WorldWideScience

Sample records for angle neutron scattering

  1. Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  2. Multiple small-angle neutron scattering studies of anisotropic materials

    CERN Document Server

    Allen, A J; Long, G G; Ilavsky, J

    2002-01-01

    Building on previous work that considered spherical scatterers and randomly oriented spheroidal scatterers, we describe a multiple small-angle neutron scattering (MSANS) analysis for nonrandomly oriented spheroids. We illustrate this with studies of the multi-component void morphologies found in plasma-spray thermal barrier coatings. (orig.)

  3. Fractal Approach in Petrology: Combining Ultra-Small Angle (USANA) and Small Angle Neutron Scattering (SANS)

    Energy Technology Data Exchange (ETDEWEB)

    LoCelso, F.; Triolo, F.; Triolo, A.; Lin, J.S.; Lucido, G.; Triolo, R.

    1999-10-14

    Ultra small angle neutron scattering instruments have recently covered the gap between the size resolution available with conventional intermediate angle neutron scattering and small angle neutron scattering instruments on one side and optical microscopy on the other side. Rocks showing fractal behavior in over two decades of momentum transfer and seven orders of magnitude of intensity are examined and fractal parameters are extracted from the combined USANS and SANS curves.

  4. Small Angle Neutron Scattering instrument at Malaysian TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shukri Mohd; Razali Kassim; Zal Uyun Mahmood [Malaysian Inst. for Nuclear Technology Research (MINT), Bangi, Kajang (Malaysia); Shahidan Radiman

    1998-10-01

    The TRIGA MARK II Research reactor at the Malaysian Institute for Nuclear Research (MINT) was commissioned in July 1982. Since then various works have been performed to utilise the neutrons produced from this steady state reactor. One of the project involved the Small Angle Neutron Scattering (SANS). (author)

  5. Spin-Echo Small-Angle Neutron Scattering Development

    NARCIS (Netherlands)

    Uca, O

    2003-01-01

    Spin-Echo Small-Angle Neutron Scattering (SESANS) instrument is a novel SANS technique which enables one to characterize distances from a few nanometers up to the micron range. The most striking difference between normal SANS and SESANS is that in SESANS one gets information in real space, whereas i

  6. Small-angle neutron scattering in materials science - an introduction

    Energy Technology Data Exchange (ETDEWEB)

    Fratzl, P. [Vienna Univ., Inst. fuer Materialphysik, Vienna (Austria)

    1996-12-31

    The basic principles of the application of small-angle neutron scattering to materials research are summarized. The text focusses on the classical methods of data evaluation for isotropic and for anisotropic materials. Some examples of applications to the study of alloys, porous materials, composites and other complex materials are given. (author) 9 figs., 38 refs.

  7. Progress in small angle neutron scattering activities in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Aziz Bin Mohamed; Azali Bin Muhamad; Shukri Bin Mohd [Malaysian Institute for Nuclear Technology Research (MINT), Bangi, Kajang (Malaysia)

    1999-10-01

    The current status of SANS (Small Angle Neutron Scattering facility) activities in Malaysia has been presented. Many works need to be done for system improvement before the system can be confidently used as one of effective quality control tools in materials production and engineering sectors. (author)

  8. Ultra-small angle neutron scattering on structured materials

    CERN Document Server

    Hainbuchner, M

    2000-01-01

    neutrons has reached a level that makes it a complementary method to conventional small angle scattering at each neutron source supplying enough neutron flux. prove high order interference effects. Measuring this kind of samples the performance of an USANS instrument can simply be determined. This allows the comparison of different instruments. For the calibration of the instrument and testing of the data treatment routines suspensions of latex spheres of various diameters were examined. In order to demonstrate that the evaluation of samples showing strong multiple scattering can produce meaningful results, measurements on sintered alumina using various sample thickness were carried out. The investigation of the scattering behavior of sedimentary source rocks revealed that only selected samples show a fractal scattering behavior and, therefore, a fractal inner structure. Time resolved measurements on hardening cement paste demonstrate that time dependent information on the changes of the structural parameter ...

  9. Probing polymer nanocomposite morphology by small angle neutron scattering

    Indian Academy of Sciences (India)

    Puyam S Singh; Vinod K Aswal

    2008-11-01

    Polyamide nanocomposite films were prepared from nanometer-sized silica particles having particle radius of gyration (g) of about 66 Å and trimesoyl chloride--phenylene diamine-based polyamides having macromolecular units of about 100-140 Å. The nanoscale morphology of the samples was characterized using small angle neutron scattering (SANS). SANS reveals that silica nanoparticles interact well with the polyamide units only at limited silica loading.

  10. Small-angle neutron scattering from micellar solutions

    Indian Academy of Sciences (India)

    V K Aswal; P S Goyal

    2004-07-01

    Micellar solutions are the suspension of the colloidal aggregates of the surfactant molecules in aqueous solutions. The structure (shape and size) and the interaction of these aggregates, referred to as micelles, depend on the molecular architecture of the surfactant molecule, presence of additives and the solution conditions such as temperature, concentration etc. This paper gives the usefulness of small-angle neutron scattering to the study of micellar solutions with some of our recent results.

  11. Understanding inelastically scattered neutrons from water on a time-of-flight small-angle neutron scattering (SANS) instrument

    CERN Document Server

    Doa, Changwoo; Stanley, Christopher; Gallmeier, Franz X; Doucet, Mathieu; Smith, Gregory S

    2013-01-01

    It is generally assumed by most of the small-angle neutron scattering (SANS) user community that a neutrons energy is unchanged during SANS measurements. Here, the scattering from water, specifically light water, was measured on the EQ-SANS instrument, a time-of-flight SANS instrument located at the Spallation Neutron Source of Oak Ridge National Laboratory. A significant inelastic process was observed in the TOF spectra of neutrons scattered from water. Analysis of the TOF spectra from the sample showed that the scattered neutrons have energies consistent with room-temperature thermal energies (~20 meV) regardless of the incident neutron energy. With the aid of Monte Carlo particle transport simulations, we conclude that the thermalization process within the sample results in faster neutrons that arrive at the detector earlier than expected based on the incident neutron energies. This thermalization process impacts the measured SANS intensities in a manner that will ultimately be sample- and temperature-depe...

  12. Small-angle neutron scattering study on irradiated kappa carrageenan

    Energy Technology Data Exchange (ETDEWEB)

    Abad, Lucille [Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo, 106-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan) and Philippine Nuclear Research Institute, Commonwealth Ave., Diliman, Quezon City (Philippines) and Advanced Science Research Center, Japan Atomic Energy Research Institute, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan)]. E-mail: lvabad@pnri.dost.gov.ph; Okabe, Satoshi [Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo, 106-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Koizumi, Satoshi [Advanced Science Research Center, Japan Atomic Energy Research Institute, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Shibayama, Mitsuhiro [Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo, 106-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan)]. E-mail: sibayama@issp.u-tokyo.ac.jp

    2006-05-31

    The structure of gamma-ray-irradiated {kappa}-carrageenan in aqueous solutions was investigated in terms of small-angle neutron scattering. The scattered intensity, I(q), of non-irradiated {kappa}-carrageenan solutions (5 wt%) was well described with an Ornstein-Zernike (OZ)-type function with the correlation length of 85 A, indicating that the {kappa}-carrageenan solution behaves just as a polymer solution in the semi-dilute regime. By increasing the irradiation dose (100 kGy), I(q) changed to a power-law function with the scattering exponent of -1.84. Further increase in dose results in a recovery of OZ-type function. This indicates that a progressive cleavage of {kappa}-carrageenan chains takes place randomly, leading to a self-similar structure at 100 kGy. This is followed by further segmentation of {kappa}-carrageenan chains.

  13. Multiple magnetic scattering in small-angle neutron scattering of Nd-Fe-B nanocrystalline magnet.

    Science.gov (United States)

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P; Keiderling, Uwe; Ono, Kanta

    2016-06-20

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd-Fe-B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd-Fe-B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd-Fe-B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters.

  14. A novel small-angle neutron scattering detector geometry

    Science.gov (United States)

    Kanaki, Kalliopi; Jackson, Andrew; Hall-Wilton, Richard; Piscitelli, Francesco; Kirstein, Oliver; Andersen, Ken H.

    2013-01-01

    A novel 2π detector geometry for small-angle neutron scattering (SANS) applications is presented and its theoretical performance evaluated. Such a novel geometry is ideally suited for a SANS instrument at the European Spallation Source (ESS). Motivated by the low availability and high price of 3He, the new concept utilizes gaseous detectors with 10B as the neutron converter. The shape of the detector is inspired by an optimization process based on the properties of the conversion material. Advantages over the detector geometry traditionally used on SANS instruments are discussed. The angular and time resolutions of the proposed detector concept are shown to satisfy the requirements of the particular SANS instrument. PMID:24046504

  15. Radiation damage study using small-angle neutron scattering

    Science.gov (United States)

    Rétfalvi, E.; Török, Gy; Rosta, L.

    2000-03-01

    Nuclear radiation provides important changes in the microstructure of metallic components of nuclear power plant and research reactors, influencing their mechanical properties. The investigation of this problem has primary interest for the safety and life-time of such nuclear installations. For the characterization of this kind of nanostructures small angle neutron scattering technique is a very useful tool. We have carried out experiments on samples of irradiated reactor vessel material and welded components of VVER-440-type reactors on the SANS instrument at the Budapest Research Reactor. In our measurements irradiated as well as non-irradiated samples were compared and magnetic field was applied for viewing the magnetic structure effects of the materials. A clear modification of the structure due to irradiation was obtained. Our data were analyzed by the ITP92 code, the inverse Fourier transform program of O. Glatter [1].

  16. A small angle neutron scattering study of thermoplastic elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Sutiarso; Edy Giri, R. Putra; Andon, Insani; Sudirman; Sudaryanto [Materials Science Research Centre, National Atomic Energy Agency, Jakarta (Indonesia)

    1998-10-01

    A bilateral scientific cooperation, in the small angle neutron scattering has been agreed upon between CIAE, China and BATAN, Indonesia as well as MINT Malaysia. As stated in the agreed proposal that the objective of this cooperation, in the initial stage (stage-1), was to have a regional intercomparison measurements of SANS instruments in order to determine their characteristic/performance. Therefore, this report is supposed to describe the progress in the SANS instrument development of each country involved during the period of 1996/97 and some activities related to the SANS instrument. Since, up to now, we have not yet received any progresses reported from either China or Malaysia, this report will describe the progress of SANS`s activities in BATAN only. (author)

  17. The small angle neutron scattering study on the segmented polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    Sudirman; Gunawan; Prasetyo, S.M.; Karo Karo, A.; Lahagu, I.M.; Darwinto, Tri [Materials Science Research Center, National Nuclear Energy Agency, Serpong, Tangerang (Indonesia)

    1999-10-01

    The distance between hard segment (HS) and soft segment (SS) of segmented polyurethane have been determined using the Small Angle Neutron Scattering (SANS) technique. The segmented Polyurethanes (SPU) are linear multiblock copolymers, which include elastomer thermoplastic. SPU consist of hard segment and soft segment, each has tendency to make a group with similar type to form a domain. The soft segments used were polypropylene glycol (PPG) and 4,4 diphenylmethane diisocyanate (MDI), while l,4 butanediol (BD) was used as hard segment. The characteristic of SPU depends on its phase structure which is affected by several factors, such as type of chemical formula and the composition of the HS and SS, solvent as well as the synthesizing process. The samples used in this study were SPU56 and SPU68. Based on the appearance of SANS profile, it was obtained that domain distances are 12.32 nm for the SPU56 and 19 nm for the SPU68. (author)

  18. New Very Small Angle Neutron Scattering (VSANS) Instrument

    Science.gov (United States)

    Van Every, E.; Deyhim, A.; Kulesza, J.

    2016-09-01

    The design of a new Very Small Angle Neutron Scattering (VSANS) Instrument for use in National Institute of Standards And Technology (NIST) will be discussed. This instrument is similar to a shorter instrument we designed and delivered to ANSTO in Australia called the Bilby SANS instrument. The NIST VSANS and the ANSTO Bilby SANS instruments have very similar dimensions for length and diameter and have similar requirements for internal detector motion, top access port, walkway supports, and ports; however, the Bilby SANS instrument vacuum requirement was lower (7.5×10-5 Torr) and the entire (60,000 pound) vessel was required to move 1.5 meters on external rails with a repeatability of 100 um, which ADC achieved. The NIST VSANS length is 24 meter, internal diameter 2.3 meter with three internal carriages. The NIST VSANS instrument, which covers the usual SANS range will also allow configuration to cover the range between q ∼⃒ 10-4 A-1 to 10-3 A-1 with a sample beam current of (104 neutrons/s). The key requirements are a second position-sensitive detector system having a 1 mm pixel size and a longer sample-detector flight path of 20 m (i.e., a 40 m instrument).

  19. Understanding inelastically scattered neutrons from water on a time-of-flight small-angle neutron scattering (SANS) instrument

    Energy Technology Data Exchange (ETDEWEB)

    Do, Changwoo, E-mail: doc1@ornl.gov [Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Heller, William T.; Stanley, Christopher [Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Gallmeier, Franz X. [Instrument and Source Design Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Doucet, Mathieu [Neutron Data Analysis and Visualization Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Smith, Gregory S. [Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2014-02-11

    It is generally assumed by most of the small-angle neutron scattering (SANS) user community that a neutron's energy is unchanged during SANS measurements. Here, the scattering from water, specifically light water, was measured on the EQ-SANS instrument, a time-of-flight (TOF) SANS instrument located at the Spallation Neutron Source of Oak Ridge National Laboratory. A significant inelastic process was observed in the TOF spectra of neutrons scattered from water. Analysis of the TOF spectra from the sample showed that the scattered neutrons have energies consistent with room-temperature thermal energies (∼20 meV) regardless of the incident neutron's energy. With the aid of Monte Carlo particle transport simulations, we conclude that the thermalization process within the sample results in faster neutrons that arrive at the detector earlier than expected based on the incident neutron energies. This thermalization process impacts the measured SANS intensities in a manner that will ultimately be sample- and temperature-dependent, necessitating careful processing of the raw data into the SANS cross-section.

  20. Small angle neutron scattering and small angle X-ray scattering studies of platinum-loaded carbon foams

    Indian Academy of Sciences (India)

    P U Sastry; V K Aswal; A G Wagh

    2008-11-01

    The morphology of carbon nanofoam samples comprising platinum nanoparticles dispersed in the matrix was characterized by small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) techniques. Results show that the structure of pores of carbon matrix exhibits a mass (pore) fractal nature and the average radius of the platinum particles is about 2.5 nm. The fractal dimension as well as the size distribution parameters of platinum particles varies markedly with the platinum content and annealing temperature. Transmission electron micrographs of the samples corroborate the SANS and SAXS results.

  1. Survey of background scattering from materials found in small-angle neutron scattering

    Science.gov (United States)

    Barker, J. G.; Mildner, D. F. R.

    2015-01-01

    Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300–700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a 3He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the 3He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed. PMID:26306088

  2. Resolution effects and analysis of small-angle neutron scattering data

    DEFF Research Database (Denmark)

    Pedersen, J.S.

    1993-01-01

    A discussion of the instrumental smearing effects for small-angle neutron scattering (SANS) data sets is given. It is shown that these effects can be described by a resolution function, which describes the distribution of scattering vectors probed for the nominal values of the scattering vector. ...

  3. A review on the study of polymer properties by Small Angle Neutron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Baek Seok; Lee, Chang Hee; Sim, Hae Seop; Lee, Jung Sool [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of); Kim, Hong Doo [Kyunghee Univ., Seoul (Korea, Republic of); Kim, Eu Gene [Hongik Univ., Seoul (Korea, Republic of); Cha, Kuk Heon [Seoul National Univ., Seoul (Korea, Republic of)

    1998-05-01

    This report contains concept of small angle neutron scattering , various design features and considerations of the small angle neutron spectrometer at HANARO, and recent trends of polymer studies by using this SANS technique with the installation of the spectrometer in near future. We, therefore, wish to review feasibility of small angle studies for polymer field at this spectrometer and to help possible beam time users for their experimental consideration. (author). 23 refs., 7 tabs., 23 figs

  4. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  5. Design and use of a 6 meter neutron small-angle scattering spectrometer at KUR

    Science.gov (United States)

    Komura, S.; Takeda, T.; Fujii, H.; Osamura, K.; Mochiki, K.; Hasegawa, K.

    1983-05-01

    A 6 meter neutron small-angle scattering spectrometer has been constructed at the Kyoto University Reactor (KUR) and has been used successfully in various fields of application. The design principles and the characteristics of the spectrometer are described briefly. Some examples of the scattering measurements are presented.

  6. Small-angle neutron-scattering studies of the magnetic phase diagram of MnSi

    DEFF Research Database (Denmark)

    Harris, P.; Lebech, B.; Hae Seop Shim;

    1995-01-01

    The antiferromagnetic order of MnSi has been studied as function of temperature and applied magnetic field using small-angle neutron scattering. The results were analyzed using the three-dimensional resolution function and the scattering cross-section to model the diffraction data. Physical param...

  7. Development and prospect of Very Small Angle Neutron Scattering (VSANS) Techniques

    CERN Document Server

    Zuo, Taisen; Chen, Yuan-Bo; Wang, Fang-Wei

    2016-01-01

    Very Small Angle Neutron Scattering (VSANS) is an upgrade of the traditional Small Angle Neutron Scattering (SANS) technique which can cover three orders of magnitude of length scale from one nanometer to one micrometer. It is a powerful tool for structure calibration in polymer science, biology, material science and condensed matter physics. Since the first VSANS instrument, D11 in Grenoble, was built in 1972, new collimation techniques, focusing optics (multi-beam converging apertures, material or magnetic lenses, and focusing mirrors) and higher resolution detectors combined with the long flight paths and long incident neutron wavelengths have been developed. In this paper, a detailed review is given of the development, principles and application conditions of various VSANS techniques. Then, beam current gain factors are calculated to evaluate those techniques. A VSANS design for the China Spallation Neutron Source (CSNS) is thereby presented.

  8. Development and prospects of Very Small Angle Neutron Scattering (VSANS) techniques

    Science.gov (United States)

    Xuo, Tai-Sen; Cheng, He; Chen, Yuan-Bo; Wang, Fang-Wei

    2016-07-01

    Very Small Angle Neutron Scattering (VSANS) is an upgrade of the traditional Small Angle Neutron Scattering (SANS) technique which can cover three orders of magnitude of length scale from one nanometer to one micrometer. It is a powerful tool for structure calibration in polymer science, biology, material science and condensed matter physics. Since the first VSANS instrument, D11 in Grenoble, was built in 1972, new collimation techniques, focusing optics (multi-beam converging apertures, material or magnetic lenses, and focusing mirrors) and higher resolution detectors combined with the long flight paths and long incident neutron wavelengths have been developed. In this paper, a detailed review is given of the development, principles and application conditions of various VSANS techniques. Then, beam current gain factors are calculated to evaluate those techniques. A VSANS design for the China Spallation Neutron Source (CSNS) is thereby presented. Supported by National Natural Science Foundation of China (21474119, 11305191)

  9. A phased rotating collimator for a pulsed-neutron fixed scattering angle spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Wahba, M. (Ain Shams Univ., Cairo (Egypt). Dept. of Engineering Physics and Mathematics)

    1991-06-01

    The design principle of a phased rotating collimator for a pulsed-neutron fixed scattering angle spectrometer is given. The collimator's dimensions were selected to match the curved slot rotor of the spectrometer which is in operation at the ET-RR-1 reactor. The collimator has one slot, whose shape was determined to satisfy a 100% transmission of the polyenergetic neutron bursts produced by the curved slot rotor. (orig.).

  10. Spin-Echo Small Angle Neutron Scattering analysis of liposomes and bacteria

    NARCIS (Netherlands)

    Van Heijkamp, L.F., et al.

    2010-01-01

    Two types of liposomes, commonly used in drug delivery studies, and E. coli bacteria, all prepared in H2O, were resuspended in D2O and measured with Small Angle Spin-Echo Neutron Scattering (SESANS). Modeling was performed using correlation functions for solid spheres and hollow spheres. The signal

  11. A small-angle neutron scattering study of cholic acid-based organogel systems

    NARCIS (Netherlands)

    Willemen, H.M.; Marcelis, A.T.M.; Sudhölter, E.J.R.; Bouwman, W.G.; Deme, B.; Terech, P.

    2004-01-01

    Small-angle neutron scattering measurements were performed on some cholic acid-based gel systems in order to gain detailed information about the network structure. The presence of thin fibers with a radius of about 10-20 Å was found for various gelators. Two types of interaction between different so

  12. Small-angle neutron scattering from poly(NIPA-co-AMPS) gels

    DEFF Research Database (Denmark)

    Travas-Sejdic, J.; Easteal, A.; Knott, R.;

    2000-01-01

    The microstructure of the poly( N-isopropylacrylamide-co-acrylamido- 2-methyl-1-propane sulphonic acid) gel, poly( NIPA-co-AMPS), was investigated as a function of temperature and cross-link density using the small angle neutron scattering technique. The sample temperature was varied in the range...

  13. Reversible membrane reorganizations during photosynthesis in vivo: revealed by small-angle neutron scattering

    DEFF Research Database (Denmark)

    Nagy, Gergely; Posselt, Dorthe; Kovacs, Laszlo

    2011-01-01

    In the present study, we determined characteristic repeat distances of the photosynthetic membranes in living cyanobacterial and eukaryotic algal cells, and in intact thylakoid membranes isolated from higher plants with time-resolved small-angle neutron scattering. This non-invasive technique rev...

  14. Temperature dependent small-angle neutron scattering of CTABr-magnetic fluid emulsion

    Indian Academy of Sciences (India)

    V K Aswal; J V Joshi; P S Goyal; Rajesh Patel; R V Upadhyay; R V Mehta

    2004-08-01

    Small-angle neutron scattering studies have been carried out to check the structural integrity of citryltrimethylammonium bromide (CTABr) micelles in a magnetic fluid for different magnetic fluid concentrations at two different temperatures 303 and 333 K. It is found that the CTABr micelles grow with increasing magnetic fluid concentration and there is a decrease in the micellar size with increase in temperature.

  15. Investigation of metallic and ceramic materials by small-angle neutron scattering

    NARCIS (Netherlands)

    Smirnov, YI; Elyutin, NO

    2004-01-01

    Small-angle neutron scattering measurements on a double-crystal spectrometer with perfect monochromator and analyzer crystals were used to follow microstructural changes in the aluminum alloy VD-17. refractory alloy ZhS-6, and dispersion-hardened zirconia-based ceramics with yttria additions. The me

  16. A 6-Meter Neutron Small-Angle Scattering Spectrometer at KUR

    Science.gov (United States)

    Komura, Shigehiro; Takeda, Takayoshi; Fujii, Hironobu; Toyoshima, Yoshinori; Osamura, Kozo; Mochiki, Koichi; Hasegawa, Ken'ichi

    1983-02-01

    A 6-meter neutron small-angle scattering spectrometer has been constructed at Kyoto University Reactor (KUR) and has been used successfully for various fields of application in these three years. This paper describes overall design principles and the characteristics of the various parts of the spectrometers which can be assembled and disassembled easily at KUR. Some examples of scattering measurements are presented to show the performance of the spectrometer.

  17. Micromagnetic simulation of magnetic small-angle neutron scattering from two-phase nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Michels, Andreas, E-mail: andreas.michels@uni.lu [Physics and Materials Science Research Unit, University of Luxembourg, 162A Avenue de la Faïencerie, L-1511 Luxembourg (Luxembourg); Erokhin, Sergey; Berkov, Dmitry; Gorn, Nataliya [INNOVENT Technology Development, Prüssingstraße 27B, D-07745 Jena (Germany)

    2014-01-15

    The recent development of a micromagnetic simulation methodology—suitable for multiphase magnetic nanocomposites—permits the computation of the magnetic microstructure and of the associated magnetic small-angle neutron scattering (SANS) cross section of these materials. In this review we summarize results on the micromagnetic simulation of magnetic SANS from two-phase nanocomposites. The decisive advantage of this approach resides in the possibility to scrutinize the individual magnetization Fourier contributions to the total magnetic SANS cross section, rather than their sum, which is generally obtained from the experiment. The procedure furnishes unique and fundamental information regarding magnetic neutron scattering from nanomagnets.

  18. Improved performances of 36 m small-angle neutron scattering spectrometer BATAN in Serpong Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Edy Giri Rachman [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia)], E-mail: giri@batan.go.id; Bharoto; Santoso, Eddy; Ikram, Abarrul [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia)

    2009-02-21

    SMARTer, a 36 m small-angle neutron scattering (SANS) spectrometer owned by the National Nuclear Energy Agency of Indonesia (BATAN) was installed at the Neutron Scattering Laboratory (NSL) in Serpong, Indonesia. Lots of works on replacing, upgrading and improving the control system, experimental methods, data collection and reduction in the last two years have been carried out to optimize the performance of SMARTer. Some standard samples such as silver behenate, monodisperse polystyrene nanoparticle, porous silica and block copolymer PS-PEP film were measured for the inter-laboratory comparison.

  19. Optimization study for small angle neutron scattering spectrometer at the ET-RR-1 reactor

    Science.gov (United States)

    Ashry, A.

    1997-09-01

    The design principle of a Small Angle Neutron Scattering (SANS) spectrometer is based on producing monochromatic neutron bursts using two phased rotors with curved slots. An optimization study of their number and shape to achieve the highly available intensity of monoenergetic neutrons at the required resolution is given. The study was applied to the improvement of the performance of the pulsed monochromatic double rotor system at ET-RR-1 to operate as SANS spectrometer. It is shown that for rotors having 19 slots each with radius of curvature 96.8 cm, the intensity gain factor is 13. The proposed SANS spectrometer could cover the neutron wavelength range from 2 Å up to 6 Å through small angles of scattering from 5 × 10 -3 rad to 0.1 rad, i.e., the scattering wavevector transfer between 0.6 Å -1 and 0.01 Å -1. The maximum neutron intensity on the specimen is 2 × 10 6 n s -1.

  20. Optimization study for small angle neutron scattering spectrometer at the ET-RR-1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ashry, A. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics

    1997-09-01

    The design principle of a small angle neutron scattering (SANS) spectrometer is based on producing monochromatic neutron bursts using two phased rotors with curved slots. An optimization study of their number and shape to achieve the highly available intensity of monoenergetic neutrons at the required resolution is given. The study was applied to the improvement of the performance of the pulsed monochromatic double rotor system at ET-RR-1 to operate as SANS spectrometer. It is shown that for rotors having 19 slots each with radius of curvature 96.8 cm, the intensity gain factor is 13. The proposed SANS spectrometer could cover the neutron wavelength range from 2 A up to 6 A through small angles of scattering from 5 x 10{sup -3} rad to 0.1 rad, i.e., the scattering wavevector transfer between 0.6 A{sup -1} and 0.01 A{sup -1}. The maximum neutron intensity on the specimen is 2 x 10{sup 6} ns{sup -1}. (orig.). 19 refs.

  1. Microstructural investigations on Russian reactor pressure vessel steels by small-angle neutron scattering

    Science.gov (United States)

    Ulbricht, A.; Boehmert, J.; Strunz, P.; Dewhurst, C.; Mathon, M.-H.

    The effect of radiation embrittlement has a high safety significance for Russian VVER reactor pressure vessel steels. Heats of base and weld metals of the as-received state, irradiated state and post-irradiation annealed state were investigated using small-angle neutron scattering (SANS) to obtain insight about the microstructural features caused by fast neutron irradiation. The SANS intensities increase in the momentum transfer range between 0.8 and 3 nm-1 for all the material compositions in the irradiated state. The size distribution function of the irradiation-induced defect clusters has a pronounced maximum at 1 nm in radius. Their content varies between 0.1 and 0.7 vol.% dependent on material composition and increases with the neutron fluence. The comparison of nuclear and magnetic scattering indicates that the defects differ in their composition. Thermal annealing reduces the volume fraction of irradiation defect clusters.

  2. Small-angle neutron scattering studies of sodium butyl benzene sulfonate aggregates in aqueous solution

    Indian Academy of Sciences (India)

    O R Pal; V G Gaikar; J V Joshi; P S Goyal; V K Aswal

    2004-08-01

    The aggregation behaviour of a hydrotrope, sodium -butyl benzene sulfonate (Na-NBBS), in aqueous solutions is investigated by small-angle neutron scattering (SANS). Nearly ellipsoidal aggregates of Na-NBBS at concentrations well above its minimum hydrotrope concentration were detected by SANS. The hydrotrope seems to form self-assemblies with aggregation number of 36–40 with a substantial charge on the aggregate. This aggregation number is weakly affected by the hydrotrope concentration.

  3. Time-resolved small-angle neutron scattering of a micelle-to-vesicle transition

    Energy Technology Data Exchange (ETDEWEB)

    Egelhaaf, S.U. [Institut Max von Laue - Paul Langevin (ILL), 38 -Grenoble (France); Schurtenberger, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-04-01

    Amphiphilic molecules spontaneously self-assemble in solution to form a variety of aggregates. Only limited information is available on the kinetics of the structural transitions as well as on the existence of non-equilibrium or metastable states. Aqueous mixtures of lecithin and bile salt are very interesting biological model-systems which exhibit a spontaneous transition from polymer-like mixed micelles to vesicles upon dilution. The small-angle neutron scattering (SANS) instrument D22, with its very high neutron flux and the broad range of scattering vectors covered in a single instrumental setting, allowed us for the first time to perform time-resolved scattering experiments in order to study the micelle-to-vesicle transition. The temporal evolution of the aggregate structures were followed and detailed information was obtained even on molecular length-scales. (author). 5 refs.

  4. Structure of Fullerene Aggregates in Pyridine/Water Solutions by Small-Angle Neutron Scattering

    CERN Document Server

    Aksenov, V L; Belushkin, A V; Mihailovic, D; Mrzel, A; Rosta, L; Serdyuk, I N; Timchenko, A A

    2001-01-01

    Results of small-angle neutron scattering experiments on fullerenes (Co_{60}) in pyridine/water solutions are reported. They confirm conclusions of the previous studies, in particular, dynamic light scattering experiments. Aggregates with characteristic radius of about 20 nm are formed in the solutions. The contrast variation using different combinations of protonated/deuterated components (water and pyridine) of the solutions points to the small pyridine content inside the aggregates. This fact testifies that the aggregates consist of a massive fullerene core covered by a thin pyridine shell.

  5. Small angle neutron scattering study of pore microstructure in ceria compacts

    Indian Academy of Sciences (India)

    A K Patra; P U Sastry; Srirupa T Mukherjee; Vinila Bedekar; A K Tyagi

    2008-11-01

    Ceria powders were prepared by gel combustion process using cerium nitrate and hitherto unexplored amino acids such as aspartic acid, arginine and valine as fuels. The powders have been characterized by X-ray and laser diffraction. Cold pressed compacts of these powders have been sintered at 1250°C for 2 h. Internal pore microstructure of the sintered compacts has been investigated by small angle neutron scattering (SANS) over a scattering wave vector range of 0.003–0.17 nm-1. The SANS profiles indicate surface fractal morphology of the pore space with fractal dimensionality lying between 2.70 and 2.76.

  6. Static properties of polystyrene in semidilute solutions: A comparison of Monte Carlo simulation and small-angle neutron scattering results

    DEFF Research Database (Denmark)

    Pedersen, J.S.; Schurtenberger, P.

    1999-01-01

    determined for the simulations as well as experimentally for polystyrene in d-toluene by small-angle neutron scattering (SANS), and excellent agreement is found. Interpolations of the MC scattering functions fit the SANS data in the full measured range of scattering vectors, demonstrating agreement almost...

  7. Polymer boosting effect in the droplet phase studied by small-angle neutron scattering

    CERN Document Server

    Frielinghaus, H; Allgaier, J; Richter, D; Jakobs, B; Sottmann, T; Strey, R

    2002-01-01

    Small-angle neutron-scattering experiments were performed in order to obtain the six partial scattering functions of a droplet microemulsion containing water, decane, C sub 1 sub 0 E sub 4 surfactant and PEP sub 5 -PEO sub 8 sub 0. We systematically varied the contrast around the polymer contrast, where only the polymer becomes visible, and we also measured bulk and film contrasts. With the singular value decomposition method we could extract the desired six partial scattering functions from the 15 measured spectra. We find a sphere-shell-shell structure of the droplets, where the innermost sphere consists of oil, the middle shell of surfactant and the outer shell is a depletion zone where the polymer is almost not present. (orig.)

  8. Quasielastic small-angle neutron scattering from heavy water solutions of cyclodextrins.

    Science.gov (United States)

    Kusmin, André; Lechner, Ruep E; Saenger, Wolfram

    2011-01-14

    We present a model for quasielastic neutron scattering (QENS) by an aqueous solution of compact and inflexible molecules. This model accounts for time-dependent spatial pair correlations between the atoms of the same as well as of distinct molecules and includes all coherent and incoherent neutron scattering contributions. The extension of the static theory of the excluded volume effect [A. K. Soper, J. Phys.: Condens. Matter 9, 2399 (1997)] to the time-dependent (dynamic) case allows us to obtain simplified model expressions for QENS spectra in the low Q region in the uniform fluid approximation. The resulting expressions describe the quasielastic small-angle neutron scattering (QESANS) spectra of D(2)O solutions of native and methylated cyclodextrins well, yielding in particular translational and rotational diffusion coefficients of these compounds in aqueous solution. Finally, we discuss the full potential of the QESANS analysis (that is, beyond the uniform fluid approximation), in particular, the information on solute-solvent interactions (e.g., hydration shell properties) that such an analysis can provide, in principle.

  9. Small-angle neutron and dynamic light scattering study of gelatin coacervates

    Indian Academy of Sciences (India)

    B Mohanty; V K Aswal; P S Goyal; H B Bohidar

    2004-08-01

    The state of intermolecular aggregates and that of folded gelatin molecules could be characterized by dynamic laser light and small-angle neutron scattering experiments, which implied spontaneous segregation of particle sizes preceding coacervation, which is a liquid-liquid phase transition phenomenon. Dynamic light scattering (DLS) data analysis revealed two particle sizes until precipitation was reached. The smaller particles having a diameter of ∼ 50 nm (stable nanoparticles prepared by coacervation method) were detected in the supernatant, whereas the inter-molecular aggregates having a diameter of ∼ 400 nm gave rise to coacervation. Small-angle neutron scattering (SANS) experiments revealed that typical mesh size of the networks exist in polymer dense phase (coacervates) [1]. Analysis of the SANS structure factor showed the presence of two length scales associated with this system that were identified as the correlation length or mesh size, = 10.6 Å of the network and the other is the size of inhomogeneities = 21.4 Å. Observations were discussed based on the results obtained from SANS experiments performed in 5% (w/v) gelatin solution at 60° C ( = 50$ Å, = 113 Å) and 5% (w/v) gel at 28° C ( = 47 Å, = 115 Å) in aqueous phase [2] indicating smaller length scales in coacervate as compared to sol and gel.

  10. Small-angle neutron and dynamic light scattering study of gelatin coacervates

    Science.gov (United States)

    Mohanty, B.; Aswal, V. K.; Goyal, P. S.; Bohidar, H. B.

    2004-08-01

    The state of intermolecular aggregates and that of folded gelatin molecules could be characterized by dynamic laser light and small-angle neutron scattering experiments, which implied spontaneous segregation of particle sizes preceding coacervation, which is a liquid-liquid phase transition phenomenon. Dynamic light scattering (DLS) data analysis revealed two particle sizes until precipitation was reached. The smaller particles having a diameter of 50 nm (stable nanoparticles prepared by coacervation method) were detected in the supernatant, whereas the inter-molecular aggregates having a diameter of 400 nm gave rise to coacervation. Small-angle neutron scattering (SANS) experiments revealed that typical mesh size of the networks exist in polymer dense phase (coacervates) [1]. Analysis of the SANS structure factor showed the presence of two length scales associated with this system that were identified as the correlation length or mesh size, xi = 10.6 Å of the network and the other is the size of inhomogeneities = 21.4 Å. Observations were discussed based on the results obtained from SANS experiments performed in 5% (w/v) gelatin solution at 60oC (xi = 50 Å, zeta = 113 Å) and 5% (w/v) gel at 28oC (xi = 47 Å, zeta = 115 Å) in aqueous phase [2] indicating smaller length scales in coacervate as compared to sol and gel.

  11. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  12. Small angle neutron scattering data of polymer electrolyte membranes partially swollen in water

    Directory of Open Access Journals (Sweden)

    Yue Zhao

    2016-06-01

    Full Text Available In this article, we show the small-angle neutron scattering (SANS data obtained from the polymer electrolyte membranes (PEMs equilibrated at a given relative humidity. We apply Hard-Sphere (HS structure model with Percus–Yervick interference interactions to analyze the dataset. The molecular structure of these PEMs and the morphologies of the fully water-swollen membranes have been elucidated by Zhao et al. “Elucidation of the morphology of the hydrocarbon multi-block copolymer electrolyte membranes for proton exchange fuel cells” [1].

  13. Use of Small Angle Neutron Scattering to Study Various Properties of Wool and Mohair Fibres

    Energy Technology Data Exchange (ETDEWEB)

    Franklyn, C. B. [Radiation Science Department, Necsa, PO Box 582, Pretoria 0001 (South Africa); Toeroek, Gy. [Research Institute for Solid State Physics and Optics, H-1525 Budapest, POB 49 (Hungary)

    2011-12-13

    To maintain a competitive edge in the wool and mohair industry, a detailed knowledge and understanding of the properties of wool fibres is essential. Standard techniques are used to determine fibre diameter, length and strength; however, properties such as hydroscopicity, lustre and changes in fibre structure following chemical or mechanical treatment are not so well understood. The unique capabilities of small angle neutron scattering to study changes in the supermolecular structure of wool fibres, particularly at the level of the microfibril-matrix complex, have been used to provide previously unknown features of the fibres. The results of these studies are presented.

  14. Use of Small Angle Neutron Scattering to Study Various Properties of Wool and Mohair Fibres

    Science.gov (United States)

    Franklyn, C. B.; Török, Gy.

    2011-12-01

    To maintain a competitive edge in the wool and mohair industry, a detailed knowledge and understanding of the properties of wool fibres is essential. Standard techniques are used to determine fibre diameter, length and strength; however, properties such as hydroscopicity, lustre and changes in fibre structure following chemical or mechanical treatment are not so well understood. The unique capabilities of small angle neutron scattering to study changes in the supermolecular structure of wool fibres, particularly at the level of the microfibril-matrix complex, have been used to provide previously unknown features of the fibres. The results of these studies are presented.

  15. Structure of Co–Zn ferrite ferrofluid: A small angle neutron scattering analysis

    Indian Academy of Sciences (India)

    Prashant Acharya; Rucha Desai; V K Aswal; R V Upadhyay

    2008-11-01

    A hydrothermal synthesis route is used to synthesize nanomagnetic particles of Co0.3Zn0.7Fe2O4 ferrite ferrofluids with particle diameter ranging from 5.5–9 nm. XRD analysis shows the formation of a single phase spinel structure. EDX results confirm the stoichiometric composition of the cations. Small angle neutron scattering technique is used to determine the size and size distribution of Co0.3Zn0.7Fe2O4 ferrofluid. The sizes thus obtained are in the range of 5.4 to 8.4 nm. These results are in agreement with magnetic measurements.

  16. Cylindrical aggregates of chlorophylls studied by small-angle neutron scatter

    Energy Technology Data Exchange (ETDEWEB)

    Worcester, D.L. [Univ. of Missouri, Columbus, MO (United States); Katz, J.J. [Argonne National Laboratory, IL (United States)

    1994-12-31

    Neutron small-angle scattering has demonstrated tubular chlorophyll aggregates formed by self-assembly of a variety of chlorophyll types in nonpolar solvents. The size and other properties of the tubular aggregates can be accounted for by stereochemical properties of the chlorophyll molecules. Features of some of the structures are remarkably similar to light harvesting chlorophyll complexes in vivo, particularly for photosynthetic bacteria. These nanotube chlorophyll structures may have applications as light harvesting biomaterials where efficient energy transfer occurs from an excited state which is highly delocalized.

  17. Small angle neutron scattering study of mixed micelles of oppositely charged surfactants

    Indian Academy of Sciences (India)

    J V Joshi; V K Aswal; P S Goyal

    2008-11-01

    Structures of mixed micelles of oppositely charged surfactants dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl sulphate (SDS) have been studied using small angle neutron scattering. The concentration of one of the components was kept fixed (0.3 M) and that of another varied in the range 0 to 0.1 M. The aggregation number and micellar size increase and fractional charge decreases dramatically with the addition of small amount of oppositely charged surfactant. The effect of addition of SDS on DTAB is significantly different from that of the addition of DTAB on SDS. The contrast variation SANS experiments using deuterated surfactant suggests the homogeneous mixing of two components in mixed micellar system.

  18. Small angle neutron scattering studies on the interaction of cationic surfactants with bovine serum albumin

    Indian Academy of Sciences (India)

    Nuzhat Gull; S Chodankar; V K Aswal; Kabir-Ud-Din

    2008-11-01

    The structure of the protein–surfactant complex of bovine serum albumin (BSA) and cationic surfactants has been studied by small angle neutron scattering. At low concentrations, the CTAB monomers are observed to bind to the protein leading to an increase in its size. On the other hand at high concentrations, surfactant molecules aggregate along the unfolded polypeptide chain of the protein resulting in the formation of a fractal structure representing a necklace model of micelle-like clusters randomly distributed along the polypeptide chain. The fractal dimension as well as the size and number of micelles attached to the complex have been determined.

  19. Effect of Dzyaloshinski-Moriya interaction on elastic small-angle neutron scattering

    Science.gov (United States)

    Michels, Andreas; Mettus, Denis; Honecker, Dirk; Metlov, Konstantin L.

    2016-08-01

    For magnetic materials containing many lattice imperfections (e.g., nanocrystalline magnets), the relativistic Dzyaloshinski-Moriya (DM) interaction may result in nonuniform spin textures due to the lack of inversion symmetry at interfaces. Within the framework of the continuum theory of micromagnetics, we explore the impact of the DM interaction on the elastic magnetic small-angle neutron scattering (SANS) cross section. It is shown that the DM interaction gives rise to a polarization-dependent asymmetric term in the spin-flip SANS cross section. Analysis of this feature may provide a means to determine the DM constant.

  20. Study on porosity of ceramic SiC using small angle neutron scattering

    Institute of Scientific and Technical Information of China (English)

    李际周; Y.Ito

    1996-01-01

    The mechanical properties of functional heat-resistant ceramics SiC are significantly influenced by the concentration and idmensions of pores.Small angle neutron scattering measurements for 3 SiC samples with different densities are performed on C1-2 SANS instrument of the University of Tokyo.Two groups of the neutron data are obtained using 8 and 16m of secondary flight path,1 and 0.7 nm of neutron wave lengths,respectively,After deduction of background measurement and transmission correction,both neutron data are linked up with each other,The patterns of neutron data of 3 samples with Q range from 0.028-0.5nm-1 are almost with axial symmetry,showing that the shape of pores is almost spherical.Using Mellin transform,size distributions of pores in 3 samples are obtained.The average size (-19nm)of pores for hot-pressed SiC sample with higher density is smaller than the others (-21nm).It seems to be the reason why the density of hot-pressed SiC sample is higher than not hot-pressed sample.

  1. Branch Point Withdrawal in Elongational Startup Flow by Time-Resolved Small Angle Neutron Scattering

    KAUST Repository

    Ruocco, N.

    2016-05-27

    We present a small angle neutron scattering (SANS) investigation of a blend composed of a dendritic polymer and a linear matrix with comparable viscosity in start-up of an elongational flow at Tg + 50. The two-generation dendritic polymer is diluted to 10% by weight in a matrix of a long well-entangled linear chains. Both components consist of mainly 1,4-cis-polyisoprene but differ in isotopic composition. The resulting scattering contrast is sufficiently high to permit time-resolved measurements of the system structure factor during the start-up phase and to follow the retraction processes involving the inner sections of the branched polymer in the nonlinear deformation response. The outer branches and the linear matrix, on the contrary, are in the linear deformation regime. The linear matrix dominates the rheological signature of the blend and the influence of the branched component can barely be detected. However, the neutron scattering intensity is predominantly that of the (branched) minority component so that its dynamics is clearly evident. In the present paper, we use the neutron scattering data to validate the branch point withdrawal process, which could not be unambiguously discerned from rheological measurements in this blend. The maximal tube stretch that the inner branches experience, before the relaxed outer arm material is incorporated into the tube is determined. The in situ scattering experiments demonstrate for the first time the leveling-off of the strain as the result of branch point withdrawal and chain retraction directly on the molecular level. We conclude that branch point motion in the mixture of architecturally complex polymers occurs earlier than would be expected in a purely branched system, presumably due to the different topological environment that the linear matrix presents to the hierarchically deep-buried tube sections. © 2016 American Chemical Society.

  2. Gracing incidence small angle neutron scattering of incommensurate magnetic structures in MnSi thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Birgit; Pfleiderer, Christian; Boeni, Peter [Physik Department, Technische Universitaet Muenchen (Germany); Zhang, Shilei; Hesjedal, Thorsten [Clarendon Laboratory, Department of Physics, University of Oxford (United Kingdom); Khaydukov, Yury; Soltwedel, Olaf; Keller, Thomas [Max-Planck-Institut fuer Festkoerperforschung (Germany); Max Planck Society, Outstation at FRM-II (Germany); Muehlbauer, Sebastian [Forschungsneutronenquelle Heinz Maier Leibnitz, Technische Universitaet Muenchen (Germany); Chacon, Alfonso [Physik Department, Technische Universitaet Muenchen (Germany); Forschungsneutronenquelle Heinz Maier Leibnitz, Technische Universitaet Muenchen (Germany)

    2015-07-01

    The topological stability of skyrmions in bulk samples of MnSi and the observation of spin transfer torque effects at ultra-low current densities have generated great interest in skyrmions in chiral magnets as a new route towards next generation spintronics devices. Yet, the formation of skyrmions in MBE grown thin films of MnSi reported in the literature is highly controversial. We report gracing incidence small angle neutron scattering (GISANS) of the magnetic order in selected thin films of MnSi grown by state of the art MBE techniques. In combination with polarised neutron reflectometry (PNR) and magnetisation measurements of the same samples our data provide direct reciprocal space information of the incommensurate magnetic order, clarifying the nature of magnetic phase diagram.

  3. Demonstration of a novel focusing small-angle neutron scattering instrument equipped with axisymmetric mirrors

    CERN Document Server

    Liu, Dazhi; Gubarev, Mikhail V; Robertson, J Lee; Crow, Lowell; Ramsey, Brian D; Moncton, David E

    2013-01-01

    Small-angle neutron scattering (SANS) is the most significant neutron technique in terms of impact on science and engineering. However, the basic concept of SANS facilities has not changed since the technique's inception about 40 years ago, as all SANS instruments, save a few, are still designed as pinhole cameras. Here we demonstrate a novel concept for a SANS instrument, based on axisymmetric focusing mirrors. We build and test a small prototype, which shows a performance comparable to that of conventional large SANS facilities. By using a detector with 50-micron pixels, we build the most compact SANS instrument in the world. This work, together with the recent demonstration that such mirrors could increase the signal rate at least 50-fold, while improving resolution, paves the way to novel SANS instruments, thus affecting a broad community of scientists and engineers.

  4. Small-angle neutron scattering and Molecular Dynamics structural study of gelling DNA nanostars

    CERN Document Server

    Fernandez-Castanon, Javier; Rovigatti, Lorenzo; Zanatta, Marco; Paciaroni, Alessandro; Comez, Lucia; Porcar, Lionel; Jafta, Charl J; Fadda, Giulia C; Bellini, Tommaso; Sciortino, Francesco

    2016-01-01

    DNA oligomers with properly designed sequences self-assemble into well defined constructs. Here, we exploit this methodology to produce bulk quantities of tetravalent DNA nanostars (each one composed by 196 nucleotides) and to explore the structural signatures of their aggregation process. We report small-angle neutron scattering experiments focused on the evaluation of both the form factor and the temperature evolution of the scattered intensity at a nano star concentration where the system forms a tetravalent equilibrium gel. We also perform molecular dynamics simulations of one isolated tetramer to evaluate the form factor theoretically, without resorting to any approximate shape. The numerical form factor is found to be in very good agreement with the experimental one. Simulations predict an essentially temperature independent form factor, offering the possibility to extract the effective structure factor and its evolution during the equilibrium gelation.

  5. Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars

    Science.gov (United States)

    Fernandez-Castanon, J.; Bomboi, F.; Rovigatti, L.; Zanatta, M.; Paciaroni, A.; Comez, L.; Porcar, L.; Jafta, C. J.; Fadda, G. C.; Bellini, T.; Sciortino, F.

    2016-08-01

    DNA oligomers with properly designed sequences self-assemble into well defined constructs. Here, we exploit this methodology to produce bulk quantities of tetravalent DNA nanostars (each one composed of 196 nucleotides) and to explore the structural signatures of their aggregation process. We report small-angle neutron scattering experiments focused on the evaluation of both the form factor and the temperature evolution of the scattered intensity at a nanostar concentration where the system forms a tetravalent equilibrium gel. We also perform molecular dynamics simulations of one isolated tetramer to evaluate the form factor numerically, without resorting to any approximate shape. The numerical form factor is found to be in very good agreement with the experimental one. Simulations predict an essentially temperature-independent form factor, offering the possibility to extract the effective structure factor and its evolution during the equilibrium gelation.

  6. Magnetic microstructure of nanocrystalline gadolinium: a small-angle neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Doebrich, Frank [University of Luxembourg, 162A Avenue de la Faiencerie, L-1511 Luxembourg (Luxembourg); Universitaet des Saarlandes, D-66041 Saarbruecken (Germany); Eckerlebe, Helmut; Sharp, Melissa [GKSS Forschungszentrum, D-21502 Geesthacht (Germany); Kohlbrecher, Joachim [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Birringer, Rainer [Universitaet des Saarlandes, D-66041 Saarbruecken (Germany); Michels, Andreas [University of Luxembourg, 162A Avenue de la Faiencerie, L-1511 Luxembourg (Luxembourg)

    2011-07-01

    We report on grain-size dependent magnetic small-angle neutron scattering (SANS) experiments on nanocrystalline Gd, which was synthesized using the low-capturing isotope {sup 160}Gd. The angular variation of the two-dimensional SANS cross-section at different applied magnetic fields is discussed with a special focus on the rather unusual scattering contribution of the clover-leaf-type found for nanocrystalline Gd at intermediate field values. Additionally we have calculated from experimental data the autocorrelation function of the spin misalignment. This approach allows in particular for the extraction of the field-dependent correlation length of static spin misalignment fluctuations induced by microstructural defects. The data analysis suggests that the grain boundaries constitute a major source of spin disorder in this material, which may be attributed to local atomic site disorder and modified coupling at internal interfaces.

  7. Small angle neutron scattering study on short and long chain phosphatidylcholine mixture in trehalose solution

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi [Department of Physics, Gunma University, Maebashi, Gunma (Japan)

    2001-03-01

    Trehalose protects cells and proteins against various stresses due to low temperatures or dryness. In order to clarify the molecular mechanism of cryoprotective function of trehalose, we have studied the interaction between trehalose and phosphatidylcholine (PC) which is a main lipid component of cell membranes. In this study, the structural change of a binary PC mixture by the presence of trehalose was investigated by means of small angle neutron scattering. The PC binary mixture studied contains dihexanoyl-PC (diC{sub 6}PC) and dihexadecy-PC (DHPC). The former has short hydrocarbon chains and the latter has long hydrocarbon chains. The scattering profiles from the DHPC/diC{sub 6}PC mixture were changed, depending on trehalose concentrations. This change can be interpreted as suggesting that the presence of trehalose reduces the interfacial area between water and PCs. (author)

  8. Polyhydroxyalkanoate-based natural synthetic hybrid copolymer films: A small-angle neutron scattering study

    Science.gov (United States)

    Foster, L. John R.; Knott, Robert; Sanguanchaipaiwong, Vorapat; Holden, Peter J.

    2006-11-01

    Polyhydroxyalkanoates have attracted attention as biodegradable alternatives to conventional thermoplastics and as biomaterials. Through modification of their biosynthesis using Pseudomonas oleovorans, we have manipulated the material properties of these biopolyesters and produced a natural-synthetic hybrid copolymer of polyhydroxyoctanoate- block-diethylene glycol (PHO- b-DEG). A mixture of PHO and PHO-DEG were solvent cast from analytical grade chloroform and analysed using small-angle neutron scattering. A scattering pattern, easily distinguished above the background, was displayed by the films with a diffraction ring at q∼0.12 Å -1. This narrow ring of intensity is suggestive of a highly ordered system. Analysis of the diffraction pattern supported this concept and showed a d-spacing of approximately 50 Å. In addition, conformation of the hybrid polymer chains can be manipulated to support their self-assembly into ordered microporous films.

  9. A microstructural comparison of two nuclear-grade martensitic steels using small-angle neutron scattering

    Science.gov (United States)

    Coppola, R.; Fiori, F.; Little, E. A.; Magnani, M.

    1997-06-01

    Results are presented of a small-angle neutron scattering (SANS) study on two 10-13% Cr martensitic stainless steels of interest for nuclear applications, viz. DIN 1.4914 (MANET specification, for fusion reactors) and AISI 410. The investigation has focussed principally on microstructural effects associated with the differences in chromium content between the two alloys. The size distribution functions determined from nuclear and magnetic SANS components for the two steels given identical heat treatments are in accord with an interpretation based on the presence of ˜ 1 nm size CCr aggregates in the microstructure. Much larger (˜ 10 nm) scattering inhomogeneities with different magnetic contrast are also present and tentatively identified as carbides.

  10. Frozen concentration fluctuations in a poly(N-isopropyl acrylamide) gel studied by neutron spin echo and small-angle neutron scattering

    CERN Document Server

    Koizumi, S; Richter, D; Schwahn, D; Faragó, B; Annaka, M

    2002-01-01

    By employing neutron spin echo and small-angle neutron scattering, we determined the structure factor of the frozen concentration fluctuations on nano-length scales in a swollen poly(N-isopropyl acrylamide) gel. The frozen contribution, showing a plateau at the low scattering wavenumber q (0.02 A sup - sup 1), is intimately related to the abnormal butterfly scattering pattern appearing at low q under deformation. (orig.)

  11. Structure of the capsid of Kilham rat virus from small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wobbe, C.R.; Mitra, S.; Ramakrishnan, V.

    1984-12-18

    The structure of empty capsids of Kilham rat virus, an autonomous parvovirus with icosahedral symmetry, was investigated by small-angle neutron scattering. From the forward scatter, the molecular weight was determined to be 4.0 x 10(6), and from the Guinier region, the radius of gyration was found to be 105 A in D2O and 104 A in H/sub 2/O. On the basis of the capsid molecular weight and the molecular weights and relative abundances of the capsid proteins, the authors propose that the capsid has a triangulation number of 1. Extended scattering curves and mathematical modeling revealed that the capsid consists of two shells of protein, the inner shell extending from 58 to 91 A in D2O and from 50 to 91 A in H/sub 2/O and containing 11% of the capsid scattering mass, and the outer shell extending to 121 A in H/sub 2/O and D2O. The inner shell appears to have a higher content of basic amino acids than the outer shell, based on its lower scattering density in D2O than in H/sub 2/O. The authors propose that all three capsid proteins contribute to the inner shell and that this basic region serves DNA binding and partial charge neutralization functions.

  12. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2014-07-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  13. Initial characterization of mudstone nanoporosity with small angle neutron scattering using caprocks from carbon sequestration sites.

    Energy Technology Data Exchange (ETDEWEB)

    McCray, John (Colorado School of Mines); Navarre-Sitchler, Alexis (Colorado School of Mines); Mouzakis, Katherine (Colorado School of Mines); Heath, Jason E.; Dewers, Thomas A.; Rother, Gernot (Oak Ridge National Laboratory)

    2010-11-01

    Geological carbon sequestration relies on the principle that CO{sub 2} injected deep into the subsurface is unable to leak to the atmosphere. Structural trapping by a relatively impermeable caprock (often mudstone such as a shale) is the main trapping mechanism that is currently relied on for the first hundreds of years. Many of the pores of the caprock are of micrometer to nanometer scale. However, the distribution, geometry and volume of porosity at these scales are poorly characterized. Differences in pore shape and size can cause variation in capillary properties and fluid transport resulting in fluid pathways with different capillary entry pressures in the same sample. Prediction of pore network properties for distinct geologic environments would result in significant advancement in our ability to model subsurface fluid flow. Specifically, prediction of fluid flow through caprocks of geologic CO{sub 2} sequestration reservoirs is a critical step in evaluating the risk of leakage to overlying aquifers. The micro- and nanoporosity was analyzed in four mudstones using small angle neutron scattering (SANS). These mudstones are caprocks of formations that are currently under study or being used for carbon sequestration projects and include the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Total organic carbon varies from <0.3% to 4% by weight. Expandable clay contents range from 10% to {approx}40% in the Gothic shale and Kirtland Formation, respectively. Neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e. minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume of pores and their arrangement in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of

  14. A new small-angle neutron scattering spectrometer at China Mianyang research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Mei, E-mail: pm740509@163.com; Sun, Liangwei; Chen, Liang; Sun, Guangai; Chen, Bo; Xie, Chaomei; Xia, Qingzhong; Yan, Guanyun; Tian, Qiang; Huang, Chaoqiang; Pang, Beibei; Zhang, Ying; Wang, Yun; Liu, Yaoguang; Kang, Wu; Gong, Jian

    2016-02-21

    A new pinhole small-angle neutron scattering (SANS) spectrometer, installed at the cold neutron source of the 20 MW China Mianyang Research Reactor (CMRR) in the Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, has been put into use since 2014. The spectrometer is equipped with a multi-blade mechanical velocity selector, a multi-beam collimation system, and a two-dimensional He-3 position sensitive neutron detector. The q-range of the spectrometer covers from 0.01 nm{sup −1} to 5.0 nm{sup −1}. In this paper, the design and characteristics of the SANS spectrometer are described. The q-resolution calculations, together with calibration measurements of silver behenate and a dispersion of nearly monodisperse poly-methyl-methacrylate nanoparticles indicate that our SANS spectrometer has a good performance and is now in routine service. - Highlights: • A new SANS spectrometer has been put into use since 2014 in China. • One MBR selector possesses a higher resolution compared with traditional selector is used. • The spectrometer has a good performance and is now in routinely service.

  15. Design and Construction of the Control System for Batan Small Angle Neutron Scattering Spectrometer (SMARter

    Directory of Open Access Journals (Sweden)

    E. Santoso

    2008-07-01

    Full Text Available A 36 m Small Angle Neutron Scattering (SANS Spectrometer (SMARTer has been installed in Serpong, Indonesia in 1992. As time goes by, the original main computer was out of order and the instrument had not been operated since 2003. In order to activate the SMARTer, in the year 2005, a work on designing and constructing a new control system for SMARTer was carried out. The main component of this control system is a programmable peripheral I/O (IC PPI 8255 and was assembled as a plug-in board at an ISA slot of a personal computer. An IC PPI 8255 was programmed to control the mechanical movements of the instrument’s components: four neutron guide tubes, six pinholes collimator, a detector and a beam stopper. The test either with or without neutron beam has shown that this control system can be implemented for the mechanical movements of SMARTer. Error of moving the detector in the distance range of 1.5 m – 18 m is only 1 mm and the other movements have no error at all (precise.

  16. Small-angle neutron scattering study of organic-phase aggregation in the TALSPEAK process.

    Science.gov (United States)

    Grimes, Travis S; Jensen, Mark P; Debeer-Schmidt, Lisa; Littrell, Ken; Nash, Kenneth L

    2012-11-26

    The Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes (TALSPEAK) process is a solvent extraction based method for separating trivalent lanthanides (Ln(3+)) from trivalent actinide cations in used nuclear fuel reprocessing. In conventional TALSPEAK, the extractant solution is di(2-ethylhexyl)phosphoric acid (HDEHP) in 1,4-diisopropylbenzene (DIPB). The aqueous medium is diethylenetriamine-N,N,N',N″,N″-pentaacetic acid (DTPA) in a concentrated lactic acid (HL) buffer. Lanthanides are extracted by HDEHP/DIPB, while the actinides remain in the aqueous phase as DTPA complexes. Lactic acid is extracted both independently of the lanthanides and as Ln/HL/HDEHP mixed complex(es). Previous results indicate that lanthanides are extracted both as the mixed complex and as a binary Ln(DEHP·HDEHP)(3) species. Small-angle neutron scattering (SANS) has been applied to study the self-organization properties of solute molecules in xylene solutions containing HDEHP, HL, selected lanthanide ions, and water. The scattering results demonstrate that the dominant HDEHP species is the hydrogen bonded dimer, (HDEHP)(2). Absent lanthanides, lactic acid is extracted as the 1:3 complex (HL·(HDEHP)(3)). Scattering in samples containing up to 0.005 M lanthanides (prepared by extracting lanthanides from aqueous media containing 1.0 M buffered lactic acid) indicates that the dominant metal complex is Ln(DEHP·HDEHP)(3). At 0.013 M extracted lanthanide, the scattering results indicate lower Ln:DEHP stoichiometry and larger scattering particles. At higher metal concentrations, the SANS results indicate large aggregates, the largest aggregates achieving a size equivalent to 20 HDEHP monomers as the primary scattering entity. Analysis of particle shapes indicates best fits with a uniform oblate spheroid particle. These results are discussed in connection with the results of a number of complementary observations that have been made on this system.

