to obtain the distance distribution function p(r); (x) calculation of p(r) and computation of the invariant, the chord length, the Volume, the spherical radius, the maximum dimension D(max) and the radius of gyration (Rg). SAXSANA also serves as an on-site monitor for the validity of an experimental result during the measurements.

  2. Time-Resolving Study of Stress-Induced Transformations of Isotactic Polypropylene through Wide Angle X-ray Scattering Measurements

    Directory of Open Access Journals (Sweden)

    Finizia Auriemma

    2018-02-01

    Full Text Available The development of a highly oriented fiber morphology by effect of tensile deformation of stereodefective isotactic polypropylene (iPP samples, starting from the unoriented γ form, is studied by following the transformation in real time during stretching through wide angle X-ray scattering (WAXS measurements. In the stretching process, after yielding, the initial γ form transforms into the mesomorphic form of iPP through mechanical melting and re-crystallization. The analysis of the scattering invariant measured in the WAXS region highlights that the size of the mesomorphic domains included in the well oriented fiber morphology obtained at high deformations increases through a process which involves the coalescence of the small fragments formed by effect of tensile stress during lamellar destruction with the domain of higher dimensions.

  3. Critical-angle transmission grating technology development for high resolving power soft x-ray spectrometers on Arcus and Lynx

    Science.gov (United States)

    Heilmann, Ralf K.; Bruccoleri, Alexander R.; Song, Jungki; Kolodziejczak, Jeffery; Gaskin, Jessica A.; O'Dell, Stephen L.; Cheimetz, Peter; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; La Caria, Marlis-Madeleine; Schattenburg, Mark L.

    2017-08-01

    Soft x-ray spectroscopy with high resolving power (R = λ/Δλ) and large effective area (A) addresses numerous unanswered science questions about the physical laws that lead to the structure of our universe. In the soft x-ray band R > 1000 can currently only be achieved with diffraction grating-based spectroscopy. Criticalangle transmission (CAT) gratings combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (relaxed alignment tolerances and temperature requirements, transparent at higher energies, low mass), resulting in minimal mission resource requirements, while greatly improving figures of merit. Diffraction efficiency > 33% and R > 10, 000 have been demonstrated for CAT gratings. Last year the technology has been certified at Technology Readiness Level 4 based on a probe class mission concept. The Explorer-scale (A > 450 cm2 , R > 2500) grating spectroscopy Arcus mission can be built with today's CAT grating technology and has been selected in the current Explorer round for a Phase A concept study. Its figure of merit for the detection of weak absorption lines will be an order of magnitude larger than current instruments on Chandra and XMM-Newton. Further CAT grating technology development and improvements in the angular resolution of x-ray optics can provide another order of magnitude improvement in performance, as is envisioned for the X-ray Surveyor/Lynx mission concept currently under development for input into the 2020 Decadal Survey. For Arcus we have tested CAT gratings in a spectrometer setup in combination with silicon pore optics (SPO) and obtained resolving power results that exceed Arcus requirements before and after environmental testing of the gratings. We have recently fabricated the largest (32 mm x 32 mm) CAT gratings to date, and plan to increase grating size further. We mounted two of these large gratings to frames and aligned them in the

  4. Preirradiation Graft Polymerization of Styrene in a Poly(tetrafluoroethylene Film Investigated by Time-Resolved Small-Angle Neutron Scattering

    Directory of Open Access Journals (Sweden)

    Hiroki Iwase

    2011-01-01

    Full Text Available Preirradiation graft polymerization of styrene in a poly(tetrafluoroethylene (PTFE film was examined by time-resolved small-angle neutron scattering (SANS. A crosslinked PTFE film, thickness of which is about 50 μm, was irradiated by γ-ray and immersed in a mixed solvent of styrene monomer and toluene. SANS elucidated that graft polymerization proceeds by two reaction processes (I and (II. In process (I at 0<<200 min, graft polymerization occurs at an interface between crystalline and amorphous PTFE domains and the grafted polystyrene segregates from PTFE, forming a thin layer with a sharp interface. In process (II at 200<<600 min, grafted PS layer starts to bridge between crystalline domains. At the end of process (II, 40% of total crystalline PTFE domain is covered by the grafted PS chains.

  5. Probing long-range structural order in SnPc/Ag(111) by umklapp process assisted low-energy angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Jauernik, Stephan; Hein, Petra; Gurgel, Max; Falke, Julian; Bauer, Michael

    2018-03-01

    Laser-based angle-resolved photoelectron spectroscopy is performed on tin-phthalocyanine (SnPc) adsorbed on silver Ag(111). Upon adsorption of SnPc, strongly dispersing bands are observed which are identified as secondary Mahan cones formed by surface umklapp processes acting on photoelectrons from the silver substrate as they transit through the ordered adsorbate layer. We show that the photoemission data carry quantitative structural information on the adsorbate layer similar to what can be obtained from a conventional low-energy electron diffraction (LEED) study. More specifically, we compare photoemission data and LEED data probing an incommensurate-to-commensurate structural phase transition of the adsorbate layer. Based on our results we propose that Mahan-cone spectroscopy operated in a pump-probe configuration can be used in the future to probe structural dynamics at surfaces with a temporal resolution in the sub-100-fs regime.

  6. Dynamics of field-induced ordering in magnetic colloids studied by new time-resolved small-angle neutron-scattering techniques.

    Science.gov (United States)

    Wiedenmann, A; Keiderling, U; Habicht, K; Russina, M; Gähler, R

    2006-08-04

    The reversal of magnetic moments of nanoparticles in concentrated Co ferrofluids was monitored in an oscillating magnetic field by new time-resolved stroboscopic small-angle neutron-scattering techniques. Time resolution in the micros range was achieved by using a pulsed beam technique, TISANE, while in continuous mode resolution was limited by the wavelength spread to about 1 ms. The frequency dependence of anisotropic scattering patterns has been modeled using Langevin dynamics. The dynamics follows a two step mechanism: field-induced ordering is governed by fast Brownian rotation of nanoparticles with a characteristic time of about 160 micros. Magnetic relaxation of locally ordered domains of about 100 nm in size takes place within a few seconds by Brownian rotation or by Néel type rotation of magnetic moments.

  7. Tuning across the BCS-BEC crossover in the multiband superconductor Fe1+ySe x Te1-x: An angle-resolved photoemission study.

    Science.gov (United States)

    Rinott, Shahar; Chashka, K B; Ribak, Amit; Rienks, Emile D L; Taleb-Ibrahimi, Amina; Le Fevre, Patrick; Bertran, François; Randeria, Mohit; Kanigel, Amit

    2017-04-01

    The crossover from Bardeen-Cooper-Schrieffer (BCS) superconductivity to Bose-Einstein condensation (BEC) is difficult to realize in quantum materials because, unlike in ultracold atoms, one cannot tune the pairing interaction. We realize the BCS-BEC crossover in a nearly compensated semimetal, Fe 1+ y Se x Te 1- x , by tuning the Fermi energy ε F via chemical doping, which permits us to systematically change Δ/ε F from 0.16 to 0.50, where Δ is the superconducting (SC) gap. We use angle-resolved photoemission spectroscopy to measure the Fermi energy, the SC gap, and characteristic changes in the SC state electronic dispersion as the system evolves from a BCS to a BEC regime. Our results raise important questions about the crossover in multiband superconductors, which go beyond those addressed in the context of cold atoms.

  8. Enhanced ultrafast relaxation rate in the Weyl semimetal phase of MoTe2 measured by time- and angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Crepaldi, A.; Autès, G.; Gatti, G.; Roth, S.; Sterzi, A.; Manzoni, G.; Zacchigna, M.; Cacho, C.; Chapman, R. T.; Springate, E.; Seddon, E. A.; Bugnon, Ph.; Magrez, A.; Berger, H.; Vobornik, I.; Kalläne, M.; Quer, A.; Rossnagel, K.; Parmigiani, F.; Yazyev, O. V.; Grioni, M.

    2017-12-01

    MoTe2 has recently been shown to realize in its low-temperature phase the type-II Weyl semimetal (WSM). We investigated by time- and angle- resolved photoelectron spectroscopy (tr-ARPES) the possible influence of the Weyl points on the electron dynamics above the Fermi level EF, by comparing the ultrafast response of MoTe2 in the trivial and topological phases. In the low-temperature WSM phase, we report an enhanced relaxation rate of electrons optically excited to the conduction band, which we interpret as a fingerprint of the local gap closure when Weyl points form. By contrast, we find that the electron dynamics of the related compound WTe2 is slower and temperature independent, consistent with a topologically trivial nature of this material. Our results shows that tr-ARPES is sensitive to the small modifications of the unoccupied band structure accompanying the structural and topological phase transition of MoTe2.

  9. Bulk electronic structure of superconducting LaRu2P2 single crystals measured by soft-X-ray angle-resolved photoemission spectroscopy.

    Science.gov (United States)

    Razzoli, E; Kobayashi, M; Strocov, V N; Delley, B; Bukowski, Z; Karpinski, J; Plumb, N C; Radovic, M; Chang, J; Schmitt, T; Patthey, L; Mesot, J; Shi, M

    2012-06-22

    We present a soft x-ray angle-resolved photoemission spectroscopy (SX-ARPES) study of the stoichiometric pnictide superconductor LaRu(2)P(2). The observed electronic structure is in good agreement with density functional theory (DFT) calculations. However, it is significantly different from its counterpart in high-temperature superconducting Fe pnictides. In particular, the bandwidth renormalization present in the Fe pnictides (~2-3) is negligible in LaRu(2)P(2) even though the mass enhancement is similar in both systems. Our results suggest that the superconductivity in LaRu(2) P(2) has a different origin with respect to the iron pnictides. Finally, we demonstrate that the increased probing depth of SX-ARPES, compared to the widely used ultraviolet ARPES, is essential in determining the bulk electronic structure in the experiment.

  10. Nodal gap structure of superconducting BaFe2(As1-xPx)2 from angle-resolved thermal conductivity in a magnetic field

    Science.gov (United States)

    Yamashita, M.; Senshu, Y.; Shibauchi, T.; Kasahara, S.; Hashimoto, K.; Watanabe, D.; Ikeda, H.; Terashima, T.; Vekhter, I.; Vorontsov, A. B.; Matsuda, Y.

    2011-08-01

    The structure of the superconducting order parameter in the iron-pnictide superconductor BaFe2(As0.67P0.33)2 (Tc=31 K) with line nodes is studied by the angle-resolved thermal conductivity measurements in a magnetic field rotated within the basal plane. We find that the thermal conductivity displays distinct fourfold oscillations with minima when the field is directed at ±45∘ with respect to the tetragonal a axis. We discuss possible gap structures that can account for the data, and conclude that the observed results are most consistent with the closed nodal loops located at the flat parts of the electron Fermi surface with high Fermi velocity.

  11. Multiple Nodeless Superconducting Gaps in (Ba0.6K0.4)Fe2As2 Superconductor from Angle-Resolved Photoemission Spectroscopy

    International Nuclear Information System (INIS)

    Lin, Zhao; Hai-Yun, Liu; Wen-Tao, Zhang; Jian-Qiao, Meng; Xiao-Wen, Jia; Guo-Dong, Liu; Xiao-Li, Dong; Wei, Lu; Xing-Jiang, Zhou; Gen-Fu, Chen; Jian-Lin, Luo; Nan-Lin, Wang; Gui-Ling, Wang; Yong, Zhou; Zu-Yan, Xu; Yong, Zhu; Xiao-Yang, Wang; Chuang-Tian, Chen

    2008-01-01

    High resolution angle-resolved photoemission measurements have been carried out to study the superconducting gap in the (Ba 0.6 K 0.4 )Fe 2 As 2 superconductor with T e = 35 K. Two hole-like Fermi surface sheets around the I' point exhibit different superconducting gaps. The inner Fermi surface sheet shows larger (10 ∼ 12 meV) and slightly momentum-dependent gap while the outer one has smaller (7 ∼ 8meV) and nearly isotropic gap. The lack of gap node in both Fermi surface sheets favours s-wave superconducting gap symmetry. Superconducting gap opening is also observed at the M(π, π) point. The two Fermi surface spots near the M point are gapped below T e but the gap persists above T e. The rich and detailed superconducting gap information will provide key insights and constraints in understanding pairing mechanism in the iron-based superconductors

  12. Multiple π-bands and Bernal stacking of multilayer graphene on C-face SiC, revealed by nano-Angle Resolved Photoemission.

    Science.gov (United States)

    Johansson, Leif I; Armiento, Rickard; Avila, Jose; Xia, Chao; Lorcy, Stephan; Abrikosov, Igor A; Asensio, Maria C; Virojanadara, Chariya

    2014-02-24

    Only a single linearly dispersing π-band cone, characteristic of monolayer graphene, has so far been observed in Angle Resolved Photoemission (ARPES) experiments on multilayer graphene grown on C-face SiC. A rotational disorder that effectively decouples adjacent layers has been suggested to explain this. However, the coexistence of μm-sized grains of single and multilayer graphene with different azimuthal orientations and no rotational disorder within the grains was recently revealed for C-face graphene, but conventional ARPES still resolved only a single π-band. Here we report detailed nano-ARPES band mappings of individual graphene grains that unambiguously show that multilayer C-face graphene exhibits multiple π-bands. The band dispersions obtained close to the K-point moreover clearly indicate, when compared to theoretical band dispersion calculated in the framework of the density functional method, Bernal (AB) stacking within the grains. Thus, contrary to earlier claims, our findings imply a similar interaction between graphene layers on C-face and Si-face SiC.

  13. Determining the thickness of aliphatic alcohol monolayers covalently attached to silicon oxide surfaces using angle-resolved X-ray photoelectron spectroscopy

    Science.gov (United States)

    Lee, Austin W. H.; Kim, Dongho; Gates, Byron D.

    2018-04-01

    The thickness of alcohol based monolayers on silicon oxide surfaces were investigated using angle-resolved X-ray photoelectron spectroscopy (ARXPS). Advantages of using alcohols as building blocks for the formation of monolayers include their widespread availability, ease of handling, and stability against side reactions. Recent progress in microwave assisted reactions demonstrated the ease of forming uniform monolayers with alcohol based reagents. The studies shown herein provide a detailed investigation of the thickness of monolayers prepared from a series of aliphatic alcohols of different chain lengths. Monolayers of 1-butanol, 1-hexanol, 1-octanol, 1-decanol, and 1-dodecanol were each successfully formed through microwave assisted reactions and characterized by ARXPS techniques. The thickness of these monolayers consistently increased by ∼1.0 Å for every additional methylene (CH2) within the hydrocarbon chain of the reagents. Tilt angles of the molecules covalently attached to silicon oxide surfaces were estimated to be ∼35° for each type of reagent. These results were consistent with the observations reported for thiol based or silane based monolayers on either gold or silicon oxide surfaces, respectively. The results of this study also suggest that the alcohol based monolayers are uniform at a molecular level.

  14. Introducing a standard method for experimental determination of the solvent response in laser pump, x-ray probe time-resolved wide-angle x-ray scattering experiments on systems in solution

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Brandt van Driel, Tim; Kehres, Jan

    2013-01-01

    In time-resolved laser pump, X-ray probe wide-angle X-ray scattering experiments on systems in solution the structural response of the system is accompanied by a solvent response. The solvent response is caused by reorganization of the bulk solvent following the laser pump event, and in order...... response-the solvent term-experimentally when applying laser pump, X-ray probe time-resolved wide-angle X-ray scattering. The solvent term describes difference scattering arising from the structural response of the solvent to changes in the hydrodynamic parameters: pressure, temperature and density. We...... is demonstrated to exhibit first order behaviour with respect to the amount of energy deposited in the solution. We introduce a standardized method for recording solvent responses in laser pump, X-ray probe time-resolved X-ray wide-angle scattering experiments by using dye mediated solvent heating. Furthermore...

  15. Photoelectron spectra of N2 +: Rotational line profiles studied with He;I endash excited angle-resolved spectroscopy and with synchrotron radiation

    International Nuclear Information System (INIS)

    Oehrwall, G.; Baltzer, P.; Bozek, J.

    1999-01-01

    We have recorded angle-resolved He I photoelectron spectra of the three outermost valence states in N 2 + , with high enough resolution to observe rotational line profiles. For the two Σ states, the X 2 Σ g + and the B 2 Σ u + , we found that the rotational branches corresponding to different changes in rotational quantum number can differ dramatically in β value. The well-known difference in β value for the ν=0 and ν=1 vibrations of the X 2 Σ g + state was found to be due to different rotational branching ratios and also different β values of the rotational branches. For the ν=0 endash 2 vibrations of the A 2 Π u state, the β value difference between rotational branches is much less pronounced than in the X and B states. We have also recorded synchrotron-radiation-excited photoelectron spectra of the ν=0 vibrational peaks of the X 2 Σ g + and B 2 Σ u + states where rotational line profiles are resolved. The intensities of the rotational branches were studied as function of photon energy, the X state between 23 and 65 eV, and the B state between 23 and 45 eV. The results for the X state have recently been presented in a Letter [G. Oehrwall, P. Baltzer, and J. Bozek, Phys. Rev. Lett. 81, 546, 1998]. The rotational branching ratios of the two states have very different behaviors as functions of photon energy. The relative intensities of the rotational branches in the X state change significantly over the studied energy range. The 3σ g →kσ u shape resonance apparently gives rise to a non-Franck-Condon-like behavior for the rotational branching ratio of the X state. In the B state, the rotational branching ratios remain essentially constant over the studied energy range. copyright 1999 The American Physical Society

  16. The (001) 3C SiC surface termination and band structure after common wet chemical etching procedures, stated by XPS, LEED, and HREELS

    Science.gov (United States)

    Tengeler, Sven; Kaiser, Bernhard; Ferro, Gabriel; Chaussende, Didier; Jaegermann, Wolfram

    2018-01-01

    The (001) surface of cubic silicon carbide (3C SiC) after cleaning, Ar sputtering and three different wet chemical etching procedures was thoroughly investigated via (angle resolved) XPS, HREELS, and LEED. While Ar sputtering was found to be unsuitable for surface preparation, all three employed wet chemical etching procedures (piranha/NH4F, piranha/HF, and RCA) provide a clean surface. HF as oxide removal agent tends to result in fluorine traces on the sample surface, despite thorough rinsing. All procedures yield a 1 × 1 Si-OH/C-H terminated surface. However, the XPS spectra reveal some differences in the resulting surface states. NH4F for oxide removal produces a flat band situation, whereas the other two procedures result in a slight downward (HF) or upward (RCA) band bending. Because the band bending is small, it can be concluded that the number of unsaturated surface defects is low.

  17. Angle-resolved photoemission spectroscopy for VO{sub 2} thin films grown on TiO{sub 2} (0 0 1) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, Y., E-mail: ymuraoka@cc.okayama-u.ac.j [Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530 (Japan); Faculty of Science, Research Laboratory for Surface Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530 (Japan); Saeki, K.; Yao, Y. [Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530 (Japan); Wakita, T. [Faculty of Science, Research Laboratory for Surface Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530 (Japan); Hirai, M.; Yokoya, T. [Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530 (Japan); Faculty of Science, Research Laboratory for Surface Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530 (Japan); Eguchi, R.; Shin, S. [RIKEN/SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan)

    2010-08-15

    We present the results of angle-resolved photoemission spectroscopy (ARPES) measurements of metallic VO{sub 2} thin films. The VO{sub 2} thin films have been grown on TiO{sub 2} (0 0 1) single crystal substrates using pulsed laser deposition. The films exhibit a first-order metal-insulator transition (MIT) at 305 K. In the ARPES spectra of the metallic phase for the films, the O 2p band shows highly dispersive feature in the binding energy range of 3-8 eV along the {Gamma}-Z direction. The periodicity of the dispersive band is found to be 2.2 A{sup -1} which is almost identical with the periodicity expected from the c-axis length of the VO{sub 2} thin films. The overall feature of the experimental band structure is similar to the band structure calculations, supporting that we have succeeded in observing the dispersive band of the O 2p state in the metallic VO{sub 2} thin film. The present work indicates that the ARPES measurements using epitaxial thin films are promising for determining the band structure of VO{sub 2}.

  18. Experimental set-up for time resolved small angle X-ray scattering studies of nanoparticles formation using a free-jet micromixer

    Energy Technology Data Exchange (ETDEWEB)

    Marmiroli, Benedetta [Institute for Biophysics and Nanosystem Research, Austrian Academy of Science, Schmiedlstrasse 6, Graz (Austria); Grenci, Gianluca [TASC INFM/CNR, SS 14 km 163.5, Basovizza, TS (Italy); Cacho-Nerin, Fernando; Sartori, Barbara; Laggner, Peter [Institute for Biophysics and Nanosystem Research, Austrian Academy of Science, Schmiedlstrasse 6, Graz (Austria); Businaro, Luca [TASC INFM/CNR, SS 14 km 163.5, Basovizza, TS (Italy); Amenitsch, Heinz, E-mail: heinz.amenitsch@elettra.trieste.i [Institute for Biophysics and Nanosystem Research, Austrian Academy of Science, Schmiedlstrasse 6, Graz (Austria)

    2010-02-15

    Recently, we have designed, fabricated and tested a free-jet micromixer for time resolved small angle X-ray scattering (SAXS) studies of nanoparticles formation in the <100 mus time range. The microjet has a diameter of 25 mum and a time of first accessible measurement of 75 mus has been obtained. This result can still be improved. In this communication, we present a method to estimate whether a given chemical or biological reaction can be investigated with the micromixer, and to optimize the beam size for the measurement at the chosen SAXS beamline. Moreover, we describe a system based on stereoscopic imaging which allows the alignment of the jet with the X-ray beam with a precision of 20 mum. The proposed experimental procedures have been successfully employed to observe the formation of calcium carbonate (CaCO{sub 3}) nanoparticles from the reaction of sodium carbonate (Na{sub 2}CO{sub 3}) and calcium chloride (CaCl{sub 2}). The induction time has been estimated in the order of 200 mus and the determined radius of the particles is about 14 nm.

  19. Cation profiling of passive films on stainless steel formed in sulphuric and acetic acid by deconvolution of angle-resolved X-ray photoelectron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Högström, Jonas, E-mail: jhogstrom@gmail.com; Fredriksson, Wendy, E-mail: wendy.fredriksson@kemi.uu.se; Edstrom, Kristina, E-mail: kristina.edstrom@kemi.uu.se; Björefors, Fredrik, E-mail: fredrik.bjorefors@kemi.uu.se; Nyholm, Leif, E-mail: leif.nyholm@kemi.uu.se; Olsson, Claes-Olof A., E-mail: drclabbe@kth.se

    2013-11-01

    An approach for determining depth gradients of metal-ion concentrations in passive films on stainless steel using angle-resolved X-ray photoelectron spectroscopy (ARXPS) is described. The iterative method, which is based on analyses of the oxidised metal peaks, provides increased precision and hence allows faster ARXPS measurements to be carried out. The method was used to determine the concentration depth profiles for molybdenum, iron and chromium in passive films on 316L/EN 1.4432 stainless steel samples oxidised in 0.5 M H{sub 2}SO{sub 4} and acetic acid diluted with 0.02 M Na{sub 2}B{sub 4}O{sub 7} · 10H{sub 2}O and 1 M H{sub 2}O, respectively. The molybdenum concentration in the film is pin-pointed to the oxide/metal interface and the films also contained an iron-ion-enriched surface layer and a chromium-ion-dominated middle layer. Although films of similar composition and thickness (i.e., about 2 nm) were formed in the two electrolytes, the corrosion currents were found to be three orders of magnitude larger in the acetic acid solution. The differences in the layer composition, found for the two electrolytes as well as different oxidation conditions, can be explained based on the oxidation potentials of the metals and the dissolution rates of the different metal ions.

  20. Si(111)-sq root 21 x sq root 21 -(Ag+Cs) surface studied by scanning tunneling microscopy and angle-resolved photoemission spectroscopy

    CERN Document Server

    Liu, C; Morikawa, H; Okino, H; Hasegawa, S; Okuda, T; Kinoshita, T

    2003-01-01

    Scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES) were used to study the atomic and electronic structures of the Si(111)-sq root 21 x sq root 21-(Ag + Cs) surface (sq root 21-Cs in short), which was induced by depositing caesium atoms on the Si(111)-sq root 3 x sq root 3-Ag surface at room temperature (RT). Compared with previously reported STM images of noble-metal induced sq root 21 x sq root 21 phases including the Si(111)-sq root 21 x sq root 21-(Ag+Ag) and Si(111)-sq root 21 x sq root 21-(Ag+Au) surfaces (sq root 21-Ag and sq root 21-Au, respectively), the sq root 21-Cs surface displayed quite different features in STM images. The ARPES data of the sq root 21-Cs surface revealed an intrinsic dispersive surface-state band, together with a non-dispersive one near the Fermi level, which was also different from those of the sq root 21-Ag and sq root 21-Au surfaces. These results strongly suggest different atomic arrangements between Cs- and noble-metal induced sq root ...

  1. High-resolution angle-resolved photoemission studies of high Tc superconductor Bi2Sr2CaCu2O8

    International Nuclear Information System (INIS)

    Liu, Rong.

    1990-01-01

    An angle-resolved photoemission study of the normal and superconducting states in Bi 2 Sr 2 CaCu 2 O 8 was performed. Measurements in the normal state show bands dispersing through the Fermi level from at least 350 meV below E F . The Fermi level crossings are consistant with local-density band calculation, including a point calculated to be of Bi-O character. Additional measurements were made where bands crossed the Fermi level between 100 and 250K, along with measurements on an adjacent Pt foil. The Fermi edges of both materials agree to within the noise. Below the Fermi level, the spectra show correlation effects on the form of an increased effective mass. The shape of the spectra can be explained by a lifetime-broadened photohole and secondary electrons. The effective inverse photohole lifetime is linear in energy. A superconducting gap has been measured at a number of points where there is density at the Fermi level in the normal state. By proper modeling, a gap of 24 meV was obtained for all these points, including points of Cu-O and Bi-O character respectively, according to band calculation. The lack of gap anisotropy in the basal plane suggests that pinning in this material is not d-wave pairing

  2. Electronic Structure of Epitaxial Thin Films of the Transparent Conducting Oxide La:BaSnO3 Measured By In-Situ Angle-Resolved Photoemission Spectroscopy

    Science.gov (United States)

    Lochocki, Edward; Paik, Hanjong; Uchida, Masaki; Schlom, Darrell; Shen, Kyle

    Lanthanum-doped barium stannate (La:BaSnO3) is a transparent conducting oxide where single crystals have exhibited unusually high mobility and oxygen stability. Here we present in-situ angle-resolved photoemission (ARPES) measurements of La:BaSnO3 epitaxial films that were co-deposited onto lattice-matched rare-earth scandate substrates by molecular-beam epitaxy (MBE). Density functional theory (DFT) calculations agree well with the observed valence bands and predict a parabolic conduction band. However, the features observed near the Fermi energy (EF) are non-dispersive yet localized in momentum space. This unusual appearance may be the result of quasi-localized charge carriers or out-of-plane momentum broadening. Over long measurement periods, we also observe changes to the valence band and near-EF feature that bear a strong resemblance to the beam-induced two-dimensional electron gases previously reported in SrTiO3 and KTaO3. The origin of these unexpected phenomena and their relationship to the structural and transport properties of these films will be discussed.

  3. Time- and angle-resolved photoemission spectroscopy with optimized high-harmonic pulses using frequency-doubled Ti:Sapphire lasers

    International Nuclear Information System (INIS)

    Eich, S.; Stange, A.; Carr, A.V.; Urbancic, J.; Popmintchev, T.; Wiesenmayer, M.; Jansen, K.; Ruffing, A.; Jakobs, S.; Rohwer, T.; Hellmann, S.; Chen, C.; Matyba, P.; Kipp, L.; Rossnagel, K.; Bauer, M.; Murnane, M.M.; Kapteyn, H.C.; Mathias, S.; Aeschlimann, M.

    2014-01-01

    Highlights: • We present a scheme to generate high intensity XUV pulses from HHG with variable time-bandwidth product. • Shorter-wavelength driven high-harmonic XUV trARPES provides higher photon flux and increased energy resolution. • High-quality high-harmonic XUV trARPES data with sub 150 meV energy and sub 30 fs time resolution is presented. - Abstract: Time- and angle-resolved photoemission spectroscopy (trARPES) using femtosecond extreme ultraviolet high harmonics has recently emerged as a powerful tool for investigating ultrafast quasiparticle dynamics in correlated-electron materials. However, the full potential of this approach has not yet been achieved because, to date, high harmonics generated by 800 nm wavelength Ti:Sapphire lasers required a trade-off between photon flux, energy and time resolution. Photoemission spectroscopy requires a quasi-monochromatic output, but dispersive optical elements that select a single harmonic can significantly reduce the photon flux and time resolution. Here we show that 400 nm driven high harmonic extreme-ultraviolet trARPES is superior to using 800 nm laser drivers since it eliminates the need for any spectral selection, thereby increasing photon flux and energy resolution to <150 meV while preserving excellent time resolution of about 30 fs

  4. Identification of Ni2C electronic states in graphene-Ni(111) growth through resonant and dichroic angle-resolved photoemission at the C K -edge

    Science.gov (United States)

    Drera, G.; Cepek, C.; Patera, L. L.; Bondino, F.; Magnano, E.; Nappini, S.; Africh, C.; Lodi-Rizzini, A.; Joshi, N.; Ghosh, P.; Barla, A.; Mahatha, S. K.; Pagliara, S.; Giampietri, A.; Pintossi, C.; Sangaletti, L.

    2017-10-01

    The graphene-Ni(111) (GrNi) growth via chemical vapor deposition has been explored by resonant, angle-resolved, and dichroic photoemission spectroscopy (soft x-ray Res-ARPES) in order to identify the possible contributions to the electronic structure deriving from different phases that can coexist in this complex system. We provide evidences of electronic states so far unexplored at the Γ ¯ point of GrNi, appearing at the C K -edge resonance. These states show both circular dichroism (CD) and k dependence, suggesting a long-range orbital ordering, as well as a coherent matching with the underlying lattice. Through a comparison of core-level photoemission, valence band resonances, and constant initial-state spectroscopy, we demonstrate that these states are actually induced by a low residual component of nickel carbide (Ni2C ). These results also show that caution must be exercised while interpreting x-ray magnetic circular dichroism collected on C K -edge with Auger partial yield method, due to the presence of CD in photoelectron spectra unrelated to magnetic effects.

  5. Orbital character and electron correlation effects on two- and three-dimensional Fermi surfaces in KFe2As2 revealed by angle-resolved photoemission spectroscopy

    Directory of Open Access Journals (Sweden)

    Teppei eYoshida

    2014-04-01

    Full Text Available We have investigated orbital character and electron correlation effects on Fermi surfaces in the hole-overdoped iron pnictide superconductor KFe2As2, which shows a low Tc of ~4 K, by angle-resolved photoemission spectroscopy. From the polarization-dependence of the ARPES spectra, we have determined the orbital character of each Fermi surface. Electron mass renormalization of each band is quantitatively consistent with de Haas-van Alphen results. The outer beta and middle zeta Fermi surfaces show large renormalization factor of m*/mb ~6-7, while the inner Fermi surface has a smaller factor m*/mb ~2. Middle hole Fermi surface zeta has strong three-dimensionality compared to other Fermi surfaces, indicating the d3z2-r2 orbital character, which may be related to the octet-line nodes recently observed by laser ARPES. The observed orbital-dependent mass renormalization would give constraints on the pairing mechanism with line nodes of this system.

  6. Electronic structure and polar catastrophe at the surface of LixCoO2 studied by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Okamoto, Y.; Matsumoto, R.; Yagihara, T.; Iwai, C.; Miyoshi, K.; Takeuchi, J.; Horiba, K.; Kobayashi, M.; Ono, K.; Kumigashira, H.; Saini, N. L.; Mizokawa, T.

    2017-09-01

    We report an angle-resolved photoemission spectroscopy (ARPES) study of LixCoO2 single crystals which have a hole-doped CoO2 triangular lattice. Similar to NaxCoO2 , the Co 3 d a1 g band crosses the Fermi level with strongly renormalized band dispersion while the Co 3 d eg' bands are fully occupied in LixCoO2 (x =0.46 and 0.71). At x =0.46 , the Fermi surface area is consistent with the bulk hole concentration indicating that the ARPES result represents the bulk electronic structure. On the other hand, at x =0.71 , the Fermi surface area is larger than the expectation which can be associated with the inhomogeneous distribution of Li reported in the previous scanning tunneling microscopy study by Iwaya et al. [Phys. Rev. Lett. 111, 126104 (2013), 10.1103/PhysRevLett.111.126104]. However, the Co 3 d peak is systematically shifted towards the Fermi level with hole doping excluding phase separation between hole rich and hole poor regions in the bulk. Therefore, the deviation of the Fermi surface area at x =0.71 can be attributed to hole redistribution at the surface avoiding polar catastrophe. The bulk Fermi surface of Co 3 d a1 g is very robust around x =0.5 even in the topmost CoO2 layer due to the absence of the polar catastrophe.

  7. Site-specific intermolecular valence-band dispersion in α-phase crystalline films of cobalt phthalocyanine studied by angle-resolved photoemission spectroscopy.

    Science.gov (United States)

    Yamane, Hiroyuki; Kosugi, Nobuhiro

    2014-12-14

    The valence band structure of α-phase crystalline films of cobalt phthalocyanine (CoPc) grown on Au(111) is investigated by using angle-resolved photoemission spectroscopy (ARPES) with synchrotron radiation. The photo-induced change in the ARPES peaks is noticed in shape and energy of the highest occupied molecular orbital (HOMO, C 2p) and HOMO-1 (Co 3d) of CoPc, and is misleading the interpretation of the electronic properties of CoPc films. From the damage-free normal-emission ARPES measurement, the clear valence-band dispersion has been first observed, showing that orbital-specific behaviors are attributable to the interplay of the intermolecular π-π and π-d interactions. The HOMO band dispersion of 0.1 eV gives the lower limit of the hole mobility for α-CoPc of 28.9 cm(2) V(-1) s(-1) at 15 K. The non-dispersive character of the split HOMO-1 bands indicates that the localization of the spin state is a possible origin of the antiferromagnetism.

  8. Quantum Transport and Nano Angle-resolved Photoemission Spectroscopy on the Topological Surface States of Single Sb2Te3 Nanowires

    Science.gov (United States)

    Arango, Yulieth C.; Huang, Liubing; Chen, Chaoyu; Avila, Jose; Asensio, Maria C.; Grützmacher, Detlev; Lüth, Hans; Lu, Jia Grace; Schäpers, Thomas

    2016-01-01

    We report on low-temperature transport and electronic band structure of p-type Sb2Te3 nanowires, grown by chemical vapor deposition. Magnetoresistance measurements unravel quantum interference phenomena, which depend on the cross-sectional dimensions of the nanowires. The observation of periodic Aharonov-Bohm-type oscillations is attributed to transport in topologically protected surface states in the Sb2Te3 nanowires. The study of universal conductance fluctuations demonstrates coherent transport along the Aharonov-Bohm paths encircling the rectangular cross-section of the nanowires. We use nanoscale angle-resolved photoemission spectroscopy on single nanowires (nano-ARPES) to provide direct experimental evidence on the nontrivial topological character of those surface states. The compiled study of the bandstructure and the magnetotransport response unambiguosly points out the presence of topologically protected surface states in the nanowires and their substantial contribution to the quantum transport effects, as well as the hole doping and Fermi velocity among other key issues. The results are consistent with the theoretical description of quantum transport in intrinsically doped quasi-one-dimensional topological insulator nanowires. PMID:27581169

  9. Adsorption site and structure determination of c(2x2) N{sub 2}/Ni(100) using angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors have determined the atomic spatial structure of c(2x2) N2Ni(100) with Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the nitrogen 1s core level using monochromatized x-rays from beamline 6.1 at SSRL and beamline 9.3.2 at the ALS. The chemically shifted N 1s peak intensities were summed together to obtain ARPEFS curves for both nitrogen atoms in the molecule. They used a new, highly-optimized program based on the Rehr-Albers scattering matrix formalism to find the adsorption site and to quantitatively determine the bond-lengths. The nitrogen molecule stands upright at an atop site, with a N-Ni bond length of 2.25(1) {angstrom}, a N-N bond length of 1.10(7) {angstrom}, and a first layer Ni-Ni spacing of 1.76(4) {angstrom}. The shake-up peak shows an identical ARPEFS diffraction pattern, confirming its intrinsic nature and supporting a previous use of this feature to decompose the peak into contributions from the chemically inequivalent nitrogen atoms. Comparison to a previously published theoretical treatment of N-N-Ni and experimental structures of analogous adsorbate systems demonstrates the importance of adsorbate-adsorbate interactions in weakly chemisorbed systems.

  10. Comparison between XPS and AES; Comparaison XPS / AES

    Energy Technology Data Exchange (ETDEWEB)

    Barthes-Labrousse, M.G. [Centre National de la Recherche Scientifique (CNRS), 94 - Vitry-sur-Seine (France). Centre d' Etudes de Chimie Metallurgique

    2003-07-01

    This paper gives a short description of the physical principles and main characteristics of Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). Although both techniques have been developed separately both can be found together on the same instrumental equipment. Some differences between these 2 techniques exist: kind of material that can be analysed, resolution, chemical identification... but it is noticed that respective advantages and drawbacks of these methods depend strongly on the kind of material to analyse and what information you look for. (A.C.)

  11. Characterization of weakly absorbing thin films by multiple linear regression analysis of absolute unwrapped phase in angle-resolved spectral reflectometry.

    Science.gov (United States)

    Dong, Jingtao; Lu, Rongsheng

    2018-04-30

    The simultaneous determination of t, n(λ), and κ(λ) of thin films can be a tough task for the high correlation of fit parameters. The strong assumptions about the type of dispersion relation are commonly used as a consequence to alleviate correlation concerns by reducing the free parameters before the nonlinear regression analysis. Here we present an angle-resolved spectral reflectometry for the simultaneous determination of weakly absorbing thin film parameters, where a reflectance interferogram is recorded in both angular and spectral domains in a single-shot measurement for the point of the sample being illuminated. The variations of the phase recovered from the interferogram as functions of t, n, and κ reveals that the unwrapped phase is monotonically related to t, n, and κ, thereby allowing the problem of correlation to be alleviated by multiple linear regression. After removing the 2π ambiguity of the unwrapped phase, the merit function based on the absolute unwrapped phase performs a 3D data cube with variables of t, n and κ at each wavelength. The unique solution of t, n, and κ can then be directly determined from the extremum of the 3D data cube at each wavelength with no need of dispersion relation. A sample of GaN thin film grown on a polished sapphire substrate is tested. The experimental data of t and [n(λ), κ(λ)] are confirmed by the scanning electron microscopy and the comparison with the results of other related works, respectively. The consistency of the results shows the proposed method provides a useful tool for the determination of the thickness and optical constants of weakly absorbing thin films.

  12. Growth kinetics of lipid-based nanodiscs to unilamellar vesicles-a time-resolved small angle neutron scattering (SANS) study.

    Science.gov (United States)

    Mahabir, Suanne; Small, Darcy; Li, Ming; Wan, Wankei; Kučerka, Norbert; Littrell, Kenneth; Katsaras, John; Nieh, Mu-Ping

    2013-03-01

    Mixtures of dimyristoyl-phosphatidylcholine (DMPC), dimyristoyl-phosphatidylglycerol (DMPG) and dihexanoyl-phosphatidylcholine (DHPC) in aqueous solutions spontaneously form monodisperse, bilayered nanodiscs (also known as "bicelles") at or below the melting transition temperature of DMPC (T(M) ~23°C). In dilute systems above the main transition temperature T(M) of DMPC, bicelles coalesce (increasing their diameter) and eventually self-fold into unilamellar vesicles (ULVs). Time-resolved small angle neutron scattering was used to study the growth kinetics of nanodiscs below and equal to T(M) over a period of hours as a function of temperature at two lipid concentrations in presence or absence of NaCl salt. Bicelles seem to undergo a sudden initial growth phase with increased temperature, which is then followed by a slower reaction-limited growth phase that depends on ionic strength, lipid concentration and temperature. The bicelle interaction energy was derived from the colloidal theory of Derjaguin and Landau, and Verwey and Overbeek (DLVO). While the calculated total energy between discs is attractive and proportional to their growth rate, a more detailed mechanism is proposed to describe the mechanism of disc coalescence. After annealing at low temperature (low-T), samples were heated to 50°C in order to promote the formation of ULVs. Although the low-T annealing of samples has only a marginal effect on the mean size of end-state ULVs, it does affect their polydispersity, which increases with increased T, presumably driven by the entropy of the system. Published by Elsevier B.V.

  13. Time-resolved small-angle x-ray scattering study of the early stage of amyloid formation of an apomyoglobin mutant

    Science.gov (United States)

    Ortore, Maria Grazia; Spinozzi, Francesco; Vilasi, Silvia; Sirangelo, Ivana; Irace, Gaetano; Shukla, Anuj; Narayanan, Theyencheri; Sinibaldi, Raffaele; Mariani, Paolo

    2011-12-01

    The description of the fibrillogenesis pathway and the identification of “on-pathway” or “off-pathway” intermediates are key issues in amyloid research as they are concerned with the mechanism for onset of certain diseases and with therapeutic treatments. Recent results on the fibril formation process revealed an unexpected complexity both in the number and in the types of species involved, but the early aggregation events are still largely unknown, mainly because of their experimental inaccessibility. To provide information on the early stage events of self-assembly of an amyloidogenic protein, during the so-called lag phase, stopped-flow time-resolved small angle x-ray scattering (SAXS) experiments were performed. Using a global fitting analysis, the structural and aggregation properties of the apomyoglobin W7FW14F mutant, which is monomeric and partly folded at acidic pH but forms amyloid fibrils after neutralization, were derived from the first few milliseconds onward. SAXS data indicated that the first aggregates appear in less than 20 ms after the pH jump to neutrality and further revealed the simultaneous presence of diverse species. In particular, worm-like unstructured monomers, very large assemblies, and elongated particles were detected, and their structural features and relative concentrations were derived as a function of time on the basis of our model. The final results show that, during the lag phase, early assembling occurs due to the presence of transient monomeric species very prone to association and through successive competing aggregation and rearrangement processes leading to coexisting on-pathway and off-pathway transient species.

  14. Angle Resolved Photoemission Spectroscopy Studies of the Mott Insulator to Superconductor Evolution in Ca2-xNaxCuO2Cl2

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Kyle Michael

    2005-09-02

    It is widely believed that many of the exotic physical properties of the high-T{sub c} cuprate superconductors arise from the proximity of these materials to the strongly correlated, antiferromagnetic Mott insulating state. Therefore, one of the fundamental questions in the field of high-temperature superconductivity is to understand the insulator-to-superconductor transition and precisely how the electronic structure of Mott insulator evolves as the first holes are doped into the system. This dissertation presents high-resolution, doping dependent angle-resolved photoemission (ARPES) studies of the cuprate superconductor Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2}, spanning from the undoped parent Mott insulator to a high-temperature superconductor with a T{sub c} of 22 K. A phenomenological model is proposed to explain how the spectral lineshape, the quasiparticle band dispersion, and the chemical potential all progress with doping in a logical and self-consistent framework. This model is based on Franck-Condon broadening observed in polaronic systems where strong electron-boson interactions cause the quasiparticle residue, Z, to be vanishingly small. Comparisons of the low-lying states to different electronic states in the valence band strongly suggest that the coupling of the photohole to the lattice (i.e. lattice polaron formation) is the dominant broadening mechanism for the lower Hubbard band states. Combining this polaronic framework with high-resolution ARPES measurements finally provides a resolution to the long-standing controversy over the behavior of the chemical potential in the high-T{sub c} cuprates. This scenario arises from replacing the conventional Fermi liquid quasiparticle interpretation of the features in the Mott insulator by a Franck-Condon model, allowing the reassignment of the position of the quasiparticle pole. As a function of hole doping, the chemical potential shifts smoothly into the valence band while spectral weight is transferred

  15. Resolving overlapping peaks in ARXPS data: The effect of noise and fitting method

    International Nuclear Information System (INIS)

    Muñoz-Flores, Jaime; Herrera-Gomez, Alberto

    2012-01-01

    Highlights: ► Noise is an important factor affecting the fitting of overlapping peaks in XPS data. ► The combined information in ARXPS data can be used to improve fitting reliability. ► The error on the estimation of the peak parameters depends on the peak-fitting method. ► Simultaneous fitting method is much more robust against noise than sequential fitting. ► The estimation of the error range is better done with ARXPS data than with XPS data. - Abstract: Peak-fitting of X-ray photoelectron spectroscopy (XPS) data can be very sensitive to noise when the difference on the binding energy among the peaks is smaller than the width of the peaks. This sensitivity depends on the fitting algorithm. Angle-resolved XPS (ARXPS) analysis offers the opportunity of employing the combined information contained in the data at the various angles to reduce the sensitivity to noise. The assumption of shared peak parameters (center and width) among the spectra for the different angles, and how it is introduced into the analysis, plays a basic role. Sequential fitting is the usual practice in ARXPS data peak-fitting. It consist on first estimating the center and width of the peaks from the data acquired at one of the angles, and then using those parameters as a starting approximation for fitting the data for each of the rest of the angles. An improvement of this method consists of averaging the centers and widths of the peaks obtained at the different angles, and then employing these values to assess the areas of the peaks for each angle. Another strategy for using the combined information is by assessing the peak parameters from the sum of the experimental data. The complete use of the combined information contained in the data-set is optimized by the simultaneous fitting method. It consists of the assessment of the center and width of the peaks by fitting the data at all the angles simultaneously. Computer-generated data was employed to compare the sensitivity with respect

  16. Depth distribution of secondary phases in kesterite Cu2ZnSnS4 by angle-resolved X-ray absorption spectroscopy

    Science.gov (United States)

    Just, J.; Lützenkirchen-Hecht, D.; Müller, O.; Frahm, R.; Unold, T.