  17. Study of (Cyclic Peptide)-Polymer Conjugate Assemblies by Small-Angle Neutron Scattering.

    Science.gov (United States)

    Koh, Ming Liang; FitzGerald, Paul A; Warr, Gregory G; Jolliffe, Katrina A; Perrier, Sébastien

    2016-12-19

    We present a fundamental study into the self-assembly of (cyclic peptide)-polymer conjugates as a versatile supramolecular motif to engineer nanotubes with defined structure and dimensions, as characterised in solution using small-angle neutron scattering (SANS). This work demonstrates the ability of the grafted polymer to stabilise and/or promote the formation of unaggregated nanotubes by the direct comparison to the unconjugated cyclic peptide precursor. This ideal case permitted a further study into the growth mechanism of self-assembling cyclic peptides, allowing an estimation of the cooperativity. Furthermore, we show the dependency of the nanostructure on the polymer and peptide chemical functionality in solvent mixtures that vary in the ability to compete with the intermolecular associations between cyclic peptides and ability to solvate the polymer shell.

  18. Small angle neutron scattering (SANS and V-SANS) study of asphaltene aggregates in crude oil.

    Science.gov (United States)

    Headen, Thomas F; Boek, Edo S; Stellbrink, Jörg; Scheven, Ulrich M

    2009-01-06

    We report small angle neutron scattering (SANS) experiments on two crude oils. Analysis of the high-Q SANS region has probed the asphaltene aggregates in the nanometer length scale. We find that the radius of gyration decreases with increasing temperature. We show that SANS measurements on crude oils give similar aggregate sizes to those found from SANS measurements of asphaltenes redispersed in deuterated toluene. The combined use of SANS and V-SANS on crude oil samples has allowed the determination of the radius of gyration of large scale asphaltene aggregates of approximately 0.45 microm. This has been achieved by the fitting of Beaucage functions over two size regimes. Analysis of the fitted Beaucage functions at very low-Q has shown that the large scale aggregates are not simply made by aggregation of all the smaller nanoaggregates. Instead, they are two different aggregates coexisting.

  19. Small-angle neutron scattering from polymer hydrogels with memory effect for medicine immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Kulvelis, Yu. V., E-mail: kulvelis@pnpi.spb.ru; Lebedev, V. T.; Trunov, V. A. [Russian Academy of Sciences, Orlova roshcha, Konstantinov Nuclear Physics Institute (Russian Federation); Pavlyuchenko, V. N. [Kirov Military Medical Academy (Russian Federation); Ivanchev, S. S.; Primachenko, O. N.; Khaikin, S. Ya. [Boreskov Institute of Catalysis, St. Petersburg Branch (Russian Federation)

    2011-12-15

    Hydrogels synthesized based on cross-linked copolymers of 2-hydroxyethyl methacrylate and functional monomers (acrylic acid or dimethylaminoethyl methacrylate), having a memory effect with respect to target medicine (cefazolin), have been investigated by small-angle neutron scattering. The hydrogels are found to have a two-level structural organization: large (up to 100 nm) aggregates filled with network cells (4-7 nm in size). The structural differences in the anionic, cationic, and amphiphilic hydrogels and the relationship between their structure and the ability of hydrogels to absorb moisture are shown. A relationship between the memory effect during cefazolin immobilization and the internal structure of hydrogels, depending on their composition and type of functional groups, is established.

  20. Elucidating the Molecular Deformation Mechanism of Entangled Polymers in Fast Flow by Small Angle Neutron Scattering

    Science.gov (United States)

    Wang, Yangyang; Sanchez-Diaz, Luis; Cheng, Shiwang; Hong, Kunlun; Chen, Wei-Ren; Liu, Jianning; Lin, Panpan; Wang, Shi-Qing

    Understanding the viscoelastic properties of polymers is of fundamental and practical importance because of the vast and ever expanding demand of polymeric materials in daily life. Our current theoretical framework for describing the nonlinear flow behavior of entangled polymers is built upon the tube model pioneered by de Gennes, Doi, and Edwards. In this work, we critically examine the central hypothesis of the tube model for nonlinear rheology using small angle neutron scattering (SANS). While the tube model envisions a unique non-affine elastic deformation mechanism for entangled polymers, our SANS measurements show that the evolution of chain conformation of a well-entangled polystyrene melt closely follows the affine deformation mechanism in uniaxial extension, even when the Rouse Weissenberg number is much smaller than unity. This result provides a key clue for understanding the molecular deformation mechanism of entangled polymers in fast flow. Several implications from our analysis will be discussed in this talk.

  1. Small-angle neutron scattering study of structural evolution of different phases in protein solution

    Indian Academy of Sciences (India)

    V K Aswal; S Chodankar; J Kohlbrecher; R Vavrin; A G Wagh

    2008-10-01

    Small-angle neutron scattering (SANS) has been used to study the structural evolution of different phases in protein solution leading to crystallization, denaturation and gelation. The protein solution under crystallization mostly consists of monomers and dimers, and higher-mers are not observed as they are perhaps formed in very small numbers. The onset and the rate of crystallization strongly depend on the salt concentration. Protein denaturation on addition of surfactant occurs due to the formation of micelle-like clusters along the unfolded polypeptide chains of the protein. The structure of such protein{surfactant complex is found to be independent of the size of the micelles in their pure surfactant solutions. The structure of temperature-induced protein gels shows a fractal structure. Rheology of these gels shows a strong dependence on varying pH or protein concentration, whereas the structure of such gels is found to be similar.

  2. Small-angle neutron scattering studies of nonionic surfactant: Effect of sugars

    Indian Academy of Sciences (India)

    K Shivaji Sharma; J V Joshi; V K Aswal; P S Goyal; A K Rakshit

    2004-08-01

    Micellar solution of nonionic surfactant -dodecyloligo ethyleneoxide surfactant, decaoxyethylene monododecyl ether [CH3(CH2)11(OCH2CH2)10OH], C12E10 in D2O solution have been analysed by small-angle neutron scattering (SANS) at different temperatures (30, 45 and 60°C) both in the presence and absence of sugars. The structural parameters like micelle shape and size, aggregation number and micellar density have been determined. It is found that the micellar structure significantly depends on the temperature and concentration of sugars. The micelles are found to be prolate ellipsoids at 30°C and the axial ratio of the micelle increases with the increase in temperature. The presence of lower concentration of sugar reduces the size of micelles and it grows at higher concentration of sugar. The structure of micelles is almost independent of the different types of sugars used.

  3. Small angle neutron scattering studies on protein denaturation induced by different methods

    Indian Academy of Sciences (India)

    S Chodankar; V K Aswal; J Kohlbrecher; R Vavrin; A G Wagh

    2008-11-01

    Small angle neutron scattering (SANS) has been used to study conformational changes in protein bovine serum albumin (BSA) as induced by varying temperature and in the presence of protein denaturating agents urea and surfactant. BSA has pro-late ellipsoidal shape and is found to be stable up to 60°C above which it denaturates and subsequently leads to aggregation. The protein solution exhibits a fractal structure at temperatures above 64°C, with fractal dimension increasing with temperature. BSA protein is found to unfold in the presence of urea at concentrations greater than 4 M and acquires a random coil Gaussian chain conformation. The conformation of the unfolded protein in the presence of surfactant has been determined directly using contrast variation SANS measurements by contrast matching surfactant molecules. The protein acquires a random coil Gaussian conformation on unfolding with its radius of gyration increasing with increase in surfactant concentration

  4. Micelle structural studies on oil solubilization by a small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Edy Giri Rachman [Neutron Science Division, HANARO Center, Korea Atomic Energy Research Institute (KAERI), 1045 Daedok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia)], E-mail: giri@batan.go.id; Seong, Baek Seok [Neutron Science Division, HANARO Center, Korea Atomic Energy Research Institute (KAERI), 1045 Daedok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ikram, Abarrul [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia)

    2009-02-21

    A small-angle neutron scattering (SANS) technique was applied to reveal the micelle structural changes. The micelle structural changes of 0.3 M sodium dodecyl sulfate (SDS) concentration by addition of various oil, i.e. n-hexane, n-octane, and n-decane up to 60% (v/v) have been investigated. It was found that the size, aggregation number and the structures of the micelles changed exhibiting that the effective charge on the micelle decreases with an addition of oil. There was a small increase in minor axis of micelle while the correlation peak shifted to a lower momentum transfer Q and then to higher Q by a further oil addition.

  5. Monte-Carlo simulation of an ultra small-angle neutron scattering instrument based on Soller slits

    Energy Technology Data Exchange (ETDEWEB)

    Rieker, T. [Univ. of New Mexico, Albuquerque, NM (United States); Hubbard, P. [Sandia National Labs., Albuquerque, NM (United States)

    1997-09-01

    Monte Carlo simulations are used to investigate an ultra small-angle neutron scattering instrument for use at a pulsed source based on a Soller slit collimator and analyzer. The simulations show that for a q{sub min} of {approximately}le-4 {angstrom}{sup -1} (15 {angstrom} neutrons) a few tenths of a percent of the incident flux is transmitted through both collimators at q=0.

  6. Elucidation of density profile of self-assembled sitosterol + oryzanol tubules with small-angle neutron scattering

    NARCIS (Netherlands)

    Bot, A.; Gilbert, E.P.; Bouwman, W.G.; Sawalha, H.I.M.; Adel, den R.; Garamus, V.M.; Venema, P.; Linden, van der E.; Flöter, E.

    2012-01-01

    Small-angle neutron scattering (SANS) experiments have been performed on self-assembled tubules of sitosterol and oryzanol in triglyceride oils to investigate details of their structure. Alternative organic phases (deuterated and non-deuterated decane, limonene, castor oil and eugenol) were used to

  7. Are Thermoresponsive Microgels Model Systems for Concentrated Colloidal Suspensions? A Rheology and Small-Angle Neutron Scattering Study

    NARCIS (Netherlands)

    Stieger, M.A.; Pedersen, J.S.; Lindner, P.; Richtering, W.

    2004-01-01

    The structure of concentrated temperature-sensitive poly(N-isopropylacrylamide) (PNiPAM) microgel suspensions has been investigated employing rheology and small-angle neutron scattering (SANS). A previously described model expression for the particle form factor Pinho(q) is extended by a model hard

  8. Size and shape of the repetitive domain of high molecular weight wheat gluten proteins. 1. Small angle neutron scattering

    NARCIS (Netherlands)

    Egelhaaf, SU; van Swieten, E; Bosma, T; de Boef, E; van Dijk, AA; Robillard, GT; Egelhaaf, Stefan U.

    2003-01-01

    The solution structure of the central repetitive domain of high molecular weight (HMW) wheat gluten proteins has been investigated for a range of concentrations and temperatures using mainly small-angle neutron scattering. A representative part of the repetitive domain (dBl) was studied as well as a

  9. Dipolar structures in magnetite ferrofluids studied with small-angle neutron scattering with and without applied magnetic field

    NARCIS (Netherlands)

    Klokkenburg, M.; Erne, B.H.; Wiedenmann, A.; Petukhov, A.V.; Philipse, A.P.

    2007-01-01

    Field-induced structure formation in a ferrofluid with well-defined magnetite nanoparticles with a permanent magnetic dipole moment was studied with small-angle neutron scattering (SANS) as a function of the magnetic interactions. The interactions were tuned by adjusting the size of the well-defined

  10. Spin-Echo Small Angle Neutron Scattering analysis of liposomes and bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Heijkamp, Leon F van; Sevcenco, Ana-Maria; Abou, Diane; Luik, Remko van; Krijger, Gerard C; Schepper, Ignatz M de; Wolterbeek, Bert; Bouwman, Wim G [Faculty of Applied Sciences, Department of Radiation, Radionuclides and Reactors, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Hagedoorn, Peter-Leon [Faculty of Applied Sciences, Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands); Koning, Gerben A, E-mail: l.f.vanheijkamp@tudelft.n, E-mail: w.g.bouwman@tudelft.n [Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus Medical Center, POBox 1738, 3000 DR Rotterdam (Netherlands)

    2010-10-01

    Two types of liposomes, commonly used in drug delivery studies, and E. coli bacteria, all prepared in H{sub 2}O, were resuspended in D{sub 2}O and measured with Small Angle Spin-Echo Neutron Scattering (SESANS). Modeling was performed using correlation functions for solid spheres and hollow spheres. The signal strength and curve shape were more indicative of hollow particles, indicating that the H{sub 2}O-D{sub 2}O exchange occurred too fast to be observed with the available time resolution. Fitting the particle diameter and membrane thickness of the hollow sphere model to the data, gave results which were in good agreement with Dynamic Light Scattering (DLS) data and literature, showing as a proof-of-principle that SESANS is able to investigate such systems. SESANS may become a good alternative to conventional tritium studies or a tool with which to study intracellular vesicle transport phenomena, with possible in vivo applications. Calculations show that a substantial change in numbers of a mixed system of small and large biological particles should be observable. A possible application is the destruction by external means of great numbers of liposomes in the presence of tumor cells for triggered drug release in cancer treatment. Since SESANS is both non-invasive and non-destructive and can handle relatively thick samples, it could be a useful addition to more conventional techniques.

  11. Small-angle neutron scattering investigation of polyurethane aged in dry and wet air

    Directory of Open Access Journals (Sweden)

    Q. Tian

    2014-05-01

    Full Text Available The microstructures of Estane 5703 aged at 70°C in dry and wet air have been studied by small-angle neutron scattering. The samples were swollen in deuterated toluene for enhancing the contrast. The scattering data show the characteristic domain structure of polyurethanes consisting of soft and hard segments. Debye-Anderson-Brumberger function used with hard sphere structure factor, and the Teubner-Strey model are used to analyze the two-phase domain structure of the polymer. The combined effects of temperature and humidity have a strong disruption effect on the microstructures of Estane. For the sample aged at 70°C in wet air for 1 month, the domain size, described by the correlation length, increases from 2.3 to 3.8 nm and their distance, expressed by hard-sphere interaction radius, increases from 8.4 to 10.6 nm. The structure development is attributed to degradation of polymer chains as revealed by gel permeation chromatography. The hydrolysis of ester links on polymer backbone at 70°C in the presence of water humidity is the main reason for the changes of the microstructure. These findings can contribute to developing predictive models for the safety, performance, and lifetime of polyurethanes.

  12. Monomeric Amyloid Beta Peptide in Hexafluoroisopropanol Detected by Small Angle Neutron Scattering.

    Directory of Open Access Journals (Sweden)

    Bo Zhang-Haagen

    Full Text Available Small proteins like amyloid beta (Aβ monomers are related to neurodegenerative disorders by aggregation to insoluble fibrils. Small angle neutron scattering (SANS is a nondestructive method to observe the aggregation process in solution. We show that SANS is able to resolve monomers of small molecular weight like Aβ for aggregation studies. We examine Aβ monomers after prolonged storing in d-hexafluoroisopropanol (dHFIP by using SANS and dynamic light scattering (DLS. We determined the radius of gyration from SANS as 1.0±0.1 nm for Aβ1-40 and 1.6±0.1 nm for Aβ1-42 in agreement with 3D NMR structures in similar solvents suggesting a solvent surface layer with 5% increased density. After initial dissolution in dHFIP Aβ aggregates sediment with a major component of pure monomers showing a hydrodynamic radius of 1.8±0.3 nm for Aβ1-40 and 3.2±0.4 nm for Aβ1-42 including a surface layer of dHFIP solvent molecules.

  13. Electron microscope and small angle neutron scattering studies of chicken liver fatty acid synthase

    Energy Technology Data Exchange (ETDEWEB)

    Stoops, J.K.; Wakil, S.J.; Uberbacher, E.C.; Bunick, G.J.

    1986-05-01

    Electron microscopic studies of negatively stained chicken liver fatty acid synthase revealed images of various shapes and sizes. The dimeric structures could be related to each other as rod-life in open form and C-like in closed form. The rods measure 200A and 50A in their major and minor axis, respectively. The C-shaped structures have a diameter ranging from 70-100A, representing the degree to which they are closed. The model that most accurately represents the native enzyme was determined using small angle neutron scattering of the active enzyme in solution. These studies resulted in considerable refinement of the model obtained by electron microscopy. The enzyme has a radius of gyration of 58A and the scattering curves were best fit by a model in which the dimeric enzyme consisted of two side by side ellipsoidal cylinders with overall dimension of 150A X 136A X 60A. The molecule has a cleft extending the length of the major axis with a 5A overlap between the two cylinders. The ellipsoidal cross section of the subunit has a major and minor axis and 70 and 60A, respectively. This model is compatible with the linear functional model proposed earlier.

  14. Phase separation of a binary liquid in anodic aluminium oxide templates: a structural study by small angle neutron scattering.

    Science.gov (United States)

    Lefort, R; Duvail, J-L; Corre, T; Zhao, Y; Morineau, D

    2011-07-01

    The radial nanostructure of the binary liquid triethylamine/water confined in 60 nm diameter independent cylindrical pores of anodic aluminium oxide membranes is studied by small angle neutron scattering. It is shown that composition inhomogeneities are present in the confined mixtures well below the bulk critical point. An analysis of the neutron scattering form factor reveals the existence of an adsorbed water layer of a few nanometers at the liquid/alumina interface, coexisting with a TEA-rich phase in the core.

  15. Characterization of nanoparticles of lidocaine in w/o microemulsions using small-angle neutron scattering and dynamic light scattering

    Indian Academy of Sciences (India)

    A Shukla; M A Kiselev; A Hoell; R H H Neubert

    2004-08-01

    Microemulsions (MEs) are of special interest because a variety of reactants can be introduced into the nanometer-sized aqueous domains, leading to materials with controlled size and shape [1,2]. In the past few years, significant research has been conducted in the reverse ME-mediated synthesis of organic nanoparticles [3,4]. In this study, a w/o ME medium was employed for the synthesis of lidocaine by direct precipitation in w/o microemulsion systems: water/isopropylpalmitat/Tween80/Span80. The particle size as well as the location of nanoparticles in the ME droplet were characterized by means of dynamic light scattering (DLS) and small angle neutron scattering (SANS). It is observed that lidocaine precipitated in the aqueous cores because of its insolubility in water. Hydrodynamic radius and gyration radius of microemulsion droplets were estimated as ∼ 15 nm and ∼ 4.50 nm from DLS and SANS respectively. Furthermore, different size parameters obtained by DLS and SANS experiments were compared

  16. Internal structures of agar-gelatin co-hydrogels by light scattering, small-angle neutron scattering and rheology.

    Science.gov (United States)

    Santinath Singh, S; Aswal, V K; Bohidar, H B

    2011-06-01

    Internal structures of agar-gelatin co-hydrogels were investigated as a function of their volumetric mixing ratio, [Formula: see text] , 1.0 and 2.0 using dynamic light scattering (DLS), small-angle neutron scattering (SANS) and rheology. The degree of non-ergodicity ( X = 0.2 ± 0.02) , which was extracted as a heterodyne contribution from the measured dynamic structure factor data remained less than that of homogeneous solutions where ergodicity is expected (X = 10. The static structure factor, I(q) , results obtained from SANS were interpreted in the Guinier regime (low-q , which implied the existence of ≈ 250 nm long rod-like structures (double-helix bundles), and the power law (intermediate-q regions) yielded I (q) ~ q(−α) with α = 2.3 , 1.8 and 1.6 for r = 0.5 , 1.0 and 2.0. This is indicative of the presence of Gaussian chains at low r , while at r = 2 there was a propensity of rod-shaped structures. The gel strength and transition temperatures measured from frequency sweep and temperature ramp studies were suggestive of the presence of a stronger association between the two biopolymer networks at higher r . The results indicate that the internal structures of agar-gelatin co-hydrogels were highly dependent on the volumetric mixing ratio.

  17. The new small-angle neutron scattering instrument SANS-1 at MLZ-characterization and first results

    Science.gov (United States)

    Mühlbauer, S.; Heinemann, A.; Wilhelm, A.; Karge, L.; Ostermann, A.; Defendi, I.; Schreyer, A.; Petry, W.; Gilles, R.

    2016-10-01

    A thorough characterization of the key features of the new small-angle neutron scattering instrument SANS-1 at MLZ, a joint project of Technische Universität München and Helmholtz Zentrum Geesthacht, is presented. Measurements of the neutron beam profile, divergency and flux are given for various positions along the instrument including the sample position, and agree well with Monte Carlo simulations of SANS-1 using the program McStas. Secondly, the polarization option of SANS-1 is characterized for a broad wavelength band. A key feature of SANS-1 is the large accessible Q-range facilitated by the sideways movement of the detector. Particular attention is hence paid to the effects that arise due to large scattering angles on the detector where a standard cos3 solid angle correction is no longer applicable. Finally the performance of the instrument is characterized by a set of standard samples.

  18. Using Small-Angle Neutron Scattering to Detect Nanoscopic Lipid Domains

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jianjun [ORNL; Heberle, Frederick A [ORNL; Petruzielo, Robin S [Cornell University; Katsaras, John [ORNL

    2013-01-01

    The cell plasma membrane is a complex system, which is thought to be capable of exhibiting non-random lateral organization. Studies of live cells and model membranes have yielded mechanisms responsible for the formation, growth, and maintenance of nanoscopic heterogeneities, although the existence and mechanisms that give rise to these heterogeneities remain controversial. Small-angle neutron scattering (SANS) is a tool ideally suited to interrogate lateral heterogeneity in model membranes, primarily due to its unique spatial resolution (i.e., "5 100 nm) and its ability to resolve structure with minimal perturbation to the membrane. In this review we examine several methods used to analyze the SANS signal arising from freely suspended unilamellar vesicles containing lateral heterogeneity. Specifically, we discuss an analytical model for a single, round domain on a spherical vesicle. We then discuss a numerical method that uses Monte Carlo simulation to describe systems with multiple domains and/or more complicated morphologies. Also discussed are several model-independent approaches that are sensitive to membrane heterogeneity. The review concludes with several recent applications of SANS to the study of membrane raft mixtures.

  19. Small-Angle Neutron Scattering and Spontaneous Formation of Unilamellar Vesicles: Potential Vehicles for Drug Delivery

    Science.gov (United States)

    Katsaras, John

    2004-03-01

    Unilamellar vesicles (ULVs) are single-bilayer shells with radii commonly between 10 and 100 nm, and are widely used as model membranes, drug delivery systems, microreactors and substrates for a variety of enzymes and proteins. A common method of making ULVs is the extrusion of multilamellar vesicles (MLVs) through synthetic membranes of known pore size. These extruded ULVs are invariably unstable and in due time, revert back to MLVs. Over the years there have been reports of the spontaneous formation of stable ULVs in surfactant, lipid, and lipid/detergent mixtures. These ULVs have sometimes been shown to be monodisperse and their radii were found, almost without exception, to vary with concentration. We have carried-out small-angle neutron scattering (SANS) experiments on a biomimetic system composed of the phospholipids dimyristoyl and dihexanoyl phosphorylcholine (DMPC and DHPC, respectively). Doping DMPC/DHPC multilamellar vesicles with either the negatively charged lipid dimyristoyl phosphorylglycerol (DMPG, net charge -1) or the divalent cation, calcium (Ca2+) leads to the spontaneous formation of monodisperse unilamellar vesicles whose radii are concentration independent, in contrast to previous experimental observations.

  20. Structural formation of huntingtin-like aggregates probed by small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Christopher B [ORNL; Perevozchikova, Tatiana [ORNL; Berthelier-Jung, Valerie M [ORNL

    2011-01-01

    In several neurodegenerative disorders, including Huntington s disease (HD), aspects concerning the earliest of protein structures that form along the aggregation pathway have increasingly gained attention since these particular species are likely to be neurotoxic. We used time-resolved small-angle neutron scattering (SANS) to probe in solution these transient structures formed by peptides having the N-terminal sequence context of mutant huntingtin (Htt) exon 1. We obtained snapshots of the formed aggregates as the kinetic reaction ensued to yield quantitative information on their size and mass. At the early stage, small precursor species with an initial radius of gyration (Rg) of 16.1 5.9 and average mass of a dimer to trimer were monitored. Structural growth was treated as two modes with a transition from three-dimensional early aggregate formation to two-dimensional fibril growth and association. Our SANS results on the internal structure of the mature fibrils demonstrate loose packing with about 1 peptide per 4.75 -sheet repeat distance, which is shown to be quantitatively consistent with a -helix model. This research provides new insights into the structures forming along the pathway of Htt exon 1 aggregation and should assist in determining the role that precursors play in neuronal toxicity.

  1. Small angle neutron scattering study of two nonionic surfactants in water micellar solutions

    Indian Academy of Sciences (India)

    Rajewska Aldona

    2008-11-01

    Two classic nonionic surfactants – C14E7 (heptaethylene glycol monotetra-decyl ether) and C10E7 (heptaethylene glycol monodecyl ether) were investigated in heavy water solution for concentration = 0.17% (dilute regime) at different temperatures in the range = 10–35°C by small angle neutron scattering (SANS) method. In the case of C14E7 surfactant – for all temperatures at = 0.17% there are two axial ellipsoidal micelles with longer axis 15 nm at 10°C and 49.5 nm at 35°C in investigated solutions. For C10E7 surfactant at the same concentration of solution and temperature – two axial ellipsoidal micelles were observed, too. The longer axis is equal to 7.5 nm at 10°C, 9 nm at 20°C and at 35°C this axis is equal to 12 nm. Micelles of C10E7 nonionic surfactant are smaller than those of C14E7 surfactant in the same experimental conditions.

  2. The aggregation behavior of zinc-free insulin studied by small-angle neutron scattering

    DEFF Research Database (Denmark)

    Pedersen, J.S.; Hansen, S.; Bauer, R.

    1994-01-01

    that the diameter of the aggregates is 40 Angstrom at pH 11 and 10 mM NaCl, independent of the protein concentration. The largest diameter of about 120 Angstrom is found for pH 8, 100 mM NaCl, and a protein concentration of 10 mg/ml. Estimates of the pair distance distribution functions, free of inter...... to an equilibrium model recently introduced by Kadima et al. (1993). The neutron scattering results agree well with the predictions of this model except that broader mass distributions are suggested by neutron scattering....

  3. 12-D-Hydroxyoctadecanoic acid organogels : a small angle neutron scattering study

    Science.gov (United States)

    Terech, P.

    1992-12-01

    An optically active fatty acid derivative, 12-D-hydroxyoctadecanoic acid, gives thermally reversible and plastic gels in a variety of organic solvents. The structural parameters of the fibrous aggregates constituting the gel network are obtained from small angle neutron scattering experiments. The cross-sectional shape can be either a rather monodisperse square or a very elongated rectangle dependent upon the solvent type and concentration. With gels in benzene, the cross-section is a square of 214Åside with ca. 40 molecules per angström length of rigid fibre. The monoclinic symmetry of the crystalline aggregates induces, on the one hand, the appropriate molecular arrangements for an infinite H-bonding sequence along the fibre axis and, on the other hand, the ability to develop ribbon-like structures. Un acide gras optiquement actif, l'acide D-hydroxyl-12 octadécanoïque, donne des gels thermiquement réversibles et plastiques dans une variété de solvants organiques. Les paramètres structuraux des agrégats fibrillaires qui constituent le réseau du gel sont déduit à partir d'expériences de diffusion de neutrons aux petits angles. La forme de la section-droite des fibres peut être soit carrée et relativement monodisperse, soit très rectangulaire selon le type de solvant et la concentration. Pour des gels dans le benzène, la section-droite est un carré de 214Åde côté avec environ 40 molécules par angström de longueur de fibre rigide. La symétrie monoclinique des agrégats cristallins de D-HOA conduit d'une part, aux arrangements moléculaires d'une séquence infinie de liaisons H le long de l'axe de la fibre et d'autre part, à la capacité de développer des structures en rubains.

  4. Static and quasi-elastic small angle neutron scattering on biocompatible ionic ferrofluids: magnetic and hydrodynamic interactions

    CERN Document Server

    Gazeau, F; Dubois, E; Perzynski, R

    2003-01-01

    We investigate the structure and dynamics of ionic magnetic fluids (MFs), based on ferrite nanoparticles, dispersed at pH approx 7 either in H sub 2 O or in D sub 2 O. Polarized and non-polarized static small angle neutron scattering (SANS) experiments in zero magnetic field allow us to study both the magnetic and the nuclear contributions to the neutron scattering. The magnetic interparticle attraction is probed separately from the global thermodynamic repulsion and compares well to direct magnetic susceptibility measurements. The magnetic interparticle correlation is in these fluid samples independent of the probed spatial scale. In contrast, a spatial dependence of the interparticle correlation is evidenced at large PHI by the nuclear structure factor. A model of magnetic interaction quantitatively explains the under-field anisotropy of the SANS nuclear contribution. In a quasi-elastic neutron spin-echo experiment, we probe the Brownian dynamics of translation of the nanoparticles in the range 1.3 sup<=...

  5. Concept for a Time-of-Flight Small Angle Neutron Scattering Instrument at the European Spallation Source

    CERN Document Server

    Jaksch, S; Ostermann, A; Jestin, J; Pinto, S Duarte; Bouwman, W G; Uher, J; Engels, R; Kemmerling, G; Hanslik, R; Frielinghaus, H

    2014-01-01

    A new Small Angle Neutron Scattering instrument is proposed for the European Spallation Source. The pulsed source requires a time-of-flight analysis of the gathered neutrons at the detector. The optimal instrument length is found to be rather large, which allows for a polarizer and a versatile collimation. The polarizer allows for studying magnetic samples and incoherent background subtraction. The wide collimation will host VSANS and SESANS options that increase the resolution of the instrument towards um and tens of um, respectively. Two 1m2 area detectors will cover a large solid angle simultaneously. The expected gains for this new instrument will lie in the range between 20 and 36, depending on the assessment criteria, when compared to up-to-date reactor based instruments. This will open new perspectives for fast kinetics, weakly scattering samples, and multi-dimensional contrast variation studies.

  6. Concept for a time-of-flight Small Angle Neutron Scattering instrument at the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Jaksch, S. [ESS Design Update Programme – Germany, Forschungszentrum Jülich GmbH, Jülich (Germany); Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Garching (Germany); Martin-Rodriguez, D. [ESS Design Update Programme – Germany, Forschungszentrum Jülich GmbH, Jülich (Germany); Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Garching (Germany); Neutron Optics and Shielding Group, European Spallation Source AB, Lund (Sweden); Ostermann, A. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) at Heinz Maier-Leibnitz Zentrum, Technische Universität Muünchen, Garching (Germany); Jestin, J. [Laboratoire Léon Brillouin, LLB, CEA—Saclay, Gif sur Yvette cedex (France); Duarte Pinto, S.; Bouwman, W.G. [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands); Uher, J. [Amsterdam Scientific Instruments, Amsterdam (Netherlands); Engels, R. [Zentralinstitut für Elektronik (ZEA-2), Forschungszentrum Jülich GmbH, Jülich (Germany); Frielinghaus, H. [ESS Design Update Programme – Germany, Forschungszentrum Jülich GmbH, Jülich (Germany); Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Garching (Germany)

    2014-10-21

    A new Small Angle Neutron Scattering instrument is proposed for the European Spallation Source. The pulsed source requires a time-of-flight analysis of the gathered neutrons at the detector. The optimal instrument length is found to be rather large, which allows for a polarizer and a versatile collimation. The polarizer allows for studying magnetic samples and incoherent background subtraction. The wide collimation will host VSANS and SESANS options that increase the resolution of the instrument towards µm and tens of µm, respectively. Two 1 m{sup 2} area detectors will cover a large solid angle simultaneously. The expected gains for this new instrument will lie in the range between 20 and 36, depending on the assessment criteria, when compared to up-to-date reactor based instruments. This will open new perspectives for fast kinetics, weakly scattering samples, and multi-dimensional contrast variation studies.

  7. Small angle neutron scattering study of U(VI) third phase formation in HNO3/DHDECMP–-dodecane system

    Indian Academy of Sciences (India)

    K V Lohithakshan; V K Aswal; S K Aggarwal

    2008-11-01

    Small angle neutron scattering studies (SANS) were carried out to understand the formation of third phase in DHDECMP–dodecane–UO2(NO3)2/HNO3 system. It was observed that third phase formation takes place due to the formation of UO2(NO3)2. DHDECMP reverse micelles in the dodecane phase. SANS data obtained were interpreted with particle interaction model using Baxter sticky spheres model.

  8. Small-angle neutron scattering study of structure and kinetics of temperature-induced protein gelation.

    Science.gov (United States)

    Chodankar, S; Aswal, V K; Kohlbrecher, J; Vavrin, R; Wagh, A G

    2009-02-01

    The phase diagram, structural evolution, and kinetics of temperature-induced protein gelation of protein Bovine Serum Albumin (BSA) have been studied as a function of solution pH and protein concentration. The protein gelation temperature represents the onset of turbidity in the protein solution, which increases significantly with increasing pH beyond the isoelectric pH of the protein molecule. On the other hand, the gelation temperature decreases with an increase in protein concentration only in the low-protein-concentration regime and shows a small increasing trend at higher protein concentrations. The structural evolution and kinetics of protein gelation have been studied using small-angle neutron scattering. The structure of the protein molecule remains stable up to temperatures very close to the gelation temperature. On increasing the temperature above the gelation temperature, the protein solution exhibits a fractal structure, an indication of gel formation due to aggregation. The fractal dimension of the gel increases with increasing temperature, suggesting an increase in branching between the aggregates, which leads to stronger gels. The increase in both solution pH and protein concentration is found to delay the growth in the fractal structure and its saturation. The kinetics of gelation has been studied using the temperature-jump process of heating. It is found that the structure of the protein gels remains invariant after the heating time ( approximately 1 min), indicating a rapid formation of gel structure within this time. The protein gels prepared through gradual and temperature-jump heating routes do not always show the same structure. In particular, at higher temperatures (e.g., 85 degrees C ), while gradual heating shows a fractal structure, there is collapse of such fractal structure during temperature-jump heating.

  9. Morphology of fast-tumbling bicelles: a small angle neutron scattering and NMR study.

    Science.gov (United States)

    Luchette, P A; Vetman, T N; Prosser, R S; Hancock, R E; Nieh, M P; Glinka, C J; Krueger, S; Katsaras, J

    2001-08-06

    Bilayered micelles, or bicelles, which consist of a mixture of long- and short-chain phospholipids, are a popular model membrane system. Depending on composition, concentration, and temperature, bicelle mixtures may adopt an isotropic phase or form an aligned phase in magnetic fields. Well-resolved (1)H NMR spectra are observed in the isotropic or so-called fast-tumbling bicelle phase, over the range of temperatures investigated (10-40 degrees C), for molar ratios of long-chain lipid to short-chain lipid between 0.20 and 1.0. Small angle neutron scattering data of this phase are consistent with the model in which bicelles were proposed to be disk-shaped. The experimentally determined dimensions are roughly consistent with the predictions of R.R. Vold and R.S. Prosser (J. Magn. Reson. B 113 (1996)). Differential paramagnetic shifts of head group resonances of dimyristoylphosphatidylcholine (DMPC) and dihexanoylphosphatidylcholine (DHPC), induced by the addition of Eu(3+), are also consistent with the bicelle model in which DHPC is believed to be primarily sequestered to bicelle rims. Selective irradiation of the DHPC aliphatic methyl resonances results in no detectable magnetization transfer to the corresponding DMPC methyl resonances (and vice versa) in bicelles, which also suggests that DHPC and DMPC are largely sequestered in the bicelle. Finally, (1)H spectra of the antibacterial peptide indolicidin (ILPWKWPWWPWRR-NH(2)) are compared, in a DPC micellar phase and the above fast-tumbling bicellar phases for a variety of compositions. The spectra exhibit adequate resolution and improved dispersion of amide and aromatic resonances in certain bicelle mixtures.

  10. Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering

    DEFF Research Database (Denmark)

    Freltoft, T.; Kjems, Jørgen; Sinha, S. K.

    1986-01-01

    Small-angle neutron scattering from normal, compressed, and water-suspended powders of aggregates of fine silica particles has been studied. The samples possessed average densities ranging from 0.008 to 0.45 g/cm3. Assuming power-law correlations between particles and a finite correlation length ξ.......34±0.1 for the water-suspended samples. The intensity of scattering was found to scale with the correlation length in the manner expected for a fractal system...

  11. A study of alcohol-induced gelation of beta-lactoglobulin with small-angle neutron scattering, neutron spin echo, and dynamic light scattering measurements.

    Science.gov (United States)

    Yoshida, Koji; Yamaguchi, Toshio; Osaka, Noboru; Endo, Hitoshi; Shibayama, Mitsuhiro

    2010-04-07

    Gelation of beta-lactoglobulin (beta-Lg) in various alcohol-water mixtures with 0.1 M (M = mol L(-1)) hydrochloric acid was investigated with small-angle neutron scattering (SANS), neutron spin echo (NSE), and time-resolved dynamic light scattering (TRDLS) measurements. The beta-Lg in alcohol-water solutions undergoes gelation at specific alcohol concentrations where the alcohol-induced alpha-helical structure of beta-Lg is stabilized. The SANS profiles showed that beta-Lg exists as a single molecule at a low alcohol concentration. With increasing alcohol concentration, the profiles indicate a power law behavior of approximately 1.7 when the samples gelate. These behaviors were observed in all alcohol-water mixtures used, but the alcohol concentrations where the SANS profiles change shift to a lower alcohol concentration region with an increase in the size of the hydrophobic group of the alcohols. Apparent diffusion constants, obtained from the intermediate scattering function (ISF) of NSE and the intensity time correlation function (ITCF) of TRDLS, mainly depend on the viscosity of alcohol-water mixtures before gelation. After gelation, on the other hand, the ISFs of gels do not change appreciably in the range of the NSE time scale, indicating the microscopically rigid structure of beta-Lg gel. The ITCF functions obtained from TRDLS follow a double exponential decay type before gelation, but a logarithmic one (exponent alpha = 0.7) after gelation. It is most likely that the alcohol-induced gelation undergoes a similar mechanism to that for the heat-induced one at pH = 7 where beta-Lg aggregates stick together to form a fractal network, although the gelation time is faster in the former than in the latter.

  12. Carbide precipitates in solution-quenched PH13-8 Mo stainless steel: A small-angle neutron scattering investigation

    Indian Academy of Sciences (India)

    D Sen; A K Patra; S Mazumder; J Mittra; G K Dey; P K De

    2004-08-01

    This paper deals with the small-angle neutron scattering (SANS) investigation on solution-quenched PH13-8 Mo stainless steel. From the nature of the variation of the functionality of the profiles for varying specimen thickness and also from the transmission electron microscopy (TEM), it has been established that the small-angle scattering signal predominantly originates from the block-like metallic carbide precipitates in the specimen. The contribution due to double Bragg reflection is not significant in the present case. The single scattering profile has been extracted from the experimental profiles corresponding to different values of specimen thickness. In order to avoid complexity and non-uniqueness of the multi-parameter minimization for randomly oriented polydisperse block-like precipitate model, the data have been analyzed assuming randomly oriented polydisperse cylindrical particle model with a locked aspect ratio.

  13. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  14. Small angle X-ray and neutron scattering from solutions of biological macromolecules

    CERN Document Server

    Svergun, Dmitri I; May, Roland P; Timmins, Peter A

    2013-01-01

    In this book, following the presentation of the basics of scattering from isotropic macromolecular solutions, modern instrumentation, experimental practice and advanced analysis techniques are explained. Advantages of X-rays (rapid data collection, small sample volumes) and of neutrons (contrast variation by hydrogen/deuterium exchange) are specifically highlighted. Examples of applications of the technique to different macromolecular systems are considered with specific emphasis on the synergistic use of SAXS/SANS with other structural, biophysical and computational techniques.

  15. Investigation of the structure of unilamellar dimyristoylphosphatidylcholine vesicles in aqueous sucrose solutions by small-angle neutron and X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, M. A., E-mail: elena@jinr.ru; Zemlyanaya, E. V.; Zhabitskaya, E. I.; Aksenov, V. L. [Joint Institute for Nuclear Research (Russian Federation)

    2015-01-15

    The structure of a polydispersed population of unilamellar dimyristoylphosphatidylcholine (DMPC) vesicles in sucrose solutions has been investigated by small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). Calculations within the model of separated form factors (SFF) show that the structure of the vesicle system depends strongly on the sucrose concentration.

  16. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    science, ranging from large-scale structures and dynamics of polymers and biological systems, to electronic properties of today's technological materials. Neutron scattering developed into a vast field, encompassing many different experimental techniques aimed at exploring different aspects of matter's atomic structure and dynamics. Modern magnetic neutron scattering includes several specialized techniques designed for specific studies and/or particular classes of materials. Among these are magnetic reflectometry aimed at investigating surfaces, interfaces, and multilayers, small-angle scattering for the large-scale structures, such as a vortex lattice in a superconductor, and neutron spin-echo spectroscopy for glasses and polymers. Each of these techniques and many others offer exciting opportunities for examining magnetism and warrant extensive reviews, but the aim of this chapter is not to survey how different neutron-scattering methods are used to examine magnetic properties of different materials. Here, we concentrate on reviewing the basics of the magnetic neutron scattering, and on the recent developments in applying one of the oldest methods, the triple axis spectroscopy, that still is among the most extensively used ones. The developments discussed here are new and have not been coherently reviewed. Chapter 2 of this book reviews magnetic small-angle scattering, and modern techniques of neutron magnetic reflectometry are discussed in Chapter 3.

  17. Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering

    Directory of Open Access Journals (Sweden)

    Norbert Kučerka

    2015-09-01

    Full Text Available We review recent developments in the rapidly growing field of membrane biophysics, with a focus on the structural properties of single lipid bilayers determined by different scattering techniques, namely neutron and X-ray scattering. The need for accurate lipid structural properties is emphasized by the sometimes conflicting results found in the literature, even in the case of the most studied lipid bilayers. Increasingly, accurate and detailed structural models require more experimental data, such as those from contrast varied neutron scattering and X-ray scattering experiments that are jointly refined with molecular dynamics simulations. This experimental and computational approach produces robust bilayer structural parameters that enable insights, for example, into the interplay between collective membrane properties and its components (e.g., hydrocarbon chain length and unsaturation, and lipid headgroup composition. From model studies such as these, one is better able to appreciate how a real biological membrane can be tuned by balancing the contributions from the lipid’s different moieties (e.g., acyl chains, headgroups, backbones, etc..

  18. Quantifying "Softness" of Organic Coatings on Gold Nanoparticles Using Correlated Small-Angle X-ray and Neutron Scattering.

    Science.gov (United States)

    Diroll, Benjamin T; Weigandt, Katie M; Jishkariani, Davit; Cargnello, Matteo; Murphy, Ryan J; Hough, Lawrence A; Murray, Christopher B; Donnio, Bertrand

    2015-12-09

    Small-angle X-ray and neutron scattering provide powerful tools to selectively characterize the inorganic and organic components of hybrid nanomaterials. Using hydrophobic gold nanoparticles coated with several commercial and dendritic thiols, the size of the organic layer on the gold particles is shown to increase from 1.2 to 4.1 nm. A comparison between solid-state diffraction from self-assembled lattices of nanoparticles and the solution data from neutron scattering suggests that engineering softness/deformability in nanoparticle coatings is less straightforward than simply increasing the organic size. The "dendritic effect" in which higher generations yield increasingly compact molecules explains changes in the deformability of organic ligand shells.

  19. Microstructural investigations of materials for low temperature co-fired ceramic (LTCC) based fuel cell using small angle neutron scattering

    Science.gov (United States)

    Mohamed, A. A.; Ahmad, M. H.; Ibrahim, A.; Azman, A.; Alias, R.; Ambak, Z.; Shapee, S.; Putra, E. G.; Patriati, A.; Sharom, M. A.; Yazid, H.; Mamat, M. R.; Karim, J. A.; Idris, F. M.; Yazid, K.; Zin, M. R.

    2013-06-01

    The concept and the realization fuel cell based on LTCC technology require the investigations of fired LTCC microstructures. The majority of the works involved using small angle neutron scattering studies on the microstructural of LTCC ceramic tape and development of neutron tomography for future tool to visualize channels inside the fired tape. Most SANS characterization were carried out at Smarter SANS instrument at BATAN, Indonesia. Standard sample for resolving tens of micron of object size were measured using simple neutron tomography setup utilizing monochromatic SANS beam at Malaysian Nuclear Agency. The initial microstructural findings indicates that organic additives shape the final microstructural of LTCC after firing with the glassy material possibly fill the space left by the burned organic additives. The tomography results showed that 40 micron size object can be differentiated. The conductor deposited on LTCC is preliminary investigated which will later be used as support for catalyst.

  20. Recent Development of a 36 meter Small-Angle Neutron Scattering BATAN Spectrometer (SMARTer) in Serpong Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Edy Giri Rachman; Bharoto [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia, Gedung 40 Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Seong, Baek Seok, E-mail: giri@batan.go.i [Neutron Science Division, HANARO Center, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejon 305-353 (Korea, Republic of)

    2010-10-01

    The 36 meter small-angle neutron scattering (SANS) spectrometer BATAN (SMARTer) in Serpong, Indonesia has been revitalised for several years. The work on replacing, upgrading and improving the control system and the experimental method were conducted in order to setup the spectrometer back in operation. Two main personal computers, one for handling and controlling the mechanical system and another one for acquiring neutron data were employed at the spectrometer. The standard and established SANS data reduction and analysis programs, such as GRASP and NIST Igor have been implemented to subtract the raw scattered neutron data with the backgrounds and then analyse the corrected data. The scattering data of ferrofluids samples, Fe{sub 3}O{sub 4} and MnZnFe{sub 2}O{sub 4} have been obtained using SANS spectrometers in BATAN Serpong, Indonesia and HANARO-KAERI, Republic of Korea for inter-laboratory comparison and investigation of proposed research interest. The results were comparable from both scattering data analysis.

  1. Bragg prism monochromator and analyser for super ultra-small angle neutron scattering studies

    Indian Academy of Sciences (India)

    Apoorva G Wagh; Sohrab Abbas; Markus Strobl; Wolfgang Treimer

    2008-11-01

    We have designed, fabricated and operated a novel Bragg prism monochromator–analyser combination. With a judicious choice of the Bragg reflection, its asymmetry and the apex angle of the silicon single crystal prism, the monochromator has produced a neutron beam with sub-arcsec collimation. A Bragg prism analyser with the opposite asymmetry has been tailored to accept a still sharper angular profile. With this optimized monochromator–analyser pair, we have attained the narrowest and sharpest neutron angular profile to date. At this facility, we have recorded the first SUSANS spectra spanning wave vector transfers ∼ 10−6 Å-1 to characterize samples containing agglomerates up to tens of micrometres in size.

  2. Probing the anisotropic vortex lattice in the Fe-based superconductor KFe2As2 using small angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Debeer-Schmitt, Lisa M [ORNL; Dewhurst, Charles [Institut Laue-Langevin (ILL); Kikuchi, Hiroko [Ochanomizu University, Japan; Cameron, Alistair [University of Birmingham, The, Birmingham, United Kingdom; Heslop, Richard [University of Birmingham, The, Birmingham, United Kingdom; Forgan, E. M. [University of Birmingham, The, Birmingham, United Kingdom; Bowell, Charlotte [University of Cambridge; White, Jonathon [Laboratory for Neutron Scattering ETHZ & PSI; Gavilano, Jorge [ETH Zurich, Switzerland

    2013-01-01

    Using small angle neutron scattering, the anisotropy of the magnetic vortex lattice (VL), in the heavily hole-doped pnictide superconductor, KFe2As2, was studied. Well-ordered VL scattering patterns were measured with elds applied in directions between B k c and the basal plane, rotating either towards [100] or [110]. Slightly distorted hexagonal patterns were observed when B k c. However, the scattering pattern distorted strongly as the eld was rotated away from the c- axis. At low eld, the arrangement of vortices is strongly aected by the anisotropy of penetration depth in the plane perpendicular to the eld. By tting the distortion with the anisotropic London model, we obtained an estimate of 3:4 for the anisotropy factor, , between the in-plane and c-axis penetration depths at the lowest temperature studied. The results further reveal VL phase transitions as a function of eld direction. We discuss these transitions using the "Hairy Ball" theorem.

  3. Structure of pure SDS and DTAB micelles in brine determined by small-angle neutron scattering (SANS)

    DEFF Research Database (Denmark)

    Bergström, M.; Pedersen, J.S.

    1999-01-01

    The geometrical structure of pure SDS and DTAB surfactant micelles in the absence of added salt as well as its dependence on the concentration of NaBr have been investigated at 40 degrees C using small-angle neutron scattering (SANS). In contrast to previous SANS measurements on the same systems we...... have analysed the scattering data in the entire regime of scattering vectors that are relevant for determining the structure of the micelles. Our obtained results for pure surfactant micelles, as well as those of mixed catanionic micelles presented in a recent study, show somewhat unexpectedly...... that ordinary surfactant micelles are shaped as circular or elongated bilayers (tablets). Both SDS and DTAB micelles appeared to be disk-like in pure D2O and the corresponding data were best fitted with a model for (monodisperse) oblate ellipsoids of revolution with half axes a=12.0 Angstrom, b=20.3 Angstrom...

  4. Orientation and Relaxation of Polymer-clay Solutions Studied by Rheology and Small-angle Neutron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Malwitz, M. M. [Louisiana State University; Butler, Paul D [ORNL; Porcar, L. [National Institute of Standards and Technology (NIST); Angelette, D. P. [Louisiana State University; Schmidt, G. [National Institute of Standards and Technology (NIST)

    2004-01-01

    The influence of shear on viscoelastic solutions of poly(ethylene oxide) (PEO) and clay [montmorillonite, i.e., Cloisite NA+ (CNA)] was investigated with rheology and small-angle neutron scattering (SANS). The steady-state viscosity and SANS were used to measure the shear-induced orientation and relaxation of the polymer and clay platelets. Anisotropic scattering patterns developed at much lower shear rates than in pure clay solutions. The scattering anisotropy saturated at low shear rates, and the CNA clay platelets aligned with the flow, with the surface normal parallel to the gradient direction. The cessation of shear led to partial and slow randomization of the CNA platelets, whereas extremely fast relaxation was observed for laponite (LRD) platelets. These PEO-CNA networklike solutions were compared with previously reported PEO-LRD networks, and the differences and similarities, with respect to the shear orientation, relaxation, and polymer-clay interactions, were examined.

  5. Structural investigation on gamma-irradiated polyacrylamide hydrogels using small-angle neutron scattering and ultraviolet–visible spectroscopy

    Indian Academy of Sciences (India)

    Sivananatham M; Tata B V R; Aswal V K

    2016-03-01

    Small-angle neutron scattering (SANS) and ultraviolet (UV)–visible spectroscopictechniques are used to investigate the microstructural changes in polyacrylamide (PAAm) hydrogels on gamma irradiation. SANS measurements have revealed the presence of inhomogeneities in nanometre scale and reduction of their size with increase in dose. Analysis of SANS data alsorevealed the increase in the correlation length with increase in dose. The extinction coefficient obtained from the UV–visible spectroscopic studies exhibited $\\lambda^{−\\beta}$ dependence between 500 and 700 nm and is understood to arise from the existence of scatterers (inhomogeneities) in submicron scale in PAAm hydrogels. The increase in value of exponent $\\beta$ with increase in dose indicates that the size of scatterers decrease with increase in dose.

  6. Effect of heat treatment on pore structure in nanocrystalline NiO: A small angle neutron scattering study

    Indian Academy of Sciences (India)

    J Bahadur; D Sen; S Mazumder; S Ramanathan

    2008-11-01

    Nanocrystalline nickel oxide powders were calcined at 300, 600 and 900°C and pore structure evolution was followed by small angle neutron scattering (SANS). Pore size distributions at two widely separated size ranges have been revealed. Shrinkage of larger-sized pore with reduction in polydispersity has been observed with increasing heat treatment temperature. The pore structures at various heat treatment temperatures do not scale. This has been attributed to the grain boundary diffusion leading to an asymmetric shrinkage of the pores.

  7. Morphology of carbon nanotubes prepared via chemical vapour deposition technique using acetylene: A small angle neutron scattering investigation

    Indian Academy of Sciences (India)

    D Sen; K Dasgupta; J Bahadur; S Mazumder; D Sathiyamoorthy

    2008-11-01

    Small angle neutron scattering (SANS) has been utilized to study the morphology of the multi-walled carbon nanotubes prepared by chemical vapour deposition of acetylene. The effects of various synthesis parameters like temperature, catalyst concentration and catalyst support on the size distribution of the nanotubes are investigated. Distribution of nanotube radii in two length scales has been observed. The number density of the smaller diameter tubes was found more in number compared to the bigger one for all the cases studied. No prominent scaling of the structure factor was observed for the different synthesis conditions.

  8. Small-angle neutron scattering study of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particle

    Science.gov (United States)

    Sato, M.; Ito, Y.; Kameyama, K.; Imai, M.; Ishikawa, N.; Takagi, T.

    1995-02-01

    The overall and internal structure of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particles was investigated by small-angle neutron scattering using the contrast variation method. The vaccine is a nearly spherical particle, and its contrast-matching point was determined to be at about 24% D 2O content, indicating that a large part of the vaccine particle is occupied by lipids and carbohydrates from the yeast. The Stuhrmann plot suggests that the surface antigens exist predominantly in the peripheral region of the particle, which is favorable to the induction of anti-virus antibodies.

  9. Small angle neutron scattering studies of mixed micelles of sodium cumene sulphonate with cetyl trimethylammonium bromide and sodium dodecyl sulphate

    Indian Academy of Sciences (India)

    K V Padalkar; V G Gaikar; V K Aswal

    2008-11-01

    The aqueous solutions of sodium cumene sulphonate (NaCS) and its mixtures with each of cetyl trimethylammonium bromide (CTAB) and sodium dodecyl sulphate (SDS) are characterized by small angle neutron scattering (SANS). NaCS when added to CTAB solution leads to the formation of long rod-shaped micelles with a dramatic increase in the CTAB aggregation number. Its addition to SDS on the other hand results in the formation of smaller mixed micelles where part of SDS molecules in the micelle is replaced by NaCS molecules.

  10. Molecular association of cryptand 221D in NaCl-water solutions. A small-angle neutron scattering study

    OpenAIRE

    Caponetti, E.; Chillura Martino, D.; Floriano, M.; R TRIOLO

    1993-01-01

    Molecules of 5-Decyl-4,7,13,16,21-pentaoxa-1,10-diaza-bicyclo-[8.8.5.]tricosan (221D) and its sodium complex, with both a hydrophobic and a hydrophilic portion, are expected to form aggregates in water solutions. This was confirmed by surface tension measurements. The aggregation behaviour was studied by small-angle neutron scattering at two different [NaCl]/[221D] molar ratios, such as to obtain, in one case, aggregates entirely made up of ionic monomers, and in the other, mixed micelles con...

  11. Imaging with Scattered Neutrons

    OpenAIRE

    Ballhausen, H.; Abele, H.; Gaehler, R.; Trapp, M.; Van Overberghe, A.

    2006-01-01

    We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-re...

  12. X-ray magnetic circular dichroism and small angle neutron scattering study of thiol capped gold nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M. A.; Haskel, D.; Pinel, E. F.; te Velthuis, S. G. E.; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian, C.; Garcia, M. A.; Univ. Complutense de Madrid; Inst. de Magnetismo Aplicado UCM; Univ. Pisa; Univ. di Padova

    2009-11-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 {center_dot} 10{sup -4} was found at the Au L{sub 3} edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M{sub s}, of 0.06 emu/g{sub Au}. SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.

  13. X-ray magnetic circular dichroism and small angle neutron scattering studies of thiol capped gold nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M. A.; Haskel, D.; te Velthuis, S. G. E; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian Fernandez, C.; Garcia, M. A.; Univ.Complutense de Madrid; Inst. de Magnetismo Aplicado; Univ. of Pisa; Lab. di Magnetismo Molecolare

    2009-01-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 {center_dot} 10{sup -4} was found at the Au L{sub 3} edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M{sub s}, of 0.06 emu/g{sub Au}. SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.

  14. Mesostructure anisotropy of bacterial cellulose-polyacrylamide hydrogels as studied by spin-echo small-angle neutron scattering

    CERN Document Server

    Velichko, E V; Chetverikov, Yu O; Duif, C P; Bouwman, W G; Smyslov, R Yu

    2016-01-01

    The submicron- and micron-scale structures of composite hydrogels based on bacterial cellulose (BC) and polyacrylamide were studied by spin-echo small-angle neutron scattering (SESANS). These hydrogels were synthesized via free-radical polymerization of acrylamide carried out in pellicle of BC swollen in the reaction solution. No neutron scattering was observed for the samples swollen in heavy water to the equilibrium state, but a SESANS signal appeared when TbCl$_{3}$ salt was added to the solvent. The SESANS dependences obtained for these samples revealed the anisotropy of mesostructure for the hydrogels under investigation. Density inhomogeneities on the characteristic scale of 11.5 $\\pm$ 0.5 $\\mu$m were detected in one specific orientation of the sample, i.e. with growth plane of BC parallel to plane formed by neutron beam and spin-echo length. The uniaxial anisotropy revealed agrees with the proposed model, which attributes this behavior to the existence of the tunnel-like oriented structures inside BC.

  15. The study of the structural properties of very low viscosity sodium alginate by small-angle neutron scattering

    Science.gov (United States)

    Badita, C. R.; Aranghel, D.; Radulescu, A.; Anitas, E. M.

    2016-03-01

    Sodium alginate is a linear polymer extract from brown algae and it is used in the biomedical, food, cosmetics and pharmaceutical industries as solution property modifiers and gelling agents. But despite the extensive studies of the alginate gelation process, still some fundamental questions remain unresolved. The fractal behavior of very low viscosity sodium alginate solutions and their influence on the critical gelation of alginate induced by Ca2+ ions were investigated using Small-Angle Neutron Scattering (SANS) measurements. SANS data are interpreted using both standard linear plots and the Beaucage model. The scattering intensity is dependent by alginate concentration and Ca2+ concentration. From a critical concentration of 1.0 % w/w our polymer swelled forming spherical structures with rough surfaces. Also the addition of the salt induces the collapse and the appearance of the aggregation and clusters formation.

  16. Effect of crystal shape on neutron rocking curves of perfect single crystals designed for ultra-small-angle scattering experiments

    Science.gov (United States)

    Freund, A. K.; Rehm, C.

    2014-07-01

    The present study has been conducted in the framework of the channel-cut crystal design for the Kookaburra ultra-small-angle neutron scattering (USANS) instrument to be installed at the OPAL reactor of ANSTO. This facility is based on the classical Bonse-Hart method that uses two multiple-reflection crystal systems. The dynamical theory of diffraction by perfect crystals distinguishes two cases: the Darwin case applying to infinitely thick crystals and the Ewald solution for very small absorption taking into account the reflection from the rear face of a plane-parallel crystal reflecting in Bragg geometry. The former is preferable because it yields narrower rocking curves. To prevent the neutrons to "see" the rear face, grooves were machined into the backside of perfect Si test crystals for single reflection and filled with neutron absorbing material. These samples were examined at the S18 instrument of the Institut Laue-Langevin. Unexpectedly the crystals with empty slots showed an increase of the rocking curve width. When filling the slots with an absorber the widths decreased, but without reaching that of the Darwin curve. Understanding the results and achieving a successful crystal design call for the development of a theory that permits to describe neutron diffraction from crystals with a structured back face.

  17. Fractal Structures on Fe{sub 3}O{sub 4} Ferrofluid: A Small-Angle Neutron Scattering Study

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Edy Giri Rachman; Ikram, Abarrul [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia, Gedung 40 Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Seong, Baek Seok; Shin, Eunjoo [Neutron Science Division, HANARO Center, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejon 305-353 (Korea, Republic of); Ani, Sistin Ari; Darminto, E-mail: giri@batan.go.i [Department of Physics, Faculty on Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology Kampus ITS Sukolilo, Surabaya 60111 (Indonesia)

    2010-10-01

    A small-angle neutron scattering (SANS) which is a powerful technique to reveal the large scale structures was applied to investigate the fractal structures of water-based Fe{sub 3}O{sub 4}ferrofluid, magnetic fluid. The natural magnetite Fe{sub 3}O{sub 4} from iron sand of several rivers in East Java Province of Indonesia was extracted and purified using magnetic separator. Four different ferrofluid concentrations, i.e. 0.5, 1.0, 2.0 and 3.0 Molar (M) were synthesized through a co-precipitation method and then dispersed in tetramethyl ammonium hydroxide (TMAH) as surfactant. The fractal aggregates in ferrofluid samples were observed from their SANS scattering distributions confirming the correlations to their concentrations. The mass fractal dimension changed from about 3 to 2 as ferrofluid concentration increased showing a deviation slope at intermediate scattering vector q range. The size of primary magnetic particle as a building block was determined by fitting the scattering profiles with a log-normal sphere model calculation. The mean average size of those magnetic particles is about 60 - 100 A in diameter with a particle size distribution {sigma} = 0.5.

  18. SMALL-ANGLE NEUTRON SCATTERING CHARACTERIZATION OF THE STRUCTURE OF NANOPOROUS CARBONS FOR ENERGY-RELATED APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    He, Lilin [ORNL; Mavila Chathoth, Suresh [ORNL; Melnichenko, Yuri B [ORNL; Presser, Volker [Drexel University; Mcdonough, John [Drexel University; Gogotsi, Yury G. [Drexel University

    2011-01-01

    We used small-angle neutron scattering (SANS) and neutron contrast variation to study the structure of four nanoporouscarbons prepared by thermo-chemical etching of titanium carbide TiC in chlorine at 300, 400, 600, and 800 C with pore diameters ranging between -4 and -11 {angstrom}. SANS patterns were obtained from dry samples and samples saturated with deuterium oxide (D{sub 2}O) in order to delineate origin of the power law scattering in the low Q domain as well as to evaluate pore accessibility for D{sub 2}O molecules. SANS cross section of all samples was fitted to Debye-Anderson-Brumberger (DAB), DAB-Kirste-Porod models as well as to the Guinier and modified Guinier formulae for cylindrical objects, which allowed for evaluating the radii of gyration as well as the radii and lengths of the pores under cylindrical shape approximation. SANS data from D{sub 2}O-saturated samples indicate that strong upturn in the low Q limit usually observed in the scattering patterns from microporous carbon powders is due to the scattering from outer surface of the powder particles. Micropores are only partially filled with D{sub 2}O molecules due to geometrical constraints and or partial hydrophobicity of the carbon matrix. Structural parameters of the dry carbons obtained using SANS are compared with the results of the gas sorption measurements and the values agree for carbide-derived carbons (CDCs) obtained at high chlorination temperatures (>600 C). For lower chlorination temperatures, pore radii obtained from gas sorption overestimate the actual pore size as calculated from SANS for two reasons: inaccessible small pores are present and the model-dependent fitting based on density functional theory models assumes non-spherical pores, whereas SANS clearly indicates that the pore shape in microporous CDC obtained at low chlorination temperatures is nearly spherical.

  19. Oedometric Small Angle Neutron Scattering: In-Situ Observation of Deformation Partitioning in Clay-rich Samples

    Science.gov (United States)

    Bryan, C. R.; Heath, J. E.; Hjelm, R.; Taylor, M.; Olds, D.; Dewers, T. A.

    2014-12-01

    We present novel oedometric small angle neutron scattering (SANS) on deforming clay-rich materials. Oedometric SANS involves a non-hydrostatic pressure vessel (i.e., the oedometer) that places a porous sample under uniaxial strain with control of applied pore pressure. The oedometer is optimized for neutron optics of SANS on the Low-Q Diffractometer of the Los Alamos Neutron Science Center. The device enables normal oedometric measurements of time-dependent compaction, but with SANS for in situ observation of pore structure evolution under uniaxial strain as a function of effective stress and pore fluid compositions. We present preliminary examination of clay compaction and testing of the device. Funding from the DOE Basic Energy Sciences Geosciences Program is gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Analysis of the pore structure of activated carbons produced from paper mill sludge using small angle neutron scattering data

    Energy Technology Data Exchange (ETDEWEB)

    Sandi, G.; Khalil, N. R.; Littrell, K.; Thiyagarajan, P.

    1999-12-13

    A novel, cost-effective, and environmentally benign process was developed to produce highly efficient carbon-based adsorbents (CBAs) from paper mill sludge. The production process required chemical activation of sludge using zinc chloride and pyrolysis at 750 C in N{sub 2} gas. The produced CBAs were characterized according to their surface area and pore size distribution using N{sub 2}-BET adsorption isotherm data. Further characterization of the surface and pore structure was conducted using a unified exponential/power law approach applied to small angle neutron scattering (SANS) data. The structural features analyzed by SANS revealed the dependence of porosity with zinc chloride concentration. The presence of inaccessible pores was also determined by contrast-match experiments.

  1. Characterization of oligomerization of a peptide from the ebola virus glycoprotein by small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Egorov, V. V., E-mail: vlaegur@omrb.pnpi.spb.ru [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation); Gorshkov, A. N. [Ministry of Health of the Russian Federation, Research Institute of Influenza (Russian Federation); Murugova, T. N. [Joint Institute for Nuclear Research (Russian Federation); Vasin, A. V. [Ministry of Health of the Russian Federation, Research Institute of Influenza (Russian Federation); Lebedev, D. V.; Isaev-Ivanov, V. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation); Kiselev, O. I. [Ministry of Health of the Russian Federation, Research Institute of Influenza (Russian Federation)

    2016-01-15

    Transmission electron microscopy (TEM) and small-angle neutron scattering (SANS) studies showed that model peptides QNALVCGLRQ (G33) and QNALVCGLRG (G31) corresponding to region 551–560 of the GP protein of the Sudan Ebola virus are prone to oligomerization in solution. Both peptides can form amyloid-like fibrills. The G33 peptide forms fibrils within one day of incubation, whereas the fibrillogenesis of the G31 peptide is observed only after incubation for several months. The possible role of the observed processes in the pathogenesis and the possibility of applying a combination of the TEM and SANS techniques to search for new compounds that are able to influence the protein oligomerization are discussed.

  2. Conformation of cyclic and linear polydimethylsiloxane in the melt a small-angle neutron-scattering study

    CERN Document Server

    Gagliardi, S; Dagger, A; Semlyen, A J

    2002-01-01

    In this study we report small-angle neutron-scattering measurements of cyclic and linear polydimethylsiloxane (PDMS) in the melt. It has been suggested that due to the presence of topological constraints, rings in the melt may be more compact than Gaussian chains. We show that the cyclic chains are partially collapsed and do not follow Gaussian statistics: the weight-average radius of gyration R sub g sub , sub w is found to be proportional to M sub w sup 0 sup . sup 5 sup 3 and M sub w sup 0 sup . sup 4 sup 0 in the case of linear and cyclic PDMS, respectively. The results are in agreement with recent computer simulations, which predict R sub g to be proportional to N sup 2 sup / sup 5 , where N is the degree of polymerisation. (orig.)

  3. Conformation of cyclic and linear polydimethylsiloxane in the melt: a small-angle neutron-scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, S.; Arrighi, V. [Heriot-Watt University, Chemistry Dept., Riccarton Campus, Edinburgh, EH14 4AS (United Kingdom); Dagger, A.; Semlyen, A.J. [University of York, Chemistry Dept., Heslington, York, YO10 5DD (United Kingdom)

    2002-07-01

    In this study we report small-angle neutron-scattering measurements of cyclic and linear polydimethylsiloxane (PDMS) in the melt. It has been suggested that due to the presence of topological constraints, rings in the melt may be more compact than Gaussian chains. We show that the cyclic chains are partially collapsed and do not follow Gaussian statistics: the weight-average radius of gyration R{sub g,w} is found to be proportional to M{sub w}{sup 0.53} and M{sub w}{sup 0.40} in the case of linear and cyclic PDMS, respectively. The results are in agreement with recent computer simulations, which predict R{sub g} to be proportional to N{sup 2/5}, where N is the degree of polymerisation. (orig.)

  4. Effect of surfactant excess on the stability of low-polarity ferrofluids probed by small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Petrenko, V. I., E-mail: vip@nf.jinr.ru; Avdeev, M. V. [Joint Institute for Nuclear Research (Russian Federation); Bulavin, L. A. [Taras Shevchenko National University of Kyiv (Ukraine); Almasy, L. [Hungarian Academy of Science, Wigner Research Centre for Physics (Hungary); Grigoryeva, N. A. [St. Petersburg State University (Russian Federation); Aksenov, V. L. [National Research Centre “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation)

    2016-01-15

    The structures of ferrofluids (FFs) based on nonpolar solvent decahydronaphthalene, stabilized by saturated monocarboxylic acids with hydrocarbon chains of different lengths, C16 (palmitic acid) and ?12 (lauric acid), with an excess of acid molecules, have been studied by small-angle neutron scattering. It is found that the addition of acid to an initially stable system with optimal composition leads to more significant structural changes (related to aggregation) than those observed previously for this class of FFs. A comparison of the influence of monocarboxylic acids on the stability of nonpolar FFs suggests that the enhancement of aggregation is much more pronounced in the case of palmitic acid excess. This fact confirms the conclusion of previous studies, according to which an increase in the hydrocarbon chain length in a saturated acid reduces the efficiency of the corresponding FF stabilization.

  5. Effect of surfactant excess on the stability of low-polarity ferrofluids probed by small-angle neutron scattering

    Science.gov (United States)

    Petrenko, V. I.; Avdeev, M. V.; Bulavin, L. A.; Almasy, L.; Grigoryeva, N. A.; Aksenov, V. L.

    2016-01-01

    The structures of ferrofluids (FFs) based on nonpolar solvent decahydronaphthalene, stabilized by saturated monocarboxylic acids with hydrocarbon chains of different lengths, C16 (palmitic acid) and ?12 (lauric acid), with an excess of acid molecules, have been studied by small-angle neutron scattering. It is found that the addition of acid to an initially stable system with optimal composition leads to more significant structural changes (related to aggregation) than those observed previously for this class of FFs. A comparison of the influence of monocarboxylic acids on the stability of nonpolar FFs suggests that the enhancement of aggregation is much more pronounced in the case of palmitic acid excess. This fact confirms the conclusion of previous studies, according to which an increase in the hydrocarbon chain length in a saturated acid reduces the efficiency of the corresponding FF stabilization.

  6. Exploring the structure of biological macromolecules in solution using Quokka, the small angle neutron scattering instrument, at ANSTO

    Science.gov (United States)

    Wood, Kathleen; Jeffries, Cy M.; Knott, Robert B.; Sokolova, Anna; Jacques, David A.; Duff, Anthony P.

    2015-10-01

    Small angle neutron scattering (SANS) is widely used to extract structural parameters, shape and other types of information from a vast array of materials. The technique is applied to biological macromolecules and their complexes in solution to reveal information often not accessible by other techniques. SANS measurements on biomolecules present some particular challenges however, one of which is suitable instrumentation. This review details SANS experiments performed on two well-characterised globular proteins (lysozyme and glucose isomerase) using Quokka, the recently commissioned SANS instrument at the Australian Nuclear Science and Technology Organisation (ANSTO). The instrument configuration as well as data collection and reduction strategies for biological investigations are discussed and act as a general reference for structural biologists who use the instrument. Both model independent analysis of the two proteins and ab initio modelling illustrate that Quokka-SANS data can be used to successfully model the overall shapes of proteins in solution, providing a benchmark for users.

  7. Exploring the structure of biological macromolecules in solution using Quokka, the small angle neutron scattering instrument, at ANSTO

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Kathleen, E-mail: kw@ansto.gov.au [Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, NSW 2234 (Australia); Jeffries, Cy M.; Knott, Robert B.; Sokolova, Anna [Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, NSW 2234 (Australia); Jacques, David A. [MRC Laboratory of Molecular Biology, Cambridge (United Kingdom); Duff, Anthony P. [Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, NSW 2234 (Australia)

    2015-10-21

    Small angle neutron scattering (SANS) is widely used to extract structural parameters, shape and other types of information from a vast array of materials. The technique is applied to biological macromolecules and their complexes in solution to reveal information often not accessible by other techniques. SANS measurements on biomolecules present some particular challenges however, one of which is suitable instrumentation. This review details SANS experiments performed on two well-characterised globular proteins (lysozyme and glucose isomerase) using Quokka, the recently commissioned SANS instrument at the Australian Nuclear Science and Technology Organisation (ANSTO). The instrument configuration as well as data collection and reduction strategies for biological investigations are discussed and act as a general reference for structural biologists who use the instrument. Both model independent analysis of the two proteins and ab initio modelling illustrate that Quokka-SANS data can be used to successfully model the overall shapes of proteins in solution, providing a benchmark for users.

  8. Characterization of oligomerization of a peptide from the ebola virus glycoprotein by small-angle neutron scattering

    Science.gov (United States)

    Egorov, V. V.; Gorshkov, A. N.; Murugova, T. N.; Vasin, A. V.; Lebedev, D. V.; Isaev-Ivanov, V. V.; Kiselev, O. I.

    2016-01-01

    Transmission electron microscopy (TEM) and small-angle neutron scattering (SANS) studies showed that model peptides QNALVCGLRQ (G33) and QNALVCGLRG (G31) corresponding to region 551-560 of the GP protein of the Sudan Ebola virus are prone to oligomerization in solution. Both peptides can form amyloid-like fibrills. The G33 peptide forms fibrils within one day of incubation, whereas the fibrillogenesis of the G31 peptide is observed only after incubation for several months. The possible role of the observed processes in the pathogenesis and the possibility of applying a combination of the TEM and SANS techniques to search for new compounds that are able to influence the protein oligomerization are discussed.

  9. Small-angle neutron scattering study of aggregate structures of multi-headed pyridinium surfactants in aqueous solution

    Indian Academy of Sciences (India)

    J Haldar; V K Aswal; P S Goyal; S Bhattacharya

    2004-08-01

    The aggregate structures of a set of novel single-chain surfactants bearing one, two and three pyridinium headgroups have been studied using small-angle neutron scattering (SANS). It is found that the nature of aggregate structures of these cationic surfactants depend on the number of headgroups present in the surfactants. The single-headed pyridinium surfactant forms the lamellar structure, whereas surfactants with double and triple headgroups form micelles in water. The aggregates shrink in size with increase in the number of headgroups in the surfactants. The aggregation number () continually decreases and the fractional charge () increases with more number of headgroups on the surfactants. The semimajor axis () and semiminor axis ( = ) of the micelle also decrease with the increase in the number of headgroups in the surfactants. This indicates that hydrocarbon chains in such micelles prepared from multiheaded surfactants adopt bent conformation and no longer stay in extended conformation.

  10. A small angle neutron scattering study on the mixtures of pluronic L121 and anionic surfactant AOT

    Indian Academy of Sciences (India)

    G Ghosh; V K Aswal; D Varade

    2008-11-01

    Small angle neutron scattering (SANS) experiments have been carried out on the micellar solutions containing mixtures of a hydrophobic triblock copolymer (L121, EO5PO68EO5) and a hydrophobic anionic surfactant (AOT, sodium bis(2-ethylhexyl)sulphosuccinate) in water with varying ratio () of AOT to L121 for = 0.15, 0.2, 0.3, 0.5 and 0.6. It is known that either L121 or AOT alone forms vesicles in water, but in the mixture with appropriate ratio of the two components a thermodynamically stable, isotropic solution of apparently small micelle-like aggregates is formed. We find that these micelles are prolate ellipsoidal.

  11. Explaining the non-newtonian character of aggregating monoclonal antibody solutions using small-angle neutron scattering.

    Science.gov (United States)

    Castellanos, Maria Monica; Pathak, Jai A; Leach, William; Bishop, Steven M; Colby, Ralph H

    2014-07-15

    A monoclonal antibody solution displays an increase in low shear rate viscosity upon aggregation after prolonged incubation at 40°C. The morphology and interactions leading to the formation of the aggregates responsible for this non-Newtonian character are resolved using small-angle neutron scattering. Our data show a weak repulsive barrier before proteins aggregate reversibly, unless a favorable contact with high binding energy occurs. Two types of aggregates were identified after incubation at 40°C: oligomers with radius of gyration ∼10 nm and fractal submicrometer particles formed by a slow reaction-limited aggregation process, consistent with monomers colliding many times before finding a favorable strong interaction site. Before incubation, these antibody solutions are Newtonian liquids with no increase in low shear rate viscosity and no upturn in scattering at low wavevector, whereas aggregated solutions under the same conditions have both of these features. These results demonstrate that fractal submicrometer particles are responsible for the increase in low shear rate viscosity and low wavevector upturn in scattered intensity of aggregated antibody solutions; both are removed from aggregated samples by filtering.

  12. Interparticle interactions and structure in nonideal solutions of human serum albumin studied by small-angle neutron scattering and Monte Carlo simulation

    DEFF Research Database (Denmark)

    Sjöberg, B.; Mortensen, K.

    1994-01-01

    Moderately or highly concentrated nonideal solutions of macromolecules are very important systems e.g. in biology and in many technical processes. In this work we have used the small-angle neutron scattering technique (SANS) to study the interactions and interparticle structure in solutions...

  13. Pauli Limiting and Multi-Band Superconductivity in KFe2As2 Studied by Small-Angle Neutron Scattering

    Science.gov (United States)

    Eskildsen, M. R.; Kuhn, S. J.; Kawano-Furukawa, H.; Ono, M.; Forgan, E. M.; Jellyman, E.; Riyat, R.; Lee, C. H.; Kihou, K.; Hardy, F.; Wolf, Th.; Meingast, C.; Gavilano, J. L.

    We have studied the intrinsic anisotropy of the superconducting state in KFe2As2, using used small-angle neutron scattering to image the vortex lattice (VL) as the applied magnetic field is rotated towards the FeAs planes. The anisotropy is found to be strongly field dependent, indicating multi-band superconductivity. Furthermore, the high field anisotropy significantly exceeds that of the upper critical field, providing further support for Pauli limiting in KFe2As2 for field applied along the basal plane. Finally, we are able determine the contribution to the field modulation in the mixed state due to Pauli Paramagnetic Effects by measuring both the non-spin flip and spin flip VL scattered intensity. This represents the first instance where all the effects listed above have been obtained simultaneously and in a comprehensive manner by a single experimental technique. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Award DE-FG02-10ER46783.

  14. Small-angle neutron scattering from mixtures of sodium dodecyl sulfate and a cationic, bolaform surfactant containing azobenzene.

    Science.gov (United States)

    Hubbard, F Pierce; Santonicola, Gabriella; Kaler, Eric W; Abbott, Nicholas L

    2005-07-05

    This paper reports on the microstructures formed in aqueous solutions containing mixtures of sodium dodecyl sulfate (SDS) and a photosensitive, bolaform surfactant, bis(trimethylammoniumhexyloxy)azobenzene dibromide (BTHA). By using quasi-elastic light scattering and small-angle neutron scattering, we determined that aqueous solutions containing SDS and the trans isomer of BTHA (0.1 wt % total surfactant, 15 mol % BTHA, 85 mol % SDS) form vesicles with average hydrodynamic diameters of 1350 +/- 50 angstroms and bilayer thicknesses of 35 +/- 2 angstroms. The measured bilayer thickness is consistent with a model of the vesicle bilayer in which the trans isomer of BTHA spans the bilayer. Upon illumination with UV light, the BTHA underwent photoisomerization to produce a cis-rich photostationary state (80% cis isomer). We measured this photoisomerization to drive the reorganization of vesicles into cylindrical aggregates with cross-sectional radii of 19 +/- 3 angstroms and average hydrodynamic diameters of 240 +/- 50 angstroms. Equilibration of the cis-rich solution in the dark at 25 degrees C for 12 h or illumination of the solution with visible light leads to the recovery of the trans-rich photostationary state of the solution and the reformation of vesicles, thus demonstrating the potential utility of this system as the basis of a tunable fluid.

  15. Small-angle neutron scattering study of sodium cholate and sodium deoxycholate interacting micelles in aqueous medium

    Indian Academy of Sciences (India)

    J Santhanalakshmi; G Shantha Lakshmi; V K Aswal; P S Goyal

    2001-02-01

    Small angle neutron scattering (SANS) measurements of D2O solutions (0 1 M) of sodium cholate (NaC) and sodium deoxycholate (NaDC) were carried out at = 298 K. Under compositions very much above the critical micelle concentration (CMC), the bile salt micelle size growths were monitored by adopting Hayter-Penfold type analysis of the scattering data. NaC and NaDC solutions show presence of correlation peaks at = 0 12 and 0 1 Å-1 respectively. Monodisperse ellipsoids of the micelles produce best fits. For NaC and NaDC systems, aggregation number (9 0, 16 0), fraction of the free counterions per micelle (0 79, 0 62), semi-minor (8 0 Å) and semi-major axes (18 4, 31 7 Å) values for the micelles were deduced. Extent of micellar growth was studied using ESR correlation time measurements on a suitable probe incorporating NaC and NaDC micelles. The growth parameter (axial ratio) values were found to be 2 3 and 4 0 for NaC and NaDC systems respectively. The values agree with those of SANS.

  16. The structure of Sindbis virus produced from vertebrate and invertabrate hosts determined by small angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    He, Lilin [ORNL; Piper, Amanda [North Carolina State University; Meilleur, Flora [ORNL; Myles, Dean A A [ORNL; Hernandez, Raquel [North Carolina State University; Brown, Dennis [North Carolina State University; Heller, William T [ORNL

    2010-01-01

    The complex natural cycle of vectored viruses that transition between host species, such as between insects and mammals, makes understanding the full life cycle of the virus an incredibly complex problem. Sindbis virus, an arbovirus and prototypic alphavirus having an inner protein shell and an outer glycoprotein coat separated by a lipid membrane, is one example of a vectored virus that transitions between vertebrate and insect hosts. While evidence of host-specific differences in Sindbis virus has been observed, no work has been performed to characterize the impact of the host species on the structure of the virus. Here, we report the first study of the structural differences between Sindbis viruses grown in mammalian and insect cells, which were determined by small-angle neutron scattering (SANS), a nondestructive technique that did not decrease the infectivity of the Sindbis virus particles studied. The scattering data and modeling showed that, while the radial position of the lipid bilayer did not change significantly, it was possible to conclude that it did have significantly more cholesterol when the virus was grown in mammalian cells. Additionally, the outer protein coat was found to be more extended in the mammalian Sindbis virus. The SANS data also demonstrated that the RNA and nucleocapsid protein share a closer interaction in the mammalian-cell-grown virus than in the virus from insect cells.

  17. Asymmetric distribution of cone-shaped lipids in a highly curved bilayer revealed by a small angle neutron scattering technique

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Y; Imai, M [Department of Physics, Ochanomizu University, Bunkyo, Tokyo 112-8610 (Japan); Urakami, N [Department of Physics and Information Sciences, Yamaguchi University, Yamaguchi 753-8512 (Japan); Taniguchi, T, E-mail: imai@phys.ocha.ac.jp [Department of Chemical Engineering, Kyoto University, Kyoto 606-8510 (Japan)

    2011-07-20

    We have investigated the lipid sorting in a binary small unilamellar vesicle (SUV) composed of cone-shaped (1,2-dihexanoyl-sn-glycero-3-phosphocholine: DHPC) and cylinder-shaped (1,2-dipalmitoyl-sn-glycero-3-phosphocholine: DPPC) lipids. In order to reveal the lipid sorting we adopted a contrast matching technique of small angle neutron scattering (SANS), which extracts the distribution of deuterated lipids in the bilayer quantitatively without steric modification of lipids as in fluorescence probe techniques. First the SANS profile of protonated SUVs at a film contrast condition showed that SUVs have a spherical shape with an inner radius of 190 A and a bilayer thickness of 40 A. The SANS profile of deuterated SUVs at a contrast matching condition showed a characteristic scattering profile, indicating an asymmetric distribution of cone-shaped lipids in the bilayer. The characteristic profile was described well by a spherical bilayer model. The fitting revealed that most DHPC molecules are localized in the outer leaflet. Thus the shape of the lipid is strongly coupled with the membrane curvature. We compared the obtained asymmetric distribution of the cone-shaped lipids in the bilayer with the theoretical prediction based on the curvature energy model.

  18. Asymmetric distribution of cone-shaped lipids in a highly curved bilayer revealed by a small angle neutron scattering technique

    Science.gov (United States)

    Sakuma, Y.; Urakami, N.; Taniguchi, T.; Imai, M.

    2011-07-01

    We have investigated the lipid sorting in a binary small unilamellar vesicle (SUV) composed of cone-shaped (1,2-dihexanoyl-sn-glycero-3-phosphocholine: DHPC) and cylinder-shaped (1,2-dipalmitoyl-sn-glycero-3-phosphocholine: DPPC) lipids. In order to reveal the lipid sorting we adopted a contrast matching technique of small angle neutron scattering (SANS), which extracts the distribution of deuterated lipids in the bilayer quantitatively without steric modification of lipids as in fluorescence probe techniques. First the SANS profile of protonated SUVs at a film contrast condition showed that SUVs have a spherical shape with an inner radius of 190 Å and a bilayer thickness of 40 Å. The SANS profile of deuterated SUVs at a contrast matching condition showed a characteristic scattering profile, indicating an asymmetric distribution of cone-shaped lipids in the bilayer. The characteristic profile was described well by a spherical bilayer model. The fitting revealed that most DHPC molecules are localized in the outer leaflet. Thus the shape of the lipid is strongly coupled with the membrane curvature. We compared the obtained asymmetric distribution of the cone-shaped lipids in the bilayer with the theoretical prediction based on the curvature energy model.

  19. A small-angle neutron scattering study of sodium dodecyl sulfate-poly(propylene oxide) methacrylate mixed micelles.

    Science.gov (United States)

    Bastiat, Guillaume; Grassl, Bruno; Borisov, Oleg; Lapp, Alain; François, Jeanne

    2006-03-15

    Mixed micelle of protonated or deuterated sodium dodecyl sulfate (SDS and SDSd25, respectively) and poly(propylene oxide) methacrylate (PPOMA) are studied by small-angle neutron scattering (SANS). In all the cases the scattering curves exhibit a peak whose position changes with the composition of the system. The main parameters which characterize mixed micelles, i.e., aggregation numbers of SDS and PPOMA, geometrical dimensions of the micelles and degree of ionisation are evaluated from the analysis of the SANS curves. The position q(max) of the correlation peak can be related to the average aggregation numbers of SDS-PPOMA and SDSd25-PPOMA mixed micelles. It is found that the aggregation number of SDS decreases upon increasing the weight ratio PPOMA/SDS (or SDSd25). The isotopic combination, which uses the "contrast effect" between the two micellar systems, has allowed us to determine the mixed micelle composition. Finally, the SANS curves were adjusted using the RMSA for the structure factor S(q) of charged spherical particles and the form factor P(q) of spherical core-shell particle. This analysis confirms the particular core-shell structure of the SDS-PPOMA mixed micelle, i.e., a SDS "core" micelle surrounded by the shell formed by PPOMA macromonomers. The structural parameters of mixed micelles obtained from the analysis of the SANS data are in good agreement with those determined previously by conductimetry and fluorescence studies.

  20. Neutron guide system for small-angle neutron scattering instruments of the Jülich Centre for Neutron Science at the FRM-II

    Science.gov (United States)

    Radulescu, A.; Ioffe, A.

    2008-02-01

    Following the shut-down of the FRJ-2 research reactor in Jülich a large part of the neutron scattering instrumentation operating there is currently being moved to the FRM-II research reactor in Garching-München. The installation of these instruments requires the design and set-up of new neutron guides with geometrical and optical features imposed by the positioning of the instruments in the neutron guide hall and by the foreseen significant improvement of the instrument performance. Particularly three SANS diffractometers require a special approach due to on one hand, their pre-determined size and on the other hand, the demanded neutron wavelength range. Expected characteristics of three neutron guides (currently under construction) optimized using VITESS and McStas simulation packages, namely the vertically "S-shaped" guides serving the KWS2 and KWS1 conventional SANS instruments and the horizontally "S-shaped" guide serving the focusing KWS3 instrument, will be reported on.

  1. Neutron guide system for small-angle neutron scattering instruments of the Juelich Centre for Neutron Science at the FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Radulescu, A. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich GmbH, Juelich Centre for Neutron Science at FRM II, Lichtenbergstr. 1, 85747 Garching (Germany)], E-mail: a.radulescu@fz-juelich.de; Ioffe, A. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich GmbH, Juelich Centre for Neutron Science at FRM II, Lichtenbergstr. 1, 85747 Garching (Germany)

    2008-02-11

    Following the shut-down of the FRJ-2 research reactor in Juelich a large part of the neutron scattering instrumentation operating there is currently being moved to the FRM-II research reactor in Garching-Muenchen. The installation of these instruments requires the design and set-up of new neutron guides with geometrical and optical features imposed by the positioning of the instruments in the neutron guide hall and by the foreseen significant improvement of the instrument performance. Particularly three SANS diffractometers require a special approach due to on one hand, their pre-determined size and on the other hand, the demanded neutron wavelength range. Expected characteristics of three neutron guides (currently under construction) optimized using VITESS and McStas simulation packages, namely the vertically 'S-shaped' guides serving the KWS2 and KWS1 conventional SANS instruments and the horizontally 'S-shaped' guide serving the focusing KWS3 instrument, will be reported on.

  2. Structural changes in C–S–H gel during dissolution: Small-angle neutron scattering and Si-NMR characterization

    Energy Technology Data Exchange (ETDEWEB)

    Trapote-Barreira, Ana, E-mail: anatrapotebarreira@gmail.com [Institute of Environmental Assessment and Water Research (IDAEA), Barcelona 08034, Catalonia (Spain); Porcar, Lionel [National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Large Scale Structure Group, Institut Laue Langevin, Grenoble (France); Cama, Jordi; Soler, Josep M. [Institute of Environmental Assessment and Water Research (IDAEA), Barcelona 08034, Catalonia (Spain); Allen, Andrew J. [National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States)

    2015-06-15

    Flow-through experiments were conducted to study the calcium–silicate–hydrate (C–S–H) gel dissolution kinetics. During C–S–H gel dissolution the initial aqueous Ca/Si ratio decreases to reach the stoichiometric value of the Ca/Si ratio of a tobermorite-like phase (Ca/Si = 0.83). As the Ca/Si ratio decreases, the solid C–S–H dissolution rate increases from (4.5 × 10{sup −} {sup 14} to 6.7 × 10{sup −} {sup 12}) mol m{sup −} {sup 2} s{sup −} {sup 1}. The changes in the microstructure of the dissolving C–S–H gel were characterized by small-angle neutron scattering (SANS) and {sup 29}Si magic-angle-spinning nuclear magnetic resonance ({sup 29}Si-MAS NMR). The SANS data were fitted using a fractal model. The SANS specific surface area tends to increase with time and the obtained fit parameters reflect the changes in the nanostructure of the dissolving solid C–S–H within the gel. The {sup 29}Si MAS NMR analyses show that with dissolution the solid C–S–H structure tends to a more ordered tobermorite structure, in agreement with the Ca/Si ratio evolution.

  3. Polarised Small Angle Neutron Scattering study of microstructural radiation damage in steels for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Coppola, R. [ENEA-Casaccia, FIS, CP 2400, 00100 Rome (Italy)]. E-mail: coppolar@casaccia.enea.it; Lindau, R. [Forschungszentrum Karlsruhe, IMF, P.O. Box 3640, D-76021 Karlsruhe (Germany); Magnani, M. [ENEA-Clementel, FIS, V. Don Fiammelli 2, 40129 Bologna (Italy); May, R.P. [Institut Max Von Laue-Paul Langevin, 6 rue Jules Horowitz, F-38042 Grenoble Cedex (France); Moeslang, A. [Forschungszentrum Karlsruhe, IMF, P.O. Box 3640, D-76021 Karlsruhe (Germany); Valli, M. [ENEA-Clementel, FIS, V. Don Fiammelli 2, 40129 Bologna (Italy)

    2006-11-15

    Polarised SANS has been used to investigate two martensitic steels for fusion reactor technology (MANET and OPTIFER, differing in their initial Cr content), before and after neutron irradiation. The measurements were carried out at the instrument D22 of the ILL, Grenoble, using an ad hoc polarised beam set-up. The results show both the occurrence of Cr redistribution phenomena with correlated changes in the composition of the precipitate phases, and the growth of non-magnetic defects (possibly microvoids), depending on the irradiation conditions and on the original steel composition.

  4. Polarised Small Angle Neutron Scattering study of microstructural radiation damage in steels for nuclear applications

    Science.gov (United States)

    Coppola, R.; Lindau, R.; Magnani, M.; May, R. P.; Möslang, A.; Valli, M.

    2006-11-01

    Polarised SANS has been used to investigate two martensitic steels for fusion reactor technology (MANET and OPTIFER, differing in their initial Cr content), before and after neutron irradiation. The measurements were carried out at the instrument D22 of the ILL, Grenoble, using an ad hoc polarised beam set-up. The results show both the occurrence of Cr redistribution phenomena with correlated changes in the composition of the precipitate phases, and the growth of non-magnetic defects (possibly microvoids), depending on the irradiation conditions and on the original steel composition.

  5. Introduction to neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    We give here an introduction to the theoretical principles of neutron scattering. The relationship between scattering- and correlation-functions is particularly emphasized. Within the framework of linear response theory (justified by the weakness of the basic interaction) the relation between fluctuation and dissipation is discussed. This general framework explains the particular power of neutron scattering as an experimental method. (author) 4 figs., 4 refs.

  6. Demonstration of a white beam far-field neutron interferometer for spatially resolved small angle neutron scattering

    CERN Document Server

    Hussey, Daniel S; Yuan, Guangcui; Pushin, Dmitry; Sarenac, Dusan; Huber, Michael G; Jacobson, David L; LaManna, Jacob M; Wen, Han

    2016-01-01

    We provide the first demonstration that a neutron far-field interferometer can be employed to measure the microstructure of a sample. The interferometer is based on the moir\\'e pattern of two phase modulating gratings which was previously realized in hard x-ray and visible light experiments. The autocorrelation length of this interferometer, and hence the microstructure length scale that is probed, is proportional to the grating spacing and the neutron wavelength, and can be varied over several orders of magnitude for one pair of gratings. We compare our measurements of the change in visibility from monodisperse samples with calculations which show reasonable agreement. The potential advantages of a far-field neutron interferometer include high fringe visibility in a polychromatic beam (over 30 %), no requirement for an absorbing grating to resolve the interference fringes, and the ability to measure the microstructure in the length scale range of 100 nm to 10 \\mum by varying either the grating spacing or neu...

  7. DMSO-Induced Dehydration of DPPC Membranes Studied by X-ray Diffraction, Small-Angle Neutron Scattering, and Calorimetry

    CERN Document Server

    Kiselev, M A; Kisselev, A M; Grabielle-Madelmond, C; Ollivon, M

    1999-01-01

    The influence of dimethyl sulfoxide (DMSO) on membrane thickness, multilamellar repeat distance, and phase transitions of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) was investigated by X-ray diffraction and small-angle neutron scattering (SANS). The differential scanning calorimetry (DSC) study of water freezing and ice melting was performed in the ternary DPPC /DMSO /water and binary DMSO /water systems. The methods applied demonstrated the differences in membrane structure in three sub-regions of the DMSO mole fraction (X_dmso): from 0.0 to 0.3 for the first, from 0.3 to 0.8 for the second, and from 0.9 to 1.0 for the third sub-region. The thickness of the intermembrane solvent at T =20C decreases from 14.4 +/- 1.8 A at X_dmso =0.0 to 7.8 +/- 1.8 A at X_dmso =0.1. The data were used to determine the number of free water molecules in the intermembrane space in the presence of DMSO. The results for 0.0 < X_dmso < 0.3 were explained in the framework of DMSO-induced dehydration of the interme...

  8. Effects of additives on the structure of rhamnolipid (biosurfactant): a small-angle neutron scattering (SANS) study.

    Science.gov (United States)

    Dahrazma, Behnaz; Mulligan, Catherine N; Nieh, Mu-Ping

    2008-03-15

    Pollution of soils and sediments by heavy metals is an environmental concern. Among the remedial techniques, soil washing is proving to be reliable. Biosurfactant rhamnolipid has shown its potential as a washing agent. In this research, small angle neutron scattering (SANS) was employed to investigate the size and morphology of rhamnolipid aggregates and micelle structure in the presence of heavy metals Cu, Zn, and Ni. The results indicate the importance of the pH of the system in the morphology of the aggregates in the rhamnolipid solution. Creation of a basic condition by addition of 1% NaOH led to the formation of large aggregates (>2000 A) + micelles with RG approximately 17 A while in the acidic environment with 1% NaCl, large polydisperse vesicles with a radius about 550-600 A were formed. The size of the aggregates in both acidic and basic condition is fine enough to ease the flow of the rhamnolipid solution through the porous media with the pore sizes as small as 200 nm.

  9. Small angle neutron scattering study of sodium dodecyl sulfate micellar growth driven by addition of a hydrotropic salt.

    Science.gov (United States)

    Hassan, P A; Fritz, Gerhard; Kaler, Eric W

    2003-01-01

    The structures of aggregates formed in aqueous solutions of an anionic surfactant, sodium dodecyl sulfate (SDS), with the addition of a cationic hydrotropic salt, p-toluidine hydrochloride (PTHC), have been investigated by small angle neutron scattering (SANS). The SANS spectra exhibit a pronounced peak at low salt concentration, indicating the presence of repulsive intermicellar interactions. Model-independent real space information about the structure is obtained from a generalized indirect Fourier transformation (GIFT) technique in combination with a suitable model for the interparticle structure factor. The interparticle interaction is captured using the rescaled mean spherical approximation (RMSA) closure relation and a Yukawa form of the interaction potential. Further quantification of the geometrical parameters of the micelles was achieved by a complete fit of the SANS data using a prolate ellipsoidal form factor and the RMSA structure factor. The present study shows that PTHC induces a decrease in the fractional charge of the micelles due to adsorption at the micellar surface and consequent growth of the SDS micelles from nearly globular to rodlike as the concentration of PTHC increases.

  10. Early stages of spinodal decomposition in Fe–Cr resolved by in-situ small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hörnqvist, M., E-mail: magnus.hornqvist@chalmers.se; Thuvander, M. [Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, S-412 96 Gothenburg (Sweden); Steuwer, A. [MAX IV Laboratory, Lund University, S-221 00 Lund (Sweden); Nelson Mandela Metropolitan University, Gardham Ave., Port Elizabeth 6031 (South Africa); King, S. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX Didcot (United Kingdom); Odqvist, J.; Hedström, P. [Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, S-100 44 Stockholm (Sweden)

    2015-02-09

    In-situ, time-resolved small-angle neutron scattering (SANS) investigations of the early stages of the spinodal decomposition process in Fe–35Cr were performed at 773 and 798 K. The kinetics of the decomposition, both in terms of characteristic distance and peak intensity, followed a power-law behaviour from the start of the heat treatment (a′{sup  }= 0.10–0.11 and a″ = 0.67–0.86). Furthermore, the method allows tracking of the high–Q slope, which is a sensitive measure of the early stages of decomposition. Ex-situ SANS and atom probe tomography were used to verify the results from the in-situ investigations. Finally, the in-situ measurement of the evolution of the characteristic distance at 773 K was compared with the predictions from the Cahn-Hilliard-Cook model, which showed good agreement with the experimental data (a′{sup  }= 0.12–0.20 depending on the assumed mobility)

  11. Growth Kinetics of Lipid-Based Nanodiscs to Unilamellar Vesicles: A Time-Resolved Small Angle Neutron Scattering (SANS) Study

    Energy Technology Data Exchange (ETDEWEB)

    Mahabir, Suanne [University of Western Ontario, The; Small, Darcy [University of Western Ontario, The; Li, Ming [University of Connecticut, Storrs; Wan, Wankei [University of Western Ontario, The; Kucerka, Norbert [Canadian Neutron Beam Centre and Comelius University (Slovakia); Littrell, Ken [ORNL; Katsaras, John [ORNL; Nieh, Mu-Ping [University of Connecticut, Storrs

    2013-01-01

    Mixtures of dimyristoyl-phosphatidylcholine (DMPC), dimyristoyl-phosphatidylglycerol (DMPG) and dihexanoylphosphatidylcholine (DHPC) in aqueous solutions spontaneously form monodisperse, bilayered nanodiscs (also known as bicelles ) at or below the melting transition temperature of DMPC (TM ~23 C). In dilute systems above the main transition temperature TM of DMPC, bicelles coalesce (increasing their diameter) and eventually self-fold into unilamellar vesicles (ULVs). Time resolved small angle neutron scattering was used to study the growth kinetics of nanodiscs below and equal to TM over a period of hours as a function of temperature at two lipid concentrations in presence or absence of NaCl salt. Bicelles seem to undergo a sudden initial growth phase with increased temperature, which is then followed by a slower reaction-limited growth phase that depends on ionic strength, lipid concentration and temperature. The bicelle interaction energy was derived from the colloidal theory of Derjaguin and Landau, and Verwey and Overbeek (DLVO). While the calculated total energy between discs is attractive and proportional to their growth rate, a more detailed mechanism is proposed to describe the mechanism of disc coalescence. After annealing at low temperature (low-T), samples were heated to 50 C in order to promote the formation of ULVs. Although the low-T annealing of samples has only a marginal effect on the mean size of end-state ULVs, it does affect their polydispersity, which increases with increased T, presumably driven by the entropy of the system.

  12. Combining Diffusion NMR and Small-Angle Neutron Scattering Enables Precise Measurements of Polymer Chain Compression in a Crowded Environment

    Science.gov (United States)

    Palit, Swomitra; He, Lilin; Hamilton, William A.; Yethiraj, Arun; Yethiraj, Anand

    2017-03-01

    The effect of particles on the behavior of polymers in solution is important in a number of important phenomena such as the effect of "crowding" proteins in cells, colloid-polymer mixtures, and nanoparticle "fillers" in polymer solutions and melts. In this Letter, we study the effect of spherical inert nanoparticles (which we refer to as "crowders") on the diffusion coefficient and radius of gyration of polymers in solution using pulsed-field-gradient NMR and small-angle neutron scattering (SANS), respectively. The diffusion coefficients exhibit a plateau below a characteristic polymer concentration, which we identify as the overlap threshold concentration c⋆. Above c⋆, in a crossover region between the dilute and semidilute regimes, the (long-time) self-diffusion coefficients are found, universally, to decrease exponentially with polymer concentration at all crowder packing fractions, consistent with a structural basis for the long-time dynamics. The radius of gyration obtained from SANS in the crossover regime changes linearly with an increase in polymer concentration, and must be extrapolated to c⋆ in order to obtain the radius of gyration of an individual polymer chain. When the polymer radius of gyration and crowder size are comparable, the polymer size is very weakly affected by the presence of crowders, consistent with recent computer simulations. There is significant chain compression, however, when the crowder size is much smaller than the polymer radius gyration.

  13. Studies on pore morphology of titanium and its oxide by small angle neutron scattering

    Indian Academy of Sciences (India)

    P K Tripathy; A K Patra; P U Sastry

    2008-11-01

    Titanium metal bodies have been prepared from the sintered powder compacts of TiO2 by a novel molten salt electrochemical approach, known as FFC Cambridge process. The phase and compositional characterizations of both Ti and TiO2 have been carried out by X-ray diffraction. The pore morphologies of sintered TiO2 pellet and the metallic Ti pellet, obtained after electrochemical reduction have been studied by SANS over a scattering wave vector q range of 0.003–3.5 nm-1 using a double crystal diffractometer and a pin-hole collimated SANS instrument. In the case of reduced metal pellet, average pore size was found to be larger than that of the oxide pellet as the voids left behind after the oxygen atoms left the oxide matrix, could not coalesce.

  14. Droplet polydispersity and shape fluctuations in AOT [bis(2-ethylhexyl)sulfosuccinate sodium salt] microemulsions studied by contrast variation small-angle neutron scattering

    DEFF Research Database (Denmark)

    Arleth, L.; Pedersen, J.S.

    2001-01-01

    Microemulsions consisting of AOT water, and decane or iso-octane are studied in the region of the phase diagram where surfactant covered water droplets are formed. The polydispersity and shape fluctuations of the microemulsion droplets are determined and compared in the two different alkane types...... degreesC and the temperature of the AOT/D2O/iso-octane microemulsion is 20 degreesC. Contrast variation small-angle neutron scattering measurements are performed at these temperatures on systems with volume fractions of 5% D2O+AOT by varying the scattering length density of the alkane. The small......-angle scattering for 11 different contrasts evenly distributed around the match points are studied for each sample. The scattering data for the different contrasts are analyzed using a molecular constrained model for ellipsoidal droplets of water covered by AOT, interacting as polydisperse hard spheres. All...

  15. Small-angle neutron scattering study of the structure of mixed micellar solutions based on heptaethylene glycol monotetradecyl ether and cesium dodecyl sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Rajewska, A., E-mail: aldonar@jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Medrzycka, K.; Hallmann, E. [Gdansk University of Technology (Poland); Soloviov, D. V. [Joint Institute for Nuclear Research (Russian Federation)

    2016-01-15

    The micellization in mixed aqueous systems based on a nonionic surfactant, heptaethylene glycol monotetradecyl ether (C{sub 14}E{sub 7}), and an anionic surfactant, cesium dodecyl sulfate, has been investigated by small-angle neutron scattering. Preliminary data on the behavior of the C{sub 14}E{sub 7} aqueous solutions (with three concentrations, 0.17, 0.5, and 1%) mixed with a small amount of anionic surfactant, cesium dodecyl sulfate, are reported.

  16. Kinetics of the urea-induced dissociation of human plasma alpha-2-macroglobulin as measured by small-angle neutron scattering

    DEFF Research Database (Denmark)

    Sjöberg, B.; Pap, S.; Järnberg, S.-E.;

    1991-01-01

    The kinetics of the urea-induced dissociation of human plasma alpha-2-macroglobulin into two half-molecular fragments was investigated at 21.0-degrees-C by using small-angle neutron scattering. The relative change in molecular mass that occurs upon dissociation was monitored by recording...... with a drastic change in structure. This is directly shown by the radius of gyration, which increases from about 7.4 nm immediately after the addition of urea up to about 9.4 nm when the protein is fully dissociated. A structural analysis shows that the scattering curve of urea-dissociated alpha-2-macroglobulin...... the forward scattering of neutrons as a function of time. All these kinetic data can be explained by a reaction that is first-order with respect to the concentration of undissociated alpha-2-macroglobulin. The velocity constant is a function of urea concentration and it varies within wide limits. For instance...

  17. Effects of biological molecules on calcium mineral formation associated with wastewater desalination as assessed using small-angle neutron scattering.

    Science.gov (United States)

    Pipich, Vitaliy; Dahdal, Yara; Rapaport, Hanna; Kasher, Roni; Oren, Yoram; Schwahn, Dietmar

    2013-06-25

    Calcium phosphate scale formation on reverse osmosis (RO) membranes is one of the main limitations on cost-effective desalination of domestic wastewater worldwide. It has been shown that organic agents affect mineralization. In this study, we explored mineralization in the presence of two biofilm-relevant organic compounds, the proteins bovine serum albumin (BSA) and lysozyme, in a simulated secondary effluent (SSE) solution using small-angle neutron scattering (SANS), and applied the results to analyses of mineral precipitation in RO desalination of secondary effluents of wastewater. The two proteins are prominent members of bacterial extracellular polymeric substances (EPSs), forming biofilms that are frequently associated with RO-membrane fouling during wastewater desalination. Laboratory experiments showed that both proteins in SSE solution are involved in complex mineralization processes. Only small portions of both protein fractions are involved in mineralization processes, whereas most of the protein fractions remain as monomers in solution. Contrast variation showed that composite particles of mineral and protein are formed instantaneously to a radius of gyration of about 300 Å, coexisting with particles of about μm size. After about one day, these large particles start to grow again at the expense of the 300 Å particles. The volume fraction of the 300 Å particles is of the order of 2 × 10(-4), which is too large to represent calcium phosphate such as hydroxyapatite as the only mineral present. Considering the data of mineral volume fraction obtained here as well as the solubility product of possible mineral polymorphs in the SSE solution, we suggest the formation of protein-mineral particles of hydroxyapatite and calcium carbonate during scale formation.

  18. Small angle neutron scattering study of complex coacervate micelles and hydrogels formed from ionic diblock and triblock copolymers.

    Science.gov (United States)

    Krogstad, Daniel V; Choi, Soo-Hyung; Lynd, Nathaniel A; Audus, Debra J; Perry, Sarah L; Gopez, Jeffrey D; Hawker, Craig J; Kramer, Edward J; Tirrell, Matthew V

    2014-11-13

    A complex coacervate is a fluid phase that results from the electrostatic interactions between two oppositely charged macromolecules. The nature of the coacervate core structure of hydrogels and micelles formed from complexation between pairs of diblock or triblock copolymers containing oppositely charged end-blocks as a function of polymer and salt concentration was investigated. Both ABA triblock copolymers of poly[(allyl glycidyl ether)-b-(ethylene oxide)-b-(allyl glycidyl ether)] and analogous poly[(allyl glycidyl ether)-b-(ethylene oxide)] diblock copolymers, which were synthesized to be nearly one-half of the symmetrical triblock copolymers, were studied. The poly(allyl glycidyl ether) blocks were functionalized with either guanidinium or sulfonate groups via postpolymerization modification. Mixing of oppositely charged block copolymers resulted in the formation of nanometer-scale coacervate domains. Small angle neutron scattering (SANS) experiments were used to investigate the size and spacing of the coacervate domains. The SANS patterns were fit using a previously vetted, detailed model consisting of polydisperse core-shell micelles with a randomly distributed sphere or body-centered cubic (BCC) structure factor. For increasing polymer concentration, the size of the coacervate domains remained constant while the spatial extent of the poly(ethylene oxide) (PEO) corona decreased. However, increasing salt concentration resulted in a decrease in both the coacervate domain size and the corona size due to a combination of the electrostatic interactions being screened and the shrinkage of the neutral PEO blocks. Additionally, for the triblock copolymers that formed BCC ordered domains, the water content in the coacervate domains was calculated to increase from approximately 16.8% to 27.5% as the polymer concentration decreased from 20 to 15 wt %.

  19. Apparatus for simultaneous rheology and small-angle neutron scattering from high-viscosity polymer melts and blends

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Jitendra, E-mail: jitendra.sharma@gmail.co [Department of Chemistry, Science Site Laboratories, University of Durham, South Road, Durham DH1 3LE (United Kingdom); King, Stephen M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Bohlin, Leif [Reologen i Lund AB, Oved 19, S-27594 Sjoebo (Sweden); Clarke, Nigel [Department of Chemistry, Science Site Laboratories, University of Durham, South Road, Durham DH1 3LE (United Kingdom)

    2010-08-21

    In situ study of structural changes in soft matter systems while exposed to shear gives vital information related to the dynamics of polymers. A new shear apparatus has been developed for simultaneous rheology and in situ small-angle neutron scattering (SANS) from high-viscosity polymeric melts and blends. The apparatus described here enables one to perform rheological measurements in a plate-plate geometry under various modes of applied shear viz., steady, oscillatory, and other programmed mode, in a wide range of temperatures that can be varied from ambient to 550 K. A major advantage of this instrument compared to other counterparts (available elsewhere) for a similar geometry of operation is that it is also equipped with a strain sensor for rheological measurements along with the capability to offer both steady state and oscillatory shearing measurements with a single instrument, something hitherto not possible due to the limitations imposed by the conceived design of the instruments. Besides, the parallel plate geometry of the apparatus utilized here offers a distinctive edge over Couette type cells used for similar purposes as the latter is often not suitable for studies on well-entangled concentrated polymeric systems due to high viscosity and associated large sample volume requirements. The details of the design, construction and operation of such device, the Rheo-SANS apparatus, are described in this paper. Preliminary test data obtained from the initial experiments on different samples of blends of deuterated polystyrene and poly(vinyl methyl ether) are presented and discussed within the context of theories known to predict their behaviour.

  20. Pore Size Effect on Methane Adsorption in Mesoporous Silica Materials Studied by Small-Angle Neutron Scattering.

    Science.gov (United States)

    Chiang, Wei-Shan; Fratini, Emiliano; Baglioni, Piero; Chen, Jin-Hong; Liu, Yun

    2016-09-06

    Methane adsorption in model mesoporous silica materials with the size range characteristic of shale is studied by small-angle neutron scattering (SANS). Size effect on the temperature-dependent gas adsorption at methane pressure about 100 kPa is investigated by SANS using MCM-41 and SBA-15 as adsorbents. Above the gas-liquid condensation temperature, the thickness of the adsorption layer is found to be roughly constant as a function of the temperature. Moreover, the gas adsorption properties, such as the adsorbed layer thickness and the specific amount of adsorbed gas, have little dependence on the pore size being studied, i.e., pore radius of 16.5 and 34.1 Å, but are mainly affected by the roughness of the pore surfaces. Hence, the surface properties of the pore wall are more dominant than the pore size in determining the methane gas adsorption of pores at the nanometer size range. Not surprisingly, the gas-liquid condensation temperature is observed to be sensitive to pore size and shifts to higher temperature when the pore size is smaller. Below the gas-liquid condensation temperature, even though the majority of gas adsorption experiments/simulations have assumed the density of confined liquid to be the same as the bulk density, the measured methane mass density in our samples is found to be appreciably smaller than the bulk methane density regardless of the pore sizes studied here. The mass density of liquid/solid methane in pores with different sizes shows different temperature dependence below the condensation temperature. With decreasing temperature, the methane density in larger pores (SBA-15) abruptly increases at approximately 65 K and then plateaus. In contrast, the density in smaller pores (MCM-41) monotonically increases with decreasing temperature before reaching a plateau at approximately 30 K.

  1. Small angle neutron scattering on an absolute intensity scale and the internal surface of diatom frustules from three species of differing morphologies.

    Science.gov (United States)

    Garvey, C J; Strobl, M; Percot, A; Saroun, J; Haug, J; Vyverman, W; Chepurnov, V A; Ferris, J M

    2013-05-01

    The internal nanostructure of the diatoms Cyclotella meneghiniana, Seminavis robusta and Achnanthes subsessilis was investigated using small angle neutron scattering (SANS) to examine thin biosilica samples, consisting of isotropic (powder) from their isolated cell walls. The interpretation of SANS data was assisted by several other measurements. The N2 adsorption, interpreted within the Branuer-Emmet-Teller isotherm, yielded the specific surface area of the material. Fourier transform infrared (FTIR) and Raman spectroscopy indicates that the isolated material is amorphous silica with small amounts of organic cell wall materials acting as a filling material between the silica particles. A two-phase (air and amorphous silica) model was used to interpret small angle neutron scattering data. After correction for instrumental resolution, the measurements on two SANS instruments covered an extended range of scattering vectors 0.0011 nm(-1) < q < 5.6 nm(-1), giving an almost continuous SANS curve over a range of scattering vectors, q, on an absolute scale of intensity for each sample. Each of the samples gave a characteristic scattering curve where log (intensity) versus log (q) has a -4 dependence, with other features superimposed. In the high-q regime, departure from this behaviour was observed at a length-scales equivalent to the proposed unitary silica particle. The limiting Porod scattering law was used to determine the specific area per unit of volume of each sample illuminated by the neutron beam. The Porod behaviour, and divergence from this behaviour, is discussed in terms of various structural features and the proposed mechanisms for the bio-assembly of unitary silica particles in frustules.

  2. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2017-01-01

    We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...

  3. Density minimum of confined water at low temperatures: a combined study by small-angle scattering of X-rays and neutrons.

    Science.gov (United States)

    Erko, M; Wallacher, D; Hoell, A; Hauss, T; Zizak, I; Paris, O

    2012-03-21

    A simple explanation is given for the low-temperature density minimum of water confined within cylindrical pores of ordered nanoporous materials of different pore size. The experimental evidence is based on combined data from in-situ small-angle scattering of X-rays (SAXS) and neutrons (SANS), corroborated by additional wide-angle X-ray scattering (WAXS). The combined scattering data cannot be described by a homogeneous density distribution of water within the pores, as was originally suggested from SANS data alone. A two-step density model reveals a wall layer covering approximately two layers of water molecules with higher density than the residual core water in the central part of the pores. The temperature-induced changes of the scattering signal from both X-rays and neutrons are consistent with a minimum of the average water density. We show that the temperature at which this minimum occurs depends monotonically on the pore size. Therefore we attribute this minimum to a liquid-solid transition of water influenced by confinement. For water confined in the smallest pores of only 2 nm in diameter, the density minimum is explained in terms of a structural transition of the surface water layer closest to the hydrophilic pore walls.

  4. Neutron scattering in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Knott, R.B. [Australian Nuclear Science and Technology Organisation, Menai (Australia)

    1994-12-31

    Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains.

  5. GENFIT: software for the analysis of small-angle X-ray and neutron scattering data of macro­molecules in solution

    Science.gov (United States)

    Spinozzi, Francesco; Ferrero, Claudio; Ortore, Maria Grazia; De Maria Antolinos, Alejandro; Mariani, Paolo

    2014-01-01

    Many research topics in the fields of condensed matter and the life sciences are based on small-angle X-ray and neutron scattering techniques. With the current rapid progress in source brilliance and detector technology, high data fluxes of ever-increasing quality are produced. In order to exploit such a huge quantity of data and richness of information, wider and more sophisticated approaches to data analysis are needed. Presented here is GENFIT, a new software tool able to fit small-angle scattering data of randomly oriented macromolecular or nanosized systems according to a wide list of models, including form and structure factors. Batches of curves can be analysed simultaneously in terms of common fitting parameters or by expressing the model parameters via physical or phenomenological link functions. The models can also be combined, enabling the user to describe complex heterogeneous systems. PMID:24904247

  6. GENFIT: software for the analysis of small-angle X-ray and neutron scattering data of macro-molecules in solution.

    Science.gov (United States)

    Spinozzi, Francesco; Ferrero, Claudio; Ortore, Maria Grazia; De Maria Antolinos, Alejandro; Mariani, Paolo

    2014-06-01

    Many research topics in the fields of condensed matter and the life sciences are based on small-angle X-ray and neutron scattering techniques. With the current rapid progress in source brilliance and detector technology, high data fluxes of ever-increasing quality are produced. In order to exploit such a huge quantity of data and richness of information, wider and more sophisticated approaches to data analysis are needed. Presented here is GENFIT, a new software tool able to fit small-angle scattering data of randomly oriented macromolecular or nanosized systems according to a wide list of models, including form and structure factors. Batches of curves can be analysed simultaneously in terms of common fitting parameters or by expressing the model parameters via physical or phenomenological link functions. The models can also be combined, enabling the user to describe complex heterogeneous systems.

  7. Structural changes during the unfolding of Bovine serum albumin in the presence of urea: A small-angle neutron scattering study

    Indian Academy of Sciences (India)

    Amit Das; R Chitra; R R Choudhury; M Ramanadham

    2004-08-01

    The native form of serum albumin is the most important soluble protein in the body plasma. In order to investigate the structural changes of Bovine serum albumin (BSA) during its unfolding in the presence of urea, a small-angle neutron scattering (SANS) study was performed. The scattering curves of dilute solutions of BSA with different concentrations of urea in D2O at pH 7.2 ± 0.2 were measured at room temperature. The scattering profile was fitted to a prolate ellipsoidal shape (, , ) of the protein with = 52.2 Å and = 24.2 Å. The change in the dimensions of the protein as it unfolds was found to be anisotropic. The radius of gyration of the compact form of the protein in solution decreased as the urea concentration was increased.

  8. Water distributions in polystyrene-block-poly[styrene-g-poly(ethylene oxide)] block grafted copolymer system in aqueous solutions revealed by contrast variation small angle neutron scattering study

    Science.gov (United States)

    Li, Xin; Hong, Kunlun; Liu, Yun; Shew, Chwen-Yang; Liu, Emily; Herwig, Kenneth W.; Smith, Gregory S.; Zhao, Junpeng; Zhang, Guangzhao; Pispas, Stergios; Chen, Wei-Ren

    2010-10-01

    We develop an experimental approach to analyze the water distribution around a core-shell micelle formed by polystyrene-block-poly[styrene-g-poly(ethylene oxide (PEO)] block copolymers in aqueous media at a fixed polymeric concentration of 10 mg/ml through contrast variation small angle neutron scattering (SANS) study. Through varying the D2O/H2O ratio, the scattering contributions from the water molecules and the micellar constituent components can be determined. Based on the commonly used core-shell model, a theoretical coherent scattering cross section incorporating the effect of water penetration is developed and used to analyze the SANS I(Q ). We have successfully quantified the intramicellar water distribution and found that the overall micellar hydration level increases with the increase in the molecular weight of hydrophilic PEO side chains. Our work presents a practical experimental means for evaluating the intramacromolecular solvent distributions of general soft matter systems.

  9. Investigation on pore structure and small-scale agglomeration behaviour in liquid phase sintered SiC using small angle neutron scattering

    Indian Academy of Sciences (India)

    D Sen; J Bahadur; S Mazumder; T Mahata; M Syambabu; P K Sinha

    2008-11-01

    Mesoscopic density fluctuations in liquid phase sintered silicon carbide have been investigated using small angle neutron scattering (SANS). The increase in the additives results in the modification in the pore size distribution and to some extent the total porosity. SANS revealed a mass fractal nature of the agglomerated matrix microstructure. The fractal dimension of the matrix does not change appreciably with the additives although the upper cut-off value of the fractal decreases significantly with the increase in the additives. The liquid phase sintering due to the presence of additives helps to achieve higher level of densification. However, the agglomeration hinders achievement of the fully dense pellets.