    2017-12-01

    The depth distribution of secondary phases in the solar cell absorber material Cu2ZnSnS4 (CZTS) is quantitatively investigated using X-ray Absorption Near Edge Structure (XANES) analysis at the K-edge of sulfur at varying incidence angles. Varying information depths from several nanometers up to the full thickness is achieved. A quantitative profile of the phase distribution is obtained by a self-consistent fit of a multilayer model to the XANES spectra for different angles. Single step co-evaporated CZTS thin-films are found to exhibit zinc and copper sulfide secondary phases preferentially at the front or back interfaces of the film.

  17. Electronic structure of single crystal UPd{sub 3}, UGe{sub 2}, and USb{sub 2} from hard X-ray and angle-resolved photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beaux, M.F., E-mail: mbeaux@lanl.gov [MPA Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Durakiewicz, T. [MPA Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Moreschini, L.; Grioni, M. [IPN, Ecole Polytechnique Federale (EPFL), CH-1015 Lausanne (Switzerland); Offi, F. [CNISM and Dipartimento de Fisica, Universita Roma Tre, Via della Vasca Navale 84, 1-00146 Rome (Italy); Monaco, G. [European Synchrotron Radiation Facility, B.P. 220, F-38042 Grenoble (France); Panaccione, G. [Istituto Officina dei Materiali CNR, Laboratorio TASC, Area Science Park, Basovizza S.S. 14 Km 163.5, I-34012 Trieste, 9 (Italy); Joyce, J.J.; Bauer, E.D.; Sarrao, J.L. [MPA Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Butterfield, M.T. [KLA-Tencor, 1 Technology Drive, Milpitas, CA (United States); Guziewicz, E. [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland)

    2011-11-15

    Highlights: {yields} Electronic structure of single crystal UPd{sub 3}, UGe{sub 2}, and USb{sub 2} was measured by hard X-ray and angle-resolved photoemission spectroscopy. {yields} Angle resolved photoemission results demonstrate hybridization between U 5f and Pd 4d electrons within UPd{sub 3}. {yields} HAXPES probing of bulk features within of UPd{sub 3}, UGe{sub 2}, and USb{sub 2} samples with native oxide contamination demonstrated. {yields} Two distinct spectral features identified for Sb I and Sb II sites within USb{sub 2} HAXPES spectrum. {yields} Line shape analysis reveals correlations between Doniach-Sunjic asymmetry coefficients and 5f localization. - Abstract: Electronic structure of single crystal UPd{sub 3}, UGe{sub 2}, and USb{sub 2} has been measured from hard X-ray photoelectron spectroscopy (HAXPES) with 7.6 keV photons at the European Synchrotron Radiation Facility (ESRF). Lower photon energy angle-resolved photoelectron spectroscopy (ARPES) was also performed at the Synchrotron Radiation Center (SRC). Herein the following results are presented: (i) ARPES results demonstrate hybridization between the U 5f and Pd 4d electrons within UPd{sub 3}. (ii) The greatly reduced surface sensitivity of HAXPES enabled observation of the bulk core levels in spite of surface oxidation. Photoelectron mean-free-path versus oxide layer thickness considerations were used to model the effectiveness of HAXPES for probing bulk features of in-air cleaved samples. (iii) Two distinct features separated by 800 meV were observed for the Sb 3d core level. These two features are attributed to manifestations of two distinct Sb sites within the USb{sub 2} single crystal as supported by consideration of interatomic distances and enthalpy-of-formation. (iv) Doniach-Sunjic line shape analysis of core level spectral features revealed correlations between asymmetry coefficients and 5f localization.

  18. 2-Butyne on Si(0 0 1) at room temperature: An XPS and NEXAFS study

    Energy Technology Data Exchange (ETDEWEB)

    Bournel, F., E-mail: fabrice.bournel@upmc.fr [Laboratoire de Chimie Physique Matiere et Rayonnement, UMR CNRS 7614, Universite Pierre et Marie Curie, Paris 6, Paris (France); Gallet, J.-J.; Rochet, F. [Laboratoire de Chimie Physique Matiere et Rayonnement, UMR CNRS 7614, Universite Pierre et Marie Curie, Paris 6, Paris (France); Hennies, F. [MAX-Lab Synchrotron, Lund University, Lund (Sweden); Silly, M.; Sirotti, F. [Synchrotron SOLEIL, St Aubin (France)

    2011-04-15

    Research highlights: {yields} Adsorption of 2-butyne on Si(001)-2 x 1. {yields} 3D maps of real time Si2p and C1s XPS while dosing. {yields} NEXAFS C K edge spectra of 2-butyne on Si(001). {yields} 2-butyne is 'di-sigma' bound in a 'on-dimer' geometry on Si(001)-2 x 1 at room temperature. - Abstract: We present here a study of the adsorption of 2-butyne (CH{sub 3}-C{identical_to}C-CH{sub 3}) on the Si(0 0 1)-2 x 1 silicon surface at room temperature using synchrotron radiation photoemission spectroscopy (XPS) and X-ray absorption spectroscopy (NEXAFS). In particular, the Si2p and C1s core levels were followed by real-time photoemission (measuring while dosing). The intensity of the Si2p surface state component gradually diminishes with an increasing exposure to the gas. The C1s photoemission line is decomposed into two main components with their vibrational series, attributed to the two inner carbons (bonded to silicon) and the two methyl carbons (protruding into the vacuum), respectively. C1s real-time XPS indicates that the chemical bonding of the molecule does not change from low coverage to saturation coverage. NEXAFS spectroscopy performed at the C K-edge using linearly polarized radiation reveals the presence of a {pi}*(C=C) molecular orbital parallel to the surface, resulting from the opening of the triple C{identical_to}C bond and the formation of two {sigma}(Si-C) bonds. The attachment of the molecule via C-H bond scission (conserving the C{identical_to}C bond) is excluded. The clear-cut observation of a C=C bond, combined to our preceding angle-resolved UV photoemission spectroscopy (ARUPS) work [Bournel et al., Surf. Sci. 601 (2007) 3750] favors the on-dimer adsorption model at saturation ({approx}3 L).

  19. Strong electron correlations in the normal state of the iron-based FeSe0.42Te0.58 superconductor observed by angle-resolved photoemission spectroscopy.

    Science.gov (United States)

    Tamai, A; Ganin, A Y; Rozbicki, E; Bacsa, J; Meevasana, W; King, P D C; Caffio, M; Schaub, R; Margadonna, S; Prassides, K; Rosseinsky, M J; Baumberger, F

    2010-03-05

    We investigate the normal state of the "11" iron-based superconductor FeSe0.42Te0.58 by angle-resolved photoemission. Our data reveal a highly renormalized quasiparticle dispersion characteristic of a strongly correlated metal. We find sheet dependent effective carrier masses between approximately 3 and 16m{e} corresponding to a mass enhancement over band structure values of m{*}/m{band} approximately 6-20. This is nearly an order of magnitude higher than the renormalization reported previously for iron-arsenide superconductors of the "1111" and "122" families but fully consistent with the bulk specific heat.

  20. Depth distribution of secondary phases in kesterite Cu2ZnSnS4 by angle-resolved X-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    J. Just

    2017-12-01

    Full Text Available The depth distribution of secondary phases in the solar cell absorber material Cu2ZnSnS4 (CZTS is quantitatively investigated using X-ray Absorption Near Edge Structure (XANES analysis at the K-edge of sulfur at varying incidence angles. Varying information depths from several nanometers up to the full thickness is achieved. A quantitative profile of the phase distribution is obtained by a self-consistent fit of a multilayer model to the XANES spectra for different angles. Single step co-evaporated CZTS thin-films are found to exhibit zinc and copper sulfide secondary phases preferentially at the front or back interfaces of the film.

  1. Recurrent dislocations of the atlantooccipital and atlantoaxial joints in a halo vest fixator are resolved by backrest elevation in an elevation angle-dependent manner.

    Science.gov (United States)

    Kato, Go; Kawaguchi, Kenichi; Tsukamoto, Nobuaki; Komiyama, Keisuke; Mizuta, Kazutaka; Onohara, Takayuki; Okano, Hirofumi; Hotokezaka, Shunsuke; Mae, Takao

    2015-10-01

    Halo fixation is now universally performed in the initial reduction and fixation of unstable upper cervical spine injuries; however, persistent high instability and recurrent dislocations of the atlantooccipital and atlantoaxial joints after fixation are not well recognized. The aim was to describe persistent instability of traumatic dislocations of the atlantooccipital and atlantoaxial joints after halo fixation and a useful method for preventing instability. This was a case report of a patient who survived traumatic dislocations of the atlantooccipital and atlantoaxial joints. A 73-year-old woman diagnosed with dislocations of the atlantooccipital and atlantoaxial joints along with multiple other injuries sustained in a traffic accident was included. After initial closed reduction and halo fixation, congruity of the atlantooccipital and atlantoaxial joints was evaluated using, condylar gap, atlantodental interval, and flexion angulation of C1-C2 after the initial examination and before surgery. Changes in parameters 12 hours after halo fixation revealed re-dislocations and instability of the joints. Backrest elevation with halo fixation tended to reduce re-dislocations. Therefore, we carefully increased the backrest angle and measured the parameters at several angles of elevation within a range that did not affect vital signs to observe the effectiveness of elevation against re-dislocations. Elevation changed the parameters in an elevation angle-dependent manner, and these changes suggested that elevation was effective for reducing re-dislocation of both the atlantooccipital and atlantoaxial joints during halo fixation. With no major complications, this method enabled us to maintain good congruity of the joints for approximately 2 weeks until posterior spinal fusion with internal fixation. Backrest elevation with halo fixation appears safe to be performed without any other devices and is beneficial for blocking re-dislocation of both the atlantooccipital and

  2. Exploring the Electronic Structure and Chemical Homogeneity of Individual Bi2Te3 Nanowires by Nano-Angle-Resolved Photoemission Spectroscopy.

    Science.gov (United States)

    Krieg, Janina; Chen, Chaoyu; Avila, José; Zhang, Zeying; Sigle, Wilfried; Zhang, Hongbin; Trautmann, Christina; Asensio, Maria Carmen; Toimil-Molares, Maria Eugenia

    2016-07-13

    Due to their high surface-to-volume ratio, cylindrical Bi2Te3 nanowires are employed as model systems to investigate the chemistry and the unique conductive surface states of topological insulator nanomaterials. We report on nanoangle-resolved photoemission spectroscopy (nano-ARPES) characterization of individual cylindrical Bi2Te3 nanowires with a diameter of 100 nm. The nanowires are synthesized by electrochemical deposition inside channels of ion-track etched polymer membranes. Core level spectra recorded with submicron resolution indicate a homogeneous chemical composition along individual nanowires, while nano-ARPES intensity maps reveal the valence band structure at the single nanowire level. First-principles electronic structure calculations for chosen crystallographic orientations are in good agreement with those revealed by nano-ARPES. The successful application of nano-ARPES on single one-dimensional nanostructures constitutes a new avenue to achieve a better understanding of the electronic structure of topological insulator nanomaterials.

  3. Angle-resolved photoemission study of the evolution of band structure and charge density wave properties in RTe3 (R= Y, La, Ce, Sm, Gd, Tb and Dy)

    Energy Technology Data Exchange (ETDEWEB)

    Brouet, V.; Yang, W.L.; Zhou, X.J.; Hussain, Z.; Moore, R.G.; He, R.; Lu, D.H.; Shen, Z.X.; Laverock, J.; Dugdale, S.; Ru, N.; Fisher, I.R.

    2010-02-15

    We present a detailed ARPES investigation of the RTe{sub 3} family, which sets this system as an ideal 'textbook' example for the formation of a nesting driven Charge Density Wave (CDW). This family indeed exhibits the full range of phenomena that can be associated to CDW instabilities, from the opening of large gaps on the best nested parts of Fermi Surface (FS) (up to 0.4eV), to the existence of residual metallic pockets. ARPES is the best suited technique to characterize these features, thanks to its unique ability to resolve the electronic structure in k-space. An additional advantage of RTe{sub 3} is that the band structure can be very accurately described by a simple 2D tight-binding (TB) model, which allows one to understand and easily reproduce many characteristics of the CDW. In this paper, we first establish the main features of the electronic structure, by comparing our ARPES measurements with Linear Muffin-Tin Orbital band calculations. We use this to define the validity and limits of the TB model. We then present a complete description of the CDW properties and, for the first time, of their strong evolution as a function of R. Using simple models, we are able to reproduce perfectly the evolution of gaps in k-space, the evolution of the CDW wave vector with R and the shape of the residual metallic pockets. Finally, we give an estimation of the CDW interaction parameters and find that the change in the electronic density of states n(Ef), due to lattice expansion when different R ions are inserted, has the correct order of magnitude to explain the evolution of the CDW properties.

  4. Angle-resolved photoemission spectroscopy of (Ca, Na) sub 2 CuO sub 2 Cl sub 2 crystals: Fingerprints of a magnetic insulator in a heavily underdoped superconductor

    CERN Document Server

    Kohsaka, Y; Ronning, F

    2003-01-01

    Electric evolution from an antiferromagnet to a high-T sub c superconductor is revealed by angle-resolved photoemission experiments on tetragonal Ca sub 1 sub . sub 9 Na sub 0 sub . sub 1 CuO sub 2 Cl sub 2 single crystals, which were successfully grown for the first time under high pressures. In this underdoped superconductor, we found clear fingerprints of the parent insulator: a shadow band and a large pseudogap. These observations are most likely described by a 'chemical potential shift', which contrasts clearly with the prevailing wisdom of the pinned chemical potential' learned from the prototype La sub 2 sub - sub x Sr sub x CuO sub 4 , demonstrating that the route to a high-T sub c superconductor is not unique. (author)

  5. Absence of a holelike fermi surface for the iron-based K0.8F1.7Se2 superconductor revealed by angle-resolved photoemission spectroscopy.

    Science.gov (United States)

    Qian, T; Wang, X-P; Jin, W-C; Zhang, P; Richard, P; Xu, G; Dai, X; Fang, Z; Guo, J-G; Chen, X-L; Ding, H

    2011-05-06

    We have performed an angle-resolved photoemission spectroscopy study of the new iron-based superconductor K(0.8)Fe(1.7)Se(2) (T(c)∼30 K). Clear band dispersion is observed with the overall bandwidth renormalized by a factor of 2.5 compared to our local density approximation calculations, indicating relatively strong correlation effects. Only an electronlike band crosses the Fermi energy, forming a nearly circular Fermi surface (FS) at M (π, 0). The holelike band at Γ sinks ∼90 meV below the Fermi energy, with an indirect band gap of 30 meV, to the bottom of the electronlike band. The observed FS topology in this superconductor favors (π, π) inter-FS scattering between the electronlike FSs at the M points, in sharp contrast to other iron-based superconductors which favor (π, 0) inter-FS scattering between holelike and electronlike FSs.

  6. Reaffirming the d(x2-y2) superconducting gap using the autocorrelation angle-resolved photoemission spectroscopy of Bi1.5Pb0.55Sr1.6La0.4CuO(6+δ).

    Science.gov (United States)

    Hashimoto, M; He, R-H; Testaud, J P; Meevasana, W; Moore, R G; Lu, D H; Yoshida, Y; Eisaki, H; Devereaux, T P; Hussain, Z; Shen, Z-X

    2011-04-22

    Knowledge of the gap function is important to understand the pairing mechanism for high-temperature (T(c)) superconductivity. However, Fourier transform scanning tunneling spectroscopy (FT STS) and angle-resolved photoemission spectroscopy (ARPES) in the cuprates have reported contradictory gap functions, with FT-STS results deviating strongly from a canonical d(x2-y2) form. By applying an "octet model" analysis to autocorrelation ARPES, we reveal that a contradiction occurs because the octet model does not consider the effects of matrix elements and the pseudogap. This reaffirms the canonical d(x2-y2) superconducting gap around the node, which can be directly determined from ARPES. Further, our study suggests that the FT-STS reported fluctuating superconductivity around the node at far above T(c) is not necessary to explain the existence of the quasiparticle interference at low energy.

  7. Differences between GaAs/GaInP and GaAs/AlInP interfaces grown by movpe revealed by depth profiling and angle-resolved X-ray photoelectron spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    López-Escalante, M.C., E-mail: mclopez@uma.es [Nanotech Unit, Laboratorio de Materiales y Superficies, Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain); Gabás, M. [The Nanotech Unit, Depto. de Física Aplicada I, Andalucía Tech, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga Spain (Spain); García, I.; Barrigón, E.; Rey-Stolle, I.; Algora, C. [Instituto de Energía Solar, Universidad Politécnica de Madrid, Avda. Complutense 30, 28040 Madrid Spain (Spain); Palanco, S.; Ramos-Barrado, J.R. [The Nanotech Unit, Depto. de Física Aplicada I, Andalucía Tech, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga Spain (Spain)

    2016-01-01

    Graphical abstract: - Highlights: • GaAs, AlInP and GaInP epi-layers grown in a MOVPE facility. • GaAs/GaInP and GaAs/AlInP interfaces studied through the combination of angle resolved and depth profile X-ray photoelectros spectroscopies. • GaAs/GaInP interface shows no features appart from GaAs, GaInP and mixed GaInAs or GaInAsP phases. • GaAs/AlInP interface shows traces of an anomalous P environment, probably due to P-P clusters. - Abstract: GaAs/GaInP and GaAs/AlInP interfaces have been studied using photoelectron spectroscopy tools. The combination of depth profile through Ar{sup +} sputtering and angle resolved X-ray photoelectron spectroscopy provides reliable information on the evolution of the interface chemistry. Measurement artifacts related to each particular technique can be ruled out on the basis of the results obtained with the other technique. GaAs/GaInP interface spreads out over a shorter length than GaAs/AlInP interface. The former could include the presence of the quaternary GaInAsP in addition to the nominal GaAs and GaInP layers. On the contrary, the GaAs/AlInP interface exhibits a higher degree of compound mixture. Namely, traces of P atoms in a chemical environment different to the usual AlInP coordination were found at the top of the GaAs/AlInP interface, as well as mixed phases like AlInP, GaInAsP or AlGaInAsP, located at the interface.

  8. Handbook of Monochromatic XPS Spectra, Semiconductors

    Science.gov (United States)

    Crist, B. Vincent

    2000-10-01

    This handbook is one of three containing an invaluable collection of research grade XPS Spectra. Each handbook concentrates on a specific family of materials (the elements and their native oxides, semiconductors and polymers) and is entirely self-contained. The introductory section to each handbook includes comprehensive information about the XPS instrument used, the materials and the advanced methods used to collect the spectra. Energy resolution settings, instrument characteristics, energy referencing methods, traceability, energy scale calibration details and transmission function are all reported. Among the many valuable features included in each of these handbooks are: ? All spectra were measured by using AlK monochromatic X-rays ? All spectra were collected in a self-consistent manner to maximise data reliability and quality ? All peaks in the wide spectra are fully annotated and accompanied by detailed atom % tables that report BEs for each of the labelled peaks ? Each high-energy resolution spectrum is peak-fitted and accompanied by detailed tables containing binding energies, FWHMs and relative percentages. In this volume 'Semiconductors' are contained XPS Spectra from a wide range of semiconductive materials and related materials, a rare tool for scientists and analysts in this area. Exclusive features of this volume include: ? Binding energies are accurate to +/- 0.08eV ? Charge compensation was done with a flood-gun mesh-screen system ? Valence band spectra document the occupied density of states (DOS) and the fundamental electronic nature of the semi-conductive materials analysed ? Analyses were done: "as received", "freshly fractured in air", "ion etched" and "chemically treated" ? Alphabetically organised by chemical abbreviations for ease of locating each material This handbook is an invaluable reference for materials scientists and electrical engineers in industry, academia and government laboratories interested in the analysis of semiconductors

  9. Quasiparticle dynamics across the full Brillouin zone of Bi2Sr2CaCu2O8+δ traced with ultrafast time and angle-resolved photoemission spectroscopy

    Directory of Open Access Journals (Sweden)

    Georgi L. Dakovski

    2015-09-01

    Full Text Available A hallmark in the cuprate family of high-temperature superconductors is the nodal-antinodal dichotomy. In this regard, angle-resolved photoemission spectroscopy (ARPES has proven especially powerful, providing band structure information directly in energy-momentum space. Time-resolved ARPES (trARPES holds great promise of adding ultrafast temporal information, in an attempt to identify different interaction channels in the time domain. Previous studies of the cuprates using trARPES were handicapped by the low probing energy, which significantly limits the accessible momentum space. Using 20.15 eV, 12 fs pulses, we show for the first time the evolution of quasiparticles in the antinodal region of Bi2Sr2CaCu2O8+δ and demonstrate that non-monotonic relaxation dynamics dominates above a certain fluence threshold. The dynamics is heavily influenced by transient modification of the electron-phonon interaction and phase space restrictions, in stark contrast to the monotonic relaxation in the nodal and off-nodal regions.

  10. XPS study of siloxane plasma polymer films

    Czech Academy of Sciences Publication Activity Database

    Bálková, R.; Zemek, Josef; Čech, V.; Vaněk, J.; Přikryl, R.

    174-175, - (2003), s. 1159-1163 ISSN 0257-8972 R&D Projects: GA ČR GA104/00/0708; GA MŠk OC 527.110 Institutional research plan: CEZ:AV0Z1010914 Keywords : radio frequency(RF) * X-ray photoelectron spectroscopy(XPS) * electron spectroscopy for chemical analysis(ESCA) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.410, year: 2003

  11. On calculating intensity from XPS spectra

    International Nuclear Information System (INIS)

    Vegh, Janos

    2006-01-01

    The intensity calculation is the basis for all quantitative applications of electron spectroscopy. Unfortunately, some misinterpreted terms are used and correctly interpreted terms are misused in the overwhelming majority of publications in XPS, including most textbooks as well as accepted and proposed standards. Due to this mistake the number of the detected electrons is given as having dimension of energy (?) and also the formulas for calculating the peak area and its standard deviation are wrong. Since in all other spectroscopic fields the number of the detected particles is dimensionless, continuing this practice leads to isolating XPS from both other measurement sciences and theory, because the measured total intensity in XPS is simply not comparable to the ones derived with other spectroscopic methods or theoretically. Therefore, the basic measuring processes and terms are critically reviewed and their physically correct interpretation is given. This interpretation reveals that the error is hidden in the incorrect interpretation of both the measurement process and the measured quantity. It is shown that through using the correct interpretation both the dimensions of the intensity calculated from electron spectroscopic measurements as well as the formulas related to the intensity and its standard deviation will agree with all other spectroscopic fields

  12. Angle-Resolved Photoemission Study of the Evolution of Band Structure And Charge Density Wave Properties in Rte (3) (R=Y, La, Ce, Sm, Gd, Tb, And Dy)

    Energy Technology Data Exchange (ETDEWEB)

    Brouet, V.; Yang, W.L.; Zhou, X.J.; Hussain, Z.; Moore, R.G.; He, R.; Lu, D.H.; Shen, Z.X.; Laverock, J.; Dugdale, S.B.; Ru, N.; Fisher, I.R.

    2009-05-12

    We present a detailed angle-resolved photoemission spectroscopy (ARPES) investigation of the RTe{sub 3} family, which sets this system as an ideal 'textbook' example for the formation of a nesting driven charge density wave (CDW). This family indeed exhibits the full range of phenomena that can be associated to CDW instabilities, from the opening of large gaps on the best nested parts of Fermi surface (up to 0.4 eV), to the existence of residual metallic pockets. ARPES is the best suited technique to characterize these features, thanks to its unique ability to resolve the electronic structure in k space. An additional advantage of RTe{sub 3} is that the band structure can be very accurately described by a simple two dimensional tight-binding (TB) model, which allows one to understand and easily reproduce many characteristics of the CDW. In this paper, we first establish the main features of the electronic structure by comparing our ARPES measurements with the linear muffin-tin orbital band calculations. We use this to define the validity and limits of the TB model. We then present a complete description of the CDW properties and of their strong evolution as a function of R. Using simple models, we are able to reproduce perfectly the evolution of gaps in k space, the evolution of the CDW wave vector with R, and the shape of the residual metallic pockets. Finally, we give an estimation of the CDW interaction parameters and find that the change in the electronic density of states n(E{sub F}), due to lattice expansion when different R ions are inserted, has the correct order of magnitude to explain the evolution of the CDW properties.

  13. SORCE XPS Level 3 Solar Spectral Irradiance 6-Hour Means V011 (SOR3XPS6) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE XUV Photometer System (XPS) Solar Spectral Irradiance (SSI) 6-Hour Data Product SOR3XPS6 contains solar extreme ultraviolet irradiances in the 0.1 to 27 nm...

  14. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    [3] Karl Alex Mueller, personal communications (2006). In contrast, see P W Anderson, Nature Phys. 2, 626 (2006) or the whole issue Nature. Phys. - 20 years of HTSC (March 2006). [4] G Baskaran, personal communication, Kanpur (2006), also CM9910161v1. [5] T Timusk and B Statt, Rep. Prog. Phys. 62(1), 61 (1999).

  15. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    We gratefully acknowledge financial support by the EPFL and the Swiss National. Fund for Scientific Research. This work is based upon research conducted at the. Synchrotron Radiation Center, University of Wisconsin-Madison, which is sup- ported by the NSF under Award No. DMR-0084402. DP gratefully acknowledges.

  16. Angle-resolved catholdoluminescence imaging polarimetry

    NARCIS (Netherlands)

    Osorio, C.I.; Coenen, T.; Brenny, B.J.M.; Polman, A.; Koenderink, A.F.

    2015-01-01

    Cathodoluminescence spectroscopy (CL) allows characterizing light emission in bulk and nanostructured materials and is a key tool in fields ranging from materials science to nanophotonics. Previously, CL measurements focused on the spectral content and angular distribution of emission, while the

  17. Electronic structure of ThRu2Si2 studied by angle-resolved photoelectron spectroscopy: Elucidating the contribution of U 5 f states in URu2Si2

    Science.gov (United States)

    Fujimori, Shin-ichi; Kobata, Masaaki; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Matsumoto, Yuji; Yamamoto, Etsuji; Tateiwa, Naoyuki; Haga, Yoshinori

    2017-09-01

    The electronic structure of ThRu2Si2 was studied using angle-resolved photoelectron spectroscopy (ARPES) with incident photon energies of h ν =655 -745 eV. Detailed band structure and the three-dimensional shapes of Fermi surfaces were derived experimentally, and their characteristic features were mostly explained by means of band-structure calculations based on density-functional theory. Comparison of the experimental ARPES spectra of ThRu2Si2 with those of URu2Si2 shows that they have considerably different spectral profiles, particularly in the energy range of 1 eV from the Fermi level, suggesting that U 5 f states are substantially hybridized in these bands. The relationship between the ARPES spectra of URu2Si2 and ThRu2Si2 is very different from the one between the ARPES spectra of CeRu2Si2 and LaRu2Si2 , where the intrinsic difference in their spectra is limited only in the very vicinity of the Fermi energy. The present result suggests that the U 5 f electrons in URu2Si2 have strong hybridization with ligand states and have an essentially itinerant character.

  18. Spatial structure determination of ({radical}3 x {radical}3)R30{degrees} and (1.5 x 1.5)R18{degrees}CO on Cu(111) using angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors report a study of the spatial structure of ({radical}3 x {radical}3)R30{degrees} (low coverage) and (1.5 x 1.5)R18{degrees} (intermediate coverage) CO adsorbed on Cu(111), using the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) technique at beamline 9.3.2 at the Advanced Light Source. The CO molecule adsorbs on an atop site for both adsorption phases. Full multiple-scattering spherical-wave (MSSW) calculations were used to extract the C-Cu. bond length and the first Cu-Cu layer spacing for each adsorption phase. The authors find that the C-Cu bond length remains unchanged with increasing coverage, but the 1st Cu-Cu layer spacing contracts at the intermediate coverage. They calculate the bending mode force constant in the (1.5 x 1.5)R18{degrees} phase to be K{sub {delta}} = 2.2 (1) x 10{sup {minus}12} dyne-cm/rad from their experimentally determined bond lengths combined with previously published infra-red absorption frequencies.

  19. Tl Cuprate Superconductors Studied by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, R. P. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099 (United States); Siegal, M. P. [Sandia National Laboratories, Albuquerque, NM 87185-1421 (United States); Overmyer, D. L. [Sandia National Laboratories, Albuquerque, NM 87185-1421 (United States); Ren, Z. F. [Department of Chemistry, State University of New York, Buffalo, NY 14260-3000 (United States); Lao, J. Y. [Department of Chemistry, State University of New York, Buffalo, NY 14260-3000 (United States); Wang, J. H. [Department of Chemistry, State University of New York, Buffalo, NY 14260-3000 (United States)

    1999-07-01

    XPS measurements on epitaxial thin films of the Tl cuprate superconductors Tl2Ba2CaCu2O8, Tl2Ba2Ca2Cu3O10, and Tl0.78Bi0.22Ba0.4Sr1.6Ca2Cu3O9-{delta} are presented. These data, together with previous measurements in this lab on Tl2Ba2CuO6-{delta} and TlBa2CaCu2O7-{delta}, comprise a comprehensive data set for comparison of Tl cuprates in which the number of Tl-O and Cu-O layers, and hence the chemical and electronic properties, vary. (c) 2000 American Vacuum Society.

  20. Tl Cuprate Superconductors Studied by XPS

    International Nuclear Information System (INIS)

    Vasquez, R. P.; Siegal, M. P.; Overmyer, D. L.; Ren, Z. F.; Lao, J. Y.; Wang, J. H.

    1999-01-01

    XPS measurements on epitaxial thin films of the Tl cuprate superconductors Tl2Ba2CaCu2O8, Tl2Ba2Ca2Cu3O10, and Tl0.78Bi0.22Ba0.4Sr1.6Ca2Cu3O9-δ are presented. These data, together with previous measurements in this lab on Tl2Ba2CuO6-δ and TlBa2CaCu2O7-δ, comprise a comprehensive data set for comparison of Tl cuprates in which the number of Tl-O and Cu-O layers, and hence the chemical and electronic properties, vary. (c) 2000 American Vacuum Society

  1. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H.J.; Nesper, R. [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  2. XPS investigation of depth profiling induced chemistry

    Science.gov (United States)

    Pratt, Quinn; Skinner, Charles; Koel, Bruce; Chen, Zhu

    2017-10-01

    Surface analysis is an important tool for understanding plasma-material interactions. Depth profiles are typically generated by etching with a monatomic argon ion beam, however this can induce unintended chemical changes in the sample. Tantalum pentoxide, a sputtering standard, and PEDOT:PSS, a polymer that was used to mimic the response of amorphous carbon-hydrogen co-deposits, were studied. We compare depth profiles generated with monatomic and gas cluster argon ion beams (GCIB) using X-ray photoelectron spectroscopy (XPS) to quantify chemical changes. In both samples, monatomic ion bombardment led to beam-induced chemical changes. Tantalum pentoxide exhibited preferential sputtering of oxygen and the polymer experienced significant bond modification. Depth profiling with clusters is shown to mitigate these effects. We present sputtering rates for Ta2O5 and PEDOT:PSS as a function of incident energy and flux. Support was provided through DOE Contract Number DE-AC02-09CH11466.

  3. XPS characterization of naturally aged wood

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, Carmen-Mihaela, E-mail: mihapop@icmpp.ro [Romanian Academy, ' P.Poni' Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Laboratory, 41A Gr. Ghica Voda Alley, Ro 700487, Iasi (Romania); Tibirna, Carmen-Mihaela [Centre de Recherche sur le Bois (CRB), Departement des Sciences du Bois et de la Foret, Laval University, Quebec, G1 V 0A6 (Canada); Vasile, Cornelia [Romanian Academy, ' P.Poni' Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Laboratory, 41A Gr. Ghica Voda Alley, Ro 700487, Iasi (Romania)

    2009-12-15

    Wood deterioration over time (by a simultaneously biological, chemical or physical attack) is an inevitable continuous process in the environment. This process destroys all heritage resulting in a loss of valuable old wooden structures and their properties. What type of deterioration occurs and how these processes impact the wood are important questions that need consideration if old wooden structures are to be studied and properly preserved. X-ray photoelectron spectroscopy (XPS) was employed to analyze the undegraded (sound wood of {approx}6 years) and degraded lime wood ({approx}150 years, {approx}180 years, {approx}250 years) from painting supports, differing in terms of the provenance, conservation status and environmental conditions of storage. Elaborated XPS analysis (comparison of C and O individual spectra, decomposition for each atomic component, calculation of O/C ratio) provided a view of the composition of the sample surfaces analyzed. On the basis of these results, it was confirmed that significant changes occurred in the first period of ageing, the {approx}150 years lime wood sample having the highest percent of the carbon atoms and the lowest percentage of oxygen atoms and, respectively O/C ratio. According to our previous studies (X-ray diffraction, FTIR spectroscopy, analytical pyrolysis combined with gas chromatography/mass spectrometry and ESR-spectroscopy results), these features could be attributed to the fact that hemicelluloses and amorphous cellulose are degraded in time, whereas the crystalline fraction of cellulose decreases more slowly than the amorphous one. Consequently, the observation may be made that lignin is not so easily degraded under the environmental conditions where paintings are frequently exposed.

  4. A study of angle-resolved photoemission extended fine structure as applied to the Ni 3p, Cu 3s, and Cu 3p core levels of the respective clean (111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Huff, W.R.A.; Moler, E.J.; Kellar, S.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The first non-s initial state angle-resolved photoemission extended fine structure (ARPEFS) study of clean surfaces for the purpose of further understanding the technique is reported. The surface structure sensitivity of ARPEFS applied to clean surfaces and to arbitrary initial states is studied using normal photoemission data taken from the Ni 3p core levels of a Ni(111) single crystal and the Cu 3s and the Cu 3p core-levels of a Cu(111) single crystal. The Fourier transforms of these clean surface data are dominated by backscattering. Unlike the s initial state data, the p initial state data show a peak in the Fourier transform corresponding to in-plane scattering from the six nearest-neighbors to the emitter. Evidence was seen for single-scattering events from in the same plane as the emitters and double-scattering events. Using a newly developed, multiple-scattering calculation program, ARPEFS data from clean surfaces and from p initial states can be modeled to high precision. Although there are many layers of emitters when measuring photoemission from a clean surface, test calculations show that the ARPEFS signal is dominated by photoemission from atoms in the first two crystal layers. Thus, ARPEFS applied to clean surfaces is sensitive to surface reconstruction. The known contraction of the first two Cu(111) layers is confirmed. The best-fit calculation for clean Ni(111) indicates an expansion of the first two layers. To better understand the ARPEFS technique, the authors studied s and non-s initial state photoemission from clean metal surfaces.

  5. XPS and NEXAFS study of tyrosine-terminated propanethiol assembled on gold

    CERN Document Server

    Petoral, R M

    2003-01-01

    Tyrosine-terminated propanethiol (TPT), tyrosine linked to 3-mercaptopropionic acid through an amide bond, is adsorbed to gold surfaces. The adsorbates are characterized by means of X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). XPS is used to investigate the chemical binding and electronic structure of the monolayer. Strong molecular binding of the tyrosine derivative on the gold surface through the sulfur atom is attained. Angle-dependent XPS results shows that TPT molecules are oriented with the sulfur atoms molecularly oriented close to the gold surface and that the phenol moiety is oriented away from the gold surface. Average orientation of the adsorbate on gold is deduced using the NEXAFS results. It shows that the main molecular axis is tilted approximately 38 deg. relative to the Au surface normal. The ring plane of the phenol moiety exhibits a preferential orientation with an average tilt angle of the normal of the ring plane from the surfa...

  6. Application of XPS to study electrocatalysts for fuel cells

    Science.gov (United States)

    Corcoran, C. J.; Tavassol, H.; Rigsby, M. A.; Bagus, P. S.; Wieckowski, A.

    Analysis of the surface is paramount to understanding the reactivity, selectivity, and catalytic ability of substances. In particular, this understanding is required to make an efficient use of the catalytic surfaces in fuel cells. X-ray photoelectron spectroscopy (XPS) allows determination of changes in the electronic structure for different surface preparation and composition based, mainly, on shifts of the binding energies of core-level electrons. It is also an ideal method that allows identification of the surface or near surface species in relation to fuel cell catalysis. However, the fundamental theoretical concepts, which are used to analyze and interpret XPS spectra are sometimes not correctly understood or correctly applied. In this review, we not only report on XPS operational parameters in use for fuel cell electrocatalysis, but, more significantly, we review and provide rigorous definitions of fundamental concepts used to understand XPS spectra, including the separation of initial and final state effects and the relaxation of valence electrons to screen core-holes. An additional direction of our review is to show the relationships between XPS binding energy shifts and XPS satellite structure with chemical bonding and chemical interactions. However, our primary concern is to provide reviews of representative cases of the application of XPS to solving fuel cell and electrocatalysis-related problems, highlighting progress in this laboratory. We begin with descriptions of essential issues in fuel cell science and with a review of key concepts of XPS. Then, we briefly report on the XPS instrumentation, after which, studies of fundamental importance to electrochemical processes are reviewed. This review includes an overview of complex organic and biological systems in relation to fuel cell electrocatalysis (probed via XPS). We conclude with a discussion of modern developments in XPS methodology.

  7. XPS study of palladium sensitized nano porous silicon thin film

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 6. XPS study of palladium sensitized nano porous silicon thin ... To stabilize the material PS surface was modified by a simple and low cost chemical method using PdCl2 solution at room temperature. X-ray photoelectron spectroscopy (XPS) was performed to ...

  8. Scoliosis angle

    International Nuclear Information System (INIS)

    Marklund, T.

    1978-01-01

    The most commonly used methods of assessing the scoliotic deviation measure angles that are not clearly defined in relation to the anatomy of the patient. In order to give an anatomic basis for such measurements it is proposed to define the scoliotic deviation as the deviation the vertebral column makes with the sagittal plane. Both the Cobb and the Ferguson angles may be based on this definition. The present methods of measurement are then attempts to measure these angles. If the plane of these angles is parallel to the film, the measurement will be correct. Errors in the measurements may be incurred by the projection. A hypothetical projection, called a 'rectified orthogonal projection', is presented, which correctly represents all scoliotic angles in accordance with these principles. It can be constructed in practice with the aid of a computer and by performing measurements on two projections of the vertebral column; a scoliotic curve can be represented independent of the kyphosis and lordosis. (Auth.)

  9. Hydrophilic modification of polystyrene with hydrophobin for time-resolved immunofluorometric assay.

    Science.gov (United States)

    Wang, Zefang; Huang, Yujian; Li, Shan; Xu, Haijin; Linder, Markus B; Qiao, Mingqiang

    2010-11-15

    Herein we reported that a hydrophobin film was used as a solid support on the polystyrene surface for immobilizing antibodies in the time-resolved immunofluorometric assay (TR-IFMA). Quartz crystal microbalance with dissipative monitoring (QCM-D), X-ray photoelectron spectroscopy (XPS) and water contact angle (WCA) measurements, as well as atomic force microscope (AFM) were used to characterize the hydrophilic modification of polystyrene surface with Class I hydrophobin isolated from Grifola frondosa (HGFI). The performance of HGFI-modified polystyrene was evaluated by TR-IFMA of carcinoembryonic antigen (CEA). QCM-D revealed that HGFI formed an intact monolayer on the polystyrene at pH 5. XPS and WCA measurements showed that self-assembling HGFI could render polystyrene surface hydrophilic for three months. AFM indicated that an end-on antibody monolayer was adsorbed on the HGFI film rather than multilayers on the polystyrene in a side-on orientation. Furthermore, a linear calibration curve (from 5 to 600 ng/mL) of CEA showed HGFI-modified polystyrene had higher detection sensitivity than unmodified ones in TR-IFMA. This present method for modifying polystyrene is simple without severe chemical treatment and may have wide applicability to functionalize other supports for immobilizing biomolecules. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Characterization of weathered wood-plastic composite surfaces using FTIR spectroscopy, contact angle, and XPS

    Science.gov (United States)

    Nicole M. Stark; Laurent M. Matuana

    2007-01-01

    Much of the current growth of wood-plastic composites (WPCs) is due to increased penetration into the decking market; therefore it has become imperative to understand the durability of WPCs in outdoor applications. In this study, wood flour filled high-density polyethylene (HDPE) composites were manufactured through either injection molding or extrusion. A set of...

  11. SERS, XPS, and DFT Study of Adenine Adsorption on Silver and Gold Surfaces.

    Science.gov (United States)

    Pagliai, Marco; Caporali, Stefano; Muniz-Miranda, Maurizio; Pratesi, Giovanni; Schettino, Vincenzo

    2012-01-19

    The adsorption of adenine on silver and gold surfaces has been investigated combining density functional theory calculations with surface-enhanced Raman scattering and angle-resolved X-ray photoelectron spectroscopy measurements, obtaining useful insight into the orientation and interaction of the nucleobase with the metal surfaces.

  12. XPS investigations of tribofilms formed on CrN coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mandrino, Djordje, E-mail: djordje.mandrino@imt.si; Podgornik, Bojan

    2017-02-28

    Highlights: • Formation of tribofilms from lubricant additives on CrN surfaces during tribological contact confirmed by XPS. • Chemistry & chemical state of tribofilms obtained by XPS. • Thin sulphate film forms at the top of sulphide tribofilm. • Final type of sulphide in tribolayer depends on additive chemistry and testing temperature. - Abstract: Action of lubrication additives in the case of uncoated steel surfaces, including the type and mechanism of tribofilm formation is well known and understood. However, contact type of tribofilms which might form under the tribological contact between CrN coated surfaces, remains more or less unexplored. The aim of this investigation was to study the type of tribofilms formed on the CrN coated steel samples subjected to lubricated reciprocating sliding contact under different contact conditions Contact surface and tribofilms formed were studied by X-ray Photoelectron Spectroscopy (XPS). Sample surfaces were first imaged by Scanning Electron Microscopy (SEM) to determine areas of tribofilm formation as well as areas not affected by tribological contact. In these areas survey and high resolution (HR) XPS measurements were performed to obtain information about surface chemistry and oxidation states of the constituent elements. It was found that differences between different samples, observed by the XPS measurements, may reflect differences in chemistry of tribofilms formed under different contact conditions.

  13. Characterization of fossil remains using XRF, XPS and XAFS spectroscopies

    International Nuclear Information System (INIS)

    Zougrou, I M; Katsikini, M; Pinakidou, F; Paloura, E C; Brzhezinskaya, M; Papadopoulou, L; Vlachos, E; Tsoukala, E

    2016-01-01

    Synchrotron radiation micro-X-Ray Fluorescence (μ-XRF), X-ray photoelectron (XPS) and X-ray Absorption Fine Structure (XAFS) spectroscopies are applied for the study of paleontological findings. More specifically the costal plate of a gigantic terrestrial turtle Titanochelon bacharidisi and a fossilized coprolite of the cave spotted hyena Crocuta crocuta spelaea are studied. Ca L 2,3 -edge NEXAFS and Ca 2p XPS are applied for the identification and quantification of apatite and Ca containing minerals. XRF mapping and XAFS are employed for the study of the spatial distribution and speciation of the minerals related to the deposition environment. (paper)

  14. Surface and bulk investigation of ZSM5 and Al-MCM-41 usingsynchrotron XPS, XANES, and hexane cracking

    Energy Technology Data Exchange (ETDEWEB)

    Jalil, P.A.; Kariapper, M.S.; Faiz, Z.; Tabet, N.; Hamdan, N.M.; Diaz, J.; Hussain, Z.

    2005-05-12

    We present a comparative study of ZSM5 and Al-MCM-41 catalysts using spectroscopic and chemical techniques. The analysis of conventional and synchrotron XPS spectra of these catalysts reveals the presence of a topmost surface-related Si peak in addition to the bulk peak. XANES results suggest structural modification upon heating Al-MCM-41 at 500 C. Depth-resolved XPS data show Al depletion from the surface of Al-MCM-41 in contrast to surface enrichment of Al in ZSM5. These surface modifications could be one of the reasons for the weak acidity of Al-MCM-41 in chemical reactions such as hexane cracking at different temperatures.

  15. Surface and bulk investigation of ZSM5 and Al-MCM-41 usingsynchrotron XPS, XANES, and hexane cracking

    Energy Technology Data Exchange (ETDEWEB)

    Jalil, P.A.; Kariapper, M.S.; Faiz, Z.; Tabet, N.; Hamdan, N.M.; Diaz, J.; Hussain, Z.

    2005-05-12

    We present a comparative study of ZSM5 and Al-MCM-41 catalysts using spectroscopic and chemical techniques. The analysis of conventional and synchrotron XPS spectra of these catalysts reveals the presence of a topmost surface-related Si peak in addition to the bulkpeak. XANES results suggest structural modification upon heating Al-MCM-41 at 500 C. Depth-resolved XPS data show Al depletion from the surface of Al-MCM-41 in contrast to surface enrichment of Al in ZSM5. These surface modifications could be one of the reasons for the weak acidity of Al-MCM-41 in chemical reactions such as hexane cracking at different temperatures.

  16. Quantitative XPS analysis of thin iron-oxide films

    DEFF Research Database (Denmark)

    Graat, P.C.J.; Somers, Marcel A. J.

    1997-01-01

    Over the last decade Tougaard et al. (see e.g. Ref. 1) provided a formalism to calculate the contribution of inelastically scattered electrons to an XPS or AES spectrum. In that formalism it was assumed that the signal electrons move along straight lines to the surface. Recently, Werner et al. pr...

  17. XPS studies of the oxide formed on pure Ti

    International Nuclear Information System (INIS)

    Cremery, P.; David, D.; Beranger, G.; Oviedo, C.; Garcia, E.A.

    1980-01-01

    The XPS technique was used to study titanium samples oxidized at 200 ton of pure oxigen at different times and temperatures with the aim of producing variable oxide thicknesses. The thicknesses of different oxigen layers were determined by the nuclear reaction O 16 (d,p) O 17 *. (author) [pt

  18. XPS analysis of nanostructured materials and biological surfaces

    International Nuclear Information System (INIS)

    Baer, D.R.; Engelhard, M.H.