  10. A small-angle neutron scattering study of the structure of graphitized carbon black aggregates in Triton X-100/water solutions

    DEFF Research Database (Denmark)

    Garamus, V.M.; Pedersen, J.S.

    1998-01-01

    The structure of graphitized carbon black (CB) aggregates dispersed in water solutions with a non-ionic surfactant are studied by small-angle neutron scattering using contrast variation by heavy/light water mixing. The addition of CB to Triton X-100/water mixtures shifts the critical micelle...... particles is 8% and is constant with varying CB and surfactant concentration. The volume fraction of the voids does not exceed 1% of the CB; The micelle structure is found to be the same as in surfactant/water solutions. (C) 1998 Elsevier Science B.V....

  11. Solution structure of human plasma fibronectin using small-angle X-ray and neutron scattering at physiological pH and ionic strength

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeberg, B.P.; Pap, S.; Osterlund, E.; Osterlund, K.; Vuento, M.; Kjems, J.

    1987-06-01

    Human plasma fibronectin has been investigated at physiological pH and ionic strength, by using small-angle X-ray and neutron scattering techniques. The results indicate that the molecule is disc shaped with an axial ratio of about 1:10. In fact, an ellipsoid of revolution with semiaxes a = 1.44 nm and b = c = 13.8 nm is in agreement with the experimental scattering data, and can also fully explain the rather extreme hydrodynamic parameters reported for fibronectin. The X-ray data gave a radius of gyration of 8.9 nm and a molecular weight of 510,000, whereas the neutron data gave slightly larger values, 9.5 nm and 530,000, respectively. From the volume of the best fitting ellipsoid we obtain a degree of hydration of 0.61 g H/sub 2/O/g protein (dry weight). Neutron data, recorded at different D/sub 2/O concentrations in the solvent, gave a match point of 43% D/sub 2/O, which indicates that approximately 80% of the hydrogens bound to oxygen and nitrogen are exchangeable.

  12. Simultaneous evidence for Pauli paramagnetic effects and multiband superconductivity in KFe2As2 by small-angle neutron scattering studies of the vortex lattice

    Science.gov (United States)

    Kuhn, S. J.; Kawano-Furukawa, H.; Jellyman, E.; Riyat, R.; Forgan, E. M.; Ono, M.; Kihou, K.; Lee, C. H.; Hardy, F.; Adelmann, P.; Wolf, Th.; Meingast, C.; Gavilano, J.; Eskildsen, M. R.

    2016-03-01

    We study the intrinsic anisotropy of the superconducting state in KFe2As2 by using small-angle neutron scattering to image the vortex lattice as the applied magnetic field is rotated towards the FeAs crystalline planes. The anisotropy is found to be strongly field dependent, indicating multiband superconductivity. Furthermore, the high-field anisotropy significantly exceeds that of the upper critical field, providing further support for Pauli limiting in KFe2As2 for fields applied in the basal plane. The effect of Pauli paramagnetism on the unpaired quasiparticles in the vortex cores is directly evident from the ratio of scattered intensities due to the longitudinal and transverse vortex lattice field modulation.

  13. Spin-wave dynamics in Invar Fe sub 6 sub 5 Ni sub 3 sub 5 alloy studied by small-angle polarized neutron scattering

    CERN Document Server

    Grigoriev, S V; Deriglazov, V V; Okorokov, A I; Dijk, N H V; Brück, E; Klaasse, J C P; Eckerlebe, H; Kozik, G

    2002-01-01

    Spin dynamics in Fe sub 6 sub 5 Ni sub 3 sub 5 Invar alloy has been studied by left-right asymmetry of small-angle polarized neutron scattering below T sub C =485 K in external magnetic fields of H=0.05-0.25 T inclined relative to the incident beam. The spin-wave stiffness D and the damping GAMMA were obtained by fitting the antisymmetrical contribution to the scattering. The spin-wave stiffness extrapolated by a (T/T sub C) sup 5 sup / sup 2 law to T=0 K is D sub 0 =117+-2 meVA sup 2 , which is somewhat smaller than the spin-wave stiffness obtained by triple-axis spectrometry. (orig.)

  14. Measurement of porosity in a composite high explosive as a function of pressing conditions by ultra-small-angle neutron scattering with contrast variation

    Energy Technology Data Exchange (ETDEWEB)

    Mang, Joseph Thomas [Los Alamos National Laboratory; Hjelm, Rex P [Los Alamos National Laboratory; Francois, Elizabeth G [Los Alamos National Laboratory

    2009-01-01

    We have used ultra-small-angle neutron scattering (USANS) with contrast variation to measure the porosity (voids and binder-filled regions) in a composite high explosive, PBX 9501, formulated with a deuterated binder. Little is known about the microstructure of pressed PBX 9501 parts and thus how it is affected by processing. Here, we explore the effect of varying the pressing intensity on the PBX 9501 microstructure. Disk-shaped samples of PBX 9501 were die-pressed with applied pressures ranging between 10,000 and 29,000 psi at 90 C. Five samples were prepared at each pressure that differed in the fraction of deuterated binder, facilitating variation of the neutron scattering length density contrast ({Delta}{rho}) and thus, the resolution of microstructural details. The sample composition was determined by calculation of the Porod Invariant as a function of {Delta}{rho} and compared with compositional estimates obtained from the bulk sample density. Structural modeling of the USANS data, at different levels of contrast, assuming both spherical and cylindrical morphologies, allowed the mean size and size distribution of voids and binder-filled regions to be determined. A decrease in the mean diameter of binder-filled regions was found with increasing pressing intensity, while the mean void diameter showed no significant change.

  15. Small-angle neutron scattering study of the short-range organization of dispersed CsNi[Cr(CN){sub 6}] nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ridier, Karl; Gillon, Béatrice; André, Gilles; Chaboussant, Grégory, E-mail: gregory.chaboussant@cea.fr [Laboratoire Léon Brillouin, UMR12 CEA-CNRS, 91191 Gif-sur-Yvette (France); Catala, Laure; Mazérat, Sandra; Mallah, Talal [Institut de Chimie Moléculaire et des Matériaux d' Orsay, CNRS, Université Paris-Sud, 91405 Orsay (France)

    2015-09-21

    Prussian blue analogues magnetic nanoparticles (of radius R{sub 0} = 2.4–8.6 nm) embedded in PVP (polyvinylpyrrolidone) or CTA{sup +} (cetyltrimethylammonium) matrices have been studied using neutron diffraction and small angle neutron scattering (SANS) at several concentrations. For the most diluted particles in neutral PVP, the SANS signal is fully accounted for by a “single-particle” spherical form factor with no structural correlations between the nanoparticles and with radii comparable to those inferred from neutron diffraction. For higher concentration in PVP, structural correlations modify the SANS signal with the appearance of a structure factor peak, which is described using an effective “mean-field” model. A new length scale R{sup * }≈ 3R{sub 0}, corresponding to an effective repulsive interaction radius, is evidenced in PVP samples. In CTA{sup +}, electrostatic interactions play a crucial role and lead to a dense layer of CTA{sup +} around the nanoparticles, which considerably alter the SANS patterns as compared to PVP. The SANS data of nanoparticles in CTA{sup +} are best described by a core-shell model without visible inter-particle structure factor.

  16. Possible magnetism in vortex cores of superconducting TmNi{sub 2}B{sub 2}C studied by small angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, Asger Bech

    2003-11-01

    The compound TmNi{sub 2}B{sub 2}C has previously been studied by Small Angle Neutron Scattering(SANS) with the applied field along the crystalline c-axis and a very rich phase diagram in terms of flux line lattices(FLL) with different symmetries have been observed. One of the FLL transitions is coincident with a magnetic phase transition between two spin density waves. In this thesis additional SANS studies of the FLL phases in TmNi{sub 2}B{sub 2}C are reported and an interpretation of the phase diagram in the paramagnetic region is presented. It is suggested that the square FLL observed is stable in between two transition lines determined by two different length scales. The lower transition field is reached when the distance between the flux lines becomes comparable to the non-locality radius resulting from non-local electrodynamics, whereas the upper transition field is determined from the crossover from intermediate to high flux line density where the vortex cores start to overlap and the superconducting order parameter is suppressed in between the flux lines. A detailed examination of the intensity of the neutron diffraction spots caused by scattering on the flux line lattice in TmNi{sub 2}B{sub 2}C is presented and analyzed on the basis of the form factor of an isolated flux line. This analysis can not provide a good explanation for the observed scattering and it is suggested that the scattering from the Tm ions must be considered. One can argue that the moments of the Tm ions are modulated by the flux line lattice, because the Ruderman-Kittel- Kasuya-Yosida(RKKY) interaction between the Tm ions might be different inside the vortex cores than outside in the superconducting phase. A calculation of the neutron scattering cross section of such a magnetic flux line lattice has been performed and compared to the SANS data. This offers a qualitative explanation of some of the observations, but future work is needed to perform a more quantitative comparison. (au)

  17. Small-angle neutron scattering study of the ultrastructure of chloroplast thylakoid membranes - Periodicity and structural flexibility of the stroma lamellae

    DEFF Research Database (Denmark)

    Posselt, Dorthe; Nagy, Gergely; Kirkensgaard, Jacob J. K.;

    2012-01-01

    The multilamellar organization of freshly isolated spinach and pea chloroplast thylakoid membranes was studied using small-angle neutron scattering. A broad peak at similar to 0.02 angstrom(-1) is ascribed to diffraction from domains of ordered, unappressed stroma lamellae, revealing a repeat...... distance of 294 angstrom +/- 7 angstrom in spinach and 345 angstrom +/- 11 angstrom in pea. The peak position and hence the repeat distance of stroma lamellae is strongly dependent on the osmolarity and the ionic strength of the suspension medium, as demonstrated by varying the sorbitol and the Mg......++-concentration in the sample. For pea thylakoid membranes, we show that the repeat distance decreases when illuminating the sample with white light, in accordance with our earlier results on spinach, also regarding the observation that addition of an uncoupler prohibits the light-induced structural changes, a strong...

  18. Structural Properties of Bulk and Aqueous Systems of PEO-PIB-PEO Triblock Copolymers as Studied by Small-Angle Neutron Scattering and Cryo-Transmission Electron Microscopy

    DEFF Research Database (Denmark)

    Mortensen, Kell; Talmon, Yeshayahu; Gao, Bo

    1997-01-01

    The phase behavior of a low molecular weight (M-w = 6000) symmetric triblock copolymer of poly(ethylene oxide) and poly(isobutylene), PEO-PIB-PEO, in the bulk as well in aqueous, D2O, solutions has been studied using small-angle neutron scattering and cryo-transmission electron microscopy....... In aqueous solutions PEO-PIB-PEO self-associates into micelles. At low polymer concentration, the micelles predominantly have threadlike form, with lengths of typically 1-2000 Angstrom. Those coexist, however, with spheroidal micelles of similar diameter. For a polymer concentration above roughly 20......% the aggregates probably have a more disclike shape, as the micelles organize in lamellar structure. The 30% solution forms a bulk lamellar structure which, upon shear, organizes in a monodomain crystal. The bulk, PEO-PIB-PEO block copolymer forms at low temperatures a lamellar ordered phase induced by the PEO...

  19. Small-angle neutron scattering studies on water soluble complexes of poly(ethylene glycol)-based cationic random copolymer and SDS

    Indian Academy of Sciences (India)

    C K Nisha; V Manorama; Souvik Maiti; K N Jayachandran; V K Aswal; P S Goyal

    2004-08-01

    The interaction of cationic random copolymers of methoxy poly(ethylene glycol) monomethacrylate and (3-(methacryloylamino)propyl) trimethylammonium chloride with oppositely charged surfactant, sodium dodecyl sulphate, and the influence of surfactant association on the polymer conformation have been investigated by small-angle neutron scattering. SANS data showed a positive indication of the formation of RCP-SDS complexes. Even though the complete structure of the polyion complexes could not be ascertained, the results obtained give us the information on the local structure in these polymer-surfactant systems. The data were analysed using the log-normal distribution of the polydispersed spherical aggregate model for the local structure in these complexes. For all the systems the median radius and the polydispersity were found to be in the range of 20 ± 2 Å and 0:6 ± 0:05, respectively.

  20. Distribution of functional groups in periodic mesoporous organosilica materials studied by small-angle neutron scattering with in situ adsorption of nitrogen

    Directory of Open Access Journals (Sweden)

    Monir Sharifi

    2012-05-01

    Full Text Available Periodic mesoporous materials of the type (R′O3Si-R-Si(OR′3 with benzene as an organic bridge and a crystal-like periodicity within the pore walls were functionalized with SO3H or SO3− groups and investigated by small-angle neutron scattering (SANS with in situ nitrogen adsorption at 77 K. If N2 is adsorbed in the pores the SANS measurements show a complete matching of all of the diffraction signals that are caused by the long-range ordering of the mesopores in the benzene-PMO, due to the fact that the benzene-PMO walls possess a neutron scattering length density (SLD similar to that of nitrogen in the condensed state. However, signals at higher q-values (>1 1/Å are not affected with respect to their SANS intensity, even after complete pore filling, confirming the assumption of a crystal-like periodicity within the PMO material walls due to π–π interactions between the organic bridges. The SLD of pristine benzene-PMO was altered by functionalizing the surface with different amounts of SO3H-groups, using the grafting method. For a low degree of functionalization (0.81 mmol SO3H·g−1 and/or an inhomogeneous distribution of the SO3H-groups, the SLD changes only negligibly, and thus, complete contrast matching is still found. However, for higher amounts of SO3H-groups (1.65 mmol SO3H·g−1 being present in the mesopores, complete matching of the neutron diffraction signals is no longer observed proving that homogeneously distributed SO3H-groups on the inner pore walls of the benzene-PMO alter the SLD in a way that it no longer fits to the SLD of the condensed N2.

  1. Small-Angle Neutron Scattering and Electron Microscopy Study of the Wet and Dry High-Temperature Oxidation of Alumina- and Chromia- Forming Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Rother, Gernot [ORNL; Keiser, James R [ORNL; Brady, Michael P [ORNL; Unocic, Kinga A [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Littrell, Ken [ORNL; Meisner, Roberta Ann [ORNL; Santella, Michael L [ORNL; Wesolowski, David J [ORNL; Cole, David R [ORNL

    2012-01-01

    Foils of T347 stainless steel and a developmental alumina-forming austenitic (AFA) stainless steel were oxidized at 800 C in dry air, air with 10% H2O, and air with 10% D2O. The T347 foils exhibited a transition to rapid Fe-base oxide formation between 24 and 72 h of exposure in H2O and D2O, but exhibited protective Cr-rich oxide formation in dry air. In contrast, only thin, protective Al-rich oxide surfaces were observed for the AFA alloy foils under all conditions studied. Changes in the small angle neutron scattering (SANS) signal were observed for the T347 stainless steel as a function of oxidation time in dry air, attributed to oxide grain growth and porosity formation/partial scale detachment associated with spinel phase at the scale/gas interface. For the AFA alloy, only minor changes in scattering as a result of oxidation time were observed. For both T347 and AFA, similar scattering was observed in dry and wet air (H2O and D2O) exposure. This finding indicates that water vapor exposure did not induce significant morphological changes in the oxide scales (such as increased porosity) in the 5-300 nm size regime accessed by SANS.

  2. Neutron Brillouin scattering in dense fluids

    Energy Technology Data Exchange (ETDEWEB)

    Verkerk, P. [Technische Univ. Delft (Netherlands); FINGO Collaboration

    1997-04-01

    Thermal neutron scattering is a typical microscopic probe for investigating dynamics and structure in condensed matter. In contrast, light (Brillouin) scattering with its three orders of magnitude larger wavelength is a typical macroscopic probe. In a series of experiments using the improved small-angle facility of IN5 a significant step forward is made towards reducing the gap between the two. For the first time the transition from the conventional single line in the neutron spectrum scattered by a fluid to the Rayleigh-Brillouin triplet known from light-scattering experiments is clearly and unambiguously observed in the raw neutron data without applying any corrections. Results of these experiments are presented. (author).

  3. A combined method of small-angle neutron scattering and neutron radiography to visualize water in an operating fuel cell over a wide length scale from nano to millimeter

    Science.gov (United States)

    Iwase, H.; Koizumi, S.; Iikura, H.; Matsubayashi, M.; Yamaguchi, D.; Maekawa, Y.; Hashimoto, T.

    2009-06-01

    In order to visualize water generated in an operating polymer electrolyte fuel cell (PEFC), a neutron radiography (NR) apparatus, composed of a scintillator, optical mirrors and a CCD camera, was installed at a sample position of the focusing and polarized neutron small-angle scattering (SANS) spectrometer (SANS-J-II) at research reactor JRR-3 at Japan Atomic Energy Agency, Tokai, Japan. By combining SANS and NR, we aim to cover a wide length scale from nanometer to millimeter. The new method succeeded in detecting a spatial distribution of the water generated in individual cell elements; NR detected the water in a gas diffusion layer and a flow field, whereas SANS quantitatively determines the water content in a membrane electrode assembly (MEA).

  4. Protein Amyloidogenesis Investigated by Small Angle Scattering.

    Science.gov (United States)

    Ricci, Caterina; Spinozzi, Francesco; Mariani, Paolo; Ortore, Maria Grazia

    2016-01-01

    In the last decades, the study of the mechanisms inducing amyloid fibril formation has involved several experimental and theoretical biophysical approaches. Many efforts have been made by scientist at the borderline between biology, chemistry, biochemistry and physics in order to understand why and in which way a protein starts its amyloidogenic pattern. This fundamental research issue is evolving in parallel to the development of drugs and inhibitors able to modify protein self assembly towards amyloid fibrils. Small angle xray and neutron scattering experiments represent suitable methods to investigate protein amyloidogenesis and the possible effects of inhibitors: they are in-solution techniques, require low amount of sample and their time-resolution makes it possible to follow aggregation pattern. In this paper we review small angle x-ray and neutron scattering studies dedicated to investigate amyloid β peptide and α-synuclein, related to Alzheimer`s and Parkinson`s diseases, respectively, together with some other studies that introduced innovative models to describe with small angle scattering techniques amyloid fibrillation processes.

  5. Critical Magnetic Scattering of Neutrons in Iron

    DEFF Research Database (Denmark)

    Passell, L.; Blinowski, K.; Brun, T.;

    1965-01-01

    Measurements of the angular and energy distributions of 4.28 Å neutrons scattered at small angles from iron at temperatures above the Curie temperature are described. The results are interpreted in terms of Van Hove's theory of critical magnetic scattering and yield information on the range of spin...... to the existence of long-range couplings within the spin system. Details of certain recent modifications of the theory of critical systems are discussed and compared with the experimental results....

  6. Analysis of the solution structure of Thermosynechococcus elongatus photosystem I in n-dodecyl-β-d-maltoside using small-angle neutron scattering and molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Le, Rosemary K. [Univ. of Tennessee, Knoxville, TN (United States); Harris, Bradley J. [Univ. of Tennessee, Knoxville, TN (United States); Iwuchukwu, Ifeyinwa J. [Univ. of Tennessee, Knoxville, TN (United States); Bruce, Barry D. [Univ. of Tennessee, Knoxville, TN (United States); Cheng, Xiaolin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qian, Shuo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Heller, William T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); O’Neill, Hugh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Frymier, Paul D. [Univ. of Tennessee, Knoxville, TN (United States)

    2014-05-01

    Small-angle neutron scattering (SANS) and molecular dynamics (MD) simulation were used to investigate the structure of trimeric photosystem I (PSI) from Thermosynechococcus elongatus (T. elongatus) stabilized in n-dodecyl-β-d-maltoside (DDM) detergent solution. Scattering curves of detergent and protein–detergent complexes were measured at 18% D2O, the contrast match point for the detergent, and 100% D2O, allowing observation of the structures of protein/detergent complexes. It was determined that the maximum dimension of the PSI–DDM complex was consistent with the presence of a monolayer belt of detergent around the periphery of PSI. A dummy-atom reconstruction of the shape of the complex from the SANS data indicates that the detergent envelope has an irregular shape around the hydrophobic periphery of the PSI trimer rather than a uniform, toroidal belt around the complex. A 50 ns MD simulation model (a DDM ring surrounding the PSI complex with extra interstitial DDM) of the PSI–DDM complex was developed for comparison with the SANS data. The results suggest that DDM undergoes additional structuring around the membrane-spanning surface of the complex instead of a simple, relatively uniform belt, as is generally assumed for studies that use detergents to solubilize membrane proteins.

  7. Monte Carlo simulation of neutron scattering instruments

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, P.A.

    1995-12-31

    A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width.

  8. Superconductivity, antiferromagnetism, and neutron scattering

    Science.gov (United States)

    Tranquada, John M.; Xu, Guangyong; Zaliznyak, Igor A.

    2014-01-01

    High-temperature superconductivity in both the copper-oxide and the iron-pnictide/chalcogenide systems occurs in close proximity to antiferromagnetically ordered states. Neutron scattering has been an essential technique for characterizing the spin correlations in the antiferromagnetic phases and for demonstrating how the spin fluctuations persist in the superconductors. While the nature of the spin correlations in the superconductors remains controversial, the neutron scattering measurements of magnetic excitations over broad ranges of energy and momentum transfers provide important constraints on the theoretical options. We present an overview of the neutron scattering work on high-temperature superconductors and discuss some of the outstanding issues.

  9. Neutron scattering and hydrogen storage

    Directory of Open Access Journals (Sweden)

    A.J. Ramirez-Cuesta

    2009-11-01

    Full Text Available Hydrogen has been identified as a fuel of choice for providing clean energy for transport and other applications across the world and the development of materials to store hydrogen efficiently and safely is crucial to this endeavour. Hydrogen has the largest scattering interaction with neutrons of all the elements in the periodic table making neutron scattering ideal for studying hydrogen storage materials. Simultaneous characterisation of the structure and dynamics of these materials during hydrogen uptake is straightforward using neutron scattering techniques. These studies will help us to understand the fundamental properties of hydrogen storage in realistic conditions and hence design new hydrogen storage materials.

  10. Neutron scattering applications in structural biology: now and the future

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J. [Los Alamos National Lab., NM (United States)

    1996-05-01

    Neutrons have an important role to play in structural biology. Neutron crystallography, small-angle neutron scattering and inelastic neutron scattering techniques all contribute unique information on biomolecular structures. In particular, solution scattering techniques give critical information on the conformations and dispositions of the components of complex assemblies under a wide variety of relevant conditions. The power of these methods is demonstrated here by studies of protein/DNA complexes, and Ca{sup 2+}-binding proteins complexed with their regulatory targets. In addition, we demonstrate the utility of a new structural approach using neutron resonance scattering. The impact of biological neutron scattering to date has been constrained principally by the available fluxes at neutron sources and the true potential of these approaches will only be realized with the development of new more powerful neutron sources. (author)

  11. Structural and magnetic properties of inverse opal photonic crystals studied by x-ray diffraction, scanning electron microscopy, and small-angle neutron scattering

    NARCIS (Netherlands)

    Grigoriev, S.V.; Napolskii, K.S.; Grigoryeva, N.A.; Vasilieva, A.V.; Mistonov, A.A.; Chernyshov, D.Y.; Petukhov, A.V.; Belov, D.V.; Eliseev, A.A.; Lukashin, A.V.; Tretyakov, Y.D.; Sinitskii, A.S.; Eckerlebe, H.

    2009-01-01

    The structural and magnetic properties of nickel inverse opal photonic crystal have been studied by complementary experimental techniques, including scanning electron microscopy, wide-angle and small-angle diffraction of synchrotron radiation, and polarized neutrons. The sample was fabricated by ele

  12. Neutron scattering studies of modulated magnetic structures

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard Soerensen, Steen

    1999-08-01

    This report describes investigations of the magnetic systems DyFe{sub 4}Al{sub 8} and MnSi by neutron scattering and in the former case also by X-ray magnetic resonant scattering. The report is divided into three parts: An introduction to the technique of neutron scattering with special emphasis on the relation between the scattering cross section and the correlations between the scattering entities of the sample. The theoretical framework of neutron scattering experiments using polarized beam technique is outlined. The second part describes neutron and X-ray scattering investigation of the magnetic structures of DyFe{sub 4}Al{sub 8}. The Fe sublattice of the compound order at 180 K in a cycloidal structure in the basal plane of the bct crystal structure. At 25 K the ordering of the Dy sublattice shows up. By the element specific technique of X-ray resonant magnetic scattering, the basal plane cycloidal structure was also found for the Dy sublattice. The work also includes neutron scattering studies of DyFe{sub 4}Al{sub 8} in magnetic fields up to 5 T applied along a <110> direction. The modulated structure at the Dy sublattice is quenched by a field lower than 1 T, whereas modulation is present at the Fe sublattice even when the 5 T field is applied. In the third part of the report, results from three small angle neutron experiments on MnSi are presented. At ambient pressure, a MnSi is known to form a helical spin density wave at temperature below 29 K. The application of 4.5 kbar pressure intended as hydrostatic decreased the Neel temperature to 25 K and changed the orientation of the modulation vector. To understand this reorientation within the current theoretical framework, anisotropic deformation of the sample crystal must be present. The development of magnetic critical scattering with an isotropic distribution of intensity has been studied at a level of detail higher than that of work found in the literature. Finally the potential of a novel polarization

  13. Superconductivity, antiferromagnetism, and neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada, John M., E-mail: jtran@bnl.gov; Xu, Guangyong; Zaliznyak, Igor A.

    2014-01-15

    High-temperature superconductivity in both the copper-oxide and the iron–pnictide/chalcogenide systems occurs in close proximity to antiferromagnetically ordered states. Neutron scattering has been an essential technique for characterizing the spin correlations in the antiferromagnetic phases and for demonstrating how the spin fluctuations persist in the superconductors. While the nature of the spin correlations in the superconductors remains controversial, the neutron scattering measurements of magnetic excitations over broad ranges of energy and momentum transfers provide important constraints on the theoretical options. We present an overview of the neutron scattering work on high-temperature superconductors and discuss some of the outstanding issues. - Highlights: • High-temperature superconductivity is closely associated with antiferromagnetism. • Antiferromagnetic spin fluctuations coexist with the superconductivity. • Neutron scattering is essential for characterising the full spectrum of spin excitations.

  14. Neutron scatter camera

    Science.gov (United States)

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  15. New Techniques in Neutron Scattering

    DEFF Research Database (Denmark)

    Birk, Jonas Okkels

    Neutron scattering is an important experimental technique in amongst others solid state physics, biophysics, and engineering. This year construction of European Spallation Source (ESS) was commenced in Lund, Sweeden. The facility will use a new long pulsed source principle to obtain higher...... potential performance than any existing facility, however in order to use this pulse structure optimally many existing neutron scattering instruments will need to be redesigned. This defense will concentrate on the design and optimization of the inverse time-of-flight cold neutron spectrometer CAMEA...

  16. Evolution of Helium with Temperature in Neutron-Irradiated 10B-Doped Aluminum by Small-Angle X-Ray Scattering

    Directory of Open Access Journals (Sweden)

    Chaoqiang Huang

    2014-01-01

    Full Text Available Helium status is the primary effect of material properties under radiation. 10B-doped aluminum samples were prepared via arc melting technique and rapidly cooled with liquid nitrogen to increase the boron concentration during the formation of compounds. An accumulated helium concentration of ~6.2 × 1025 m−3 was obtained via reactor neutron irradiation with the reaction of 10B(n, α7Li. Temperature-stimulated helium evolution was observed via small-angle X-ray scattering (SAXS and was confirmed via transmission electron microscopy (TEM. The SAXS results show that the volume fraction of helium bubbles significantly increased with temperature. The amount of helium bubbles reached its maximum at 600°C, and the most probable diameter of the helium bubbles increased with temperature until 14.6 nm at 700°C. A similar size distribution of helium bubbles was obtained via TEM after in situ SAXS measurement at 700°C, except that the most probable diameter was 3.9 nm smaller.

  17. Effect of successive alkylation of N,N-dialkyl amides on the complexation behavior of uranium and thorium: solvent extraction, small angle neutron scattering, and computational studies.

    Science.gov (United States)

    Verma, Parveen Kumar; Pathak, Priyanath N; Kumari, Neelam; Sadhu, Biswajit; Sundararajan, Mahesh; Aswal, Vinod Kumar; Mohapatra, Prasanta Kumar

    2014-12-11

    The effect of successive alkylation of the Cα atom adjacent to the carbonyl group in N,N-dialkyl amides (i.e., di(2-ethylhexyl)acetamide (D2EHAA), di(2-ethylhexyl)propionamide (D2EHPRA), di(2-ethylhexyl)isobutyramide (D2EHIBA), and di(2-ethylhexyl)pivalamide (D2EHPVA)) on the extraction behavior of hexavalent uranium (U(VI)) and tetravalent thorium (Th(IV)) ions has been investigated. These studies show that the extraction of Th(IV) is significantly suppressed compared to that of U(VI) with increased branching at the Cα atom adjacent to the carbonyl group. Small angle neutron scattering (SANS) studies showed an increased aggregation tendency in the presence of nitric acid and metal ions. D2EHAA showed more aggregation compared to its branched homologues, which explains its capacity for higher extraction of metal ions. These experimental observations were further supported by density function theory calculations, which provided structural evidence of differential binding affinities of these extractants for uranyl cations. The complexation process is primarily controlled by steric and electronic effects. Quantum chemical calculations showed that local hardness and polarizability can be extremely useful inputs for designing novel extractants relevant to a nuclear fuel cycle.

  18. Characterization of nanostructured zirconia prepared by hydrolysis and reverse micelle synthesis by small-angle neutron and X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Thiyagarajan, P.; Li, X.; Littrell, K.; Seifert, S.; Csencsits, R.; Loong, C.

    1999-12-07

    Low temperature techniques such as hydrolysis and reverse micelle syntheses provide the opportunity to determine the relationship between the structural properties and preparation conditions of zirconia powders as well as to tailor their physicochemical properties. The authors have performed small-angle neutron and synchrotron X-ray scattering (SANS and SAXS) experiments to study the nucleation and organization of zirconia nanoparticles via different preparation routes. First, the formation of reverse micelles in individual and mixed solutions of (ZrOCl{sub 2}+D{sub 2}O)/AOT/C{sub 6}D{sub 5}CD{sub 3}, and (NH{sub 4}OH+H{sub 2}O)/AOT/C{sub 6}D{sub 5}CD{sub 3} systems at water/AOT molar ratio of 20 was characterized. Second, the aggregation of zirconia gels obtained from the reaction of the reverse micelle solutions after heat treatments was studied. Third, the nanostructure of zirconia powders prepared by the reverse micelle method is compared with the corresponding powders prepared by hydrolysis after different heat treatments.

  19. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Edy Giri Rachman [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Patriati, Arum [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia giri@batan.go.id (Indonesia)

    2015-04-16

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  20. Protein crowding in solution, frozen and freeze-dried states: small-angle neutron and X-ray scattering study of lysozyme/sorbitol/water systems

    Science.gov (United States)

    Krueger, Susan; Khodadadi, Sheila; Clark, Nicholas; McAuley, Arnold; Cristiglio, Viviana; Theyencheri, Narayanan; Curtis, Joseph; Shalaev, Evgenyi

    2015-03-01

    For effective preservation, proteins are often stored as frozen solutions or in glassy states using a freeze-drying process. However, aggregation is often observed after freeze-thaw or reconstitution of freeze-dried powder and the stability of the protein is no longer assured. In this study, small-angle neutron and X-ray scattering (SANS and SAXS) have been used to investigate changes in protein-protein interaction distances of a model protein/cryoprotectant system of lysozyme/sorbitol/water, under representative pharmaceutical processing conditions. The results demonstrate the utility of SAXS and SANS methods to monitor protein crowding at different stages of freezing and drying. The SANS measurements of solution samples showed at least one protein interaction peak corresponding to an interaction distance of ~ 90 Å. In the frozen state, two protein interaction peaks were observed by SANS with corresponding interaction distances at 40 Å as well as 90 Å. On the other hand, both SAXS and SANS data for freeze-dried samples showed three peaks, suggesting interaction distances ranging from ~ 15 Å to 170 Å. Possible interpretations of these interaction peaks will be discussed, as well as the role of sorbitol as a cryoprotectant during the freezing and drying process.

  1. Structural characterization of the circadian clock protein complex composed of KaiB and KaiC by inverse contrast-matching small-angle neutron scattering

    Science.gov (United States)

    Sugiyama, Masaaki; Yagi, Hirokazu; Ishii, Kentaro; Porcar, Lionel; Martel, Anne; Oyama, Katsuaki; Noda, Masanori; Yunoki, Yasuhiro; Murakami, Reiko; Inoue, Rintaro; Sato, Nobuhiro; Oba, Yojiro; Terauchi, Kazuki; Uchiyama, Susumu; Kato, Koichi

    2016-01-01

    The molecular machinery of the cyanobacterial circadian clock consists of three proteins: KaiA, KaiB, and KaiC. Through interactions among the three Kai proteins, the phosphorylation states of KaiC generate circadian oscillations in vitro in the presence of ATP. Here, we characterized the complex formation between KaiB and KaiC using a phospho-mimicking mutant of KaiC, which had an aspartate substitution at the Ser431 phosphorylation site and exhibited optimal binding to KaiB. Mass-spectrometric titration data showed that the proteins formed a complex exclusively in a 6:6 stoichiometry, indicating that KaiB bound to the KaiC hexamer with strong positive cooperativity. The inverse contrast-matching technique of small-angle neutron scattering enabled selective observation of KaiB in complex with the KaiC mutant with partial deuteration. It revealed a disk-shaped arrangement of the KaiB subunits on the outer surface of the KaiC C1 ring, which also serves as the interaction site for SasA, a histidine kinase that operates as a clock-output protein in the regulation of circadian transcription. These data suggest that cooperatively binding KaiB competes with SasA with respect to interaction with KaiC, thereby promoting the synergistic release of this clock-output protein from the circadian oscillator complex. PMID:27752127

  2. Neutron scattering from fractals

    DEFF Research Database (Denmark)

    Kjems, Jørgen; Freltoft, T.; Richter, D.;

    1986-01-01

    The scattering formalism for fractal structures is presented. Volume fractals are exemplified by silica particle clusters formed either from colloidal suspensions or by flame hydrolysis. The determination of the fractional dimensionality through scattering experiments is reviewed, and recent smal...

  3. Neutron scattering in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Barocchi, F. [Florence Univ. (Italy). Ist. di Fisica

    1996-12-31

    Together with X-rays, thermal neutrons are the ideal probe to study the microscopic structure of condensed matter, however the precision attainable usually with neutrons for the measurement of atomic position correlation functions in liquids is, at least, one order of magnitude better than for X-rays. In order to measure properly the microscopic dynamics a wide range of momentum transfer with corresponding energy transfer must be available in the range of liquid state excitations. This again is only attainable, with good resolution, with neutrons. (author) 7 figs., 3 refs.

  4. Small angle scattering and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, J.P. [Laboratoire Leon Brillouin (LLB) - Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1996-12-31

    The determination of polymer structure is a problem of interest for both statistical physics and industrial applications. The average polymer structure is defined. Then, it is shown why small angle scattering, associated with isotopic substitution, is very well suited to the measurement of the chain conformation. The corresponding example is the old, but pedagogic, measurement of the chain form factor in the polymer melt. The powerful contrast variation method is illustrated by a recent determination of the concentration profile of a polymer interface. (author) 12 figs., 48 refs.

  5. Deuterium Labeling Together with Contrast Variation Small-Angle Neutron Scattering Suggests How Skp Captures and Releases Unfolded Outer Membrane Proteins.

    Science.gov (United States)

    Zaccai, Nathan R; Sandlin, Clifford W; Hoopes, James T; Curtis, Joseph E; Fleming, Patrick J; Fleming, Karen G; Krueger, Susan

    2016-01-01

    In Gram-negative bacteria, the chaperone protein Skp forms specific and stable complexes with membrane proteins while they are transported across the periplasm to the outer membrane. The jellyfish-like architecture of Skp is similar to the eukaryotic and archaeal prefoldins and the mitochondrial Tim chaperones, that is the α-helical "tentacles" extend from a β-strand "body" to create an internal cavity. Contrast variation small-angle neutron scattering (SANS) experiments on Skp alone in solution and bound in two different complexes to unfolded outer membrane proteins (uOMPs), OmpA and OmpW, demonstrate that the helical tentacles of Skp bind their substrate in a clamp-like mechanism in a conformation similar to that previously observed in the apo crystal structure of Skp. Deuteration of the uOMP component combined with contrast variation analysis allowed the shapes of Skp and uOMP as well as the location of uOMP with respect to Skp to be determined in both complexes. This represents unique information that could not be obtained without deuterium labeling of the uOMPs. The data yield the first direct structural evidence that the α-helical Skp tentacles move closer together on binding its substrate and that the structure of Skp is different when binding different uOMPs. This work presents, by example, a tutorial on performing SANS experiments using both deuterium labeling and contrast variation, including SANS theory, sample preparation, data collection, sample quality validation, data analysis, and structure modeling.

  6. Combining NMR and small angle X-ray and neutron scattering in the structural analysis of a ternary protein-RNA complex

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Janosch; Wang, Iren; Sonntag, Miriam [Institute of Structural Biology, Helmholtz Zentrum Muenchen (Germany); Gabel, Frank [Extremophiles and Large Molecular Assemblies Group (ELMA), Institut de Biologie Structurale (IBS) CEA-CNRS-UJF (France); Sattler, Michael, E-mail: sattler@helmholtz-muenchen.de [Institute of Structural Biology, Helmholtz Zentrum Muenchen (Germany)

    2013-05-15

    Many processes in the regulation of gene expression and signaling involve the formation of protein complexes involving multi-domain proteins. Individual domains that mediate protein-protein and protein-nucleic acid interactions are typically connected by flexible linkers, which contribute to conformational dynamics and enable the formation of complexes with distinct binding partners. Solution techniques are therefore required for structural analysis and to characterize potential conformational dynamics. Nuclear magnetic resonance spectroscopy (NMR) provides such information but often only sparse data are obtained with increasing molecular weight of the complexes. It is therefore beneficial to combine NMR data with additional structural restraints from complementary solution techniques. Small angle X-ray/neutron scattering (SAXS/SANS) data can be efficiently combined with NMR-derived information, either for validation or by providing additional restraints for structural analysis. Here, we show that the combination of SAXS and SANS data can help to refine structural models obtained from data-driven docking using HADDOCK based on sparse NMR data. The approach is demonstrated with the ternary protein-protein-RNA complex involving two RNA recognition motif (RRM) domains of Sex-lethal, the N-terminal cold shock domain of Upstream-to-N-Ras, and msl-2 mRNA. Based on chemical shift perturbations we have mapped protein-protein and protein-RNA interfaces and complemented this NMR-derived information with SAXS data, as well as SANS measurements on subunit-selectively deuterated samples of the ternary complex. Our results show that, while the use of SAXS data is beneficial, the additional combination with contrast variation in SANS data resolves remaining ambiguities and improves the docking based on chemical shift perturbations of the ternary protein-RNA complex.

  7. Small-angle neutron scattering studies of mineralization on BSA coated citrate capped gold nanoparticles used as a model surface for membrane scaling in RO wastewater desalination.

    Science.gov (United States)

    Dahdal, Y N; Pipich, V; Rapaport, H; Oren, Y; Kasher, R; Schwahn, D

    2014-12-23

    Bovine serum albumin (BSA) coated on citrate capped gold nanoparticles (BSA-GNPs) was exposed to a simulated wastewater effluent (SSE) in order to study the mineralization and thereby mimic scaling at biofouled membranes of reverse osmosis (RO) wastewater desalination plants. RO is a leading technology of achieving freshwater quality as it has the capability of removing both dissolved inorganic salts and organic contaminants from tertiary wastewater effluents. The aim was to better understand one of the major problems facing this technology which is fouling of the membranes, mainly biofouling and scaling by calcium phosphate. The experiments were performed using the small-angle neutron scattering (SANS) technique. The nanoparticles, GNPs, stabilized by the citrate groups showed 30 Å large particles having a homogeneous distribution of gold and citrate with a gold volume fraction of the order of 1%. On the average two BSA monomers are grafted at 2.4 GNPs. The exposed BSA-GNPs to SSE solution led to immediate mineralization of stable composite particles of the order of 0.2 μm diameter and a mineral volume fraction between 50% and 80%. The volume fraction of the mineral was of the order of 10(-5), which is roughly 3 times larger but an order of magnitude smaller than the maximum possible contents of respectively calcium phosphate and calcium carbonate in the SSE solution. Considering the extreme low solubility product of calcium phosphate, we suggest total calcium phosphate and partially (5-10%) calcium carbonate formation in the presence of BSA-GNPs.

  8. Simultaneous small-angle neutron scattering and Fourier transform infrared spectroscopic measurements on cocrystals of syndiotactic polystyrene with polyethylene glycol dimethyl ethers1

    Science.gov (United States)

    Kaneko, Fumitoshi; Seto, Naoki; Sato, Shuma; Radulescu, Aurel; Schiavone, Maria Maddalena; Allgaier, Jürgen; Ute, Koichi

    2016-01-01

    Syndiotactic polystyrene (sPS) is a crystalline polymer which has a unique property; it is able to form cocrystals with a wide range of chemical compounds, in which the guest molecules are confined in the vacancies of the host sPS crystalline region. Recently, it has been found that even polyethylene glycol oligomers with a molecular weight of more than several hundreds can be introduced into the sPS crystalline region. It is quite important to know how such a long-chain molecule is stored in the host sPS lattice. To tackle this issue, a new simultaneous measurement method combing small-angle neutron scattering and Fourier transform infrared spectroscopy (SANS/FTIR), which has been recently developed by the authors, was applied to an sPS cocrystal with polyethylene glycol dimethyl ether with a molecular weight of 500 (PEGDME500). The temperature-dependent changes of the SANS profile and FTIR spectrum were followed from room temperature up to 413 K for a one-dimensionally oriented SANS/PEGDME500 cocrystal sample. The intensity of the reflections due to the stacking of crystalline lamellae showed a significant temperature dependence. The two-dimensional pattern in the high Q region of SANS also changed depending on temperature. The combined information obtained by SANS and FTIR suggested that PEGDME500 molecules are distributed in both the crystalline and amorphous regions in the low-temperature region close to room temperature, but they are predominantly included in the amorphous region in the high-temperature region. It was also suggested by the two-dimensional SANS profile that PEGDME500 molecules in the crystalline region have an elongated structure along the thickness direction of the crystalline lamellae. PMID:27738412

  9. Growth kinetics of lipid-based nanodiscs to unilamellar vesicles-a time-resolved small angle neutron scattering (SANS) study.

    Science.gov (United States)

    Mahabir, Suanne; Small, Darcy; Li, Ming; Wan, Wankei; Kučerka, Norbert; Littrell, Kenneth; Katsaras, John; Nieh, Mu-Ping

    2013-03-01

    Mixtures of dimyristoyl-phosphatidylcholine (DMPC), dimyristoyl-phosphatidylglycerol (DMPG) and dihexanoyl-phosphatidylcholine (DHPC) in aqueous solutions spontaneously form monodisperse, bilayered nanodiscs (also known as "bicelles") at or below the melting transition temperature of DMPC (T(M) ~23°C). In dilute systems above the main transition temperature T(M) of DMPC, bicelles coalesce (increasing their diameter) and eventually self-fold into unilamellar vesicles (ULVs). Time-resolved small angle neutron scattering was used to study the growth kinetics of nanodiscs below and equal to T(M) over a period of hours as a function of temperature at two lipid concentrations in presence or absence of NaCl salt. Bicelles seem to undergo a sudden initial growth phase with increased temperature, which is then followed by a slower reaction-limited growth phase that depends on ionic strength, lipid concentration and temperature. The bicelle interaction energy was derived from the colloidal theory of Derjaguin and Landau, and Verwey and Overbeek (DLVO). While the calculated total energy between discs is attractive and proportional to their growth rate, a more detailed mechanism is proposed to describe the mechanism of disc coalescence. After annealing at low temperature (low-T), samples were heated to 50°C in order to promote the formation of ULVs. Although the low-T annealing of samples has only a marginal effect on the mean size of end-state ULVs, it does affect their polydispersity, which increases with increased T, presumably driven by the entropy of the system.

  10. Small angle neutron scattering study on the aggregation behaviour of PEO–PPO–PEO copolymers in the presence of a hydrophobic diol

    Indian Academy of Sciences (India)

    B Bharatiya; V K Aswal; P Bahadur

    2008-11-01

    Small angle neutron scattering (SANS) measurements on aqueous solutions of four polyethylene oxide–polypropylene oxide–polyethylene oxide block copolymers (commercially known as Pluronic®)F88, P85, F127 and P123 in the presence of hydrophobic C14Diol (also known as Surfynol® 104) reveal information on micellization, micellar size and micellar transitions. While most hydrophilic F88 (with least PPO/PEO ratio) remained unimers in water at 30◦ C, other copolymers formed micellar solutions. Surfynol® 104 is sparingly soluble in water to only about ∼ 0.1 wt%, but on addition to pluronic solution, it gets incorporated in the micellar region of block copolymer which leads to increase in aggregation number and transformation of spherical to ellipsoidal micelles. The added diol-induced micellization in F88, though hydrophilic copolymers F88 and F127 did not show any appreciable micellar growth or shape changes as observed for P85 and P123 (which are comparatively more hydrophobic). The SANS results on copolymer pairs with same molecular weight PPO but different % PEO (viz. F88 and P85, F127 and P123) and with same molecular weight PEO but different PPO (F88 and F127) reveal that the copolymer with large PPO/PEO ratio facilitate micellar transition in the presence of diol. An increase in temperature and presence of added electrolyte (sodium chloride) in the solution further enhances these effects. The micellar parameters for these systems were found out using available software and are reported.

  11. Isomeric and concentration effects of C{sub 4}-cosurfactants on four-component microemulsions investigated by neutron spin-echo and small-angle scattering

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano, E [Center for Materials Science and Engineering, Rochester Institute of Technology, Rochester, NY 14623 (United States); Kotlarchyk, M [Department of Physics, Rochester Institute of Technology, Rochester, NY 14623 (United States); Langner, A [Department of Chemistry, Rochester Institute of Technology, Rochester, NY 14623 (United States); Faraone, A [NIST Center for Neutron Research, Gaithersburg, MD 20899 (United States)

    2006-09-13

    Neutron spin-echo spectroscopy and small-angle scattering measurements were performed to determine how the isomeric structure and concentration of C{sub 4}-cosurfactants (i.e. butyl alcohols) influence structure and dynamics in four-component water-in-oil microemulsions. The system investigated was AOT/butanol/water/n-octane at room temperature (AOT denotes sodium di-2-ethyl hexylsulfosuccinate), deuterated to achieve contrast of the surfactant/cosurfactant film. At a fixed volume fraction of 0.06 and a fixed molar ratio of [water]/[AOT] = 20, we studied the effects of increasing the molar ratio of [butanol]/[AOT] from 0 to 30. Data from samples containing the cosurfactant n-butyl alcohol were compared with samples prepared with tert-butyl alcohol and, in a few cases, sec-butyl alcohol. Data were analysed using a core-shell model for polydisperse spherical droplets, allowing for the presence of shape fluctuations. It was found that all structural isomers of the cosurfactant led to a similar decrease in droplet size with increasing alcohol content. In all cases, droplet size and shape fluctuations were observed to increase with alcohol content; however, the effect was most pronounced for size fluctuations (i.e. polydispersity) in the presence of tert-butanol. The data indicates that tert-butanol has a higher degree of penetration into the water core, leading to a reduced influence on the effective area per surfactant head group on the droplet surface. There is also evidence that an increased droplet-droplet attraction upon adding tert-butanol drives phase separation in the system.

  12. Pore Characterization of Shale Rock and Shale Interaction with Fluids at Reservoir Pressure-Temperature Conditions Using Small-Angle Neutron Scattering

    Science.gov (United States)

    Ding, M.; Hjelm, R.; Watkins, E.; Xu, H.; Pawar, R.

    2015-12-01

    Oil/gas produced from unconventional reservoirs has become strategically important for the US domestic energy independence. In unconventional realm, hydrocarbons are generated and stored in nanopores media ranging from a few to hundreds of nanometers. Fundamental knowledge of coupled thermo-hydro-mechanical-chemical (THMC) processes that control fluid flow and propagation within nano-pore confinement is critical for maximizing unconventional oil/gas production. The size and confinement of the nanometer pores creates many complex rock-fluid interface interactions. It is imperative to promote innovative experimental studies to decipher physical and chemical processes at the nanopore scale that govern hydrocarbon generation and mass transport of hydrocarbon mixtures in tight shale and other low permeability formations at reservoir pressure-temperature conditions. We have carried out laboratory investigations exploring quantitative relationship between pore characteristics of the Wolfcamp shale from Western Texas and the shale interaction with fluids at reservoir P-T conditions using small-angle neutron scattering (SANS). We have performed SANS measurements of the shale rock in single fluid (e.g., H2O and D2O) and multifluid (CH4/(30% H2O+70% D2O)) systems at various pressures up to 20000 psi and temperature up to 150 oF. Figure 1 shows our SANS data at different pressures with H2O as the pressure medium. Our data analysis using IRENA software suggests that the principal changes of pore volume in the shale occurred on smaller than 50 nm pores and pressure at 5000 psi (Figure 2). Our results also suggest that with increasing P, more water flows into pores; with decreasing P, water is retained in the pores.

  13. Comment on "Cholesterol solubility limit in lipid membranes probed by small angle neutron scattering and MD simulations" by S. Garg et al., Soft Matter, 2014, 10, 9313.

    Science.gov (United States)

    Epand, Richard M; Bach, Diana; Wachtel, Ellen

    2015-07-21

    In a recent article, Garg et al. used neutron scattering techniques to determine the limiting amount of cholesterol which vesicles of either POPS or POPC can accommodate. This amount was called "the cholesterol solubility limit". In light of extensive literature on cholesterol phase separation in phospholipid bilayers, the way in which "solubility limit" is defined in this article and the conclusions derived are misleading and require some clarification.

  14. Analysis of nano-sized irradiation-induced defects in Fe-base materials by means of small angle neutron scattering and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yu, G.

    2008-12-15

    Thermonuclear fusion of light atoms is considered since decades as an unlimited, safe and reliable source of energy that could eventually replace classical sources based on fossil fuel or nuclear fuel. Fusion reactor technology and materials studies are important parts of the fusion energy development program. For the time being, the most promising materials for structural applications in the future fusion power reactors are the Reduced Activation Ferritic/Martensitic (RAFM) steels for which the greatest technology maturity has been achieved, i.e., qualified fabrication routes, welding technology and a general industrial experience are almost available. The most important issues concerning the future use of RAFM steels in fusion power reactors are derived from their irradiation by 14 MeV neutrons that are the product, together with 3.5 MeV helium ions, of the envisaged fusion reactions between deuterium and tritium nuclei. Indeed, exposure of metallic materials to intense fluxes of 14 MeV neutrons will result in the formation of severe displacement damage (about 20-30 dpa per year) and high amounts of helium, which are at the origin of significant changes in the physical and mechanical properties of materials, such as hardening and embrittlement effects. This PhD Thesis work was aimed at investigating how far the Small Angle Neutron Scattering (SANS) technique could be used for detecting and characterizing nano-sized irradiation-induced defects in RAFM steels. Indeed, the resolution limit of Transmission Electron Microscopy (TEM) is about 1 nm in weak beam TEM imaging, and it is usually thought that a large number of irradiation-induced effects have a size below 1 nm in RAFM steels and that these very small defects actually contribute to the irradiation-induced hardening and embrittlement of RAFM steels occurring at irradiation temperatures below about 400 °C. The aim of this work was achieved by combining SANS experiments on unirradiated and irradiated specimens

  15. Contraband detection via neutron elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gomberg, H.J.; Charatis, G.; Brundage, J. [Penetron, Inc., Ann Arbor, MI (United States)] [and others

    1993-04-01

    Reliable detection of explosives and narcotics depends on generating signatures of compounds which characterize them. Major explosives and also alkaloid narcotics contain unique concentrations of Carbon (C), Nitrogen (N), and Oxygen (O). The kinematic energy shifts of neutrons scattered through angles larger than 140{degrees} allows separate determinations of C, N, and O; ratios of N/C and O/C together give clear signatures of the presence of plastic explosives or narcotics. The ability to detect these signatures under conditions similar to those that would obtain for airport screening has been demonstrated for neutrons for energies less {le} 3 MeV. Strong N resonances and a deep window for scattering from O enhance the confidence of element quantification. Detection of contraband in large cargo containers presents a much more difficult problem. Use of higher energy neutrons is now being tested for shielding penetration, so narcotic signatures could be identified behind the shielding of cargo containers. Scattered neutron spectra, or {open_quotes}signatures{close_quotes} of different organic compounds will be presented.

  16. Point Scattered Function (PScF) for fast neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Mohamed H. [Nuclear and Radiation Engineering Department, Alexandria University, Alexandria 21544 (Egypt)], E-mail: mhmheg@yahoo.com

    2009-08-01

    Fast neutron radiography opened up a new range of possibilities to image extremely dense objects. The removal of the scattering effect is one of the most challenging problems in neutron imaging. Neutron scattering in fast neutron radiography did not receive much attention compared with X-ray and thermal neutron radiography. The purpose of this work is to investigate the behavior of the Point Scattered Function (PScF) as applied in fast neutron radiography. The PScF was calculated using MCNP as a spatial distribution of scattered neutrons over the detector surface for one emitting source element. Armament and explosives materials, namely, Rifle steel, brass, aluminum and trinitrotoluene (TNT) were simulated. Effect of various sample thickness and sample-to-detector distance were considered. Simulated sample geometries included a slab with varying thickness, a sphere with varying radii, and a cylinder with varying base radii. Different neutron sources, namely, Cf-252, DT as well as DD neutron sources were considered. Neutron beams with zero degree divergence angle; and beams with varying angles related to the normal to the source plane were simulated. Curve fitting of the obtained PScF, in the form of Gaussian function, were given to be used in future work using image restoration codes. Analytical representation of the height as well as the Full Width at Half Maximum (FWHM) of the obtained Gaussian functions eliminates the need to calculate the PScF for sample parameters that were not investigated in this study.

  17. Small-angle neutron scattering instrument of Institute for Solid State Physics, the Univeristy of Tokyo (SANS-U) and its application to biology

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yuji; Imai, Masayuki; Takahashi, Shiro [Univ. of Tokyo, Tokai Naka Ibaraki (Japan)

    1994-12-31

    A small-angle neutron spectrometer (SANS-U) suitable for the study of mesoscopic structure in the field of polymer chemistry and biology, has been constructed at the guide hall of JRR-3M reactor at the Japan Atomic Energy Research Institute. The instrument is 32m long and utilizes a mechanical velocity selector and pinhole collimation to provide a continuous beam with variable wavelength in the range from 5 to 10{Angstrom}. The neutron detector is a 65 x 65cm{sup 2} 2D position sensitive proportional counter. The practical Q range of SANS-U is 0.0008 to 0.45{Angstrom}{sup -1}. The design, characteristics and performance of SANS-U are described with some biological studies using SANS-U.

  18. Progress report on neutron scattering at JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Morii, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-10-01

    Progress in neutron scattering experiments at Japan Atomic Energy Research Institute for the year 1997-1998 is reported in brief. The superconducting gap was discovered in the spin excitation spectra of a heavy fermion superconductor UPd{sub 2}Al{sub 3}, which proved the superconductivity of this compound to be due to magnetic origin. The magnetic and superconducting order parameter was found in UPd{sub 2}Al{sub 3}, UNi{sub 2}Al{sub 3}, UPt{sub 3} and URu{sub 2}Si{sub 2}. It was concluded from this result that the coupling of the order parameter would be a characteristic property in heavy fermion superconductors. The correlation between strong magnetic interaction and the superconducting transition under high pressure was indicated from spin excitation in the strongly correlated electron system of a ladder material (Sr,Ca){sub 14}Cu{sub 24}O{sub 41}. The magnetic flux structure in a Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} superconductor was examined by SANS (small angle neutron scattering) to observe the decomposition of the flux lines. A liquid-He-free dilution refrigerator was developed for neutron scattering experiments at ultralow temperature. The coherent scattering length of the {sup 69}Ga and {sup 71}Ga was evaluated by use of the apparatus for precise neutron optics. The structure of hen egg-white Lysozyne was investigated in detail. Detailed research report for the year 1997-1998 was published in the JAERI-Review 99-003. (Y. Kazumata)

  19. Small-angle proton elastic scattering from the neutron-rich isotopes sup 6 He and sup 8 He, and from sup 4 He, at 0.7 GeV in inverse kinematics

    CERN Document Server

    Neumaier, S R; Andronenko, M N; Dobrovolsky, A V; Egelhof, P; Gavrilov, G E; Geissel, H; Irnich, H; Khanzadeev, A V; Korolev, G A; Lobodenko, A A; Münzenberg, G; Mutterer, M; Schwab, W; Seliverstov, D M; Suzuki, T; Timofeev, N A; Vorobyov, A A; Yatsoura, V I

    2002-01-01

    Absolute differential cross sections for elastic p sup 4 He, p sup 6 He and p sup 8 He small-angle scattering were measured in inverse kinematics with secondary sup 4 sup , sup 6 sup , sup 8 He-beams at an energy near 0.7 GeV/u. The experiment was performed using beams from the heavy-ion synchrotron SIS and the fragment separator FRS of GSI Darmstadt. The hydrogen-filled ionization chamber IKAR served simultaneously as a gas target and a detector for the recoil protons. Projectile scattering angles were measured with multi-wire tracking detectors. For proton scattering from the neutron-rich isotopes sup 6 He and sup 8 He, differential elastic-scattering cross sections d sigma/dt were deduced in the range 0.002<= parallel t parallel <=0.05 (GeV/c) sup 2 of the four-momentum transfer squared t. For elastic p sup 4 He scattering, the data obtained in the t-range 0.002<= parallel t parallel <=0.02 (GeV/c) sup 2 supplement the results from an earlier work performed in direct kinematics. From the differ...

  20. Investigating hard sphere interactions through spin echo scattering angle measurement

    Science.gov (United States)

    Washington, Adam

    Spin Echo Scattering Angle Measurement (SESAME) allows neutron scattering instruments to perform real space measurements on large micron scale samples by encoding the scattering angle into the neutron's spin state via Larmor precession. I have built a SESAME instrument at the Low Energy Neutron Source. I have also assisted in the construction of a modular SESAME instrument on the ASTERIX beamline at Los Alamos National lab. The ability to tune these instruments has been proved mathematically and optimized and automated experimentally. Practical limits of the SESAME technique with respect to polarization analyzers, neutron spectra, Larmor elements, and data analysis were investigated. The SESAME technique was used to examine the interaction of hard spheres under depletion. Poly(methyl methacrylate) spheres suspended in decalin had previously been studied as a hard sphere solution. The interparticle correlations between the spheres were found to match the Percus-Yevick closure, as had been previously seen in dynamical light scattering experiments. To expand beyond pure hard spheres, 900kDa polystyrene was added to the solution in concentrations of less than 1% by mass. The steric effects of the polystyrene were expected to produce a short-range, attractive, "sticky" potential. Experiment showed, however, that the "sticky" potential was not a stable state and that the spheres would eventually form long range aggregates.

  1. Neutron scattering studies in the actinide region

    Energy Technology Data Exchange (ETDEWEB)

    Beghian, L.E.; Kegel, G.H.R.

    1991-08-01

    During the report period we have investigated the following areas: Neutron elastic and inelastic scattering measurements on {sup 14}N, {sup 181}Ta, {sup 232}Th, {sup 238}U and {sup 239}Pu; Prompt fission spectra for {sup 232}Th, {sup 235}U, {sup 238}U and {sup 239}Pu; Theoretical studies of neutron scattering; Neutron filters; New detector systems; and Upgrading of neutron target assembly, data acquisition system, and accelerator/beam-line apparatus.

  2. Instruments and accessories for neutron scattering research

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Yoshinobu; Morii, Yukio [eds.] [Advanced Science Research Center (Tokai Site), Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2000-04-01

    This report describes neutron scattering instruments and accessories installed by four neutron scattering research groups at the ASRC (Advanced Science Research Center) of the JAERI and the recent topics of neutron scattering research using these instruments. The specifications of nine instruments (HRPD, BIX-I, TAS-1 and PNO in the reactor hall, RESA, BIX-II, TAS-2, LTAS and SANS-J in the guide hall of the JRR-3M) are summarized in this booklet. (author)

  3. Neutron Scattering Investigations of Correlated Electron Systems and Neutron Instrumentation

    DEFF Research Database (Denmark)

    Holm, Sonja Lindahl

    are a unique probe for studying the atomic and molecular structure and dynamics of materials. Even though neutrons are very expensive to produce, the advantages neutrons provide overshadow the price. As neutrons interact weakly with materials compared to many other probes, e.g. electrons or photons......, it is possible to make a neutron scattering experiment through sample environment equipment like cryostats or pressure cells. Another advantage of neutron experiments is that the wavelength and energy of the neutron match the inter-atomic distances and basic excitations of solid materials. The scattering cross...... is not taken into account in previous reports on the field effect of magnetic scattering, since usually only L 0 is probed. A paper draft submitted for publication describing the results of elastic and inelastic neutron scattering experiments performed on the oxygen-doped La2CuO4+y HTSC is appended (Tc 40 K...

  4. Observation of Well-ordered Metastable Vortex Lattice Phases in Superconducting MgB2 Using Small-Angle Neutron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Das, Pinaki [University of Notre Dame, IN; Rastovski, Catherine [University of Notre Dame, IN; O' Brien, Timothy [University of Illinois, Urbana-Champaign; Schlesinger, Kimberly [University of Notre Dame, IN; Dewhurst, Charles [Institut Laue-Langevin (ILL); Debeer-Schmitt, Lisa M [ORNL; Zhigadlo, Nikolai [ETH Zurich, Switzerland; Karpinski, Janusz [ETH Zurich, Switzerland; Eskildsen, Morten [University of Notre Dame, IN

    2012-01-01

    The vortex lattice (VL) symmetry and orientation in clean type-II superconductors depends sensitively on the host material anisotropy, vortex density and temperature, frequently leading to rich phase diagrams. Typically, a well-ordered VL is taken to imply a ground-state configuration for the vortex-vortex interaction. Using neutron scattering we studied the VL in MgB2 for a number of field-temperature histories, discovering an unprecedented degree of metastability in connection with a known, second-order rotation transition. This allows, for the first time, structural studies of a well-ordered, nonequilibrium VL. While the mechanism responsible for the longevity of the metastable states is not resolved, we speculate it is due to a jamming of VL domains, preventing a rotation to the ground-state orientation.

  5. Observation of well-ordered metastable vortex lattice phases in superconducting MgB2 using small-angle neutron scattering.

    Science.gov (United States)

    Das, P; Rastovski, C; O'Brien, T R; Schlesinger, K J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R

    2012-04-20

    The vortex lattice (VL) symmetry and orientation in clean type-II superconductors depends sensitively on the host material anisotropy, vortex density and temperature, frequently leading to rich phase diagrams. Typically, a well-ordered VL is taken to imply a ground-state configuration for the vortex-vortex interaction. Using neutron scattering we studied the VL in MgB(2) for a number of field-temperature histories, discovering an unprecedented degree of metastability in connection with a known, second-order rotation transition. This allows, for the first time, structural studies of a well-ordered, nonequilibrium VL. While the mechanism responsible for the longevity of the metastable states is not resolved, we speculate it is due to a jamming of VL domains, preventing a rotation to the ground-state orientation.

  6. Neutron scattering instrumentation for biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Conventional wisdom holds that since biological entities are large, they must be studied with cold neutrons, a domain in which reactor sources of neutrons are often supposed to be pre-eminent. In fact, the current generation of pulsed spallation neutron sources, such as LANSCE at Los Alamos and ISIS in the United Kingdom, has demonstrated a capability for small angle scattering (SANS) - a typical cold- neutron application - that was not anticipated five years ago. Although no one has yet built a Laue diffractometer at a pulsed spallation source, calculations show that such an instrument would provide an exceptional capability for protein crystallography at one of the existing high-power spoliation sources. Even more exciting is the prospect of installing such spectrometers either at a next-generation, short-pulse spallation source or at a long-pulse spallation source. A recent Los Alamos study has shown that a one-megawatt, short-pulse source, which is an order of magnitude more powerful than LANSCE, could be built with today`s technology. In Europe, a preconceptual design study for a five-megawatt source is under way. Although such short-pulse sources are likely to be the wave of the future, they may not be necessary for some applications - such as Laue diffraction - which can be performed very well at a long-pulse spoliation source. Recently, it has been argued by Mezei that a facility that combines a short-pulse spallation source similar to LANSCE, with a one-megawatt, long-pulse spallation source would provide a cost-effective solution to the global shortage of neutrons for research. The basis for this assertion as well as the performance of some existing neutron spectrometers at short-pulse sources will be examined in this presentation.

  7. Small-angle proton elastic scattering from the neutron-rich isotopes {sup 6}He and {sup 8}He, and from {sup 4}He, at 0.7 GeV in inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Neumaier, S.R.; Alkhazov, G.D.; Andronenko, M.N.; Dobrovolsky, A.V.; Egelhof, P. E-mail: p.egelhof@gsi.de; Gavrilov, G.E.; Geissel, H.; Irnich, H.; Khanzadeev, A.V.; Korolev, G.A.; Lobodenko, A.A.; Muenzenberg, G.; Mutterer, M.; Schwab, W.; Seliverstov, D.M.; Suzuki, T.; Timofeev, N.A.; Vorobyov, A.A.; Yatsoura, V.I

    2002-12-30

    Absolute differential cross sections for elastic p {sup 4}He, p {sup 6}He and p {sup 8}He small-angle scattering were measured in inverse kinematics with secondary {sup 4,6,8}He-beams at an energy near 0.7 GeV/u. The experiment was performed using beams from the heavy-ion synchrotron SIS and the fragment separator FRS of GSI Darmstadt. The hydrogen-filled ionization chamber IKAR served simultaneously as a gas target and a detector for the recoil protons. Projectile scattering angles were measured with multi-wire tracking detectors. For proton scattering from the neutron-rich isotopes {sup 6}He and {sup 8}He, differential elastic-scattering cross sections d{sigma}/dt were deduced in the range 0.002{<=} parallel t parallel {<=}0.05 (GeV/c){sup 2} of the four-momentum transfer squared t. For elastic p {sup 4}He scattering, the data obtained in the t-range 0.002{<=} parallel t parallel {<=}0.02 (GeV/c){sup 2} supplement the results from an earlier work performed in direct kinematics. From the differential cross sections the integral elastic-scattering cross sections {sigma}{sub el}, the total cross sections {sigma}{sub tot}, and the total reaction cross sections {sigma}{sub r} for the proton-nucleus strong interaction were evaluated. The data obtained on d{sigma}/dt allow the radial matter distributions in the {sup 6}He and {sup 8}He nuclei to be determined and the corresponding root-mean-square matter radii to be deduced.

  8. Fundamentals of neutron scattering by condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    Scherm, R. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1996-12-31

    The purpose of this introductory lecture is to give the basic facts about the scattering of neutrons by condensed matter. This lecture is restricted to nuclear scattering, whereas magnetic scattering will be dealt with in an other course. Most of the formalism, however, can also be easily extended to magnetic scattering. (author) 17 figs., 3 tabs., 10 refs.

  9. American Conference on Neutron Scattering 2014

    Energy Technology Data Exchange (ETDEWEB)

    Dillen, J. Ardie [Materials Research Society, Warrendale, PA (United States)

    2014-12-31

    Scientists from the around the world converged in Knoxville, TN to have share ideas, present technical information and contribute to the advancement of neutron scattering. Featuring over 400 oral/poster presentations, ACNS 2014 offered a strong program of plenary, invited and contributed talks and poster sessions covering topics in soft condensed matter, hard condensed matter, biology, chemistry, energy and engineering applications in neutron physics – confirming the great diversity of science that is enabled by neutron scattering.

  10. German neutron scattering conference. Programme and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas (ed.)

    2012-07-01

    The German Neutron Scattering Conference 2012 - Deutsche Neutronenstreutagung DN 2012 offers a forum for the presentation and critical discussion of recent results obtained with neutron scattering and complementary techniques. The meeting is organized on behalf of the German Committee for Research with Neutrons - Komitee Forschung mit Neutronen KFN - by the Juelich Centre for Neutron Science JCNS of Forschungszentrum Juelich GmbH. In between the large European and international neutron scattering conferences ECNS (2011 in Prague) and ICNS (2013 in Edinburgh), it offers the vibrant German and international neutron community an opportunity to debate topical issues in a stimulating atmosphere. Originating from ''BMBF Verbundtreffen'' - meetings for projects funded by the German Federal Ministry of Education and Research - this conference series has a strong tradition of providing a forum for the discussion of collaborative research projects and future developments in the field of research with neutrons in general. Neutron scattering, by its very nature, is used as a powerful probe in many different disciplines and areas, from particle and condensed matter physics through to chemistry, biology, materials sciences, engineering sciences, right up to geology and cultural heritage; the German Neutron Scattering Conference thus provides a unique chance for exploring interdisciplinary research opportunities. It also serves as a showcase for recent method and instrument developments and to inform users of new advances at neutron facilities.

  11. Neutron detectors for scattering experiments at HANARO

    Indian Academy of Sciences (India)

    Myungkook Moon; Changhee Lee; Jongkyu Cheon; Younghyun Choi; Harkrho Kim; Shraddha S Desai

    2008-11-01

    Position sensitive detectors (PSD) measure the distribution of scattered neutrons and are essential tools for neutron scattering experiments. Various types of neutron detectors used at neutron diffractometers are conventional tube detectors, 1-D and 2-D PSDs. Korea Atomic Energy Research Institute (KAERI) has been developing various kinds of PSDs to improve the instrument performance and to develop new scattering instruments. Our development work is initiated with 1-D PSD for residual stress analysis spectrometer and finally the technology is extended to development of 2-D PSD with planar and curved geometry. All PSDs are based on multiwire grid assembly with delay line readout method for position encoding, as the response is faster than charge division method and enables higher count rate capability. Design details and operational characteristics of some of the PSDs developed, for application at neutron scattering instruments are presented.

  12. Measurement of neutron scattering lengths using neutron interferometry

    Science.gov (United States)

    Shahi, Chandra B.

    This thesis describes the details on building a new Neutron Interferometry and Optics Facility (NIOFa), the measurement of the incoherent neutron scattering length bi of 3He, and the measurement of the coherent neutron scattering length bc of 4He at National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). A new monochromatic beamline and facility has been installed at the NCNR devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. This new facility, NIOFa, is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The measurement of the incoherent neutron scattering length bi of 3He was done using a (220) single silicon crystal skew symmetric interferometer. This experiment requires both a polarized beam and a polarized target. We report bi = -2.35 +/- 0.014 (stat.) +/- 0.014 (syst.). This experiment is a revision of the previous experiment which was done in 2008, and partially explains the non-zero phase shift seen in 2008 experiment even if target cell was completely unpolarized. The measurement of the coherent neutron scattering length b c of the 4He was done using a (111) single silicon crystal interferometer. The neutron interferometry and optics facility at NIST had been used previously to determine the coherent scattering lengths for n- 1H, n-2H, and n-3He to less than 1% relative uncertainty. We report bc of the 4He

  13. Techniques in high pressure neutron scattering

    CERN Document Server

    Klotz, Stefan

    2013-01-01

    Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea

  14. Development of the methods for simulating the neutron spectrometers and neutron-scattering experiments

    Science.gov (United States)

    Manoshin, S. A.; Belushkin, A. V.; Ioffe, A. I.

    2016-07-01

    Reviewed are the results of simulating the neutron scattering instruments with the program package VITESS upgraded by the routines for treating the polarized neutrons, as developed by the authors. The reported investigations have been carried out at the Frank Laboratory for Neutron Physics at JINR in collaboration with the Juelich research center (Germany). The performance of the resonance and gradient adiabatic spin flippers, the Drabkin resonator, the classical and resonance spin-echo spectrometers, the spin-echo diffractometer for the small-angle neutron scattering, and the spin-echo spectrometer with rotating magnetic fields is successfully modeled. The methods for using the 3D map of the magnetic field from the input file, either mapped experimentally or computed using the finite-elements technique, in the VITESS computer code, are considered in detail. The results of neutron-polarimetry experiments are adequately reproduced by our simulations.

  15. Characterization of porous materials by small-angle scattering

    Indian Academy of Sciences (India)

    S Mazumder; D Sen; A K Patra

    2004-07-01

    Characterization of porous materials by small-angle scattering has been extensively pursued for several years now as the pores are often of mesoscopic size and compatible with the length scale accessible by the technique using both neutrons and X-rays as probing radiation. With the availability of ultra small-angle scattering instruments, one can investigate porous materials in the sub-micron length scale. Because of the increased accessible length scale vis-a-vis the multiple scattering effect, conventional data analysis procedures based on single scattering approximation quite often fail. The limitation of conventional data analysis procedures is also pronounced in the case of thick samples and long wavelength of the probing radiation. Effect of multiple scattering is manifested by broadening the scattering profile. Sample thickness for some technologically important materials is often significantly high, as the experimental samples have to replicate all its essential properties in the bulk material. Larger wavelength of the probing radiation is used in some cases to access large length scale and also to minimize the effect of double Bragg reflections.

  16. Progress report on neutron scattering at JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Morii, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    In the first half of fiscal year 1997, JRR-3M was operated for 97 days followed by a long term shut down for its annual maintenance. Three days were lost out of 100 scheduled operation days, due to a trouble in irradiation facility. Neutron scattering research activities at the JRR-3M have been extended from that of fiscal year 1996. In the Research Group for Quantum Condensed Matter System, experimental study under high pressures, low temperatures and high fields as well as coupling of these conditions were planned to find new quantum condensed matter systems. And, obtained experimental results were immediately provided to theorists for their investigations. In cooperation with new group, Research Group for Neutron Scattering of Strongly Correlated Electron Systems and Research Group for Neutron Scattering at Ultralow Temperatures were carrying neutron scattering experiments at JRR-3M. Research Group for Neutron Crystallography in Biology had opened a way for investigating biomatter neutron diffraction research with high experimental accuracy by growing a millimeter-class large single crystal. In fiscal year 1997, 39 research projects were conducted by these four groups and other staffs in JAERI, 27 projects collaborated with university researchers and 3 projects collaborated with private enterprises were also conducted as complementary researches. 2117 days of machine times were requested to use 8 neutron scattering instruments this year, which corresponded to 1.51 times larger than those planned at its beginning. (G.K.)

  17. Neutron scattering applications in hydrocarbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Min Y.; Peiffer, Dennis G. [ExxonMobil Research and Engineering Company, Annandale, NJ (United States); Zhang, Yimin; Rafailovich, Miriam [Dept. of Materials Sci. and Eng., State University of New York, NY (United States)

    2001-03-01

    Neutron scattering methods are a powerful probe to complex fluids, soft matters as well as solid materials of nano- and micro-structures and their related dynamic properties. They complement other microstructural probing tools, such as microscopes, x-ray and light scattering techniques. Because neutron does not carry charges, it interacts only with nuclei of the matter, therefore not only can it penetrate a longer length into matters, it can also see' many features other methods can't due to their lack of proper contrast or heavy absorption. One of the largest contrasts in neutron methods is from hydrogen/deuterium (H/D) difference. Therefore, hydrocarbons can be easily studied by neutrons when H/D isotope substitution is applied. Here at National Institute of Standards and Technology's Center for Neutron Research (NCNR) in Gaithersburg, Maryland, one of the USA's premier neutron scattering facilities, we have been using neutron scattering techniques to study microstructures of asphaltenes, waxes, gas hydrates, porous media, surfactant solutions, engine oils, polymers, nanocomposites, fuel cell element and other hydrocarbon materials. With the completion of a new Neutron Spin Echo instrument, we can also look at the dynamics of the above mentioned systems. (author)

  18. Neutron scattering instruments for the Spallation Neutron Source (SNS)

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, R.K.; Fornek, T. [Argonne National Lab., IL (United States); Herwig, K.W. [Oak Ridge National Lab., TN (United States)

    1998-07-01

    The Spallation Neutron Source (SNS) is a 1 MW pulsed spallation source for neutron scattering planned for construction at Oak Ridge National Laboratory. This facility is being designed as a 5-laboratory collaboration project. This paper addresses the proposed facility layout, the process for selection and construction of neutron scattering instruments at the SNS, the initial planning done on the basis of a reference set of ten instruments, and the plans for research and development (R and D) to support construction of the first ten instruments and to establish the infrastructure to support later development and construction of additional instruments.

  19. Introduction to neutron scattering. Lecture notes of the introductory course

    Energy Technology Data Exchange (ETDEWEB)

    Furrer, A. [ed.

    1996-12-31

    These proceedings enclose ten papers presented at the 1. European Conference on Neutron scattering (ECNS `96). The aim of the Introductory Course was fourfold: - to learn the basic principles of neutron scattering, - to get introduced into the most important classes of neutron scattering instruments, -to learn concepts and their transformation into neutron scattering experiments in various fields of condensed matter research, - to recognize the limitations of the neutron scattering technique as well as to the complementarity of other methods. figs., tabs., refs.

  20. Neutron scattering from equilibrium-swollen networks.

    Science.gov (United States)

    Sukumaran, S K; Beaucage, G; Mark, J E; Viers, B

    2005-09-01

    Small-angle neutron scattering measurements were performed on end-linked poly (dimethylsiloxane) (PDMS) networks swollen to equilibrium with d-benzene. Comparison was made with equivalent concentration PDMS solutions. Equilibrium-swollen networks consistently displayed a linear scattering regime at low q followed by a good-solvent-like scaling regime at high q in agreement with the predictions of the Gel Tensile Blob (GTB) model. Data are fit using the unified function modified for the GTB model (3-parameter fit). Equilibrium-swollen networks display a base structural size, the gel tensile-blob size, xi, that was found to be independent of the molecular weight between crosslinks for the series of molecular weights studied, consistent with the predictions of the model. The length of the extended tensile structure, L, can be larger than the length of the fully extended network strand. The predicted scaling relationship for L, L approximately Q(1/2)N(avg), where N(avg) = (1/fN(c)(2) + 1/4N(e)(2), Q is the equilibrium swelling ratio, N(c) is the molecular weight between crosslinks, N(e) is the entanglement molecular weight and f is the crosslink functionality is in agreement with experimental results for the networks studied.

  1. Neutron Scattering in Biology Techniques and Applications

    CERN Document Server

    Fitter, Jörg; Katsaras, John

    2006-01-01

    The advent of new neutron facilities and the improvement of existing sources and instruments world wide supply the biological community with many new opportunities in the areas of structural biology and biological physics. The present volume offers a clear description of the various neutron-scattering techniques currently being used to answer biologically relevant questions. Their utility is illustrated through examples by some of the leading researchers in the field of neutron scattering. This volume will be a reference for researchers and a step-by-step guide for young scientists entering the field and the advanced graduate student.

  2. Neutron Scattering from 36Ar and 4He Films

    DEFF Research Database (Denmark)

    Carneiro, K.

    1977-01-01

    Scale factors for neutron diffraction and neutron inelastic scattering are presented for common adsorbates, and the feasibility of experiments is discussed together with the information gained by each type of experiment. Diffraction, coherent inelastic scattering, and incoherent scattering are tr...

  3. Small angle neutron investigation of Au-Fe alloys with GMR behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Bergenti, I. E-mail: bergenti@fis.unipr.it; Deriu, A.; Bosco, E.; Baricco, M.; Angeli, E.; Bisero, D.; Da Re, A.; Ronconi, F.; Spizzo, F.; Vavassori, P

    2004-05-01

    Magnetic granular materials of composition Au{sub 100-x}Fe{sub x} ( x=20, 27, 30, 38) obtained by different non-equilibrium techniques have been analysed by small angle neutron scattering. Details of their structure and morphology have been obtained from the analysis of the magnetic and nuclear contributions to the scattering patterns.

  4. Characterization of structure and coagulation behaviour of refractory organic substances (ROS) using small-angle neutron scattering (SANS), small-angle x-ray scattering (SAXS) and x-ray microscopy; Charakterisierung von Struktur und Koagulationsverhalten von Refraktaeren Organischen Saeuren (ROS) mit Hilfe von Neutronenkleinwinkelstreuung (SANS), Roentgenkleinwinkelstreuung (SAXS) und Roentgenmikroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Pranzas, P.K. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1999-07-01

    In this work structure, coagulation and complexation behaviour of aquatic refractory organic substances (ROS) (humic and fulvic acids) were characterized. For this purpose a structural analytical system with the methods small-angle neutron scattering (SANS), small-angle x-ray scattering (SAXS) and X-ray microscopy with synchrotron radiation was developed and established. Size distributions of ROS of different origin were calculated from the scattering curves. Spherical ROS units were obtained, which coagulated by forming chainlike structures or disordered ROS agglomerates at higher concentrations. Additionally the average molecular weights of several ROS were calculated. Studies of the coagulation behaviour of ROS towards copper ions resulted in larger ROS-agglomerates besides the spherical ROS units. A linear relation between the addition of Cu{sup 2+} and the formation of the ROS-Cu{sup 2+}-agglomerates was found. With X-ray microscopy an extensive ROS-Cu{sup 2}-network structure could be registrated. For mercury and cadmium ions such coagulation interactions were not found. Investigations with X-ray microscopy of the coagulation behaviour of ROS towards the cationic surfactant DTB resulted in micel-like structures of equal size, which were spread throughout the solution. With increasing concentrations of DTB larger agglomerates up to network structures were obtained. (orig.) [German] In dieser Arbeit wurden Struktur, Koagulations- und Komplexierungsverhalten von aquatischen refraktaeren organischen Saeuren (ROS) (Humin- und Fulvinsaeuren) charakterisiert. Zu diesem Zweck wurde ein strukturanalytisches Gesamtsystem mit den Methoden Neutronenkleinwinkelstreuung (SANS), Roentgenkleinwinkelstreuung (SAXS) und Roentgenmikroskopie mit Synchrotronstrahlung entwickelt und etabliert. Fuer ROS unterschiedlicher Herkunft in Loesung wurden Groessenverteilungen aus den Streukurven berechnet. Es wurden kugelfoermige ROS-Einheiten gefunden, die bei hoeheren ROS

  5. Simulation-guided optimization of small-angle analyzer geometry in the neutron backscattering spectrometer SPHERES.

    Science.gov (United States)

    Wuttke, Joachim; Zamponi, Michaela

    2013-11-01

    The resolution of neutron backscattering spectrometers deteriorates at small scattering angles where analyzers deviate from exact backscattering. By reducing the azimuth angle range of the analyzers, the resolution can be improved with little loss of peak intensity. Measurements at the spectrometer SPHERES are in excellent agreement with simulations, which proves the dominance of geometric effects.

  6. Simulation-guided optimization of small-angle analyzer geometry in the neutron backscattering spectrometer SPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Wuttke, Joachim; Zamponi, Michaela [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstraße 1, 85747 Garching (Germany)

    2013-11-15

    The resolution of neutron backscattering spectrometers deteriorates at small scattering angles where analyzers deviate from exact backscattering. By reducing the azimuth angle range of the analyzers, the resolution can be improved with little loss of peak intensity. Measurements at the spectrometer SPHERES are in excellent agreement with simulations, which proves the dominance of geometric effects.

  7. BUILDING A NETWORK FOR NEUTRON SCATTERING EDUCATION

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, Roger [ORNL; Baker, Shenda Mary [ORNL; Louca, Despo A [ORNL; McGreevy, Robert L [ORNL; Ekkebus, Allen E [ORNL; Kszos, Lynn A [ORNL; Anderson, Ian S [ORNL

    2008-10-01

    In a concerted effort supported by the National Science Foundation, the Department of Commerce, and the Department of Energy, the United States is rebuilding its leadership in neutron scattering capability through a significant investment in U.S. neutron scattering user facilities and related instrumentation. These unique facilities provide opportunities in neutron scattering to a broad community of researchers from academic institutions, federal laboratories, and industry. However, neutron scattering is often considered to be a tool for 'experts only' and in order for the U.S. research community to take full advantage of these new and powerful tools, a comprehensive education and outreach program must be developed. The workshop described below is the first step in developing a national program that takes full advantage of modern education methods and leverages the existing educational capacity at universities and national facilities. During March 27-28, 2008, a workshop entitled 'Building a Network for Neutron Scattering Education' was held in Washington, D.C. The goal of the workshop was to define and design a roadmap for a comprehensive neutron scattering education program in the United States. Successful implementation of the roadmap will maximize the national intellectual capital in neutron sciences and will increase the sophistication of research questions addressed by neutron scattering at the nation's forefront facilities. (See Appendix A for the list of attendees, Appendix B for the workshop agenda, Appendix C for a list of references. Appendix D contains the results of a survey given at the workshop; Appendix E contains summaries of the contributed talks.) The workshop brought together U.S. academicians, representatives from neutron sources, scientists who have developed nontraditional educational programs, educational specialists, and managers from government agencies to create a national structure for providing ongoing neutron

  8. On measuring the neutron coherent scattering length with ultrahigh precision

    Indian Academy of Sciences (India)

    Sohrab Abbas; Apoorva G Wagh

    2004-08-01

    We propose an order of magnitude improvement in the present five parts in 105 precision of a nondispersive interferometric measurement of the neutron coherent scattering length c. For this purpose we make a judicious selection of the Bragg angle for the interferometer and the sample thickness. The precision is further improved by an optimal choice of the Bragg reflection (and a consequent neutron wavelength). By performing the experiment in vacuum, errors arising from possible variations in the pressure, composition or humidity of the ambient air can be eliminated. On attaining such precision, we ought to account for the neutron beam refraction at the sample-ambient interfaces, to infer the correct c from the observed phase. The formula for the phase used hitherto is approximate and would significantly overestimate c. The refractive index for neutrons can thus be determined to a phenomenal precision of a few parts in 1012.

  9. Performances of Neutron Scattering Spectrometers on a Compact Neutron Source

    CERN Document Server

    Fabrèges, Xavier; Ott, Frédéric; Chauvin, Nicolas; Schwindling, Jérôme; Letourneau, Alain; Marchix, Anthony

    2016-01-01

    There is currently a big effort put into the operation and construction of world class neutron scattering facilities (SNS and SNS-TS2 in the US, J-PARC in Japan, ESS in Europe, CSS in China, PIK in Russia). On the other hand, there exists a network of smaller neutron scattering facilities which play a key role in creating a large neutron scattering community who is able to efficiently use the existing facilities. With the foreseen closure of the ageing nuclear research reactors, especially in Europe there is a risk of seeing a shrinking of the community who would then be able to use efficiently the world class facilities. There is thus a reflection being conducted in several countries for the replacement of smaller research reactors with low energy accelerator based sources. We consider here a reference design for a compact neutron source based on existing accelerator components. We estimate the performances of various types of neutron scattering instruments built around such a source. The results suggest tha...

  10. Cryocup - Compact spherical neutron polarimetry device for small angle measurement

    Science.gov (United States)

    Wang, Tianhao

    In my thesis I describe my research work of developing a compact device for Spherical Neutron Polarimetry (SNP) measurements at small neutron scattering angles. The thesis first introduced the purpose of this research project, which is developing an easy to use and maintain version of an advanced neutron experiment technique (SNP). After the introduction, the design principle and construction detail of the prototype device is demonstrated. The design principle is based on our finite element simulation of the device's magnetic field profile, and is later verified by the performance test experiment. The prototype device is tested at the SESAME neutron beamline at Indiana University and the HB-2D beamline at Oak Ridge National laboratory. The performance test data are analyzed and proof that the design is successful and the prototype is capable of perform accurate SNP measurement. Based on the test result, the prototype device is utilized to perform SNP measurement on two types of magnetic film sample: Permalloy and Metglas. Combined with other characterization method such as SQUID and MFM, I study the magnetization of these two samples both at zero magnetic field environment and in external field. The SNP data provided by the prototype device is discussed in the thesis and provide detailed information about the magnetization, which is also not accessible through other method. In the end, the possible improvement and the future application of the device is discussed.

  11. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    Science.gov (United States)

    Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-01

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  12. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A. E., E-mail: schmidt@omrb.pnpi.spb.ru; Shvetsov, A. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation); Kuklin, A. I. [Joint Institute for Nuclear Research (Russian Federation); Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation)

    2016-01-15

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  13. Development of new methods for studying nanostructures using neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, Roger [Indiana Univ., Bloomington, IN (United States)

    2016-03-18

    The goal of this project was to develop improved instrumentation for studying the microscopic structures of materials using neutron scattering. Neutron scattering has a number of advantages for studying material structure but suffers from the well-known disadvantage that neutrons’ ability to resolve structural details is usually limited by the strength of available neutron sources. We aimed to overcome this disadvantage using a new experimental technique, called Spin Echo Scattering Angle Encoding (SESAME) that makes use of the neutron’s magnetism. Our goal was to show that this innovation will allow the country to make better use of the significant investment it has recently made in a new neutron source at Oak Ridge National Laboratory (ORNL) and will lead to increases in scientific knowledge that contribute to the Nation’s technological infrastructure and ability to develop advanced materials and technologies. We were successful in demonstrating the technical effectiveness of the new method and established a baseline of knowledge that has allowed ORNL to start a project to implement the method on one of its neutron beam lines.

  14. 2016 American Conference on Neutron Scattering (ACNS)

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, Patrick [Materials Research Society, Warrendale, PA (United States)

    2017-02-09

    The 8th American Conference on Neutron Scattering (ACNS) was held July 10-14, 2016 in Long Beach California, marking the first time the meeting has been held on the west coast. The meeting was coordinated by the Neutron Scattering Society of America (NSSA), and attracted 285 attendees. The meeting was chaired by NSSA vice president Patrick Woodward (the Ohio State University) assisted by NSSA president Stephan Rosenkranz (Argonne National Laboratory) together with the local organizing chair, Brent Fultz (California Institute of Technology). As in past years he Materials Research Society assisted with planning, logistics and operation of the conference.

  15. Complex Magnetic Systems Studied with Neutron Scattering

    DEFF Research Database (Denmark)

    Jacobsen, Henrik

    analytically and compared with neutron scattering experiments on 8 nm and 16 nm particles, validating the theory and determining the magnitude of the anisotropy constants. In addition, the temperature dependence of the excitations and of the superparamagnetism are explored using numerical simulations. Through...... dynamics of GAG as function of applied magnetic eld were measured using inelastic neutron scattering. The data showed the existence of a low energy mode in zero eld, similar to what was discovered in GGG earlier. An applied magnetic eld was found to sharpen the excitations, nally inducing a gap when...

  16. Polarised neutron scattering from dynamic polarised targets in biology

    Science.gov (United States)

    Knop, W.; Hirai, M.; Olah, G.; Meerwinck, W.; Schink, H.-J.; Stuhrman, H. B.; Wagner, R.; Wenkow-EsSouni, M.; Zhao, J.; Schärpf, O.; Crichton, R. R.; Krumpolc, M.; Nierhaus, K. H.; Niinikoski, T. O.; Rijllart, A.

    1991-10-01

    The contrast giving rise to neutron small-angle scattering can be enhanced considerably by polarisation of the hydrogen nuclei [J. des Coizeaux and G. Jannink, Les Polymères en Solution, Les Editions de Physique, F-91944 Les Ulis, France (1987)]. Using polarised neutrons the scattering from protonated labels in a deuterated matrix will increase by an order of magnitude. This is the basis of nuclear spin contrast variation, a method which is of particular interest for the in situ structure determination of macromolecular components. A new polarised target for neutron scattering has been designed by CERN and tested successfully at FRG-1 of the GKSS research centre. For the purpose of thermal-neutron scattering the frozen solutions of biomolecules are immersed in liquid helium 4, which is thermally coupled to the cooling mixture of helium 3/helium 4 of the dilution refrigerator. The nuclear spins are aligned with respect to the external magnetic field-parallel or antiparallel-by dynamic nuclear polarisation (DNP). The gain in neutron scattering compared to earlier experiments using direct cooling of the sample by helium 3 is a factor of 30. Another factor of 30 arises from the installation of the cold source and the beryllium reflector in FRG-1 [W. Knop et al., J. Appl. Cryst. 22 (1989) 352]. Pure nuclear spin targets are produced from dynamic polarised targets by selective depolarisation. In biological material only the hydrogen isotopes contribute significantly to polarised neutron scattering. Thus, saturation of the proton NMR yields a deuteron target, provided the target material has been enriched by the latter isotope. A proton target is obtained from the dynamic polarised target by saturation of deuteron NMR. This leads to six additional scattering functions reflecting the proton and deuteron spin densities and the correlations between the polarised isotopes. Polarised neutron scattering from nuclear spin targets of apoferritin and various derivatives of the

  17. Critical Magnetic Scattering of Neutrons in Iron

    DEFF Research Database (Denmark)

    Passell, L.; Blinowski, K.; Brun, T.;

    1964-01-01

    scattered at small angles in iron and determined the spin correlation range 1∕κ1 and a parameter Λ associated with the lifetime of the fluctuations. Our results confirm the recent observation of Jacrot, Konstantinovic, Parette, and Cribier that the scattering is not elastic even at the Curie temperature. We...

  18. Precision Neutron Scattering Length Measurements with Neutron Interferometry

    Science.gov (United States)

    Huber, M. G.; Arif, M.; Jacobson, D. L.; Pushin, D. A.; Abutaleb, M. O.; Shahi, C. B.; Wietfeldt, F. E.; Black, T. C.

    2011-10-01

    Since its inception, single-crystal neutron interferometry has often been utilized for precise neutron scattering length, b, measurements. Scattering length data of light nuclei is particularly important in the study of few nucleon interactions as b can be predicted by two + three nucleon interaction (NI) models. As such they provide a critical test of the accuracy 2+3 NI models. Nuclear effective field theories also make use of light nuclei b in parameterizing mean-field behavior. The NIST neutron interferometer and optics facility has measured b to less than 0.8% relative uncertainty in polarized 3He and to less than 0.1% relative uncertainty in H, D, and unpolarized 3He. A neutron interferometer consists of a perfect silicon crystal machined such that there are three separate blades on a common base. Neutrons are Bragg diffracted in the blades to produce two spatially separate (yet coherent) beam paths much like an optical Mach-Zehnder interferometer. A gas sample placed in one of the beam paths of the interferometer causes a phase difference between the two paths which is proportional to b. This talk will focus on the latest scattering length measurement for n-4He which ran at NIST in Fall/Winter 2010 and is currently being analyzed.

  19. ^3He neutron spin filters for polarized neutron scattering.

    Science.gov (United States)

    Chen, Wangchun; Borchers, Julie; Chen, Ying; O'Donovan, Kevin; Erwin, Ross; Lynn, Jeffrey; Majkrzak, Charles; McKenney, Sarah; Gentile, Thomas

    2006-03-01

    Polarized neutron scattering (PNS) is a powerful tool that probes the magnetic structures in a wide variety of magnetic materials. Polarized ^3He gas, produced by optical pumping, can be used to polarize or analyze neutron beams because of the strong spin dependence of the neutron absorption cross section for ^3He. Polarized ^3He neutron spin filters (NSF) have been of great interest in PNS community due to recent significant improvement of their performance. Here I will discuss successful applications using ^3He NSFs in polarized neutron reflectometry (PNR) and triple-axis spectrometry (TAS). In PNR, a ^3He NSF in conjunction with a position-sensitive detector allows for efficient polarization analysis of off-specular scattering over a broad range of reciprocal space. In TAS, a ^3He NSF in combination with a double focusing pyrolytic graphite monochromator provides greater versatility and higher intensity compared to a Heusler polarizer. Finally I will present the results from patterned magnetically-coupled thin films in PNR and our first ``proof-of-principle'' experiment in TAS, both of which were performed using ^3He NSF(s) at the NIST Center for Neutron Research.

  20. Neutron scattering and models: Iron. Nuclear data and measurements series

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B. [Argonne National Lab., IL (United States)

    1995-08-01

    Differential elastic and inelastic neutron-scattering cross sections of elemental iron are measured from 4.5 to 10 MeV in increments of {approx} 0.5 MeV. At each incident energy the measurements are made at forty or more scattering angles distributed between {approx} 17{degrees} and 160{degrees}, with emphasis on elastic scattering and inelastic scattering due to the excitation of the yrast 2{sup +} state. The measured data is combined with earlier lower-energy results from this laboratory, with recent high-precision {approx} 9.5 {yields} 15 MeV results from the Physilalisch Technische Bundesanstalt and with selected values from the literature to provide a detailed neutron-scattering data base extending from {approx} 1.5 to 26 MeV. This data is interpreted in the context of phenomenological spherical-optical and coupled-channels (vibrational and rotational) models, and physical implications discussed. Deformation, coupling, asymmetry and dispersive effects are explored. It is shown that, particularly in a collective context, a good description of the interaction of neutrons with iron is achieved over the energy range {approx} 0 {yields} 26 MeV, avoiding the dichotomy between high and low-energy interpretations found in previous work.

  1. Observability of stochastic resonance in neutron scattering.

    Science.gov (United States)

    Condat, C A; Lamberti, P W

    1999-10-01

    The observability of the stochastic resonance phenomenon in a neutron scattering experiment is investigated, considering that the scatterer can hop between two sites. Under stochastic resonance conditions scattered intensity is transferred from the quasielastic region to two inelastic peaks. The magnitude of the signal-to-noise ratio is shown to be similar to that arising in the corresponding power spectrum. Effects of potential asymmetry are discussed in detail. Asymmetry leads to a reduction of the signal-to-noise ratio by a factor of 1-xi(2), where xi is an asymmetry parameter which is zero for symmetric problems and equal to unity in a completely asymmetric case.

  2. Neutron scattering from -Ce at epithermal neutron energies

    Indian Academy of Sciences (India)

    A P Murani

    2008-10-01

    Neutron scattering data, using neutrons of incident energies as high as 2 eV, on -Ce and -Ce-like systems such as CeRh2, CeNi2, CeFe24, CeRu2, and many others that point clearly to the substantially localized 4f electronic state in these systems are reviewed. The present interpretation is contrary to the widely held view that the 4f electrons in these systems form a narrow itinerant electron 4f band.

  3. Data Driven Study of Neutron Response Using Quasielastic Neutrino Scattering in the Minerva Experiment

    Science.gov (United States)

    Peters, Evan; Minerva Collaboration

    2016-09-01

    Understanding how particles behave in detectors is a critical part of analyzing data from neutrino experiments, but neutral particles are difficult to characterize. The purpose of this project was to calibrate the neutron response in Quasielastic antineutrino scattering (QE) events in the Minerva detector. We applied quasi-elastic assumptions to estimate the outgoing neutron kinematics in QE scattering, and then added modifications to improve the model's predictions for neutron response in data. We compared these kinematic predictions of neutron energy and angle to Monte Carlo simulations of QE scattering and to the behavior of reconstructed energy ``blobs'' that characterize neutral particle behavior in simulated and real Minerva data. Filtering events for neutron energy, angle, and distance from the interaction vertex, we derive calibration functions for both the simulation and real data. Future work will include potential changes to the blobbing algorithms and refinement of the calibration technique using rigorous statistical methods.

  4. Neutron scattering from solid 3He

    Science.gov (United States)

    Schanen, R.; Sherline, T. E.; Toader, A. M.; Boyko, V.; Mat'as, S.; Meschke, M.; Schöttl, S.; Adams, E. D.; Cowan, B.; Godfrin, H.; Goff, J. P.; Roger, M.; Saunders, J.; Siemensmeyer, K.; Takano, Y.

    2003-05-01

    Multiple spin exchange leads, according to present understanding, to a variety of magnetically ordered states in solid 3He, depending on pressure and applied magnetic field. We report the status of experiments to directly determine these structures by neutron scattering. The large neutron absorption cross section, and associated sample heating, impose severe experimental demands on the design of the sample cell. We report on our proposed solution, including details of the sintered heat exchanger necessary to cool the sample, as well as the PrNi 5 nuclear demagnetization stage. The use of NMR in parallel experiments to characterise growth of the solid sample within the sinter is also discussed.

  5. A mechanical rotator for neutron scattering measurements

    Science.gov (United States)

    Thaler, A.; Northen, E.; Aczel, A. A.; MacDougall, G. J.

    2016-12-01

    We have designed and built a mechanical rotation system for use in single crystal neutron scattering experiments at low temperatures. The main motivation for this device is to facilitate the application of magnetic fields transverse to a primary training axis, using only a vertical cryomagnet. Development was done in the context of a triple-axis neutron spectrometer, but the design is such that it can be generalized to a number of different instruments or measurement techniques. Here, we discuss some of the experimental constraints motivating the design, followed by design specifics, preliminary experimental results, and a discussion of potential uses and future extension possibilities.

  6. Small angle neutron scattering study of magnetic clustering in (Pr{sub 0.55}Ca{sub 0.45})(Mn{sub 1-y}Cr{sub y})O{sub 3} manganites

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, C., E-mail: carlo.castellano@unimi.it [Universita degli Studi di Milano, Dipartimento di Chimica, Via Golgi 19, 20133 Milano (Italy); Martinelli, A. [CNR-SPIN, C.so Perrone 24, 16152 Genova (Italy); Ferretti, M. [CNR-SPIN, C.so Perrone 24, 16152 Genova (Italy); Universita degli Studi di Genova, Dipartimento di Chimica e Chimica Industriale, Via Dodecaneso 31, 16146 Genova (Italy); Cimberle, M.R. [CNR-IMEM, Via Dodecaneso 33, 16146 Genova (Italy); Mondelli, C. [CNR-IOM-OGG and TOF at Institut Laue-Langevin, 6 rue Jules Horowitz, 38042 Genoble Cedex 9 (France)

    2012-11-25

    Highlights: Black-Right-Pointing-Pointer Magnetic clusters formation in (Pr{sub 0.55}Ca{sub 0.45})(Mn{sub 1-y}Cr{sub y})O{sub 3} manganites is pointed out. Black-Right-Pointing-Pointer We indicate that magnetic clusters formation is favoured by Mn/Cr substitution. Black-Right-Pointing-Pointer The importance of magnetic polarons in manganites phase behaviour is thus emphasized. Black-Right-Pointing-Pointer We tune by chemical substitution the weight of the different phase components. Black-Right-Pointing-Pointer Magnetic clusters formation in Mn/Cr substituted manganites results to be softened. - Abstract: In the present paper we report a small angle neutron scattering (SANS) study of magnetic clusters formation in (Pr{sub 0.55}Ca{sub 0.45})(Mn{sub 1-y}Cr{sub y})O{sub 3} (y = 0.00, 0.03, 0.06) manganites which was performed by analyzing, above and below the magnetic phase transitions, the momentum transfer q dependence of the SANS intensity on temperature and on the applied magnetic field 0 < H < 5 T. Thermal scans between 5 and 300 K in zero field, 1 and 5 T as well as isothermal field-scans at three different temperatures were collected in the suitable q range on each sample. These measurements allowed us to determine the spatial dimensions, density and distribution of the non-overlapping ferromagnetic clusters before, during and after their formation, both in the insulating high temperature and in the percolating low temperature phases. Our results indicate that the magnetic clusters formation is favoured by Mn/Cr partial substitution, thus emphasizing the importance of magnetic polarons in the natural tendency of manganites to phase separation and the possibility to tune by chemical substitution the relative weight of one phase component with respect to the other one.

  7. Growth, shrinking, and breaking of pluronic micelles in the presence of drugs and/or beta-cyclodextrin, a study by small-angle neutron scattering and fluorescence spectroscopy.

    Science.gov (United States)

    Valero, Margarita; Dreiss, Cécile A

    2010-07-01

    The associative structures between F127 Pluronic micelles and four drugs, namely, lidocaine (LD), pentobarbital sodium salt (PB), sodium naproxen (NP), and sodium salicylate (SAL), were studied by small-angle neutron scattering (SANS). Different outcomes for the micellar aggregates are observed, which are dependent on the chemical nature of the drug and the presence of charge or otherwise: the micelles grow with LD, are hardly modified with PB, and decrease in size with both NP and SAL. The partition coefficient, determined by fluorescence spectroscopy, is directly correlated to the amount of charge, following NP approximately SAL inclusion complexes with heptakis(2,6-di-O-methyl) beta-cyclodextrin (hep2,6 beta-CD). Hep2,6 beta-CD, as shown in previous studies (Joseph, J.; Dreiss, C. A.; Cosgrove, T. Langmuir, 2008, 24, 10005-10010; Dreiss, C. A.; Nwabunwanne, E.; Liu, R.; Brooks, N. J. Soft Matter, 2009, 5, 1888-1896), is also able to form a complex with F127, resulting in micellar breakup. In the ternary mixtures, a fine balance of forces is involved, which results in drastic micellar changes, as observed from the SANS patterns. Depending on the ratio of drug, polymer, and hep2,6 beta-CD and the nature of the interactions (which is directly linked to the drug chemical structure), the presence of drug either hinders micellar breakup by beta-CD (at high enough concentration of LD or PB) or leads to micellar growth (NP). These effects are mainly attributed to a preferential drug/beta-CD interaction (except for PB), which, at least in the conditions studied here, explains the higher beta-CD concentration needed for micellar breakup to occur.

  8. Casein Micelles at Non-Ambient Pressure Studied by Neutron Scattering

    NARCIS (Netherlands)

    Tromp, Hans; Huppertz, Thom; Kohlbrecher, Joachim

    2015-01-01

    The disruption of caseinmicelles, as found in cows’ milk, was investigated at pressures up to 300 MPa with small angle neutron scattering (SANS). From the decrease of the overall level of scattering, the expected disruption of the micelles was concluded. This disruption was incomplete, and stable at

  9. Generalized parton distributions and wide-angle exclusive scattering

    CERN Document Server

    Kroll, P

    2004-01-01

    The handbag mechanism for wide-angle exlusive scattering reactions is discussed and compared with other theoretical approaches. Its application to Compton scattering, meson photoproduction and two-photon annihilations into pairs of hadrons is reviewed.

  10. Monte Carlo simulation of neutron scattering instruments

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, P.A.; Daemen, L.L.; Hjelm, R.P. Jr.

    1998-12-01

    A code package consisting of the Monte Carlo Library MCLIB, the executing code MC{_}RUN, the web application MC{_}Web, and various ancillary codes is proposed as an open standard for simulation of neutron scattering instruments. The architecture of the package includes structures to define surfaces, regions, and optical elements contained in regions. A particle is defined by its vector position and velocity, its time of flight, its mass and charge, and a polarization vector. The MC{_}RUN code handles neutron transport and bookkeeping, while the action on the neutron within any region is computed using algorithms that may be deterministic, probabilistic, or a combination. Complete versatility is possible because the existing library may be supplemented by any procedures a user is able to code. Some examples are shown.

  11. First study of macroscopic neutron dark field imaging using scattering grids

    Energy Technology Data Exchange (ETDEWEB)

    Schillinger, B., E-mail: Burkhard.Schillinger@frm2.tum.de [Technische Universitaet Muenchen, FRM II and Faculty for Physics E21, Lichtenbergstr. 1, 85748 Garching (Germany); Badurek, G. [Technische Universitaet Wien, Atominstitut Stadionallee 2, 1020 Wien (Austria)

    2011-09-21

    Instead of using the phase grating concept for dark field imaging, macroscopic scattering grids were employed at the ANTARES neutron imaging facility. Two Cadmium grids with a 1 mm gap and 1.2 mm bar were adjusted in a distance of only a few cm in order to block the direct beam. Thus, by placing the samples between these two grids only neutrons that were scattered at the samples were transmitted. A linear motion of the coupled grids allowed scanning across the samples and obtaining complete scattering projections, which delivered surprisingly sharp images. The geometric relation between grids permits determination of the transmitted scattering angles.

  12. Electron Scattering From a High-Momentum Neutron in Deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Klimenko, Alexei [Old Dominion Univ., Norfolk, VA (United States)

    2004-05-01

    The deuterium nucleus is a system of two nucleons (proton and neutron) bound together. The configuration of the system is described by a quantum-mechanical wave function and the state of the nucleons at a given time is not know a priori. However, by detecting a backward going proton of moderate momentum in coincidence with a reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred if we assume that the proton was a spectator to the reaction. This method, known as spectator tagging, was used to study the electron scattering from high-momentum neutrons in deuterium. The data were taken with a 5.765 GeV polarized electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. The accumulated data cover a wide kinematic range, reaching values of the invariant mass of the unobserved final state W* up to 3 GeV. A data sample of approximately 5 - 105 events, with protons detected at large scattering angles (as high as 136 degrees) in coincidence with the forward electrons, was selected. The product of the neutron structure function with the initial nucleon momentum distribution F2n. S was extracted for different values of W*, backward proton momenta ps and momentum transfer Q2. The data were compared to a calculation based on the spectator approximation and using the free nucleon form factors and structure functions. A strong enhancement in the data, not reproduced by the model, was observed at cos(thetapq) > -0.3 (where theta{sub pq} is the proton scattering angle relative to the direction of the momentum transfer) and can be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. The bound nucleon structure function F2n was studied in the region cos(thetapq) < -0.3 as a function of W* and scaling variable x*. At high spectator proton momenta the struck neutron is

  13. Neutron scattering at Australia's replacement research reactor

    Science.gov (United States)

    Robinson, R. A.; Kennedy, S. J.

    2002-01-01

    On August 25 1999, the Australian government gave final approval to build a research reactor to replace the existing HIFAR reactor at Lucas Heights. The replacement reactor, which will commence operation in 2005, will be multipurpose in function, with capabilities for both neutron-beam research and radioisotope production. Regarding beams, cold and thermal neutron sources are to be installed and the intent is to use supermirror guides, with coatings with critical angles up to 3 times that of natural Ni, to transport cold and thermal neutron beams into a large modern guide hall. The reactor and all the associated infrastructure, with the exception of the neutron beam instruments, is to be built by INVAP, SE and subcontractors in a turnkey contract. The goal is to have at least eight leading-edge neutron-beam instruments ready in 2005, and they will be developed by ANSTO and other contracted organisations, in consultation with the Australian user community and interested overseas parties. A review of the planned scientific capabilities, a description of the facility and a status report on the activities so far is given.

  14. Direct Observation of Neutron Scattering in MoNA Scintillator Detectors

    Science.gov (United States)

    Rogers, W. F.; Mosby, S.; Frank, N.; Kuchera, A. N.; Thoennessen, M.; MoNA Collaboration

    2017-01-01

    Monte Carlo simulations provide an important tool for the interpretation of neutron scattering data in the MoNA and LISA arrays at NSCL. Neutron energy and trajectory are determined by time of flight and position of first light produced in the array. Neutrons elastically scattered from H and inelastically from C typically produce light above detector threshold, while those elastically scattered from C produce light below threshold (``dark scattering'') and are redirected in flight, thus lowering energy and trajectory resolution. In order to test the effectiveness of our Geant4/MENATE_R simulations, we conducted an experiment at the LANSCE facility at Los Alamos National Laboratory to observe scattering of individual neutrons with well defined energy and trajectory in 16 MoNA detector bars arranged in two different stack geometries. Neutrons with energies ranging from 0.5 to 800 MeV emerged from a 3 mm collimator in the 90m shed on the WNR 4FP15L flight path to enter the array at a well defined point. Several features of neutron scattering are compared with simulation predictions, including hit multiplicity, scattering angle, mean distance between scatters, and the effect of dark scatter redirection. Results to date will be presented. Work supported by NSF Grant PHY-1506402.

  15. Neutron scattering treatise on materials science and technology

    CERN Document Server

    Kostorz, G

    1979-01-01

    Treatise on Materials Science and Technology, Volume 15: Neutron Scattering shows how neutron scattering methods can be used to obtain important information on materials. The book discusses the general principles of neutron scattering; the techniques used in neutron crystallography; and the applications of nuclear and magnetic scattering. The text also describes the measurement of phonons, their role in phase transformations, and their behavior in the presence of crystal defects; and quasi-elastic scattering, with its special merits in the study of microscopic dynamical phenomena in solids and

  16. Grazing-incidence small-angle X-ray scattering from thin polymer films with lamellar structures - the scattering cross section in the distorted-wave Born approximation

    DEFF Research Database (Denmark)

    Posselt, Dorthe; Busch, Peter; Rauscher, Markus;

    2006-01-01

    Grazing-incidence small-angle X-ray or neutron scattering of thin polymer films reveals information about the ordering and preferential orientations of the phase-separated microdomains within the films. The grazing-incidence geometry enhances the surface sensitivity; however, the scattering has t...

  17. Geometry Survey of the Time-of-Flight Neutron-Elastic Scattering (Antonella) Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Oshinowo, Babatunde O. [Fermilab; Izraelevitch, Federico [Buenos Aires U.

    2016-10-17

    The Antonella experiment is a measurement of the ionization efficiency of nuclear recoils in silicon at low energies [1]. It is a neutron elastic scattering experiment motivated by the search for dark matter particles. In this experiment, a proton beam hits a lithium target and neutrons are produced. The neutron shower passes through a collimator that produces a neutron beam. The beam illuminates a silicon detector. With a certain probability, a neutron interacts with a silicon nucleus of the detector producing elastic scattering. After the interaction, a fraction of the neutron energy is transferred to the silicon nucleus which acquires kinetic energy and recoils. This kinetic energy is then dissipated in the detector producing ionization and thermal energy. The ionization produced is measured with the silicon detector electronics. On the other hand, the neutron is scattered out of the beam. A neutron-detector array (made of scintillator bars) registers the neutron arrival time and the scattering angle to reconstruct the kinematics of the neutron-nucleus interaction with the time-of-flight technique [2]. In the reconstruction equations, the energy of the nuclear recoil is a function of the scattering angle with respect to the beam direction, the time-of-flight of the neutron and the geometric distances between components of the setup (neutron-production target, silicon detector, scintillator bars). This paper summarizes the survey of the different components of the experiment that made possible the off-line analysis of the collected data. Measurements were made with the API Radian Laser Tracker and I-360 Probe Wireless. The survey was completed at the University of Notre Dame, Indiana, USA in February 2015.

  18. Neutron Scattering Differential Cross Sections for 12C

    Science.gov (United States)

    Byrd, Stephen T.; Hicks, S. F.; Nickel, M. T.; Block, S. G.; Peters, E. E.; Ramirez, A. P. D.; Mukhopadhyay, S.; McEllistrem, M. T.; Yates, S. W.; Vanhoy, J. R.

    2016-09-01

    Because of the prevalence of its use in the nuclear energy industry and for our overall understanding of the interactions of neutrons with matter, accurately determining the effects of fast neutrons scattering from 12C is important. Previously measured 12C inelastic neutron scattering differential cross sections found in the National Nuclear Data Center (NNDC) show significant discrepancies (>30%). Seeking to resolve these discrepancies, neutron inelastic and elastic scattering differential cross sections for 12C were measured at the University of Kentucky Acceleratory Laboratory for incident neutron energies of 5.58, 5.83, and 6.04 MeV. Quasi mono-energetic neutrons were scattered off an enriched 12C target (>99.99%) and detected by a C6D6 liquid scintillation detector. Time-of-flight (TOF) techniques were used to determine scattered neutron energies and allowed for elastic/inelastic scattering distinction. Relative detector efficiencies were determined through direct measurements of neutrons produced by the 2H(d,n) and 3H(p,n) source reactions, and absolute normalization factors were found by comparing 1H scattering measurements to accepted NNDC values. This experimental procedure has been successfully used for prior neutron scattering measurements and seems well-suited to our current objective. Significant challenges were encountered, however, with measuring the neutron detector efficiency over the broad incident neutron energy range required for these measurements. Funding for this research was provided by the National Nuclear Security Administration (NNSA).

  19. Neutron spin-flip scattering of nanocrystalline cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Honecker, D; Doebrich, F; Michels, A [Laboratory for the Physics of Advanced Materials, University of Luxembourg, 162A Avenue de la Faiencerie, L-1511 Luxembourg (Luxembourg); Dewhurst, C D; Wiedenmann, A, E-mail: andreas.michels@uni.l [Institut Laue-Langevin, 6 Rue Jules Horowitz, BP 156, F-38042 Grenoble Cedex 9 (France)

    2011-01-12

    We report results of longitudinal (one-dimensional) neutron polarization analysis on polycrystalline bulk Co with an average crystallite size of D = 10 nm. The spin-flip small-angle neutron scattering (SANS) data are analyzed in the approach-to-saturation regime within the framework of micromagnetic theory. In particular, we provide a closed-form expression for the spin-flip SANS cross section d{Sigma}{sup {+-}-+}/d{Omega}. From the data analysis, we find a room-temperature value of A = (2.6 {+-} 0.1) x 10{sup -11} J m{sup -1} for the exchange-stiffness constant, which agrees well with earlier data.

  20. Inelastic scattering of neutrons and possible biological applications.

    Science.gov (United States)

    Egelstaff, P A

    1976-05-01

    The field of neutron inelastic scattering has probably been developed to the stage where it can begin to help the biologist. Because essentially no experimental data have been obtained, it is difficult either to draw conclusions or to make forecasts except on the basis of general hypotheses. It seems likely, however, that the next stage is up to biologists. After reviewing those biological problems in which molecular dynamics might play an important role, they should suggest specimens of interest which can give inelastic peaks with existing spectrometers operating with 5 to 10-A neutrons at angles greater than 5degrees and with resolutions of approximately 50 mueV. These specimens may involve molecules slightly smaller and more mobile than some biologists would like, but a successful outcome might lead to the development of spectrometers capable of working in a more satisfactory range. In this event the return may well prove rewarding to the biologists.

  1. Multiple exchange and high-energy fixed-angle scattering

    CERN Document Server

    Halliday, I G; Orzalesi, C A; Tau, M

    1975-01-01

    The application of the eikonal ansatz to fermion fermion elastic scattering with Abelian vector gluon exchanges is discussed. The behaviours of the elastic scattering amplitude and the elastic form factor are considered and an important mechanism for fixed angle high energy elastic scattering is identified. (6 refs).

  2. Deeply Virtual Compton Scattering off the neutron

    CERN Document Server

    Mazouz, M; Ferdi, C; Gavalian, G; Kuchina, E; Amarian, M; Aniol, K A; Beaumel, M; Benaoum, H; Bertin, P; Brossard, M; Chen, J P; Chudakov, E; Craver, B; Cusanno, F; De Jager, C W; Deur, A; Feuerbach, R; Fieschi, J M; Frullani, S; Garçon, M; Garibaldi, F; Gayou, O; Gilman, R; Gómez, J; Gueye, P; Guichon, P A M; Guillon, B; Hansen, O; Hayes, D; Higinbotham, D; Holmstrom, T; Hyde, C E; Ibrahim, H; Igarashi, R; Jiang, X; Jo, H S; Kaufman, L J; Kelleher, A; Kolarkar, A; Kumbartzki, G; Laveissière, G; Le Rose, J J; Lindgren, R; Liyanage, N; Lu, H J; Margaziotis, D J; Meziani, Z E; McCormick, K; Michaels, R; Michel, B; Moffit, B; Monaghan, P; Nanda, S; Nelyubin, V; Potokar, M; Qiang, Y; Ransome, R D; Real, J S; Reitz, B; Roblin, Y; Roche, J; Sabatie, F; Saha, A; Sirca, S; Slifer, K; Solvignon, P; Subedi, R; Sulkosky, V; Ulmer, P E; Voutier, E; Wang, K; Weinstein, L B; Wojtsekhowski, B; Zheng, X; Zhu, L

    2007-01-01

    The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D$({\\vec e},e'\\gamma)X$ cross section measured at $Q^2$=1.9 GeV$^2$ and $x_B$=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to $E_q$, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.

  3. Deeply Virtual Compton Scattering off the neutron

    Energy Technology Data Exchange (ETDEWEB)

    M. Mazouz; A. Camsonne; C. Munoz Camacho; C. Ferdi; G. Gavalian; E. Kuchina; M. Amarian; K. A. Aniol; M. Beaumel; H. Benaoum; P. Bertin; M. Brossard; J.-P. Chen; E. Chudakov; B. Craver; F. Cusanno; C.W. de Jager; A. Deur; R. Feuerbach; J.-M. Fieschi; S. Frullani; M. Garcon; F. Garibaldi; O. Gayou; R. Gilman; J. Gomez; P. Gueye; P.A.M. Guichon; B. Guillon; O. Hansen; D. Hayes; D. Higinbotham; T. Holmstrom; C.E. Hyde; H. Ibrahim; R. Igarashi; X. Jiang; H.S. Jo; L.J. Kaufman; A. Kelleher; A. Kolarkar; G. Kumbartzki; G. Laveissiere; J.J. LeRose; R. Lindgren; N. Liyanage; H.-J. Lu; D.J. Margaziotis; Z.-E. Meziani; K. McCormick; R. Michaels; B. Michel; B. Moffit; P. Monaghan; S. Nanda; V. Nelyubin; M. Potokar; Y. Qiang; R.D. Ransome; J.-S. Real; B. Reitz; Y. Roblin; J. Roche; F. Sabatie; A. Saha; S. Sirca; K. Slifer; P. Solvignon; R. Subedi; V. Sulkosky; P.E. Ulmer; E. Voutier; K. Wang; L.B. Weinstein; B. Wojtsekhowski; X. Zheng; L. Zhu

    2007-12-01

    The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D$({\\vec e},e'\\gamma)X$ cross section measured at $Q^2$=1.9 GeV$^2$ and $x_B$=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to $E_q$, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.