    2010-01-01

    This paper examines the types of information that XPS can provide about a variety of nanostructured materials. Although it is sometimes not considered a 'nanoscale analysis method,' XPS can provide a great deal of information about elemental distributions, layer or coating structure and thicknesses, surface functionality, and even particles sizes on the 1-20 nm scale for sample types that may not be readily analyzed by other methods. This information is important for both synthetic nanostructured or nanosized materials and a variety of natural materials with nanostructure. Although the links between nanostructure materials and biological systems may not at first be obvious, many biological molecules and some organisms are the sizes of nanoparticles. The nanostructure of cells and microbes plays a significant role in how they interact with their environment. The interaction of biomolecules with nanoparticles is important for medical and toxicity studies. The interaction of biomolecules is important for sensor function and many nanomaterials are now the active elements in sensors. This paper first discusses how nanostructures influences XPS data as a part of understanding how simple models of sample structure and data analysis can be used to extract information about the physical and chemical structures of the materials being analyzed. Equally important, aspects of sample and analysis limitations and challenges associated with understanding nanostructured materials are indicated. Examples of the application of XPS to nanostructured and biological systems and materials are provided.

  19. XPS quantification of the hetero-junction interface energy

    International Nuclear Information System (INIS)

    Ma, Z.S.; Wang Yan; Huang, Y.L.; Zhou, Z.F.; Zhou, Y.C.; Zheng Weitao; Sun, Chang Q.

    2013-01-01

    Highlights: ► Quantum entrapment or polarization dictates the performance of dopant, impurity, interface, alloy and compounds. ► Interface bond energy, energy density, and atomic cohesive energy can be determined using XPS and our BOLS theory. ► Presents a new and reliable method for catalyst design and identification. ► Entrapment makes CuPd to be a p-type catalyst and polarization derives AgPd as an n-type catalyst. - Abstract: We present an approach for quantifying the heterogeneous interface bond energy using X-ray photoelectron spectroscopy (XPS). Firstly, from analyzing the XPS core-level shift of the elemental surfaces we obtained the energy levels of an isolated atom and their bulk shifts of the constituent elements for reference; then we measured the energy shifts of the specific energy levels upon interface alloy formation. Subtracting the referential spectrum from that collected from the alloy, we can distil the interface effect on the binding energy. Calibrated based on the energy levels and their bulk shifts derived from elemental surfaces, we can derive the bond energy, energy density, atomic cohesive energy, and free energy at the interface region. This approach has enabled us to clarify the dominance of quantum entrapment at CuPd interface and the dominance of polarization at AgPd and BeW interfaces, as the origin of interface energy change. Developed approach not only enhances the power of XPS but also enables the quantification of the interface energy at the atomic scale that has been an issue of long challenge.

  20. SORCE XPS Level 3 Solar Spectral Irradiance 6-Hour Means V010

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE XUV Photometer System (XPS) Solar Spectral Irradiance (SSI) 6-Hour Data Product SOR3XPS6 contains solar XUV irradiances in the 0.1 to 27 nm range, as well...

  1. Elemental and Chemical State Analysis, XPS, for In-Situ Materials Analysis on Mars, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovation is the design of a monochromatic x-ray source to be used in a mission compatible XPS spectrometer. Existing x-ray sources for XPS are large, require...

  2. Applications Performance on NAS Intel Paragon XP/S - 15#

    Science.gov (United States)

    Saini, Subhash; Simon, Horst D.; Copper, D. M. (Technical Monitor)

    1994-01-01

    The Numerical Aerodynamic Simulation (NAS) Systems Division received an Intel Touchstone Sigma prototype model Paragon XP/S- 15 in February, 1993. The i860 XP microprocessor with an integrated floating point unit and operating in dual -instruction mode gives peak performance of 75 million floating point operations (NIFLOPS) per second for 64 bit floating point arithmetic. It is used in the Paragon XP/S-15 which has been installed at NAS, NASA Ames Research Center. The NAS Paragon has 208 nodes and its peak performance is 15.6 GFLOPS. Here, we will report on early experience using the Paragon XP/S- 15. We have tested its performance using both kernels and applications of interest to NAS. We have measured the performance of BLAS 1, 2 and 3 both assembly-coded and Fortran coded on NAS Paragon XP/S- 15. Furthermore, we have investigated the performance of a single node one-dimensional FFT, a distributed two-dimensional FFT and a distributed three-dimensional FFT Finally, we measured the performance of NAS Parallel Benchmarks (NPB) on the Paragon and compare it with the performance obtained on other highly parallel machines, such as CM-5, CRAY T3D, IBM SP I, etc. In particular, we investigated the following issues, which can strongly affect the performance of the Paragon: a. Impact of the operating system: Intel currently uses as a default an operating system OSF/1 AD from the Open Software Foundation. The paging of Open Software Foundation (OSF) server at 22 MB to make more memory available for the application degrades the performance. We found that when the limit of 26 NIB per node out of 32 MB available is reached, the application is paged out of main memory using virtual memory. When the application starts paging, the performance is considerably reduced. We found that dynamic memory allocation can help applications performance under certain circumstances. b. Impact of data cache on the i860/XP: We measured the performance of the BLAS both assembly coded and Fortran

  3. Small angle neutron scattering from glassy SiO2

    International Nuclear Information System (INIS)

    Spooner, S.; Hastings, J.B.

    1976-01-01

    The present investigation of neutron scattering from glassy silica was undertaken to resolve whether the small angle scattering observed by Renninger and Uhlmann could also be seen in the bulk samples typically used in neutron-scattering experiments. Within the rather large error bars of this experiment no small angle scattering increase at small angles could be seen. (Auth.)

  4. Combined UHV/high-pressure catalysis setup for depth-resolved near-surface spectroscopic characterization and catalytic testing of model catalysts

    International Nuclear Information System (INIS)

    Mayr, Lukas; Klötzer, Bernhard; Penner, Simon; Rameshan, Raffael; Rameshan, Christoph

    2014-01-01

    An ultra-high vacuum (UHV) setup for “real” and “inverse” model catalyst preparation, depth-resolved near-surface spectroscopic characterization, and quantification of catalytic activity and selectivity under technologically relevant conditions is described. Due to the all-quartz reactor attached directly to the UHV-chamber, transfer of the catalyst for in situ testing without intermediate contact to the ambient is possible. The design of the UHV-compatible re-circulating batch reactor setup allows the study of reaction kinetics under close to technically relevant catalytic conditions up to 1273 K without contact to metallic surfaces except those of the catalyst itself. With the attached differentially pumped exchangeable evaporators and the quartz-microbalance thickness monitoring equipment, a reproducible, versatile, and standardised sample preparation is possible. For three-dimensional near-surface sample characterization, the system is equipped with a hemispherical analyser for X-ray photoelectron spectroscopy (XPS), electron-beam or X-ray-excited Auger-electron spectroscopy, and low-energy ion scattering measurements. Due the dedicated geometry of the X-ray gun (54.7°, “magic angle”) and the rotatable sample holder, depth analysis by angle-resolved XPS measurements can be performed. Thus, by the combination of characterisation methods with different information depths, a detailed three-dimensional picture of the electronic and geometric structure of the model catalyst can be obtained. To demonstrate the capability of the described system, comparative results for depth-resolved sample characterization and catalytic testing in methanol steam reforming on PdGa and PdZn near-surface intermetallic phases are shown

  5. XPS Studies of LSCF Interfaces after Cell Testing

    Directory of Open Access Journals (Sweden)

    Gianfranco DiGiuseppe

    2018-01-01

    Full Text Available The motivation of this investigation is to explore the possibility of using the depth profile capability of XPS to study interfaces after SOFC button cell testing. The literature uses XPS to study various cathode materials but has devoted little to the understanding of various cathode interfaces especially after testing. In this work, an SOFC button cell is first tested, and then, the LSCF cathode, barrier layer, and electrolyte are sputtered away to study the behavior of different interfaces. This work has shown that some elements have moved into other layers of the SOFC cell. It is argued that the migration of the elements is partly due to a redeposition mechanism after atoms are sputtered away, while the rest is due to interdiffusion between the SDC and YSZ layers. However, additional work is needed to better understand the mechanism by which atoms move around at different interfaces. The cell electrochemical performance is also discussed in some details but is not the focus.

  6. Speciation of uranium after microbial action by XANES and XPS

    International Nuclear Information System (INIS)

    Dodge, C.J.; Francis, A.J.; Lu, F.; Halada, G.P.; Kagwade, S.V.; Clayton, C.R.

    1993-01-01

    The speciation of radionuclides and toxic metals in wastes subjected to microbial action is important in determining the extent of stabilization in a disposal environment. As part of an ongoing study, we investigated the reduction of uranium by a Clostridium sp. using X-ray absorption neat edge spectroscopy (XANES) at the National Synchrotron Light Source (NSLS) and X-ray photoelectron spectroscopy (XPS). XPS analysis of uranyl acetate containing hexavalent uranium exhibited a binding energy of 382.0eV at the U 4f 7/2 peak. The sample incubated in the presence of bacteria was shifted to lower binding energy (380.6eV), confirming the reduction of U 6+ to U 4+ at the bacterial surface. XANES analysis, using an electron yield detector, was performed at the M v absorption edge (3d-->5f). The absorption peak energy of the sample exhibited a shift from 3551.1eV to 3550.1eV which is higher than uranium metal (3549.6eV ) but lower than U 4+ (3550.4eV). This indicates the presence of U 3+ which is probably located beneath the surface within the biomass. Anaerobic bacterial treatment of wastes containing uranyl ion can result in the stabilization of uranium

  7. Spatially resolved product formation in the reaction of formic acid with calcium carbonate (1014): the role of step density and adsorbed water-assisted ion mobility.

    Science.gov (United States)

    Usher, Courtney R; Baltrusaitis, Jonas; Grassian, Vicki H

    2007-06-19

    The reaction of calcium carbonate (1014) single-crystal surfaces with formic acid (HCOOH) vapor was investigated using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). AFM images indicate the reaction produces rather well-defined crystallites, preferentially at step edges and at distinct angles to one another and mirroring the rhombohedral structure of the calcite surface, while exposing unreacted carbonate surface. The size and surface density of the crystallites depend upon substrate step density, exposure time, and relative humidity. XPS data confirmed the crystallite composition as the expected calcium formate product. The AFM images show erosion and pit formation of the calcite surface in the vicinity of the product crystallites, clearly providing the spatially resolved characterization of the source of Ca ions. AFM experiments exploring the effects of water vapor on the reacted surface show that the calcium formate crystallites are mobile under conditions of high relative humidity, combining to form larger crystallites and nanometer-sized crystals with an orthorhombohedral habit consistent with the alpha form, as confirmed by X-ray diffraction. The implications for the reactions described here are discussed.

  8. Theory of angle-resolved photoemission from the cuprate superconductors

    International Nuclear Information System (INIS)

    Hedegard, P.; Pedersen, M.B.

    1990-01-01

    We show that the photoemission spectrum for an RVB state with bosonic spins and fermionic charges consists of a peak on top of a broad background. The 'Fermi surface' corresponds to hole pockets around certain k-vectors. The theoretical predictions are compared with the available experimental data, and with the results obtained by other approaches. (orig.)

  9. Angle-resolved polarimetry of antenna-mediated fluorescence

    NARCIS (Netherlands)

    Mohtashami, A.; Osorio, C.I.; Koenderink, A.F.

    2015-01-01

    Optical phase-array antennas can be used to control not only the angular distribution but also the polarization of fluorescence from quantum emitters. The emission pattern of the resulting system is determined by the properties of the antenna, the properties of the emitters, and the strength of the

  10. XPS depth profiling of derivatized amine and anhydride plasma polymers: Evidence of limitations of the derivatization approach

    Energy Technology Data Exchange (ETDEWEB)

    Manakhov, Anton, E-mail: ant-manahov@ya.ru [National University of Science and Technology “MISiS”, Leninsky pr. 4, Moscow 119049 (Russian Federation); RG Plasma Technologies, CEITEC – Masaryk University, Purkyňova 123, Brno 61200 (Czech Republic); Michlíček, Miroslav [RG Plasma Technologies, CEITEC – Masaryk University, Purkyňova 123, Brno 61200 (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská, 2, Brno 61137 (Czech Republic); Felten, Alexandre; Pireaux, Jean-Jacques [LISE, Department of Physics, University of Namur, Rue de Bruxelles, 61, Namur B5000 (Belgium); Nečas, David [RG Plasma Technologies, CEITEC – Masaryk University, Purkyňova 123, Brno 61200 (Czech Republic); Zajíčková, Lenka [RG Plasma Technologies, CEITEC – Masaryk University, Purkyňova 123, Brno 61200 (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská, 2, Brno 61137 (Czech Republic)

    2017-02-01

    Highlights: • TFBA derivatizatized amine plasma layers exhibited heterogeneous profile of [F] due to low diffusion (permeability) of TFBA • Anhydride layers derivatized by trifluoroethylamine exhibited relatively homogenous profile as this molecule is smaller • The results of TFBA derivatization will depend on XPS take-off angle, polymer crosslinking and density - Abstract: The quantitative analysis of the chemistry at the surface of functional plasma polymers is highly important for the optimization of their deposition conditions and, therefore, for their subsequent applications. The chemical derivatization of amine and carboxyl-anhydride layers is a well-known technique already applied by many researchers, notwithstanding the known drawback of the derivatization procedures like side or uncomplete reactions that could lead to “unreliable” results. In this work, X-ray photoelectron spectroscopy (XPS) combined with depth profiling with argon clusters is applied for the first time to study derivatized amine and carboxyl-anhydride plasma polymer layers. It revealed an additional important parameter affecting the derivatization reliability, namely the permeation of the derivatizing molecule through the target analysed layer, i.e. the composite effect of the probe molecule size and the layer porosity. Amine-rich films prepared by RF low pressure plasma polymerization of cyclopropylamine were derivatized with trifluoromethyl benzaldehide (TFBA) and it was observed by that the XPS-determined NH{sub 2} concentration depth profile is rapidly decreasing over top ten nanometers of the layer. The anhydride-rich films prepared by atmospheric plasma co-polymerization of maleic anhydride and C{sub 2}H{sub 2} have been reacted with, parafluoroaniline and trifluoroethyl amine. The decrease of the F signal in top surface layer of the anhydride films derivatized by the “large” parafluoroaniline was observed similarly as for the amine films but the derivatization with

  11. Secondary electron measurement and XPS characterization of NEG coatings

    International Nuclear Information System (INIS)

    Sharma, R. K.; Sinha, Atul K.; Gupta, Nidhi; Nuwad, J.; Jagannath,; Gadkari, S. C.; Singh, M. R.; Gupta, S. K.

    2014-01-01

    Ternary alloy coatings of IVB and VB materials provide many of benefits over traditional material surfaces such as creation of extreme high vacuum(XHV), lower secondary electron yield(SEY), low photon desorption coefficient. XHV (pressure −10 mbar) is very useful to the study of surfaces of the material in as it is form, high energy particle accelerators(LHC, Photon Factories), synchrotrons (ESRF, Ellectra) etc.. Low secondary electron yield leads to very low multi-pacting utilizes to increase beam life time. In this paper preparation of the coatings and a study of secondary electron yield measurement after heating at different temperatures has been shown also results of their surface characterization based on shift in binding energy has been produced using the surface techniques XPS. Stoichiometry of the film was measured by Energy dispersive x-ray analysis (EDX)

  12. Parameter setting for peak fitting method in XPS analysis of nitrogen in sewage sludge

    Science.gov (United States)

    Tang, Z. J.; Fang, P.; Huang, J. H.; Zhong, P. Y.

    2017-12-01

    Thermal decomposition method is regarded as an important route to treat increasing sewage sludge, while the high content of N causes serious nitrogen related problems, then figuring out the existing form and content of nitrogen of sewage sludge become essential. In this study, XPSpeak 4.1 was used to investigate the functional forms of nitrogen in sewage sludge, peak fitting method was adopted and the best-optimized parameters were determined. According to the result, the N1s spectra curve can be resolved into 5 peaks: pyridine-N (398.7±0.4eV), pyrrole-N(400.5±0.3eV), protein-N(400.4eV), ammonium-N(401.1±0.3eV) and nitrogen oxide-N(403.5±0.5eV). Based on the the experimental data obtained from elemental analysis and spectrophotometry method, the optimum parameters of curve fitting method were decided: background type: Tougaard, FWHM 1.2, 50% Lorentzian-Gaussian. XPS methods can be used as a practical tool to analysis the nitrogen functional groups of sewage sludge, which can reflect the real content of nitrogen of different forms.

  13. The equivalent width as a figure of merit for XPS narrow scans

    International Nuclear Information System (INIS)

    Singh, Bhupinder; Velázquez, Daniel; Terry, Jeff; Linford, Matthew R.

    2014-01-01

    Highlights: • We introduce a new figure of merit for XPS narrow scans: the equivalent width (EW XPS ). • EW XPS is less subjective and involves lesser user bias than traditional peak fitting. • EW XPS is responsive to changes in chemical states of materials. • EW XPS could be used for quality control and comparing spectra from similar samples. • EW XPS has the potential to be part of an expert software system for machine interpretation of spectra. - Abstract: X-ray Photoelectron Spectroscopy (XPS) is a widely used surface analytical tool that provides information about the near surface regions of materials. And while indispensable for XPS data analysis, peak fitting of narrow scans is often a fairly subjective exercise. Herein we introduce the equivalent width (EW) as an additional and less subjective figure of merit for XPS narrow scans. We believe that this parameter will prove particularly useful for analyzing series of similar or nominally identical spectra, perhaps as a component of an expert software system for the machine interpretation of spectra. It also appears to be useful, shedding light on the chemical state of materials, when additional information about a sample is known. The EW XPS is simply defined as the area of a narrow scan divided by the height of the maximum of its peak envelope. To limit any ambiguity in EW XPS for a series of spectra, we may also list the peak position of the maximum of the envelope (PE max ). The potential usefulness and limitations of the EW XPS and PE max parameters are demonstrated by their application to the narrow scans of: (i) four sets of ozone-treated carbon nanotubes (EW XPS ∼ 2.11–2.16 eV for a Shirley background, and up to 2.88 eV for no background, PE max ∼ 284.4–284.5 eV), (ii) a series of silicon wafers with different oxide thicknesses (EW XPS ∼ 1.5–2.8 eV, PE max ∼ 99–103 eV), (iii) hydrogen-terminated silicon before and after derivatization with pentyl groups, and after annealing of

  14. Studies of irradiated zircaloy fuel sheathing using XPS

    International Nuclear Information System (INIS)

    Chan, P.K.; Irving, K.G.; Hocking, W.H.; Duclos, A.M.; Gerwing, A.F.

    1995-01-01

    The preliminary results reported here support the hypothesis that CANLUB graphite coating reduces the rate at which oxygen can react with fuel sheathing. X-ray photoelectron spectroscopic (XPS) characterization of Zircaloy sheathing obtained from extended-burnup Bruce-type elements (BDL-406-XY (555 MW.h/kgU) and BDL-406-AAH (731 MW.h/kgU)) irradiated in NRU indicates that CANLUB may reduce fuel sheath oxidation, and hence that fission-liberated oxygen may remain in the fuel. Chemical shifts in the Zr 3d spectra suggest that a stoichiometric (ZrO 2 ) oxide film was formed only on Zircaloy in direct contact with fuel. Particulate fuel adhering to the sheath was also determined to be systematically more oxidized on surfaces with CANLUB than on those without it. The unique association of tin on sheathing specimens with the non-CANLUB-coated specimens might also suggest that the tin had segregated from the sheathing. It must be emphasized that further experiments are required to better define the effect of CANLUB on fuel oxidation. (author). 14 refs., 1 tab., 3 figs

  15. An XPS study on ruthenium compounds and catalysts

    International Nuclear Information System (INIS)

    Bianchi, C.L.; Ragaini, V.; Cattania, M.G.

    1991-01-01

    The binding energy (BE) of the relevant peaks of several ruthenium compounds have been measured with a monochromatic small spot XPS. The BE of the 3d 5/2 level of ruthenium is in the range 279.91-282.88 eV. The variation of BE is due either to the variation of the oxidation state or to the different counter-ion. A series of catalysts with varying amounts of ruthenium supported on alumina and prepared using different precursors was also analyzed. The presence of more ruthenium species other than the metal was observed. On the basis of the values previously obtained on unsupported compounds, the species with higher BE were assigned to oxides. On all the samples prepared from RuCl 3 , an additional peak at a very high BE (283.79 eV) has been observed. This peak is related to the presence of chlorine on the surface: it is suggested that it is related to a charge transfer interaction. The influence of this species on the CO reactivity in the Fischer-Tropsch reaction is discussed. (orig.)

  16. X-ray photoelectron spectroscopy (XPS) studies of rhenium catalyst

    International Nuclear Information System (INIS)

    Mohd Ambar Yarmo; Che Seman Mahmood

    2000-01-01

    Rhenium oxide on alumina (Re 2 O 7 /Al 2 O 3 ) is a very active catalyst system for olefin metathesis reaction. The catalyst can be prepared by wet impregnation of ammonium perrhenate (NH 4 ReO 4 ) solution onto alumina (γ-AI 2 O 3 ) support followed by drying and calcination in air. In this study, rhenium catalysts at different treatment conditions namely active, non-active and during propylene metathesis reaction were investigated using X-ray photoelectron spectroscopy (XPS) technique. Analysis of O 1s , photoelectron peak shows that some chemical interaction between rhenium oxides and the support have been established through Re-O-Al linkage. Analysis of Re 4f7/2 photoelectron peak by using a systematic deconvolution procedure, shows that the metal was in a mixed and varied oxidation states from Re(IV) to Re(VII) depending on their treatment condition. The presence of the metal-carbene complex, the reaction intermediate, could possibly be observed by analysing the C 1s , photoelectron peak. However, a much higher vacuum (i.e. 10 -10 - 10 -11 torr) is needed in the spectroscopy system in order to have the improved detection sensitivity. (Author)

  17. Effects of XPS operational parameters on investigated sample surfaces

    International Nuclear Information System (INIS)

    Mrad, O.; Ismail, I.

    2013-04-01

    In this work, we studied the effects of the operating conditions of the xray photoelectron spectroscopy analysis technique (XPS) on the investigated samples. Firstly, the performances of the whole system have been verified as well as the accuracy of the analysis. Afterwards, the problem of the analysis of insulating samples caused by the charge buildup on the surface has been studied. The use of low-energy electron beam (<100 eV) to compensate the surface charge has been applied. The effect of X-ray on the samples have been assessed and was found to be nondestructive within the analysis time. The effect of low- and high-energy electron beams on the sample surface have been investigated. Highenergy electrons were found to have destructive effect on organic samples. The sample heating procedure has been tested and its effect on the chemical stat of the surface was followed. Finally, the ion source was used to determine the elements distribution and the chemical stat of different depths of the sample. A method has been proposed to determine these depths (author).

  18. The assessment of metal surface cleanliness by XPS

    CERN Document Server

    Scheuerlein, C

    2006-01-01

    The most commonly used quantity to characterize surface cleanliness through X-ray photoemission spectroscopy (XPS) measurements is the so-called relative atomic surface concentration of carbon (at.% C). We have investigated the relationship between at.% C values and the C 1s peak area on Cu and we find a nearly linear behaviour in the range 15–80 at.% C. Correction factors for the measured at.% C values that enable a comparison of the cleanliness level of different materials, notably Cu, Al and stainless steel, have been determined experimentally. The influence of the storage time and method on the degree of re-contamination of initially clean Cu has been examined. The carbon contamination on clean metallic Cu increases abruptly to some 20 at.% C upon air exposure and continues to increase with storage time in air. Storage in polymer bags can lead to up to 70 at.% C after 1 month, whereas storage in aluminium foil can preserve an acceptable surface cleanliness for a similar storage time.

  19. XPS Protocol for the Characterization of Pristine and Functionalized Single Wall Carbon Nanotubes

    Science.gov (United States)

    Sosa, E. D.; Allada, R.; Huffman, C. B.; Arepalli, S.

    2009-01-01

    Recent interest in developing new applications for carbon nanotubes (CNT) has fueled the need to use accurate macroscopic and nanoscopic techniques to characterize and understand their chemistry. X-ray photoelectron spectroscopy (XPS) has proved to be a useful analytical tool for nanoscale surface characterization of materials including carbon nanotubes. Recent nanotechnology research at NASA Johnson Space Center (NASA-JSC) helped to establish a characterization protocol for quality assessment for single wall carbon nanotubes (SWCNTs). Here, a review of some of the major factors of the XPS technique that can influence the quality of analytical data, suggestions for methods to maximize the quality of data obtained by XPS, and the development of a protocol for XPS characterization as a complementary technique for analyzing the purity and surface characteristics of SWCNTs is presented. The XPS protocol is then applied to a number of experiments including impurity analysis and the study of chemical modifications for SWCNTs.

  20. Spectrally resolved measurements of the terahertz beam profile generated from a two-color air plasma

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Zalkovskij, Maksim; Strikwerda, Andrew

    2014-01-01

    Using a THz camera and THz bandpass filters, we measure the frequency - resolved beam profile emitted from a two - color air plasma. We observe a frequency - independent emission angle from the plasma .......Using a THz camera and THz bandpass filters, we measure the frequency - resolved beam profile emitted from a two - color air plasma. We observe a frequency - independent emission angle from the plasma ....

  1. Glancing angle x-ray studies of oxide films

    International Nuclear Information System (INIS)

    Davenport, A.J.; Isaacs, H.S.

    1989-01-01

    High brightness synchrotron radiation incident at glancing angles has been used to study inhibiting species present in low concentrations in oxide films on aluminum. Glancing incident angle fluorescence measurements give surface-sensitive information on the valence state of elements from the shape of the x-ray absorption edge. Angle-resolved measurements show the depth distribution of the species present. 15 refs., 4 figs

  2. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  3. Quantification of variable functional-group densities of mixed-silane monolayers on surfaces via a dual-mode fluorescence and XPS label.

    Science.gov (United States)

    Fischer, Tobias; Dietrich, Paul M; Streeck, Cornelia; Ray, Santanu; Nutsch, Andreas; Shard, Alex; Beckhoff, Burkhard; Unger, Wolfgang E S; Rurack, Knut

    2015-03-03

    The preparation of aminated monolayers with a controlled density of functional groups on silica surfaces through a simple vapor deposition process employing different ratios of two suitable monoalkoxysilanes, (3-aminopropyl)diisopropylethoxysilane (APDIPES) and (3-cyanopropyl)dimethylmethoxysilane (CPDMMS), and advances in the reliable quantification of such tailored surfaces are presented here. The one-step codeposition process was carried out with binary silane mixtures, rendering possible the control over a wide range of densities in a single step. In particular, APDIPES constitutes the functional silane and CPDMMS the inert component. The procedure requires only small amounts of silanes, several ratios can be produced in a single batch, the deposition can be carried out within a few hours and a dry atmosphere can easily be employed, limiting self-condensation of the silanes. Characterization of the ratio of silanes actually bound to the surface can then be performed in a facile manner through contact angle measurements using the Cassie equation. The reliable estimation of the number of surface functional groups was approached with a dual-mode BODIPY-type fluorescence label, which allows quantification by fluorescence and XPS on one and the same sample. We found that fluorescence and XPS signals correlate over at least 1 order of magnitude, allowing for a direct linking of quantitative fluorescence analysis to XPS quantification. Employment of synchrotron-based methods (XPS; reference-free total reflection X-ray fluorescence, TXRF) made the traceable quantification of surface functional groups possible, providing an absolute reference for quantitative fluorescence measurements through a traceable measurement chain.

  4. SORCE XPS Level 3 Solar Spectral Irradiance Daily Means V010

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE XUV Photometer System (XPS) Solar Spectral Irradiance (SSI) Daily Data Product SOR3XPSD contains solar XUV irradiances in the 0.1 to 27 nm range, as well...

  5. Elemental and Chemical State Analysis, XPS, for In-Situ Materials Analysis on Mars, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective in this project is the development of a monochromatic x-ray source for a small x-ray Photoelectron Spectrometer (XPS) suitable for NASA missions. This...

  6. Combined PIXE and XPS analysis on republican and imperial Roman coins

    International Nuclear Information System (INIS)

    Dacca, A.; Prati, P.; Zucchiatti, A.; Lucarelli, F.; Mando, P.A.; Gemme, G.; Parodi, R.; Pera, R.

    2000-01-01

    A combined PIXE and XPS analysis has been performed on a few Roman coins of the republican and imperial age. The purpose was to investigate via XPS the nature and extent of patina in order to be capable of extracting PIXE data relative to the coins bulk. The inclusion of elements from the surface layer, altered by oxidation and inclusion, is a known source of uncertainty in PIXE analyses of coins, performed to assess the composition and the provenance

  7. A combined QCM and XPS investigation of asphaltene adsorption on metal surfaces.

    Science.gov (United States)

    Rudrake, Amit; Karan, Kunal; Horton, J Hugh

    2009-04-01

    To investigate asphaltene-metal interactions, a combined quartz crystal microbalance (QCM) and X-ray photoelectron spectroscopy (XPS) study of asphaltene adsorption on a gold surface was conducted. Adsorption experiments were conducted at 25 degrees C with solutions of asphaltenes in toluene at concentrations ranging from 50 to 1500 ppm. QCM measurements yielded information on the kinetics of adsorption and further assessment of the data allowed the estimation of equilibrium adsorption levels. XPS analysis of adsorbed and bulk asphaltene demonstrated the presence of carboxylic, thiophenic, sulfide, pyridinic and pyrrolic type functional groups. The intensity of the main carbon (C-H) peak was related to surface coverage of adsorbed asphaltene as a function of asphaltene concentration by a simple mathematical model. The mass adsorption data from the QCM experiments also allowed estimation of the surface coverage, which was compared to those from XPS analyses. Surface coverage estimates as a function of asphaltene concentration could be described by a Langmuir (type-I) isotherm. The free energy of asphaltene adsorption was estimated to be -26.8+/-0.1 and -27.3+/-0.1 kJ/mol from QCM and XPS data, respectively assuming asphaltene molar mass of 750 g/gmol. QCM and XPS data was also analyzed to estimate adsorbed layer thickness after accounting for surface coverage. The thickness of the adsorbed asphaltene estimated from both XPS and QCM data analyses ranged from 6-8 nm over the entire range of adsorption concentrations investigated.

  8. Versatile technique for assessing thickness of 2D layered materials by XPS

    Science.gov (United States)

    Zemlyanov, Dmitry Y.; Jespersen, Michael; Zakharov, Dmitry N.; Hu, Jianjun; Paul, Rajib; Kumar, Anurag; Pacley, Shanee; Glavin, Nicholas; Saenz, David; Smith, Kyle C.; Fisher, Timothy S.; Voevodin, Andrey A.

    2018-03-01

    X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) and the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Therefore, after XPS analysis, exactly the same sample can undergo further processing or utilization.

  9. The HBN Angle

    Directory of Open Access Journals (Sweden)

    Harsh Bhagvatiprasad Dave

    2015-01-01

    Full Text Available Aim: The purpose of this study was to establish a new cephalometric measurement, named the Harsh Bhagvatiprasad Nita angle (HBN, to assess the sagittal jaw relationship with accuracy and reproducibility. Materials and Methods: Three hundred pretreatment lateral cephalograms (100 each of Class I, II, and III were taken from the Department of Orthodontics and Dentofacial Orthopedics of Rajasthan Dental College and Hospital, Jaipur (Rajasthan and were subdivided into skeletal Class I, II, and III based on ANB, Wits appraisal, and Beta angle. This angle uses 3 skeletal landmarks the "C" (apparent axis of the condyle, "M" (midpoint of the premaxilla, and "G" (center of the largest circle that is tangent to the internal inferior, anterior, and posterior surfaces of the mandibular symphysis. Results: The result of the mean and standard deviation for the HBN angle were calculated in all three skeletal groups. After using one-way analysis of variance and post-hoc multiple comparisons by using Tukey′s honestly significant difference, homogeneous subsets, receiver operating characteristics (ROC curve - to differentiate Class II with Class I, ROC curve - to differentiate Class III with Class I, Reliability analysis with interclass correlation of HBN angle with other angles, we obtained results that showed that a patient with a HBN angle 40° and 46° can be considered to have a Class I skeletal pattern. Conclusions: A new angle, the HBN angle, was developed as a diagnostic aid to evaluate the sagittal jaw relationship more consistently. HBN angle 40° and 46° can be considered to have a Class I skeletal pattern, a more acute HBN angle indicates a Class II skeletal pattern, and a more obtuse HBN angle indicates a Class III skeletal pattern.

  10. Round robin: Quantitative lateral resolution of PHI XPS microprobes Quantum 2000/Quantera SXM

    International Nuclear Information System (INIS)

    Scheithauer, Uwe; Kolb, Max; Kip, Gerard A.M.; Naburgh, Emile; Snijders, J.H.M.

    2016-01-01

    Highlights: • The quantitative lateral resolution of 7 PHI XPS microprobes has been estimated in a round robin. • An ellipsoidally shaped quartz crystal monochromatizes the Alkα radiation and refocuses it from the Al anode to the sample surface. • The long tail contributions of the X-ray beam intensity distribution were measured using a new and innovative approach. • This quantitative lateral resolution has a significantly larger value than the nominal X-ray beam diameter. • The quantitative lateral resolution follows a trend in time: The newer the monochromator so much the better the quantitative lateral resolution. - Abstract: The quantitative lateral resolution is a reliable measure for the quality of an XPS microprobe equipped with a focused X-ray beam. It describes the long tail contributions of the X-ray beam intensity distribution. The knowledge of these long tail contributions is essential when judging on the origin of signals of XPS spectra recorded on small-sized features. In this round robin test the quantitative lateral resolution of 7 PHI XPS microprobes has been estimated. As expected, the quantitative lateral resolution has significantly larger values than the nominal X-ray beam diameter. The estimated values of the quantitative lateral resolution follow a trend in time: the newer the monochromator of an XPS microprobe so much the better the quantitative lateral resolution.

  11. Round robin: Quantitative lateral resolution of PHI XPS microprobes Quantum 2000/Quantera SXM

    Energy Technology Data Exchange (ETDEWEB)

    Scheithauer, Uwe, E-mail: scht.uhg@googlemail.com [82008 Unterhaching (Germany); Kolb, Max, E-mail: max.kolb@airbus.com [Airbus Group Innovations, TX2, 81663 Munich (Germany); Kip, Gerard A.M., E-mail: G.A.M.Kip@utwente.nl [Universiteit Twente, MESA+ Nanolab, Postbus 217, 7500AE Enschede (Netherlands); Naburgh, Emile, E-mail: e.p.naburgh@philips.com [Materials Analysis, Philips Innovation Services, High Tech Campus 11, 5656 AE Eindhoven (Netherlands); Snijders, J.H.M., E-mail: j.h.m.snijders@philips.com [Materials Analysis, Philips Innovation Services, High Tech Campus 11, 5656 AE Eindhoven (Netherlands)

    2016-07-15

    Highlights: • The quantitative lateral resolution of 7 PHI XPS microprobes has been estimated in a round robin. • An ellipsoidally shaped quartz crystal monochromatizes the Alkα radiation and refocuses it from the Al anode to the sample surface. • The long tail contributions of the X-ray beam intensity distribution were measured using a new and innovative approach. • This quantitative lateral resolution has a significantly larger value than the nominal X-ray beam diameter. • The quantitative lateral resolution follows a trend in time: The newer the monochromator so much the better the quantitative lateral resolution. - Abstract: The quantitative lateral resolution is a reliable measure for the quality of an XPS microprobe equipped with a focused X-ray beam. It describes the long tail contributions of the X-ray beam intensity distribution. The knowledge of these long tail contributions is essential when judging on the origin of signals of XPS spectra recorded on small-sized features. In this round robin test the quantitative lateral resolution of 7 PHI XPS microprobes has been estimated. As expected, the quantitative lateral resolution has significantly larger values than the nominal X-ray beam diameter. The estimated values of the quantitative lateral resolution follow a trend in time: the newer the monochromator of an XPS microprobe so much the better the quantitative lateral resolution.

  12. An XPS study of the adsorption of lead on goethite (α-FeOOH)

    Science.gov (United States)

    Abdel-Samad, Hesham; Watson, Philip R.

    1998-10-01

    The adsorption behavior of divalent metal ions on amphoteric surface hydroxyl groups of metal oxides is an important factor in the transport of subsurface environmental pollutants. We have studied the adsorption of lead ions from aqueous solution on the surface of the mineral goethite (α-FeOOH) as a function of pH and adsorbate concentration in 0.1 M NaNO 3 solution. Results obtained from the dried surface by X-ray photoelectron spectroscopy (XPS) are in good agreement with data from spectrophotometric analysis of lead ions remaining in the supernatant liquid. Lead adsorption as a function of pH shows an adsorption edge near pH 6 and maximizes by pH 7.5. The surface atomic Pb/Fe ratio at saturation as measured by XPS is 0.93 leading to an apparent high adsorption site density of 14.2 sites/nm 2. A characteristic low binding energy (BE) XPS feature is present in the Pb 4f XPS signal in the pH range 6-8. Comparison with literature predictions of the speciation of lead at a goethite surface suggests that this XPS feature is perhaps associated with a FeOPb + complex. At high Pb(II) concentrations some polynuclear complexes probably form. They may be responsible for the high site density value which, while crystallographically possible, is much higher than values reported by others working at lower Pb concentrations.

  13. Characterization of Cr/SiO 2 catalysts and ethylene polymerization by XPS

    Science.gov (United States)

    Gaspar, A. B.; Perez, C. A. C.; Dieguez, L. C.

    2005-11-01

    Cr/SiO 2 catalysts with 1 or 3 wt.% Cr loadings and different chromium precursors were characterized by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). A method to determine chromium species in the sample was developed through the decomposition of the Cr 2p XPS spectrum in Cr 6+ and Cr 3+ standard spectra. The results of the binding energy from the Cr 2p region and of the distribution of chromium species allowed to evaluate the dynamic photo-reduction of the surface chromium species during XPS analysis. Photo-reduction of surface Cr 6+ to Cr 3+ species was verified for all samples supported in silica, depending on the precursor and chromium content. Bulk CrO 3 and Cr 2O 3 standards did not reveal variation in the binding energy of Cr 2p 3/2, but a physical mixture of CrO 3 with SiO 2 presented photo-reduction. The behavior of this mixture resembled to the catalysts and suggests the participation of the surface hydroxyls of silica in the photo-reduction process. XPS intensity measurements for assessing dispersion of chromium oxide were used to compare the calcined and reduced catalysts to different chromium precursors. Polyethylene chains were detected by in situ XPS, while oligomerization products were not observed.

  14. Characterization of Cr/SiO2 catalysts and ethylene polymerization by XPS

    International Nuclear Information System (INIS)

    Gaspar, A.B.; Perez, C.A.C.; Dieguez, L.C.

    2005-01-01

    Cr/SiO 2 catalysts with 1 or 3 wt.% Cr loadings and different chromium precursors were characterized by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). A method to determine chromium species in the sample was developed through the decomposition of the Cr 2p XPS spectrum in Cr 6+ and Cr 3+ standard spectra. The results of the binding energy from the Cr 2p region and of the distribution of chromium species allowed to evaluate the dynamic photo-reduction of the surface chromium species during XPS analysis. Photo-reduction of surface Cr 6+ to Cr 3+ species was verified for all samples supported in silica, depending on the precursor and chromium content. Bulk CrO 3 and Cr 2 O 3 standards did not reveal variation in the binding energy of Cr 2p 3/2 , but a physical mixture of CrO 3 with SiO 2 presented photo-reduction. The behavior of this mixture resembled to the catalysts and suggests the participation of the surface hydroxyls of silica in the photo-reduction process. XPS intensity measurements for assessing dispersion of chromium oxide were used to compare the calcined and reduced catalysts to different chromium precursors. Polyethylene chains were detected by in situ XPS, while oligomerization products were not observed

  15. Reading Angles in Maps

    Science.gov (United States)

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…

  16. Optimal reconstruction angles

    International Nuclear Information System (INIS)

    Cook, G.O. Jr.; Knight, L.

    1979-07-01

    The question of optimal projection angles has recently become of interest in the field of reconstruction from projections. Here, studies are concentrated on the n x n pixel space, where literative algorithms such as ART and direct matrix techniques due to Katz are considered. The best angles are determined in a Gauss--Markov statistical sense as well as with respect to a function-theoretical error bound. The possibility of making photon intensity a function of angle is also examined. Finally, the best angles to use in an ART-like algorithm are studied. A certain set of unequally spaced angles was found to be preferred in several contexts. 15 figures, 6 tables

  17. XPS characterization of silver exchanged ETS-10 and mordenite molecular sieves.

    Science.gov (United States)

    Anson, A; Maham, Y; Lin, C C H; Kuznicki, T M; Kuznicki, S M

    2009-05-01

    Silver exchanged molecular sieves ETS-10 (Ag-ETS-10) and mordenite (Ag-mordenite) were dehydrated under vacuum at temperatures between 100 degrees C-350 degrees C. Changes in the state of the silver were studied using X-ray photoelectron spectroscopy (XPS). Silver cations in titanosilicate Ag-ETS-10 are fully reduced to Ag(0) at temperatures as low as 150 degrees C. The characteristic features of the XPS spectrum of silver in this Ag-ETS-10 species correspond to only metallic silver. The signal for metallic silver is not observed in the XPS spectrum of aluminosilicate Ag-mordenite, indicating that silver cations are not reduced, even after heating to 350 degrees C.

  18. XPS and NEXAFS analysis of dimethyl sulfide adsorbed on the Rh(PVP) nanoparticle surface

    International Nuclear Information System (INIS)

    Niwa, Hironori; Ogawa, Satoshi; Yagi, Shinya; Kutluk, Galif

    2010-01-01

    We have studied the adsorption reaction of dimethyl sulfide (DMS: (CH 3 ) 2 S) on the surface of Rh(PVP) nanoparticles by using AFM, XPS and NEXAFS techniques. The AFM images show the degree of dispersion of the Rh(PVP) nanoparticles depends on the amount of them. The in-situ XPS results indicate that the dissociation reaction of DMS into atomic S does not depend upon the existence of the Rh(PVP) nanoparticles. The NEXAFS results show that there is a strong chemical bonding between Rh(PVP) nanoparticle and atomic S. The ex-situ XPS results show the atomic S adsorbed on the Rh(PVP) nanoparticles partially desorb by exposing to the air. (author)

  19. Selected Area XPS Analysis for Identification of Pigment Compounds in Microscopic Paint Flakes

    Directory of Open Access Journals (Sweden)

    Bryony Joanne James

    2008-01-01

    Full Text Available The application of X-ray photoelectron spectroscopy to the analysis of paint flakes from a painting by Henry Fuseli (1741–1825 is presented. Historically, the application of XPS to art conservation and restoration studies has been limited by the poor spatial resolution of the technique. Presented here is the successful analysis of paint flakes in the order of 100 μm using “imaging” XPS in conjunction with selected area analysis. Raman microscopy failed to satisfactorily identify the compounds present in this instance, and energy dispersive spectroscopy could not differentiate between lead and sulphur (two of the elements of interest due to the limited energy resolution inherent in that technique. Using XPS analysis of the lead 4f peak revealed that the pigment was a lead-based pigment, in this case comprising exclusively lead-sulphur compounds.

  20. Radiofrequency encoded angular-resolved light scattering

    DEFF Research Database (Denmark)

    Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.

    2015-01-01

    The sensitive, specific, and label-free classification of microscopic cells and organisms is one of the outstanding problems in biology. Today, instruments such as the flow cytometer use a combination of light scatter measurements at two distinct angles to infer the size and internal complexity...... of cells at rates of more than 10,000 per second. However, by examining the entire angular light scattering spectrum it is possible to classify cells with higher resolution and specificity. Current approaches to performing these angular spectrum measurements all have significant throughput limitations...... Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...

  1. Surface Characterization of Polymer Blends by XPS and ToF-SIMS

    Directory of Open Access Journals (Sweden)

    Chi Ming Chan

    2016-08-01

    Full Text Available The surface properties of polymer blends are important for many industrial applications. The physical and chemical properties at the surface of polymer blends can be drastically different from those in the bulk due to the surface segregation of the low surface energy component. X-ray photoelectron spectroscopy (XPS and time-of-flight secondary mass spectrometry (ToF-SIMS have been widely used to characterize surface and bulk properties. This review provides a brief introduction to the principles of XPS and ToF-SIMS and their application to the study of the surface physical and chemical properties of polymer blends.

  2. XPS and SEM studies of chromium oxide films chemically formed on stainless steel 316 L

    International Nuclear Information System (INIS)

    Stefanov, P.; Marinova, T.

    2000-01-01

    The structure and composition of chromium oxide films formed on stainless steel by immersion in a chromium electrolyte have been studied by SEM and XPS. Cr 2 O 3 crystallites in the range 30-150 nm are fully developed and cover the whole surface. The chemical composition in the depth and the thickness of the oxide layer have been determined by XPS sputter profiles. The oxide film can be described within the framework of a double layer consisting of a thin outer hydrated layer and an inner layer of Cr 2 O 3 . (orig.)