  4. Molecular dynamics using quasielastic neutron scattering

    CERN Document Server

    Mitra, S

    2003-01-01

    Quasielastic neutron scattering (QENS) technique is well suited to study the molecular motions (rotations and translations) in solids or liquids. It offers a unique possibility of analysing spatial dimensions of atomic or molecular processes in their development over time. We describe here some of the systems studied using the QENS spectrometer, designed, developed and commissioned at Dhruva reactor in Trombay. We have studied a variety of systems to investigate the molecular motion, for example, simple molecular solids, molecules adsorbed in confined medium like porous systems or zeolites, monolayer-protected nano-sized metal clusters, water in Portland cement as it cures with time, etc. (author)

  5. Critical scattering of neutrons from terbium

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Dietrich, O.W.; Marshall, W.;

    1968-01-01

    The inelasticity of the critical scattering of neutrons in terbium has been measured above the Neél temperature at the (0, 0, 2−Q) satellite position. The results show that dynamic slowing down of the fluctuations does occur in a second‐order phase transition in agreement with the general theory....... However, the detailed variation of the inelasticity with temperature is in disagreement with existing theories, and it is concluded that the conventional theory is invalid except at infinite temperatures. © 1968 The American Institute of Physics...

  6. Multiangle static and dynamic light scattering in the intermediate scattering angle range

    CERN Document Server

    Tamborini, Elisa

    2012-01-01

    We describe a light scattering apparatus based on a novel optical scheme covering the scattering angle range $0.5\\dg \\le \\theta \\le 25\\dg$, an intermediate regime at the frontier between wide angle and small angle setups that is difficult to access by existing instruments. Our apparatus uses standard, readily available optomechanical components. Thanks to the use of a charge-coupled device detector, both static and dynamic light scattering can be performed simultaneously at several scattering angles. We demonstrate the capabilities of our apparatus by measuring the scattering profile of a variety of samples and the Brownian dynamics of a dilute colloidal suspension.

  7. Significance of collective motions in biopolymers and neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Go, Nobuhiro [Kyoto Univ. (Japan)

    1996-05-01

    Importance of collective variable description of conformational dynamics of biopolymers and the vital role that neutron inelastic scattering phenomena would play in its experimental determination are discussed. (author)

  8. Neutron and light scattering studies of polymers adsorbed on laponite

    CERN Document Server

    Nelson, A R J

    2002-01-01

    The adsorption of poly(ethylene oxide) (PEO) and various poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic) copolymers onto the synthetic clay Laponite, was investigated using Small Angle Neutron Scattering (SANS) and Dynamic Light Scattering (DLS). The Laponite particles are anisotropic, with a relatively high aspect ratio; but are the same order of magnitude in size as the polymer radius of gyration. Consequently, the particles present a radically different adsorption geometry compared to a locally planar interface, that is assumed by the majority of adsorption studies. The PEO homo-polymer formed thin layers, with the layer thickness being much smaller on the face than on the edge of the particle. Furthermore, the face thickness remained constant with increasing molecular weight, unlike the edge thickness, which grew with a small power law dependence on the molecular weight. Although the hydrodynamic thicknesses (DLS) were larger than those observed with SANS, the layer thicknesses ...

  9. Neutron scattering on partially deuterated polybutadiene

    CERN Document Server

    Kahle, S; Monkenbusch, M; Richter, D; Arbe, A; Colmenero, J; Frick, B

    2002-01-01

    The molecular nature of the secondary relaxation (Johari-Goldstein relaxation) and its relationship with the alpha relaxation is in most cases still unknown. In order to access these processes on a molecular level, it is necessary to obtain spatial information of the relaxation. Through the momentum-transfer dependence of the dynamic structure factor S(Q,t), this information can be provided by quasielastic neutron scattering techniques. The large difference in scattering lengths between hydrogen and deuterium allows us to accentuate specific correlations between atoms in a polymer melt. Here, we report on recent results on a polybutadiene melt, where the double bond was hydrogeneous, while the methylene groups carried deuterons (d4h2-PB). In this way the correlations between the double bonds are emphasised. We will show that the double bond/double bond correlation function, generated in this way, shows the same temperature dependence as the viscosity at higher temperatures at the structure factor peak maximum...

  10. A neutron scattering study of triblock copolymer micelles

    Energy Technology Data Exchange (ETDEWEB)

    Gerstenberg, M.C.

    1997-11-01

    The thesis describes the neutron scattering experiments performed on poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer micelles in aqueous solution. The studies concern the non-ionic triblock copolymer P85 which consists of two outer segments of 25 monomers of ethylene oxide attached to a central part of 40 monomers of propylene oxide. The amphiphilic character of P85 leads to formation of various structures in aqueous solution such as spherical micelles, rod-like structures, and a BCC liquid-crystal mesophase of spherical micelles. The present investigations are centered around the micellar structures. In the first part of this thesis a model for the micelle is developed for which an analytical scattering form factor can be calculated. The micelle is modeled as a solid sphere with tethered Gaussian chains. Good agreement was found between small-angle neutron scattering experiments and the form factor of the spherical P85 micelles. Above 60 deg. C some discrepancies were found between the model and the data which is possibly due to an elongation of the micelles. The second part focuses on the surface-induced ordering of the various micellar aggregates in the P85 concentration-temperature phase diagram. In the spherical micellar phase, neutron reflection measurements indicated a micellar ordering at the hydrophilic surface of quartz. Extensive modeling was performed based on a hard sphere description of the micellar interaction. By convolution of the distribution of hard spheres at a hard wall, obtained from Monte Carlo simulations, and the projected scattering length density of the micelle, a numerical expression was obtained which made it possible to fit the data. The hard-sphere-hard-wall model gave an excellent agreement in the bulk micellar phase. However, for higher concentrations (25 wt % P85) close to the transition from the micellar liquid into a micellar cubic phase, a discrepancy was found between the model and the

  11. Small angle scattering by ellipsoids of revolution: Polidispersity and limitations of the Mellin transform

    Energy Technology Data Exchange (ETDEWEB)

    Barocci, S.; Melone, S.; Puliti, P.; Turchetti, E. (Ancona Univ. (Italy). Facolta di Ingegneria)

    1984-10-01

    This paper presents an analysis of validity of the Mellin transform when applied to small angle scattering of X-rays or neutrons by a polydisperse set of ellipsoids of revolution. It constitutes a continuation of a previous work performing the same kind of analysis for a set of diffusing particles, consisting of nearly spherical particles. In particular the analysis was focused on the accuracy associated to the size distribution, average radius, total volume of scattering particles as obtained by applying the Mellin transform to the scattering patterns.

  12. Small angle scattering by ellipsoids of revolution: Polidispersity and limitations of the Mellin transform

    Energy Technology Data Exchange (ETDEWEB)

    Barocci, S.; Melone, S.; Puliti, P.; Turchetti, E.

    1984-10-01

    This paper presents an analysis of validity of the Mellin transform when applied to small angle scattering of X-rays or neutrons by a polydisperse set of ellipsoids of revolution. It constitutes a continuation of a previous work performing the same kind of analysis for a set of diffusing particles, consisting of nearly spherical particles. In particular the analysis was focused on the accuracy associated to the size distribution, average radius, total volume of scattering particles as obtained by applying the Mellin transform to the scattering patterns. (orig.).

  13. Neutron detection efficiency determinations for the TUNL neutron-neutron and neutron-proton scattering-length measurements

    Energy Technology Data Exchange (ETDEWEB)

    Trotter, D.E. Gonzalez [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: crowell@tunl.duke.edu; Meneses, F. Salinas [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: tornow@tunl.duke.edu; Crowell, A.S.; Howell, C.R. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Schmidt, D. [Physikalisch-Technische Bundesanstalt, D-38116, Braunschweig (Germany); Walter, R.L. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2009-02-11

    The methods employed and the results obtained from measurements and calculations of the detection efficiency for the neutron detectors used at Triangle Universities Nuclear Laboratory (TUNL) in the simultaneous determination of the {sup 1}S{sub 0} neutron-neutron and neutron-proton scattering lengths a{sub nn} and a{sub np}, respectively, are described. Typical values for the detector efficiency were 0.3. Very good agreement between the different experimental methods and between data and calculation has been obtained in the neutron energy range below E{sub n}=13MeV.

  14. Electron Scattering From High-Momentum Neutrons in Deuterium

    Energy Technology Data Exchange (ETDEWEB)

    A.V. Klimenko; S.E. Kuhn

    2005-10-12

    We report results from an experiment measuring the semi-inclusive reaction D(e,e'p{sub s}) where the proton p{sub s} is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass W*, backward proton momentum {rvec p}{sub s} and momentum transfer Q{sup 2}. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. A ''bound neutron structure function'' F{sub 2n}{sup eff} was extracted as a function of W* and the scaling variable x* at extreme backward kinematics, where effects of FSI appear to be smaller. For p{sub s} > 400 MeV/c, where the neutron is far off-shell, the model overestimates the value of F{sub 2n}{sup eff} in the region of x* between 0.25 and 0.6. A modification of the bound neutron structure function is one of possible effects that can cause the observed deviation.

  15. Magnetic Dynamics of Fine Particles Studied by Inelastic Neutron Scattering

    DEFF Research Database (Denmark)

    Hansen, Mikkel Fougt; Bødker, Franz; Mørup, Steen;

    2000-01-01

    We give an introduction to inelastic neutron scattering and the dynamic scattering function for magnetic nanoparticles. Differences between ferromagnetic and antiferromagnetic nanoparticles are discussed and we give a review of recent results on ferromagnetic Fe nanoparticles and canted antiferro......We give an introduction to inelastic neutron scattering and the dynamic scattering function for magnetic nanoparticles. Differences between ferromagnetic and antiferromagnetic nanoparticles are discussed and we give a review of recent results on ferromagnetic Fe nanoparticles and canted...

  16. Analysis of the Data from Compton X-ray Polarimeters which Measure the Azimuthal and Polar Scattering Angles

    CERN Document Server

    ,

    2011-01-01

    X-ray polarimetry has the potential to make key-contributions to our understanding of galactic compact objects like binary black hole systems and neutron stars, and extragalactic objects like active galactic nuclei, blazars, and neutron stars. Furthermore, several particle astrophysics topics can be addressed including uniquely sensitive tests of Lorentz invariance. In the energy range from 10-20 keV to several MeV, Compton polarimeters achieve the best performance. In this paper we evaluate the benefit that comes from using the azimuthal and polar angles of the Compton scattered photons in the analysis, rather than using the azimuthal scattering angles alone. We study the case of an ideal Compton polarimeter and show that a Maximum Likelihood analysis which uses the two scattering angles lowers the Minimum Detectable Polarization (MDP) by ~20% compared to a standard analysis based on the azimuthal scattering angles alone. The accuracies with which the polarization fraction and the polarization direction can ...

  17. Using Back-Scattering to Enhance Efficiency in Neutron Detectors

    CERN Document Server

    Kittelmann, Thomas; Cai, Xiao Xiao; Kanaki, Kalliopi; Cooper-Jensen, Carsten P; Hall-Wilton, Richard

    2015-01-01

    The principle of using strongly scattering materials to recover efficiency in neutron detectors, via back-scattering of unconverted thermal neutrons, is discussed in general. Feasibility of the method is illustrated through Geant4-based simulations of a specific setup involving a moderator-like material placed behind a single layered boron-10 thin film gaseous detector.

  18. Branch Content in Hybrid Materials using Small-Angle Scattering

    Science.gov (United States)

    Beaucage, Greg

    2005-03-01

    Inorganic/organic hybrid materials often display ramified mass- fractal structures characterized by primary particle size, aggregate size, and mass-fractal dimension. Physical properties, such as mechanical and dynamic mechanical properties and electrical conductivity (in carbon composites for instance), can not be predicted using only these structural features since such properties are intimately tied to the degree and type of branching as shown by Witten [1]. Witten suggested the use of the minimum dimension, or the related connectivity dimension, to calculate mechanical response in these hybrid systems. A viable technique to quantify the minimum dimension and connectivity dimension in hybrid materials has, until recently, been absent from the literature. This presentation will discuss the use of small-angle x-ray and neutron scattering to describe branch content in hybrid materials [2] and will outline an approach to use the minimum dimension and connectivity dimension to predict static and dynamic mechanical properties for hybrid materials based on structure [1, 3]. 1. Witten TA, Rubinstein M, Colby RH Reinforcement of Rubber by Fractal Aggregates J Phys II 3 (3): 367-383 (1993). 2. Beaucage G Determination of branch fraction and minimum dimension of mass-fractal aggregates Phys Rev E 70 (3): art. no. 031401 Part 1 (2004). 3. Kohls DJ, Beaucage G Rational design of reinforced rubber Curr Opin Solid St M 6 (3): 183-194 (2002).

  19. Characterisation of porous solids using small-angle scattering and NMR cryoporometry\\ud

    OpenAIRE

    2004-01-01

    The characteristics of several porous systems have been studied by the use of small-angle neutron scattering [SANS] and nuclear magnetic resonance [NMR] techniques. The measurements reveal different characteristics for sol-gel silicas, activated carbons and ordered mesoporous silicas of the MCM and SBA type. Good agreement is obtained between gas adsorption measurements and the NMR and SANS results for pore sizes above 10 nm. Recent measurements of the water/ice phase transformation in SBA si...

  20. Non-Linear Rheological Properties and Neutron Scattering Investigation on Dilute Ring-Linear Blends

    DEFF Research Database (Denmark)

    Pyckhout-Hintzen, W.; Bras, A.R.; Wischnewski, A.;

    Linear and non-linear Rheology on dilute blends of polystyrene ring polymers in linear matrix is combined with Small Angle Neutron Scattering (SANS) investigations. In this way 2 different entanglement interactions become clear. After stretching the samples to different hencky strains up to 2 in ...

  1. Stress and neutron scattering measurements on linear polymer melts undergoing steady elongational flow

    DEFF Research Database (Denmark)

    Hassager, Ole; Mortensen, Kell; Bach, Anders

    2012-01-01

    We use small-angle neutron scattering to measure the molecular stretching in polystyrene melts undergoing steady elongational flow at large stretch rates. The radius of gyration of the central segment of a partly deuterated polystyrene molecule is, in the stretching direction, increasing with the...

  2. Electron Scattering From High-Momentum Neutrons in Deuterium

    CERN Document Server

    Klimenko, A V; Ambrozewicz, P; Anghinolo, M; Asryan, G; Avakian, H; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Barrow, S; Batourine, V; Battaglieri, M; Bedlinskiy, I; Bektasoglu, M; Bellis, M; Benmouna, N; Biselli, A S; Bltmann, S; Boiarinov, S; Bouchigny, S; Bradford, R; Branford, D; Brooks, W K; Burkert, V D; Butuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Cazes, A; Chen, S; Cole, P L; Coltharp, P; Cords, D; Corvisiero, P; Crabb, D; Cummings, J P; Dashyan, N B; De Sanctis, E; De Vita, R; Degtyarenko, P V; Denizli, H; Dennis, L; Dharmawardane, K V; Djalali, C; Dodge, G E; Donnelly, J; Doughty, D; Dugger, M; Dytman, S; Dzyubak, O P; Egiyan, H; Egiyan, K S; Elouadrhiri, L; Eugenio, P; Fatemi, R; Fedotov, G; Fersch, R G; Feuerbach, R J; Funsten, H; Garçon, M; Gavalian, G; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gonenc, A; Gordon, C I O; Gothe, R W; Grioen, K A; Guidal, M; Guillo, M; Guler, N; Guo, L; Gyurjyan, V; Hadjidakis, C; Hakobyan, R S; Hardie, J; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Ito, M M; Jenkins, D; Jo, H S; Joo, K; Jüngst, H G; Kellie, J D; Khandaker, M; Kim, W; Klein, A; Klein, F J; Kossov, M; Kramer, L H; Kubarovski, V; Kuhn, S E; Kuleshov, S V; Kühn, J; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Li, J; Livingston, K; McAleer, S; McKinnon, B; McNabb, J W C; Mecking, B A; Mehrabyan, S S; Melone, J J; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Minehart, R C; Mirazita, M; Miskimen, R; Mokeev, V; Morand, L; Morrow, S A; Mutchler, G S; Müller, J; Nadel-Turonski, P; Napolitano, J; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niyazov, R A; Nozar, M; O'Rielly, G V; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Paterson, C; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O I; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rosner, G; Rossi, P; Sabatie, F; Salgado, C; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabyan, Yu G; Skabelin, A V; Smith, E S; Smith, L C; Sober, D I; Stavinsky, A V; Stepanyan, S; Stokes, B E; Stoler, P; Strauch, S; Taiuti, M; Tedeschi, D J; Thoma, U; Tkabladze, A; Tkachenko, S I; Todor, L; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Weinstein, L B; Weygand, D P; Williams, M; Wolin, E; Wood, M H; Yegneswaran, A; Zana, L; Zhang, J; Zhao, B

    2006-01-01

    We report results from an experiment measuring the semi-inclusive reaction $d(e,e'p_s)$ where the proton $p_s$ is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass $W^{*}$, backward proton momentum $\\vec{p}_{s}$ and momentum transfer $Q^{2}$. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that ...

  3. Neutron transport with anisotropic scattering: theory and applications

    OpenAIRE

    Van den Eynde, Gert

    2005-01-01

    This thesis is a blend of neutron transport theory and numerical analysis. We start with the study of the problem of the Mika/Case eigenexpansion used in the solution process of the homogeneous one-speed Boltzmann neutron transport equation with anisotropic scattering for plane symmetry. The anisotropic scattering is expressed as a finite Legendre series in which the coefficients are the ``scattering coefficients'. This eigenexpansion consists of a discrete spectrum of eigenvalues with its co...

  4. Neutron scattering for the analysis of biological structures. Brookhaven symposia in biology. Number 27

    Energy Technology Data Exchange (ETDEWEB)

    Schoenborn, B P [ed.

    1976-01-01

    Sessions were included on neutron scattering and biological structure analysis, protein crystallography, neutron scattering from oriented systems, solution scattering, preparation of deuterated specimens, inelastic scattering, data analysis, experimental techniques, and instrumentation. Separate entries were made for the individual papers.

  5. Elements of slow-neutron scattering basics, techniques, and applications

    CERN Document Server

    Carpenter, J M

    2015-01-01

    Providing a comprehensive and up-to-date introduction to the theory and applications of slow-neutron scattering, this detailed book equips readers with the fundamental principles of neutron studies, including the background and evolving development of neutron sources, facility design, neutron scattering instrumentation and techniques, and applications in materials phenomena. Drawing on the authors' extensive experience in this field, this text explores the implications of slow-neutron research in greater depth and breadth than ever before in an accessible yet rigorous manner suitable for both students and researchers in the fields of physics, biology, and materials engineering. Through pedagogical examples and in-depth discussion, readers will be able to grasp the full scope of the field of neutron scattering, from theoretical background through to practical, scientific applications.

  6. Introduction to the theory of thermal neutron scattering

    CERN Document Server

    Squires, G L

    2012-01-01

    Since the advent of the nuclear reactor, thermal neutron scattering has proved a valuable tool for studying many properties of solids and liquids, and research workers are active in the field at reactor centres and universities throughout the world. This classic text provides the basic quantum theory of thermal neutron scattering and applies the concepts to scattering by crystals, liquids and magnetic systems. Other topics discussed are the relation of the scattering to correlation functions in the scattering system, the dynamical theory of scattering and polarisation analysis. No previous knowledge of the theory of thermal neutron scattering is assumed, but basic knowledge of quantum mechanics and solid state physics is required. The book is intended for experimenters rather than theoreticians, and the discussion is kept as informal as possible. A number of examples, with worked solutions, are included as an aid to the understanding of the text.

  7. Neutron scattering and the search for mechanisms of superconductivity

    DEFF Research Database (Denmark)

    Aeppli, G.; Bishop, D.J.; Broholm, C.;

    1999-01-01

    Neutron scattering is a direct probe of mass and magnetization density in solids. We start with a brief review of experimental strategies for determining the mechanisms of superconductivity and how neutron scattering contributed towards our understanding of conventional superconductors. The remai......Neutron scattering is a direct probe of mass and magnetization density in solids. We start with a brief review of experimental strategies for determining the mechanisms of superconductivity and how neutron scattering contributed towards our understanding of conventional superconductors....... The remainder of the article gives examples of neutron results with impact on the search for the mechanism of superconductivity in more recently discovered, 'exotic', materials, namely the heavy fermion compounds and the layered cuprates, (C) 1999 Elsevier Science B.V. All rights reserved....

  8. Neutron scattering studies on chromatin higher-order structure

    Energy Technology Data Exchange (ETDEWEB)

    Graziano, V.; Gerchman, S.E.; Schneider, D.K.; Ramakrishnan, V. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    We have been engaged in studies of the structure and condensation of chromatin into the 30nm filament using small-angle neutron scattering. We have also used deuterated histone H1 to determine its location in the chromatin 30nm filament. Our studies indicate that chromatin condenses with increasing ionic strength to a limiting structure that has a mass per unit length of 6-7 nucleosomes/11 nm. They also show that the linker histone H1/H5 is located in the interior of the chromatin filament, in a position compatible with its binding to the inner face of the nucleosome. Analysis of the mass per unit length as a function of H5 stoichiometry suggests that 5-7 contiguous nucleosomes need to have H5 bound before a stable higher order structure can exist.

  9. Dynamics of liquid N2 studied by neutron inelastic scattering

    DEFF Research Database (Denmark)

    Pedersen, Karen Schou; Carneiro, Kim; Hansen, Flemming Yssing

    1982-01-01

    Neutron inelastic-scattering data from liquid N2 at wave-vector transfer κ between 0.18 and 2.1 Å-1 and temperatures ranging from T=65-77 K are presented. The data are corrected for the contribution from multiple scattering and incoherent scattering. The resulting dynamic structure factor S (κ,ω)...

  10. LANSCE '90: The Manuel Lujan Jr. Neutron Scattering Center

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R.

    1990-01-01

    This paper describes progress that has been made at the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) during the past two years. Presently, LANSCE provides a higher peak neutron flux than any other pulsed spallation neutron source. There are seven spectrometers for neutron scattering experiments that are operated for a national user program sponsored by the US Department of Energy. Two more spectrometers are under construction. Plans have been made to raise the number of beam holes available for instrumentation and to improve the efficiency of the target/moderator system. 9 refs., 4 figs.

  11. Early history of neutron scattering at Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, M.K.

    1985-07-01

    Most of the early development of neutron scattering techniques utilizing reactor neutrons occurred at the Oak Ridge National Laboratory during the years immediately following World War II. C.G. Shull, E.O. Wollan, and their associates systematically established neutron diffraction as a quantitative research tool and then applied this technique to important problems in nuclear physics, chemical crystallography, and magnetism. This article briefly summarizes the very important research at ORNL during this period, which laid the foundation for the establishment of neutron scattering programs throughout the world. 47 refs., 10 figs.

  12. Absolute cross-section normalization of magnetic neutron scattering data

    Science.gov (United States)

    Xu, Guangyong; Xu, Zhijun; Tranquada, J. M.

    2013-08-01

    We discuss various methods to obtain the resolution volume for neutron scattering experiments, in order to perform absolute normalization on inelastic magnetic neutron scattering data. Examples from previous experiments are given. We also try to provide clear definitions of a number of physical quantities which are commonly used to describe neutron magnetic scattering results, including the dynamic spin correlation function and the imaginary part of the dynamic susceptibility. Formulas that can be used for general purposes are provided and the advantages of the different normalization processes are discussed.

  13. Scattering-angle based filtering of the waveform inversion gradients

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-11-22

    Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it\\'s ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.

  14. An empirical formula for scattered neutron components in fast neutron radiography

    Institute of Scientific and Technical Information of China (English)

    DOU Hai-Feng; TANG Bin

    2011-01-01

    Scattering neutrons are one of the key factors that may affect the images of fast neutron radiog- raphy. In this paper, a mathematical model for scattered neutrons is developed on a cylinder sample, and an empirical formula for scattered neutrons is obtained. According to the results given by Monte Carlo methods, the parameters in the empirical formula are obtained with curve fitting, which confirms the logicality of the empirical formula. The curve-fitted parameters of common materials such as LiD are given.

  15. Studies of 54,56Fe Neutron Scattering Cross Sections

    Directory of Open Access Journals (Sweden)

    Hicks S. F.

    2015-01-01

    Full Text Available Elastic and inelastic neutron scattering differential cross sections and γ-ray production cross sections have been measured on 54,56Fe at several incident energies in the fast neutron region between 1.5 and 4.7 MeV. All measurements were completed at the University of Kentucky Accelerator Laboratory (UKAL using a 7-MV Model CN Van de Graaff accelerator, along with the neutron production and neutron and γ-ray detection systems located there. The facilities at UKAL allow the investigation of both elastic and inelastic scattering with nearly mono-energetic incident neutrons. Time-of-flight techniques were used to detect the scattered neutrons for the differential cross section measurements. The measured cross sections are important for fission reactor applications and also for testing global model calculations such as those found at ENDF, since describing both the elastic and inelastic scattering is important for determining the direct and compound components of the scattering mechanism. The γ-ray production cross sections are used to determine cross sections to unresolved levels in the neutron scattering experiments. Results from our measurements and comparisons to model calculations are presented.

  16. Modern Techniques for Inelastic Thermal Neutron Scattering Analysis

    Science.gov (United States)

    Hawari, A. I.

    2014-04-01

    A predictive approach based on ab initio quantum mechanics and/or classical molecular dynamics simulations has been formulated to calculate the scattering law, S(κ⇀,ω), and the thermal neutron scattering cross sections of materials. In principle, these atomistic methods make it possible to generate the inelastic thermal neutron scattering cross sections of any material and to accurately reflect the physical conditions of the medium (i.e, temperature, pressure, etc.). In addition, the generated cross sections are free from assumptions such as the incoherent approximation of scattering theory and, in the case of solids, crystalline perfection. As a result, new and improved thermal neutron scattering data libraries have been generated for a variety of materials. Among these are materials used for reactor moderators and reflectors such as reactor-grade graphite and beryllium (including the coherent inelastic scattering component), silicon carbide, cold neutron media such as solid methane, and neutron beam filters such as sapphire and bismuth. Consequently, it is anticipated that the above approach will play a major role in providing the nuclear science and engineering community with its needs of thermal neutron scattering data especially when considering new materials where experimental information may be scarce or nonexistent.

  17. Structure and thermodynamics of nonideal solutions of colloidal particles. Investigation of salt-free solutions of human serum albumin by using small-angle neutron scattering and Monte Carlo simulation

    DEFF Research Database (Denmark)

    Sjøberg, B.; Mortensen, K.

    1997-01-01

    Carlo simulation, to study salt-free solutions of human serum albumin (HSA) in the concentration range up to 0.26 g ml(-1). The model calculations of the theoretical SANS intensities are quite general, thus avoiding the approximation that the relative positions and orientations of the particles...... are independent of each other. The computation of the theoretical intensities also includes the calculation of a 'thermodynamic' intensity scattered at zero angle, which is obtained via the nonideal part of the chemical potential. The latter quantity is obtained by applying the test particle method during...... the Monte Carlo simulations. It is found that the SANS data can be explained by a model where the HSA molecules behave as hard ellipsoids of revolution with semiaxes a = 6.8 nm, b = c = 1.9 nm. In addition to the hard core interaction, the particles are also surrounded by a soft, repulsive rectangular...

  18. The design of the inelastic neutron scattering mode for the Extreme Environment Diffractometer with the 26 T High Field Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Bartkowiak, Maciej, E-mail: maciej.bartkowiak@helmholtz-berlin.de; Stüßer, Norbert; Prokhnenko, Oleksandr

    2015-10-11

    The Extreme Environment Diffractometer is a neutron time-of-flight instrument, designed to work with a constant-field hybrid magnet capable of reaching fields over 26 T, unprecedented in neutron science; however, the presence of the magnet imposes both spatial and technical limitations on the surrounding instrument components. In addition to the existing diffraction and small-angle neutron scattering modes, the instrument will operate also in an inelastic scattering mode, as a direct time-of-flight spectrometer. In this paper we present the Monte Carlo ray-tracing simulations, the results of which illustrate the performance of the instrument in the inelastic-scattering mode. We describe the focussing neutron guide and the chopper system of the existing instrument and the planned design for the instrument upgrade. The neutron flux, neutron spatial distribution, divergence distribution and energy resolution are calculated for standard instrument configurations.

  19. Solution structure of a short dna fragment studied by neutron scattering

    DEFF Research Database (Denmark)

    Lederer, H.; May, R. P.; Kjems, Jørgen;

    1986-01-01

    -DNA. The neutron scattering curve is well fitted by that of a rigid rod with a length of 44 nm and a diameter of 2 nm. The result were confirmed by quasi-elastic light scattering and analytical centrifugation. The neutron measurements in H2O and D2O buffer reveal a cross-sectional in homogeneity not detected by X......The solution structure of a DNA fragment of 130 base pairs and known sequence has been investigated by neutron small-angle scattering. In 0.1 M NaCl, the overall structure of the DNA fragment which contains the strong promoter A1 of the Escherichia coli phage T7 agrees with that expected for B...

  20. Investigating Structure and Dynamics of Proteins in Amorphous Phases Using Neutron Scattering.

    Science.gov (United States)

    Castellanos, Maria Monica; McAuley, Arnold; Curtis, Joseph E

    2017-01-01

    In order to increase shelf life and minimize aggregation during storage, many biotherapeutic drugs are formulated and stored as either frozen solutions or lyophilized powders. However, characterizing amorphous solids can be challenging with the commonly available set of biophysical measurements used for proteins in liquid solutions. Therefore, some questions remain regarding the structure of the active pharmaceutical ingredient during freezing and drying of the drug product and the molecular role of excipients. Neutron scattering is a powerful technique to study structure and dynamics of a variety of systems in both solid and liquid phases. Moreover, neutron scattering experiments can generally be correlated with theory and molecular simulations to analyze experimental data. In this article, we focus on the use of neutron techniques to address problems of biotechnological interest. We describe the use of small-angle neutron scattering to study the solution structure of biological molecules and the packing arrangement in amorphous phases, that is, frozen glasses and freeze-dried protein powders. In addition, we discuss the use of neutron spectroscopy to measure the dynamics of glassy systems at different time and length scales. Overall, we expect that the present article will guide and prompt the use of neutron scattering to provide unique insights on many of the outstanding questions in biotechnology.

  1. Dynamics of Magnetic Nanoparticles Studied by Neutron Scattering

    DEFF Research Database (Denmark)

    Hansen, Mikkel Fougt; Bødker, Franz; Mørup, Steen

    1997-01-01

    We present the first triple-axis neutron scattering measurements of magnetic fluctuations in nanoparticles using an antiferromagnetic reflection. Both the superparamagnetic relaxation and precession modes in similar to 15 nm hematite particles are: observed. The results have been consistently...

  2. Observation of resonant lattice modes by inelastic neutron scattering

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Mackintosh, A.R.

    1965-01-01

    Observation by inelastic neutron scattering of resonant lattice modes due to small concentration of W atoms in Cr host crystal; frequencies and lifetimes of phonons with frequencies near that of resonant mode are considerably affected by presence of defects....

  3. Pitch angle scattering of energetic particles by oblique whistler waves

    Science.gov (United States)

    Inan, U. S.; Bell, T. F.

    1991-01-01

    First order cyclotron or Landau resonant pitch angle scattering of electrons by oblique whistler waves propagating at large angles to the ambient field are found to be at least as large as that due to parallel propagating waves. Commonly observed precipitation of more than 40 keV electrons in association with ducted whistlers may thus be accompanied by substantial fluxes of lower energy (10 eV-40 keV) electrons precipitated by the nonducted components.

  4. Neutron scattering studies of three one-dimensional antiferromagnets

    CERN Document Server

    Kenzelmann, M

    2001-01-01

    observed in the disordered phase of spin-1/2 chains. The magnetic order of the one-dimensional spin-1/2 XY antiferromagnet Cs sub 2 CoCl sub 4 was investigated using neutron diffraction. The magnetic structure has an ordering wave-vector (0, 0.5, 0.5) for T < 217 mK and the magnetic structure is a non-linear structure with the magnetic moments at a small angle to the b axis. Above a field of H = 2.1 T the magnetic order collapses in an apparent first order phase transition, suggesting a transition to a spin-liquid phase. Low-dimensional magnets with low-spin quantum numbers are ideal model systems for investigating strongly interacting macroscopic quantum ground states and their non-linear spin excitations. This thesis describes neutron scattering experiments of three one-dimensional low-spin antiferromagnets where strong quantum fluctuations lead to highly-correlated ground states and unconventional cooperative spin excitations. The excitation spectrum of the antiferromagnetic spin-1 Heisenberg chain CsNi...

  5. The world’s first pelletized cold neutron moderator at a neutron scattering facility

    Energy Technology Data Exchange (ETDEWEB)

    Ananiev, V.; Belyakov, A.; Bulavin, M.; Kulagin, E.; Kulikov, S.; Mukhin, K.; Petukhova, T.; Sirotin, A.; Shabalin, D.; Shabalin, E.; Shirokov, V.; Verhoglyadov, A., E-mail: verhoglyadov_al@mail.ru

    2014-02-01

    In July 10, 2012 cold neutrons were generated for the first time with the unique pelletized cold neutron moderator CM-202 at the IBR-2M reactor. This new moderator system uses small spherical beads of a solid mixture of aromatic hydrocarbons (benzene derivatives) as the moderating material. Aromatic hydrocarbons are known as the most radiation-resistant hydrogenous substances and have properties to moderate slow neutrons effectively. Since the new moderator was put into routine operation in September 2013, the IBR-2 research reactor of the Frank Laboratory of Neutron Physics has consolidated its position among the world’s leading pulsed neutron sources for investigation of matter with neutron scattering methods.

  6. Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles.

    Science.gov (United States)

    Krywonos, Andrey; Harvey, James E; Choi, Narak

    2011-06-01

    Scattering effects from microtopographic surface roughness are merely nonparaxial diffraction phenomena resulting from random phase variations in the reflected or transmitted wavefront. Rayleigh-Rice, Beckmann-Kirchhoff. or Harvey-Shack surface scatter theories are commonly used to predict surface scatter effects. Smooth-surface and/or paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. A recent linear systems formulation of nonparaxial scalar diffraction theory applied to surface scatter phenomena resulted first in an empirically modified Beckmann-Kirchhoff surface scatter model, then a generalized Harvey-Shack theory that produces accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattered angles than the classical Beckmann-Kirchhoff and the original Harvey-Shack theories. These new developments simplify the analysis and understanding of nonintuitive scattering behavior from rough surfaces illuminated at arbitrary incident angles.

  7. High Field Pulsed Magnets for Neutron Scattering at the Spallation Neutron Source

    Science.gov (United States)

    Granroth, G. E.; Lee, J.; Fogh, E.; Christensen, N. B.; Toft-Petersen, R.; Nojiri, H.

    2015-03-01

    A High Field Pulsed Magnet (HFPM) setup, is in use at the Spallation Nuetron Source(SNS), Oak Ridge National Laboratory. With this device, we recently measured the high field magnetic spin structure of LiNiPO4. The results of this study will be highlighted as an example of possible measurements that can be performed with this device. To further extend the HFPM capabilities at SNS, we have learned to design and wind these coils in house. This contribution will summarize the magnet coil design optimization procedure. Specifically by varying the geometry of the multi-layer coil, we arrive at a design that balances the maximum field strength, neutron scattering angle, and the field homogeneity for a specific set of parameters. We will show that a 6.3kJ capacitor bank, can provide a magnetic field as high as 30T for a maximum scattering angle around 40° with homogeneity of +/- 4 % in a 2mm diameter spherical volume. We will also compare the calculations to measurements from a recently wound test coil. This work was supported in part by the Lab Directors' Research and Development Fund of ORNL.

  8. Inelastic neutron scattering and lattice dynamics of minerals

    Indian Academy of Sciences (India)

    Narayani Choudhury; S L Chaplot

    2008-10-01

    We review current research on minerals using inelastic neutron scattering and lattice dynamics calculations. Inelastic neutron scattering studies in combination with first principles and atomistic calculations provide a detailed understanding of the phonon dispersion relations, density of states and their manifestations in various thermodynamic properties. The role of theoretical lattice dynamics calculations in the planning, interpretation and analysis of neutron experiments are discussed. These studies provide important insights in understanding various anomalous behaviour including pressure-induced amorphization, phonon and elastic instabilities, prediction of novel high pressure phase transitions, high pressure{temperature melting, etc.

  9. Angle dependence of Andreev scattering at semiconductor-superconductor interfaces

    DEFF Research Database (Denmark)

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    1999-01-01

    We study the angle dependence of the Andreev scattering at a semiconductor-superconductor interface, generalizing the one-dimensional theory of Blonder, Tinkham, and Klapwijk (BTK),An increase of the momentum parallel to the interface leads to suppression of the probability of Andreev reflection...

  10. Neutron scattering study on U-dichalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Metoki, N; Kaneko, K; Ikeda, S; Sakai, H; Yamamoto, E; Haga, Y; Shiokawa, Y [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Homma, Y, E-mail: naoto.metoki@jaea.go.jp [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan)

    2010-03-15

    We will report the results of our recent inelastic neutron scattering study on {beta}-US{sub 2}. This compound shows a semi-metallic or narrow gap semi-conducting behaviour at room temperature. A clear exponential up-turn of the resistivity in the order of {approx}10{sup 6} {Omega}cm has been observed below 100 K. We found a sharp inelastic peak at the excitation energy of about 7 meV at 8 K. The Q-dependence of the peak intensity is in good agreement with the magnetic form factor of U{sup 4+} ion and no clear dispersion relation has been observed. Therefore we concluded that this is a crystalline electric field (CEF) excitation peak. The excitation energy is in good agreement with the CEF level scheme obtained from the susceptibility data. The CEF peak intensity decreases with increasing temperature and becomes much weaker than the calculated temperature factor expected from the CEF level scheme. Furthermore a quasi-elastic response appears, and coexists with a broadened CEF peak at higher temperatures. The quasi-elastic component is not due to phonon, because the temperature dependence of the intensity is inconsistent with calculation. We concluded that this quasi-elastic response is a hybridization effect of U-5f electrons with, most likely, p-electrons of sulfur. It is highly interesting that the energy scale of the CEF peak ({approx}7 meV) is very close to the conduction gap (90K), and the quasi-elastic component appears above the characteristic temperature of about 100 K. Our data strongly suggest that the crossover of 5f character plays an import role for the metal-insulating transition in {beta}-US{sub 2}.

  11. Low frequency seabed scattering at low grazing angles.

    Science.gov (United States)

    Zhou, Ji-Xun; Zhang, Xue-Zhen

    2012-04-01

    Low-frequency (LF) seabed scattering at low grazing angles (LGA) is almost impossible to directly measure in shallow water (SW), except through inversion from reverberation. The energy flux method for SW reverberation is briefly introduced in this paper. The closed-form expressions of reverberation in an isovelocity waveguide, derived from this method, indicate that in the three-halves law range interval multimode/ray sea bottom scattering with different incident and scattering angles in forming the reverberation may equivalently be represented by the bottom backscattering at a single range-dependent angle. This equivalent relationship is used to derive the bottom backscattering strength (BBS) as a function of angle and frequency. The LF&LGA BBS is derived in a frequency band of 200-2500 Hz and in a grazing angle range of 1.1°-14.0° from reverberation measurements at three sites with sandy bottoms. This is based on three previous works: (1) The closed-form expressions of SW reverberation [Zhou, (Chinese) Acta Acustica 5, 86-99 (1980)]; (2) the effective geo-acoustic model of sandy bottoms that follows the Biot model [Zhou et al., J. Acoust. Soc. Am. 125, 2847-2866 (2009)] and (3) A quality database of wideband reverberation level normalized to source level [Zhou and Zhang, IEEE J. Oceanic Eng. 30, 832-842 (2005)].

  12. Magnetic dynamics of fine particles studied by inelastic neutron scattering

    CERN Document Server

    Hansen, M F; Moerup, S; Lefmann, K; Clausen, K N; Lindgaard, P A

    2000-01-01

    We give an introduction to inelastic neutron scattering and the dynamic scattering function for magnetic nanoparticles. Differences between ferromagnetic and antiferromagnetic nanoparticles are discussed and we give a review of recent results on ferromagnetic Fe nanoparticles and canted antiferromagnetic alpha-Fe sub 2 O sub 3 nanoparticles.

  13. Data acquisition system for the neutron scattering instruments at the intense pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, R.K.; Daly, R.T.; Haumann, J.R.; Hitterman, R.L.; Morgan, C.B.; Ostrowski, G.E.; Worlton, T.G.

    1981-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a major new user-oriented facility which is now coming on line for basic research in neutron scattering and neutron radiation damage. This paper describes the data-acquisition system which will handle data acquisition and instrument control for the time-of-flight neutron-scattering instruments at IPNS. This discussion covers the scientific and operational requirements for this system, and the system architecture that was chosen to satisfy these requirements. It also provides an overview of the current system implementation including brief descriptions of the hardware and software which have been developed.

  14. Small-angle scattering from precipitates: Analysis by use of a polydisperse hard-sphere model

    DEFF Research Database (Denmark)

    Pedersen, J.S.

    1993-01-01

    A general polydisperse hard-sphere model for analyzing small-angle-scattering data from spherical precipitates in alloys is presented. In the model the size distribution is chosen as a Weibull density distribution and the hard-sphere interaction radius is taken as being proportional to the radius...... very good fits to the experimental data and the results are in agreement with a Li content of 25% in the precipitates. The concentration of Li in the matrix is also in good agreement with the phase diagram of Al-Li found in the literature. Results from the application of a monodisperse hard-sphere...... of the precipitates. The Weibull distribution is monomodal, and depending on the parameters describing the distribution, it can skew to either side. Small-angle x-ray- and neutron-scattering data, taken from the literature, from spherical delta' precipitates in Al-Li alloys have been analyzed with the model. It gives...

  15. Enhanced off-specular scattering in magnetic neutron waveguides

    Science.gov (United States)

    Kozhevnikov, S. V.; Ott, F.; Kentzinger, E.; Paul, A.

    2007-07-01

    We are developing magnetic neutron waveguides (NWG) consisting of thin films of low-optical index sandwiched between two layers of high-optical index. In such structures, the neutron wave function is strongly localized in the guiding layer and the sensitivity to interface scattering effects is enhanced. The samples were characterized on the reflectometer HADAS (FZ Jülich, Germany) by specular reflectivity and off-specular scattering for different magnetic states of the permalloy layers. We show that the waveguide structure strongly enhances the off-specular scattering.

  16. Enhanced off-specular scattering in magnetic neutron waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Kozhevnikov, S.V. [Frank Laboratory of Neutron Physics, JINR, 141980 Dubna, Moscow Region (Russian Federation) and Laboratoire Leon Brillouin, CEA/CNRS, UMR12, CEA Saclay, 91191 Gif sur Yvette Cedex (France)]. E-mail: kozhevn@nf.jinr.ru; Ott, F. [Laboratoire Leon Brillouin, CEA/CNRS, UMR12, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Kentzinger, E. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich, D-52425 Juelich (Germany); Paul, A. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2007-07-15

    We are developing magnetic neutron waveguides (NWG) consisting of thin films of low-optical index sandwiched between two layers of high-optical index. In such structures, the neutron wave function is strongly localized in the guiding layer and the sensitivity to interface scattering effects is enhanced. The samples were characterized on the reflectometer HADAS (FZ Juelich, Germany) by specular reflectivity and off-specular scattering for different magnetic states of the permalloy layers. We show that the waveguide structure strongly enhances the off-specular scattering.

  17. 2010 American Conference on Neutron Scattering (ACNS 2010)

    Energy Technology Data Exchange (ETDEWEB)

    Billinge, Simon

    2011-06-17

    The ACNS provides a focal point for the national neutron user community to strengthen ties within this diverse group, while at the same time promoting neutron research among colleagues in related disciplines identified as “would-be” neutron users. The American Conference on Neutron Scattering thus serves a dual role as a national user meeting and a scientific meeting. As a venue for scientific exchange, the ACNS showcases recent results and provides forums for scientific discussion of neutron research in diverse fields such as hard and soft condensed matter, liquids, biology, magnetism, engineering materials, chemical spectroscopy, crystal structure, and elementary excitations, fundamental physics and development of neutron instrumentation through a combination of invited talks, contributed talks and poster sessions. As a “super-user” meeting, the ACNS fulfills the main objectives of users' meetings previously held periodically at individual national neutron facilities, with the advantage of a larger and more diverse audience. To this end, each of the major national neutron facilities (NIST, LANSCE, HFIR and SNS) have an opportunity to exchange information and update users, and potential users, of their facility. This is also an appropriate forum for users to raise issues that relate to the facilities. For many of the national facilities, this super-user meeting should obviate the need for separate user meetings that tax the time, energy and budgets of facility staff and the users alike, at least in years when the ACNS is held. We rely upon strong participation from the national facilities. The NSSA intends that the American Conference on Neutron Scattering (ACNS) will occur approximately every two years, but not in years that coincide with the International or European Conferences on Neutron Scattering. The ACNS is to be held in association with one of the national neutron centers in a rotating sequence, with the host facility providing local

  18. Grazing incidence polarized neutron scattering in reflection geometry from nanolayered spintronic systems

    Indian Academy of Sciences (India)

    Amitesh Paul

    2012-01-01

    This review summarizes recent experimental investigations using neutron scattering on layered nanomagnetic systems (accentuating my contribution), which have applications in spintronics also. Polarized neutron investigations of such artificially structured materials are basically done to understand the interplay between structure and magnetism confined within the nanometer scale that can be additionally depth-resolved. Details of the identification of buried domains and their nature of lateral and vertical correlations within the systems are important. A particularly interesting aspect that has emerged over the years is the capability to measure polarized neutron scattering in directions parallel and perpendicular to the applied field direction (which is also the quantization axis for neutron polarizations). This was added with the capability of measuring in specular as well as in off-specular geometry. Distorted wave Born approximation (DWBA) theory for neutrons has proved to be a remarkable development in the quantitative analysis of the scattering data measured simultaneously for specular and off-specular modes within the same framework. In particular, the depth and lateral distribution of the ferromagnetic spins relative to the interface within interlayercoupled or exchange-coupled system has been extensive. For example, twisted magnetization state at interlayer coupled interfaces or intricacies of symmetric and asymmetric magnetization reversals along with suppression of training effect in exchange coupled system was microscopically identified using neutron scattering only. The investigation on the distribution of magnetic species within dilute ferromagnetic semiconductor superlattices, with low angle neutron scattering, has played a crucial role both from practical and fundamental research points of view.

  19. Charge-dependent conformations and dynamics of pamam dendrimers revealed by neutron scattering and molecular dynamics

    Science.gov (United States)

    Wu, Bin

    Neutron scattering and fully atomistic molecular dynamics (MD) are employed to investigate the structural and dynamical properties of polyamidoamine (PAMAM) dendrimers with ethylenediamine (EDA) core under various charge conditions. Regarding to the conformational characteristics, we focus on scrutinizing density profile evolution of PAMAM dendrimers as the molecular charge of dendrimer increases from neutral state to highly charged condition. It should be noted that within the context of small angle neutron scattering (SANS), the dendrimers are composed of hydrocarbon component (dry part) and the penetrating water molecules. Though there have been SANS experiments that studied the charge-dependent structural change of PAMAM dendrimers, their results were limited to the collective behavior of the aforementioned two parts. This study is devoted to deepen the understanding towards the structural responsiveness of intra-molecular polymeric and hydration parts separately through advanced contrast variation SANS data analysis scheme available recently and unravel the governing principles through coupling with MD simulations. Two kinds of acids, namely hydrochloric and sulfuric acids, are utilized to tune the pH condition and hence the molecular charge. As far as the dynamical properties, we target at understanding the underlying mechanism that leads to segmental dynamic enhancement observed from quasielstic neutron scattering (QENS) experiment previously. PAMAM dendrimers have a wealth of potential applications, such as drug delivery agency, energy harvesting medium, and light emitting diodes. More importantly, it is regarded as an ideal system to test many theoretical predictions since dendrimers conjugate both colloid-like globular shape and polymer-like flexible chains. This Ph.D. research addresses two main challenges in studying PAMAM dendrimers. Even though neutron scattering is an ideal tool to study this PAMAM dendrimer solution due to its matching temporal and

  20. Structural analysis of Fe–Mn–O nanoparticles in glass ceramics by small angle scattering

    Energy Technology Data Exchange (ETDEWEB)

    Raghuwanshi, Vikram Singh, E-mail: vikram.raghuwanshi@helmholtz-berlin.de [Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, D-14109 Berlin (Germany); Harizanova, Ruzha [University of Chemical Technology and Metallurgy, 8 Kl. Ohridski Blvd, 1756 Sofia (Bulgaria); Tatchev, Dragomir [Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 11, 1113 Sofia (Bulgaria); Hoell, Armin [Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, D-14109 Berlin (Germany); Rüssel, Christian [Friedrich Schiller University, Fraunhoferstr. 6, 07743 Jena (Germany)

    2015-02-15

    Magnetic nanocrystals containing Fe and Mn were obtained by annealing of silicate glasses with the composition 13.6Na{sub 2}O–62.9SiO{sub 2}–8.5MnO–15.0Fe{sub 2}O{sub 3−x} (mol%) at 580 °C for different periods of time. Here, we present Small Angle Neutron Scattering using Polarized neutrons (SANSPOL) and Anomalous Small Angle X-ray Scattering (ASAXS) investigation on these glass ceramic samples. Analysis of scattering data from both methods reveals the formation of spherical core–shell type of nanoparticles with mean sizes between 10 nm and 100 nm. ASAXS investigation shows the particles have higher concentration of iron atoms and the shell like region surrounding the particles is enriched in SiO{sub 2}. SANSPOL investigation shows the particles are found to be magnetic and are surrounded by a non-magnetic shell-like region. - Graphical abstract: Magnetic spherical core–shell nanoparticles in glass ceramics: SANSPOL and ASAXS investigations. - Highlights: • Formation and growth mechanisms of magnetic nanoparticles in silicate glass. • SANSPOL and ASAXS methods employed to evaluate quantitative information. • Analyses showed formation of nanoparticles with spherical core–shell structures. • Core of the particle is magnetic and surrounded by weak magnetic shell like region.

  1. Low-angle X-ray scattering from spices

    Energy Technology Data Exchange (ETDEWEB)

    Desouky, O.S. E-mail: omardesouky@yahoo.com; Ashour, Ahmed H.; Abdullah, Mohamed I.; Elshemey, Wael M

    2002-07-01

    Low-angle scattering of X-rays is characterized by the presence of one or more peaks in the forward direction of scattering. These peaks are due to the interference of photons coherently scattered from the molecules of the medium. Thus these patterns are closely linked to the molecular structure of the investigated medium. In this work, low-angle X-ray scattering (LAXS) profiles of five spices; pimpinella anisum (anise), coriandrum sativum (coriander), cuminum cyminum (cumin), foenculum vulgare (fennel) and nigella sativa (nigella or black cumin) are presented after extensive measurements. It is found that all spices exhibit one characteristic peak at a scattering angle around 10 deg. This is equivalent to a value x=0.0565 A{sup -1}, where x=sin({theta}/2)/{lambda}. The full width at half maximum (FWHM) of this peak is found to be characteristic for each type of the investigated spices. The possibility to detect the irradiation of these spices from their LAXS profiles is also examined after 10, 20, 30 and 40 kGy doses of gamma radiation. Except for anise, coriander and cumin at 40 kGy, there are no detectable deviations from the control samples in the scattering profiles of irradiated samples. These results comply with the recommendations of the FDA (US Food and Drug Administration) which defines 30 kGy as the maximum dose for irradiation of spices. The present technique could be used to detect over-irradiation, which causes damage to the molecular structure of some spices.

  2. Low-angle X-ray scattering from spices

    Science.gov (United States)

    Desouky, Omar S.; Ashour, Ahmed H.; Abdullah, Mohamed I.; Elshemey, Wael M.

    2002-07-01

    Low-angle scattering of X-rays is characterized by the presence of one or more peaks in the forward direction of scattering. These peaks are due to the interference of photons coherently scattered from the molecules of the medium. Thus these patterns are closely linked to the molecular structure of the investigated medium. In this work, low-angle X-ray scattering (LAXS) profiles of five spices; pimpinella anisum (anise), coriandrum sativum (coriander), cuminum cyminum (cumin), foenculum vulgare (fennel) and nigella sativa (nigella or black cumin) are presented after extensive measurements. It is found that all spices exhibit one characteristic peak at a scattering angle around 10°. This is equivalent to a value x=0.0565 Å -1, where x=sin( θ⧸2)⧸ λ. The full width at half maximum (FWHM) of this peak is found to be characteristic for each type of the investigated spices. The possibility to detect the irradiation of these spices from their LAXS profiles is also examined after 10, 20, 30 and 40 kGy doses of gamma radiation. Except for anise, coriander and cumin at 40 kGy, there are no detectable deviations from the control samples in the scattering profiles of irradiated samples. These results comply with the recommendations of the FDA (US Food and Drug Administration) which defines 30 kGy as the maximum dose for irradiation of spices. The present technique could be used to detect over-irradiation, which causes damage to the molecular structure of some spices.

  3. Intercomparison of small biomolecules by gel filtration and small angle scattering

    Energy Technology Data Exchange (ETDEWEB)

    Martel, P.; Stepanik, T.M.; Szabo, A.G. (Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Ontario (Canada))

    1990-05-01

    This paper describes how small angle neutron scattering (SANS) can be used to confirm that gel filtration results are free of dimerization effects. After characterization by analytical gel filtration, concentrated solutions (in heavy water, D2O) of a cobra neurotoxin, a cytotoxin, and a cytotoxin analog are studied by SANS. Small differences in shape are shown to be discernible by means of least-square fits to ellipsoidal models. The parallel axis theorem is then invoked to assess dimerization levels statistically. The results are briefly discussed on the basis of function in relation to structure.

  4. Small angle scattering investigation of nanostructured binary Au-Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bergenti, I.; Deriu, A.; Spizzo, F.; Ronconi, F.; Bosco, E.; Baricco, M

    2004-07-15

    Small Angle Neutron Scattering measurements have been performed on granular materials with composition Au{sub 100-x}Fe{sub x} (x=20, 27, 30, 38) obtained in the form of melt spun ribbons and of co-sputtered thin films. The as cast melt spun ribbons, show only the presence of nearly atomic iron precipitates, subsequent thermal treatments induce the formation of lamellar-shaped iron precipitates. In the co-sputtered films the iron nanoparticles are non-uniformly distributed in the Au matrix.

  5. Characterization of conformational properties of protein/trehalose/water system by neutron scattering

    CERN Document Server

    Brandt, A; Mangione, A; Migliardo, F; Vertessy, B G

    2002-01-01

    In this contribution we report results of a small-angle neutron scattering (SANS) investigation of dUTPase/D sub 2 O solutions. Data were collected by the V4 spectrometer at the BENSC facility (Berlin, Germany). The results allow us to characterize the conformational properties of the protein in solution as a function of temperature and in the presence of trehalose, a disaccharide with a noticeable bioprotective action. (orig.)

  6. The thermal neutron scattering cross section of {sup 86}Kr

    Energy Technology Data Exchange (ETDEWEB)

    Terburg, B.P.

    1992-05-01

    The availability of 27 1 STP krypton-86 gas, an isotope with unknown thermal neutron scattering cross section, was an excellent occasion to determine the (bound atom) scattering cross section and its coherent part by application of the neutron transmission method and neutron interferometry. The transmission method was applied in a diffractometer, a Larmor spectrometer and a TOF-spectrometer. In addition to {sup 86}Kr also natural krypton ({sup n}Kr) was used for sample in the diffractometer. The diffractometer measurements result in bound atom scattering cross sections {sigma}{sub s}=8.92(46) b for {sup 86}Kr and {sigma}{sub s}=7.08(95) b for {sup n}Kr. The Larmor transmission measurements lead to a final result {sigma}{sub s}=8.44(9) b for {sup 86}Kr. In the TOF-spectrometer the wavelength-dependent total cross section of water was determined. Coherent neutron scattering lengths were determined using the neutron interferometry method with a skew symmetric neutron interferometer. Scans with {sup 86}Kr and {sup n}Kr led to b{sub c}=8.07(26) fm for {sup 86}Kr and 7.72(33) fm for {sup n}Kr, corresponding to coherent scattering cross sections {sigma}{sub c}=8.18(53) b and 7.49(64) b respectively. Due to the large errors in the bound atom scattering cross section and coherent scattering cross section of {sup 86}Kr and {sup n}Kr, the incoherent cross section of both gases, {sigma}{sub i} = 0 within its inaccuracy, {sigma}{sub i}=0.26(54) b for {sup 86}Kr and {sigma}{sub i}=0.41(1.15) b for {sup n}Kr. (orig.).

  7. Evaluation of room-scattered neutrons at the JNC Tokai neutron reference field

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadayoshi; Tsujimura, Norio [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works; Oyanagi, Katsumi [Japan Radiation Engineering Co., Ltd., Hitachi, Ibaraki (Japan)

    2002-09-01

    Neutron reference fields for calibrating neutron-measuring devices in JNC Tokai Works are produced by using radionuclide neutron sources, {sup 241}Am-Be and {sup 252}Cf sources. The reference field for calibration includes scattered neutrons from the material surrounding sources, wall, floor and ceiling of the irradiation room. It is, therefore, necessary to evaluate the scattered neutrons contribution and their energy spectra at reference points. Spectral measurements were performed with a set of Bonner multi-sphere spectrometers and the reference fields were characterized in terms of spectral composition and the fractions of room-scattered neutrons. In addition, two techniques stated in ISO 10647, the shadow-cone method and the polynomial fit method, for correcting the contributions from the room-scattered neutrons to the readings of neutron survey instruments were compared. It was found that the two methods gave an equivalent result within a deviation of 3.3% at a source-to-detector distance from 50cm to 500cm. (author)

  8. Scattering angle base filtering of the inversion gradients

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-01-01

    Full waveform inversion (FWI) requires a hierarchical approach based on the availability of low frequencies to maneuver the complex nonlinearity associated with the problem of velocity inversion. I develop a model gradient filter to help us access the parts of the gradient more suitable to combat this potential nonlinearity. The filter is based on representing the gradient in the time-lag normalized domain, in which low scattering angles of the gradient update are initially muted. The result are long-wavelength updates controlled by the ray component of the wavefield. In this case, even 10 Hz data can produce near zero wavelength updates suitable for a background correction of the model. Allowing smaller scattering angle to contribute provides higher resolution information to the model.

  9. A compact neutron scatter camera for field deployment

    CERN Document Server

    Goldsmith, John E M; Brennan, James S

    2016-01-01

    We describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4{\\pi}) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metal from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.

  10. Neutron scattering in concrete and wood: Part II--Oblique incidence.

    Science.gov (United States)

    Facure, A; Silva, A X; Rivera, J C; Falcão, R C

    2008-01-01

    The knowledge of neutron reflection coefficients is of practical interest when projecting the shielding of radiotherapy rooms, since it is known that about 75% of the neutrons at the maze entrance of these rooms are scattered neutrons. In a previous paper, the energy spectra of photoneutrons were calculated, when reflected by ordinary, high-density concrete and wood barriers, using the MCNP5 code, considering normal incidence and neutron incident energies varying between 0.1 and 10 MeV. It was found that the mean energy of the reflected neutrons does not depend on the reflection angle and that these mean energies are lower in wood and barytes concrete, compared with ordinary concrete. In the present work, the simulation of neutron reflection coefficients were completed, considering the case when these particles do not collide frontally with the barriers, which constitute the radiotherapy room walls. Some simulations were also made to evaluate how neutron equivalent doses at the position of the room door is affected when the maze walls are lined with neutron absorbing materials, such as wood itself or borated polyethylene. Finally, capture gamma rays dose at the entrance of rooms with different maze lengths were also simulated. The results were discussed in the light of the albedo concepts presented in the literature and some of these results were confronted with others, finding good agreement between them.

  11. Efficient scattering angle filtering for Full waveform inversion

    KAUST Repository

    Alkhalifah, Tariq Ali

    2015-08-19

    Controlling the scattering angles between the state and the adjoint variables for the energy admitted into an inversion gradient or an image can help improve these functions for objectives in full waveform inversion (FWI) or seismic imaging. However, the access of the scattering angle information usually requires an axis extension that could be costly, especially in 3D. For the purpose of a scattering angle filter, I develop techniques that utilize the mapping nature (no domain extension) of the filter for constant-velocity background models to interpolate between such filtered gradients using the actual velocity. The concept has well known roots in the application of phase-shift-plus-interpolation utilized commonly in the downward continuation process. If the difference between the minimum and maximum velocity of the background medium is large, we obtain filtered gradients corresponding to more constant velocity backgrounds and use linear interpolation between such velocities. The accuracy of this approximation for the Marmousi model gradient demonstrates the e ectiveness of the approach.

  12. Scattered Neutron Tomography Based on A Neutron Transport Inverse Problem

    Energy Technology Data Exchange (ETDEWEB)

    William Charlton

    2007-07-01

    Neutron radiography and computed tomography are commonly used techniques to non-destructively examine materials. Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions.