  3. Quantitative analysis of satellite structures in XPS spectra of gold and silver

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, N., E-mail: nipauly@ulb.ac.be [Université libre de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), 50 av. F. D. Roosevelt, B-1050 Brussels (Belgium); Yubero, F. [Instituto de Ciencia de Materiales de Sevilla, Univ. Sevilla – CSIC, av. Américo Vespucio 49, E-41092 Sevilla (Spain); Tougaard, S. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark)

    2016-10-15

    Highlights: • Accurate determination of the energy loss functions for Au and Ag. • Calculation of effective inelastic electron scattering cross sections for Au and Ag. • Convolution of these cross sections with varying model primary spectra F(E). • Variation of F(E) until a good agreement with experimental XPS spectra is reached. • Quantitative determination of Au 4f and Ag 3d characteristics. - Abstract: Identification of specific chemical states and local electronic environments at surfaces by X-ray photoelectron spectroscopy (XPS) is often difficult because it is not straightforward to quantitatively interpret the shape and intensity of shake-up structures that originate from the photoexcitation process. Indeed the shape and intensity of measured XPS structures are strongly affected by both extrinsic excitations due to electron transport out of the surface and intrinsic excitations induced by the sudden creation of the static core hole. These processes must be taken into account to quantitatively extract, from experimental XPS, the primary excitation spectrum of the considered transition which includes all effects that are part of the initial photo-excitation process, i.e. lifetime broadening, spin–orbit coupling, and multiplet splitting. It was previously shown [N. Pauly, S. Tougaard, F. Yubero, Surf. Sci. 620 (2014) 17] that both extrinsic and intrinsic excitations could be included in an effective energy-differential inelastic electron scattering cross section for XPS which is then convoluted with the primary excitation spectrum to model the full XPS spectrum. This method can thus be applied to determine the primary excitation spectrum from any XPS spectrum. We use this approach in the present paper to determine the Au 4f and Ag 3d photoemission spectra from pure metals. We observe that characteristic energy loss features of the XPS spectra are not only due to photoelectron energy losses. We thus prove the existence of a double shake-up process

  4. Thorough XPS analyses on overlithiated manganese spinel cycled around the 3V plateau

    Energy Technology Data Exchange (ETDEWEB)

    Grissa, R. [IPREM ECP − UMR CNRS 5254, Université de Pau et des Pays de l’Adour, Hélioparc Pau-Pyrénées, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France); Martinez, H., E-mail: herve.martinez@univ-pau.fr [IPREM ECP − UMR CNRS 5254, Université de Pau et des Pays de l’Adour, Hélioparc Pau-Pyrénées, 2 Avenue du Président Angot, 64053 Pau Cedex 9 (France); Cotte, S.; Galipaud, J.; Pecquenard, B. [CNRS, Université de Bordeaux, ICMCB–UPR 9048 and Bordeaux INP, 87 Avenue du Dr. Schweitzer, F-33600 Pessac (France); Cras, F.Le [CEA LETI, 17 rue des Martyrs, F-38054 Grenoble (France); Université Grenoble Alpes, F-38000 Grenoble (France)

    2017-07-31

    Highlights: • Mn2p XPS spectra of Li{sub 1+x}Mn{sub 2-x}O{sub 4} (0 < x < 0.25) fitted with reference samples. • XPS Mn mean oxidation states agrees with XRD structural study. • Li{sub 1.2}Mn{sub 1.8}O{sub 4} thin films cycled versus lithium arounds 3 V in liquid electrolyte. • Electrochemical results (over 20 cycles) related to Mn oxidation states evolution. • Irreversible capacity explained on the basis of XPS by active material delamination. - Abstract: Lithium-rich spinel Li{sub 1.2}Mn{sub 1.8}O{sub 4} thin film electrodes operated at 3 V/Li{sup +}/Li are studied by means of X-ray photoelectron spectroscopy (XPS), mainly on the basis of the evolution of the Mn2p XPS peak during the electrode cycling. The analysis of this core peak has long been debated in literature given its complex character. Based on manganese oxide references, MnO (Mn{sup 2+}), Mn{sub 2}O{sub 3}(Mn{sup 3+}) and Li{sub 2}MnO{sub 3}(Mn{sup 4+}), we propose a deconvolution method to identify each Mn oxidation state. This method is then used for the deconvolution of Mn2p XPS peaks of bulk lithium-rich spinels Li{sub 1+x}Mn{sub 2-x}O{sub 4} (0 ≤ x ≤ 0.25) for validation before proceeding to the study of cycled Li{sub 1.2}Mn{sub 1.8}O{sub 4} thin film electrodes. Electrochemical measurements exhibit significant capacity loss during the first cycle. Based on XPS analyses, this phenomenon could be explained by mechanical breakup of parts of the electrode. A stable behavior during subsequent cycles is then observed. The presence of Mn{sup 2+} species (XPS) at the most top surface of the electrode and the significant polarization observed during the discharge illustrate the kinetical limitation of the two-phase reaction, despite the reduced thickness of the electrode material.

  5. A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures.

    Science.gov (United States)

    Ganesan, K; Ghosh, Subrata; Gopala Krishna, Nanda; Ilango, S; Kamruddin, M; Tyagi, A K

    2016-08-10

    Defects in planar and vertically oriented nanographitic structures (NGSs) synthesized by plasma enhanced chemical vapor deposition (PECVD) have been investigated using Raman and X-ray photoelectron spectroscopy. While Raman spectra reveal the dominance of vacancy and boundary type defects respectively in vertical and planar NGSs, XPS provides additional information on vacancy related defect peaks in the C 1s spectrum, which originate from non-conjugated carbon atoms in the hexagonal lattice. Although an excellent correlation prevails between these two techniques, our results show that estimation of surface defects by XPS is more accurate than Raman analysis. Nuances of these techniques are discussed in the context of assessing defects in nanographitic structures.

  6. Research on the surface chemical behavior of uranium metal in hydrogen atmosphere by XPS

    International Nuclear Information System (INIS)

    Fu Xiaoguo; Wang Xiaolin; Yu Yong; Zhao Zhengping

    2001-01-01

    The surface chemical behavior clean uranium metal in hydrogen atmosphere at 100 and 200 degree C is studied by X-ray photoelectron spectroscopy (XPS), respectively. It leads to hydriding reaction when the hydrogen exposure is 12.0 Pa·s, and the U4f 7/2 binding energy of UH 3 is found to be 378.7 eV. The higher temperature (200 degree C) is beneficial to UH 3 formation at the same hydrogen exposures. XPS elemental depth profiles indicate that the distribution of uranium surface layer is UO 2 , UH 3 and U after exposure to 174.2 Pa·s hydrogen

  7. Photoelectric angle converter

    Science.gov (United States)

    Podzharenko, Volodymyr A.; Kulakov, Pavlo I.

    2001-06-01

    The photo-electric angle transmitter of rotation is offered, at which the output voltage is linear function of entering magnitude. In a transmitter the linear phototransducer is used on the basis of pair photo diode -- operating amplifier, which output voltage is linear function of the area of an illuminated photosensitive stratum, and modulator of a light stream of the special shape, which ensures a linear dependence of this area from an angle of rotation. The transmitter has good frequent properties and can be used for dynamic measurements of an angular velocity and angle of rotation, in systems of exact drives and systems of autocontrol.

  8. Non-contact measurement of rotation angle with solo camera

    Science.gov (United States)

    Gan, Xiaochuan; Sun, Anbin; Ye, Xin; Ma, Liqun

    2015-02-01

    For the purpose to measure a rotation angle around the axis of an object, a non-contact rotation angle measurement method based on solo camera was promoted. The intrinsic parameters of camera were calibrated using chessboard on principle of plane calibration theory. The translation matrix and rotation matrix between the object coordinate and the camera coordinate were calculated according to the relationship between the corners' position on object and their coordinates on image. Then the rotation angle between the measured object and the camera could be resolved from the rotation matrix. A precise angle dividing table (PADT) was chosen as the reference to verify the angle measurement error of this method. Test results indicated that the rotation angle measurement error of this method did not exceed +/- 0.01 degree.

  9. Angles in hyperbolic lattices

    DEFF Research Database (Denmark)

    Risager, Morten S.; Södergren, Carl Anders

    2017-01-01

    It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den......It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior...... of the density function in both the small and large variable limits. This extends earlier results by Boca, Pasol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension n . Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead...

  10. XPS and XAES of polyethylenes aided by line shape analysis: The effct of electron irradiation

    Czech Academy of Sciences Publication Activity Database

    Lesiak, B.; Zemek, Josef; Houdková, Jana; Jiříček, Petr; Jozwik, A.

    2009-01-01

    Roč. 94, č. 10 (2009), s. 1714-1721 ISSN 0141-3910 R&D Projects: GA AV ČR IAA100100622 Institutional research plan: CEZ:AV0Z10100521 Keywords : XPS * XAES * line shape analysis * electron beam degradation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.154, year: 2009

  11. Quantitative depth profiling of K-doped fullerene films using XPS and SIMS

    Czech Academy of Sciences Publication Activity Database

    Oswald, S.; Janda, Pavel; Dunsch, L.

    2003-01-01

    Roč. 141, 1-2 (2003), s. 79-85 E-ISSN 1436-5073 Institutional research plan: CEZ:AV0Z4040901 Keywords : XPS * SIMS * depth profiling * fullerenes * doping Subject RIV: CG - Electrochemistry Impact factor: 0.784, year: 2003

  12. On the oxide formation on stainless steels AISI 304 and incoloy 800H investigated with XPS

    NARCIS (Netherlands)

    Langevoort, J.C.; Sutherland, I.; Hanekamp, L.J.; Gellings, P.J.

    1987-01-01

    The influence of cold work on the initially formed oxide layer on the stainless steels AISI 304 and Incology 800H has been studied by XPS. Oxidations were performed at pressures of 10-6-10-4 Pa and temperatures of 300–800 K. All samples showed a similar oxidation behaviour. The oxidation rates of

  13. XPS and factor analysis study of initial stages of cerium oxide growth on polycrystalline tungsten

    Czech Academy of Sciences Publication Activity Database

    Polyak, Yaroslav; Bastl, Zdeněk

    2015-01-01

    Roč. 47, č. 6 (2015), s. 663-671 ISSN 0142-2421 Institutional support: RVO:68378271 ; RVO:61388955 Keywords : XPS * FA * PLD * cerium oxide * WO 3 * Ce (3d) Subject RIV: CF - Physical ; Theoretical Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 1.018, year: 2015

  14. Electronic excitation in XPS spectra of argon and potassium implanted in aluminium

    International Nuclear Information System (INIS)

    Abbate, M.

    1988-01-01

    XPS (X-ray photoemission spectroscopy) spectra were obtained for argon and potassium implanted in aluminium to study the plasmons excitation which are produced during photoemission. It was found that in these systems it was produced more intrinsic plasmons than extrinsic. (A.C.A.S.) [pt

  15. Diamond/carbon nanotube composites: Raman, FTIR and XPS spectroscopic studies

    Czech Academy of Sciences Publication Activity Database

    Varga, Marián; Ižák, Tibor; Vretenár, V.; Kozak, Halyna; Holovský, Jakub; Artemenko, Anna; Hulman, M.; Skákalová, V.; Lee, D. S.; Kromka, Alexander

    2016-01-01

    Roč. 111, Jan (2016), s. 54-61 ISSN 0008-6223 R&D Projects: GA ČR GC15-22102J; GA MŠk(CZ) 7AMB14SK037 Institutional support: RVO:68378271 Keywords : diamond * carbon nanotubes * spectroscopy * Raman * FTIR * XPS Subject RIV: JI - Composite Materials Impact factor: 6.337, year: 2016

  16. An In-situ XPS study of non-evaporable ZrVFe getter material

    Directory of Open Access Journals (Sweden)

    Jang-Hee Yoon

    2010-03-01

    Full Text Available To investigate the temperature dependence of a synthesized Zr57V36Fe7 non evaporable vacuum getter material, the in-situ temperature x-ray photoelectron spectroscopy (in-situ XPS were performed in a UHV chamber equipped with a programmable ceramic sample heating system. The surface and bulk composition of Zr, V, and Ti was determined in the as-received state and after in-situ heating from 50℃ to 600℃ at 50℃per step. The peak fitting results for O 1s, C 1s, Zr 3d, V 2p, and Fe 2p high resolution spectra were acquired and the chemical state of the elements were then characterized as a function of heating temperature. In-situ XPS investigations showed that oxide reduction proceeds via the formation of sub-oxides with the simultaneous formation of carbides in the region near the surface. The activation temperature for completion of the Zr57V36Fe7 alloy, which approximates the XPS peaks changed from oxide to metallic state(20 % of the oxide peak, was determined around 480℃. The findings suggest that the in-situ temperature XPS technique is a useful analytical tool for evaluating activation characteristics of NEG materials.

  17. High resolving power spectrometer for beam analysis

    Science.gov (United States)

    Moshammer, H. W.; Spencer, J. E.

    1992-03-01

    We describe a system designed to analyze the high energy, closely spaced bunches from individual RF pulses. Neither a large solid angle nor momentum range is required so this allows characteristics that appear useful for other applications such as ion beam lithography. The spectrometer is a compact, double-focusing QBQ design whose symmetry allows the Quads to range between F or D with a correspondingly large range of magnifications, dispersion, and resolving power. This flexibility insures the possibility of spatially separating all of the bunches along the focal plane with minimal transverse kicks and bending angle for differing input conditions. The symmetry of the system allows a simple geometric interpretation of the resolving power in terms of thin lenses and ray optics. We discuss the optics and the hardware that is proposed to measure emittance, energy, energy spread, and bunch length for each bunch in an RF pulse train for small bunch separations. We also discuss how to use such measurements for feedback and feedforward control of these bunch characteristics as well as maintain their stability.

  18. Highly resolving computerized tomography

    International Nuclear Information System (INIS)

    Kurtz, B.; Petersen, D.; Walter, E.

    1984-01-01

    With the development of highly-resolving devices for computerized tomography, CT diagnosis of the lumbar vertebral column has gained increasing importance. As an ambulatory, non-invasive method it has proved in comparative studies to be at least equivalent to myelography in the detection of dislocations of inter-vertebral disks (4,6,7,15). Because with modern devices not alone the bones, but especially the spinal soft part structures are clearly and precisely presented with a resolution of distinctly below 1 mm, a further improvement of the results is expected as experience will increase. The authors report on the diagnosis of the lumbar vertebral column with the aid of a modern device for computerized tomography and wish to draw particular attention to the possibility of doing this investigation as a routine, and to the diagnostic value of secondary reconstructions. (BWU) [de

  19. XPS and surface resistivity measurements of plasma - treated FEP co-polymer

    International Nuclear Information System (INIS)

    Pitrus, R.K.; Brack, N.; Liesegang, J.; Pigram, P.J.

    2002-01-01

    Full text: Fluorinated polymers such as fluorinated ethylene propylene (FEP) and poly(tetrafluoroethylene) (PTFE) play an important role in many applications due to their many desirable properties such as chemical resistivity, inertness, electrical stability and low dielectric constant; however, one disadvantage of fluorinated polymers is their extreme surface hydrophobicity. Previous studies show that plasma treatment will modify the surface by increasing the surface free energy and also offer a rapid and convenient method for pre-treating the polymers for many purposes. This paper, through resistivity and XPS (x-ray photoelectron spectroscopy) measurements, attempts to discover basic effects of such plasma treatment. Fluorinated ethylene propylene (FEP) co-polymer film of (0.05) mm thickness (obtained commercially) and with the following structure (CF 2 -CF 2 )-(CF(CF 3 )CF 2 )- was used. A suitable cleaning procedure was used to remove adventitious carbon from the surface. XPS has been used to study FEP film properties. The spectra of XPS were analyzed with the main focus on carbon and fluorine as they compose the elemental component of FEP film. A value of 2.05 was obtained for the F/C ratio, which is slightly higher than the theoretical F/C value estimated from the chemical structure of FEP (F/C 2). The clean film was then air plasma treated (pressure 10 -1 torr and power 30W) for various treatment times to produce a higher energy fluoropolymer surface. XPS studies investigated changes to the polymer surface and determined that oxidation occurs on the FEP surface. The oxidation reactions on the FEP surface form oxygen functional groups such as C-O and C=O groups. The results also show that the percentage of CF 2 and CF 3 in the co-polymer surface decreased with exposure time and the percentage of CF, C-C, C-O and C=O increased. There is a sharp decrease in F/C ratio and increase in O/C ratio. In addition to XPS, the resistivity of FEP-film was measured by a

  20. open angle glaucoma (poag)?

    African Journals Online (AJOL)

    there is a build up of pressure due to poor outflow of aqueous humor. The outflow obstruction could occur at the trabecular meshwork of the anterior chamber angle or subsequently in the episcleral vein due to raised venous pressure. Such build up of pressure results in glaucoma . Elevated intraocular pressure remains the ...

  1. The quadriceps angle

    DEFF Research Database (Denmark)

    Miles, James Edward; Frederiksen, Jane V.; Jensen, Bente Rona

    2012-01-01

    : Pelvic limbs from red foxes (Vulpes vulpes). METHODS: Q angles were measured on hip dysplasia (HD) and whole limb (WL) view radiographs of each limb between the acetabular rim, mid-point (Q1: patellar center, Q2: femoral trochlea), and tibial tuberosity. Errors of 0.5-2.0 mm at measurement landmarks...

  2. At Right Angles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. At Right Angles. Shailesh A Shirali. Information and Announcements Volume 17 Issue 9 September 2012 pp 920-920. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/017/09/0920-0920 ...

  3. The lateral angle revisited

    DEFF Research Database (Denmark)

    Morgan, Jeannie; Lynnerup, Niels; Hoppa, R.D.

    2013-01-01

    This article presents the results of a validation study of a previously published method of sex determination from the temporal bone. The purpose of this study was to evaluate the lateral angle method for the internal acoustic canal for accurately determining the sex of human skeletal remains usi...... method appears to be of minimal practical use in forensic anthropology and archeology....

  4. Small angle neutron scattering

    International Nuclear Information System (INIS)

    Gupta, Sanjay

    1982-01-01

    The technique of small angle neutron scattering was first used in Germany less than two decades ago. Since then it has developed very rapidly, and today it is regarded as one of the most powerful techniques in materials, chemical and biological research. During the last decade the combination of high flux reactors and sophisticated instrumentation has revolutionized the technique. This paper endeavours to present a brief but comprehensive review of small angle scattering of neutrons and its applications in solid state research. The domain in which small angle neutron scattering is particularly useful is delineated and some of the methods used in the analysis of data are discussed with special emphasis on recent developments. Typical small angle neutron scattering cameras are described. Finally some experimental results on heterogeneities in metallic systems (both static and dynamic studies), radiation damage in materials, superconductivity, magnetic materials and the technologically very important area of non-destructive testing are reviewed in order to illustrate the wide range of applicability of this technique to problems in solid state research. (author)

  5. Neutron small angle scattering

    International Nuclear Information System (INIS)

    Ibel, K.

    1975-01-01

    The neutron small-angle scattering system at the High-Flux Reactor in Grenoble consists of three major parts: the supply of cold neutrons via bent neutron guides; the small angle camera D11; and the data handling facilities. The camera D11 has an overall length of 80 m. The effective length of the camera is variable. The length of the collimator before the fixed sample position can be reduced by movable neutron guides; the secondary flight path of 40 m full length contains detector sites in various positions. Thus, a large domain of momentum transfers can be exploited. Scattering angles between 5.10 -4 and 0.5 rad and neutron wavelengths from 0.2 to 2.0 nm are available with the same instrument and the same relative resolution. A large-area position-sensitive detector is used which allows simultaneous recording of intensities scattered into different angles; it is a multiwire proportional chamber. 3808 elements of 1 cm 2 are arranged in a two-dimensional matrix. Future development comprises an increase of the limit in the count rate due to the electronic interface between the detector and on-line computer, actually at 5.10 4 per sec. by one order of magnitude

  6. At Right Angles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. At Right Angles. Shailesh A Shirali. Information and Announcements Volume 17 Issue 9 September 2012 pp 920-920. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/017/09/0920-0920 ...

  7. Detergency of stainless steel surface soiled with human brain homogenate: an XPS study

    Energy Technology Data Exchange (ETDEWEB)

    Richard, M. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France) and Laboratoires ANIOS, 59 260 Lille-Hellemmes (France)]. E-mail: marlene.richard@ec-lyon.fr; Le Mogne, Th. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France); Perret-Liaudet, A. [Hopital Neurologique de Lyon et INSERM U512, 69 394 Lyon (France); Rauwel, G. [Laboratoires ANIOS, 59 260 Lille-Hellemmes (France); Criquelion, J. [Laboratoires ANIOS, 59 260 Lille-Hellemmes (France); De Barros, M.I. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France); Cetre, J.C. [Unite d' Hygiene et d' Epidemiologie, Hopital de la Croix Rousse, 69 317 Lyon (France); Martin, J.M. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France)

    2005-02-15

    In the detergency field of re-usable medical devices, a special attention is focused on the non conventional transmissible agent called prions which is a proteinaceous infectious agent. Few cleaning procedures are effective against prions and few techniques are available to study cleaning effectiveness with respect to proteins in general. In our study, X-ray photoelectron spectroscopy (XPS) has been used to evaluate the effectiveness of detergent formulations to remove proteins from stainless steel surface soiled with a brain homogenate (BH) from human origin. Our results showed that XPS is a reliable surface analysis technique to study chemical species remaining on surface and substrate properties after cleaning procedures. A semi-quantitative evaluation of the detergency effectiveness could also be performed.

  8. XPS and FTIR investigation of the surface properties of different prepared titania nano-powders

    DEFF Research Database (Denmark)

    Jensen, Henrik; Solovyev, Alexey; Lie, Zheshen

    2005-01-01

    Surface studies of nano-sized TiO2 powders prepared by different methods showed that the preparation method had great impact on the surface properties. XPS measurements showed that the oxygen composition was related to the preparation method. The chloride method yielded the lowest amount of surface...... oxygen (29%) and sol–gel prepared powder showed the greatest amount of surface oxygen (66%) in the form of surface hydroxyl groups. The remaining oxygen was identified as lattice oxygen. The powder prepared by the sol–gel method contained carbon impurities originating from residual alkoxy groups....... Supercritical sol–gel prepared powder and powder prepared by the sulphate method revealed same trends regarding oxygen composition with 44–47% being surface oxygen; neither contained carbon impurities. The results obtained from XPS were confirmed by FTIR measurements....

  9. Applications of high lateral and energy resolution imaging XPS with a double hemispherical analyser based spectromicroscope

    International Nuclear Information System (INIS)

    Escher, M.; Winkler, K.; Renault, O.; Barrett, N.

    2010-01-01

    The design and applications of an instrument for imaging X-ray photoelectron spectroscopy (XPS) are reviewed. The instrument is based on a photoelectron microscope and a double hemispherical analyser whose symmetric configuration avoids the spherical aberration (α 2 -term) inherent for standard analysers. The analyser allows high transmission imaging without sacrificing the lateral and energy resolution of the instrument. The importance of high transmission, especially for highest resolution imaging XPS with monochromated laboratory X-ray sources, is outlined and the close interrelation of energy resolution, lateral resolution and analyser transmission is illustrated. Chemical imaging applications using a monochromatic laboratory Al Kα-source are shown, with a lateral resolution of 610 nm. Examples of measurements made using synchrotron and laboratory ultra-violet light show the broad field of applications from imaging of core level electrons with chemical shift identification, high resolution threshold photoelectron emission microscopy (PEEM), work function imaging and band structure imaging.

  10. Chemical state analysis of conversion coatings by SR-XPS and TEY-XANES

    CERN Document Server

    Noro, H; Nagoshi, M

    2002-01-01

    Chromate coatings on galvanized steel have been studied by Synchrotron Radiation (SR) based techniques that include X-ray Photoelectron Spectroscopy (XPS) and Total-Electron-Yield X-ray Absorption Near Edge Structure (TEY-XANES). Non-destructive depth profiling of the coatings by SR-XPS reveals the enhancement of Cr sup 6 sup + in the outer surface. TEY-XANES spectroscopy based on simple specimen current measurement is demonstrated as an effective technique for analyzing chemical states of conversion coatings on general bulk substrates. The sampling depth of this technique, which exceeds several tens of nanometer, is determined by the penetration length of Auger electrons excited by X-ray and the inelastic mean free path of secondary electrons excited by inelastically scattered Auger electrons. The chemical states of phosphoric acid added chromate coatings are studied using this technique. The phosphoric acid is taken into the chromate coatings as partially changed into zinc and chromium phosphates, and the r...

  11. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    Science.gov (United States)

    Pigois-Landureau, E.; Nicolau, Y. F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3-4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces.

  12. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    International Nuclear Information System (INIS)

    Pigois-Landureau, E.; Nicolau, Y.F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3 endash 4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces. copyright 1996 American Institute of Physics

  13. Characterization on Contacting Surfaces of MEMS Electrostatic Switches by SEM, EDXA, and XPS

    Directory of Open Access Journals (Sweden)

    I. A. Afinogenov

    2015-01-01

    Full Text Available We focus on the origin and sources of surface contamination and defects causing the failure of MEMS electrostatic switches. The morphology, and elemental and chemical compositions of the contacting surfaces, conducting paths, and other parts of switches have been characterized by means of SEM, EDXA, and XPS in order to understand the difference between the data collected for the devices that had passed the electrical conductivity test and those found to be defective. C, O, Al, Ca, Ti, Cu, and some other impurities were detected on the details of defective switches. Contrariwise, the working switches were found to be clean, at least on the level of EDXA and XPS sensitivity. The main sources of surface contamination and defects were incompletely deleted sacrificial layers, substrate materials, and electrolytes employed for Rh plating of the contacts. The negative influence of foreign microparticles, especially alumina and copper oxides, on the conductivity and porosity of contacts was highlighted.

  14. Structural evolution of Ga-Ge-Te glasses by combined EXAFS and XPS analysis

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, R. [Department of Physics and Astronomy, Austin Peay State University, Clarksville, Tennessee 37044 (United States); Materials Science and Engineering Department, Lehigh University, 5 East Packer Avenue, Bethlehem, Pennsylvania 18015 (United States); Calvez, L.; Bureau, B. [Laboratoire des Verres et Ceramiques, Institut des Sciences Chimiques de Rennes, UMR-CNRS6226, University of Rennes 1 (France); Jain, H. [Materials Science and Engineering Department, Lehigh University, 5 East Packer Avenue, Bethlehem, Pennsylvania 18015 (United States)

    2013-08-07

    The structural evolution of Ga{sub x}Ge{sub y}Te{sub 100−x−y} glasses in the vicinity of GeTe{sub 4}-GaTe{sub 3} pseudo-binary tie-line is determined with high-resolution X-ray photoelectron (XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopies. The analysis of XPS data is complicated by similar electronegativity values for the constituent chemical elements, but then the interpretation is facilitated by information from complementary EXAFS analysis of the structure around each element independently. The results show 4/4/2 coordination for Ga/Ge/Te atoms and absence of Ga(Ge)-Ge(Ga) bonds or extended Te clusters in significant concentrations within the whole range of studied composition. The observed structural features correlate well with the measured basic physical properties of Ga-containing germanium telluride glasses.

  15. Pd adsorption on Si(1 1 3) surface: STM and XPS study

    International Nuclear Information System (INIS)

    Hara, Shinsuke; Yoshimura, Masamichi; Ueda, Kazuyuki

    2008-01-01

    Pd-induced surface structures on Si(1 1 3) have been studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). In the initial process of the Pd adsorption below 0.10 ML, Pd silicide (Pd 2 Si) clusters are observed to form randomly on the surface. By increasing the Pd coverage to 0.10 ML, the clusters cover the entire surface, and an amorphous layer is formed. After annealing the Si(1 1 3)-Pd surface at 600 deg. C, various types of islands and chain protrusions appears. The agglomeration, coalescence and crystallization of these islands are observed by using high temperature (HT-) STM. It is also found by XPS that the islands correspond to Pd 2 Si structure. On the basis of these results, evolution of Pd-induced structures at high temperatures is in detail discussed

  16. XPS characterization of the anodic oxide film formed on uranium metal in sodium hydroxide solution

    International Nuclear Information System (INIS)

    Fu Xiaoguo; Wang Xiaolin; Guo Huanjun; Wang Qingfu; Zhao Zhengping; Zhong Yongqiang

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) is used to examine the anodic oxide film formed on uranium metal in 0.8 mol/L NaOH solution. The U4f 7/2 fitting spectra suggests that the anodic oxide film is composed of uranium trioxide and a small amount of UO 2+x . Under UHV condition, the U4f peak shifts to the lower binding energy, while a gradual increase in the intensity of U5f peak and the broad of U4f peak are also observed. All of these changes are due to reduction of uranium trioxide in the anodic oxide film. XPS quantitative analysis confirms the occurrence of reduction reaction

  17. Resolving inventory differences

    International Nuclear Information System (INIS)

    Weber, J.H.; Clark, J.P.

    1991-01-01

    Determining the cause of an inventory difference (ID) that exceeds warning or alarm limits should not only involve investigation into measurement methods and reexamination of the model assumptions used in the calculation of the limits, but also result in corrective actions that improve the quality of the accountability measurements. An example illustrating methods used by Savannah River Site (SRS) personnel to resolve an ID is presented that may be useful to other facilities faced with a similar problem. After first determining that no theft or diversion of material occurred and correcting any accountability calculation errors, investigation into the IDs focused on volume and analytical measurements, limit of error of inventory difference (LEID) modeling assumptions, and changes in the measurement procedures and methods prior to the alarm. There had been a gradual gain trend in IDs prior to the alarm which was reversed by the alarm inventory. The majority of the NM in the facility was stored in four large tanks which helped identify causes for the alarm. The investigation, while indicating no diversion or theft, resulted in changes in the analytical method and in improvements in the measurement and accountability that produced a 67% improvement in the LEID

  18. XPS investigations on the UV-laser ablation mechanism of poly(ether imide)

    Energy Technology Data Exchange (ETDEWEB)

    Wambach, J.; Kunz, T.; Schnyder, B.; Koetz, R.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    UV-Laser ablated samples of poly(ether imide) [Kapton{sup TM}] were studied with small-spot XPS. Applying fluences above the threshold level (0.167 J/cm{sup 2}) resulted in the expected behaviour of a decline of both nitrogen and oxygen. Below the threshold level a hint for an altered ablation mechanism was found. (author) 1 fig., 5 refs.

  19. XPS Analysis of AuGeNi/Cleaved GaAs(110 Interface

    Directory of Open Access Journals (Sweden)

    Constantin-Catalin Negrila

    2016-01-01

    Full Text Available The depth composition of the thin layer alloy, AuGeNi, devoted to acting as an ohmic contact on n-GaAs(110 has been investigated by in situ XPS combined with Argon ion sputtering techniques. The fresh cleaved surfaces, supposed to be free of oxygen, were usually deposited with a 200 nm metallic layer in high vacuum conditions (better than 10−7 torr, by thermal evaporation, and annealed at a 430–450° Celsius temperature for 5 minutes. About 18 sessions of ion Ar surfaces etching and intermediate XPS measurements were performed in order to reveal the border of the metal/semiconductor interface. The atomic concentrations of the chemical elements have been approximated. Au4f, Ga3d, Ga2p, As3d, As2p, Ni2p3/2, Ge3d, O1s, and C1s spectral lines were recorded. The Au, Ge, and Ni have a homogenous distribution while Ga and As tend to diffuse to the surface. Oxygen is present in the first layers of the surface while carbon completely disappears after the second etching step. The existence of an Au-Ga alloy was detected and XPS spectra show only metal Ni and Ge within the layer and at the interface. We tried to perform a study about the depth chemical composition profile analysis of AuGeNi layer on cleaved n-GaAs(110 by X-Ray Photoelectron Spectroscopy (XPS technique.

  20. Investigation of CoPd alloys by XPS and EPES using the pattern recognition method

    Czech Academy of Sciences Publication Activity Database

    Lesiak, B.; Zemek, Josef; Jiříček, Petr; Jozwik, A.

    2007-01-01

    Roč. 428, - (2007), s. 190-196 ISSN 0925-8388 R&D Projects: GA ČR GA202/06/0459 Institutional research plan: CEZ:AV0Z10100521 Keywords : CoPd alloys * x-ray photoelectron spectroscopy (XPS) * elastic peak electron spectroscopy (EPES) * pattern recognition method * fuzzy k-nearest neighbour rule (fkNN) * quantitative analysis * surface segregation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.455, year: 2007

  1. Comparison of optical models and signals from XPS and VASE characterized titanium after PBS immersion

    Czech Academy of Sciences Publication Activity Database

    Penttinen, N.; Hasoň, Stanislav; Silvennoinen, M.; Joska, L.; Silvennoinen, R.

    2012-01-01

    Roč. 285, č. 6 (2012), s. 965-968 ISSN 0030-4018 Grant - others:GA ČR(CZ) GAP108/10/1782 Program:GA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : permittivity * XPS titanium * diffractive optical element-based sensor Subject RIV: BO - Biophysics Impact factor: 1.438, year: 2012

  2. Lead-silicate glass surface sputtered by an argon cluster ion beam investigated by XPS

    Czech Academy of Sciences Publication Activity Database

    Zemek, Josef; Jiříček, Petr; Houdková, Jana; Jurek, Karel; Gedeon, O.

    2017-01-01

    Roč. 469, Aug (2017), s. 1-6 ISSN 0022-3093 R&D Projects: GA MŠk LM2015088; GA ČR(CZ) GA15-12580S Institutional support: RVO:68378271 Keywords : lead-silicate glass * XPS * BO * NBO * Argon duster ion beam sputtering * X-ray irradiation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.124, year: 2016

  3. An XPS study of tarnishing of a gold mask from a pre-Columbian culture

    International Nuclear Information System (INIS)

    Bastidas, D.M.; Cano, E.; Gonzalez, A.G.; Fajardo, S.; Lleras-Perez, R.; Campo-Montero, E.; Belzunce-Varela, F.J.; Bastidas, J.M.

    2008-01-01

    The tarnishing originated on a hammered gold mask was analysed. Red tarnishing was observed after three years of storage in an indoor environment in the Gold Museum of Banco de la Republica, Bogota, Colombia. Silver sulphide (Ag 2 S) and silver sulphate (Ag 2 SO 4 ) compounds were identified as the origin of the tarnishing phenomenon, which is attributed to environmental contamination. Atomic absorption spectroscopy (AAS) and X-ray photoelectron spectroscopy (XPS) techniques were used

  4. Surface chemical characterization of PM{sub 10} samples by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Atzei, Davide, E-mail: datzei@unica.it [Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Complesso Universitario di Monserrato, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari (Italy); Fantauzzi, Marzia; Rossi, Antonella [Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Complesso Universitario di Monserrato, S.S. 554 Bivio per Sestu, I-09042 Monserrato, Cagliari (Italy); Fermo, Paola [Dipartimento di Chimica, Università degli Studi Milano, Via Golgi 19, I-20133 Milano (Italy); Piazzalunga, Andrea [Dipartimento di Chimica, Università degli Studi Milano, Via Golgi 19, I-20133 Milano (Italy); Dipartimento di Scienze dell’Ambiente e del territorio, Università degli Studi di Milano-Bicocca, Piazza della Scienza 1, I-20122 Milano (Italy); Valli, Gianluigi; Vecchi, Roberta [Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano (Italy)

    2014-07-01

    Samples of particulate matter (PM) collected in the city of Milan during wintertime were analyzed by X-ray photoelectron spectroscopy (XPS), thermal optical transmittance (TOT), ionic chromatography (IC) and X-ray fluorescence (XRF) in order to compare quantitative bulk analysis and surface analysis. In particular, the analysis of surface carbon is here presented following a new approach for the C1s curve fitting aiming this work to prove the capability of XPS to discriminate among elemental carbon (EC) and organic carbon (OC) and to quantify the carbon-based compounds that might be present in the PM. Since surface of urban PM is found to be rich in carbon it is important to be able to distinguish between the different species. XPS results indicate that aromatic and aliphatic species are adsorbed on the PM surface. Higher concentrations of (EC) are present in the bulk. Also nitrogen and sulfur were detected on the surfaces and a qualitative and quantitative analysis is provided. Surface concentration of sulfate ion is equal to that found by bulk analysis; moreover surface analysis shows an additional signal due to organic sulfur not detectable by the other methods. Surface appears to be also enriched in nitrogen.

  5. GD-OES and XPS coupling: A new way for the chemical profiling of photovoltaic absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Mercier, Dimitri, E-mail: dimitri.mercier@uvsq.fr [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Bouttemy, Muriel; Vigneron, Jackie [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Chapon, Patrick [HORIBA Jobin Yvon SAS, F-91165 Longjumeau (France); Etcheberry, Arnaud [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France)

    2015-08-30

    Highlights: • The coupling between GD-OES and XPS analysis is a promising way for fine characterization of thin layers. • Crater surface modifications obtained after GD-OES sputtering depend to the plasma gas. • Inversion of the gas flow improves the surface of the crater. • The modified layer is totally eliminated a few seconds after restarting GD-OES sputtering. - Abstract: In this paper, we examine the complementarity of Glow Discharge Optical Emission Spectroscopy (GD-OES) and X Ray Photoelectron Spectroscopy (XPS) for the realization of fine chemical depth profiling of photovoltaic absorbers using Cu(In,Ga)Se{sub 2} (CIGS) materials. The possibility to use sequentially these two techniques is discussed in this paper. We have evaluated the chemical modifications of the crater after GD-OES analyses which depend on the manner of finishing the plasma etching sequence; and we propose different ways to limit or eliminate this effect. For the moment, an intermediate step (wet chemical etching or weak sputtering) is required to obtain a CIGS phase in the crater. Finally, we have demonstrated the possibility to restart the GD-OES analyses of the materials after XPS quantification or GD-OES breaking without modifying the profile shape.

  6. Gold/silver core-shell 20 nm nanoparticles extracted from citrate solution examined by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Engelhard, Mark H.; Smith, Jordan N.; Baer, Donald R.

    2016-06-01

    Silver nanoparticles of many types are widely used in consumer and medical products. The surface chemistry of particles and the coatings that form during synthesis or use in many types of media can significantly impact the behaviors of particles including dissolution, transformation and biological or environmental impact. Consequently it is useful to be able to extract information about the thickness of surface coatings and other attributes of nanoparticles produced in a variety of ways. It has been demonstrated that X-ray Photoelectron Spectroscopy (XPS) can be reliably used to determine the thickness of organic and other nanoparticles coatings and shells. However, care is required to produce reliable and consistent information. Here we report the XPS spectra from gold/silver core-shell nanoparticles of nominal size 20 nm removed from a citrate saturated solution after one and two washing cycles. The Simulation of Electron Spectra for Surface Analysis (SESSA) program had been used to model peak amplitudes to obtain information on citrate coatings that remain after washing and demonstrate the presence of the gold core. This data is provided so that others can compare use of SESSA or other modeling approaches to quantify the nature of coatings to those already published and to explore the impacts particle non-uniformities on XPS signals from core-shell nanoparticles.

  7. Quantitative Surface Analysis by Xps (X-Ray Photoelectron Spectroscopy: Application to Hydrotreating Catalysts

    Directory of Open Access Journals (Sweden)

    Beccat P.

    1999-07-01

    Full Text Available XPS is an ideal technique to provide the chemical composition of the extreme surface of solid materials, vastly applied to the study of catalysts. In this article, we will show that a quantitative approach, based upon fundamental expression of the XPS signal, has enabled us to obtain a consistent set of response factors for the elements of the periodic table. In-depth spadework has been necessary to know precisely the transmission function of the spectrometer used at IFP. The set of response factors obtained enables to perform, on a routine basis, a quantitative analysis with approximately 20% relative accuracy, which is quite acceptable for an analysis of such a nature. While using this quantitative approach, we have developed an analytical method specific to hydrotreating catalysts that allows obtaining the sulphiding degree of molybdenum quite reliably and reproducibly. The usage of this method is illustrated by two examples for which XPS spectroscopy has provided with information sufficiently accurate and quantitative to help understand the reactivity differences between certain MoS2/Al2O3 or NiMoS/Al2O3-type hydrotreating catalysts.

  8. Chemical characterization of selected high copper dental amalgams using XPS and XRD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Talik, E. [A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland)]. E-mail: talik@us.edu.pl; Babiarz-Zdyb, R. [A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Dziedzic, A. [Medical University of Silesia, Department of Conservative Dentistry and Periodontology, Akademicki 17 Sqr., 41-209 Bytom (Poland)

    2005-08-02

    The study was carried out to analyze some dependencies between the composition of seven high copper dental amalgams and mercury release behavior, as well as oxygen reactivity of metallic elements. Chemical comparative analysis of selected dental amalgams was carried out using X-ray photoelectron spectroscopy (XPS) technique and X-ray diffraction (XRD) method. The X-ray powder diffraction measurements revealed two main phases for measured amalgams: {gamma}{sub 1}-(Ag{sub 2}Hg{sub 3}) and {eta}'-(Cu{sub 6}Sn{sub 5}). The amount of mercury obtained by the XPS method was lower than the value quoted in the manufacturer's literature, which suggested evaporation of mercury under the UHV conditions. A linear decrease of oxygen and carbon contamination with the growing amount of Cu and Ag was observed. The XPS analysis showed that a high Sn concentration caused less resistance to oxidation. Some of the amalgams contained some extra elements, such as Bi, In, and Zn. All samples contained lead in metallic state and oxides. The amount of Ag, Cu, Sn ingredients determines the main properties of high copper amalgams and plays an important role in mercury evaporation. High tin concentration combined with the presence of smaller amounts of silver and copper (high Sn/Ag ratio) may influence the increase of mercury vaporization.

  9. Quantifying Small Changes in Uranium Oxidation States Using XPS of a Shallow Core Level

    Energy Technology Data Exchange (ETDEWEB)

    Ilton, Eugene S.; Du, Yingge; Stubbs, Joanne; Eng, Peter; Chaka, Anne M.; Bargar, John R.; Nelin, Constance J.; Bagus, Paul S.

    2017-12-29

    The U4f line is commonly used to determine uranium oxidation states with X-ray photoelectron spectroscopy (XPS). In contrast, the XPS of the shallow core-levels of uranium are rarely recorded. Nonetheless, theory has shown that the U 5d (and 5p) multiplet structure is very sensitive to oxidation state. In this contribution we extracted the U(IV) and U(V) 5d XPS peak shapes from near stoichiometric and relatively oxidized UO2 single crystal samples, respectively, where the oxidation state of U was constrained by fitting the 4f line. The empirically extracted 5d spectra were similar to the theoretically determined multiplet structures and were used, along with the relatively simple U(VI) component that was constrained by theory, to determine the oxidation states of UO2+x samples. The results showed a very strong correlation between oxidation states determined by the 5d and 4f line and suggested that the 5d might be more sensitive to minor amounts of oxidation than the 4f. Limitations of the methodology, as well as advantages of using the 5d relative to the 4f line are discussed.

  10. Time-resolved studies

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    When new or more powerful probes become available that offer both shorter data-collection times and the opportunity to apply innovative approaches to established techniques, it is natural that investigators consider the feasibility of exploring the kinetics of time-evolving systems. This stimulating area of research not only can lead to insights into the metastable or excited states that a system may populate on its way to a ground state, but can also lead to a better understanding of that final state. Synchrotron radiation, with its unique properties, offers just such a tool to extend X-ray measurements from the static to the time-resolved regime. The most straight-forward application of synchrotron radiation to the study of transient phenomena is directly through the possibility of decreased data-collection times via the enormous increase in flux over that of a laboratory X-ray system. Even further increases in intensity can be obtained through the use of novel X-ray optical devices. Widebandpass monochromators, e.g., that utilize the continuous spectral distribution of synchrotron radiation, can increase flux on the sample several orders of magnitude over conventional X-ray optical systems thereby allowing a further shortening of the data-collection time. Another approach that uses the continuous spectral nature of synchrotron radiation to decrease data-collection times is the open-quote parallel data collectionclose quotes method. Using this technique, intensities as a function of X-ray energy are recorded simultaneously for all energies rather than sequentially recording data at each energy, allowing for a dramatic decrease in the data-collection time

  11. Metasurface Enabled Wide-Angle Fourier Lens.

    Science.gov (United States)

    Liu, Wenwei; Li, Zhancheng; Cheng, Hua; Tang, Chengchun; Li, Junjie; Zhang, Shuang; Chen, Shuqi; Tian, Jianguo

    2018-04-19

    Fourier optics, the principle of using Fourier transformation to understand the functionalities of optical elements, lies at the heart of modern optics, and it has been widely applied to optical information processing, imaging, holography, etc. While a simple thin lens is capable of resolving Fourier components of an arbitrary optical wavefront, its operation is limited to near normal light incidence, i.e., the paraxial approximation, which puts a severe constraint on the resolvable Fourier domain. As a result, high-order Fourier components are lost, resulting in extinction of high-resolution information of an image. Other high numerical aperture Fourier lenses usually suffer from the bulky size and costly designs. Here, a dielectric metasurface consisting of high-aspect-ratio silicon waveguide array is demonstrated experimentally, which is capable of performing 1D Fourier transform for a large incident angle range and a broad operating bandwidth. Thus, the device significantly expands the operational Fourier space, benefitting from the large numerical aperture and negligible angular dispersion at large incident angles. The Fourier metasurface will not only facilitate efficient manipulation of spatial spectrum of free-space optical wavefront, but also be readily integrated into micro-optical platforms due to its compact size. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. AGING EFFECTS OF REPEATEDLY GLOW-DISCHARGED POLYETHYLENE - INFLUENCE ON CONTACT-ANGLE, INFRARED-ABSORPTION, ELEMENTAL SURFACE-COMPOSITION, AND SURFACE-TOPOGRAPHY

    NARCIS (Netherlands)

    VANDERMEI, HC; STOKROOS, [No Value; SCHAKENRAAD, JM; BUSSCHER, HJ

    1991-01-01

    Aging effects of repeatedly oxygen glow-discharged polyethylene surfaces were determined by water contact angle measurements, infrared (IR) spectroscopy, X-ray photoelectron (XPS) spectroscopy, and surface topography determination. Glow-discharged surfaces were stored at room temperature and in

  13. Investigation of surface cleaning procedure of InP:S (1 0 0) substrates by high resolution XPS

    International Nuclear Information System (INIS)

    Adamiec, M.; Talik, E.; Gladki, A.

    2006-01-01

    The angle resolved X-ray photoelectron spectroscopy measurements were used to monitor a level of contamination of the InP:S (1 0 0) substrates during the cleaning processes with deionized water and isopropanol. Some contaminations with carbon and oxygen were found for a broken under ultrahigh vacuum InP:S substrate, indicating the contamination of the crystal during the growth process. The substrates after cleaning with deionized water and isopropanol were contaminated with carbon, oxygen, nitrogen and silicon. Concentration of carbon decreases inwards the substrates while concentration of oxygen is enhanced even in the deeper layers for both processes. The nitrogen concentration is higher for the samples rinsed with water. Roughness of the surfaces is higher for the samples rinsed with water what indicated the AFM measurements

  14. Recent trends in spin-resolved photoelectron spectroscopy

    Science.gov (United States)

    Okuda, Taichi

    2017-12-01

    Since the discovery of the Rashba effect on crystal surfaces and also the discovery of topological insulators, spin- and angle-resolved photoelectron spectroscopy (SARPES) has become more and more important, as the technique can measure directly the electronic band structure of materials with spin resolution. In the same way that the discovery of high-Tc superconductors promoted the development of high-resolution angle-resolved photoelectron spectroscopy, the discovery of this new class of materials has stimulated the development of new SARPES apparatus with new functions and higher resolution, such as spin vector analysis, ten times higher energy and angular resolution than conventional SARPES, multichannel spin detection, and so on. In addition, the utilization of vacuum ultra violet lasers also opens a pathway to the realization of novel SARPES measurements. In this review, such recent trends in SARPES techniques and measurements will be overviewed.

  15. Test technology on divergence angle of laser range finder based on CCD imaging fusion

    Science.gov (United States)

    Shi, Sheng-bing; Chen, Zhen-xing; Lv, Yao

    2016-09-01

    Laser range finder has been equipped with all kinds of weapons, such as tank, ship, plane and so on, is important component of fire control system. Divergence angle is important performance and incarnation of horizontal resolving power for laser range finder, is necessary appraised test item in appraisal test. In this paper, based on high accuracy test on divergence angle of laser range finder, divergence angle test system is designed based on CCD imaging, divergence angle of laser range finder is acquired through fusion technology for different attenuation imaging, problem that CCD characteristic influences divergence angle test is solved.

  16. Relationship between the angle of repose and angle of internal ...

    African Journals Online (AJOL)

    Abstract. Click on the link to view the abstract. Keywords: Angle of repose, angle of internal friction, granular materials, triaxial compression machine, moisture content. Tanzania J. Agric. Sc. (1998) Vol.1 No.2, 187-194 ...

  17. SORCE XPS Level 3 Solar Spectral Irradiance Daily Means V011 (SOR3XPSD) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE XUV Photometer System (XPS) Solar Spectral Irradiance (SSI) Daily Data Product SOR3XPSD contains solar extreme ultraviolet irradiances in the 0.1 to 27 nm...

  18. Critical angle laser refractometer

    International Nuclear Information System (INIS)

    Castrejon-Pita, J.R.; Morales, A.; Castrejon-Garcia, R.

    2006-01-01

    A simple laser refractometer based on the detection of the critical angle for liquids is presented. The calibrated refractometer presents up to 0.000 11 of uncertainty when the refractive index is in the range between 1.300 00 and 1.340 00. The experimental setup is easy to construct and the material needed is available at most optics laboratories. The calibration method is simple and can be used in other devices. The refractive index measurements in aqueous solutions of sodium chloride were carried out to test the device and a linear dependence between the refractive index and the salt concentration was found

  19. X-ray photoemission spectroscopy (XPS) study of uranium, neptunium and plutonium oxides in silicate-based glasses

    International Nuclear Information System (INIS)

    Lam, D.J.; Veal, B.W.; Paulikas, A.P.

    1982-11-01

    Using XPS as the principal investigative tool, we are in the process of examining the bonding properties of selected metal oxides added to silicate glass. In this paper, we present results of XPS studies of uranium, neptunium, and plutonium in binary and multicomponent silicate-based glasses. Models are proposed to account for the very diverse bonding properties of 6+ and 4+ actinide ions in the glasses

  20. Review of the theoretical description of time-resolved angle-resolved photoemission spectroscopy in electron-phonon mediated superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, A.F. [Department of Physics, North Carolina State University, Raleigh, NC (United States); Sentef, M.A. [Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Hamburg (Germany); Moritz, B. [Stanford Institute for Materials and Energy Sciences (SIMES), SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Devereaux, T.P. [Stanford Institute for Materials and Energy Sciences (SIMES), SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA (United States); Freericks, J.K. [Department of Physics, Georgetown University, Washington, DC (United States)

    2017-09-15

    We review recent work on the theory for pump/probe photoemission spectroscopy of electron-phonon mediated superconductors in both the normal and the superconducting states. We describe the formal developments that allow one to solve the Migdal-Eliashberg theory in nonequilibrium for an ultrashort laser pumping field, and explore the solutions which illustrate the relaxation as energy is transferred from electrons to phonons. We focus on exact results emanating from sum rules and approximate numerical results which describe rules of thumb for relaxation processes. In addition, in the superconducting state, we describe how Anderson-Higgs oscillations can be excited due to the nonlinear coupling with the electric field and describe mechanisms where pumping the system enhances superconductivity. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Studies in small angle scattering techniques

    International Nuclear Information System (INIS)

    Moellenbach, K.

    1980-03-01

    Small angle scattering of neutrons, X-rays and γ-rays are found among the spectroscopic methods developed in the recent years. Although these techniques differ from each other in many respects, e.g. radiation sources and technical equipment needed, their power to resolve physical phenomena and areas of application can be discussed in a general scheme. Selected examples are given illustrating the use of specific technical methods. Jahn-Teller driven structural phase transitions in Rare Earth zircons were studied with neutron scattering as well as small angle γ-ray diffraction. The study of neutron scattering from formations of magnetic domains in the Ising ferromagnet LiTbF 4 is a second example. Both these examples represent more than experimental test cases since the theoretical interpretations of the data obtained are discussed as well. As a last example the use of small angle scattering methods for the study of molecular biological samples is discussed. In particular the experimental procedures used in connection with scattering from aqueous solutions of proteins and protein complexes are given. (Auth.)

  2. THE ALGOL TRIPLE SYSTEM SPATIALLY RESOLVED AT OPTICAL WAVELENGTHS

    International Nuclear Information System (INIS)

    Zavala, R. T.; Hutter, D. J.; Hummel, C. A.; Boboltz, D. A.; Ojha, R.; Shaffer, D. B.; Tycner, C.; Richards, M. T.

    2010-01-01

    Interacting binaries typically have separations in the milliarcsecond regime, and hence it has been challenging to resolve them at any wavelength. However, recent advances in optical interferometry have improved our ability to discern the components in these systems and have now enabled the direct determination of physical parameters. We used the Navy Prototype Optical Interferometer to produce for the first time images resolving all three components in the well-known Algol triple system. Specifically, we have separated the tertiary component from the binary and simultaneously resolved the eclipsing binary pair, which represents the nearest and brightest eclipsing binary in the sky. We present revised orbital elements for the triple system, and we have rectified the 180 0 ambiguity in the position angle of Algol C. Our directly determined magnitude differences and masses for this triple star system are consistent with earlier light curve modeling results.

  3. Scaling of misorientation angle distributions

    DEFF Research Database (Denmark)

    Hughes, D.A.; Chrzan, D.C.; Liu, Q.

    1998-01-01

    The measurement of misorientation angle distributions following different amounts of deformation in cold-rolled aluminum and nickel and compressed stainless steel is reported. The sealing of the dislocation cell boundary misorientation angle distributions is studied. Surprisingly, the distributio...

  4. ISS Assessment of the Influence of Nonpore Surface in the XPS Analysis of Oil-Producing Reservoir Rocks

    Science.gov (United States)

    Leon; Toledo; Araujo

    1997-08-15

    The application of X-ray photoelectron spectroscopy (XPS) to oil-producing reservoir rocks is new and has shown that pore surface concentrations can be related to rock wettability. In the preparation of fresh fractures of rocks, however, some nonpore surface corresponding to the connection regions in the rocks is created and exposed to XPS. To assess the potential influence of this nonpore surface in the XPS analysis of rocks here we use ion scattering spectroscopy (ISS), which has a resolution comparable to the size of the pores, higher than that of XPS, with an ion gun of He+ at maximum focus. Sample charging effects are partially eliminated with a flood gun of low energy electrons. All the ISS signals are identified by means of a formula which corrects any residual charging on the samples. Three rock samples are analyzed by XPS and ISS. The almost unchanged ISS spectra obtained at different points of a given sample suggest that the nonpore surface created in the fracture process is negligibly small, indicating that XPS data, from a larger surface spot, represents the composition of true pore surfaces. The significant changes observed in ISS spectra from different samples indicate that ISS is sample specific. Copyright 1997Academic Press

  5. Surface and bulk composition of YBa 2Cu 3O 6+x compounds studied by XPS

    Science.gov (United States)

    Andersson, S. Lars T.; Otamiri, Jonathan C.

    1990-08-01

    YBa 2Cu 3O 6+ x compounds prepared by a formic acid route where characterized by XPS. The samples were investigated both after scraping in air and in vacuum to reveal the surface composition after partial degradation during short time air exposure and to gather data on the pure bulk state. The surface layer is characterized by the XPS data of O 1s = 530.8-531.5 eV, Y3d 5/2 = 157.5 eV, Ba3d 5/2 = 779.9 eV , Ba4d 5/2 = 89.4 eV and Cu2p 3/2 = 934.4 eV with a strong satellite structure at 942.5 eV. The data indicate the presence of barium hydroxide and carbonate, copper(II) oxide, the green phase and some yttrium compound. The bulk state is characterized by XPS data of O 1 s = 528.8 eV, Y3d 5/2 = 156.2 eV , Ba3d 5/2 = 778.6 eV , Ba4d 5/2 = 88.3 eV and Cu2p 3/2 = 932.6 eV without a satellite and a similar copper state as for the surface layer. There exist single states of yttrium and barium in the bulk, both copper(I) and copper(II) valence states and for oxygen possibly several components closely spaced accounting for the structurally different oxide ions.

  6. Combined DFT and XPS investigation of iodine anions adsorption on the sulfur terminated (001) chalcopyrite surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kui, E-mail: likui9606@stu.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Zhao, Yaolin, E-mail: zhaoyaolin@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Peng, E-mail: zp32@qq.com [Sino Shaanxi Nuclear Industry Group, Xi’an 710100 (China); He, Chaohui, E-mail: hechaohui@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Deng, Jia, E-mail: djkokocase@stu.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Ding, Shujiang, E-mail: dingsj@mail.xjtu.edu.cn [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Shi, Weiqun, E-mail: shiwq@ihep.ac.cn [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2016-12-30

    Highlights: • Metal surface sites of (001)-S surface of chalcopyrite show significant chemical affinity to iodide and iodate. • The energetically favorable active site is copper for iodide adsorption and iron for iodate adsorption, respectively. • Iodate undergoes a dissociative adsorption on the copper site of chalcopyrite surface. - Abstract: The adsorption of iodine anions (iodide and iodate) on the sulfur terminated (001) chalcopyrite surface has been systematically investigated combining first-principles calculations based on density functional theory (DFT) with X-ray photoelectron spectroscopy (XPS) measurements. Based on the total energy calculations and geometric optimization, the thermodynamically preferred site was copper atom for iodide adsorption and iron atom for iodate adsorption, respectively. In the case of Cu site mode, the iodate underwent a dissociative adsorption, where one I−O bond of iodate ion was broken and the dissociative oxygen atom adsorbed on the adjacent sulphur site. Projected density of states (PDOS) analysis further clarified the interaction mechanism between active sites of chalcopyrite surface and adsorbates. In addition, full-range XPS spectra qualitatively revealed the presence of iodine on chalcopyrite surface. High resolution XPS spectra of the I 3d peaks after adsorption verified the chemical environment of iodine. The binding energies of 618.8 eV and 623.5 eV for I 3d{sub 5/2} peaks unveiled that the adsorption of iodide and iodate ions on copper-iron sulfide minerals was the result of formation of low solubility metal iodides precipitate. Also two I 3d peaks with low intensity around 618 eV and 630 eV might be related to the inorganic reduction of iodate to iodide by reducing S{sup 2−} ion of chalcopyrite.

  7. Angle performance on optima MDxt

    Energy Technology Data Exchange (ETDEWEB)

    David, Jonathan; Kamenitsa, Dennis [Axcelis Technologies, Inc., 108 Cherry Hill Dr, Beverly, MA 01915 (United States)

    2012-11-06

    Angle control on medium current implanters is important due to the high angle-sensitivity of typical medium current implants, such as halo implants. On the Optima MDxt, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through six narrow slits, and any angle adjustment is made by electrostatically steering the beam, while cross-wafer beam parallelism is adjusted by changing the focus of the electrostatic parallelizing lens (P-lens). In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen prior to implant. A variety of tests were run to measure the accuracy and repeatability of Optima MDxt's angle control. SIMS profiles of a high energy, channeling sensitive condition show both the cross-wafer angle uniformity, along with the small-angle resolution of the system. Angle repeatability was quantified by running a channeling sensitive implant as a regular monitor over a seven month period and measuring the sheet resistance-to-angle sensitivity. Even though crystal cut error was not controlled for in this case, when attributing all Rs variation to angle changes, the overall angle repeatability was measured as 0.16 Degree-Sign (1{sigma}). A separate angle repeatability test involved running a series of V-curves tests over a four month period using low crystal cut wafers selected from the same boule. The results of this test showed the angle repeatability to be <0.1 Degree-Sign (1{sigma}).

  8. Variable angle correlation spectroscopy

    International Nuclear Information System (INIS)

    Lee, Y.K.; Lawrence Berkeley Lab., CA

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13 C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system

  9. Variable angle correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Kyo [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.

  10. XPS response in the corrosion products analysis for copper exposed at clean air environment

    International Nuclear Information System (INIS)

    Mariaca, L.; Morcillo, M.; Feliu Jr, S.; Gonzalez, J.A.

    1998-01-01

    In this work is presented the obtained response for superficial analysis technique by X-ray photoelectron spectroscopy (XPS or ESCA), to determine the corrosion products formed during the copper exposure at environment without pollutants (clean air) at 50, 70 and 90 % of relative humidity at 35 Centigrade. One of the copper corrosion products most knew is Cu 2 O. This oxide is formed instantly to be exposed the copper at air. However in function of the exposure time and the relative humidity at it is exposed, the Cu 2 O oxide is transformed at Cu O and Cu(OH) 2 (Author)

  11. XPS study on the surface reaction of uranium metal with carbon monoxide at 200 degree C

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou; Huang Ruiliang

    1996-12-01

    The surface reaction of uranium metal with carbon monoxide at 200 degree C has been studied by X-ray photoelectron spectroscopy (XPS). The carbon monoxide adsorption on the surface oxide layer resulted in U4f peak shifting to the lower binding energy and the content of oxygen in the oxide is decreased. O/U radio decreases with increasing the exposure of carbon monoxide to the surface layer. The investigation indicated the surface layer of uranium metal was further reduced in the atmosphere of carbon monoxide at high temperature. (3 refs., 5 figs.)

  12. Combined application of XANES and XPS to study oxygen species adsorbed on Ag foil

    CERN Document Server

    Bukhtiyarov, V I; Kaichev, V V; Knop-Gericke, A; Mayer, R W; Schloegl, R

    2001-01-01

    Adsorbed oxygen species realized in the course of ethylene epoxidation over polycrystalline silver have been characterized by X-ray absorption near the edge structure and X-ray photoelectron spectroscopy. Namely, the combined application of XANES and XPS in similar UHV conditions using the same sample allowed us to assign an XAS feature to the nucleophilic and electrophilic oxygen. This is of great significance, since these species are suggested to be included into the active center for ethylene epoxidation. The differences in the oxygen-silver bonding of these oxygen species are discussed.

  13. Resolved Hapke parameter maps of the Moon

    Science.gov (United States)

    Sato, H.; Robinson, M. S.; Hapke, B.; Denevi, B. W.; Boyd, A. K.

    2014-08-01

    We derived spatially resolved near-global Hapke photometric parameter maps of the Moon from 21 months of Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) multispectral observations using a novel "tile-by-tile method" (1° latitude by 1° longitude bins). The derived six parameters (w,b,c,BS0,hS, andθ¯p) for each tile were used to normalize the observed reflectance (standard angles i = g = 60°, e = 0° instead of the traditional angles i = g = 30°, e = 0°) within each tile, resulting in accurate normalization optimized for the local photometric response. Each pixel in the seven-color near-global mosaic (70°S to 70°N and 0°E to 360°E) was computed by the median of normalized reflectance from large numbers of repeated observations (UV: ˜50 and visible: ˜126 on average). The derived mosaic exhibits no significant artifacts with latitude or along the tile boundaries, demonstrating the quality of the normalization procedure. The derived Hapke parameter maps reveal regional photometric response variations across the lunar surface. The b, c (Henyey-Greenstein double-lobed phase function parameters) maps demonstrate decreased backscattering in the maria relative to the highlands (except 321 nm band), probably due to the higher content of both SMFe (submicron iron) and ilmenite in the interiors of back scattering agglutinates in the maria. The hS (angular width of shadow hiding opposition effect) map exhibits relatively lower values in the maria than the highlands and slightly higher values for immature highland crater ejecta, possibly related to the variation in a grain size distribution of regolith.

  14. XPS, TOF-SIMS, NEXAFS, and SPR Characterization of Nitrilotriacetic Acid-Terminated Self-Assembled Monloyers for Controllable Immobiliztion of Proteins

    International Nuclear Information System (INIS)

    Cheng, F.; Gamble, L.; Castner, D.

    2008-01-01

    For immobilization of proteins onto surfaces in a specific and controlled manner, it is important to start with a well-defined surface that contains specific binding sites surrounded by a nonfouling background. For immobilizing histidine-tagged (his-tagged) proteins, surfaces containing nitrilotriacetic acid (NTA) headgroups and oligo(ethylene glycol) (OEG) moieties are a widely used model system. The surface composition, structure, and reactivity of mixed NTA/OEG self-assembled monolayers (SAMs) on Au substrates were characterized in detail using X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and surface plasmon resonance (SPR) biosensoring. XPS results for sequential adsorption of NTA thiols followed by OEG thiols showed that OEG molecules were incorporated into an incompletely formed NTA monolayer until a complete mixed SAM was formed. The surface concentration of NTA headgroups was estimated to be 0.9-1.3 molecule/nm2 in the mixed NTA/OEG monolayers, compared to 1.9 molecule/nm2 in pure NTA monolayers. Angle-dependent XPS indicated NTA headgroups were slightly reoriented toward an upright position after OEG incorporation, and polarization-dependent NEXAFS results indicated increased ordering of the alkane chains of the molecules. Nitrogen-containing and OEG-related secondary ion fragments from the TOF-SIMS experiments confirmed the presence of NTA headgroups and OEG moieties in the monolayers. A multivariate peak intensity ratio was developed for estimating the relative NTA concentration in the outermost (10 Angstroms ) of the monolayers. SPR measurements of a his-tagged, humanized anti-lysozyme variable fragment (HuLys Fv) immobilized onto Ni(II)-treated mixed NTA/OEG and pure NTA monolayers demonstrated the reversible, site-specific immobilization of his-tagged HuLys Fv (108-205 ng/cm2) with dissociation rates (koff) between 1.0 x 10-4 and 2

  15. Small angle neutron scattering

    International Nuclear Information System (INIS)

    Dasannacharya, B.A.; Goyal, P.S.

    1997-01-01

    Small angle neutron scattering (SANS) is one of the most popular neutron scattering technique both for the basic research and as a tool in the hands of applied scientist. SANS is used for studying the structure of a material on a length scale of 10 - 1000 A. SANS is a diffraction experiment that involves scattering of a monocromatic beam of neutrons in order to obtain structural information about macromolecules and heterogeneities. This paper will discuss the design of SANS spectrometers with a special emphasis on the instruments which are better suited for medium flux reactors. The design of several different types of SANS spectrometers will be given. The optimization procedures and appropriate modifications to suit the budget and the space will be discussed. As an example, the design of a SANS spectrometer at CIRUS reactor Trombay will be given. (author)

  16. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    International Nuclear Information System (INIS)

    Omran, Mamdouh; Fabritius, Timo; Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A.; El-Aref, Mortada; Elmanawi, Abd El-Hamid

    2015-01-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe 2 O 3 and P 2 O 5 contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe 3+ ) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases

  17. An XPS round robin investigation on analysis of wood pulp fibres and filter paper

    Science.gov (United States)

    Johansson, Leena-Sisko; Campbell, J. M.; Fardim, Pedro; Hultén, Anette Heijnesson; Boisvert, Jean-Philippe; Ernstsson, Marie

    2005-06-01

    X-ray photoelectron spectroscopy (XPS) has been applied to pulp and paper research for decades. However, there has been no attempt to standardise or even systematically compare experimental and analysis procedures, even though it is known that fibrous, nature-derived and insulating fibre materials pose remarkable challenges to reliable surface analysis. The experimental problems are mainly linked with neutralisation, energy resolution, contamination and X-ray induced degradation. We have tested applicability, reliability and reproducibility of XPS analysis on real pulp samples with varying lignin and extractives contents in a small round robin investigation. We also tested the instrumental set-ups with an acetone-extracted filter paper, used as a reference sample. The data, collected at four different laboratories with state-of-the-art instruments indicate that reproducible results can be obtained, despite minor differences in experimental and analysis procedures. However, we found that a specified sample handling procedure and limited X-ray exposure are crucial for reproducible, reliable data. Based on the round robin data we recommend dose restricted monochromatic measurements, a cellulosic in situ reference and a consistent sample handling procedure. The data confirms that a paper-based reference material and the correlation of high-resolution C 1s data with O/C atomic ratios can be used in testing instruments and experimental set-ups for pulp and paper materials.

  18. In-situ NAP XPS studies of dissociative water adsorption on GaAs(100) surfaces

    Science.gov (United States)

    Ptasinska, Sylwia; Zhang, Xueqiang

    2014-03-01

    In current semiconductor-based technology it is important to design and fabricate new materials in order to achieve specific well-defined properties and functionalities. Before such systems can be applied they first need to be understood, refined and controlled. Therefore, a basic knowledge about molecule/semiconductor surface interfaces is essential. In the present work dissociative water adsorption on the GaAs(100) surface is monitored using X-ray Photoelectron Spectroscopy (XPS) performed in situ under near ambient conditions. Firstly, the crystal surface is exposed to water vapor pressures ranging from UHV to 0.5 kPa. At elevated pressures an increase of oxygenation and hydroxylation of Ga surface atoms has been observed in the Ga2p XPS spectra. Moreover, intense signals obtained from molecularly adsorbed water molecules or water molecules adsorbed via hydrogen bond to surface OH groups have been also observed in the O1s spectra. Finally, the crystal surface is annealed up to 700 K at water vapor pressure of 0.01 kPa, which leads to desorption of physisorbed water molecules and further increase of surface oxidation. The research described herein was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Basic Energy Sciences, Office of Science, United States Department of Energy through grant number DE-FC02-04ER15533.

  19. Rondorfite-type structure — XPS and UV–vis study

    International Nuclear Information System (INIS)

    Dulski, M.; Bilewska, K.; Wojtyniak, M.; Szade, J.; Kusz, J.; Nowak, A.; Wrzalik, R.

    2015-01-01

    Highlights: • Structural and spectroscopic characterization of chlorosilicate mineral, rondorfite. • Characterization of main photoemission lines and valence band spectra. • The study of color origin’s using UV–vis spectroscopy. • Analysis of structural changes in context of origin of natural fluorescence. • Discussion of a new application possibilities of analyzed mineral - Abstract: This paper focuses on X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy of two different (green, orange) rondorfite samples. The differences in the sample color originate from various O/Cl ratios. The orange color was found to be related either to the isomorphic substitution of Fe 3+ /Al 3+ for Mg 2+ , the presence of atypical [MgO 4 ] tetrahedrons in crystal structure or electronegativity of the sample. The tetrahedron is known to be very prone to accumulation of impurities and substitute atoms. Moreover, the XPS data showed tetrahedrally coordinated Mg 2+ and isomorphic substitution of Al 3+ /Fe 3+ for Mg 2+ , which influences local disordering and the point defects density and distribution. Non-equilibrium chlorine positions inside the crystal cages as well as Ca-Cl bonds have also been found. The XPS measurements as a function of temperature indicate occurrence of a structural transformation at about 770 K which is accompanied by a rotation of silicate tetrahedra within magnesiosilicate pentamer and luminescence disappearance

  20. Understanding the biomimetic properties of gallium in Pseudomonas aeruginosa: an XAS and XPS study.

    Science.gov (United States)

    Porcaro, F; Bonchi, C; Ugolini, A; Frangipani, E; Polzonetti, G; Visca, P; Meneghini, C; Battocchio, C

    2017-05-30

    Pyochelin (PCH) is a siderophore (extracellular chelator) produced by the pathogenic bacterium Pseudomonas aeruginosa (PAO). PCH is implicated in iron (Fe 3+ ) transport to PAO, and is crucial for its metabolism and pathogenicity. Due to the chemical similarity with Fe 3+ , gallium (Ga 3+ ) interferes with vital iron-dependent processes in bacterial cells, thereby opening new perspectives for the design of specific metal-based antibacterial drugs. However, the structural basis for the Fe 3+ -mimetic properties of Ga 3+ complexed with the PCH siderophore is still lacking. A precise knowledge of the coordination chemistry at the metal site is one of the topmost issues in the production of novel biomimetic metal-based drugs. Elucidation of this issue by means of a deep structural spectroscopic investigation could lead to an improved interference with, or a specific inhibition of, relevant biological pathways. For this reason, we applied Synchrotron Radiation induced X-ray Photoelectron Spectroscopy (SR-XPS) and X-ray Absorption Spectroscopy (XAS) to probe the electronic nature and coordination chemistry of Fe 3+ and Ga 3+ coordinative sites in PCH metal complexes. Combined XAFS and SR-XPS studies allow us to demonstrate that both Fe and Ga have the same valence state in Fe-PCH and Ga-PCH, and have the same octahedral coordination geometry. Moreover, a similar next neighbour distribution for Fe and Ga, resulting from the EXAFS data analysis, strongly supports similar coordination chemistry at the origin of the biomimetic behaviour of Ga.

  1. XPS analysis of the carbon fibers surface modified via HMDSO to carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, L.D.R.; Gomes, M.C.B.; Trava-Airoldi, V.J.; Corat, E.J.; Lugo, D.C. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: Carbon fibers (CF) have been widely used to reinforce structural composites. Due to their strength-to-weight properties, CF composites are finding increased structural uses in areas such as aerospace, aeronautical, automobile and others. The strength of the fiber-resin interface bond has been found to be the limiting factor to the mechanical properties of CF-epoxy materials, due to their non-polar nature that limit the affinity of CF to bind chemically to any matrix. The growth of carbon nanotubes (CNTs) on the surface of CF is a promising approach for improving mechanical, electrical and thermal properties of structural composites. However growing CNTs on CF presents some obstacles, such as diffusion of metal catalyst particles on CF, uneven CNT growth and loss of mechanical properties of CF. To avoid the diffusion of catalyst particles we modified the CF surface with hexamethyldisiloxane (HMDSO) at low temperature (400 °C), also preventing the loss of mechanical properties and allowing uniform CNTs growth. We deposited CNTs via floating catalyst method, with ferrocene providing the catalyst particle and the oxidative dehydrogenation reaction of acetylene providing the carbon. The CF surface modification was analyzed via X-ray photoelectron spectroscopy (XPS) and CNTs growth via scanning electron microscopy with field emission gun. The XPS analysis showed that HMDSO promotes the binding of oxygen to carbon and silicon present on CF surface, the chemical modification of the surface of the CF enables the uniform growth of carbon nanotubes. (author)

  2. XPS analysis of the carbon fibers surface modified via HMDSO to carbon nanotube growth

    International Nuclear Information System (INIS)

    Cardoso, L.D.R.; Gomes, M.C.B.; Trava-Airoldi, V.J.; Corat, E.J.; Lugo, D.C.

    2016-01-01

    Full text: Carbon fibers (CF) have been widely used to reinforce structural composites. Due to their strength-to-weight properties, CF composites are finding increased structural uses in areas such as aerospace, aeronautical, automobile and others. The strength of the fiber-resin interface bond has been found to be the limiting factor to the mechanical properties of CF-epoxy materials, due to their non-polar nature that limit the affinity of CF to bind chemically to any matrix. The growth of carbon nanotubes (CNTs) on the surface of CF is a promising approach for improving mechanical, electrical and thermal properties of structural composites. However growing CNTs on CF presents some obstacles, such as diffusion of metal catalyst particles on CF, uneven CNT growth and loss of mechanical properties of CF. To avoid the diffusion of catalyst particles we modified the CF surface with hexamethyldisiloxane (HMDSO) at low temperature (400 °C), also preventing the loss of mechanical properties and allowing uniform CNTs growth. We deposited CNTs via floating catalyst method, with ferrocene providing the catalyst particle and the oxidative dehydrogenation reaction of acetylene providing the carbon. The CF surface modification was analyzed via X-ray photoelectron spectroscopy (XPS) and CNTs growth via scanning electron microscopy with field emission gun. The XPS analysis showed that HMDSO promotes the binding of oxygen to carbon and silicon present on CF surface, the chemical modification of the surface of the CF enables the uniform growth of carbon nanotubes. (author)

  3. XPS and XAS investigation of condensed and adsorbed n-octane on a Cu(110) surface

    International Nuclear Information System (INIS)

    Weiss, K.; Oestroem, H.; Triguero, L.; Ogasawara, H.; Garnier, M.G.; Pettersson, L.G.M.; Nilsson, A.

    2003-01-01

    The electronic structure of n-octane adsorbed on Cu(110) is studied by using X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) in combination with cluster model calculations in the framework of density functional theory (DFT). The molecule is found to be well oriented on the surface, which is seen from the high degree of XAS dichroism. Saturated hydrocarbons are commonly considered to physisorb on metals such as Cu(110), but still the C 1s XAS spectra reveal large changes in the electronic structure of the adsorbed octane relative to the free molecule. We find that the XAS resonances corresponding to the molecular Rydberg-valence states are strongly quenched upon adsorption and that there is a significant hybridization of the molecular valence orbitals with the metal bands. In addition to a precise interpretation of the XAS spectra, we present details on the molecular orbital structure of the adsorbed octane molecule. We also discuss shifts in the relative binding energies of the chemically inequivalent carbon atoms in octane upon adsorption, which lead to a narrower XPS spectrum for the adsorbate than the condensed phase spectrum due to the existence of a new relaxation channel

  4. Structural, optical, XPS and magnetic properties of Zn particles capped by ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Iu.G., E-mail: yugmor@hotmail.com [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Academician Osipyan Street 8, Chernogolovka, Moscow Region 142432 (Russian Federation); Belousova, O.V. [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Academician Osipyan Street 8, Chernogolovka, Moscow Region 142432 (Russian Federation); Ortega, D., E-mail: daniel.ortega@imdea.org [Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco 28049, Madrid (Spain); Mafina, M.-K., E-mail: m.k.mafina@qmul.ac.uk [School of Engineering and Materials Science, Queen Mary University of London, Mile End, Eng, 231, London E1 4NS (United Kingdom); Kuznetcov, M.V., E-mail: maxim1968@mail.ru [Department of Chemistry, Materials Chemistry Research Centre, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2015-06-05

    Highlights: • Levitation-jet aerosol synthesis of Zn particles capped by ZnO nanoparticles (NPs). • TEM, XRD, UV–vis, FT-IR, Raman, XPS and magnetic characterization of the NPs. • Correlation between unit-cell volume of crystal lattice and maximum magnetization. - Abstract: Spherical zinc particles ranging from 42 to 760 nm in average size and capped with plate-like zinc oxide particles of 10–30 nm in sizes have been prepared by levitation-jet aerosol synthesis through condensation of zinc vapor in an inert/oxidizer gas flow. The nanoparticles have been characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), BET measurements, ultra violet visible (UV–vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, X-ray electron spectroscopy (XPS), superconducting quantum interference device (SQUID), and vibrating-sample magnetometer (VSM). Magnetic and XRD data indicate that the observed ferromagnetic ordering related to the changes in unit-cell volume of Zn in the Zn/ZnO interface of the nanoparticles. These results are in good correlation with the optical measurements data.

  5. Sol-gel synthesis and XPS study of vanadium-hydroquinone oxide bronze films

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenka, V. [Semiconductor Physics Institute, A. Gostauto 11, 01108 Vilnius (Lithuania); Vilnius Pedagogical University, Studentu 39, 08106 Vilnius (Lithuania); Tvardauskas, H.; Grebinskij, S.; Senulis, M.; Pasiskevicius, A. [Semiconductor Physics Institute, A. Gostauto 11, 01108 Vilnius (Lithuania); Volkov, V.; Zakharova, G. [Institute of Solid State Chemistry, Pervomaiskaia 91, 620219 Yekaterinburg (Russian Federation)

    2009-12-15

    A vanadium - hydroquinone oxide bronze has been synthesized by using a sol gel technology. The V{sub 2}O{sub 5} powder, hydrogen peroxide, and hydroquinone C{sub 6}H{sub 4}(OH){sub 2} were used as the starting materials to produce the bronze. At first the vanadium gel was made by the dissolving of vanadium pentoxide powder in hydrogen peroxide at 273 K. Then the solution was heated up to 350 K for the dissociation of peroxide complexes. An aqueous solution of hydroquinone was mixed with the formed gel in molar ratio 0.33:1. In this way the V{sub 2}O{sub 5{+-}}{sub {delta}}.nH{sub 2}O/HQ (HQ-hydroquinone) gel was synthesized. These gels are applied on the Ni pad and dried in an air (wet gel synthesis) or heated up to 580 K in air for 1 h for the water removal from gel (bronze production). The wet gel, as well as a bronze, was investigated by means of XPS method. Analysis of V-O region of XPS spectra shows that vanadium in both cases (wet gel and bronze) is in stable V{sup 5+} state. Oxygen in wet gel can be associated with V ions, hydroxide group and water. In bronze oxygen is connected with V and hydrogen (hydroxide). (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Characterization of Desulfovibrio desulfuricans biofilm on high-alloyed stainless steel: XPS and electrochemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Dec, Weronika [Institute of Industrial Organic Chemistry, Branch Pszczyna, Doświadczalna Street 27, 43-200 Pszczyna (Poland); Mosiałek, Michał; Socha, Robert P. [Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, Niezapominajek Street 8, 30-239 Kraków (Poland); Jaworska-Kik, Marzena [Department of Biopharmacy, Medical University of Silesia, Jedności Street 8, 41-200 Sosnowiec (Poland); Simka, Wojciech [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Street, 44-100 Gliwice (Poland); Michalska, Joanna, E-mail: joanna.k.michalska@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Street, 44-100 Gliwice (Poland)

    2017-07-01

    Results on D. desulfuricans biofilm formation on austenitic-ferritic duplex (2205 DSS) and superaustenitic (904L) stainless steels are presented. Surface characterization including the structure, configuration and chemical composition of biofilms were carried out using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical impedance spectroscopy (EIS) measurements were used to monitor the attachment activity of bacteria on the steels' surface and to determine the effect of bacteria on passivity. It was proved that investigated steels are rapidly colonized by bacteria. The presence of biofilm caused significant ennoblement of 904L steel surface, while retarded the attainment of high passive state of 2205 DSS. XPS analysis revealed significant sulphidation of the biofilm and its layered structure. Accumulation of sulphides and hydroxides was proved in the outermost layer, while the increasing contents of disulphides, organometallic and C-N bonds were detected in the internal part of the biofilm. Irreversible bondings between steel matrix and biofilm had also been observed. - Highlights: • High-alloyed steels are rapidly colonized by sulphate-reducing bacteria. • Higher Ni content stimulates more intensive biofilm growth. • Extracellular polymeric substances indelibly bind to the high-alloyed steels. • Sulphate-reducing bacteria caused irreversible sulphidation of passive films.

  7. XPS study of the surface chemistry of UO2 (111) single crystal film

    Science.gov (United States)

    Maslakov, Konstantin I.; Teterin, Yury A.; Popel, Aleksej J.; Teterin, Anton Yu.; Ivanov, Kirill E.; Kalmykov, Stepan N.; Petrov, Vladimir G.; Springell, Ross; Scott, Thomas B.; Farnan, Ian

    2018-03-01

    A (111) air-exposed surface of UO2 thin film (150 nm) on (111) YSZ (yttria-stabilized zirconia) before and after the Ar+ etching and subsequent in situ annealing in the spectrometer analytic chamber was studied by XPS technique. The U 5f, U 4f and O 1s electron peak intensities were employed for determining the oxygen coefficient kO = 2 + x of a UO2+x oxide on the surface. It was found that initial surface (several nm) had kO = 2.20. A 20 s Ar+ etching led to formation of oxide UO2.12, whose composition does not depend significantly on the etching time (up to 180 s). Ar+ etching and subsequent annealing at temperatures 100-380 °C in vacuum was established to result in formation of stable well-organized structure UO2.12 reflected in the U 4f XPS spectra as high intensity (∼28% of the basic peak) shake-up satellites 6.9 eV away from the basic peaks, and virtually did not change the oxygen coefficient of the sample surface. This agrees with the suggestion that a stable (self-assembling) phase with the oxygen coefficient kO ≈ 2.12 forms on the UO2 surface.

  8. Theoretical modeling of the uranium 4f XPS for U(VI) and U(IV) oxides

    Science.gov (United States)

    Bagus, Paul S.; Nelin, Connie J.; Ilton, Eugene S.

    2013-12-01

    A rigorous study is presented of the physical processes related to X-Ray photoelectron spectroscopy, XPS, in the 4f level of U oxides, which, as well as being of physical interest in themselves, are representative of XPS in heavy metal oxides. In particular, we present compelling evidence for a new view of the screening of core-holes that extends prior understandings. Our analysis of the screening focuses on the covalent mixing of high lying U and O orbitals as opposed to the, more common, use of orbitals that are nominally pure U or pure O. It is shown that this covalent mixing is quite different for the initial and final, core-hole, configurations and that this difference is directly related to the XPS satellite intensity. Furthermore, we show that the high-lying U d orbitals as well as the U(5f) orbital may both contribute to the core-hole screening, in contrast with previous work that has only considered screening through the U(5f) shell. The role of modifying the U-O interaction by changing the U-O distance has been investigated and an unexpected correlation between U-O distance and XPS satellite intensity has been discovered. The role of flourite and octahedral crystal structures for U(IV) oxides has been examined and relationships established between XPS features and the covalent interactions in the different structures. The physical views of XPS satellites as arising from shake processes or as arising from ligand to metal charge transfers are contrasted; our analysis provides strong support that shake processes give a more fundamental physical understanding than charge transfer. Our theoretical studies are based on rigorous, strictly ab initio determinations of the electronic structure of embedded cluster models of U oxides with formal U(VI) and U(IV) oxidation states. Our results provide a foundation that makes it possible to establish quantitative relationships between features of the XPS spectra and materials properties.

  9. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn

    Science.gov (United States)

    Biesinger, Mark C.; Lau, Leo W. M.; Gerson, Andrea R.; Smart, Roger St. C.

    2010-11-01

    Chemical state X-ray photoelectron spectroscopic analysis of first row transition metals and their oxides and hydroxides is challenging due to the complexity of the 2p spectra resulting from peak asymmetries, complex multiplet splitting, shake-up and plasmon loss structure, and uncertain, overlapping binding energies. A review of current literature shows that all values necessary for reproducible, quantitative chemical state analysis are usually not provided. This paper reports a more consistent, practical and effective approach to curve-fitting the various chemical states in a variety of Sc, Ti, V, Cu and Zn metals, oxides and hydroxides. The curve-fitting procedures proposed are based on a combination of (1) standard spectra from quality reference samples, (2) a survey of appropriate literature databases and/or a compilation of the literature references, and (3) specific literature references where fitting procedures are available. Binding energies, full-width at half maximum (FWHM) values, spin-orbit splitting values, asymmetric peak-shape fitting parameters, and, for Cu and Zn, Auger parameters values are presented. The quantification procedure for Cu species details the use of the shake-up satellites for Cu(II)-containing compounds and the exact binding energies of the Cu(0) and Cu(I) peaks. The use of the modified Auger parameter for Cu and Zn species allows for corroborating evidence when there is uncertainty in the binding energy assignment. These procedures can remove uncertainties in analysis of surface states in nano-particles, corrosion, catalysis and surface-engineered materials.

  10. Time resolved techniques: An overview

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1990-06-01

    Synchrotron sources provide exceptional opportunities for carrying out time-resolved x-ray diffraction investigations. The high intensity, high angular resolution, and continuously tunable energy spectrum of synchrotron x-ray beams lend themselves directly to carrying out sophisticated time-resolved x-ray scattering measurements on a wide range of materials and phenomena. When these attributes are coupled with the pulsed time-structure of synchrotron sources, entirely new time-resolved scattering possibilities are opened. Synchrotron beams typically consist of sub-nanosecond pulses of x-rays separated in time by a few tens of nanoseconds to a few hundred nanoseconds so that these beams appear as continuous x-ray sources for investigations of phenomena on time scales ranging from hours down to microseconds. Studies requiring time-resolution ranging from microseconds to fractions of a nanosecond can be carried out in a triggering mode by stimulating the phenomena under investigation in coincidence with the x-ray pulses. Time resolution on the picosecond scale can, in principle, be achieved through the use of streak camera techniques in which the time structure of the individual x-ray pulses are viewed as quasi-continuous sources with ∼100--200 picoseconds duration. Techniques for carrying out time-resolved scattering measurements on time scales varying from picoseconds to kiloseconds at present and proposed synchrotron sources are discussed and examples of time-resolved studies are cited. 17 refs., 8 figs

  11. Erosion Behaviour of API X100 Pipeline Steel at Various Impact Angles and Particle Speeds

    Directory of Open Access Journals (Sweden)

    Paul C. Okonkwo

    2016-09-01

    Full Text Available Erosion is the gradual removal of material due to solid particle impingement and results in a failure of pipeline materials. In this study, a series of erosion tests were carried out to investigate the influence of particle speed and impact angle on the erosion mechanism of API X100 pipeline steel. A dry erosion machine was used as the test equipment, while the particle speed ranged from 20 to 80 m/s and impact angles of 30° and 90° were used as test parameters. The eroded API X100 steel surface was characterized using scanning electron microscope (SEM and X-ray photoelectron spectroscopy (XPS. The weight loss and erosion rate were also investigated. The results showed that at a 90° impact angle, a ploughing mechanism was occurring on the tested specimens, while material removal through low-angle cutting was the dominant mechanism at lower impact angles. Embedment of alumina particles on the target steel surface, micro-cutting, and low-angle cutting were observed at low impact angles. Therefore, the scratches, cuttings, and severe ploughings observed on some failed oil and gas pipelines could be attributed to the erosion mechanism.

  12. Structural and XPS studies of PSi/TiO2 nanocomposites prepared by ALD and Ag-assisted chemical etching

    International Nuclear Information System (INIS)

    Iatsunskyi, Igor; Kempiński, Mateusz; Nowaczyk, Grzegorz; Jancelewicz, Mariusz; Pavlenko, Mykola; Załęski, Karol; Jurga, Stefan

    2015-01-01

    Highlights: • Porous silicon/TiO 2 nanocomposites have been investigated. • Morphology and chemical composition of PSi/TiO 2 nanocomposites were established. • Valence-band XPS maximums for PSi/TiO 2 nanocomposites were found and analyzed. - Abstract: PSi/TiO 2 nanocomposites fabricated by atomic layer deposition (ALD) and metal-assisted chemical etching (MACE) were investigated. The morphology and phase structure of PSi/TiO 2 nanocomposites were studied by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) with an energy dispersive X-ray spectroscopy (EDX) and Raman spectroscopy. The mean size of TiO 2 nanocrystals was determined by TEM and Raman spectroscopy. X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical elemental composition by observing the behavior of the Ti 2p, O 1s and Si 2p lines. TEM, Raman spectroscopy and XPS binding energy analysis confirmed the formation of TiO 2 anatase phase inside the PSi matrix. The XPS valence band analysis was performed in order to investigate the modification of PSi/TiO 2 nanocomposites electronic structure. Surface defects states of Ti 3+ at PSi/TiO 2 nanocomposites were identified by analyzing of XPS valence band spectra

  13. [Analysis of XPS in the removal of Se(IV) from groundwater with pyrite].

    Science.gov (United States)

    Liu, Hong-fang; Qian, Tian-wei; Zhang, Min-gang

    2015-02-01

    Selenium (Se) is an elementary trace nutrient element for human but there is a very narrow range between deficit and toxic levels. Furthermore, excessive intake of Selenium is harmful for human. The product species of selenite which was removal by pyrite particles was studied in the present research In the experiments, the pyrite particles were prepared by the wet ball mill method, and surface analyses of pyrite before and after contact with Se(IV) were conducted using X-ray photoelectron spectroscopy (XPS). Besides, the prepared pyrite samples were also characterized using both X-ray diffraction (XRD) and scanning electron microscope (SEM). X-ray diffraction analysis indicated that the purity of the prepared pyrite particles was above 97%, and the characteristic diffraction peaks of the particles well matched with that of FeS2 crystalline. Scanning electron microscope determination showed the shape of the particles was approximate ball and the size was range from 80 to 180 nm. And thus the pyrite particles prepared by the wet ball mill method had less particle size, larger specific surface area and higher reactive ability. The batch experiments exhibited the pyrite particles were able to remove 95% of Se(IV) (20 mg x L(-1)) from water within 12 hours. And the kinetic tests indicated reaction process between pyrite and Se(IV) fits a pseudo-first order kinetic model, which gives a pseudo-first order rate constant(kobs) of 0.26 h(-1). XPS analyses were using the XPSPEAK program which has a Gaussian Lorentzian function. The results clearly displays that Se(IV) prefer to react with the surface-bound S2(2-) rather than reacted with the surface-bound Fe2+ of pyrite particles. From XPS graph, it can be seen that the binding energy of sulfur element and iron element composed of pyrite shifted to the left a little, which means expensive state of sulfur element and iron element appeared on the pyrite surface. Analysis of the oxidation state of Se on the surface of pyrite

  14. Physical and Chemical Behaviors of HCl on Ice Surface: Insights from an XPS and NEXAFS Study

    Science.gov (United States)

    Kong, X.; Waldner, A.; Orlando, F.; Birrer, M.; Artiglia, L.; Ammann, M.; Bartels-Rausch, T.