  13. Inelastic scattering of fast neutrons from $^{56}$Fe

    CERN Document Server

    Beyer, R; Hannaske, R; Junghans, A R; Massarczyk, R; Anders, M; Bemmerer, D; Ferrari, A; Kögler, T; Röder, M; Schmidt, K; Wagner, A

    2014-01-01

    Inelastic scattering of fast neutrons from $^{56}$Fe was studied at the photoneutron source nELBE. The neutron energies were determined on the basis of a timeof- flight measurement. Gamma-ray spectra were measured with a high-purity germanium detector. The total scattering cross sections deduced from the present experiment in an energy range from 0.8 to 9.6 MeV agree within 15% with earlier data and with predictions of the statistical-reaction code Talys.

  14. Recent neutron scattering research and development in India

    Indian Academy of Sciences (India)

    S L Chaplot

    2006-07-01

    A national facility for neutron beam research is operated at the research reactor Dhruva at Trombay in India. The research activities involve various nanoscale structural, dynamical and magnetic investigations on materials of scientific interest and technological importance. Thermal neutron has certain special properties that enable, e.g., selective viewing of parts of an organic molecule, hydrogen or water in materials, investigations on minerals and ceramics, and microscopic and mesoscopic characterization of bulk samples. The national facility comprises of eight neutron-scattering spectrometers in the reactor hall, and another four spectrometers in the neutron-guide laboratory. In addition, a neutron radiography facility and a detector development laboratory are located at APSARA reactor. All the instruments including the detectors and electronics have been developed within BARC. A new powder diffractometer (PD-3) is being developed by UGC-DAE-CSR. The national facility is utilized in collaboration with various universities and other institutions.

  15. Event-based processing of neutron scattering data

    Science.gov (United States)

    Peterson, Peter F.; Campbell, Stuart I.; Reuter, Michael A.; Taylor, Russell J.; Zikovsky, Janik

    2015-12-01

    Many of the world's time-of-flight spallation neutrons sources are migrating to recording individual neutron events. This provides for new opportunities in data processing, the least of which is to filter the events based on correlating them with logs of sample environment and other ancillary equipment. This paper will describe techniques for processing neutron scattering data acquired in event mode which preserve event information all the way to a final spectrum, including any necessary corrections or normalizations. This results in smaller final uncertainties compared to traditional methods, while significantly reducing processing time and memory requirements in typical experiments. Results with traditional histogramming techniques will be shown for comparison.

  16. Complete Monte Carlo Simulation of Neutron Scattering Experiments

    Science.gov (United States)

    Drosg, M.

    2011-12-01

    In the far past, it was not possible to accurately correct for the finite geometry and the finite sample size of a neutron scattering set-up. The limited calculation power of the ancient computers as well as the lack of powerful Monte Carlo codes and the limitation in the data base available then prevented a complete simulation of the actual experiment. Using e.g. the Monte Carlo neutron transport code MCNPX [1], neutron scattering experiments can be simulated almost completely with a high degree of precision using a modern PC, which has a computing power that is ten thousand times that of a super computer of the early 1970s. Thus, (better) corrections can also be obtained easily for previous published data provided that these experiments are sufficiently well documented. Better knowledge of reference data (e.g. atomic mass, relativistic correction, and monitor cross sections) further contributes to data improvement. Elastic neutron scattering experiments from liquid samples of the helium isotopes performed around 1970 at LANL happen to be very well documented. Considering that the cryogenic targets are expensive and complicated, it is certainly worthwhile to improve these data by correcting them using this comparatively straightforward method. As two thirds of all differential scattering cross section data of 3He(n,n)3He are connected to the LANL data, it became necessary to correct the dependent data measured in Karlsruhe, Germany, as well. A thorough simulation of both the LANL experiments and the Karlsruhe experiment is presented, starting from the neutron production, followed by the interaction in the air, the interaction with the cryostat structure, and finally the scattering medium itself. In addition, scattering from the hydrogen reference sample was simulated. For the LANL data, the multiple scattering corrections are smaller by a factor of five at least, making this work relevant. Even more important are the corrections to the Karlsruhe data due to the

  17. Kartini Research Reactor prospective studies for neutron scattering application

    Energy Technology Data Exchange (ETDEWEB)

    Widarto [Yogyakarta Nuclear Research Center, BATAN (Indonesia)

    1999-10-01

    The Kartini Research Reactor (KRR) is located in Yogyakarta Nuclear Research Center, Yogyakarta - Indonesia. The reactor is operated for 100 kW thermal power used for research, experiments and training of nuclear technology. There are 4 beam ports and 1 column thermal are available at the reactor. Those beam ports have thermal neutron flux around 10{sup 7} n/cm{sup 2}s each other and used for sub critical assembly, neutron radiography studies and Neutron Activation Analysis (NAA). Design of neutron collimator has been done for piercing radial beam port and the calculation result of collimated neutron flux is around 10{sup 9} n/cm{sup 2}s. This paper describes experiment facilities and parameters of the Kartini research reactor, and further more the prospective studies for neutron scattering application. The purpose of this paper is to optimize in utilization of the beam ports facilities and enhance the manpower specialty. The special characteristic of the beam ports and preliminary studies, pre activities regarding with neutron scattering studies for KKR is presented. (author)

  18. Identification and rejection of scattered neutrons in AGATA

    Energy Technology Data Exchange (ETDEWEB)

    Şenyiğit, M., E-mail: meneksek@science.ankara.edu.tr [Department of Physics, Faculty of Science, Ankara University, TR-06100 Tandoğan, Ankara (Turkey); Ataç, A. [Department of Physics, Faculty of Science, Ankara University, TR-06100 Tandoğan, Ankara (Turkey); Deptartment of Physics, Royal Institute of Technology, SE-10691 Stockholm (Sweden); Akkoyun, S. [Faculty of Science, Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Kaşkaş, A. [Department of Physics, Faculty of Science, Ankara University, TR-06100 Tandoğan, Ankara (Turkey); Bazzacco, D. [INFN Sezione di Padova, I-35131 Padova (Italy); Dipartimento di Fisica e Astronomia dell' Università di Padova, I-35131 Padova (Italy); Nyberg, J. [Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden); Recchia, F. [INFN Sezione di Padova, I-35131 Padova (Italy); Dipartimento di Fisica e Astronomia dell' Università di Padova, I-35131 Padova (Italy); Brambilla, S. [INFN Sezione di Milano, I-20133 Milano (Italy); Camera, F. [Universitá degli Studi di Milano via Celoria 16, 20133 Milano (Italy); INFN Sezione di Milano, I-20133 Milano (Italy); Crespi, F.C.L. [INFN Sezione di Milano, I-20133 Milano (Italy); Farnea, E. [INFN Sezione di Padova, I-35131 Padova (Italy); Dipartimento di Fisica e Astronomia dell' Università di Padova, I-35131 Padova (Italy); Giaz, A. [INFN Sezione di Milano, I-20133 Milano (Italy); Gottardo, A. [Laboratori Nazionali di Legnaro, INFN, I-35020 Legnaro (PD) (Italy); Kempley, R. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); and others

    2014-01-21

    γ Rays and neutrons, emitted following spontaneous fission of {sup 252}Cf, were measured in an AGATA experiment performed at INFN Laboratori Nazionali di Legnaro in Italy. The setup consisted of four AGATA triple cluster detectors (12 36-fold segmented high-purity germanium crystals), placed at a distance of 50 cm from the source, and 16 HELENA BaF{sub 2} detectors. The aim of the experiment was to study the interaction of neutrons in the segmented high-purity germanium detectors of AGATA and to investigate the possibility to discriminate neutrons and γ rays with the γ-ray tracking technique. The BaF{sub 2} detectors were used for a time-of-flight measurement, which gave an independent discrimination of neutrons and γ rays and which was used to optimise the γ-ray tracking-based neutron rejection methods. It was found that standard γ-ray tracking, without any additional neutron rejection features, eliminates effectively most of the interaction points due to recoiling Ge nuclei after elastic scattering of neutrons. Standard tracking rejects also a significant amount of the events due to inelastic scattering of neutrons in the germanium crystals. Further enhancements of the neutron rejection was obtained by setting conditions on the following quantities, which were evaluated for each event by the tracking algorithm: energy of the first and second interaction point, difference in the calculated incoming direction of the γ ray, and figure-of-merit value. The experimental results of tracking with neutron rejection agree rather well with GEANT4 simulations.

  19. Small Angle X-ray Scattering for Nanoparticle Research.

    Science.gov (United States)

    Li, Tao; Senesi, Andrew J; Lee, Byeongdu

    2016-09-28

    X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and angstrom length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle's size, size distribution, shape, and organization into hierarchical structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well as the combination of SAXS with other X-ray and non-X-ray characterization tools. We conclude with an examination of several key areas of research where X-ray scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.

  20. Preparation and characterisation of magnetic nanostructured samples for inelastic neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzpaintner, Wolfgang

    2010-06-22

    Recent advances in thin-film structuring techniques have generated significant interest in the dynamics of spin waves in magnetic nanostructures and the possible use of inelastic neutron scattering (INS) for their investigation. This thesis describes the design and implementation, at GKSS Research Centre, of equipment for preparation of large and laterally submicron and nanometre structured magnetic samples for such future INS experiments. After a brief resume on spin waves in nanostructures, the development work on new purpose-designed equipment, including high vacuum (HV) argon ion beam milling and ultra high vacuum (UHV) e-beam evaporation setups, is described. Ni nanodot as well as Ni and novel Gd nanowire samples were prepared using combinations of sputter deposition, laser interference lithography, argon ion beam milling, e-beam evaporation and self organisation techniques. With reference to sample preparation, epitaxial growth studies for Ni on Si(100) substrate were performed, resulting in the development of a new deposition process, which by thermal tuning allows for the direct epitaxial growth of Ni on Si with unprecedented crystalline quality. The results of various characterisation experiments on the prepared nanostructured samples, including Scanning Electron Microscopy (SEM), microprobe analysis, Atomic and Magnetic Force Microscopy (AFM/MFM), Vibrating Sample Magnetometry (VSM), X-ray Diffraction (XRD) and Reflectivity (XRR), unpolarised and Polarised Neutron Scattering (PNR) and off-specular scattering by X-rays and neutrons using rocking scans and Time-Of-Flight Grazing Incidence Small Angle Neutron Scattering (TOF-GISANS), together with various analysis procedures such as Distorted-Wave Born Approximation (DWBA), are reported. The analysis of a Gd nanowire sample by TOF-GISANS led to a novel evaluation technique which in comparison with single wavelength methods allows portions of reciprocal space to be scanned without changing the angle of

  1. Neutron Scattering from fcc Pr and Pr3Tl

    DEFF Research Database (Denmark)

    Birgeneau, R. J.; Als-Nielsen, Jens Aage; Bucher, E.

    1972-01-01

    Elastic-neutron-scattering measurements on the singlet-ground-state ferromagnets fcc Pr and Pr3 Tl are reported. Both exhibit magnetic phase transitions, possibly to a simple ferromagnetic state at 20 and 11.6 °K, respectively. The transitions appear to be of second order although that in fcc Pr...... is clearly anomalous. Additional information on the inelastic scattering studies of the Γ1-Γ4 excitons in these systems is presented. dhcp Pr is also briefly discussed....

  2. Optics for Advanced Neutron Imaging and Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moncton, David E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Khaykovich, Boris [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-03-30

    During the report period, we continued the work as outlined in the original proposal. We have analyzed potential optical designs of Wolter mirrors for the neutron-imaging instrument VENUS, which is under construction at SNS. In parallel, we have conducted the initial polarized imaging experiment at Helmholtz Zentrum, Berlin, one of very few of currently available polarized-imaging facilities worldwide.

  3. Applications of neutron scattering to heterogeneous catalysis

    Science.gov (United States)

    Parker, Stewart F.; Lennon, David

    2016-09-01

    Historically, most studies of heterogeneous catalysts that have used neutron vibrational spectroscopy have employed indirect geometry instruments with a low (methane to synthesis gas (CO + H2) over Ni/Al2O3 catalysts and an operando study of CO oxidation. We conclude with a proposal for a unique instrument that combines both indirect and direct geometry spectrometers.

  4. High-resolution proton scattering off {sup 70}Zn under extreme forward angles

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Andreas; Martin, Dirk; Neumann-Cosel, Peter von; Pietralla, Norbert [Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik; Tamii, Atsushi [Research Center for Nuclear Physics, Osaka (Japan); Collaboration: E377-Collaboration

    2013-07-01

    A high-resolution scattering experiment was performed with a 295 MeV proton beam at the Research Center of Nuclear Physics in Osaka, Japan. The nucleus {sup 70}Zn has been measured under scattering angles of 0 {sup circle}, 3 {sup circle} and 4.5 {sup circle}. From the angular distributions it is possible to distinguish spin-M1 and E1 response. The spin-M1 response is assumed to be affected by the shell evolution due to the tensor force towards the exotic neutron-rich doubly magic nuclei {sup 78}Ni. The experiments will also provide important information on the evolution of the pygmy dipole resonance with neutron excess by comparison with unstable neutron-rich isotones {sup 68}Ni discovered recently at GSI. During the analysis procedure, ion optical correction methods, drift time to distance conversion, high-resolution corrections and an energy calibration are applied. After the background subtraction, double differential cross sections can be extracted.

  5. Neutron scattering effects on fusion ion temperature measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Lee (Bechtel/Nevada, Las Vegas, NV); Starner, Jason R.; Cooper, Gary Wayne; Ruiz, Carlos L.; Franklin, James Kenneth (Ktech Corporation, Albuquerque, NM); Casey, Daniel T.

    2006-06-01

    To support the nuclear fusion program at Sandia National Laboratories (SNL), a consistent and verifiable method to determine fusion ion temperatures needs to be developed. Since the fusion temperature directly affects the width in the spread of neutron energies produced, a measurement of the neutron energy width can yield the fusion temperature. Traditionally, the spread in neutron energies is measured by using time-of-flight to convert a spread in neutron energies at the source to a spread in time at detector. One potential obstacle to using this technique at the Z facility at SNL is the need to shield the neutron detectors from the intense bremsstrahlung produced. The shielding consists of eight inches of lead and the concern is that neutrons will scatter in the lead, artificially broaden the neutron pulse width and lead to an erroneous measurement. To address this issue, experiments were performed at the University of Rochester's Laboratory for Laser Energetics, which demonstrated that a reliable ion temperature measurement can be achieved behind eight inches of lead shielding. To further expand upon this finding, Monte Carlo N-Particle eXtended (MCNPX) was used to simulate the experimental geometric conditions and perform the neutron transport. MCNPX was able to confidently estimate results observed at the University of Rochester.

  6. Immersive Visual Analytics for Transformative Neutron Scattering Science

    Energy Technology Data Exchange (ETDEWEB)

    Steed, Chad A [ORNL; Daniel, Jamison R [ORNL; Drouhard, Margaret [University of Washington, Seattle; Hahn, Steven E [ORNL; Proffen, Thomas E [ORNL

    2016-01-01

    The ORNL Spallation Neutron Source (SNS) provides the most intense pulsed neutron beams in the world for scientific research and development across a broad range of disciplines. SNS experiments produce large volumes of complex data that are analyzed by scientists with varying degrees of experience using 3D visualization and analysis systems. However, it is notoriously difficult to achieve proficiency with 3D visualizations. Because 3D representations are key to understanding the neutron scattering data, scientists are unable to analyze their data in a timely fashion resulting in inefficient use of the limited and expensive SNS beam time. We believe a more intuitive interface for exploring neutron scattering data can be created by combining immersive virtual reality technology with high performance data analytics and human interaction. In this paper, we present our initial investigations of immersive visualization concepts as well as our vision for an immersive visual analytics framework that could lower the barriers to 3D exploratory data analysis of neutron scattering data at the SNS.

  7. A workshop on enhanced national capability for neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Alan J [Los Alamos National Laboratory; Rhyne, James J [Los Alamos National Laboratory; Lewis, Paul S [Los Alamos National Laboratory

    2009-01-01

    This two-day workshop will engage the international neutron scattering community to vet and improve the Lujan Center Strategic Plan 2007-2013 (SP07). Sponsored by the LANL SC Program Office and the University of California, the workshop will be hosted by LANSCE Professor Sunny Sinha (UCSD). Endorsement by the Spallation Neutron Source will be requested. The discussion will focus on the role that the Lujan Center will play in the national neutron scattering landscape assuming full utilization of beamlines, a refurbished LANSCE, and a 1.4-MW SNS. Because the Lujan Strategic Plan is intended to set the stage for the Signature Facility era at LANSCE, there will be some discussion of the long-pulse spallation source at Los Alamos. Breakout groups will cover several new instrument concepts, upgrades to present instruments, expanded sample environment capabilities, and a look to the future. The workshop is in keeping with a request by BES to update the Lujan strategic plan in coordination with the SNS and the broader neutron community. Workshop invitees will be drawn from the LANSCE User Group and a broad cross section of the US, European, and Pacific Rim neutron scattering research communities.

  8. Neutron scattering studies of the flux line lattice in ErNi{sub 2}B{sub 2}C

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, T. E-mail: nagata@phys.ocha.ac.jp; Yano, F.; Habuta, E.; Kawano-Furukawa, H.; Nagao, M.; Yoshizawa, H.; Furukawa, N.; Takeya, H.; Kadowaki, K

    2004-05-01

    We examined the flux line lattice in ErNi{sub 2}{sup 11}B{sub 2}C by small angle neutron scattering technique. On field cooling process, effective field (H{sub eff}) determined by the observed vortex distance increased by 200 Oe below the weak ferromagnetic transition temperature T{sub WFM}.

  9. Benchmarking the inelastic neutron scattering soil carbon method

    Science.gov (United States)

    The herein described inelastic neutron scattering (INS) method of measuring soil carbon was based on a new procedure for extracting the net carbon signal (NCS) from the measured gamma spectra and determination of the average carbon weight percent (AvgCw%) in the upper soil layer (~8 cm). The NCS ext...

  10. Simple high-pressure cell for neutron scattering

    Science.gov (United States)

    Bao, Wei; Broholm, C.; Trevino, S. F.

    1995-02-01

    A high-pressure cell, capable of 8 kbar, is developed for neutron scattering. It can be used with ILL type orange cryostats to obtain a temperature as low as 1.5 K. The simple seal design described here can easily be adopted to other high-pressure applications.

  11. Spin-wave and critical neutron scattering from chromium

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Axe, J.D.; Shirane, G.

    1971-01-01

    Chromium and its dilute alloys are unique examples of magnetism caused by itinerant electrons. The magnetic excitations have been studied by inelastic neutron scattering using a high-resolution triple-axis spectrometer. Spin-wave peaks in q scans at constant energy transfer ℏω could, in general, ...

  12. Simulation of a complete inelastic neutron scattering experiment

    DEFF Research Database (Denmark)

    Edwards, H.; Lefmann, K.; Lake, B.;

    2002-01-01

    A simulation of an inelastic neutron scattering experiment on the high-temperature superconductor La2-xSrxCuO4 is presented. The complete experiment, including sample, is simulated using an interface between the experiment control program and the simulation software package (McStas) and is compared...

  13. Inelastic Neutron Scattering and Separation Coefficient of Absorbed Hydrogen

    DEFF Research Database (Denmark)

    Silvera, I. F.; Nielsen, Mourits

    1976-01-01

    Inelastic neutron scattering and measurement of the ortho-para separation coefficient have been used to study the low lying rotational states of molecular hydrogen adsorbed on activated alumina. The observations are consistent with a picture in which the orientational motion of the molecules...

  14. Optimizing moderator dimensions for neutron scattering at the spallation neutron source.

    Science.gov (United States)

    Zhao, J K; Robertson, J L; Herwig, Kenneth W; Gallmeier, Franz X; Riemer, Bernard W

    2013-12-01

    In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source (SNS). In a recent study of the planned second target station at the SNS facility, we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter over a smaller viewing area. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories: those with natural collimation and those that use neutron guide systems. For instruments using natural collimation, the optimal moderator selection depends on the size of the moderator, the sample, and the moderator brightness. The desired beam divergence only plays a role in determining the distance between sample and moderator. For instruments using neutron optical systems, the smallest moderator available that is larger than the entrance dimension of the closest optical element will perform the best (assuming, as is the case here that smaller moderators are brighter).

  15. Wide Aperture Vector magnet for neutron scattering studies

    CERN Document Server

    Lavie, P; Peugeot, A; Bredy, P; Berriaud, C; Daël, A; Riffet, J -M; Klimko, S; Meuriot, J -L; Robillard, T; Aubert, G

    2016-01-01

    We propose an innovative design for a vector magnet compatible with neutron scattering experiments. This would vastly expand the range of experimental possibilities since applying a magnetic field and orienting the sample in diffraction conditions will become completely independent. This Wide Aperture VEctor magnet is a setup made of 16 coils, all with a vertical axis. The vertical component of the field is produced by two pairs of coaxial coils carrying opposite currents for an active shielding of the stray field, while the horizontal components are generated by 3 sets of 4 coils each, two above and two below the diffraction plane. This innovative geometry allows a very wide aperture (220$\\,^{\\circ}$ horizontal, $\\pm$ 10$\\,^{\\circ}$ vertical), which is crucial for neutron diffraction and inelastic neutron scattering experiments. Moreover, the homogeneity of the field is far better than in the usual vertical coils, and the diameter of the sample bore is unusually large (10 cm). The concept has been developed ...

  16. A Neutron Scattering Study of Collective Excitations in Superfluid Helium

    DEFF Research Database (Denmark)

    Graf, E. H.; Minkiewicz, V. J.; Bjerrum Møller, Hans;

    1974-01-01

    Extensive inelastic-neutron-scattering experiments have been performed on superfluid helium over a wide range of energy and momentum transfers. A high-resolution study has been made of the pressure dependence of the single-excitation scattering at the first maximum of the dispersion curve over...... of the multiexcitation scattering was also studied. It is shown that the multiphonon spectrum of a simple Debye solid with the phonon dispersion and single-excitation cross section of superfluid helium qualitatively reproduces these data....

  17. Virtual experiments: Combining realistic neutron scattering instrument and sample simulations

    Science.gov (United States)

    Farhi, E.; Hugouvieux, V.; Johnson, M. R.; Kob, W.

    2009-08-01

    A new sample component is presented for the Monte Carlo, ray-tracing program, McStas, which is widely used to simulate neutron scattering instruments. The new component allows the sample to be described by its material dynamic structure factor, which is separated into coherent and incoherent contributions. The effects of absorption and multiple scattering are treated and results from simulations and previous experiments are compared. The sample component can also be used to treat any scattering material which may be close to the sample and therefore contaminates the total, measured signal.

  18. Precision Measurement of the Weak Mixing Angle in Moller Scattering

    CERN Document Server

    Anthony, P L; Arroyo, C; Bega, K; Biesiada, J; Bosted, P E; Bower, G; Cahoon, J; Carr, R; Cates, G D; Chen, J P; Chudakov, E; Cooke, M; Decowski, P; Deur, A; Emam, W; Erickson, R; Fieguth, T; Field, C; Gao, J; Gary, M; Gustafsson, K; Hicks, R S; Holmes, R; Hughes, E W; Humensky, T B; Jones, G M; Kaufman, L J; Keller, L; Kolomensky, Yu G; Kumar, K S; La Violette, P; Lhuillier, D; Lombard-Nelsen, R M; Marshall, Z; Mastromarino, P; McKeown, R D; Michaels, R; Niedziela, J; Olson, M; Paschke, K D; Peterson, G A; Pitthan, R; Relyea, D; Rock, S E; Saxton, O; Singh, J; Souder, P A; Szalata, Z M; Turner, J; Tweedie, B; Vacheret, A; Walz, D; Weber, T; Weisend, J; Woods, M; Younus, I

    2005-01-01

    We report on a precision measurement of the parity-violating asymmetry in fixed target electron-electron (Moller) scattering: A_PV = -131 +/- 14 (stat.) +/- 10 (syst.) parts per billion, leading to the determination of the weak mixing angle \\sin^2\\theta_W^eff = 0.2397 +/- 0.0010 (stat.) +/- 0.0008 (syst.), evaluated at Q^2 = 0.026 GeV^2. Combining this result with the measurements of \\sin^2\\theta_W^eff at the Z^0 pole, the running of the weak mixing angle is observed with over 6 sigma significance. The measurement sets constraints on new physics effects at the TeV scale.

  19. Neutron-deuteron scattering calculation for evaluated neutron data libraries

    Science.gov (United States)

    Svenne, J. P.; Canton, L.; Kozier, K. S.

    2008-12-01

    In the low-energy regime, differential cross sections for n + d elastic scattering are not well described in existing nuclear data libraries, such as ENDF/B-VII.0. Supporting experimental data in this energy region are old, sparse and often inconsistent. We have carried out calculations with the AGS three-body theory and the Bonn-B nucleon-nucleon potential at energies 50 keV to 10.0 MeV.

  20. The structure of the muscle protein complex 4Ca{sup 2+}. Tronponin C*troponin: A Monte Carlo modeling analysis of small-angle X-ray and neutron scattering data

    Energy Technology Data Exchange (ETDEWEB)

    Olah, G.A.; Trewhella, J.

    1995-11-01

    Analysis of scattering data based on a Monte Carlo integration method was used to obtain a low resolution model of the 4Ca2+.troponin c.troponin I complex. This modeling method allows rapid testing of plausible structures where the best fit model can be ascertained by a comparison between model structure scattering profiles and measured scattering data. In the best fit model, troponin I appears as a spiral structure that wraps about 4CA2+.trophonin C which adopts an extended dumbell conformation similar to that observed in the crystal structures of troponin C. The Monte Carlo modeling method can be applied to other biological systems in which detailed structural information is lacking.

  1. X-ray and neutron scattering studies of complex confined fluids.

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, S. K.

    1999-08-04

    We review recent X-ray and neutron scattering studies of the structure and dynamics of confined complex fluids. This includes the study of polymer conformations and binary fluid phase transitions in porous media using Small Angle Neutron scattering, and the use of synchrotrons radiation to study ordering and fluctuation phenomena at solid/liquid and liquid/air interfaces. Ordering of liquids near a solid surface or in confinement will be discussed, and the study, via specular and off-specular X-ray reflectivity, of capillary wave fluctuations on liquid polymer films. Finally, we shall discuss the use of high-brilliance beams from X-ray synchrotrons to study via photon correlation spectroscopy the slow dynamics of soft condensed matter systems.

  2. Parity Violation in Forward Angle Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Miller, IV, Grady Wilson [Princeton Univ., NJ (United States)

    2001-01-01

    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton at Jefferson Laboratory. The kinematic point (θlab = 12.3 deg. and (Q2) = 0.48 (GeV/c)2) is chosen to provide sensitivity to the strange electric form factor GsE. A 3.36 GeV beam of longitudinally polarized electrons was scattered from protons in a liquid hydrogen target. The scattered flux was detected by a pair of spectrometers which focussed the elastically-scattered electrons onto total-absorption detectors. The detector signals were integrated and digitized by a custom data acquisition system. A feedback system reduced systematic errors by controlling helicity-correlated beam intensity differences at the sub-ppm (part per million) level. The experimental result, A = 14.5 +/- 2.0 (stat) ± 1.1 (syst) ppm, is consistent with the electroweak Standard Model with no additional contributions from strange quarks. In particular, the measurement implies GSE + 0.39 GsM = 0.023 ± 0.040 ± 0.026 (ζGnE), where the last uncertainty is due to the estimated uncertainty in the neutron electric form factor GnE . This result represents the first experimental constraint of the strange electric form factor.

  3. 2009 International Conference on Neutron Scattering (ICNS 2009)

    Energy Technology Data Exchange (ETDEWEB)

    Gopal Rao, PhD; Gillespie, Donna

    2010-08-05

    The ICNS provides a focal point for the worldwide neutron user community to strengthen ties within this diverse group, while at the same time promoting neutron research among colleagues in related disciplines identified as would-be neutron users. The International Conference on Neutron Scattering thus serves a dual role as an international user meeting and a scientific meeting. As a venue for scientific exchange, the ICNS showcases recent results and provides forums for scientific discussion of neutron research in diverse fields such as hard and soft condensed matter, liquids, biology, magnetism, engineering materials, chemical spectroscopy, crystal structure, and elementary excitations, fundamental physics and development of neutron instrumentation through a combination of invited talks, contributed talks and poster sessions. Each of the major national neutron facilities (NIST, LANSCE, ANL, HFIR and SNS), along with their international counterparts, has an opportunity to exchange information with each other and to update users, and potential users, of their facility. This is also an appropriate forum for users to raise issues that relate to the facilities.

  4. A quasi-elastic neutron scattering and neutron spin-echo study of hydrogen bonded system

    Energy Technology Data Exchange (ETDEWEB)

    Branca, C.; Faraone, A.; Magazu, S.; Maisano, G.; Mangione, A

    2004-07-15

    This work reports neutron spin echo results on aqueous solutions of trehalose, a naturally occurring disaccharide of glucose, showing an extraordinary bioprotective effectiveness against dehydration and freezing. We collected data using the SPAN spectrometer (BENSC, Berlin) on trehalose aqueous solutions at different temperature values. The obtained findings are compared with quasi-elastic neutron scattering results in order to furnish new results on the dynamics of the trehalose/water system on the nano and picoseconds scale.

  5. SASfit: A comprehensive tool for small-angle scattering data analysis

    CERN Document Server

    Breßler, Ingo; Thünemann, Andreas F

    2015-01-01

    Small-angle X-ray and neutron scattering experiments are used in many fields of the life sciences and condensed matter research to obtain answers to questions about the shape and size of nano-sized structures, typically in the range of 1 to 100 nm. It provides good statistics for large numbers of structural units for short measurement times. With the ever-increasing quantity and quality of data acquisition, the value of appropriate tools that are able to extract valuable information is steadily increasing. SASfit has been one of the mature programs for small-angle scattering data analysis available for many years. We describe the basic data processing and analysis work-flow along with recent developments in the SASfit program package (version 0.94.6). They include (i) advanced algorithms for reduction of oversampled data sets (ii) improved confidence assessment in the optimized model parameters and (iii) a flexible plug-in system for custom user-provided models. A scattering function of a mass fractal model o...

  6. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Overbury, Steven {Steve} H [ORNL; Coates, Leighton [ORNL; Herwig, Kenneth W [ORNL; Kidder, Michelle [ORNL

    2011-10-01

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  7. New neutron-based isotopic analytical methods; An explorative study of resonance capture and incoherent scattering

    NARCIS (Netherlands)

    Perego, R.C.

    2004-01-01

    Two novel neutron-based analytical techniques have been treated in this thesis, Neutron Resonance Capture Analysis (NRCA), employing a pulsed neutron source, and Neutron Incoherent Scattering (NIS), making use of a cold neutron source. With the NRCA method isotopes are identified by the isotopic-spe

  8. Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography.

    Science.gov (United States)

    Liebi, Marianne; Georgiadis, Marios; Menzel, Andreas; Schneider, Philipp; Kohlbrecher, Joachim; Bunk, Oliver; Guizar-Sicairos, Manuel

    2015-11-19

    The mechanical properties of many materials are based on the macroscopic arrangement and orientation of their nanostructure. This nanostructure can be ordered over a range of length scales. In biology, the principle of hierarchical ordering is often used to maximize functionality, such as strength and robustness of the material, while minimizing weight and energy cost. Methods for nanoscale imaging provide direct visual access to the ultrastructure (nanoscale structure that is too small to be imaged using light microscopy), but the field of view is limited and does not easily allow a full correlative study of changes in the ultrastructure over a macroscopic sample. Other methods of probing ultrastructure ordering, such as small-angle scattering of X-rays or neutrons, can be applied to macroscopic samples; however, these scattering methods remain constrained to two-dimensional specimens or to isotropically oriented ultrastructures. These constraints limit the use of these methods for studying nanostructures with more complex orientation patterns, which are abundant in nature and materials science. Here, we introduce an imaging method that combines small-angle scattering with tensor tomography to probe nanoscale structures in three-dimensional macroscopic samples in a non-destructive way. We demonstrate the method by measuring the main orientation and the degree of orientation of nanoscale mineralized collagen fibrils in a human trabecula bone sample with a spatial resolution of 25 micrometres. Symmetries within the sample, such as the cylindrical symmetry commonly observed for mineralized collagen fibrils in bone, allow for tractable sampling requirements and numerical efficiency. Small-angle scattering tensor tomography is applicable to both biological and materials science specimens, and may be useful for understanding and characterizing smart or bio-inspired materials. Moreover, because the method is non-destructive, it is appropriate for in situ measurements and

  9. Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography

    Science.gov (United States)

    Liebi, Marianne; Georgiadis, Marios; Menzel, Andreas; Schneider, Philipp; Kohlbrecher, Joachim; Bunk, Oliver; Guizar-Sicairos, Manuel

    2015-11-01

    The mechanical properties of many materials are based on the macroscopic arrangement and orientation of their nanostructure. This nanostructure can be ordered over a range of length scales. In biology, the principle of hierarchical ordering is often used to maximize functionality, such as strength and robustness of the material, while minimizing weight and energy cost. Methods for nanoscale imaging provide direct visual access to the ultrastructure (nanoscale structure that is too small to be imaged using light microscopy), but the field of view is limited and does not easily allow a full correlative study of changes in the ultrastructure over a macroscopic sample. Other methods of probing ultrastructure ordering, such as small-angle scattering of X-rays or neutrons, can be applied to macroscopic samples; however, these scattering methods remain constrained to two-dimensional specimens or to isotropically oriented ultrastructures. These constraints limit the use of these methods for studying nanostructures with more complex orientation patterns, which are abundant in nature and materials science. Here, we introduce an imaging method that combines small-angle scattering with tensor tomography to probe nanoscale structures in three-dimensional macroscopic samples in a non-destructive way. We demonstrate the method by measuring the main orientation and the degree of orientation of nanoscale mineralized collagen fibrils in a human trabecula bone sample with a spatial resolution of 25 micrometres. Symmetries within the sample, such as the cylindrical symmetry commonly observed for mineralized collagen fibrils in bone, allow for tractable sampling requirements and numerical efficiency. Small-angle scattering tensor tomography is applicable to both biological and materials science specimens, and may be useful for understanding and characterizing smart or bio-inspired materials. Moreover, because the method is non-destructive, it is appropriate for in situ measurements and

  10. Concentration of hydrogen in titanium measured by neutron incoherent scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chen-Mayer, H.H.; Mildner, D.F.R.; Lamaze, G.P.; Lindstrom, R.M.; Paul, R.L. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Kvardakov, V.V. [Russian Research Center Kurchatov Inst., Moscow (Russian Federation); Richards, W.J. [Air Force, McClellan AFB, CA (United States)

    1998-12-31

    Mass fractions of hydrogen in titanium matrices have been measured using neutron incoherent scattering (NIS) and compared with results from prompt gamma activation analysis (PGAA). Qualitatively, NIS is a more efficient technique than PGAA which involves neutron absorption, and the former may be suitable for on-line analysis. However, for NIS the scattering contribution comes from both the hydrogen and the matrix, whereas prompt gamma emission has minimal matrix effect. To isolate the signal due to hydrogen scattering, a set of polypropylene films is used to simulate the increasing amount of hydrogen, and the scattered intensity is monitored. From this response, an unknown amount of the hydrogen can be deduced empirically. The authors have further attempted a first principle calculation of the intensity of the scattered signal from the experimental systems, and have obtained good agreement between calculation and the measurements. The study can be used as a reference for future applications of the scattering method to other hydrogen-in-metal systems.

  11. The Angular Distribution of Neutrons Scattered from Deuterium below 2 MeV

    Science.gov (United States)

    Nankov, N.; Plompen, A. J. M.; Kopecky, S.; Kozier, K. S.; Roubtsov, D.; Rao, R.; Beyer, R.; Grosse, E.; Hannaske, R.; Junghans, A. R.; Massarczyk, R.; Schwengner, R.; Yakorev, D.; Wagner, A.; Stanoiu, M.; Canton, L.; Nolte, R.; Röttger, S.; Beyer, J.; Svenne, J.

    2014-05-01

    Neutron elastic scattering measurements were carried out at the nELBE neutron time-of-flight facility at a 6 m flight path. Energies below 2 MeV were studied using a setup consisting of eight 6Li-glass detectors placed at nominal angles of 15∘ and 165∘ with respect to the incident neutron beam. A deuterated polyethylene sample with 99.999% enrichment in deuterium was used. These angles were chosen since an earlier study showed that the ratio of the differential cross section at these angles is the most sensitive to differences in evaluated files and model calculations. Accurate 165∘/15∘ angle ratios were obtained. Above 1 MeV these are somewhat larger than given by ENDF/B-VII. Simultaneously the early day experiments using a proportional counter to infer angular distributions from deuterium recoil pulse height distributions are being studied through a new experiment with such a device at the Physikalisch-Technische Bundesanstalt (PTB). At 500 keV this experiment favors ENDF/B-VII over JENDL-4.0, while at lower energies agreement with the data is similar.

  12. Small angle scatter imaging from wide beam diffraction patterns

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, Steven J [Department of Materials and Medical Sciences, Cranfield University, Shrivenham, Swindon, Wiltshire SN6 8LA (United Kingdom); Rogers, Keith D [Department of Materials and Medical Sciences, Cranfield University, Shrivenham, Swindon, Wiltshire SN6 8LA (United Kingdom); Hall, Chris J [School of Physics, Monash University, Victoria 3800 (Australia); Round, Adam R [EMBL c/o DESY, Building 25a, Notkestrasse 85, 22603 Hamburg (Germany)

    2007-05-07

    In this paper we report on the extension of the technique of mapping small angle x-ray scatter (SAXS) across a soft material specimen several millimetres square. In the conventional SAXS mapping technique a pencil beam of x-rays is raster scanned over the specimen with the scatter pattern recorded from each point in the raster. In our technique a wide, parallel beam is used, speeding up the data collection time considerably. An image processing algorithm is used to separate the scatter pattern features from individual points along the line of the beam. To test the efficacy of the technique a phantom was constructed using gelatin and rat tail tendon collagen. Collagen fibres in the phantom were arranged in quarters horizontally, diagonally and vertically leaving one quarter with just gelatin. The phantom was used to collect both raster scanned sets of SAXS patterns spaced at 0.25 mm horizontally and vertically and also a wide beam data set. The width of the beam in this case was approximately 7 mm. Using the third-order diffraction of rat tail tendon intensity data were gathered from each SAXS pattern and used to construct a map. Data from the raster scan image and that from the wide beam are compared. Finally using a phantom made from dehydrated rat tail tendon and paraffin wax a tomographic slice constructed using data from SAXS patterns is shown.

  13. Activity report on neutron scattering research

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, M.; Tawata, N.; Fujii, Y. [eds.] [Tokyo Univ. (Japan). Inst. for Solid State Physics

    1998-12-31

    The experiments performed on the thirteen university-owned spectrometers installed at JRR-3M of JAERI in the fiscal year of 1997 were described in this report. The latest ``Neutron News`` (vol. 9, issue 3, 1998) has featured highlights of the activities based on the JRR-3M and its cover displays a graph showing an endless increase of the number of proposals to the users program in the fiscal 1997. The university-owned spectrometers are available for general users all over Japan. The users` requirement for a higher flux beam reactor became larger and larger with time. Thus, JAERI has refurbished JRR-3 to satisfy these demands. In 1997, a joint project between Chiba University and Institute for Solid State Physics (ISSP) started to build a new 4-cycle diffractometer for crystal physics/chemistry at T{sub 2-2} beam port on a thermal guide. (M.N.)

  14. Causality bounds for neutron-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Elhatisari, S.; Lee, D. [North Carolina State University, Department of Physics, Raleigh, NC (United States)

    2012-08-15

    We consider the constraints of causality and unitarity for the low-energy interactions of protons and neutrons. We derive a general theorem that non-vanishing partial-wave mixing cannot be reproduced with zero-range interactions without violating causality or unitarity. We define and calculate interaction length scales which we call the causal range and the Cauchy-Schwarz range for all spin channels up to J=3. For some channels we find that these length scales are as large as 5fm. We investigate the origin of these large lengths and discuss their significance for the choice of momentum cutoff scales in effective field theory and universality in many-body Fermi systems. (orig.)

  15. Neutron Scattering and Computer Simulation Studies of Ice Dynamics

    Institute of Scientific and Technical Information of China (English)

    DONG Shunle; YU Xinsheng

    2002-01-01

    In this article we describe a range of simulations (lattice dynamics and molecular dynamics) of the inelastic inco-herent neutron scattering spectra of ices (normal ice, ice Ⅱ and ice Ⅷ ). These simulations use a variety of different inter-molecular potentials from simple classic pair-wise (rigid and non-rigid molecule) potentials to sophisticated polarisable poten-tials. It was found that MCY makes stretching and bending interactions too weak while others do them well. We demon-strate that in order to reproduce the measured neutron spectrum, greater anisotropy (or orientational variation) is requiredthan these potentials presently provide.

  16. System Construction of the Stilbene Compact Neutron Scatter Camera

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, John E. M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gerling, Mark D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Brennan, James S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Throckmorton, Daniel J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Helm, Jonathan Ivers [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-10-01

    This report documents the construction of a stilbene-crystal-based compact neutron scatter camera. This system is essentially identical to the MINER (Mobile Imager of Neutrons for Emergency Responders) system previously built and deployed under DNN R&D funding,1 but with the liquid scintillator in the detection cells replaced by stilbene crystals. The availability of these two systems for side-by-side performance comparisons will enable us to unambiguously identify the performance enhancements provided by the stilbene crystals, which have only recently become commercially available in the large size required (3” diameter, 3” deep).

  17. Quantifying the information measured by neutron scattering instruments

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.W. [Rutherford Appleton Lab., Oxon (United Kingdom)

    1997-09-01

    The concept of the information content of a scientific measurement is introduced, and a theory is presented which enables the information that may be obtained by a neutron scattering instrument to be calculated. When combined with the time taken to perform the measurement the bandwidth of the instrument is obtained. This bandwidth is effectively a figure of merit which is of use in three respects: in the design of neutron instrumentation, the optimisation of measurements, and in the comparison of one instrument with another.

  18. Neutron scattering. Annual progress report 1997; Neutronenstreuung. Annual progress report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Allenspach, P.; Boeni, B.; Fischer, P.; Furrer, A. [Eidgenoessische Technische Hochschule, Zurich (Switzerland). Lab. fuer Neutronenstreuung

    1998-02-01

    The present progress report describes the scientific and technical activities obtained by LNS staff members in 1997. It also includes the work performed by external groups at our CRG instruments D1A and IN3 at the ILL Grenoble. Due to the outstanding properties of neutrons and x-rays the research work covered many areas of science and materials research. The highlight of the year 1997 was certainly the production of neutrons at the new spallation neutron source SINQ. From July to November, SINQ was operating for typically two days/week and allowed the commissioning of four instruments at the neutron guide system: - the triple-axis spectrometer Druechal, - the powder diffractometer DMC, - the double-axis diffractometer TOPSI, the polarised triple-axis spectrometer TASP. These instruments are now fully operational and have already been used for condensed matter studies, partly in cooperation with external groups. Five further instruments are in an advanced state, and their commissioning is expected to occur between June and October 1998: - the high-resolution powder diffractometer HRPT, - the single-crystal diffractometer TriCS, - the time-of-flight spectrometer FOCUS, - the reflectometer AMOR, - the neutron optical bench NOB. Together with the small angle neutron scattering facility SANS operated by the spallation source department, all these instruments will be made available to external user groups in the future. (author) figs., tabs., refs.

  19. Identification and rejection of scattered neutrons in AGATA

    CERN Document Server

    Şenyiğit, M; Akkoyun, S; Kaşkaş, A; Bazzacco, D; Nyberg, J; Recchia, F; Brambilla, S; Camera, F; Crespi, F C L; Farnea, E; Giaz, A; Gottardo, A; Kempley, R; Ljungvall, J; Mengoni, D; Michelagnoli, C; Million, B; Palacz, M; Pellegri, L; Riboldi, S; Şahin, E; Söderström, P A; Dobon, J J Valiente

    2013-01-01

    Gamma rays and neutrons, emitted following spontaneous fission of 252Cf, were measured in an AGATA experiment performed at INFN Laboratori Nazionali di Legnaro in Italy. The setup consisted of four AGATA triple cluster detectors (12 36-fold segmented high-purity germanium crystals), placed at a distance of 50 cm from the source, and 16 HELENA BaF2 detectors. The aim of the experiment was to study the interaction of neutrons in the segmented high-purity germanium detectors of AGATA and to investigate the possibility to discriminate neutrons and gamma rays with the gamma-ray tracking technique. The BaF2 detectors were used for a time-of-flight measurement, which gave an independent discrimination of neutrons and gamma rays and which was used to optimise the gamma-ray tracking-based neutron rejection methods. It was found that standard gamma-ray tracking, without any additional neutron rejection features, eliminates effectively most of the interaction points due to recoiling Ge nuclei after elastic scattering of...

  20. Backward-forward reaction asymmetry of neutron elastic scattering on deuterium

    Science.gov (United States)

    Pirovano, E.; Beyer, R.; Junghans, A. R.; Nankov, N.; Nolte, R.; Nyman, M.; Plompen, A. J. M.

    2017-02-01

    A new measurement of the angular distribution of neutron elastic scattering on deuterium was carried out at the neutron time-of-flight facility nELBE. The backward-forward asymmetry of the reaction was investigated via the direct detection of neutrons scattered at the laboratory angle of 15∘ and 165∘ from a polyethylene sample enriched with deuterium. In order to extend the measurement to neutron energies below 1 MeV, 6Li glass scintillators were employed. The data were corrected for the background and the multiple scattering in the target, the events due to scattering on deuterium were separated from those due to carbon, and the ratio of the differential cross section at 15∘ and 165∘ was determined. The results, covering the energy range from 200 keV to 2 MeV, were found to be in agreement with the theoretical predictions calculated by Canton et al. [Eur. Phys. J. A 14, 225 (2002)], 10.1140/epja/i2001-10122-3 and by Golak et al. [Eur. Phys. J. A 50, 177 (2014)], 10.1140/epja/i2014-14177-7. The comparison with the evaluated nuclear data libraries indicated CENDL-3.1, JEFF-3.2, and JENDL-4.0 as the evaluations that best describe the asymmetry of n -d scattering. ENDF/B-VII.1 is compatible with the data for energies below 700 keV, but above the backward to forward ratio is higher than measured. ROSFOND-2010 and BROND-2.2 resulted to have little compatibility with the data.

  1. Quasi-elastic neutron scattering studies of protein dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rorschach, H.E.

    1993-05-25

    Results that shed new light on the study of protein dynamics were obtained by quasi-elastic neutron scattering. The triple axis instrument H-9 supplied by the cold source was used to perform a detailed study of the quasi-elastic spectrum and the Debye-Waller factor for trypsin in powder form, in solution, and in crystals. A preliminary study of myoglobin crystals was also done. A new way to view the results of quasi-elastic scattering experiments is sketched, and the data on trypsin are presented and analyze according to this new picture.

  2. Point-defect diffusion from coherent quasielastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gillan, M.J.; Wolf, D.

    1985-09-16

    We outline a theory which suggests that the dynamics of point defects in crystals can be studied by coherent quasielastic neutron scattering. The theory assumes that the surrounding lattice distortion follows each defect instantaneously, and that the distortion fields of different defects can be linearly superposed. The energy width of the scattered intensity yields the hopping rate and jump vectors of the defects. We discuss systems for which the predicted effects for ionic defects are observable, pointing out that the detection of small polaron hopping should also be possible.

  3. Neutron scattering study of protonated and deuterated potassium phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yamamuro, Osamu; Madokoro, Yasushi; Obara, Hideki; Harabe, Kouji; Matsuo, Takasuke [Department of Chemistry, Graduate School of Science, Osaka Univ., Toyonaka, Osaka (Japan); Kamiyama, Takashi [Graduate School of Engineering, Hokkaido Univ., Sappro, Hokkaido (Japan); Fukazawa, Hiroshi; Ikeda, Susumu [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan)

    2001-03-01

    The incoherent inelastic neutron scattering from protonated potassium phosphate glass was measured on CAT at KENS and AGNES at ISSP (JRR-3M) over a wide energy range of 0.1-300 meV. The measurement of coherent inelastic scattering was also performed for the deuterated analogue in the energy range 3-90 meV and momentum transfer range 1-13 A{sup -1} by using MARI at ISIS. We have found a boson peak at around 4 meV and some interesting features of the acoustic and localized vibrations characteristic to the amorphous structure of the present materials. (author)

  4. Low Resolution Structure and Dynamics of a Colicin-Receptor Complex Determined by Neutron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Luke A [ORNL; Johnson, Christopher L [ORNL; Solovyova, Alexandra [University of Newcastle upon Tyne; Callow, Phil [Institut Laue-Langevin (ILL); Weiss, Kevin L [ORNL; Ridley, Helen [University of Newcastle upon Tyne; Le Brun, Anton P [ORNL; Kinane, Christian [ISIS Facility, Rutherford Appleton Laboratory; Webster, John [ISIS Facility, Rutherford Appleton Laboratory; Holt, Stephen A [ORNL; Lakey, Jeremy H [ORNL

    2012-01-01

    Proteins that translocate across cell membranes need to overcome a significant hydrophobic barrier. This is usually accomplished via specialized protein complexes, which provide a polar transmembrane pore. Exceptions to this include bacterial toxins, which insert into and cross the lipid bilayer itself. We are studying the mechanism by which large antibacterial proteins enter Escherichia coli via specific outer membrane proteins. Here we describe the use of neutron scattering to investigate the interaction of colicin N with its outer membrane receptor protein OmpF. The positions of lipids, colicin N, and OmpF were separately resolved within complex structures by the use of selective deuteration. Neutron reflectivity showed, in real time, that OmpF mediates the insertion of colicin N into lipid monolayers. This data were complemented by Brewster Angle Microscopy images, which showed a lateral association of OmpF in the presence of colicin N. Small angle neutron scattering experiments then defined the three-dimensional structure of the colicin N-OmpF complex. This revealed that colicin N unfolds and binds to the OmpF-lipid interface. The implications of this unfolding step for colicin translocation across membranes are discussed.

  5. Neutron and Synchrotron X-Ray Scattering Studies of Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada,J.M.

    2008-09-01

    Superconductors hold the promise for a more stable and efficient electrical grid, but new isotropic, high-temperature superconductors are needed in order to reduce cable manufacturing costs. The effort to understand high-temperature superconductivity, especially in the layered cuprates, provides guidance to the search for new superconductors. Neutron scattering has long provided an important probe of the collective excitations that are involved in the pairing mechanism. For the cuprates, neutron and x-ray diffraction techniques also provide information on competing types of order, such as charge and spin stripes, that appear to be closely connected to the superconductivity. Recently, inelastic x-ray scattering has become competitive for studying phonons and may soon provide valuable information on electronic excitations. Examples of how these techniques contribute to our understanding of superconductivity are presented.

  6. Neutron and synchrotron x-ray scattering studies of superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada, J.M.

    2008-10-15

    Superconductors hold the promise for a more stable and efficient electrical grid, but new isotropic, high-temperature superconductors are needed in order to reduce cable manufacturing costs. The effort to understand high-temperature superconductivity, especially in the layered cuprates, provides guidance to the search for new superconductors. Neutron scattering has long provided an important probe of the collective excitations that are involved in the pairing mechanism. For the cuprates, neutron and x-ray diffraction techniques also provide information on competing types of order, such as charge and spin stripes that appear to be closely connected to the superconductivity. Recently, inelastic x-ray scattering has become competitive for studying phonons and may soon provide valuable information on electronic excitations. Examples of how these techniques contribute to our understanding of superconductivity are presented. (au)

  7. High pressure gas vessels for neutron scattering experiments

    CERN Document Server

    Done, R; Evans, B E; Bowden, Z A

    2010-01-01

    The combination of high pressure techniques with neutron scattering proves to be a powerful tool for studying the phase transitions and physical properties of solids in terms of inter-atomic distances. In our report we are going to review a high pressure technique based on a gas medium compression. This technique covers the pressure range up to ~0.7GPa (in special cases 1.4GPa) and typically uses compressed helium gas as the pressure medium. We are going to look briefly at scientific areas where high pressure gas vessels are intensively used in neutron scattering experiments. After that we are going to describe the current situation in high pressure gas technology; specifically looking at materials of construction, designs of seals and pressure vessels and the equipment used for generating high pressure gas.

  8. Quasi-elastic neutron scattering studies of protein dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rorschach, H.E.

    1991-03-20

    The techniques of X-ray and neutron scattering that have been so successfully applied to the study of the structure of biological macromolecules have in recent years been also used for the study of the thermal motion of these molecules. The diffraction of X-rays has been widely used to investigate the high-frequency motion of the heavy-atom residues of proteins. In these studies, the mean-square thermal amplitudes can be determined from the intensities of the sharp structural lines obtained from single crystals of the hydrated proteins. Similar information can be obtained on lighter atoms from the study of the neutron scattering from single crystals. The results of these measurements are coupled closely to the rapidly developing field of theoretical molecular dynamics which is now being applied to study the dynamics of large biological molecules. This report discusses research in this area.

  9. Inelastic neutron scattering and lattice dynamics studies in complex solids

    Indian Academy of Sciences (India)

    Mala N Rao; R Mittal; Narayani Choudhury; S L Chaplot

    2004-07-01

    At Trombay, lattice dynamics studies employing coherent inelastic neutron scattering (INS) experiments have been carried out at the two research reactors, CIRUS and Dhruva. While the early work at CIRUS involved many elemental solids and ionic molecular solids, recent experiments at Dhruva have focussed on certain superconductors (cuprates and intermetallics), geophysically important minerals (Al2SiO5, ZrSiO4, MnCO3) and layered halides (BaFCl, ZnCl2). In most of the studies, theoretical modelling of lattice dynamics has played a significant role in the interpretation and analysis of the results from experiments. This talk summarises the developments and current activities in the field of inelastic neutron scattering and lattice dynamics at Trombay.

  10. Light dark matter scattering in outer neutron star crusts

    CERN Document Server

    Cermeño, Marina; Silk, Joseph

    2016-01-01

    We calculate for the first time the phonon excitation rate in the outer crust of a neutron star due to scattering from light dark matter (LDM) particles gravitationally boosted into the star. We consider dark matter particles in the sub-GeV mass range scattering off a periodic array of nuclei through an effective scalar-vector interaction with nucleons. We find that LDM effects cause a modification of the net number of phonons in the lattice as compared to the standard thermal result. In addition, we estimate the contribution of LDM to the ion-ion thermal conductivity in the outer crust and find that it can be significantly enhanced at large densities. Our results imply that for magnetized neutron stars the LDM-enhanced global conductivity in the outer crust will tend to reduce the anisotropic heat conduction between perpendicular and parallel directions to the magnetic field.

  11. Light dark matter scattering in outer neutron star crusts

    Science.gov (United States)

    Cermeño, Marina; Pérez-García, M. Ángeles; Silk, Joseph

    2016-09-01

    We calculate for the first time the phonon excitation rate in the outer crust of a neutron star due to scattering from light dark matter (LDM) particles gravitationally boosted into the star. We consider dark matter particles in the sub-GeV mass range scattering off a periodic array of nuclei through an effective scalar-vector interaction with nucleons. We find that LDM effects cause a modification of the net number of phonons in the lattice as compared to the standard thermal result. In addition, we estimate the contribution of LDM to the ion-ion thermal conductivity in the outer crust and find that it can be significantly enhanced at large densities. Our results imply that for magnetized neutron stars the LDM-enhanced global conductivity in the outer crust will tend to reduce the anisotropic heat conduction between perpendicular and parallel directions to the magnetic field.

  12. Neutron Scattering Studies of Antiferromagnetic Correlations in Cuprates

    OpenAIRE

    Tranquada, John M.

    2005-01-01

    Neutron scattering studies have provided important information about the momentum and energy dependence of magnetic excitations in cuprate superconductors. Of particular interest are the recent indications of a universal magnetic excitation spectrum in hole-doped cuprates. That starting point provides motivation for reviewing the antiferromagnetic state of the parent insulators, and the destruction of the ordered state by hole doping. The nature of spin correlations in stripe-ordered phases i...

  13. Simulation of a complete inelastic neutron scattering experiment

    Science.gov (United States)

    Edwards, H.; Lefmann, K.; Lake, B.; Nielsen, K.; Skaarup, P.

    A simulation of an inelastic neutron scattering experiment on the high-temperature superconductor La2-xSrxCuO4 is presented. The complete experiment, including sample, is simulated using an interface between the experiment control program and the simulation software package (McStas) and is compared with the experimental data. Simulating the entire experiment is an attractive alternative to the usual method of convoluting the model cross section with the resolution function, especially if the resolution function is nontrivial.

  14. Crystals for neutron scattering studies of quantum magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Yankova, Tantiana [ETH Zurich, Switzerland; Hüvonen, Dan [ETH Zurich, Switzerland; Mühlbauer, Sebastian [ETH Zurich, Switzerland; Schmidiger, David [ETH Zurich, Switzerland; Wulf, Erik [ETH Zurich, Switzerland; Hong, Tao [ORNL; Garlea, Vasile O [ORNL; Custelcean, Radu [ORNL; Ehlers, Georg [ORNL

    2012-01-01

    We review a strategy for targeted synthesis of large single crystal samples of prototype quantum magnets for inelastic neutron scattering experiments. Four case studies of organic copper halogenide S = 1/2 systems are presented. They are meant to illustrate that exciting experimental results pertaining to the forefront of many-body quantum physics can be obtained on samples grown using very simple techniques, standard laboratory equipment, and almost no experience in advanced crystal growth techniques.

  15. Bragg optics computer codes for neutron scattering instrument design

    Energy Technology Data Exchange (ETDEWEB)

    Popovici, M.; Yelon, W.B.; Berliner, R.R. [Missouri Univ. Research Reactor, Columbia, MO (United States); Stoica, A.D. [Institute of Physics and Technology of Materials, Bucharest (Romania)

    1997-09-01

    Computer codes for neutron crystal spectrometer design, optimization and experiment planning are described. Phase space distributions, linewidths and absolute intensities are calculated by matrix methods in an extension of the Cooper-Nathans resolution function formalism. For modeling the Bragg reflection on bent crystals the lamellar approximation is used. Optimization is done by satisfying conditions of focusing in scattering and in real space, and by numerically maximizing figures of merit. Examples for three-axis and two-axis spectrometers are given.

  16. Photon strength function deduced from photon scattering and neutron capture

    Directory of Open Access Journals (Sweden)

    Matic A.

    2010-10-01

    Full Text Available The dipole strength function of 78Se and 196Pt are investigated by two different experimental methods, capture of cold neutrons in 77Se and 195Pt and photon scattering experiments on 78Se and 196Pt. Considering the different ways of excitation, the strength function deduced from the results are expected to agree. The report shows the status of the data analysis and presents first preliminary results.

  17. Glancing-angle scattering of fast ions at crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mannami, Michihiko; Narumi, Kazumasa; Katoh, Humiya; Kimura, Kenji [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    Glancing angle scattering of fast ions from a single crystal surface is a novel technique to study ion-surface interaction. Results of recent studies of ion-surface interaction are reviewed for ions with velocities faster than the Fermi velocity of solid. For the ions with velocities less than the Fermi velocity of target valence electrons the ion-surface interaction shows a new aspect where only the valence electrons of target solid participate in the stopping processes. It will show that the position-dependent stopping power of a surface for these ions governed by the elastic collisions of valence electrons and the ions. A method is proposed from this position-dependent stopping power to derived the electron density distribution averaged over the plane parallel to the surface. (author)

  18. Novel Boron-10-based detectors for Neutron Scattering Science

    CERN Document Server

    Piscitelli, Francesco

    2015-01-01

    Nowadays neutron scattering science is increasing its instrumental power. Most of the neutron sources in the world are pushing the development of their technologies to be more performing. The neutron scattering development is also pushed by the European Spallation Source (ESS) in Sweden, a neutron facility which has just started construction. Concerning small area detectors (1m^2), the 3He technology, which is today cutting edge, is reaching fundamental limits in its development. Counting rate capability, spatial resolution and cost-e?ectiveness, are only a few examples of the features that must be improved to ful?fill the new requirements. On the other hand, 3He technology could still satisfy the detector requirements for large area applications (50m^2), however, because of the present 3He shortage that the world is experiencing, this is not practical anymore. The recent detector advances (the Multi-Grid and the Multi-Blade prototypes) developed in the framework of the collaboration between the Institut Laue...