    2016-12-01

    Ice and snow play active roles for the water cycle, the energy budget of the Earth, and environmental chemistry in the atmosphere and cryosphere. Trace gases can be taken up by ice, and physical and chemical fates of the impurities could modify surface properties significantly and consequently influence atmospheric chemistry and the climate system. However, the understanding of chemical behaviour of impurities on ice surface are very poor, which is largely limited by the difficulties to apply high sensitivity experimental approaches to ambient air conditions, e.g. studies of volatile surfaces, because of the strict requirements of vacuum experimental conditions. In this study, we employed synchrotron-based X-ray photoelectron spectroscopy (XPS) and partial electron yield Near Edge X-ray Absorption Fine Structure (NEXAFS) in a state-of-the-art near-ambient pressure photoelectron (NAPP) spectroscopy end station. The NAPP enables to utilize the surface sensitive experimental methods, XPS and NEXAFS, on volatile surfaces, i.e. ice at temperatures approaching 0°C. XPS and NEXAFS together provide unique information of hydrogen bonding network, dopants surface concentration, dopant depth profile, and acidic dissociation on the surfaces1. Taking the advantages of the highly sensitive techniques, the adsorption, dissociation and depth profile of Hydrogen Chloride (HCl) on ice were studied. In brief, two states of Chloride on ice surface are identified from the adsorbed HCl, and they are featured with different depth profiles along the ice layers. Combining our results and previously reported constants from literatures (e.g. HCl diffusion coefficients in ice)2, a layered kinetic model has been constructed to fit the depth profiles of two states of Chloride. On the other side, pure ice and doped ice are compared for their surface structure change caused by temperature and the presence of HCl, which shows how the strong acid affect the ice surface in turn. 1. Orlando, F., et

  15. XPS determination of Mn oxidation states in Mn (hydr)oxides

    International Nuclear Information System (INIS)

    Ilton, Eugene S.; Post, Jeffrey E.; Heaney, Peter J.; Ling, Florence T.; Kerisit, Sebastien N.

    2016-01-01

    Graphical abstract: - Highlights: • Systematic fitting the XPS Mn3p, Mn2p, and Mn3s to determine oxidation states of Mn (hydr)oxides. • Analysis of using the Mn3s multiplet splitting for determining valence of Mn(hydr)oxides. • Provided an easy to implement method for determining Mn oxidation states using XPS. - Abstract: Hydrous manganese oxides are an important class of minerals that help regulate the geochemical redox cycle in near-surface environments and are also considered to be promising catalysts for energy applications such as the oxidation of water. A complete characterization of these minerals is required to better understand their catalytic and redox activity. In this contribution an empirical methodology using X-ray photoelectron spectroscopy (XPS) is developed to quantify the oxidation state of hydrous multivalent manganese oxides with an emphasis on birnessite, a layered structure that occurs commonly in soils but is also the oxidized endmember in biomimetic water-oxidation catalysts. The Mn2p 3/2 , Mn3p, and Mn3s lines of near monovalent Mn(II), Mn(III), and Mn(IV) oxides were fit with component peaks; after the best fit was obtained the relative widths, heights and binding energies of the components were fixed. Unknown multivalent samples were fit such that binding energies, intensities, and peak-widths of each oxidation state, composed of a packet of correlated component peaks, were allowed to vary. Peak-widths were constrained to maintain the difference between the standards. Both average and individual mole fraction oxidation states for all three energy levels were strongly correlated, with close agreement between Mn3s and Mn3p analyses, whereas calculations based on the Mn2p 3/2 spectra gave systematically more reduced results. Limited stoichiometric analyses were consistent with Mn3p and Mn3s. Further, evidence indicates the shape of the Mn3p line was less sensitive to the bonding environment than that for Mn2p. Consequently, fitting the

  16. X-ray photoelectron spectroscopy (XPS) and FTIR studies of vanadium barium phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Majjane, Abdelilah [Laboratoire de Physico-Chimie des Matériaux Vitreux et Cristallisés, Université Ibn Tofail, Faculté des Sciences, Kénitra 14090 (Morocco); Chahine, Abdelkrim, E-mail: abdelkrimchahine@gmail.com [Laboratoire de Physico-Chimie des Matériaux Vitreux et Cristallisés, Université Ibn Tofail, Faculté des Sciences, Kénitra 14090 (Morocco); Et-tabirou, Mohamed [Laboratoire de Physico-Chimie des Matériaux Vitreux et Cristallisés, Université Ibn Tofail, Faculté des Sciences, Kénitra 14090 (Morocco); Echchahed, Bousselham [Laboratoire d' Electrochimie, Corrosion et Environnement, Université Ibn Tofail, Faculté des Sciences, Kénitra (Morocco); Do, Trong-On [Département de génie chimique, Université Laval, G1K 7P4 (Canada); Breen, Peter Mc [Département de chimie, Université Laval, G1K 7P4 (Canada)

    2014-01-15

    Barium vanadophosphate glasses, having composition 50BaO–xV{sub 2}O{sub 5}–(50 − x)P{sub 2}O{sub 5}, (x = 0–50 mol%), were prepared by conventional melt quench method. Density, molar volume and glass transition temperature (T{sub g}) were measured as a function of V{sub 2}O{sub 5} content. Structural investigation was done using XPS and FTIR spectroscopy. First, substitution of the P{sub 2}O{sub 5} by the V{sub 2}O{sub 5} in the metaphosphate 50BaO–50P{sub 2}O{sub 5} glass increases the density and T{sub g} and decreases the molar volume. When the amount of V{sub 2}O{sub 5} increases, all these properties show a reverse trend. XPS measurement found in the O1s, P2p, and V2p core level spectra indicate the presence of primarily P–O–P, P–O–V and V–O–V structural bonds, the asymmetry in the P 2p spectra indeed arises from the spin-orbit splitting of P 2p core level, and more than one valence state of V ions being present. IR spectroscopy reveals the depolymerization of the phosphate glass network by systematic conversion of metaphosphate chains into pyrophosphate groups and then orthophosphate groups. Even though metaphosphate to pyrophosphate conversion is taking place due to breaking of P–O–P linkages, formation of P–O–V and P–O–Ba linkages provide cross linking between short P-structural units, which make the glass network more rigid. Above 10–20 mol% V{sub 2}O{sub 5} content, network is highly depolymerized due to the formation of orthophosphate units and V–O–V bridge bonds, resulting in poor cross-linking, making the glass network less rigid. - Highlights: • Barium–vanadium–phosphate glasses. • Structure has been investigated by XPS and IR spectra. • Variation in structure and properties with substitution of V{sub 2}O{sub 5} for P{sub 2}O{sub 5}. • Conversion of metaphosphate to pyrophosphate and finally to orthophosphate. • Substitution of P–O–P linkages by P–O–V, P–O–Ba and V–O–V linkages.

  17. Generalization of the Euler Angles

    Science.gov (United States)

    Bauer, Frank H. (Technical Monitor); Shuster, Malcolm D.; Markley, F. Landis

    2002-01-01

    It is shown that the Euler angles can be generalized to axes other than members of an orthonormal triad. As first shown by Davenport, the three generalized Euler axes, hereafter: Davenport axes, must still satisfy the constraint that the first two and the last two axes be mutually perpendicular if these axes are to define a universal set of attitude parameters. Expressions are given which relate the generalized Euler angles, hereafter: Davenport angles, to the 3-1-3 Euler angles of an associated direction-cosine matrix. The computation of the Davenport angles from the attitude matrix and their kinematic equation are presented. The present work offers a more direct development of the Davenport angles than Davenport's original publication and offers additional results.

  18. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1989-06-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. Also included are a number of enforcement actions that had been previously resolved but not published in this NUREG. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  19. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1990-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1990) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. Also included are a number of enforcement actions that had been previously resolved but not published in this NUREG. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  20. Angle Performance on Optima XE

    International Nuclear Information System (INIS)

    David, Jonathan; Satoh, Shu

    2011-01-01

    Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were able to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1σ). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.

  1. Relationship between the Angle of Repose and Angle of Internal ...

    African Journals Online (AJOL)

    ghum and rice. The angles have a big influence on the design offlow and storage structures of ... the angles of internal friction for the same grains and same moisture contents. The data ob- tained were fed into SAS statistical software for step-wise regression analysis. A model of the ..... tion, Application and Validation of En-.

  2. Plasma-oxidation of Ge(100)-surfaces characterized by MIES, UPS and XPS

    Energy Technology Data Exchange (ETDEWEB)

    Wegewitz, Lienhard; Dahle, Sebastian; Maus-Friedrichs, Wolfgang [Institut fuer Energieforschung und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstr. 4, 38678 Clausthal-Zellerfeld (Germany); Hoefft, Oliver; Endres, Frank [Institut fuer Mechanische Verfahrenstechnik, Technische Universitaet Clausthal, Arnold-Sommerfeld-Str. 6, 38678 Clausthal-Zellerfeld (Germany); Vioel, Wolfgang [HAWK Goettingen, Fakultaet Naturwissenschaften und Technik, Von-Ossietzky-Str. 99, 37085 Goettingen (Germany)

    2011-07-01

    Cleaning and passivation of Germanium surfaces is of tremendous technological interest. Germanium has various applications, for example in complementary metal-oxide-semiconductor elements. It turned out to be difficult to prepare contamination free Germanium surfaces by methods of wet chemistry. Several attempts have been made preparing such surfaces by different plasma treatments. We report cleaning and passivation of Ge(100)-surfaces by dielectric barrier discharge plasma at ambient temperature in oxygen and in air studied by Metastable Induced Electron Spectroscopy (MIES) and Photoelectron Spectroscopy (UPS(He I) and XPS). The plasma treatment is carried out in a special high-vacuum chamber which operates up to ambient pressure and is directly connected to the ultra-high vacuum chamber including the analysis equipment. In summary the air plasma treatment as well as the oxygen plasma treatment result in contamination free GeO{sub 2} covered surfaces.

  3. XPS study of the process of oxygen gettering by thin films of PACVD boron

    Science.gov (United States)

    Ennaceur^1, M. M.; Terreault, B.

    2000-06-01

    Numerous collector samples have been exposed in the TdeV tokamak, either to plasma assisted chemical vapor boronization only, or to boronization plus tokamak power discharges. They have been analyzed by X-ray photoelectron spectroscopy (XPS) in order to characterize and better understand the process by which the boron-rich film getter ambient oxygen. It was found that the state of oxidation of the samples after boronization is the most reliable predictor of subsequent machine performance. The gettering capacity is high, on the order of 10 21 O/m 2, and affects a surprisingly thick layer (˜100 nm), but the oxide always remains substoichiometric (with a formula BO x, x < 1). The oxidation is clearly activated by the plasma, during both glow discharge deposition and power discharges, but in this respect the latter are much more effective than the former.

  4. XPS and AES investigations of the adhesive bonding properties of thin titanium coatings

    International Nuclear Information System (INIS)

    Moers, H.; Mohr, J.; Klewe-Nebenius, H.; Pfennig, G.

    1988-07-01

    The bonding properties of PMMA-microstructures on Ti-coated Cu-substrates after an oxidative treatment in alkaline hydrogenperoxide solution were investigated. In order to clarify the basic mechanism, surface analytical investigations by XPS-, AES-, and depth profile measurements have been performed. It was demonstrated that for optimum bonding a TiO 2 surface layer of ca. 30 nm thickness is necessary. Chemical effects as well as a mechanical bonding with open grain boundary structures (dimensions in the μm-range) could be ruled out as bonding mechanisms. A mechanical interlocking of the polymer with micropores (dimensions in the nm-range) of the oxidic overlayer is adopted as the most probable bonding mechanism. (orig.)

  5. Electrochemical capacity fading of polyaniline electrode in supercapacitor: An XPS analysis

    Directory of Open Access Journals (Sweden)

    Jinxing Deng

    2017-04-01

    Full Text Available To understand the electrochemical capacity fading of the polyaniline (PANI electrodes in supercapacitors, for the first time, their chemical structure change during electrochemical cycles was traced with XPS analysis after the HCl doped PANI electrodes were subjected to the cyclic voltammetry test in 1.0 M H2SO4 electrolyte for different cycle numbers. The results showed that the chlorine disappeared in the electrode surface, while the surface element contents of sulfur and oxygen increased with the electrochemical cycles increased. It demonstrated that the hydrolytic degradation of the PANI chains and exchange of dopant occurred during the electrochemical cycling, causing the fading in the mechanical and electrochemical performance of the PANI electrodes. This understanding should lead to better design of the conductive polymer-based energy storage devices.

  6. Spectral studies on sulfur poisoning of Pd/Mg{sub 6}Ni by NEXAFS and XPS

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, S., E-mail: s-yagi@nucl.nagoya-u.ac.jp [Department of Quantum Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Synchrotron Radiation Center, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-0046 (Japan); Nambu, M.; Tsukada, C.; Ogawa, S. [Department of Quantum Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kutluk, G.; Namatame, H.; Taniguchi, M. [Synchrotron Radiation Center, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-0046 (Japan)

    2013-02-15

    We have studied on the hydrogen storage materials based on Mg–Ni alloy and fabricated the sample constructed with the Pd thin layer (TL) on Mg{sub 6}Ni alloy substrate. The adsorption behavior of the dimethyl disulfide (DMS) molecules on the sample has been measured to reveal the sulfur poisoning of the Pd TL/Mg{sub 6}Ni by means of XPS and Sulfur K-edge NEXAFS techniques. The chemisorbed DMS, methanethiolate (MT) and atomic S have been observed on the surface. Especially, it is clear that some atomic S has been oxidized by air and detected the adsorbate of the SO{sub 3}{sup 2−} and SO{sub 4}{sup 2−} species. During exposure to the atmosphere, most of the adsorbed DMS and MT adsorbates desorb from the Pd TL surface. We thus conclude the Pd TL might be able to prevent the hydrogen storage materials from the sulfur poisoning.

  7. Spectral studies on sulfur poisoning of Pd/Mg6Ni by NEXAFS and XPS

    International Nuclear Information System (INIS)

    Yagi, S.; Nambu, M.; Tsukada, C.; Ogawa, S.; Kutluk, G.; Namatame, H.; Taniguchi, M.

    2013-01-01

    We have studied on the hydrogen storage materials based on Mg–Ni alloy and fabricated the sample constructed with the Pd thin layer (TL) on Mg 6 Ni alloy substrate. The adsorption behavior of the dimethyl disulfide (DMS) molecules on the sample has been measured to reveal the sulfur poisoning of the Pd TL/Mg 6 Ni by means of XPS and Sulfur K-edge NEXAFS techniques. The chemisorbed DMS, methanethiolate (MT) and atomic S have been observed on the surface. Especially, it is clear that some atomic S has been oxidized by air and detected the adsorbate of the SO 3 2− and SO 4 2− species. During exposure to the atmosphere, most of the adsorbed DMS and MT adsorbates desorb from the Pd TL surface. We thus conclude the Pd TL might be able to prevent the hydrogen storage materials from the sulfur poisoning.

  8. Polyamide microcapsules containing alginic acid: extractability of metal ions and surface characterization by XPS.

    Science.gov (United States)

    Asaki, M; Ichinose, T; Monjushiroh, H; Fukumoto, T; Watarai, H

    1998-01-01

    Polyamide microcapsules containing alginic acid as a water-soluble macromolecular ligand (Alg-MC) were prepared by the interfacial polycondensation of sebacoyldichloride with hexamethylenediamine in a w/o emulsion system. The mean diameter of the microcapsules was 1.2 microns. The extractabilities of Cu(II), Ni(II), Co(II) and Ag(I) into the Alg-MC were examined and the highest uptake was found for Cu(II). It was ascertained that not only the inner ligand solution but also the membrane can accumulate the metal ions. The surface composition of the microcapsules was characterized by X-ray photo-electron spectroscopy (XPS) and it was found that some functional groups of alginic acid were present at the surface penetrating the membrane.

  9. In Situ XANES/XPS Investigation of Doped Manganese Perovskite Catalysts

    Directory of Open Access Journals (Sweden)

    Daniel Mierwaldt

    2014-04-01

    Full Text Available Studying catalysts in situ is of high interest for understanding their surface structure and electronic states in operation. Herein, we present a study of epitaxial manganite perovskite thin films (Pr1−xCaxMnO3 active for the oxygen evolution reaction (OER from electro-catalytic water splitting. X-ray absorption near-edge spectroscopy (XANES at the Mn L- and O K-edges, as well as X-ray photoemission spectroscopy (XPS of the O 1s and Ca 2p states have been performed in ultra-high vacuum and in water vapor under positive applied bias at room temperature. It is shown that under the oxidizing conditions of the OER a reduced Mn2+ species is generated at the catalyst surface. The Mn valence shift is accompanied by the formation of surface oxygen vacancies. Annealing of the catalysts in O2 atmosphere at 120 °C restores the virgin surfaces.

  10. Electronic density of state of Mn-N thin films measured by XPS

    CERN Document Server

    Morio, K

    2003-01-01

    Polycrystalline thin films with an oriented direction of epsilon-Mn sub 4 N along the (111) axis and of eta-Mn sub 3 N sub 2 along the (113) axis were prepared as a single phase by RF reactive magnetron sputtering method. A comparison of XPS spectral analysis with discrete Variational-X alpha method showed that the N atoms in Mn-N compounds behave as a donor and govern the magnetic properties of the films. The epsilon-Mn sub 4 N films was a single phase perovskite type crystal with lattice parameter 0.386 nm, and this films had properties of the ferrimagnetism with 1.1 mu sub B per unit cell. The eta-Mn sub 3 N sub 2 films was face center tetragonal (a=0.4205 nm, c=1.2131 nm), and it had properties of antiferromagnetism with 0.4 mu sub B per unit cell. (author)

  11. Heat capacity measurements and XPS studies on uranium-lanthanum mixed oxides

    International Nuclear Information System (INIS)

    Venkata Krishnan, R.; Mittal, V.K.; Babu, R.; Senapati, Abhiram; Bera, Santanu; Nagarajan, K.

    2011-01-01

    Research highlights: → Heat capacity measurements were carried out on (U 1-y La y )O 2±x (y = 0.2, 0.4, 0.6, and 0.8) using differential scanning calorimeter (DSC) in the temperature range 298-800 K. → Enthalpy increment measurements were carried out on the above solid solution using high temperature drop calorimetry in the temperature range 800-1800 K. → Chemical states of U and La in the solid solutions of mixed oxides were determined using X-ray photoelectron spectroscopy (XPS). → The anomalous increase in the heat capacity is attributed to certain thermal excitation process namely Frenkel pair defect of oxygen. → From the XPS investigation, it is observed that the O/M ratio at the surface is higher than that to the bulk. → In uranium rich mixed oxide samples, the surface O/M is greater than 2 whereas that in La rich mixed oxides, it is less than 2, though the bulk O/M in all the samples are less than 2. - Abstract: Heat capacity measurements were carried out on (U 1-y La y )O 2±x (y = 0.2, 0.4, 0.6, and 0.8) using differential scanning calorimeter (DSC) in the temperature range 298-800 K. Enthalpy increment measurements were carried out on the above solid solutions using high temperature drop calorimetry in the temperature range 800-1800 K. Chemical states of U and La in the solid solutions of mixed oxides were determined using X-ray photoelectron spectroscopy (XPS). Oxygen to metal ratios of (U 1-y La y )O 2±x were estimated from the ratios of different chemical states of U present in the sample. Anomalous increase in the heat capacity is observed for (U 1-y La y )O 2±x (y = 0.4, 0.6 and 0.8) with onset temperatures in the range of 1000-1200 K. The anomalous increase in the heat capacity is attributed to certain thermal excitation process, namely, Frenkel pair defect of oxygen. The heat capacity value of (U 1-y La y )O 2±x (y = 0.2, 0.4, 0.6, and 0.8) at 298 K are 65.3, 64.1, 57.7, 51.9 J K -1 mol -1 , respectively. From the XPS investigations

  12. XPS and TEM study of W-DLC/DLC double-layered film

    International Nuclear Information System (INIS)

    Takeno, Takanori; Komiyama, Takao; Miki, Hiroyuki; Takagi, Toshiyuki; Aoyama, Takashi

    2009-01-01

    A double-layered film of tungsten-containing diamond-like carbon (W-DLC) and DLC, (W-DLC)/DLC, was investigated. A film of 1.6 μm in thickness was deposited onto silicon substrate. The investigate double-layered coating was deposited by using the combination of PECVD and co-sputtering of tungsten metal target. Structure, interface and chemical bonding state of the investigated film were analyzed by Transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). From the results of the analyses, the structure of double-layered film is that amorphous phase of carbon is continued from DLC to W-DLC and tungsten metal clusters are dispersed in W-DLC layer.

  13. Investigation of Winter Atmospheric Aerosol Particles in Downtown Katowice using XPS and SEM

    Science.gov (United States)

    Wawros, A.; Talik, E.; Pastuszka, J. S.

    2003-08-01

    X-ray photoelectron spectroscopy (XPS) was used to determine the surface chemical composition of atmospheric particles (PM-10 and PM-2.5), collected in downtown Katowice, Upper Silesia, Poland, in the winter season (November and December 2000). Carbon- and oxygen-containing species dominated the particulate surface with traces of N, S, Si, Cl, Na, Zn, Al, Cu, Fe, Ca, K, Mg, Pb, and P present. Additionally, the size, morphology, and chemical composition of about 300 of the individual atmospheric particles were analyzed by high-resolution scanning electron microscopy and electron probe microanalysis. A number of aluminosilicates and metallic elements such as Fe, K, Mg, Zn, as well as rare earth elements, were detected by SEM. The results obtained show that the analyzed aerosol is of natural and anthropogenic origin. Particles containing sulfur compounds as well as oxygen and sodium in downtown Katowice come mainly from the east and southeast sectors.

  14. XPS study of PBO fiber surface modified by incorporation of hydroxyl polar groups in main chains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Tao; Hu Dayong; Jin Junhong; Yang Shenglin [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Li Guang, E-mail: lig@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Jiang Jianming [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China)

    2010-01-15

    Dihydroxy poly(p-phenylene benzobisoxazole) (DHPBO), a modified poly(p-phenylene benzoxazole) (PBO) polymer containing double hydroxyl groups in polymer chains, was synthesized by copolymerization of 4,6-diamino resorcinol dihydrochloride (DAR), purified terephthalic acid (TA) and 2,5-dihydroxyterephthalic acid (DHTA). DHPBO fibers were prepared by dry-jet wet-spinning method. The effects of hydroxyl polar groups on the surface elemental compositions of PBO fiber were investigated by X-ray photoelectron spectroscopy (XPS). The results show that the ratio of oxygen/carbon on the surface of DHPBO fibers is higher than that on the surface of PBO fibers, which indicates the content of polar groups on the surface of DHPBO fiber increase compared with PBO fiber.

  15. Study on the surface reaction of uranium metal in hydrogen atmosphere with XPS

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou; Zuo Changming; Zhao Chunpei; Chen Hong

    1998-01-01

    The surface reactions of uranium metal in hydrogen atmosphere at 25 degree C and 200 degree C and effects of temperature and carbon monoxide to the hydriding reaction have been studied by X-ray photoelectron spectroscopy (XPS). The reaction between H 2 and uranium metal at 25 degree C leads to the further oxidation of surface layer of metal due to traces of water vapor. At 200 degree C, it may lead to the hydriding reaction of uranium and the hydriding increases with increasing exposure to H 2 in the initial stages. The U4f 7/2 binding energy of UH 3 has been found to be 378.6 eV. Investigation indicates carbon monoxide inhibits both the hydriding reaction and oxidation on the condition of H 2 -CO atmosphere

  16. Corrosion behaviour of Ni in aprotic solvents an electrochemical, XPS and AFM study

    International Nuclear Information System (INIS)

    Bellucci, F.; Monetta, T.; Capobianco, G.; Deganello, A.; Glisenti, A.; Moretti, G.

    1998-01-01

    Electrochemical and X-ray photoelectron spectroscopic (XPS) techniques have been used to study the passivation of nickel in 0.1 M H 2 SO 4 DMF and ACN solutions with different water content. Electrochemical results indicate the anodic formation of a thin, poor protective layer and the possibility of salt precipitation onto the metallic surface. ARXPS results indicate that while in the anodic film formed in DMF, Ni(OH) 2 constitute the superficial component under which a discontinuous layer of NiO and NiSO 4 is present. Ni(OH) 2 and NiSO 4 are the more superficial constituents in the passivation layer formed in ACN, while NiO becomes prevalent in the underlying layers. AFM images show that in both the solvents the sample surface is very dishomogeneous with flakes and fractures. (orig.)

  17. Resolving the inner disk of UX Orionis

    Science.gov (United States)

    Kreplin, A.; Madlener, D.; Chen, L.; Weigelt, G.; Kraus, S.; Grinin, V.; Tambovtseva, L.; Kishimoto, M.

    2016-05-01

    Aims: The cause of the UX Ori variability in some Herbig Ae/Be stars is still a matter of debate. Detailed studies of the circumstellar environment of UX Ori objects (UXORs) are required to test the hypothesis that the observed drop in photometry might be related to obscuration events. Methods: Using near- and mid-infrared interferometric AMBER and MIDI observations, we resolved the inner circumstellar disk region around UX Ori. Results: We fitted the K-, H-, and N-band visibilities and the spectral energy distribution (SED) of UX Ori with geometric and parametric disk models. The best-fit K-band geometric model consists of an inclined ring and a halo component. We obtained a ring-fit radius of 0.45 ± 0.07 AU (at a distance of 460 pc), an inclination of 55.6 ± 2.4°, a position angle of the system axis of 127.5 ± 24.5°, and a flux contribution of the over-resolved halo component to the total near-infrared excess of 16.8 ± 4.1%. The best-fit N-band model consists of an elongated Gaussian with a HWHM ~ 5 AU of the semi-major axis and an axis ration of a/b ~ 3.4 (corresponding to an inclination of ~72°). With a parametric disk model, we fitted all near- and mid-infrared visibilities and the SED simultaneously. The model disk starts at an inner radius of 0.46 ± 0.06 AU with an inner rim temperature of 1498 ± 70 K. The disk is seen under an nearly edge-on inclination of 70 ± 5°. This supports any theories that require high-inclination angles to explain obscuration events in the line of sight to the observer, for example, in UX Ori objects where orbiting dust clouds in the disk or disk atmosphere can obscure the central star. Based on observations made with ESO telescopes at Paranal Observatory under program IDs: 090.C-0769, 074.C-0552.

  18. Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  19. Quantitative analysis of Si1-xGex alloy films by SIMS and XPS depth profiling using a reference material

    Science.gov (United States)

    Oh, Won Jin; Jang, Jong Shik; Lee, Youn Seoung; Kim, Ansoon; Kim, Kyung Joong

    2018-02-01

    Quantitative analysis methods of multi-element alloy films were compared. The atomic fractions of Si1-xGex alloy films were measured by depth profiling analysis with secondary ion mass spectrometry (SIMS) and X-ray Photoelectron Spectroscopy (XPS). Intensity-to-composition conversion factor (ICF) was used as a mean to convert the intensities to compositions instead of the relative sensitivity factors. The ICFs were determined from a reference Si1-xGex alloy film by the conventional method, average intensity (AI) method and total number counting (TNC) method. In the case of SIMS, although the atomic fractions measured by oxygen ion beams were not quantitative due to severe matrix effect, the results by cesium ion beam were very quantitative. The quantitative analysis results by SIMS using MCs2+ ions are comparable to the results by XPS. In the case of XPS, the measurement uncertainty was highly improved by the AI method and TNC method.

  20. XPS and contact angle study of cotton surface oxidation by catalytic bleaching, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 296

    NARCIS (Netherlands)

    Topalovic, T.; Nierstrasz, Vincent; Bautista, J.; Bautista, Lorenzo; Jocic, Dragan; Jocic, D.; Navarro, Antonio; Warmoeskerken, Marinus

    2007-01-01

    Surface chemistry and wetting properties of cotton fibres as affected by catalytic bleaching have been investigated. Two types of cotton fabric have been analysed: the regular and a model cotton fabric. In the regular – double scoured cotton fabric, cellulose was contaminated with both non-removable

  1. Grafting of benzylic amide macrocycles onto acid-terminated self-assembled monolayers studied by XPS, RAIRS, and contact angle measurements

    NARCIS (Netherlands)

    Cecchet, F; Pilling, M; Hevesi, L; Schergna, S; Wong, JKY; Clarkson, GJ; Leigh, DA; Rudolf, P; Wong, Jenny K.Y.; Clarkson, Guy J.

    2003-01-01

    The grafting of benzylic amide macrocycles, the basic units of more complex mechanically interlocked architectures such as catenanes and rotaxanes, was performed via the functionalization of an acid-terminated self-assembled monolayer (SAM) of 11-mercaptoundecanoic acid (11-MUA). Both chemical and

  2. Resolving Ethical Issues at School

    Science.gov (United States)

    Benninga, Jacques S.

    2013-01-01

    Although ethical dilemmas are a constant in teachers' lives, the profession has offered little in the way of training to help teachers address such issues. This paper presents a framework, based on developmental theory, for resolving professional ethical dilemmas. The Four-Component Model of Moral Maturity, when used in conjunction with a…

  3. Time-resolved quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Verano-Braga, Thiago; Schwämmle, Veit; Sylvester, Marc

    2012-01-01

    proteins involved in the Ang-(1-7) signaling, we performed a mass spectrometry-based time-resolved quantitative phosphoproteome study of human aortic endothelial cells (HAEC) treated with Ang-(1-7). We identified 1288 unique phosphosites on 699 different proteins with 99% certainty of correct peptide...

  4. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  5. Small Angle Scattering in Neutron Imaging—A Review

    Directory of Open Access Journals (Sweden)

    Markus Strobl

    2017-12-01

    Full Text Available Conventional neutron imaging utilizes the beam attenuation caused by scattering and absorption through the materials constituting an object in order to investigate its macroscopic inner structure. Small angle scattering has basically no impact on such images under the geometrical conditions applied. Nevertheless, in recent years different experimental methods have been developed in neutron imaging, which enable to not only generate contrast based on neutrons scattered to very small angles, but to map and quantify small angle scattering with the spatial resolution of neutron imaging. This enables neutron imaging to access length scales which are not directly resolved in real space and to investigate bulk structures and processes spanning multiple length scales from centimeters to tens of nanometers.

  6. Measurement of the angle gamma

    International Nuclear Information System (INIS)

    Aleksan, R.; Sphicas, P.; Massachusetts Inst. of Tech., Cambridge, MA

    1993-12-01

    The angle γ as defined in the Wolfenstein approximation is not completely out of reach of current or proposed dedicated B experiments. This work represents but a first step in the direction of extracting the third angle of the unitarity triangle by study the feasibility of using new decay modes in a hadronic machine. (A.B.). 11 refs., 1 fig., 7 tabs

  7. Nucleation of small angle boundaries

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1996-12-01

    Full Text Available The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition...

  8. Energy-resolved photoemission studies of Be-containing surfaces for fusion; Energievariierte Photoemissionsstudien an berylliumhaltigen Oberflaechen fuer die Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Koeppen, Martin

    2013-02-04

    Fusion research aims at the exploitation of the deuterium-tritium reaction for energy production. Next step on the roadmap is the construction of the experimental reactor ITER. The three elements beryllium, carbon and tungsten are to be used as armour materials for the vacuum vessel. After erosion due to plasma processes, these materials are transported and redeposited together with plasma impurities like oxygen from surface oxides. This leads to the formation of compounds by chemical reactions and diffusive processes, induced both by elevated temperatures and implantation of energetic particles. Due to the complexity of the induced surface processes, a method is required which is capable of both qualitative and quantitative analysis of the involved chemical species. X-ray photoelectron spectroscopy (XPS) provides the chemical analysis. Since diffusive processes play an important role in solid-state reactions, a depth-resolved method is required. In this work, energy-resolved XPS using synchrotron radiation with variable photon energies is extended towards a quantitative depth-resolved analysis. For the quantitative analysis a new model is derived which calculates the depth-resolved composition and the respective composition-dependent electron inelastic mean free path in a self-consistent way. Input is the XPS data which is normalized with all parameters influencing the photoelectron intensities. This fully quantitative model is applied to describe the interaction of energetic oxygen ions with the beryllium-tungsten alloy Be{sub 2}W. Oxygen ions from the plasma are able to interact with plasma facing materials. Formation of Be{sub 2}W is to be expected at the first wall and in the divertor region of ITER. Irradiation of this alloy leads to its decompositions. After decomposition, formation of beryllium oxide BeO is preferred compared to formation of tungsten oxides. Heating to 600K leads to chemical reduction of tungsten oxides. Metallic Be acts as reduction agent

  9. Resolving runaway electron distributions in space, time, and energy

    Science.gov (United States)

    Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.; Eidietis, N. W.; Lvovskiy, A.; Pace, D. C.; Brennan, D. P.; Hollmann, E. M.; Liu, C.; Moyer, R. A.; Shiraki, D.

    2018-05-01

    Areas of agreement and disagreement with present-day models of runaway electron (RE) evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase-space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally resolved measurements find qualitative agreement with modeling on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. Possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.

  10. Minimum resolvable power contrast model

    Science.gov (United States)

    Qian, Shuai; Wang, Xia; Zhou, Jingjing

    2018-01-01

    Signal-to-noise ratio and MTF are important indexs to evaluate the performance of optical systems. However,whether they are used alone or joint assessment cannot intuitively describe the overall performance of the system. Therefore, an index is proposed to reflect the comprehensive system performance-Minimum Resolvable Radiation Performance Contrast (MRP) model. MRP is an evaluation model without human eyes. It starts from the radiance of the target and the background, transforms the target and background into the equivalent strips,and considers attenuation of the atmosphere, the optical imaging system, and the detector. Combining with the signal-to-noise ratio and the MTF, the Minimum Resolvable Radiation Performance Contrast is obtained. Finally the detection probability model of MRP is given.

  11. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1994-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October - December 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  12. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-11-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July - September 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  13. A comparative study of Mg and Pt contacts on semi-insulating GaAs: electrical and XPS characterization

    Czech Academy of Sciences Publication Activity Database

    Dubecký, F.; Kindl, Dobroslav; Hubík, Pavel; Mičušík, M.; Dubecký, M.; Boháček, P.; Vanko, G.; Gombia, E.; Nečas, V.; Mudroň, J.

    2017-01-01

    Roč. 395, Feb (2017), s. 131-135 ISSN 0169-4332 Institutional support: RVO:68378271 Keywords : semi-insulating GaAs * metal-semiconductor contact * interface * work function * electron transport * XPS Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.387, year: 2016

  14. Surface refinement and electronic properties of graphene layers grown on copper substrate: An XPS, UPS and EELS study

    Czech Academy of Sciences Publication Activity Database

    Siokou, A.; Ravani, F.; Karakalos, S.; Frank, Otakar; Kalbáč, Martin; Galiotis, C.

    2011-01-01

    Roč. 257, č. 23 (2011), s. 9785-9790 ISSN 0169-4332 R&D Projects: GA MŠk LC510; GA AV ČR IAA400400911 Institutional research plan: CEZ:AV0Z40400503 Keywords : graphene * XPS * EELS Subject RIV: CG - Electrochemistry Impact factor: 2.103, year: 2011

  15. AFM AND XPS Characterization of Zinc-Aluminum Alloy Coatings with Attention to Surface Dross and Flow Lines

    Science.gov (United States)

    Harding, Felipe A.; Alarcon, Nelson A.; Toledo, Pedro G.

    Surfaces of various zinc-aluminum alloy (Zn-Al) coated steel samples are studied with attention to foreign surface dross by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS/ESCA). AFM topographic maps of zinc-aluminum alloy surfaces free of dross reveal the perfect nanoscale details of two kinds of dendrites: branched and globular. In all magnifications the dendrites appear smooth and, in general, very clean. XPS analysis of the extreme surface of a Zn-Al sample reveals Al, Zn, Si and O as the main components. The XPS results show no segregation or separation of phases other than those indicated by the ternary Al-Zn-Si diagram. For surfaces of Zn-Al plagued with impurities, high resolution AFM topographic maps reveal three situations: (1) areas with well-defined dendrites, relatively free of dross; (2) areas with small, millimeter-sized black spots known as dross; and (3) areas with large black stains, known as flow lines. Dendrite deformation and dross accumulation increase notably in the neighborhood, apparently clean to the naked eye, of dross or flow lines. XPS results of areas with dross and flow lines indicate unacceptable high concentration of Si and important Si phase separation. These results, in the light of AFM work, reveal that dross and flow lines are a consequence of a high local concentration of Si from high melting point silica and silicate impurities in the Zn-Al alloy source.

  16. An in situ XPS study of L-cysteine co-adsorbed with water on polycrystalline copper and gold

    Science.gov (United States)

    Jürgensen, Astrid; Raschke, Hannes; Esser, Norbert; Hergenröder, Roland

    2018-03-01

    The interactions of biomolecules with metal surfaces are important because an adsorbed layer of such molecules introduces complex reactive functionality to the substrate. However, studying these interactions is challenging: they usually take place in an aqueous environment, and the structure of the first few monolayers on the surface is of particular interest, as these layers determine most interfacial properties. Ideally, this requires surface sensitive analysis methods that are operated under ambient conditions, for example ambient pressure x-ray photoelectron spectroscopy (AP-XPS). This paper focuses on an AP-XPS study of the interaction of water vapour and l-Cysteine on polycrystalline copper and gold surfaces. Thin films of l-Cysteine were characterized with XPS in UHV and in a water vapour atmosphere (P ≤ 1 mbar): the structure of the adsorbed l-Cysteine layer depended on substrate material and deposition method, and exposure of the surface to water vapour led to the formation of hydrogen bonds between H2O molecules and the COO- and NH2 groups of adsorbed l-Cysteine zwitterions and neutral molecules, respectively. This study also proved that it is possible to investigate monolayers of biomolecules in a gas atmosphere with AP-XPS using a conventional laboratory Al-Kα x-ray source.

  17. Electronic-transitions and excitations in solid C-70 studied by EELS and XPS c-1s satellite structures

    NARCIS (Netherlands)

    Han, Bo-ying; Yu, Li-ming; Hevesi, K.; Gensterblum, G.; Rudolf, P.; Pireaux, J.-J.; Thiry, P.A.; Caudano, R.; Lambin, Ph.; Lucas, A.A.

    1995-01-01

    The electronic transition and excitation properties of highly ordered C70 films have been studied by reflection electron-energy-loss spectroscopy (EELS) and x-ray photoemission spectroscopy (XPS) C 1s satellite structures. The EELS study revealed a total of 11 features in the energy-loss range 1–40

  18. The Dark Energy Survey: Prospects for resolved stellar populations

    Energy Technology Data Exchange (ETDEWEB)

    Rossetto, Bruno M. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Santiago, Basílio X. [Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Instituto de Fisica, Porto Alegre (Brazil); Girardi, Léo [Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Osservatorio Astronomica di Padova-INAF, Padova (Italy); Camargo, Julio I. B. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Balbinot, Eduardo [Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Instituto de Fisica, Porto Alegre (Brazil); da Costa, Luiz N. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Yanny, Brian [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Maia, Marcio A. G. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Makler, Martin [Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro (Brazil); Ogando, Ricardo L. C. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Pellegrini, Paulo S. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Ramos, Beatriz [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); de Simoni, Fernando [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Armstrong, R. [Univ. of Illinois, Urbana, IL (United States); Bertin, E. [Univ. Pierre et Marie Curie, Paris (France); Desai, S. [Univ. of Illinois, Urbana, IL (United States); Kuropatkin, N. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lin, H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mohr, J. J. [Max-Planck-Institut fur extraterrestrische Physik, Garching (Germany); Tucker, D. L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2011-05-06

    Wide angle and deep surveys, regardless of their primary purpose, always sample a large number of stars in the Galaxy and in its satellite system. We here make a forecast of the expected stellar sample resulting from the Dark Energy Survey and the perspectives that it will open for studies of Galactic structure and resolved stellar populations in general. An estimated 1.2 x 108 stars will be sampled in DES grizY filters in the southern equatorial hemisphere. This roughly corresponds to 20% of all DES sources. Most of these stars belong to the stellar thick disk and halo of the Galaxy.

  19. Comment on "Resolving the depth coordinate in photoelectron spectroscopy - Comparison of excitation energy variation vs. angular-resolved XPS for the analysis of a self-assembled monolazer model system" by V.S. Merzlikin et al.

    Czech Academy of Sciences Publication Activity Database

    Zemek, Josef

    2008-01-01

    Roč. 602, č. 23 (2008), s. 3632-3633 ISSN 0039-6028 R&D Projects: GA ČR GA202/06/0459 Institutional research plan: CEZ:AV0Z10100521 Keywords : ARXPS * ERXPS * surf ace roughness Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.731, year: 2008

  20. Comparing XPS on bare and capped ZrN films grown by plasma enhanced ALD: Effect of ambient oxidation

    Science.gov (United States)

    Muneshwar, Triratna; Cadien, Ken

    2018-03-01

    In this article we compare x-ray photoelectron spectroscopy (XPS) measurements on bare- and capped- zirconium nitride (ZrN) films to investigate the effect of ambient sample oxidation on the detected bound O in the form of oxide ZrO2 and/or oxynitride ZrOxNy. ZrN films in both bare- and Al2O3/AlN capped- XPS samples were grown by plasma-enhanced atomic layer deposition (PEALD) technique using tetrakis dimethylamino zirconium (TDMAZr) precursor, forming gas (5% H2, rest N2) inductively coupled plasma (ICP), and as received research grade process gases under identical process conditions. Capped samples were prepared by depositing 1 nm thick PEALD AlN on ZrN, followed by additional deposition of 1 nm thick ALD Al2O3, without venting of ALD reactor. On bare ZrN sample at room temperature, spectroscopic ellipsometry (SE) measurements with increasing ambient exposure times (texp) showed a self-limiting surface oxidation with the oxide thickness (dox) approaching 3.7 ± 0.02 nm for texp > 120 min. In XPS data measured prior to sample sputtering (tsput = 0), ZrO2 and ZrOxNy were detected in bare- samples, whereas only ZrN and Al2O3/AlN from capping layer were detected in capped- samples. For bare-ZrN samples, appearance of ZrO2 and ZrOxNy up to sputter depth (dsput) of 15 nm in depth-profile XPS data is in contradiction with measured dox = 3.7 nm, but explained from sputtering induced atomic inter-diffusion within analyzed sample. Appearance of artifacts in the XPS spectra from moderately sputtered (dsput = 0.2 nm and 0.4 nm) capped-ZrN sample, provides an evidence to ion-bombardment induced modifications within analyzed sample.

  1. Cryogenic XPS study of fast-frozen sulfide minerals: Flotation-related adsorption of n-butyl xanthate and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Mikhlin, Yuri, E-mail: yumikh@icct.ru [Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of sciences, Akademgorodok, 50/24, Krasnoyarsk 660036 (Russian Federation); Karacharov, Anton; Tomashevich, Yevgeny [Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of sciences, Akademgorodok, 50/24, Krasnoyarsk 660036 (Russian Federation); Shchukarev, Andrey [Department of Chemistry, Umeå University, Umeå SE-901 87 (Sweden)

    2016-01-15

    Highlights: • Mineral/aqueous solution interfaces were studied with quasi in situ cryo-XPS. • Dibutyl dixanthogen was the major xanthate adsorption product on pyrite. • Dixanthogen and minor cuprous xanthate were uptaken by chalcopyrite. • Xanthate was chemisorbed at PbS. • Ice-repellent character of hydrophobic particles caused charging effects in XPS. - Abstract: Cryogenic XPS of wet particulate samples separated via centrifugation and fast-frozen allows quasi in situ examination of solid surfaces, adsorbates, and reaction products, largely preventing the loss both of volatiles and hydrated species at mineral/water interfaces. Here, the cryo-XPS has been applied to characterize the surfaces and interfacial layers of natural pyrite (FeS{sub 2}), chalcopyrite (CuFeS{sub 2}), and galena (PbS) in solutions of a common flotation collector, potassium n-butyl xanthate (KBX), in conjunction with zeta-potential measurement. It was found, in particular, that dibutyl dixanthogen was the major adsorbate at pyrite in 0.1 mM KBX and 10 mM KBX solutions; dixanthogen and cuprous xanthate in the next stage were formed on chalcopyrite, and predominant chemisorbed butyl xanthate was present at galena, including in 10 mM KBX solution. The results may suggest that the production of dixanthogens at the interface has been underestimated while the quantities of surface metal xanthates could be over evaluated in previous studies. Pronounced differential charging effects were observed in the XPS experiment for the samples moderately hydrophobized by the xanthate treatment; we proposed that the effect was due to electrically isolated mineral particles with hydrophobic and ice-repellent surfaces, which retained, however, some frozen water islets.

  2. Quantifying the Impact of Nanoparticle Coatings and Nonuniformities on XPS Analysis: Gold/Silver Core-Shell Nanoparticles.

    Science.gov (United States)

    Wang, Yung-Chen; Engelhard, Mark H; Baer, Donald R; Castner, David G

    2016-04-05

    Spectral modeling of photoelectrons can serve as a valuable tool when combined with X-ray photoelectron spectroscopy (XPS) analysis. Herein, a new version of the NIST Simulation of Electron Spectra for Surface Analysis (SESSA 2.0) software, capable of directly simulating spherical multilayer NPs, was applied to model citrate stabilized Au/Ag-core/shell nanoparticles (NPs). The NPs were characterized using XPS and scanning transmission electron microscopy (STEM) to determine the composition and morphology of the NPs. The Au/Ag-core/shell NPs were observed to be polydispersed in size, nonspherical, and contain off-centered Au-cores. Using the average NP dimensions determined from STEM analysis, SESSA spectral modeling indicated that washed Au/Ag-core-shell NPs were stabilized with a 0.8 nm layer of sodium citrate and a 0.05 nm (one wash) or 0.025 nm (two wash) layer of adventitious hydrocarbon, but did not fully account for the observed XPS signal from the Au-core. This was addressed by a series of simulations and normalizations to account for contributions of NP nonsphericity and off-centered Au-cores. Both of these nonuniformities reduce the effective Ag-shell thickness, which effect the Au-core photoelectron intensity. The off-centered cores had the greatest impact for the particles in this study. When the contributions from the geometrical nonuniformities are included in the simulations, the SESSA generated elemental compositions that matched the XPS elemental compositions. This work demonstrates how spectral modeling software such as SESSA, when combined with experimental XPS and STEM measurements, advances the ability to quantitatively assess overlayer thicknesses for multilayer core-shell NPs and deal with complex, nonideal geometrical properties.

  3. Multiconfiguration Dirac-Fock calculations of angle- and spin-resolved Auger spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kleiman, U., E-mail: kleiman@mpipks-dresden.mpg.d [Max-Planck-Institut fuer Physik komplexer Systeme, Abteilung Endliche Systeme, Noethnitzer Str. 38, D-01187 Dresden (Germany); Lohmann, B. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Theoretische Physik, Wilhelm-Klemm-Str. 9, D-48149 Muenster (Germany)

    2010-11-15

    The energies, line intensities as well as angular anisotropy and spin polarization parameters have been calculated for the L{sub 2,3}M{sub 1}M{sub 4,5} Auger spectra of Zn, Kr, Sr, Pd, Cd, Xe, Ba, Yb, Hg, Rn, Ra and No, the M{sub 2,3}N{sub 1}N{sub 4,5} Auger spectra of Pd, Cd, Xe, Ba, Yb, Hg, Rn, Ra and No, the N{sub 2,3}O{sub 1}O{sub 4,5} Auger spectra of Hg, Rn, Ra and No, the M{sub 4,5}N{sub 1}N{sub 2,3} Auger spectra of Kr, Sr, Pd, Cd, Xe, Ba, Yb, Hg, Rn, Ra and No, and the N{sub 4,5}O{sub 1}O{sub 2,3} Auger spectra of Xe, Ba, Yb, Hg, Rn, Ra and No. The calculations have been performed describing the Auger emission process in the context of scattering theory (relativistic distorted wave approximation) where the Auger transition amplitudes and scattering phases have been evaluated applying a relaxed orbital method within a multiconfiguration Dirac-Fock approach. Comparisons with other theoretical and experimental data are made wherever possible.

  4. Angle-resolved energy distributions of laser ablated silver ions in vacuum

    DEFF Research Database (Denmark)

    Hansen, T.N.; Schou, Jørgen; Lunney, J.G.

    1998-01-01

    The energy distributions of ions ablated from silver in vacuum have been measured in situ for pulsed laser irradiation at 355 nm. We have determined the energy spectra for directions ranging from 5 degrees to 75 degrees with respect to the normal in the intensity range from 100 to 400 MW/cm(2...

  5. Angle-Resolved Electron Spectra of {{\\rm{F}}}^{-} Ions by Few-Cycle Laser Pulses

    Science.gov (United States)

    Chen, Jian-Hong; Zhao, Song-Feng; Wang, Guo-Li; Zheng, Xiao-Ping; Zhang, Zheng-Rong

    2017-06-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11647150, 11464026, 11664035 and 11364038, the Young Talents Program of Gansu Province in 2016, the Scientific Research Program of the Higher Education Institutions of Gansu Province under Grant No 2016A-068, and the Doctoral Scientific Research Foundation of Lanzhou City University under Grant No LZCU-BS2015-04.

  6. On angle resolved RF magnetron sputtering of Ge-Sb-Te thin films

    Czech Academy of Sciences Publication Activity Database

    Gutwirth, J.; Wágner, T.; Bezdička, Petr; Hrdlička, M.; Vlček, Milan; Frumar, M.

    2009-01-01

    Roč. 355, 37-42 (2009), s. 1935-1938 ISSN 0022-3093 R&D Projects: GA MŠk LC523; GA ČR GA203/06/1368 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : amorphous semiconductors * films and coatings * sputtering Subject RIV: CA - Inorganic Chemistry Impact factor: 1.252, year: 2009

  7. Indoor measurement of angle resolved light absorption by antireflective glass in solar panels

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Benatto, Gisele Alves dos Reis; Riedel, Nicholas

    2017-01-01

    measurements with trackers. The experimental results showed optical responses that are stable and suitable for indoor characterization of solar cells. We find the characteristic optical response of six different antireflective glasses, and based on such measurements, we perform PVsyst simulations and present...

  8. Studies of Dirac and Weyl fermions by angle resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lunan [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    This dissertation consists of three parts. First, we study magnetic domains in Nd2Fe14B single crystals using high resolution magnetic force microscopy (MFM). In addition to the elongated, wavy nano-domains reported by a previous MFM study, we found that the micrometer size, star-shaped fractal pattern is constructed of an elongated network of nano-domains about 20 nm in width, with resolution-limited domain walls thinner than 2 nm. Second, we studied extra Dirac cones of multilayer graphene on SiC surface by ARPES and SPA-LEED. We discovered extra Dirac cones on Fermi surface due to SiC 6 x 6 and graphene 6√ 3 6√ 3 coincidence lattice on both single-layer and three-layer graphene sheets. We interpreted the position and intensity of the Dirac cone replicas, based on the scattering vectors from LEED patterns. We found the positions of replica Dirac cones are determined mostly by the 6 6 SiC superlattice even graphene layers grown thicker. Finally, we studied the electronic structure of MoTe2 by ARPES and experimentally con rmed the prediction of type II Weyl state in this material. By combining the result of Density Functional Theory calculations and Berry curvature calculations with out experimental data, we identi ed Fermi arcs, track states and Weyl points, all features predicted to exist in a type II Weyl semimetal. This material is an excellent playground for studies of exotic Fermions.

  9. Angle-resolved investigation of ion dynamics in high power impulse magnetron sputtering deposition system

    Czech Academy of Sciences Publication Activity Database

    Čada, Martin; Adámek, Petr; Straňák, V.; Kment, Štěpán; Olejníček, Jiří; Hubička, Zdeněk; Hippler, R.

    2013-01-01

    Roč. 549, DEC (2013), s. 177-183 ISSN 0040-6090 R&D Projects: GA MŠk LD12002 Institutional support: RVO:68378271 Keywords : HiPIMS * titania * Katsumata probe * ion sensitive probe * IVDF * angular resolution Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.867, year: 2013 http://www.sciencedirect.com/science/article/pii/S0040609013011127

  10. Theory of angle-resolved photoemission experiments on a two-band model

    OpenAIRE

    De Cao, Tian

    2008-01-01

    Considering the electron states inside and outside the solid, we derive a formula of photoemission intensity. A general theoretical way to determine electronic structures of solids from ARPES experiments is outlined. It is shown that the spectral function inside the solids cannot be measured directly by ARPES, the effects of free electron states on the electronic structure observed by ARPES measurements must be considered, and the results from ARPES experiments cannot be understood until thes...

  11. Electrostatic mass spectrometer for concurrent mass-, energy- and angle-resolved measurements

    International Nuclear Information System (INIS)

    Golikov, Yu.K.; Krasnova, N.K.

    1999-01-01

    A new electron-optical scheme is considered. An energy- and mass-analyser with angular resolution are combined in one device, in which a time-of-flight principle of mass separation is used. The tool is created on the basis of electrostatic field of quasi-conical systems possessing the high-energy dispersion and high-angular resolution. A regime of simultaneous angular and energy resolution is found. If there is an ion-pulsed source then the ion groups of equal mass will be registered at the same time at a position-sensitive detector located at the edge of the field. Real parameters of the suggested scheme are calculated

  12. Electronic structure of ion arsenic high temperature superconductors studied by angle resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The main purpose of the present thesis is to present our ARPES results on the iron arsenic superconductors. As revealed by a series of ARPES measurements on both the AEFe2As2 and the RFeAs(O,F) families (parent compound and carrier-doped systems), the electronic structures of the pnictides are complicated, three dimensional, and closely linked to their superconducting behavior (13; 14; 15; 16; 17; 18; 19). Parent compounds of these materials exhibit the basic hole-electron pocket dual plus an apparent Fermi surface reconstruction caused by long range antiferromagnetism (13; 15). When carriers are introduced, the chemical potential shifts in accordance with the Luttinger theorem and the rigid band shifting picture (13). Importantly, both the appearance and disappearance of the superconducting dome at low and high doping levels have intimate relation with topological changes at the Fermi surfaces, resulting in a specific Fermi topology being favored by superconductivity (15; 16). On the low doping side, superconductivity emerges in the phase diagram once the antiferromagnetic reconstruction disappears below the Fermi level, returning the Fermi surface to its paramagnetic-like appearance. On the high doping side, superconductivity disappears around a doping level at which the central hole pocket vanishes due to increasing electron concentration. Such phenomena are evidence for the governing role the electronic structure plays in their superconducting behavior.

  13. Observations at large zenith angles

    CERN Document Server

    Schroeder, F

    2000-01-01

    Cherenkov telescope observations at zenith angles >70 deg. are capable of providing large collection areas for high energy gamma-induced air showers. In order to provide a full Monte Carlo simulation of the large zenith angle observations the air shower simulation code CORSIKA was modified to treat particles in a curved geometry. First results of studies with the stand alone telescope HEGRA CT1 are presented.

  14. Angle-selective all-dielectric Huygens’ metasurfaces

    Science.gov (United States)

    Arslan, D.; Chong, K. E.; Miroshnichenko, A. E.; Choi, D.-Y.; Neshev, D. N.; Pertsch, T.; Kivshar, Y. S.; Staude, I.

    2017-11-01

    We experimentally and numerically study the angularly resolved transmission properties of dielectric metasurfaces consisting of silicon nanodisks which support electric and magnetic dipolar Mie-type resonances in the near-infrared spectral range. First, we concentrate on Huygens’ metasurfaces which are characterised by a spectral overlap of the fundamental electric and magnetic dipole resonances of the silicon nanodisks at normal incidence. Huygens’ metasurfaces exhibit a high transmitted intensity over the spectral width of the resonances due to impedance matching, while the transmitted phase shows a variation of 2π as the wavelength is swept across the width of the resonances. We observe that the transmittance of the Huygens’ metasurfaces depends on the incidence angle and is sensitive to polarisation for non-normal incidence. As the incidence angle is increased starting from normal incidence, the two dipole resonances are shifted out of the spectral overlap and the resonant features appear as pronounced transmittance minima. Next, we consider a metasurface with an increased nanodisk radius as compared to the Huygens’ metasurface, which supports spectrally separate electric and magnetic dipole resonances at normal incidence. We show that for TM polarisation, we can shift the resonances of this metasurface into spectral overlap and regain the high resonant transmittance characteristic of Huygens’ metasurfaces at a particular incidence angle. Furthermore, both metasurfaces are demonstrated to reject all TM polarised light incident under angles other than the design overlap angle at their respective operation frequency. Our experimental observations are in good qualitative agreement with numerical calculations.

  15. Nanocrystalline GdAlO{sub 3}: XPS, EPR and magnetic susceptibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Dimitar [University of Food Technologies, Department of Inorganic and Physical Chemistry, Plovdiv (Bulgaria)

    2011-09-15

    Nanocrystalline gadolinium monoaluminate (GdAlO{sub 3}) has been synthesized by sol-gel method after sintering the precursor gel at 950 C. The microstructural features have been proved by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray analysis (EDX). The XRD pattern confirms the formation of single-phase GdAlO{sub 3} while EDX shows that this nanomaterial is stoichiometric; the average size of the nanoparticles is 40 nm. X-ray photoelectron spectroscopy (XPS) has been used to study the chemical composition and bonding in the as-prepared samples. The binding energies of core-level electrons in Gd, Al and O in GdAlO{sub 3} nanopowder have been found slightly shifted compared to the corresponding values of the same elements. The electron paramagnetic resonance (EPR) spectra at 9.23 GHz (X-band) and different temperatures indicate the existence of magnetically concentrated solid containing Gd{sup 3+} ions. Neel temperature, T{sub N} =3.993 K, effective Bohr magneton number, {mu} {sub eff}=8.18, and constant of magnetic exchange interaction, J{sub ex}=-0.069 cm {sup -1}, have been determined from DC magnetic susceptibilities measured in the range 2-300 K. (orig.)

  16. XPS analysis of PE and EVA samples irradiated at different γ-doses

    Science.gov (United States)

    Dorey, Samuel; Gaston, Fanny; Marque, Sylvain R. A.; Bortolotti, Benjamin; Dupuy, Nathalie

    2018-01-01

    The principal plastic materials used for the fluid contact and storage in the biopharmaceutical industry are mainly made up of semi-crystalline polymers, polyolefins, PVC, Siloxane and PET. The polyethylene (PE) and the polypropylene (PP) are often used as fluid contact in multi-layer materials like films. As one sterilisation way of single-use plastic devices used in medical and pharmaceutical fields can take place via γ-irradiation, the effect of sterilization on plastics must be investigated. The irradiation process leads to the production of radicals, which can generate changes in the polymer structure and on the polymer surface. It is well known that the presence of oxygen with free radicals precede the generation of peroxide species so called ROS (reactive oxygen species) which are highly reactive. The purpose of this work is to investigate the γ-rays impact on the surface of PE (polyethylene) and EVA (polyethylene vinyl alcohol) based films when ionized at different doses. X-ray Photoelectron Spectroscopy (XPS) was applied to determine the surface compositions of the polymers to highlight the different chemical moieties generated during the γ-irradiation process and to monitor the potential presence of the ROS.

  17. XPS characterization of (copper-based) coloured stains formed on limestone surfaces of outdoor Roman monuments

    Science.gov (United States)

    2012-01-01

    Limestone basements holding bronzes or other copper alloys artefacts such as sculptures, decorations and dedicatory inscriptions are frequently met both in modern and ancient monuments. In outdoor conditions, such a combination implies the corrosion products of the copper based alloy, directly exposed to rainwater, will be drained off and migrate through the porous surfaces, forming stains of different colours and intensities, finally causing the limestone structures to deteriorate. In this work we have analysed samples from two modern limestone monuments in Rome, the Botticino surfaces of the ‘Vittoriano’ (by G.Sacconi, 1885-1911- Piazza Venezia) and the travertine basement of the ‘Statua dello Studente’ (by A.Cataldi, 1920- University city, La Sapienza), and focussed our investigation on the chemical composition of the copper-stained zones using XPS (X-ray Photoelectron Spectroscopy) as a surface-specific technique. Based on observations reporting on the structure and bonding at the calcite surfaces we have identified copper complexes and mixed calcium/copper carbonates associated with the stains, as well as the chemical state of other elements therein included, and related the compositional changes with differences in chromatic characteristics and sampling locations. PMID:22594435

  18. Chemistry Characterization of Jet Aircraft Engine Particulate by XPS: Results from APEX III

    Science.gov (United States)

    Vander Wal, Randy L.; Bryg, Victoria M.

    2014-01-01

    This paper reports XPS analysis of jet exhaust particulate from a B737, Lear, ERJ, and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and platforms. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20 percent or more. By lower resolution survey scans various elements including transition metals are identified along with lighter elements such as S, N, and O in the form of oxides. Burning additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their presence can be used as a tracer for identifying soots from aircraft engines as well as diagnostic for monitoring engine performance and wear.

  19. XPS STRUCTURE ANALYSIS OF TiN/TiC BILAYERS PRODUCED BY PULSED VACUUM ARC DISCHARGE

    Directory of Open Access Journals (Sweden)

    ELISABETH RESTREPO PARRA

    2010-01-01

    Full Text Available se crecieron bicapas de TiN/TiC sobre sustratos de acero inoxidable 304 usando un sistema de deposición física de vapor asistida por plasma en forma de arco pulsado a dos diferentes temperaturas del sustrato (50º C y150º C. Para el análisis de la composición química se empleó la técnica de la espectroscopía de fotoelectrones de rayos X (XPS. Se observó el comportamiento de las líneas Ti2p, N1s y C1s. Los análisis de energía de enlace confirmaron la conformación de TiN y TiC. Los picos C1s y Ti2p sufrieron un corrimiento a medida que se incrementó el tiempo de esputtering, revelando contaminación debido a la presencia de hidrocarburos. Además, los perfiles de profundidad de las bicapas de TiN/TiC mostraron que las películas crecidas a una temperatura de 150 ° C tienen una capa de TiN más gruesa que las muestras crecidas a 50º C. El nitrógeno se difundió en la capa de TiC y el carbón en la capa de TiN para ambas temperaturas.

  20. XPS-Characterization of Heterometallic Coordination Compounds with Optically Active Ligands

    Directory of Open Access Journals (Sweden)

    Yenny Ávila-Torres

    2013-01-01

    Full Text Available The heterometallic optical complexes [Cu2Co(S,S(+cpse3(H2O3]·4H2O (1 and [Cu2Ni(S,S(+cpse3(H2O3]·10H2O (2 were obtained from the mononuclear copper(II compound by the addition of nickel(II or cobalt(II chlorides, where (H2cpse is the acetyl amino alcohol derivative N-[2-hydroxy-1(R-methyl-2(R-phenylethyl]-N-methylglycine. In comparison with the homotrinuclear copper(II compound [Cu3(S,S(+cpse3(H2O3]·8H2O reported previously, the substitution of a copper(II atom by one cobalt(II ion gave place to a heterotrinuclear compound 1, which presents ferromagnetic-antiferromagnetic behaviour. When substituting a copper(II by a nickel(II ion, the trinuclear compound 2 showed an antiferromagnetic coupling. The magnetic behaviour of the heterotrinuclear compounds is driven by the nature of the metal ion which was introduced in the copper(II triangular array. The ligand and its coordination compounds were characterized by IR, UV-Vis-NIR. Their chemical was confirmed by photoelectron spectroscopy (XPS.

  1. XPS analysis of 440C steel surfaces lubricated with perfluoropolyethers under sliding conditions in high vacuum

    Science.gov (United States)

    Herrera-Fierro, Pilar; Masuko, Masabumi; Jones, William R., Jr.; Pepper, Stephen V.

    1994-01-01

    This work presents the results of the X-Ray Photoelectron Spectroscopy (XPS) analysis of AISI 440C ball surfaces lubricated with perfluoropolyether (PFPE) oils after friction experiments under sliding conditions at high load in air and vacuum environments. The PFPE lubricants tested were Demnum S100, Fomblin Z-25, and Krytox 143AB. It was found that all the PFPE lubricants were degraded by sliding contact causing the formation of inorganic fluorides on the metallic surfaces and a layer of organic decomposition products. KRYTOX 143AB was the least reactive of the three lubricants tested. It was also found that metal fluoride formed at off-scar areas. This suggests the formation of reactive species, such as COF2 or R(sub f)COF, during sliding experiments, which can diffuse through the lubricant film and react with the metallic surfaces away from the contact region. Comparison of reference specimens before sliding with those that had undergone the sliding tests showed that the amount of non-degraded PFPE remaining on the surface of the balls after the sliding experiments was greater than that of the balls without sliding.

  2. XPS analysis of the effect of fillers on PTFE transfer film development in sliding contacts

    Science.gov (United States)

    Blanchet, T. A.; Kennedy, F. E.; Jayne, D. T.

    1993-01-01

    The development of transfer films atop steel counterfaces in contact with unfilled and bronze-filled PTFE has been studied using X-ray photoelectron spectroscopy. The sliding apparatus was contained within the vacuum of the analytical system, so the effects of the native oxide, hydrocarbon, and adsorbed gaseous surface layers of the steel upon the PTFE transfer behavior could be studied in situ. For both the filled and the unfilled PTFE, cleaner surfaces promoted greater amounts of transfer. Metal fluorides, which formed at the transfer film/counterface interface, were found solely in cases where the native oxide had been removed to expose the metallic surface prior to sliding. These fluorides also were found at clean metal/PTFE interfaces formed in the absence of frictional contact. A fraction of these fluorides resulted from irradiation damage inherent in XPS analysis. PTFE transfer films were found to build up with repeated sliding passes, by a process in which strands of transfer filled in the remaining counterface area. Under these reported test conditions, the transfer process is not expected to continue atop previously deposited transfer films. The bronze-filled composite generated greater amounts of transfer than the unfilled PTFE. The results are discussed relative to the observed increase in wear resistance imparted to PTFE by a broad range of inorganic fillers.

  3. XPS and XAS investigation of condensed and adsorbed n-octane on a Cu(110) surface

    CERN Document Server

    Weiss, K; Triguero, L; Ogasawara, H; Garnier, M G; Pettersson, L G M; Nilsson, A

    2003-01-01

    The electronic structure of n-octane adsorbed on Cu(110) is studied by using X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) in combination with cluster model calculations in the framework of density functional theory (DFT). The molecule is found to be well oriented on the surface, which is seen from the high degree of XAS dichroism. Saturated hydrocarbons are commonly considered to physisorb on metals such as Cu(110), but still the C 1s XAS spectra reveal large changes in the electronic structure of the adsorbed octane relative to the free molecule. We find that the XAS resonances corresponding to the molecular Rydberg-valence states are strongly quenched upon adsorption and that there is a significant hybridization of the molecular valence orbitals with the metal bands. In addition to a precise interpretation of the XAS spectra, we present details on the molecular orbital structure of the adsorbed octane molecule. We also discuss shifts in the relative binding energies of the ...

  4. Core-level XPS spectra of fullerene, highly oriented pyrolitic graphite, and glassy carbon

    CERN Document Server

    Leiro, J A; Laiho, T; Batirev, I G

    2003-01-01

    The C 1s spectra of fullerene C sub 6 sub 0 , highly oriented pyrolitic graphite (HOPG) and amorphous carbon (a-C) have been measured using X-ray photoemission. The assumed background due to the inelastic scattering of electrons of these spectra has been subtracted by the Tougaard's method. The relative intensities and the energy positions for the core-level satellites have been determined. For C sub 6 sub 0 , a comparison of the low energy pi type shake-up satellites gives good agreement between theory and experiment. Also, the energies of these features for fullerene and glassy carbon are very similar, whereas the corresponding energies for HOPG are somewhat larger, presumably, because of the higher density of the latter. Moreover, the atomic force microscopy (AFM) study indicates that the C sub 6 sub 0 samples consist of a thick layer of large clusters on the Si(111) surface, which is in line with the molecular character of the XPS spectrum. Furthermore, the broad high energy satellite does not consist of ...

  5. Interfacial chemistry of a perfluoropolyether lubricant studied by XPS and TDS

    Science.gov (United States)

    Herrera-Fierro, Pilar C.; Jones, William R., Jr.; Pepper, Stephen V.

    1992-01-01

    The interfacial chemistry of Fomblin Z25, a commercial perfluoropolyether used as lubricant for space applications, with different metallic surfaces: 440C steel, gold and aluminum was studied. Thin layers of Fomblin Z25 were evaporated onto the oxide-free substrates and the interfacial chemistry studied using XPS and TDS. The reactions were induced by heating the substrate and by rubbing the substrate with a steel ball. Gold was found to be completely unreactive towards Fomblin at any temperature. Reaction at room temperature was observed only in the case of the aluminum substrate, the most reactive towards Fomblin Z25 of the substrates studied. It was necessary to heat the 440C steel substrate to 190 degree C to induce decomposition of the fluid. The degradation of the fluid was indicated by the formation of a debris layer at the interface. This debris layer, composed of inorganic and organic reaction products, when completely formed, passivated the surface from further attack to the Fromblin on top. The tribologically induced reactions on 440C steel formed a debris layer of similar chemical characteristics to the thermally induced layer. In all cases, the degradation reaction resulted in preferential consumption of the difluoroformyl carbon (-OCF2O-).

  6. Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies

    Science.gov (United States)

    Motin, Abdul Md.; Haunold, Thomas; Bukhtiyarov, Andrey V.; Bera, Abhijit; Rameshan, Christoph; Rupprechter, Günther

    2018-05-01

    Pt nanoparticles supported on carbon are an important technological catalyst. A corresponding model catalyst was prepared by physical vapor deposition (PVD) of Pt on sputtered HOPG (highly oriented pyrolytic graphite). The carbon substrate before and after sputtering as well as the Pt/HOPG system before and after Pt deposition and annealing were examined by XPS and STM. This yielded information on the surface density of defects, which serve as nucleation centres for Pt, and on the size distribution (mean size/height) of the Pt nanoparticles. Two different model catalysts were prepared with mean sizes of 2.0 and 3.6 nm, both turned out to be stable upon UHV-annealing to 300 °C. After transfer into a UHV-compatible flow microreactor and subsequent cleaning in UHV and under mbar pressure, the catalytic activity of the Pt/HOPG model system for ethylene hydrogenation was examined under atmospheric pressure flow conditions. This enabled to determine temperature-dependent conversion rates, turnover frequencies (TOFs) and activation energies. The catalytic results obtained are in line with the characteristics of technological Pt/C, demonstrating the validity of the current surface science based model catalyst approach.

  7. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  8. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-02-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1990) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  9. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-08-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  10. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  11. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-07-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April-June 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  12. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-12-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  13. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-06-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  14. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  15. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1990-11-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1990) and includes copies of letters, notices, and orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  16. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-11-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  17. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1990-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  18. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1989-12-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  19. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  20. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-09-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  1. XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, Pilar, E-mail: pilar.prieto@uam.es [Departamento de Fisica Aplicada and Instituto de Ciencia de Materiales ' Nicolas Cabrera' , Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Nistor, Valentin [Departamento de Fisica Aplicada and Instituto de Ciencia de Materiales ' Nicolas Cabrera' , Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Nouneh, Khalid [Institute for Nanomaterials and Nanotechnology (INANOTECH), Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), ENSET, Av. Armee Royale, 10100, Rabat (Morocco); Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan); Oyama, Munetaka [Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan); Abd-Lefdil, Mohammed [Laboratory of Materials Physics, University Mohammed V-Agdal, Rabat (Morocco); Diaz, Raquel [Departamento de Fisica Aplicada and Instituto de Ciencia de Materiales ' Nicolas Cabrera' , Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer We have prepared Ag, Ni and AgNi NPs by derived seed-mediated growth method. Black-Right-Pointing-Pointer The combined use of optical, structural and chemical characterization techniques allows to determine the presence of core-shell structures. Black-Right-Pointing-Pointer The oxidation states of Ag and Ni at the outer layers of the NPs have been studied by XPS. Black-Right-Pointing-Pointer Ag NPs are purely metallic with a fcc structure. Black-Right-Pointing-Pointer Ni NPs are formed by Ni core-NiO + Ni(OH){sub 2} shell structure. Black-Right-Pointing-Pointer Ag core-NiO + Ni(OH){sub 2} shell structure is determined for AgNi NPs, with oxidized silver atoms at the interface. - Abstract: The chemical structure of silver, nickel and bimetallic silver-nickel nanoparticles, i.e. Ag, Ni and AgNi NPs, with sizes {<=}35 nm, obtained by derived seed-mediated growth method on transparent and conductive indium tin oxide (ITO) substrates, has been studied by a comparative X-ray photoelectron spectroscopy (XPS) analysis of Ag 3d, Ni 2p and O1s core levels in combination with X-ray diffraction and optical absorption spectroscopy in the visible range. XPS indicates that the surface of Ag NPs is not oxidized, while Ni NPs are clearly oxidized to nickel oxide and hydroxide. Absorptions at 384 and 600 nm in Ni optical spectrum are consistent with the presence of nickel in oxidized state; however the presence of metallic Ni 2p signal in Ni XPS spectrum indicates that a metallic nickel core is still present. In the case of bimetallic AgNi NPs, the XPS results are consistent with the presence of metallic silver core surrounded by NiO + Ni(OH){sub 2} shell. XPS spectra also show the presence of Ag{sub 2}O at the interface between the Ag metallic core and the oxidized nickel shell. XRD patterns of AgNi and Ag NPs show the typical fcc structure of metallic silver, confirming the presence of Ag metallic core in AgNi NPs. The surface plasmon

  2. Effects of slant angle and illumination angle on MTF estimations

    CSIR Research Space (South Africa)

    Vhengani, LM

    2012-07-01

    Full Text Available angle d(?) was not constant. It was also noted that the iris of the imaging system was in most cases adjusted during initial setups of each measurements. After each measurement, the knife-edge target was replaced with the ISO 12233 MTF target (shown....085 0.09 0.095 K:\\Working Folder\\Project_On_orbit MTF\\edgetargets\\MTF_Lab_Measurements _20120302_Edge Slant Angle (degrees) Ny qu ist MT F (c yc le/p ixe l) Data Regression -18 -16 -14 -12 -10 -8 -6 -4 -2 0.05 0.055 0.06 0...

  3. Raman and XPS characterization of vanadium oxide thin films with temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ureña-Begara, Ferran, E-mail: ferran.urena@uclouvain.be [Université catholique de Louvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Louvain-la-Neuve (Belgium); Crunteanu, Aurelian [XLIM Research Institute, UMR 7252, CNRS/Université de Limoges, Limoges (France); Raskin, Jean-Pierre [Université catholique de Louvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Louvain-la-Neuve (Belgium)

    2017-05-01

    Highlights: • Comprehensive study of the oxidation of VO{sub 2} thin films from R.T. up to 550 °C. • Phase changes and mixed-valence vanadium oxides formed during the oxidation process. • Reported Raman and XPS signatures for each vanadium oxide. • Monitoring of the current and resistance evolution at the surface of the films. • Oxidation model describing the evolution of the vanadium oxides and phase changes. - Abstract: The oxidation mechanisms and the numerous phase transitions undergone by VO{sub 2} thin films deposited on SiO{sub 2}/Si and Al{sub 2}O{sub 3} substrates when heated from room temperature (R.T.) up to 550 °C in air are investigated by Raman and X-ray photoelectron spectroscopy. The results show that the films undergo several intermediate phase transitions between the initial VO{sub 2} monoclinic phase at R.T. and the final V{sub 2}O{sub 5} phase at 550 °C. The information about these intermediate phase transitions is scarce and their identification is important since they are often found during the synthesis of vanadium dioxide films. Significant changes in the film conductivity have also been observed to occur associated to the phase transitions. In this work, current and resistance measurements performed on the surface of the films are implemented in parallel with the Raman measurements to correlate the different phases with the conductivity of the films. A model to explain the oxidation mechanisms and phenomena occurring during the oxidation of the films is proposed. Peak frequencies, full-width half-maxima, binding energies and oxidation states from the Raman and X-ray photoelectron spectroscopy experiments are reported and analyzed for all the phases encountered in VO{sub 2} films prepared on SiO{sub 2}/Si and Al{sub 2}O{sub 3} substrates.

  4. Characterization study of native oxides on GaAs(100) surface by XPS

    Science.gov (United States)

    Feng, Liu; Zhang, Lian-dong; Liu, Hui; Gao, Xiang; Miao, Zhuang; Cheng, Hong-chang; Wang, Long; Niu, Sen

    2013-08-01

    In order to know more about the surface state of GaAs(100) epitaxial wafer during a storage period of two years, the XPS analysis was carried out four times on the surface, respectively polished by chemical etching, stored in desiccator for half a year, one year and two years. The results indicated that even after cleaned by proper etchant solutions, the fresh surface was slightly oxidized with Ga2O3, As2O3 and organic contaminant. The epi-wafer was always exposed to air during the storage period, so more and more oxides turned out. The mixed oxide layer comprised of C-OR, COOR, Ga2O3, As2O3 and As2O5 appeared after only half a year. In the ageing process of two years, the oxide types of gallium or arsenic did not change with stable content of Ga2O3 and remarkably fluctuating relative contents of As2O3 and As2O5. Based on the intensity ratio of Ga 3d-Ga2O3 to Ga 3d-GaAs, the thickness of oxide layer was estimated. The oxide layer generated after chemical polishing was very thin, just only 0.435nm thick, and then it grew rapidly, approximately 1.822nm after one year while almost no change any more subsequently. It was indicated that after the epi-wafer was stored for one year, because of volatile As2O3 or As2O5, there remained a large amount of Ga2O3 in oxide layer, which prevented the reactions between bulk material and oxide layer with oxygen. So native oxide layer plays a role as passive film to protect epi-wafer against the environment during a long storage period.

  5. Full-Circle Resolver-to-Linear-Analog Converter

    Science.gov (United States)

    Alhorn, Dean C.; Smith, Dennis A.; Howard, David E.

    2005-01-01

    A circuit generates sinusoidal excitation signals for a shaft-angle resolver and, like the arctangent circuit described in the preceding article, generates an analog voltage proportional to the shaft angle. The disadvantages of the circuit described in the preceding article arise from the fact that it must be made from precise analog subcircuits, including a functional block capable of implementing some trigonometric identities; this circuitry tends to be expensive, sensitive to noise, and susceptible to errors caused by temperature-induced drifts and imprecise matching of gains and phases. These disadvantages are overcome by the design of the present circuit. The present circuit (see figure) includes an excitation circuit, which generates signals Ksin(Omega(t)) and Kcos(Omega(t)) [where K is an amplitude, Omega denotes 2(pi)x a carrier frequency (the design value of which is 10 kHz), and t denotes time]. These signals are applied to the excitation terminals of a shaft-angle resolver, causing the resolver to put out signals C sin(Omega(t)-Theta) and C cos(Omega(t)-Theta). The cosine excitation signal and the cosine resolver output signal are processed through inverting comparator circuits, which are configured to function as inverting squarers, to obtain logic-level or square-wave signals .-LL[cos(Omega(t)] and -LL[cos(Omega(t)-Theta)], respectively. These signals are fed as inputs to a block containing digital logic circuits that effectively measure the phase difference (which equals Theta between the two logic-level signals). The output of this block is a pulse-width-modulated signal, PWM(Theta), the time-averaged value of which ranges from 0 to 5 VDC as Theta ranges from .180 to +180deg. PWM(Theta) is fed to a block of amplifying and level-shifting circuitry, which converts the input PWM waveform to an output waveform that switches between precise reference voltage levels of +10 and -10 V. This waveform is processed by a two-pole, low-pass filter, which removes

  6. Computed tomography with energy-resolved detection: a feasibility study

    Science.gov (United States)

    Shikhaliev, Polad M.

    2008-03-01

    The feasibility of computed tomography (CT) with energy-resolved x-ray detection has been investigated. A breast CT design with multi slit multi slice (MSMS) data acquisition was used for this study. The MSMS CT includes linear arrays of photon counting detectors separated by gaps. This CT configuration allows for efficient scatter rejection and 3D data acquisition. The energy-resolved CT images were simulated using a digital breast phantom and the design parameters of the proposed MSMS CT. The phantom had 14 cm diameter and 50/50 adipose/glandular composition, and included carcinoma, adipose, blood, iodine and CaCO3 as contrast elements. The x-ray technique was 90 kVp tube voltage with 660 mR skin exposure. Photon counting, charge (energy) integrating and photon energy weighting CT images were generated. The contrast-to-noise (CNR) improvement with photon energy weighting was quantified. The dual energy subtracted images of CaCO3 and iodine were generated using a single CT scan at a fixed x-ray tube voltage. The x-ray spectrum was electronically split into low- and high-energy parts by a photon counting detector. The CNR of the energy weighting CT images of carcinoma, blood, adipose, iodine, and CaCO3 was higher by a factor of 1.16, 1.20, 1.21, 1.36 and 1.35, respectively, as compared to CT with a conventional charge (energy) integrating detector. Photon energy weighting was applied to CT projections prior to dual energy subtraction and reconstruction. Photon energy weighting improved the CNR in dual energy subtracted CT images of CaCO3 and iodine by a factor of 1.35 and 1.33, respectively. The combination of CNR improvements due to scatter rejection and energy weighting was in the range of 1.71-2 depending on the type of the contrast element. The tilted angle CZT detector was considered as the detector of choice. Experiments were performed to test the effect of the tilting angle on the energy spectrum. Using the CZT detector with 20° tilting angle decreased the

  7. Frequency scaling for angle gathers

    KAUST Repository

    Zuberi, M. A H

    2014-01-01

    Angle gathers provide an extra dimension to analyze the velocity after migration. Space-shift and time shift-imaging conditions are two methods used to obtain angle gathers, but both are reasonably expensive. By scaling the time-lag axis of the time-shifted images, the computational cost of the time shift imaging condition can be considerably reduced. In imaging and more so Full waveform inversion, frequencydomain Helmholtz solvers are used more often to solve for the wavefields than conventional time domain extrapolators. In such cases, we do not need to extend the image, instead we scale the frequency axis of the frequency domain image to obtain the angle gathers more efficiently. Application on synthetic data demonstrate such features.

  8. XPS characterization of sensitized n-TiO{sub 2} thin films for dye-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Patrocinio, Antonio Otavio T. [Laboratory of Inorganic Photochemistry and Energy Conversion, Instituto de Quimica, Universidade de Sao Paulo (Brazil); Paniago, Eucler B. [Departamento de Quimica, Universidade Federal de Ouro Preto (Brazil); Paniago, Roberto M. [Departamento de Fisica, Universidade Federal de Minas Gerais (Brazil); Iha, Neyde Y. Murakami [Laboratory of Inorganic Photochemistry and Energy Conversion, Instituto de Quimica, Universidade de Sao Paulo (Brazil)], E-mail: neydeiha@iq.usp.br

    2008-01-15

    TiO{sub 2} thin films, employed in dye-sensitized solar cells, were prepared by the sol-gel method or directly by Degussa P25 oxide and their surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The effect of adsorption of the cis-[Ru(dcbH{sub 2}){sub 2}(NCS){sub 2}] dye, N3, on the surface of films was investigated. From XPS spectra taken before and after argon-ion sputtering procedure, the surface composition of inner and outer layers of sensitized films was obtained and a preferential etching of Ru peak in relation to the Ti and N ones was identified. The photoelectrochemical parameters were also evaluated and rationalized in terms of the morphological characteristics of the films.

  9. The determination of acid-base properties of polymer surfaces by XPS: Present status and future prospects

    International Nuclear Information System (INIS)

    Chehimi, M.M.; Delamar, M.; Shahidzadeh-Ahmadi, N.; Arefi-Khonsari, F.; Amouroux, J.; Watts, J.F.

    1996-01-01

    The use of the molecular probe technique in conjunction with X-ray photoelectron spectroscopy (XPS) for the assessment of acid-base properties of polymer surfaces is reviewed. The method is based on the determination of the concentration and chemical shifts of Lewis acids (bases) sorbed in polymers of basic (acidic) character. In the case of chloroform (Lewis acid) sorbed in polymers of Lewis basic character, C12p binding energy is linearly correlated with ΔH AB , the heat of acid-base complex formation chloroform-polymer. This relationship has been used to determine the acid-base properties of poly(phenylene oxide), a homopolymer, and ammonia plasma-treated polypropylene. This work shows that XPS can now indeed be used to quantitatively assess the acid-base properties of modified polymer surfaces and perhaps be extended to map acid-base properties of polymer surfaces at the micron or submicron scale. copyright 1996 American Institute of Physics

  10. Growth of TiC films by Pulsed Laser Evaporation (PLE) and characterization by XPS and AES

    International Nuclear Information System (INIS)

    Rist, O.; Murray, P.T.

    1991-01-01

    Thin films of TiC with a thickness of some 100 nm have been grown on Si(100) substrates by Pulsed Laser Evaporation (PLE). Advantages of PLE in comparison with more conventional growth methods e.g. PVD or CVD are reported. The feasibility of growing stoichiometric thin films of TiC by PLE was investigated. These films produced have been analysed in situ by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). XPS results and Auger sputter depht profiles indicate that the films grown between RT and 500degC are stoichiometric TiC. Film/substrate interdiffusion is observed at 600degC substrate temperature and higher. (orig.)

  11. Temperature dependence of Brewster's angle.

    Science.gov (United States)

    Guo, Wei

    2018-01-01

    In this work, a dielectric at a finite temperature is modeled as an ensemble of identical atoms moving randomly around where they are trapped. Light reflection from the dielectric is then discussed in terms of atomic radiation. Specific calculation demonstrates that because of the atoms' thermal motion, Brewster's angle is, in principle, temperature-dependent, and the dependence is weak in the low-temperature limit. What is also found is that the Brewster's angle is nothing but a result of destructive superposition of electromagnetic radiation from the atoms.

  12. Angle independent velocity spectrum determination

    DEFF Research Database (Denmark)

    2014-01-01

    An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....

  13. Tiny incident light angle sensor

    Science.gov (United States)

    Mitrenga, D.; Schädel, M.; Winzer, A. T.; Völlmeke, S.; Preuß, K. D.; Freitag, J.; Brodersen, O.

    2017-05-01

    A novel device for detecting the intensity and the angles of incoming light is presented. The silicon chip with 1 mm edge length comprises a segmented photo diode with four active areas within the inclined surfaces of a deep etched cavity. Simple signal difference analysis of these signals allow for accurate azimuth and inclination measurement in the range of 0 to 360° and 0 to 55°, respectively. Using an artificial neural network (ANN) calibration strategy the operation range of inclination can be increased up to 85° with typical angle errors below 2°. In this report we present details on design, fabrication, signal analysis and calibration strategies.

  14. A poly-epoxy surface explored by Hartree-Fock ΔSCF simulations of C1s XPS spectra.

    Science.gov (United States)

    Gavrielides, A; Duguet, T; Esvan, J; Lacaze-Dufaure, C; Bagus, P S

    2016-08-21

    Whereas poly-epoxy polymers represent a class of materials with a wide range of applications, the structural disorder makes them difficult to model. In the present work, we use good experimental model samples in the sense that they are pure, fully polymerized, flat and smooth, defect-free, and suitable for ultrahigh vacuum x-ray photoelectron spectroscopy, XPS, experiments. In parallel, we perform Hartree-Fock, HF, calculations of the binding energies, BEs, of the C1s electrons in a model molecule composed of the two constituents of the poly-epoxy sample. These C1s BEs were determined using the HF ΔSCF method, which is known to yield accurate values, especially for the shifts of the BEs, ΔBEs. We demonstrate the benefits of combining rigorous theory with careful XPS measurements in order to obtain correct assignments of the C1s XPS spectra of the polymer sample. Both the relative binding energies-by the ΔSCF method-and relative intensities-in the sudden approximation, SA, are calculated. It results in an excellent match with the experimental spectra. We are able to identify 9 different chemical environments under the C1s peak, where an exclusively experimental work would have found only 3 contributions. In addition, we observe that some contributions are localized at discrete binding energies, whereas others allow a much wider range because of the variation of their second neighbor bound polarization. Therefore, HF-ΔSCF simulations significantly increase the spectral resolution of XPS and thus offer a new avenue for the exploration of the surface of polymers.

  15. X-PEEM, XPS and ToF-SIMS characterisation of xanthate induced chalcopyrite flotation: Effect of pulp potential

    Science.gov (United States)

    Kalegowda, Yogesh; Chan, Yuet-Loy; Wei, Der-Hsin; Harmer, Sarah L.

    2015-05-01

    Synchrotron-based X-ray photoemission electron microscopy (X-PEEM), X-ray photo-electron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and ultraviolet visible spectroscopy were used to characterize the flotation behaviour of chalcopyrite with xanthate at different processing conditions. The flotation recovery of chalcopyrite decreased from 97% under oxidative conditions (Eh ~ 385 mV SHE, pH 4) to 41% at a reductive potential of - 100 mV SHE (at pH 9). X-PEEM images constructed from the metal L3 absorption edges were used to produce near-edge X-ray absorption fine structure (NEXAFS) spectra from regions of interest, allowing the variability in mineral surface chemistry of each mineral particle to be analysed, and the effect of pulp potential (Eh) on the flotation of chalcopyrite to be determined. XPS, ToF-SIMS and NEXAFS analyses of chalcopyrite particles at oxidative conditions show that the surface was mildly oxidised and covered with adsorbed molecular CuEX. The Cu 2p XPS and Cu L2,3 NEXAFS spectra were dominated by CuI species attributed to bulk chalcopyrite and adsorbed CuEX. At a reductive potential of - 100 mV SHE, an increase in concentration of CuI and FeIII oxides and hydroxides was observed. X-PEEM analysis was able to show the presence of a low percentage of CuII oxides (CuO or Cu(OH)2) with predominantly CuI oxide (Cu2O) which is not evident in Cu 2p XPS spectra.

  16. Time-resolved fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gustavsson, Thomas; Mialocq, Jean-Claude

    2007-01-01

    This article addresses the evolution in time of light emitted by a molecular system after a brief photo-excitation. The authors first describe fluorescence from a photo-physical point of view and discuss the characterization of the excited state. Then, they explain some basic notions related to fluorescence characterization (lifetime and decays, quantum efficiency, so on). They present the different experimental methods and techniques currently used to study time-resolved fluorescence. They discuss basic notions of time resolution and spectral reconstruction. They briefly present some conventional methods: intensified Ccd cameras, photo-multipliers and photodiodes associated with a fast oscilloscope, and phase modulation. Other methods and techniques are more precisely presented: time-correlated single photon counting (principle, examples, and fluorescence lifetime imagery), streak camera (principle, examples), and optical methods like the Kerr optical effect (principle and examples) and fluorescence up-conversion (principle and theoretical considerations, examples of application)

  17. Reversible membrane reorganizations during photosynthesis in vivo: revealed by small-angle neutron scattering

    DEFF Research Database (Denmark)

    Nagy, Gergely; Posselt, Dorthe; Kovacs, Laszlo

    2011-01-01

    In the present study, we determined characteristic repeat distances of the photosynthetic membranes in living cyanobacterial and eukaryotic algal cells, and in intact thylakoid membranes isolated from higher plants with time-resolved small-angle neutron scattering. This non-invasive technique rev...

  18. V4: The Small Angle Scattering Instrument (SANS at BER II

    Directory of Open Access Journals (Sweden)

    Uwe Keiderling

    2016-11-01

    Full Text Available V4 is a small-angle neutron scatting instrument with an accessible range of scattering vector 0.01 nm-1 < Q < 8.5 nm-1. Outstanding features of the instrument are the polarized neutron option and the list mode data acquisition, allowing for time-resolved measurements with µs time resolution.