  19. Recent neutron scattering results from Gd-based pyrochlore oxides

    Science.gov (United States)

    Gardner, Jason

    2009-03-01

    In my presentation I will present recent results that have determined the spin-spin correlations in the geometrically frustrated magnets Gd2Sn2O7 and Gd2Ti2O7. This will include polarised neutron diffraction, inelastic neutron scattering and neutron spin echo data. One sample of particular interest is Gd2Sn2O7 which is believed to be a good approximation to a Heisenberg antiferromagnet on a pyrochlore lattice with exchange and dipole-dipole interactions. Theoretically such a system is expected to enter long range ordered ground state known as the ``Palmer Chalker'' state [1]. We show conclusively, through neutron scattering data, that the system indeed enters an ordered state with the Palmer-Chalker spin configuration below Tc = 1 K [2-3]. Within this state we have also observed long range collective spin dynamics, spin waves. This work has been performed in collaboration with many research groups including G. Ehlers (SNS), R. Stewart (ISIS). [0pt] [1] S. E. Palmer and J. T. Chalker, Phys. Rev. B 62, 488 (2000). [0pt] [2] J. R. Stewart, G. Ehlers, A. S. Wills, S. T. Bramwell, and J. S. Gardner, J. Phys.: Condens. Matter 16, L321 (2004). [0pt] [3] J R Stewart, J S Gardner, Y. Qiu and G Ehlers, Phys. Rev. B. 78, 132410 (2008)

  20. Analysis of multiple scattering and multiphonon contributions in inelastic neutron scattering experiments

    CERN Document Server

    Dawidowski, J; Koza, M M; Blostein, J J; Aurelio, G; Fernández-Guillermet, A; Donato, P G

    2002-01-01

    We present a method of analysis of inelastic neutron scattering (INS) experiments aiming at obtaining the density of phonon states in an absolute scale, as well as a reliable value of the mean-square displacement of the atoms. This method requires the measurement of the neutron total cross section of the sample as a function of energy, which provides a normalization condition for the INS experiment, as well as a value of the mean-square displacement. The method is applied in the case of an incoherent neutron scattering system, viz. the Ti-52wt.% Zr alloy. The applicability of this method to the study of metal alloys and other systems is discussed.

  1. Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-$\\alpha$ Scattering, and Neutron Matter

    CERN Document Server

    Lynn, J E; Carlson, J; Gandolfi, S; Gezerlis, A; Schmidt, K E; Schwenk, A

    2015-01-01

    We present quantum Monte Carlo calculations of light nuclei, neutron-$\\alpha$ scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral effective field theory up to next-to-next-to-leading order (N$^2$LO). The two undetermined 3N low-energy couplings are fit to the $^4$He binding energy and, for the first time, to the spin-orbit splitting in the neutron-$\\alpha$ $P$-wave phase shifts. Furthermore, we investigate different choices of local 3N operator structures and find that chiral interactions at N$^2$LO are able to simultaneously reproduce the properties of $A=4,5$ systems and of neutron matter, in contrast to commonly used phenomenological 3N interactions.

  2. Neutron scattering studies of crude oil viscosity reduction with electric field

    Science.gov (United States)

    Du, Enpeng

    Small-angle neutron scattering (SANS) is a very powerful laboratory technique for micro structure research which is similar to the small angle X-ray scattering (SAXS) and light scattering for microstructure investigations in various materials. In small-angle neutron scattering (SANS) technique, the neutrons are elastically scattered by changes of refractive index on a nanometer scale inside the sample through the interaction with the nuclei of the atoms present in the sample. Because the nuclei of all atoms are compact and of comparable size, neutrons are capable of interacting strongly with all atoms. This is in contrast to X-ray techniques where the X-rays interact weakly with hydrogen, the most abundant element in most samples. The SANS refractive index is directly related to the scattering length density and is a measure of the strength of the interaction of a neutron wave with a given nucleus. It can probe inhomogeneities in the nanometer scale from 1nm to 1000nm. Since the SANS technique probes the length scale in a very useful range, this technique provides valuable information over a wide variety of scientific and technological applications, including chemical aggregation, defects in materials, surfactants, colloids, ferromagnetic correlations in magnetism, alloy segregation, polymers, proteins, biological membranes, viruses, ribosome and macromolecules. Quoting the Nobel committee, when awarding the prize to C. Shull and B. Brockhouse in 1994: "Neutrons tell you where the atoms are and what the atoms do". At NIST, there is a single beam of neutrons generated from either reactor or pulsed neutron source and selected by velocity selector. The beam passes through a neutron guide then scattered by the sample. After the sample chamber, there are 2D gas detectors to collect the elastic scattering information. SANS usually uses collimation of the neutron beam to determine the scattering angle of a neutron, which results in an even lower signal-to-noise ratio for

  3. Cross correlation calculations and neutron scattering analysis for a portable solid state neutron detection system

    Science.gov (United States)

    Saltos, Andrea

    In efforts to perform accurate dosimetry, Oakes et al. [Nucl. Intrum. Mehods. (2013)] introduced a new portable solid state neutron rem meter based on an adaptation of the Bonner sphere and the position sensitive long counter. The system utilizes high thermal efficiency neutron detectors to generate a linear combination of measurement signals that are used to estimate the incident neutron spectra. The inversion problem associated to deduce dose from the counts in individual detector elements is addressed by applying a cross-correlation method which allows estimation of dose with average errors less than 15%. In this work, an evaluation of the performance of this system was extended to take into account new correlation techniques and neutron scattering contribution. To test the effectiveness of correlations, the Distance correlation, Pearson Product-Moment correlation, and their weighted versions were performed between measured spatial detector responses obtained from nine different test spectra, and the spatial response of Library functions generated by MCNPX. Results indicate that there is no advantage of using the Distance Correlation over the Pearson Correlation, and that weighted versions of these correlations do not increase their performance in evaluating dose. Both correlations were proven to work well even at low integrated doses measured for short periods of time. To evaluate the contribution produced by room-return neutrons on the dosimeter response, MCNPX was used to simulate dosimeter responses for five isotropic neutron sources placed inside different sizes of rectangular concrete rooms. Results show that the contribution of scattered neutrons to the response of the dosimeter can be significant, so that for most cases the dose is over predicted with errors as large as 500%. A possible method to correct for the contribution of room-return neutrons is also assessed and can be used as a good initial estimate on how to approach the problem.

  4. A review of neutron scattering correction for the calibration of neutron survey meters using the shadow cone method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang In; Kim, Bong Hwan; Kim, Jang Lyul; Lee, Jung Il [Health Physics Team, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    The calibration methods of neutron-measuring devices such as the neutron survey meter have advantages and disadvantages. To compare the calibration factors obtained by the shadow cone method and semi-empirical method, 10 neutron survey meters of five different types were used in this study. This experiment was performed at the Korea Atomic Energy Research Institute (KAERI; Daejeon, South Korea), and the calibration neutron fields were constructed using a {sup 252}Californium ({sup 252}Cf) neutron source, which was positioned in the center of the neutron irradiation room. The neutron spectra of the calibration neutron fields were measured by a europium-activated lithium iodide scintillator in combination with KAERI's Bonner sphere system. When the shadow cone method was used, 10 single moderator-based survey meters exhibited a smaller calibration factor by as much as 3.1 - 9.3% than that of the semi-empirical method. This finding indicates that neutron survey meters underestimated the scattered neutrons and attenuated neutrons (i.e., the total scatter corrections). This underestimation of the calibration factor was attributed to the fact that single moderator-based survey meters have an under-ambient dose equivalent response in the thermal or thermal-dominant neutron field. As a result, when the shadow cone method is used for a single moderator-based survey meter, an additional correction and the International Organization for Standardization standard 8529-2 for room-scattered neutrons should be considered.

  5. Detection of anti-personnel landmines by neutron scattering and attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, F.D. E-mail: brooks@physci.uct.ac.za; Drosg, M.; Buffler, A.; Allie, M.S

    2004-07-01

    Four methods for employing neutrons to detect abandoned small anti-personnel landmines are presented and discussed. The techniques used are based on measurements of effects due to the scattering of neutrons on the hydrogen content of the landmine.

  6. Measurement of nuclear fuel pin hydriding utilizing epithermal neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.H. [Univ. of Missouri, Columbia, MO (United States); Farkas, D.M.; Lutz, D.R. [General Electric Co., Pleasanton, CA (United States)

    1996-12-31

    The measurement of hydrogen or zirconium hydriding in fuel cladding has long been of interest to the nuclear power industry. The detection of this hydrogen currently requires either destructive analysis (with sensitivities down to 1 {mu}g/g) or nondestructive thermal neutron radiography (with sensitivities on the order of a few weight percent). The detection of hydrogen in metals can also be determined by measuring the slowing down of neutrons as they collide and rapidly lose energy via scattering with hydrogen. This phenomenon is the basis for the {open_quotes}notched neutron spectrum{close_quotes} technique, also referred to as the Hysen method. This technique has been improved with the {open_quotes}modified{close_quotes} notched neutron spectrum technique that has demonstrated detection of hydrogen below 1 {mu}g/g in steel. The technique is nondestructive and can be used on radioactive materials. It is proposed that this technique be applied to the measurement of hydriding in zirconium fuel pins. This paper summarizes a method for such measurements.

  7. Neutron scattering studies of mixed-valence semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Mignot, J.M. [Laboratoire Leon Brillouin (LLB) - Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France); Alekseev, P.A. [Kurchatov Institute, Moscow (Russian Federation)

    1994-12-31

    Neutron scattering experiments on the mixed-valence (MV) compounds SmB{sub 6} are reported. The inelastic magnetic response of SmB{sub 6} at T = 2 K, measured on a double-isotope single crystal,displays a strongly damped peak at 35 meV corresponding to the inter multiplet transition of Sm{sup 2+}. At lower energies ( h.{omega} {approx_equal} 14 meV), a narrow magnetic excitation is observed, with remarkable scattering-vector and temperature dependences of its intensity. This novel feature is discussed in terms of recent theoretical works describing the formation of an anisotropic local bound state in semiconducting MV materials. If the average samarium valence is decreased by substituting La for Sm, a peak is found to appear at high energies. The elastic magnetic form factor of SmB{sub 6} was determined using polarised neutrons and no significant difference is observed in its Q-dependence with respect to that of pure divalent samarium. This surprising behaviour is constant with previous measurements on the gold (high-pressure) phase of SmS. The above results are compared to those already reported for other MV materials. In particular existing information for TmSe is supplemented by recent inelastic scattering measurements carried out on a large stoichiometric single crystal. (author). 44 refs., 7 figs.

  8. Neutron scattering studies in the actinide region. Progress report, August 1, 1988--July 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Beghian, L.E.; Kegel, G.H.R.

    1991-08-01

    During the report period we have investigated the following areas: Neutron elastic and inelastic scattering measurements on {sup 14}N, {sup 181}Ta, {sup 232}Th, {sup 238}U and {sup 239}Pu; Prompt fission spectra for {sup 232}Th, {sup 235}U, {sup 238}U and {sup 239}Pu; Theoretical studies of neutron scattering; Neutron filters; New detector systems; and Upgrading of neutron target assembly, data acquisition system, and accelerator/beam-line apparatus.

  9. Wide Angle Compton Scattering within the SCET factorization Framework

    Directory of Open Access Journals (Sweden)

    Kivel Nikolay

    2016-01-01

    Full Text Available Existing data for the electromagnetic proton form factors and for the cross section of the wide angle Compton scattering (WACS show that the hard two-gluon exchange mechanism (collinear factorization is still not applicable in the kinematical region where Mandelstam variables s ~ −t ~ −u are about few GeV2. On the other hand these observables can be described in phenomenological models where spectator quarks are soft which assumes a large contribution due to the soft-overlap mechanism. It turns out that the simple QCD factorization picture is not complete and must also include the soft-overlap contribution which can be described as a certain matrix element in the soft collinear effective theory (SCET. Then the leading power contribution to WACS amplitude is described as a sum of the hard- and soft-spectator contributions. The existing experimental data allows one to check certain conclusions based on the assumption about dominant role of the soft-spectator mechanism.

  10. Small angle X-ray scattering beamline at SSRF

    Institute of Scientific and Technical Information of China (English)

    田丰; 李小芸; 缪夏然; 边风刚; 王吉力; 李秀宏; 王玉柱; 杨春明; 周平; 林金友; 曾建荣; 洪春霞; 滑文强

    2015-01-01

    Beamline BL16B1 at Shanghai Synchrotron Radiation Facility (SSRF) is dedicated to studying the mi-crostructure and dynamic processes of polymers, nanomaterials, mesoporous materials, colloids, liquid crystals, metal materials, etc. At present, SAXS, wide angle X-ray scattering (WAXS), simultaneous SAXS/WAXS, grazing incident SAXS, and anomalous SAXS techniques are available for end user to conduct diverse ex-periments at this beamline. The sample-to-detector distance is adjustable from 0.2 m to 5 m. The practicable q-range is 0.03–3.6 nm−1 at incident X-ray of 10 keV for conventional SAXS whilst a continuous q-region of 0.06–33 nm−1 can be achieved in simultaneous SAXS/WAXS mode. Time-resolved SAXS measurements in sub-second level was achieved by the beamline upgrating in 2013. This paper gives detailed descriptions about the status, performance and applications of the SAXS beamline.

  11. Measurement of the Neutron Radius of 208Pb Through Parity Violation in Electron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Saenboonruang, Kiadtisak [Univ. of Virginia, Charlottesville, VA (United States)

    2013-05-01

    In contrast to the nuclear charge densities, which have been accurately measured with electron scattering, the knowledge of neutron densities still lack precision. Previous model-dependent hadron experiments suggest the difference between the neutron radius, Rn, of a heavy nucleus and the proton radius, Rp, to be in the order of several percent. To accurately obtain the difference, Rn-Rp, which is essentially a neutron skin, the Jefferson Lab Lead (208Pb) Radius Experiment (PREX) measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from 208Pb at an energy of 1.06 GeV and a scattering angle of 5° . Since Z0 boson couples mainly to neutrons, this asymmetry provides a clean measurement of Rn with respect to Rp. PREX was conducted at the Jefferson lab experimental Hall A, from March to June 2010. The experiment collected a final data sample of 2x 107 helicity-window quadruplets. The measured parity-violating electroweak asymmetry APV = 0.656 ± 0.060 (stat) ± 0.014 (syst) ppm corresponds to a difference between the radii of the neutron and proton distributions, Rn-Rp = 0.33+0.16-0.18 fm and provides the first electroweak observation of the neutron skin as expected in a heavy, neutron-rich nucleus. The value of the neutron radius of 208Pb has important implications for models of nuclear structure and their application in atomic physics and astrophysics such as atomic parity non-conservation (PNC) and neutron stars.

  12. Simulation of a complete inelastic neutron scattering experiment

    CERN Document Server

    Edwards, H; Nielsen, K; Skaarup, P; Lake, B

    2002-01-01

    A simulation of an inelastic neutron scattering experiment on the high-temperature superconductor La sub 2 sub - sub x Sr sub x CuO sub 4 is presented. The complete experiment, including sample, is simulated using an interface between the experiment control program and the simulation software package (McStas) and is compared with the experimental data. Simulating the entire experiment is an attractive alternative to the usual method of convoluting the model cross section with the resolution function, especially if the resolution function is nontrivial. (orig.)

  13. Lattice dynamics of solid deuterium by inelastic neutron scattering

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Bjerrum Møller, Hans

    1971-01-01

    . The effective force constants which are obtained show that the bond stretching forces between nearest-neighbor molecules are dominant and this bond stretching constant is 174 dyn cm-1. The elastic constants are deduced and the isothermal compressibility is calculated to be B-1=2.19×10-10 cm2 dyn-1. The density......The dispersion relations for phonons in solid ortho-deuterium have been measured at 5 °K by inelastic neutron scattering. The results are in good agreement with recent calculations in which quantum effects are taken into account. The data have been fitted to a third-neighbor general force model...

  14. On the analysis of Deep Inelastic Neutron Scattering Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Blostein, J.J.; Dawidowski, J.; Granada, J.R. [Comision Nacional de Energia Atomica and CONICET, Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina)

    2001-03-01

    We analyze the different steps that must be followed for data processing in Deep Inelastic Neutron Scattering Experiments. Firstly we discuss to what extent multiple scattering effects can affect the measured peak shape, concluding the an accurate calculation of these effects must be performed to extract the desired effective temperature from the experimental data. We present a Monte Carlo procedure to perform these corrections. Next, we focus our attention on experiments performed on light nuclei. We examine cases in which the desired information is obtained from the observed peak areas, and we analyze the procedure to obtain an effective temperature from the experimental peaks. As a consequence of the results emerging from those cases we trace the limits of validity of the convolution formalism usually employed, and propose a different treatment of the experimental data for this kind of measurements. (author)

  15. The role of neutron scattering in molecular and cellular biology

    Science.gov (United States)

    Worcester, D. L.

    1982-09-01

    Neutron scattering measurements of biological macromolecules and materials have provided answers to numerous questions about molecular assemblies and arrangements. Studies of ribosomes, viruses, membranes, and other biological structures are reviewed, with emphasis on the importance of both deuterium labelling and contrast variation with H2O/D2O exchange. Although many studies of biological molecules have been made using contrast variation alone, it is the deuterium labelling experiments that have provided the most precise information and answers to major biological questions. This is largely the result of the low resolution of scattering data and the consequent rapid increase of information content that specific deuterium labelling provides. Procedures for specific deuterium labelling `in vivo' are described for recent work on myelin membranes together with basic aspects of such labelling useful for future research.

  16. Low energy neutron inelastic scattering on /sup 152/Sm nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, D.J.R.; Cabezas, S.R.; Lopez, M.R.

    1984-01-01

    A study of inelastic neutron scattering by the nucleus /sup 152/Sm at incident energies of 2.47 and 2.75 MeV using the coupled-channel method has been made. Consideration is made of the 2/sup +//0.122 MeV/, 4/sup +//0.366 MeV/ and 2/sup +//1.086 MeV/excited states. It is shown that in this energy range the process may be described satisfactorily considering /sup 152/Sm as a deformed nucleus with non-axial symmetry, given the quadrupole and hexadecapole deformations. The scattering process through the compound nucleus is calculated according to the Hauser-Feshbach formula with width fluctuation correction. It is shown that the presence of direct excitation process is partly due to the non-axiality of /sup 152/Sm.

  17. Comparison between electron and neutron Compton scattering studies

    Directory of Open Access Journals (Sweden)

    Moreh Raymond

    2015-01-01

    Full Text Available We compare two techniques: Electron Compton Scattering (ECS and neutron Compton scattering (NCS and show that using certain incident energies, both can measure the atomic kinetic energy of atoms in molecules and solids. The information obtained is related to the Doppler broadening of nuclear levels and is very useful for deducing the widths of excited levels in many nuclei in self absorption measurements. A comparison between the atomic kinetic energies measured by the two methods on the same samples is made. Some results are also compared with calculated atomic kinetic energies obtained using the harmonic approximation where the vibrational frequencies were taken from IR/Raman optical measurements. The advantages of the ECS method are emphasized.

  18. MCNPX simulations of the SCANDAL setup for measurement of neutron scattering cross section at 175 MeV

    Science.gov (United States)

    Tesinsky, Milan; Andersson, Pernilla; Gustavsson, Cecilia; Pomp, Stephan; Österlund, Michael; Blomgren, Jan; Bevilacqua, Riccardo; Hjalmarsson, Anders; Kolozhvari, Anatoly; LeColley, François-René; Marie, Nathalie; Prokofiev, Alexander V.; Simutkin, Vasily; Tippawan, Udomrat

    2010-06-01

    The Scattered Nucleon Detection Assembly (SCANDAL) setup at The Svedberg Laboratory has been used to produce neutron elastic scattering cross section data at 175 MeV for bismuth and iron. This work presents MCNPX simulations of the experimental setup and aims to describe processes and data important for the upcoming off-line data analysis. In the experiment, neutrons scattered off the target are converted to protons, which are stopped in scintillator crystals. The results include a description of the proton spectra dependence on the neutron-to-proton conversion angle, suggesting a cut at a conversion angle of 15.2°. Calculation of the hit position gates indicates high proton leakage from the crystals. A study of the converter describes the role of its chemical composition and also the role of other plastic scintillators on the proton spectra. The neutron-to-proton conversion efficiency of the converter simulated by MCNPX is 5.1×10-4 and corresponds to theoretical predictions.

  19. X-ray and neutron scattering studies of magnetic critical fluctuations in holmium

    Energy Technology Data Exchange (ETDEWEB)

    Thurston, T.R.; Helgesen, G.; Gibbs, D.; Shirane, G. [Brookhaven National Lab., Upton, NY (United States); Hill, J.P. [Brookhaven National Lab., Upton, NY (United States)]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics; Gaulin, B.D. [Brookhaven National Lab., Upton, NY (United States)]|[McMaster Univ., Hamilton, ON (Canada). Dept. of Physics

    1993-04-01

    We describe measurements of the magnetic critical fluctuations of holmium by x-ray scattering techniques. The x-ray results are compared to those obtained in neutron scattering experiments performed on the same sample.

  20. X-ray and neutron scattering studies of magnetic critical fluctuations in holmium

    Energy Technology Data Exchange (ETDEWEB)

    Thurston, T.R.; Helgesen, G.; Gibbs, D.; Shirane, G. (Brookhaven National Lab., Upton, NY (United States)); Hill, J.P. (Brookhaven National Lab., Upton, NY (United States) Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics); Gaulin, B.D. (Brookhaven National Lab., Upton, NY (United States) McMaster Univ., Hamilton, ON (Canada). Dept. of Physics)

    1993-01-01

    We describe measurements of the magnetic critical fluctuations of holmium by x-ray scattering techniques. The x-ray results are compared to those obtained in neutron scattering experiments performed on the same sample.

  1. Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators.

    Science.gov (United States)

    Good, Philipp; Cooper, Thomas; Querci, Marco; Wiik, Nicolay; Ambrosetti, Gianluca; Steinfeld, Aldo

    2016-03-01

    The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300-2500 nm at incidence angles 15-60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0-60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350-1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article "Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators" in Solar Energy Materials and Solar Cells.

  2. Magnetic nanoparticles studied by small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cristiano Luis Pinto [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Grupo de Fluidos Complexos; Antonel, Soledad; Negri, Martin [Universidad de Buenos Aires (UBA) (Argentina). Facultad de Ciencias Exactas y Naturales. Dept. de Quimica Inorganica, Analitica y Quimica Fisica

    2011-07-01

    nanoparticles are very interesting because they exhibit magnetic (ferromagnetic) and electrical properties in the same material. Then, the nickel nanoparticles could be used for the development of electroelastic materials. In this case, the electrical conductivity of the material can be strongly dependent on the applied magnetic field, for example the case of nickel metal nanoparticles dispersed in a polymer, resulting in an anisotropic material with combined piezomagnetic and piezoelectric properties. In order to investigate the structural characteristics of cobalt-iron oxides and nickel nanoparticles, powder samples of those magnetic materials were studied by Small-Angle X-Ray Scattering. As will be shown, from the analysis and modeling of the scattering data, structural information could be obtained, enabling a detailed description of the structural properties of the studied samples which could be directly correlated to the magnetic properties. (author)

  3. Polarized neutron scattering on geometrically frustrated magnets with Swedenborgite structure

    Energy Technology Data Exchange (ETDEWEB)

    Valldor, Martin [II. Physikalisches Institut, Universitaet Koeln (Germany); Sanders, Yvonne; Schweika, Werner [Institut fuer Festkoerperforschung, Forschungszentrum Juelich (Germany)

    2009-07-01

    Diffuse scattering of polarized neutrons on cobaltate polycrystalline samples with Swedenborgite structure, ABaCo{sub 3}BO{sub 7} (A=Y Ca, and B=Co Fe,Al,Zn) was used to study the change in magnetic order depending on chemical composition. The atomic structure contains alternate stacking of kagome and triangular layers of metal ions, all in tetrahedral oxygen coordination. Geometrical frustration of antiferromagnetically coupled spins should suppress long-range order even at low temperatures despite strong spin-spin coupling in the Swedenborgites. The diffuse magnetic scattering in Y{sub 0.5}Ca{sub 0.5}BaCo{sub 4}O {sub 7} reveals two dimensional (2D) spin correlations on the Kagome sublattices towards the entropically favoured V3*V3 structure and suggests a decoupling of layers on triangular sites. Co-substitution by Al and Zn yields similar diffuse magnetic scattering, however, spin dilution results in even more disordered spin liquid or spin glass states. With B=Fe or Co, differences in the magnetic scattering evolve, indicating the onset of spin correlations perpendicular to the Kagome layers.

  4. Scattering intensity limit value at very small angles

    CERN Document Server

    Ciccariello, Salvino

    2016-01-01

    The existence of the limit of a sample scattering intensity, as the scattering vector approaches zero, requires and is ensured by the property that the mean value of the scattering density fluctuation over volume $V$ asymptotically behaves, at large $V$s, as $\

  5. Small-angle X-ray scattering at the ESRF high-brillance beamline

    Energy Technology Data Exchange (ETDEWEB)

    Boesecke, P.; Diat, O. [European Synchrotron Radiation Facility (ESRF), 38 -Grenoble (France)

    1997-10-01

    The high-brilliance beamline (BL4/ID2) at the European synchrotron radiation facility (ESRF) in Grenoble has been constructed with the emphasis on time-resolved small-angle X-ray scattering and macromolecular crystallography. It has been open to users for two years. The beamline has opened up new areas in small-angle scattering research, facilitating (a) small-angle crystallography on structures with unit cells of several hundredths of nanometres, (b) overlap with the light scattering range for the study of optical systems, (c) high photon flux for time-resolved experiments and (d) a high spatial coherence allowing submicrometre imaging with X-rays. The set-up and the detector system of the small-angle scattering station are presented. A method for obtaining absolute scattering intensities is described. The parasitic background at the station is discussed in terms of absolute scattering intensities. (orig.). 22 refs.

  6. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    Science.gov (United States)

    Brandl, G.; Georgii, R.; Dunsiger, S. R.; Tsurkan, V.; Loidl, A.; Adams, T.; Pfleiderer, C.; Böni, P.

    2015-12-01

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm3, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr2Se4 (V = 12.5 mm3), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.

  7. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, G., E-mail: g.brandl@fz-juelich.de [Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department E21, Technische Universität München, 85748 Garching, Germany and Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum - MLZ, Forschungszentrum Jülich GmbH, 85748 Garching (Germany); Georgii, R. [Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department E21, Technische Universität München, 85748 Garching (Germany); Dunsiger, S. R. [Physik Department E21, Technische Universität München, 85748 Garching, Germany and Center for Emergent Materials, Ohio State University, Columbus, Ohio 43210-1117 (United States); Tsurkan, V. [Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany and Institute of Applied Physics, Academy of Sciences of Moldova, MD 2028 Chisinau, Republic of Moldova (Germany); Loidl, A. [Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159 Augsburg (Germany); Adams, T.; Pfleiderer, C.; Böni, P. [Physik Department E21, Technische Universität München, 85748 Garching (Germany)

    2015-12-21

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm{sup 3}, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr{sub 2}Se{sub 4} (V = 12.5 mm{sup 3}), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.

  8. New upper bound on the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    CERN Document Server

    Grammer, K B; Barrón-Palos, L; Blyth, D; Bowman, J D; Calarco, J; Crawford, C; Craycraft, K; Evans, D; Fomin, N; Fry, J; Gericke, M; Gillis, R C; Greene, G L; Hamblen, J; Hayes, C; Kucuker, S; Mahurin, R; Maldonado-Velázquez, M; Martin, E; McCrea, M; Mueller, P E; Musgrave, M; Nann, H; Penttilä, S I; Snow, W M; Tang, Z; Wilburn, W S

    2014-01-01

    The scattering of slow neutron beams provides unique, non-destructive, quantitative information on the structure and dynamics of materials of interest in physics, chemistry, materials science, biology, geology, and other fields. Liquid hydrogen is a widely-used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. In particular the rapid drop of the slow neutron scattering cross section of liquid parahydrogen below 15 meV, which renders the moderator volume transparent to the neutron energies of most interest for scattering studies, is therefore especially interesting and important. We have placed an upper bound on the total cross section and the scattering cross section for slow neutrons with energies between 0.43 meV and 16.1 meV on liquid hydrogen at 15.6 K using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge Nati...

  9. Angle-Resolved Scatter Measurements of Laser Damaged DKDP Crystals Using a Bi-Directional Scatter Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Fluck, R; Wegner, P; Sheehan, L; Hackel, L A

    2000-12-22

    We built a bi-directional scatter diagnostics to measure and quantify losses due to scattering and absorption of harmonic conversion crystals (DKDP) for the National Ignition Facility (NIF). The main issues to be addressed are (1) amount of total energy reaching the target if the target hole was {+-}200 {micro}rad in size, (2) distribution of energy inside the target hole, (3) collateral damage of other optics by scattered light. The scatter diagnostics enables angle-resolved measurements at 351 nm, and is capable of both near specular transmission and large angle scatter measurements. In the near specular setup, the transmission can be measured within {+-}65 {micro}rad up to {+-}60 mrad acceptance angle. A silicon photo detector and a scientific-grade CCD camera provide total energy and energy distribution. A linear swing arm detection system enables large angle scatter measurements of 360{sup o}, in principal, with step sizes as small as 0.01{sup o} and different collection angle ranging between 1 and 20 mad. In this paper, scatter effects from laser damage and final finishing process of DKDP are discussed.

  10. A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Bennett N., E-mail: bennett.walker@fda.hhs.gov [Optical Therapeutics and Medical Nanophotonics Laboratory, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States); Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States); James, Robert H.; Ilev, Ilko K. [Optical Therapeutics and Medical Nanophotonics Laboratory, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States); Calogero, Don [Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States)

    2015-09-15

    Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearly 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter.

  11. Compton Scattering Cross Sections in Strong Magnetic Fields: Advances for Neutron Star Applications

    Science.gov (United States)

    Ickes, Jesse; Gonthier, Peter L.; Eiles, Matthew; Baring, Matthew G.; Wadiasingh, Zorawar

    2014-08-01

    Various telescopes including RXTE, INTEGRAL, Suzaku and Fermi have detected steady non-thermal X-ray emission in the 10 ~ 200 keV band from strongly magnetic neutron stars known as magnetars. Magnetic inverse Compton scattering is believed to be a leading candidate for the production of this intense X-ray radiation. Generated by electrons possessing ultra-relativistic energies, this leads to attractive simplifications of the magnetic Compton cross section. We have recently addressed such a case by developing compact analytic expressions using correct spin-dependent widths acquired through the implementation of Sokolov & Ternov (ST) basis states, focusing specifically on ground state-to-ground state scattering. Such scattering in magnetar magnetospheres can cool electrons down to mildly-relativistic energies. Moreover, soft gamma-ray flaring in magnetars may well involve strong Comptonization in expanding clouds of mildly-relativistic pairs. These situations necessitate the development of more general magnetic scattering cross sections, where the incoming photons acquire substantial incident angles relative to the field in the rest frame of the electron, and the intermediate state can be excited to arbitrary Landau levels. Here, we highlight results from such a generalization using ST formalism. The cross sections treat the plethora of harmonic resonances associated with various cyclotron transitions between Landau states. Polarization dependence of the cross section for the four scattering modes is illustrated and compared with the non-relativistic Thompson cross section with classical widths. Results will find application to various neutron star problems, including computation of Eddington luminosities and polarization mode-switching rates in transient magnetar fireballs.We express our gratitude for the generous support of Michigan Space Grant Consortium, the National Science Foundation (grants AST-0607651, AST-1009725, AST-1009731 and PHY/DMR-1004811), and the

  12. Neutron and x-ray scatter studies of the histone octamer and amino and carboxyl domain trimmed octamers.

    Science.gov (United States)

    Wood, M J; Yau, P; Imai, B S; Goldberg, M W; Lambert, S J; Fowler, A G; Baldwin, J P; Godfrey, J E; Moudrianakis, E N; Koch, M H

    1991-03-25

    The structure of the nucleosome has been under intense investigation using neutron crystallography, x-ray crystallography, and neutron solution scattering. However the dimension of the histone octamer inside the nucleosome is still a subject of controversy. The radius of gyration (Rg) of the octamer obtained from solution neutron scattering of core particles at 63% 2H2O, 37% 1H2O is 33 A, and x-ray crystallography study of isolated histone octamer gives a Rg of 32.5 A, while the reported values using x-ray crystallography of core particles from two individual studies are 29.7 and 30.4 A, respectively. We report here studies of isolated histone octamer and trypsin-limited digested octamer using both neutron solution scattering and small angle x-ray scattering. The Rg of the octamer obtained is 33 A, whereas that of the trimmed octamer is 29.8 A, similar to the structure obtained from the crystals of the core particles. The N-terminal domains of the core histones in the octamer have been shown by high resolution nuclear magnetic resonance (Schroth, G.P., Yau, P., Imai, B.S., Gatewood, J.M., and Bradbury, E.M. (1990) FEBS Lett. 268, 117-120) to be mobile and flexible; it is likely that these regions are disordered and "not seen" by x-ray crystallography.

  13. Measurement of the Wolfenstein parameters for proton-proton and proton-neutron scattering at 500 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, J.A.

    1984-07-01

    Using liquid hydrogen and liquid deuterium targets respectively, forward angle (ten degrees to sixty degrees in the center of Mass) free proton-proton and quasielastic proton-proton and proton-neutron triple scattering data at 500 MeV have been obtained using the high resolution spectrometer at the Los Alamos Meson Physics Facility. The data are in reasonable agreement with recent predictions from phase shift analyses, indicating that the proton-nucleon scattering amplitudes are fairly well determined at 500 MeV. 32 references.

  14. Combined multiaxial deformation of polymers with in situ small angle and wide angle x-ray scattering techniques.

    Science.gov (United States)

    Gurun, B; Thio, Y S; Bucknall, D G

    2009-12-01

    A unique multiaxial deformation device has been designed and built specifically for simultaneous synchrotron small angle x-ray scattering (SAXS) and wide angle x-ray scattering (WAXS) measurements. The device can operate at strain rates of 0.0005-0.3 s(-1) and induce strains up to stretch ratios of 5. Measurements can either be made at ambient or at elevated temperatures (up to approximately 150 degrees C), the latter using a heating unit. The capabilities of the device coupled with simultaneous SAXS/WAXS measurements have been demonstrated by studying the morphological evolution of a number of polymers and their nanocomposites.

  15. The neutron-deuteron elastic scattering angular distribution at 95 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Mermod, Philippe

    2004-04-01

    The neutron-deuteron elastic scattering differential cross section has been measured at 95 MeV incident neutron energy, with the Medley setup at TSL in Uppsala. The neutron-proton differential cross section has also been measured for normalization purposes. The data are compared with theoretical calculations to investigate the role of three-nucleon force effects.

  16. Cross-Section Measurements for Elastic and Inelastic Scattering of Neutrons from Noble Gases

    Science.gov (United States)

    Macmullin, Sean; Kidd, Mary; Tornow, Werner; Howell, Calvin; Brown, Michael; Henning, Reyco

    2010-11-01

    Neutron backgrounds are a significant concern to experiments that attempt to directly detect Weakly Interacting Massive Particle (WIMP) dark matter. Recoil nuclei produced by neutron elastic scattering can mimic WIMP signatures. There is insufficient experimental data available for the scattering cross-sections of neutrons with noble gases (Ne, Ar, Xe), which are candidate target materials for such experiments. Neutron elastic and inelastic scattering from neon of natural abundance was investigated at the Triangle Universities Nuclear Laboratory at neutron energies relevant to (α,n) and low-energy spallation neutron backgrounds in these experiments. The differential cross-section was measured using a time-of-flight technique at neutron energies of 8.0 and 5.0 MeV. Details of the experimental technique and current status of measurements will be presented.

  17. Measurement of the nearly free neutron structure function using spectator tagging in inelastic $^2$H(e, e'p)X scattering with CLAS

    CERN Document Server

    Tkachenko, S; Kuhn, S E; Zhang, J; Arrington, J; Bosted, P; Bültmann, S; Christy, M E; Fenker, H; Griffioen, K A; Kalantarians, N; Keppel, C E; Melnitchouk, W; Tvaskis, V; Adhikari, K P; Aghasyan, M; Amaryan, M J; Pereira, S Anefalos; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Bedlinskiy, I; Biselli, A S; Briscoe, W J; Brooks, W K; Burkert, V D; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Cole, P L; Contalbrigo, M; Cortes, O; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Dodge, G E; Doughty, D; Dupre, R; Egiyan, H; Alaoui, A El; Fassi, L El; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fleming, J A; Garillon, B; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Golovatch, E; Gothe, R W; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Harrison, N; Hattawy, M; Hicks, K; Ho, D; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Jo, H S; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, A; Klein, F J; Koirala, S; Kubarovsky, V; Kuleshov, S V; Lenisa, P; Lewis, S; Livingston, K; Lu, H; MacCormick, M; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mirazita, M; Mokeev, V; Montgomery, R A; Moutarde, H; Camacho, C Munoz; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phillips, J J; Pisano, S; Pogorelko, O; Pozdniakov, S; Price, J W; Procureur, S; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatié, F; Schott, D; Schumacher, R A; Seder, E; Senderovich, I; Sharabian, Y G; Simonyan, A; Smith, G D; Sober, D I; Sokhan, D; Stepanyan, S; Stepanyan, S S; Strauch, S; Tang, W; Ungaro, M; Vlassov, A V; Voskanyan, H; Voutier, E; Walford, N K; Watts, D; Wei, X; Weinstein, L B; Wood, M H; Zana, L; Zonta, I

    2014-01-01

    Much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x. The Barely Off-shell Nucleon Structure (BONuS) experiment at Jefferson Lab measured the inelastic electron deuteron scattering cross section, tagging spectator protons in coincidence with the scattered electrons. This method reduces nuclear binding uncertainties significantly and has allowed for the first time a (nearly) model independent extraction of the neutron structure function. A novel compact radial time projection chamber was built to detect protons with momentum between 70 and 150 MeV/c. For the extraction of the free neutron structure function $F_{2n}$, spectator protons at backward angle and with...

  18. Relativistic effects in neutron-deuteron elastic scattering

    CERN Document Server

    Witala, H; Glöckle, W; Kamada, H

    2004-01-01

    We solved the three-nucleon Faddeev equation including relativistic features such as relativistic kinematics, boost effects and Wigner spin rotations. As dynamical input a relativistic nucleon-nucleon interaction exactly on-shell equivalent to the AV18 potential has been used. The effects of Wigner rotations for elastic scattering observables were found to be small. The boost effects are significant at higher energies.They diminish the transition matrix elements at higher energies and lead in spite of the increased relativistic phase-space factor as compared to the nonrelativistic one to rather small effects in the cross section, which are mostly restricted to the backward angles.

  19. A wave-mechanical model of incoherent neutron scattering II. Role of the momentum transfer

    OpenAIRE

    Frauenfelder, Hans; Young, Robert D.; Fenimore, Paul W.

    2015-01-01

    We recently introduced a wave-mechanical model for quasi-elastic neutron scattering (QENS) in proteins. We call the model ELM for "Energy Landscape Model". We postulate that the spectrum of the scattered neutrons consists of lines of natural width shifted from the center by fluctuations. ELM is based on two facts: Neutrons are wave packets; proteins have low-lying substates that form the free-energy landscape (FEL). Experiments suggest that the wave packets are a few hundred micrometers long....

  20. Dynamics in viscous orthoterphenyl: Results from coherent neutron scattering

    Science.gov (United States)

    Bartsch, E.; Fujara, F.; Legrand, J. F.; Petry, W.; Sillescu, H.; Wuttke, J.

    1995-07-01

    We have measured coherent neutron scattering from deuterated orthoterphenyl on a spin echo and a backscattering spectrometer. In agreement with mode coupling theory, pair correlations decay in two steps and follow the same scaling laws as those found previously for self-correlations. The temperature evolution of the intermediate plateau is compatible with the previously established Tc=290 K. The spatial resolution has not been sufficient to fully resolve oscillations of parameters as functions of Q, which are predicted by mode coupling theory. Within this limitation, we find that the double peak structure of S(Q) is not expressed in the nonergodicity parameter fcQ and that the de Gennes narrowing is missing.

  1. Coherent Neutron Scattering and Collective Dynamics in the Protein, GFP

    Science.gov (United States)

    Nickels, Jonathan D.; Perticaroli, Stefania; O’Neill, Hugh; Zhang, Qiu; Ehlers, Georg; Sokolov, Alexei P.

    2013-01-01

    Collective dynamics are considered to be one of the major properties of soft materials, including biological macromolecules. We present coherent neutron scattering studies of the low-frequency vibrations, the so-called boson peak, in fully deuterated green fluorescent protein (GFP). Our analysis revealed unexpectedly low coherence of the atomic motions in GFP. This result implies a low amount of in-phase collective motion of the secondary structural units contributing to the boson peak vibrations and fast conformational fluctuations on the picosecond timescale. These observations are in contrast to earlier studies of polymers and glass-forming systems, and suggest that random or out-of-phase motions of the β-strands contribute greater than two-thirds of the intensity to the low-frequency vibrational spectra of GFP. PMID:24209864

  2. Elementary scattering theory for X-ray and neutron users

    CERN Document Server

    Sivia, D S

    2011-01-01

    The opportunities for doing scattering experiments at synchrotron and neutron facilities have grown rapidly in recent years and are set to continue to do so into the foreseeable future. This text provides a basic understanding of how these techniques enable the structure and dynamics of materials to be studied at the atomic and molecular level. Although mathematics cannot be avoided in a theoretical discussion, the aim has been to write a book that most scientists will still find approachable. To this end, the first two chapters are devoted to providing a tutorial background in the mathematics and physics that are implicitly assumed in other texts. Thereafter, the philosophy has been one of keeping things as simple as possible.

  3. Quasielastic neutron scattering study of silver selenium halides

    CERN Document Server

    Major, A G; Barnes, A C; Howells, W S

    2002-01-01

    Both silver chalcogenides (Ag sub 2 S, Ag sub 2 Se, and Ag sub 2 Te) and silver halides (AgCl, AgBr, and AgI) are known to be fast-ion solids in which the silver ions can diffuse quickly in a sublattice formed by the other ions. To clarify whether mixtures of these materials (such as Ag sub 3 SeI) possess comparable properties and whether a systematic dependence on the cation-to-anion ratio can be observed, some of these mixtures were studied by quasielastic neutron scattering both in the solid and the liquid phases. To identify the diffusion mechanisms and constants, a new data-analysis method based on a two-dimensional maximum-likelihood fit is proposed. This method has the potential to give more reliable information on the diffusion mechanism than the traditional Bayesian method. (orig.)

  4. The use of neutron scattering in nuclear weapons research

    Energy Technology Data Exchange (ETDEWEB)

    Juzaitis, R.J. [Los Alamos National Lab., NM (United States)

    1995-10-01

    We had a weapons science breakout session last week. Although it would have been better to hold it closer in time to this workshop, I think that it was very valuable. it may have been less of a {open_quotes}short-sleeve{close_quotes} workshop environment than we would have liked, but as the first time two communities-the weapons community and the neutron scattering community- got together, it was a wonderful opportunity to transfer information during the 24 presentations that were made. This report contains discussions on the fundamental analysis of documentation of the enduring stockpile; LANSCE`s contribution to weapons; spallation is critical to understanding; weapons safety assessments; applied nuclear physics requires cross section information; fission models need refinement; and establishing teams on collaborative projects.

  5. Application of Incoherent Inelastic Neutron Scattering in Pharmaceutical Analysis

    DEFF Research Database (Denmark)

    Bordallo, Heloisa N.; A. Zakharov, Boris; Boidyreva, E.V.;

    2012-01-01

    This study centers on the use of inelastic neutron scattering as an alternative tool for physical characterization of solid pharmaceutical drugs. On the basis of such approach, relaxation processes in the pharmaceutical compound phenacetin (p-ethoxyacetanilide, C(10)H(13)NO(2)) were evidenced...... in the harmonic approximation. The overall spectral profile of the calculated partial contributions to the generalized density of states compares satisfactorily to the experimental spectra in the region of the lattice modes where the intermolecular interactions are expected to play an important role. This study...... contributes to understanding the relationships between intermolecular hydrogen bonds, intramolecular dynamics, and conformational flexibility in pharmaceuticals on a molecular level, which can help in evaluating phase stability with respect to temperature variations on processing or on storage, and is related...

  6. Some applications of polarized inelastic neutron scattering in magnetism

    Indian Academy of Sciences (India)

    B Roessli; P Böni

    2004-07-01

    A brief account of applications of polarized inelastic neutron scattering in condensed matter research is given. We show that full polarization analysis is the only tool allowing to discriminate unambiguously between different magnetic modes in various magnetic materials. We show by means of recent results in the Heisenberg ferromagnet EuS that the effects of dipolar interactions can be studied on a microscopic scale. Moreover, we have found for the first time indications for the divergence of the longitudinal fluctuations below c. In the itinerant antiferromagnet chromium we demonstrate that the dynamics of the longitudinal and transverse excitations are very different, resolving a long standing puzzle concerning the slope of their dispersion. Finally, we show that a measurement of the polarization-dependent part of the cross section of non-centrosymmetric MnSi proves directly that the chirality of the magnetic fluctuations is left-handed.

  7. Reveal protein dynamics by combining computer simulation and neutron scattering

    Science.gov (United States)

    Hong, Liang; Smith, Jeremy; CenterMolecular Biophysics Team

    2014-03-01

    Protein carries out most functions in living things on the earth through characteristic modulation of its three-dimensional structure over time. Understanding the microscopic nature of the protein internal motion and its connection to the function and structure of the biomolecule is a central topic in biophysics, and of great practical importance for drug design, study of diseases, and the development of renewable energy, etc. Under physiological conditions, protein exhibits a complex dynamics landscape, i.e., a variety of diffusive and conformational motions occur on similar time and length scales. This variety renders difficult the derivation of a simplified description of protein internal motions in terms of a small number of distinct, additive components. This difficulty is overcome by our work using a combined approach of Molecular Dynamics (MD) simulations and the Neutron Scattering experiments. Our approach enables distinct protein motions to be characterized separately, furnishing an in-depth understanding of the connection between protein structure, dynamics and function.

  8. NEUTRON DECAY OF THE EXCITATION-ENERGY REGION UP TO 60 MEV, EXCITED BY HEAVY-ION SCATTERING .1. PB-207

    NARCIS (Netherlands)

    VANDENBERG, AM; CHMIELEWSKA, D; BORDEWIJK, JA; BRANDENBURG, S; VANDERWOUDE, A; BLUMENFELD, Y; FRASCARIA, N; ROYNETTE, JC; SCARPACI, JA; SUOMIJARVI, T; ALAMANOS, N; AUGER, F; GILLIBERT, A; ROUSSELCHOMAZ, P; BLOMGREN, J; NILSSON, L; OLSSON, N; TURCOTTE, R

    1994-01-01

    The neutron decay of the continuum in Pb-208, excited by small-angle inelastic scattering of 84 MeV/nucleon O-17 ions in the range from 1.5-degrees, to 4.5-degrees, has been measured. Statistical decay was found to dominate the excitation-energy interval studied, up to 60 MeV. In the excitation-ener

  9. NEUTRON SCATTERING INSTRUMENTATION FOR MEASUREMENT OF MELT STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Richard Weber, Christopher Benmore

    2004-10-21

    This Phase II research project was focused on constructing and testing a facility for the measurement of the structure of hot solid and liquid materials under extreme conditions using neutron diffraction. The work resulted in measurements at temperatures of 3300 K, the highest ever performed in a neutron beam. Work was performed jointly by Containerless Research, Inc. and Argonne National Laboratory with significant interactions with engineers and scientists at the under construction-SNS facility in Oak Ridge, TN. The work comprised four main activities: Design and construct an advanced instrument for structural studies of liquids and hot solids using neutron scattering. Develop and test a software package for instrument control, data acquisition and analysis. Test and demonstrate the instrument in experiments at the GLAD beamline at IPNS. Evaluate requirements for performing experiments at the SNS. Develop interest from the potential user base and identify potential support for Phase III. The objectives of the research were met. A second-generation instrument was developed and constructed. The instrument design drew on the results of a formal design review which was held at Argonne National Laboratory during the Phase I research [1]. The review included discussion with potential instrument users, SNS scientists and engineers and various scientists involved with materials, glass, ceramics, and geological sciences. The instrument combines aerodynamic levitation with pulsed neutron diffraction in a controlled atmosphere. An important innovation was the use of pure vanadium levitation nozzles that effectively eliminated contributions from the sample environment to the measured data. The instrument employed a 250 Watt CO2 laser that was configured for Class I laser operation. The use of Class I laser configuration meant that operators could work with the equipment with minimal restrictions and so concentrate on the research activities. Instrument control and data

  10. Proceedings of a workshop on methods for neutron scattering instrumentation design

    Energy Technology Data Exchange (ETDEWEB)

    Hjelm, R.P. [ed.] [Los Alamos National Lab., NM (United States)

    1997-09-01

    The future of neutron and x-ray scattering instrument development and international cooperation was the focus of the workshop. The international gathering of about 50 participants representing 15 national facilities, universities and corporations featured oral presentations, posters, discussions and demonstrations. Participants looked at a number of issues concerning neutron scattering instruments and the tools used in instrument design. Objectives included: (1) determining the needs of the neutron scattering community in instrument design computer code and information sharing to aid future instrument development, (2) providing for a means of training scientists in neutron scattering and neutron instrument techniques, and (3) facilitating the involvement of other scientists in determining the characteristics of new instruments that meet future scientific objectives, and (4) fostering international cooperation in meeting these needs. The scope of the meeting included: (1) a review of x-ray scattering instrument design tools, (2) a look at the present status of neutron scattering instrument design tools and models of neutron optical elements, and (3) discussions of the present and future needs of the neutron scattering community. Selected papers were abstracted separately for inclusion to the Energy Science and Technology Database.

  11. Structural characterization of glass-forming oil/water microemulsions by neutron scattering

    Science.gov (United States)

    Alba-Simionesco, C.; Teixeira, J.; Angell, C. A.

    1989-07-01

    Small angle neutron scattering (SANS) has been used to establish the dispersed droplet character of a class of pseudo-three-component oil/water (o/w) microemulsions which can be cooled continuously into the glassy state without either crystallization or microemulsion destabilization. SANS of toluene microemulsions at low volume fractions (˜0.5%) of toluene indicate a droplet radius of 270±10 Å. At normal concentrations (˜33 vol % oil), the droplet size cannot be determined precisely but the presence of a droplet state of small polydispersity is established for toluene, p-xylene, benzene, CS2, and CCl4 by the presence of a sharp peak in the scattered neutron intensity vs Q plots. Average interdroplet separations range from 200 to 300 Å, implying average radii of ˜125 Å. Such radii are consistent with freeze-fracture electron microscope studies of the same or similar systems. Variable temperature studies on toluene microemulsions during both cooling and warming cycles in the temperature range ambient to 100 K, show only minor (˜10%) changes in the interdroplet separation down to 220 K at which temperature diffusion through the viscous matrix phase becomes too slow to permit further emulsion structure changes on the time scale of the cooling experiment. The origin, and some possible exploitations, of this unusual stability against temperature change are discussed.

  12. Relaxation dynamics of lysozyme in solution under pressure: Combining molecular dynamics simulations and quasielastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Calandrini, V. [Centre de Biophysique Moleculaire, Rue Charles Sadron, 45071 Orleans (France); Synchrotron Soleil, L' Orme de Merisiers, B.P. 48, 91192 Gif-sur-Yvette (France); Hamon, V. [Centre de Biophysique Moleculaire, Rue Charles Sadron, 45071 Orleans (France); Hinsen, K. [Centre de Biophysique Moleculaire, Rue Charles Sadron, 45071 Orleans (France); Synchrotron Soleil, L' Orme de Merisiers, B.P. 48, 91192 Gif-sur-Yvette (France); Calligari, P. [Centre de Biophysique Moleculaire, Rue Charles Sadron, 45071 Orleans (France); Institut Laue-Langevin, 6 Rue Jules Horowitz, B.P. 156, 38042 Grenoble (France); Laboratoire Leon Brillouin, CEA Saclay, 91191 Gif-sur-Yvette (France); Bellissent-Funel, M.-C. [Laboratoire Leon Brillouin, CEA Saclay, 91191 Gif-sur-Yvette (France); Kneller, G.R. [Centre de Biophysique Moleculaire, Rue Charles Sadron, 45071 Orleans (France); Synchrotron Soleil, L' Orme de Merisiers, B.P. 48, 91192 Gif-sur-Yvette (France)], E-mail: kneller@cnrs-orleans.fr

    2008-04-18

    This paper presents a study of the influence of non-denaturing hydrostatic pressure on the relaxation dynamics of lysozyme in solution, which combines molecular dynamics simulations and quasielastic neutron scattering experiments. We compare results obtained at ambient pressure and at 3 kbar. Experiments have been performed at pD 4.6 and at a protein concentration of 60 mg/ml. For both pressures we checked the monodispersity of the protein solution by small angle neutron scattering. To interpret the simulation results and the experimental data, we adopt the fractional Ornstein-Uhlenbeck process as a model for the internal relaxation dynamics of the protein. On the experimental side, global protein motions are accounted for by the model of free translational diffusion, neglecting the much slower rotational diffusion. We find that the protein dynamics in the observed time window from about 1 to 100 ps is slowed down under pressure, while its fractal characteristics is preserved, and that the amplitudes of the motions are reduced by about 20%. The slowing down of the relaxation is reduced with increasing q-values, where more localized motions are seen.

  13. A new screening length for small angle multiple scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ikegami, Seiji, E-mail: double1892@gmail.com

    2013-09-15

    A new screening length formulation that incorporates the charge state of the projectile is applied to multiple scattering. The present screening length is derived from an interatomic potential that accounts for electron–electron, electron–nuclear, and nuclear–nuclear interactions using the Thomas–Fermi–Moliere potential. We examined the charge state effect on multiple scattering angular distributions. We successfully estimate the charge state effects and predict angular distributions. The present screening length is compared with many low energy ion scattering experiments and with O’Connor–Biersack prediction values.

  14. Small-angle scattering theory revisited: Photocurrent and spatial localization

    DEFF Research Database (Denmark)

    Basse, N.P.; Zoletnik, S.; Michelsen, Poul

    2005-01-01

    In this paper theory on collective scattering measurements of electron density fluctuations in fusion plasmas is revisited. We present the first full derivation of the expression for the photocurrent beginning at the basic scattering concepts. Thereafter we derive detailed expressions for the auto...... laser based two-volume collective scattering instrument for spatially localized turbulence measurements,"Rev. Sci. Instrum. 72, 2579-2592 (2001)].......- and crosspower spectra obtained from measurements. These are discussed and simple simulations made to elucidate the physical meaning of the findings. In this context, the known methods of obtaining spatial localization are discussed and appraised. Where actual numbers are applied, we utilize quantities from two...

  15. Issues of Reggeization in $qq'$ Back-Angle Scattering

    CERN Document Server

    Bondarenco, M V

    2008-01-01

    The Kirschner-Lipatov result for the DLLA of high-energy $qq'$ backward scattering is re-derived without the use of integral equations. It is shown that part of the inequalities between the variables in the logarithmically-divergent integrals is inconsequential. The light-cone wave-function interpretation under the conditions of backward scattering is discussed. It is argued that for hadron-hadron scattering in the valence-quark model the reggeization should manifest itself at full strength starting from $s_{hh}=50 GeV^2$.

  16. Liquid-He-free 10-T superconducting magnet for neutron scattering

    CERN Document Server

    Katano, S; Metoki, N; Osakabe, T; Suzuki, J; Koike, Y; Ishii, Y

    2002-01-01

    A new type of superconducting magnet, which is directly cooled by two 4-K GM cryocoolers (i.e. liquid-He-free), has been developed for neutron-scattering experiments. The magnet consists of a split pair of a (Nb,Ti) sub 3 Sn inner coil and a NbTi outer coil. The gap between the coils is 29 mm, and the upper and lower coils are supported by three rings made of Al alloy (4.5, 7.5, and 8 mm in thickness) and a plate of Al alloy (42.5 in angle). The total thickness of the Al alloy in the neutron path is 52 mm, and the transmission of the beam is about 60% for neutrons with 20 meV. The room-temperature bore is 51 mm in diameter, and in this bore one of the sample-cooling systems (4-K cryocooler or liquid-He-free dilution refrigerator) is inserted. The maximum field of 10 T is very stably obtained. Some results on the magnetism of strongly correlated electron systems obtained with this cryomagnet are presented. (orig.)

  17. A United Effort for Crystal Growth, Neutron Scattering, and X-ray Scattering Studies of Novel Correlated Electron Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-02-12

    The research accomplishments during the award involved experimental studies of correlated electron systems and quantum magnetism. The techniques of crystal growth, neutron scattering, x-ray scattering, and thermodynamic & transport measurements were employed, and graduate students and postdoctoral research associates were trained in these techniques.

  18. Dynamics of lipid-saccharide nanoparticles by quasielastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Di Bari, M.T.; Gerelli, Y. [Dipartimento di Fisica and Unita CNISM, Universita degli Studi di Parma (Italy); Sonvico, F. [Dipartimento Farmaceutico, Universita degli Studi di Parma (Italy); Deriu, A. [Dipartimento di Fisica and Unita CNISM, Universita degli Studi di Parma (Italy)], E-mail: antonio.deriu@fis.unipr.it; Cavatorta, F.; Albanese, G. [Dipartimento di Fisica and Unita CNISM, Universita degli Studi di Parma (Italy); Colombo, P. [Dipartimento Farmaceutico, Universita degli Studi di Parma (Italy); Fernandez-Alonso, F. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2008-04-18

    Nano- and microparticles composed of saccharide and lipid systems are extensively investigated for applications as highly biocompatible drug carriers. A detailed understanding of particle-solvent interactions is of key importance in order to tailor their characteristics for delivering drugs with specific chemical properties. Here we report results of a quasielastic neutron scattering (QENS) investigation on lecithin/chitosan nanoparticles prepared by autoassembling the two components in an aqueous solution. The measurements were performed at room temperature on lyophilized and H{sub 2}O hydrated nanoparticles (h = 0.47 w H{sub 2}O/w hydrated sample). In the latter, hydration water is mostly enclosed inside the nanoparticles; its dynamics is similar to that of bulk water but with a significant decrease in diffusivity. The scattering from the nanoparticles can be described by a simple model of confined diffusion. In the lyophilized state only hydrogens belonging to the polar heads are seen as mobile within the experimental time-window. In the hydrated sample the diffusive dynamics involves also a significant part of the hydrogens in the lipid tails.

  19. Recent Deuteron Compton Scattering Results and Extracted Neutron Polarizabilities

    Directory of Open Access Journals (Sweden)

    Myers L.S.

    2016-01-01

    Full Text Available The COMPTON@MAX-lab collaboration has recently published a new measurement of elastic photon scattering from deuterium using tagged photons at the MAX IV Laboratory [1]. The experiment utilized the Tagged Photon Facility at MAX IV and three of the largest NaI(Tl detectors in the world. Correction terms to the cross section were determined via Monte Carlo simulations [2, 3] and were confirmed by comparisons to the well-known 12C(γ,γ12C reaction [4]. These results represent the most extensive data on deuteron Compton scattering ever measured and effectively double the world data set. In addition, the energy range overlaps previous experiments and extends nearly 20 MeV higher where the sensitivity to the polarizabilities is enhanced. As a result, we have obtained the neutron polarizabilities as αn=[11.55 ± 1.25(stat ± 0.2(BSR ± 0.8(th] × 10−4 fm3 and βn=[3.65 ∓ 1.25(stat ± 0.2(BSR ± 0.8(th] × 10−4 fm3, which represents a 30% reduction in the statistical uncertainty.

  20. Calorimetric and neutron scattering studies of plastically crystalline cyclooctanol

    Energy Technology Data Exchange (ETDEWEB)

    Yamamuro, Osamu [Department of Chemistry and Research Centre for Molecular Thermodynamics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Yamasaki, Hirotaka [Department of Chemistry and Research Centre for Molecular Thermodynamics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Madokoro, Yasushi [Department of Chemistry and Research Centre for Molecular Thermodynamics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Tsukushi, Itaru [Department of Physics, Chiba Institute of Technology, Narashino, Chiba 275-0023 (Japan); Matsuo, Takasuke [Department of Chemistry and Research Centre for Molecular Thermodynamics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2003-08-20

    The heat capacity of cyclooctanol was measured with an adiabatic calorimeter in the temperature range 5-340 K. Liquid cyclooctanol crystallized into crystal I, a plastic (orientationally disordered) phase. Crystal I was supercooled readily and underwent a glass transition at 160 K. Crystal II, obtained by annealing crystal I at about 200 K, also underwent a glass transition at 160 K, indicating that crystal II is also an orientationally disordered phase. On heating, crystal II transformed to crystal I at 261.7 K with a transition entropy of 8.06 J K{sup -1} mol{sup -1} and crystal I fused at 295.3 K with a fusion entropy of 7.00 J K{sup -1} mol{sup -1}. Neutron scattering of cyclooctanol was measured in the temperature range 20-335 K, energy range 0.1-20 meV and momentum transfer range 0.23-2.7 A{sup -1}. A clear boson peak was found around 2.5 meV in both orientational glasses of crystal I and II. Quasielastic scattering appeared at temperatures as low as the glass transition temperature. This may be due to a fast {beta} process which has been observed in most glass-forming liquids. The present results indicate that glass-forming plastic crystals are similar to glass-forming liquids in their dynamical properties in terahertz region.