  19. Positive XPS binding energy shift of supported Cu{sub N}-clusters governed by initial state effects

    Energy Technology Data Exchange (ETDEWEB)

    Peters, S.; Peredkov, S. [Technische Universität Berlin, IOAP, Strasse des 17. Juni 135, 10623 Berlin (Germany); Al-Hada, M. [Department of Physics, College of Education and Linguistics, University of Amran (Yemen); Neeb, M., E-mail: matthias.neeb@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Wilhelm-Conrad-Röntgen-Campus Adlershof, Elektronenspeicherring BESSY II, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Eberhardt, W. [Technische Universität Berlin, IOAP, Strasse des 17. Juni 135, 10623 Berlin (Germany); DESY, Center for Free Electron Laser Science (CFEL), Notkestr. 85, 22607 Hamburg (Germany)

    2014-01-01

    Highlights: • Size dependent initial and final state effects of mass-selected deposited clusters. • Initial state effect dominates positive XPS shift in supported Cu-clusters. • Size dependent Coulomb correlation shift in the Auger final state of Cu cluster. • Size-dependent Auger parameter analysis. • Positive XPS shift differs from negative surface core level shift in crystalline copper. - Abstract: An initial state effect is established as origin for the positive 2p core electron binding energy shift found for Cu{sub N}-clusters supported by a thin silica layer of a p-doped Si(1 0 0) wafer. Using the concept of the Auger parameter and taking into account the usually neglected Coulomb correlation shift in the Auger final state (M{sub 4,5}M{sub 4,5}) it is shown that the initial state shift is comparable to the measured XPS shift while the final state relaxation shift contributes only marginally to the binding energy shift. The cluster results differ from the negative surface core-level shift of crystalline copper which has been explained in terms of a final state relaxation effect.

  20. A quantitative model and the experimental evaluation of the liquid fuel layer for the downward flame spread of XPS foam.

    Science.gov (United States)

    Luo, Shengfeng; Xie, Qiyuan; Tang, Xinyi; Qiu, Rong; Yang, Yun

    2017-05-05

    The objective of this work is to investigate the distinctive mechanisms of downward flame spread for XPS foam. It was physically considered as a moving down of narrow pool fire instead of downward surface flame spread for normal solids. A method was developed to quantitatively analyze the accumulated liquid fuel based on the experimental measurement of locations of flame tips and burning rates. The results surprisingly showed that about 80% of the generated hot liquid fuel remained in the pool fire during a certain period. Most of the consumed solid XPS foam didn't really burn away but transformed as the liquid fuel in the downward moving pool fire, which might be an important promotion for the fast fire development. The results also indicated that the dripping propensity of the hot liquid fuel depends on the total amount of the hot liquid accumulated in the pool fire. The leading point of the flame front curve might be the breach of the accumulated hot liquid fuel if it is enough for dripping. Finally, it is suggested that horizontal noncombustible barriers for preventing the accumulation and dripping of liquid fuel are helpful for vertical confining of XPS fire. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Large Solid Angle Spectrometer for Inelastic X-ray Scattering

    International Nuclear Information System (INIS)

    Gelebart, F.; Morand, M.; Dermigny, Q.; Giura, P.; Shukla, A.; Rueff, J.-P.

    2007-01-01

    We have designed a large solid angle spectrometer mostly devoted to inelastic x-ray scattering (IXS) studies of materials under extreme conditions (high pressure / temperature) in the hard x-ray range. The new IXS spectrometer is designed to optimize the photon throughput while preserving an excellent resolving power of ∼10000 in the considered energy range. The spectrometer consists of an array of up to 4 spherically bent 0.5 m radius analyzer crystals and a solid-state detector positioned on the Rowland circle. The four analyzers can cover a solid angle more than one order of magnitude larger than conventional spectrometers. The spectrometer is to be installed on the GALAXIES beamline at SOLEIL in the near future

  2. A Hitch Angle Measurement Device

    National Research Council Canada - National Science Library

    Von

    1998-01-01

    As part of a project to demonstrate that an unmanned ground vehicle (UGV) could remotely back up with a trailer, a simple proof-of-concept device was designed to measure the angle between a high-mobility multipurpose wheeled vehicle (HMMWV...

  3. How I Do It: GreenLight XPS 180W photoselective vaporization of the prostate.

    Science.gov (United States)

    Elterman, Dean S

    2015-06-01

    The treatments for benign prostate enlargement (BPE), also known as lower urinary tract symptoms secondary to benign prostatic hypertrophy (BPH-LUTS), have evolved significantly over recent years. Where transurethral resection of the prostate (TURP) has been the gold standard surgery for enlarged prostate glands prostates larger than 80-100 grams, the surgical options were an open, simple prostatectomy or perhaps a staged TURP. Both of these surgeries have the potential for bleeding complications, electrolyte abnormalities, and prolonged hospital admissions. Additional demographic and healthcare forces are also at play. Our aging population of men is being increasingly successfully treated for cardiovascular disease. This means more men are on anti-coagulation therapy, many of whom must stay on these drugs to prevent stent clotting or stroke. Hospital resources, especially overnight hospital admissions do add considerable strain to our healthcare systems. Men are also increasingly becoming more savvy consumers when it comes to their health. Many male patients would prefer to take as few medications as possible. Studies of BPH medications in Europe and the United States have shown drug discontinuation rates between 58%-70% at 1 year. Men who are faced with the choice of daily medication for life versus an outpatient procedure will often opt for the latter, which is in keeping with AUA guidelines that still put surgery as a patient choice alongside medications. Being able to offer GreenLight photoselective vaporization (GL-PVP) with the GreenLight XPS 180Watt system addresses all of these concerns. Men with bothersome BPH-LUTS with essentially any sized prostate gland, can be treated as same-day surgery requiring no overnight admission to hospital, while continuing necessary anti-coagulants, with significantly diminished risks of bleeding, erectile dysfunction, TUR-syndrome. Just as there are many ways to perform a TURP, techniques for GL-PVP do vary. The objectives

  4. Weak antilocalization effect in exfoliated black phosphorus revealed by temperature- and angle-dependent magnetoconductivity

    KAUST Repository

    Hou, Zhipeng

    2018-01-10

    Recently, there have been increasingly debates on whether there exists a surface resonance state (SRS) in black phosphorus (BP), as suggested by recent angle-resolved photoemission spectroscopy (ARPES) results. To resolve this issue, we have performed temperature- and angle-dependent magnetoconductivity measurements on exfoliated, high-quality BP single crystals. A pronounced weak-antilocalization (WAL) effect was observed within a narrow temperature range of 8 - 16 K, with the electrical current flowing parallel to the cleaved ac-plane (along the a- or c-axis) and the magnetic field along the b-axis. The angle-dependent magnetoconductivity and the Hikami-Larkin-Nagaoka (HLN) model-fitted results have revealed that the observed WAL effect shows surface-bulk coherent features, which supports the existence of SRS in black phosphorus.

  5. Incidence Angle Effect of Energetic Carbon Ions on Deposition Rate, Topography, and Structure of Ultrathin Amorphous Carbon Films Deposited by Filtered Cathodic Vacuum Arc

    KAUST Repository

    Wang, N.

    2012-07-01

    The effect of the incidence angle of energetic carbon ions on the thickness, topography, and structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) was examined in the context of numerical and experimental results. The thickness of a-C films deposited at different incidence angles was investigated in the light of Monte Carlo simulations, and the calculated depth profiles were compared with those obtained from high-resolution transmission electron microscopy (TEM). The topography and structure of the a-C films were studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. The film thickness decreased with the increase of the incidence angle, while the surface roughness increased and the content of tetrahedral carbon hybridization (sp 3) decreased significantly with the increase of the incidence angle above 45° , measured from the surface normal. TEM, AFM, and XPS results indicate that the smoothest and thinnest a-C films with the highest content of sp 3 carbon bonding were produced for an incidence angle of 45°. The findings of this study have direct implications in ultrahigh-density magnetic recording, where ultrathin and smooth a-C films with high sp 3 contents are of critical importance. © 2012 IEEE.

  6. Flavour from partially resolved singularities

    Energy Technology Data Exchange (ETDEWEB)

    Bonelli, G. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy)]. E-mail: bonelli@sissa.it; Bonora, L. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy); Ricco, A. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy)

    2006-06-15

    In this Letter we study topological open string field theory on D-branes in a IIB background given by non-compact CY geometries O(n)-bar O(-2-n) on P{sup 1} with a singular point at which an extra fiber sits. We wrap N D5-branes on P{sup 1} and M effective D3-branes at singular points, which are actually D5-branes wrapped on a shrinking cycle. We calculate the holomorphic Chern-Simons partition function for the above models in a deformed complex structure and find that it reduces to multi-matrix models with flavour. These are the matrix models whose resolvents have been shown to satisfy the generalized Konishi anomaly equations with flavour. In the n=0 case, corresponding to a partial resolution of the A{sub 2} singularity, the quantum superpotential in the N=1 unitary SYM with one adjoint and M fundamentals is obtained. The n=1 case is also studied and shown to give rise to two-matrix models which for a particular set of couplings can be exactly solved. We explicitly show how to solve such a class of models by a quantum equation of motion technique.

  7. Measurement of the angle gamma

    International Nuclear Information System (INIS)

    Aleksan, R.; Kayser, B.; Sphicas, P.

    1993-01-01

    The angle γ at least as defined in the Wolfenstein approximation is not completely out of reach of current or proposed dedicated B experiments. This conclusion certainly depends crucially on the assumed trigger and tagging efficiencies and also on the expected backgrounds. The work summarized here represents but a first step in the direction of extracting the third angle of the unitarity triangle. The theoretical developments during the workshop have resulted in a clearer understanding of the quantities studied. On the experimental side, new decay modes (i.e. in addition to the traditional ρK s decay) have resulted in expections for observing CP violation in B s decays which are not unreasonable. It is conceivable that a dedicated B experiment can probe a fundamental aspect of the Standard Model, the CKM matrix, in multiple ways. In the process, new physics can appear anywhere along the line

  8. Contact angles on stretched solids

    Science.gov (United States)

    Mensink, Liz; Snoeijer, Jacco

    2017-11-01

    The surface energy of solid interfaces plays a central role in wetting, as they dictate the liquid contact angle. Yet, it has been challenging to measure the solid surface energies independently, without making use of Young's law. Here we present Molecular Dynamics (MD) simulations by which we measure the surface properties for all interfaces, including the solids. We observe change in contact angles upon stretching the solid substrates, showing that the surface energy is actually strain dependent. This is clear evidence of the so-called Shuttleworth effect, making it necessary to distinguish surface energy from surface tension. We discuss how this effect gives rise to a new class of elasto-capillary phenomena. ERC Consolidator Grant No. 616918.

  9. Formation of carboxy- and amide-terminated alkyl monolayers on silicon(111) investigated by ATR-FTIR, XPS, and X-ray scattering: Construction of photoswitchable surfaces

    DEFF Research Database (Denmark)

    Rück-Braun, Karola; Petersen, Michael Åxman; Michalik, Fabian

    2013-01-01

    -FTIR and XPS studies of the fulgimide samples revealed closely covered amide-terminated SAMs. Reversible photoswitching of the headgroup was read out by applying XPS, ATR-FTIR, and difference absorption spectra in the mid-IR. In XPS, we observed a reversible breathing of the amide/imide C1s and N1s signals......We have prepared high-quality, densely packed, self-assembled monolayers (SAMs) of carboxy-terminated alkyl chains on Si(111). The samples were made by thermal grafting of methyl undec-10-enoate under an inert atmosphere and subsequent cleavage of the ester functionality to disclose the carboxylic...... zigzag-like substitution pattern for the ester- and carboxy-terminated monolayer. Hydrolysis of the remaining H-Si(111) bonds at the surface furnished HO-Si(111) groups according to XPS and attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) studies. The amide-terminated alkyl...

  10. LHC Report: playing with angles

    CERN Multimedia

    Mike Lamont for the LHC team

    2016-01-01

    Ready (after a machine development period), steady (running), go (for a special run)!   The crossing angles are an essential feature of the machine set-up. They have to be big enough to reduce the long-range beam-beam effect. The LHC has recently enjoyed a period of steady running and managed to set a new record for “Maximum Stable Luminosity Delivered in 7 days” of 3.29 fb-1 between 29 August and 4 September. The number of bunches per beam remains pegged at 2220 because of the limitations imposed by the SPS beam dump. The bunch population is also somewhat reduced due to outgassing near one of the injection kickers at point 8. Both limitations will be addressed during the year-end technical stop, opening the way for increased performance in 2017. On 10 and 11 September, a two day machine development (MD) period took place. The MD programme included a look at the possibility of reducing the crossing angle at the high-luminosity interaction points. The crossing angles are an ess...

  11. Ocular biometry in angle closure.

    Science.gov (United States)

    Razeghinejad, Mohammad Reza; Banifatemi, Mohammad

    2013-01-01

    To compare ocular biometric parameters in primary angle closure suspects (PACS), primary angle closure glaucoma (PACG) and acute primary angle closure (APAC). This cross-sectional study was performed on 113 patients including 33 cases of PACS, 45 patients with PACG and 35 subjects with APAC. Central corneal thickness (CCT), axial length (AL), anterior chamber depth (ACD) and lens thickness (LT) were measured with an ultrasonic biometer. Lens-axial length factor (LAF), relative lens position, corrected ACD (CACD) and corrected lens position were calculated. The parameters were measured bilaterally but only data from the right eyes were compared. In the APAC group, biometric parameters were also compared between affected and unaffected fellow eyes. Logistic regression analysis was performed to identify risk factors. No statistically significant difference was observed in biometric parameters between PACS and PACG eyes, or between affected and fellow eyes in the APAC group (P>0.05 for all comparisons). However, eyes with APAC had thicker cornea (P=0.001), thicker lens (PAPAC. In the APAC group, LAF (PAPAC.

  12. Light Scattering at Various Angles

    Science.gov (United States)

    Latimer, Paul; Pyle, B. E.

    1972-01-01

    The Mie theory of scattering is used to provide new information on how changes in particle volume, with no change in dry weight, should influence light scattering for various scattering angles and particle sizes. Many biological cells (e.g., algal cells, erythrocytes) and large subcellular structures (e.g., chloroplasts, mitochondria) in suspension undergo this type of reversible volume change, a change which is related to changes in the rates of cellular processes. A previous study examined the effects of such volume changes on total scattering. In this paper scattering at 10° is found to follow total scattering closely, but scattering at 45°, 90°, 135°, and 170° behaves differently. Small volume changes can cause very large observable changes in large angle scattering if the sample particles are uniform in size; however, the natural particle size heterogeneity of most samples would mask this effect. For heterogeneous samples of most particle size ranges, particle shrink-age is found to increase large angle scattering. PMID:4556610

  13. Angle comparison using an autocollimator

    Science.gov (United States)

    Geckeler, Ralf D.; Just, Andreas; Vasilev, Valentin; Prieto, Emilio; Dvorácek, František; Zelenika, Slobodan; Przybylska, Joanna; Duta, Alexandru; Victorov, Ilya; Pisani, Marco; Saraiva, Fernanda; Salgado, Jose-Antonio; Gao, Sitian; Anusorn, Tonmueanwai; Leng Tan, Siew; Cox, Peter; Watanabe, Tsukasa; Lewis, Andrew; Chaudhary, K. P.; Thalmann, Ruedi; Banreti, Edit; Nurul, Alfiyati; Fira, Roman; Yandayan, Tanfer; Chekirda, Konstantin; Bergmans, Rob; Lassila, Antti

    2018-01-01

    Autocollimators are versatile optical devices for the contactless measurement of the tilt angles of reflecting surfaces. An international key comparison (KC) on autocollimator calibration, EURAMET.L-K3.2009, was initiated by the European Association of National Metrology Institutes (EURAMET) to provide information on the capabilities in this field. The Physikalisch-Technische Bundesanstalt (PTB) acted as the pilot laboratory, with a total of 25 international participants from EURAMET and from the Asia Pacific Metrology Programme (APMP) providing measurements. This KC was the first one to utilise a high-resolution electronic autocollimator as a standard. In contrast to KCs in angle metrology which usually involve the full plane angle, it focused on relatively small angular ranges (+/-10 arcsec and +/-1000 arcsec) and step sizes (10 arcsec and 0.1 arcsec, respectively). This document represents the approved final report on the results of the KC. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCL, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  14. A comparative study of Mg and Pt contacts on semi-insulating GaAs: Electrical and XPS characterization

    International Nuclear Information System (INIS)

    Dubecký, F.; Kindl, D.; Hubík, P.; Mičušík, M.; Dubecký, M.; Boháček, P.; Vanko, G.; Gombia, E.; Nečas, V.; Mudroň, J.

    2017-01-01

    Highlights: • Explored were diodes with full-area low/high work function metal contacts on semi-insulating GaAs (S). • The Mg-S-Mg diode is promising for radiation detectors for its low high-field current. • The XPS analysis of Mg-S interface shows presence of MgO instead of Mg metal. - Abstract: We present a comparative study of the symmetric metal-SI GaAs-metal (M-S-M) diodes with full-area contacts on both device sides, in order to demonstrate the effect of contact metal work function in a straightforward way. We compare the conventional high work function Pt contact versus the less explored low work function Mg contact. The Pt-S-Pt, Mg-S-Mg and mixed Mg-S-Pt structures are characterized by the current-voltage measurements, and individual Pt-S and Mg-S contacts are investigated by the X-ray photoelectron spectroscopy (XPS). The transport measurements of Mg-S-Pt structure show a significant current decrease at low bias while the Mg-S-Mg structure shows saturation current at high voltages more than an order of magnitude lower with respect to the Pt-S-Pt reference. The phenomena observed in Mg-containing samples are explained by the presence of insulating MgO layer at the M-S interface, instead of the elementary Mg, as confirmed by the XPS analysis. Alternative explanations of the influence of MgO layer on the effective resistance of the structures are presented. The reported findings have potential applications in M-S-M sensors and radiation detectors based on SI GaAs.

  15. [Quantitative surface analysis of Pt-Co, Cu-Au and Cu-Ag alloy films by XPS and AES].

    Science.gov (United States)

    Li, Lian-Zhong; Zhuo, Shang-Jun; Shen, Ru-Xiang; Qian, Rong; Gao, Jie

    2013-11-01

    In order to improve the quantitative analysis accuracy of AES, We associated XPS with AES and studied the method to reduce the error of AES quantitative analysis, selected Pt-Co, Cu-Au and Cu-Ag binary alloy thin-films as the samples, used XPS to correct AES quantitative analysis results by changing the auger sensitivity factors to make their quantitative analysis results more similar. Then we verified the accuracy of the quantitative analysis of AES when using the revised sensitivity factors by other samples with different composition ratio, and the results showed that the corrected relative sensitivity factors can reduce the error in quantitative analysis of AES to less than 10%. Peak defining is difficult in the form of the integral spectrum of AES analysis since choosing the starting point and ending point when determining the characteristic auger peak intensity area with great uncertainty, and to make analysis easier, we also processed data in the form of the differential spectrum, made quantitative analysis on the basis of peak to peak height instead of peak area, corrected the relative sensitivity factors, and verified the accuracy of quantitative analysis by the other samples with different composition ratio. The result showed that the analytical error in quantitative analysis of AES reduced to less than 9%. It showed that the accuracy of AES quantitative analysis can be highly improved by the way of associating XPS with AES to correct the auger sensitivity factors since the matrix effects are taken into account. Good consistency was presented, proving the feasibility of this method.

  16. An IR and XPS spectroscopy assessment of the physico-chemical surface properties of alumina–YAG nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Spina, Giulia; Bonelli, Barbara, E-mail: barbara.bonelli@polito.it; Palmero, Paola, E-mail: paola.palmero@polito.it; Montanaro, Laura

    2013-12-16

    Well-dispersed nano-crystalline transition alumina suspensions were mixed with yttrium chloride aqueous solutions, with the aim of producing by spray-drying Al{sub 2}O{sub 3}–Y{sub 3}Al{sub 5}O{sub 12} (YAG) composite powders of increasing YAG vol.%. Two samples were prepared, with different Y content, corresponding to 5 and 20 YAG vol.%, respectively. Both samples were then treated at either 600 or 1150 °C. The obtained powders were characterized by X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infra Red (FT-IR) spectroscopy and compared to three reference samples: commercial nano-crystalline transition alumina, YAG and Y{sub 2}O{sub 3}. YAG powders were obtained by co-precipitation route whereas Y{sub 2}O{sub 3} powders were yielded by spray-drying of a yttrium chloride aqueous solution. Modification of physico-chemical properties of the surface of alumina nanoparticles were assessed by combining XPS and FT-IR spectroscopies. On the basis of the results obtained, a possible model is proposed for the structure of the obtained composites, in which Y basically reacts with more acidic hydroxyls of alumina, by forming Y-rich surface grains, the extension of which depends on the thermal treatment. - Highlights: • Al{sub 2}O{sub 3}–Y{sub 3}Al{sub 5}O{sub 12} (YAG) composite nanopowders were prepared by spray drying. • Combined XPS and IR spectroscopy: effective tools to study surface modifications. • Y reacts with more acidic hydroxyls at alumina surface. • Y-rich surface grains form: their extension depends on the thermal treatment.

  17. Time resolved spectroscopic studies on some nanophosphors

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Time resolved spectroscopy is an important tool for studying photophysical processes in phosphors. Present work investigates the steady state and time resolved photoluminescence (PL) spectroscopic characteristics of ZnS, ZnO and (Zn, Mg)O nanophosphors both in powder as well as thin film form.

  18. Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology

    International Nuclear Information System (INIS)

    3, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 (China))" data-affiliation=" (Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention - LAP3, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 (China))" >Zhu, Xiangdong; 3, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 (China))" data-affiliation=" (Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention - LAP3, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 (China))" >Yang, Shijun; Wang, Liang; 3, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 (China))" data-affiliation=" (Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention - LAP3, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 (China))" >Liu, Yuchen; 3, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 (China))" data-affiliation=" (Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention - LAP3, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 (China))" >Qian, Feng; Yao, Wenqing; 3, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 (China))" data-affiliation=" (Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention - LAP3, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 (China))" >Zhang, Shicheng; 3, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 (China))" data-affiliation=" (Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention - LAP3, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 (China))" >Chen, Jianmin

    2016-01-01

    Antibiotic mycelial fermentation residues (AMFRs), which are emerging solid pollutants, have been recognized as hazardous waste in China since 2008. Nitrogen (N), which is an environmental sensitivity element, is largely retained in AMFR samples derived from fermentation substrates. Pyrolysis is a promising technology for the treatment of solid waste. However, the outcomes of N element during the pyrolysis of AMFRs are still unknown. In this study, the conversion of N element during the pyrolysis of AMFRs was tracked using XPS (X-ray photoelectron spectroscopy) and online TG-FTIR-MS (Thermogravimetry-Fourier transform infrared-Mass spectrometry) technology. In the AMFR sample, organic amine-N, pyrrolic-N, protein-N, pyridinic-N, was the main N-containing species. XPS results indicated that pyrrolic-N and pyridinic-N were retained in the AMFR-derived pyrolysis char. More stable species, such as N-oxide and quaternary-N, were also produced in the char. TG-FTIR-MS results indicated that NH 3 and HCN were the main gaseous species, and their contents were closely related to the contents of amine-N and protein-N, and pyrrolic-N and pyridinic-N of AMFRs, respectively. Increases in heating rate enhanced the amounts of NH 3 and HCN, but had less of an effect on the degradation degree of AMFRs. N-containing organic compounds, including amine-N, nitrile-N and heterocyclic-N, were discerned from the AMFR pyrolysis process. Their release range was extended with increasing of heating rate and carbon content of AMFR sample. This work will help to take appropriate measure to reduce secondary pollution from the treatment of AMFRs. - Highlights: • Hazardous AMFR material was treated by slow pyrolysis reaction. • TG-FTIR-MS were used to study the N conversion for pyrolysis gas and bio-oil. • NH 3 and HCN were observed as the main N-containing gas species. • XPS were used to study the N conversion for pyrolysis char. • Stable species, such as N-oxide and quaternary-N, were

  19. Investigation of the CANLUB/sheath interface in CANDU fuel at extended burnup by XPS and SEM/WDX

    International Nuclear Information System (INIS)

    Hocking, W.H.; Behnke, R.; Duclos, A.M.; Gerwing, A.F.; Chan, P.K.

    1997-01-01

    A systematic investigation of the fuel-sheath interface in CANDU fuel as a function of extended burnup has been undertaken by XPS and SEM/WDX analysis. Adherent deposits of UO 2 and fission products, including Cs, Ba, Rb, I, Te, Cd and possibly Ru, have been routinely identified on CANLUB coated and bare Zircaloy surfaces. Some trends in the distribution and chemistry of key fission products have begun to emerge. Several potential mechanisms for degradation of the CANLUB graphite layer at high burnup have been practically excluded. New evidence of carbon relocation within the fuel element and limited reaction with excess oxygen has also been obtained. (author)

  20. XPS and GDOES Characterization of Porous Coating Enriched with Copper and Calcium Obtained on Tantalum via Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Krzysztof Rokosz

    2016-01-01

    Full Text Available XPS and GDOES characterizations of porous coatings on tantalum after Plasma Electrolytic Oxidation (PEO at 450 V for 3 minutes in electrolyte containing concentrated (85% phosphoric acid with calcium nitrate and copper (II nitrate are described. Based on the obtained data, it may be concluded that the PEO coating consists of tantalum (Ta5+, calcium (Ca2+, copper (Cu2+  and Cu+, and phosphates (PO43-. It has to be pointed out that copper and calcium are distributed throughout the volume. The authors also propose a new model of PEO, based on the derivative of GDOES signals with sputtering time.

  1. Atomic and Nuclear Analytical Methods XRF, Mössbauer, XPS, NAA and Ion-Beam Spectroscopic Techniques

    CERN Document Server

    Verma, H R

    2007-01-01

    This book is a blend of analytical methods based on the phenomenon of atomic and nuclear physics. It comprises comprehensive presentations about X-ray Fluorescence (XRF), Mössbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS), Neutron- Activation Analysis (NAA), Particle Induced X-ray Emission Analysis (PIXE), Rutherford Backscattering Analysis (RBS), Elastic Recoil Detection (ERD), Nuclear Reaction Analysis (NRA), Particle Induced Gamma-ray Emission Analysis (PIGE), and Accelerator Mass Spectrometry (AMS). These techniques are commonly applied in the fields of medicine, biology, environmental studies, archaeology or geology et al. and pursued in major international research laboratories.

  2. Characterization of uranium bioaccumulation on a fungal isolate Geotrichum sp. dwc-1 as investigated by FTIR, TEM and XPS

    International Nuclear Information System (INIS)

    Changsong Zhao; Congcong Ding; Jiali Liao; Jijun Yang; Yuanyou Yang; Jun Tang; Ning Liu; Qun Sun

    2016-01-01

    In this paper, TEM-EDX, FTIR, XPS, PIXE, and EPBS were employed to identify the uranium biosorption behavior and the potential mechanism on cells of Geotrichum sp. dwc-1, isolated from soils. These results displayed that the biosorption behavior was greatly dependent on pH and uranium was absorbed by bounding to amino, phosphate as well as carboxyl functional groups. Uranium biosorption behavior on Geotrichum sp. dwc-1 involves bioaccumulation, electrostatic interaction and ion exchange process. This work throws further light on potential fungal roles these mechanisms for elemental recovery and bioremediation. (author)

  3. An XPS study on the attachment of triethoxsilylbutyraldehyde to two titanium surfaces as a way to bond chitosan

    International Nuclear Information System (INIS)

    Martin, Holly J.; Schulz, Kirk H.; Bumgardner, Joel D.; Walters, Keisha B.

    2008-01-01

    A bioactive coating has the ability to create a strong interface between bone tissue and implant. Chitosan, a biopolymer derived from the exoskeletons of shellfish, exhibits many bioactive properties that make it an ideal material for use as a coating such as antibacterial, biodegradable, non-toxic, and the ability to attract and promote bone cell growth and organized bone formation. A previous study reported on the bonding of chitosan to a titanium surface using a three-step process. In the current study, 86.4% de-acetylated chitosan coatings were bound to implant quality titanium in a two-step process that involved the deposition of triethoxsilylbutyraldehyde (TESBA) in toluene, followed by a reaction between the aldehyde of TESBA with chitosan. The chitosan coatings were examined on two different metal treatments to determine if any major differences in the ability of titanium to bind chitosan could be detected. The surface of the titanium metal and the individual reaction steps were examined using X-ray photoelectron spectroscopy (XPS). Following the deposition of TESBA, significant changes were seen in the amounts of oxygen, silicon, carbon, and titanium present on the titanium surface, which were consistent with the anticipated reaction steps. It was demonstrated that more TESBA was bound to the piranha-treated titanium surface as compared to the passivated titanium surface. The two different silane molecules, aminopropyltriethoxysilane (APTES) and TESBA, did not affect the chemistry of the resultant chitosan films. XPS showed that both the formation of unwanted polysiloxanes and the removal of the reactive terminal groups were prevented by using toluene as the carrier solvent to bond TESBA to the titanium surfaces, instead of an aqueous solvent. Qualitatively, the chitosan films demonstrated improved adhesion after using toluene, as the films remained attached to the titanium surface even when placed under the ultra-high vacuum necessary for XPS, unlike the

  4. XPS study on the surface reaction of uranium metal in H2 and H2-CO atmospheres

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou

    1996-04-01

    The surface reactions of uranium metal in H 2 and H 2 -CO atmospheres and the effects of temperature and CO on the hydriding reaction have been studied by X-ray photoelectron spectroscopy (XPS). The reaction between commercial H 2 and uranium metal at 25 degree C leads mainly to the further oxidation of surface layer of metal due to traces of water vapour. At 200 degree C, it may lead to the hydriding reaction of uranium and the hydriding increases with increasing the exposure of H 2 . Investigation indicates CO inhibits both the hydriding reaction and oxidation on the condition of H 2 -CO atmospheres. (13 refs., 10 figs.)

  5. Solar Ion Processing of Major Element Surface Compositions of Mature Mare Soils: Insights from Combined XPS and Analytical TEM Observations

    Science.gov (United States)

    Christoffersen, R.; Dukes, C.; Keller, L. P.; Baragiola, R.

    2012-01-01

    Solar wind ions are capable of altering the sur-face chemistry of the lunar regolith by a number of mechanisms including preferential sputtering, radiation-enhanced diffusion and sputter erosion of space weathered surfaces containing pre-existing compositional profiles. We have previously reported in-situ ion irradiation experiments supported by X-ray photoelectron spectroscopy (XPS) and analytical TEM that show how solar ions potentially drive Fe and Ti reduction at the monolayer scale as well as the 10-100 nm depth scale in lunar soils [1]. Here we report experimental data on the effect of ion irradiation on the major element surface composition in a mature mare soil.

  6. Local crystallography analysis for atomically resolved scanning tunneling microscopy images

    International Nuclear Information System (INIS)

    Lin, Wenzhi; Li, Qing; Belianinov, Alexei; Gai, Zheng; Baddorf, Arthur P; Pan, Minghu; Jesse, Stephen; Kalinin, Sergei V; Sales, Brian C; Sefat, Athena

    2013-01-01

    Scanning probe microscopy has emerged as a powerful and flexible tool for atomically resolved imaging of surface structures. However, due to the amount of information extracted, in many cases the interpretation of such data is limited to being qualitative and semi-quantitative in nature. At the same time, much can be learned from local atom parameters, such as distances and angles, that can be analyzed and interpreted as variations of local chemical bonding, or order parameter fields. Here, we demonstrate an iterative algorithm for indexing and determining atomic positions that allows the analysis of inhomogeneous surfaces. This approach is further illustrated by local crystallographic analysis of several real surfaces, including highly ordered pyrolytic graphite and an Fe-based superconductor FeTe 0.55 Se 0.45 . This study provides a new pathway to extract and quantify local properties for scanning probe microscopy images. (paper)

  7. Ocular Biometry in Angle Closure

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Razeghinejad

    2013-01-01

    Full Text Available Purpose: To compare ocular biometric parameters in primary angle closure suspects (PACS, primary angle closure glaucoma (PACG and acute primary angle closure (APAC. Methods: This cross-sectional study was performed on 113 patients including 33 cases of PACS, 45 patients with PACG and 35 subjects with APAC. Central corneal thickness (CCT, axial length (AL, anterior chamber depth (ACD and lens thickness (LT were measured with an ultrasonic biometer. Lens-axial length factor (LAF, relative lens position, corrected ACD (CACD and corrected lens position were calculated. The parameters were measured bilaterally but only data from the right eyes were compared. In the APAC group, biometric parameters were also compared between affected and unaffected fellow eyes. Logistic regression analysis was performed to identify risk factors. Results: No statistically significant difference was observed in biometric parameters between PACS and PACG eyes, or between affected and fellow eyes in the APAC group (P>0.05 for all comparisons. However, eyes with APAC had thicker cornea (P=0.001, thicker lens (P<0.0001, shallower ACD (P=0.009, shallower CACD (P=0.003 and larger LAF (P<0.0001. Based on ROC curve analysis, lower ACD, and larger LT, LAF and CCT values were associated with APAC. In the APAC group, LAF (P<0.0001 and CCT (P=0.001 were significant risk factors. Conclusion: This study revealed no significant difference in biometric characteristics in eyes with PACS and PACG. However, larger LAF and CCT were predictive of APAC.

  8. Small angle scattering and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, J.P. [Laboratoire Leon Brillouin (LLB) - Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1996-12-31

    The determination of polymer structure is a problem of interest for both statistical physics and industrial applications. The average polymer structure is defined. Then, it is shown why small angle scattering, associated with isotopic substitution, is very well suited to the measurement of the chain conformation. The corresponding example is the old, but pedagogic, measurement of the chain form factor in the polymer melt. The powerful contrast variation method is illustrated by a recent determination of the concentration profile of a polymer interface. (author) 12 figs., 48 refs.

  9. Determining Pitch-angle Diffusion Coefficients from Test Particle Simulations

    Science.gov (United States)

    Ivascenko, Alex; Lange, Sebastian; Spanier, Felix; Vainio, Rami

    2016-12-01

    The transport and acceleration of charged particles in turbulent media are topics of great interest in space physics and interstellar astrophysics. These processes are dominated by the scattering of particles off magnetic irregularities. The scattering process itself is usually described by small-angle scattering, with the pitch-angle coefficient {D}μ μ playing a major role. Since the diffusion coefficient {D}μ μ can be determined analytically only for the approximation of quasilinear theory, the determination of this coefficient from numerical simulations has become more important. So far these simulations have yielded particle tracks for small-scale scattering, which can then be interpreted using the running diffusion coefficients. This method has a limited range of validity. This paper presents two new methods that allow for the calculation of the pitch-angle diffusion coefficient from numerical simulations. These methods no longer analyze particle trajectories and instead examine the change of particle distribution functions. It is shown that these methods provide better resolved results and allow for the analysis of strong turbulence. The application of these methods to Monte Carlo simulations of particle scattering and hybrid MHD-particle simulations is presented. Both analysis methods are able to recover the diffusion coefficients used as input for the Monte Carlo simulations and provide better results in MHD simulations, especially for stronger turbulence.

  10. NMR in rotating magnetic fields: Magic angle field spinning

    Energy Technology Data Exchange (ETDEWEB)

    Sakellariou, D.; Meriles, C.; Martin, R.; Pines, A.

    2004-09-10

    Magic angle sample spinning has been one of the cornerstones in high-resolution solid state NMR. Spinning frequencies nowadays have increased by at least one order of magnitude over the ones used in the first experiments and the technique has gained tremendous popularity. It is currently a routine procedure in solid-state NMR, high-resolution liquid-state NMR and solid-state MRI. The technique enhances the spectral resolution by averaging away rank 2 anisotropic spin interactions thereby producing isotropic-like spectra with resolved chemical shifts and scalar couplings. Andrew proposed that it should be possible to induce similar effects in a static sample if the direction of the magnetic field is varied, e.g., magic-angle rotation of the B0 field (B0-MAS) and this has been recently demonstrated using electromagnetic field rotation. Here we discuss on the possibilities to perform field rotation using alternative hardware, together with spectroscopic methods to recover isotropic resolution even in cases where the field is not rotating at the magic angle. Extension to higher magnetic fields would be beneficial in situations where the physical manipulation of the sample is inconvenient or impossible. Such situations occur often in materials or biomedical samples where ''ex-situ'' NMR spectroscopy and imaging analysis is needed.

  11. Large-angle scattered light measurements for quantum-noise filter cavity design studies.

    Science.gov (United States)

    Magaña-Sandoval, Fabian; Adhikari, Rana X; Frolov, Valera; Harms, Jan; Lee, Jacqueline; Sankar, Shannon; Saulson, Peter R; Smith, Joshua R

    2012-08-01

    Optical loss from scattered light could limit the performance of quantum-noise filter cavities being considered for an upgrade to the Advanced Laser Interferometer Gravitational Wave Observatory (LIGO) gravitational-wave detectors. This paper describes imaging scatterometer measurements of the large-angle scattered light from two high-quality sample optics, a high reflector and a beamsplitter. These optics are each superpolished fused silica substrates with silica:tantala dielectric coatings. They represent the current state-of-the art optical technology for use in filter cavities. We present angle-resolved scatter values and integrate these to estimate the total scatter over the measured angles. We find that the total integrated light scattered into larger angles can be as small as 4 ppm.

  12. The influence of oxygen adsorption on the NEXAFS and core-level XPS spectra of the C60 derivative PCBM

    International Nuclear Information System (INIS)

    Brumboiu, Iulia Emilia; Eriksson, Olle; Brena, Barbara; Ericsson, Leif; Hansson, Rickard; Moons, Ellen

    2015-01-01

    Fullerenes have been a main focus of scientific research since their discovery due to the interesting possible applications in various fields like organic photovoltaics (OPVs). In particular, the derivative [6,6]-phenyl-C 60 -butyric acid methyl ester (PCBM) is currently one of the most popular choices due to its higher solubility in organic solvents compared to unsubstituted C 60 . One of the central issues in the field of OPVs is device stability, since modules undergo deterioration (losses in efficiency, open circuit voltage, and short circuit current) during operation. In the case of fullerenes, several possibilities have been proposed, including dimerization, oxidation, and impurity related deterioration. We have studied by means of density functional theory the possibility of oxygen adsorption on the C 60 molecular moiety of PCBM. The aim is to provide guidelines for near edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) measurements which can probe the presence of atomic or molecular oxygen on the fullerene cage. By analysing several configurations of PCBM with one or more adsorbed oxygen atoms, we show that a joint core level XPS and O1s NEXAFS investigation could be effectively used not only to confirm oxygen adsorption but also to pinpoint the bonding configuration and the nature of the adsorbate

  13. Surface modification of pyrolyzed carbon fibres by cyclic voltammetry and their characterization with XPS and dye adsorption

    International Nuclear Information System (INIS)

    Georgiou, P.; Walton, J.; Simitzis, J.

    2010-01-01

    Commercial carbon fibres were pyrolyzed up to 1000 deg. C and were then electrochemically treated by cyclic voltammetry in aqueous electrolyte solutions of H 2 SO 4 , in two potential sweep ranges: a narrow region, N, and a wide region, W, avoiding and including water decomposition, respectively. The anodic and cathodic peaks were correlated with oxide formation and their partial reduction, respectively. The nature of oxygen containing groups on the fibre surfaces was determined by XPS. Wide scan spectra and high energy resolution spectra were recorded through the C 1s, O 1s, N 1s and S 2p photoelectron regions. The ability of the fibres to adsorb methylene blue and alizarin yellow dyes from their aqueous solutions indicates the presence of electron acceptor or donor groups on the fibres, respectively. The carbon fibres were classified into two categories. The first includes electrochemically untreated and treated in the N region, and the second those treated in the W region. The high oxygen concentration and effective dye adsorption on the carbon fibres in the second category indicates that their surfaces were effectively modified. The adsorption of dyes on carbon fibres constitutes a complementary method to XPS for an indirect estimation of oxygen and other groups present on the carbon fibre surfaces.

  14. Influence of oxygen incorporation on the defect structure of GaN microrods and nanowires. An XPS and CL study

    International Nuclear Information System (INIS)

    Guzmán, G; Herrera, M; Silva, R; Vásquez, G C; Maestre, D

    2016-01-01

    We report a cathodoluminescence (CL) and x-ray photoelectron spectroscopy (XPS) study of the influence of oxygen incorporation on the defect structure of GaN microrods and nanowires. The micro- and nanostructures were synthesized by a thermal evaporation method, which enables us to incorporate oxygen at different concentrations by varying the growth temperature. HR-TEM measurements revealed that oxygen generates stacking fault defects and edge dislocations along the GaN nanowires. Amorphous GaO x N y compounds were segregated on the surface of the nanowires. XPS, XRD and CL measurements suggests that the microrods and nanowires were composed of amorphous oxynitride compounds at their surface and GaN at their inner region. CL measurements revealed that the nanostructures generated an emission of 2.68 eV that increased in intensity proportionally to their oxygen content. We have attributed this emission to electronic transitions between donor substitutional-oxygen (O N ) and acceptor interstitial-oxygen (O i ) state levels. (paper)

  15. XPS/NEXAFS spectroscopic and conductance studies of glycine on AlGaN/GaN transistor devices

    Science.gov (United States)

    Myers, Matthew; Khir, Farah Liyana Muhammad; Home, Michael A.; Mennell, Christopher; Gillbanks, Jeremy; Tadich, Anton; Baker, Murray V.; Nener, Brett D.; Parish, Giacinta

    2018-03-01

    We report on a study using a combination of XPS/NEXAFS and conductivity measurements to develop a fundamental understanding of how dipolar molecules interact with the heterostructure device surface and affect the device conductivity of AlGaN/GaN heterostructure-based transistors. In such structures, which are increasingly being investigated for chemical and biological sensing, a 2-dimensional electron gas spontaneously forms at the layer interface that is sensitive to the charge characteristics of the exposed surface. Glycine, chosen for this study because it is the simplest of the amino acids and is known to form a zwitterionic configuration when stabilized through intermolecular interactions, was evaporated under ultra-high vacuum conditions onto the device surface and subsequently both XPS/NEXAFS and conductivity measurements were conducted. NEXAFS spectra show a preferential orientation for the Glycine molecules on the surface and evidence for both neutral and zwitterionic species on the surface. In situ conductivity measurements suggest that the negatively charged carboxylate group is closest to the surface. These results are a unique and pivotal contribution to the previous and at times conflicting literature on the zwitterionic nature of Glycine.

  16. A Novel Approach for the Treatment of Radiation-Induced Hemorrhagic Cystitis with the GreenLight™ XPS Laser

    Directory of Open Access Journals (Sweden)

    Daniel Roberto Martinez

    2015-06-01

    Full Text Available ABSTRACTIntroduction:The treatment of pelvic malignancies with radiotherapy can develop severe sequelae, especially radiation-induced hemorrhagic cystitis. It is a progressive disease that can lead to the need for blood transfusion, hospitalizations, and surgical interventions. This tends to affect the quality of life of these patients, and management can at times be difficult. We have evaluated the GreenLight Xcelerated Performance System (XPS with TruCoag, although primarily used for management of benign prostatic hypertrophy (BPH, for the treatment of radiation-induced hemorrhagic cystitis.Materials and Methods:After International Review Board (IRB approval, a retrospective chart review was performed in addition to a literature search. A series of four male patients, mean age of 81 years, with radiation-induced hemorrhagic cystitis secondary to radiotherapy for pelvic malignancies (3 prostate cancer, 1 rectal cancer were successfully treated with the GreenLight laser after unsuccessful treatment with current therapies described in the literature.Results:All four patients treated with the GreenLight laser had resolution of their hematuria after one treatment and were discharge from the hospital with clear urine.Conclusion:The GreenLight XPS laser shows promising results for the treatment of patients with radiation-induced hemorrhagic cystitis, and deserves further evaluation and validation, especially since there is limited data available in the literature regarding the use of this technology for the treatment of this devastating condition.

  17. Contact Angle Measurement in Lattice Boltzmann Method

    OpenAIRE

    Wen, Binghai; Huang, Bingfang; Qin, Zhangrong; Wang, Chunlei; Zhang, Chaoying

    2017-01-01

    Contact angle is an essential characteristic in wetting, capillarity and moving contact line; however, although contact angle phenomena are effectively simulated, an accurate and real-time measurement for contact angle has not been well studied in computational fluid dynamics, especially in dynamic environments. Here, we design a geometry-based mesoscopic scheme to onthesport measure the contact angle in the lattice Boltzmann method. The computational results without gravity effect are in exc...

  18. Spatially-resolved microstructure in shear banding wormlike micellar solutions

    International Nuclear Information System (INIS)

    Helgeson, Matthew E.; Reichert, Matthew D.; Wagner, Norman J.; Kaler, Eric W.

    2008-01-01

    Recently proposed theories for shear banding in wormlike micellar solutions (WLMs) rely on a shear-induced isotropic-nematic (I-N) phase separation as the mechanism for banding. Critical tests of such theories require spatially-resolved measurements of flow-kinematics and local mesoscale microstructure within the shear bands. We have recently developed such capabilities using a short gap Couette cell for flow-small angle neutron scattering (flow-SANS) measurements in the 1-2 plane of shear with collaborators at the NIST Center for Neutron Research. This work combines flow-SANS measurements with rheology, rheo-optics and velocimetry measurements to present the first complete spatially-resolved study of WLMs through the shear banding transition for a model shear banding WLM solution near the I-N phase boundary. The shear rheology is well-modeled by the Giesekus constitutive equation, with incorporated stress diffusion to predict shear banding. By fitting the stress diffusivity at the onset of banding, the model enables prediction of velocity profiles in the shear banded state which are in quantitative agreement with measured flow-kinematics. Quantitative analysis of the flow-SANS measurements shows a critical segmental alignment for banding and validates the Giesekus model predictions, linking segmental orientation to shear banding and providing the first rigorous evidence for the shear-induced I-N transition mechanism for shear banding

  19. 30 CFR 56.19037 - Fleet angles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fleet angles. 56.19037 Section 56.19037 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Sheaves § 56.19037 Fleet angles. Fleet angles on hoists installed after November 15, 1979, shall not be...

  20. 30 CFR 57.19037 - Fleet angles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fleet angles. 57.19037 Section 57.19037 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Sheaves § 57.19037 Fleet angles. Fleet angles on hoists installed after November 15, 1979, shall not be...