WorldWideScience

Sample records for angle elastic scattering

  1. Hadron elastic scattering at small angles

    CERN Multimedia

    2002-01-01

    This experiment is an extension of the measurements of the WA9 experiment up to the highest energies available in the North Area. It will measure the differential cross-section for hadron elastic scattering in the t-range 0.002-0.05 (GeV/c)$^{2}$ using an ionization chamber for the measurement of the energy and the angle of the recoil and a magnet-WC spectrometer to measure the momentum and direction of the forward particle. From these measurements will be obtained the ratio $\\rho$ of the real to imaginary parts of the forward elastic amplitude and the exponential slope parameter b of the hadronic amplitude at small t. The precision expected in these measurements is $\\Delta \\rho \\approx \\pm 0.01$ and $\\Delta$b $\\approx \\pm 0.2$ (GeV/c)$^{-2}$. \\\\ \\\\ The experimental programme includes: \\\\\\\\ i) measurements of $\\rho$ and b for $\\pi$p elastic scattering at incident momenta between 150 GeV/c and 300 GeV/c; \\\\ ii) measurements of $\\rho$ and b for $\\pi^{+}$p and pp elastic scattering at incident momenta between 5...

  2. Neutron elastic scattering at very small angles

    CERN Multimedia

    2002-01-01

    This experiment will measure neutron-proton elastic scattering at very small angles and hence very small four-momentum transfer, |t|. The range of |t| depends on the incident neutron momentum of the events but the geometrical acceptance will cover the angular range 0.025 < $\\Theta_{lab}$ < 1.9 mrad. The higher figure could be extended to 8.4 mrad by changing the geometry of the experiment in a later phase. \\\\ \\\\ The neutron beam will be highly collimated and will be derived from a 400 GeV external proton beam of up to $4 \\times 10^{10}$ protons per pulse in the SPS North Area Hall 1. The hydrogen target will be gaseous, operating at 40 atm. pressure and acts as a multiwire proportional chamber to detect the recoil protons. The forward neutron will be detected and located by interaction in a neutron vertex detector and its energy measured by a conventional steel plate calorimeter. \\\\ \\\\ The experiment will cover the angular region of nucleon-nucleon scattering which is dominated by Coulomb scattering ...

  3. Exchange interpretation of anomalous back angle heavy ion elastic scattering

    International Nuclear Information System (INIS)

    Zisman, M.S.

    1977-10-01

    Anomalous back angle oscillations in the angular distributions obtained in the elastic scattering of 16 O + 28 Si and 12 C + 28 Si have been interpreted in terms of an elastic cluster transfer comparable to that observed in other heavy ion reactions. The calculations appear to at least qualitatively explain the data with respect to the existence and phase of the back angle oscillations. The results indicate that an exchange mechanism may play an important role in the oscillations

  4. Small angle elastic scattering of electrons by noble gas atoms

    International Nuclear Information System (INIS)

    Wagenaar, R.W.

    1984-01-01

    In this thesis, measurements are carried out to obtain small angle elastic differential cross sections in order to check the validity of Kramers-Kronig dispersion relations for electrons scattered by noble gas atoms. First, total cross sections are obtained for argon, krypton and xenon. Next, a parallel plate electrostatic energy analyser for the simultaneous measurement of doubly differential cross section for small angle electron scattering is described. Also absolute differential cross sections are reported. Finally the forward dispersion relation for electron-helium collisions is dealt with. (Auth.)

  5. Parity Violation in Forward Angle Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Miller, IV, Grady Wilson [Princeton Univ., NJ (United States)

    2001-01-01

    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton at Jefferson Laboratory. The kinematic point (θlab = 12.3 deg. and (Q2) = 0.48 (GeV/c)2) is chosen to provide sensitivity to the strange electric form factor GsE. A 3.36 GeV beam of longitudinally polarized electrons was scattered from protons in a liquid hydrogen target. The scattered flux was detected by a pair of spectrometers which focussed the elastically-scattered electrons onto total-absorption detectors. The detector signals were integrated and digitized by a custom data acquisition system. A feedback system reduced systematic errors by controlling helicity-correlated beam intensity differences at the sub-ppm (part per million) level. The experimental result, A = 14.5 +/- 2.0 (stat) ± 1.1 (syst) ppm, is consistent with the electroweak Standard Model with no additional contributions from strange quarks. In particular, the measurement implies GSE + 0.39 GsM = 0.023 ± 0.040 ± 0.026 (ζGnE), where the last uncertainty is due to the estimated uncertainty in the neutron electric form factor GnE . This result represents the first experimental constraint of the strange electric form factor.

  6. Measurement of small-angle antiproton-proton and proton-proton elastic scattering at the CERN intersecting storage rings

    NARCIS (Netherlands)

    Amos, N.; Block, M.M.; Bobbink, G.J.; Botje, M.A.J.; Favart, D.; Leroy, C.; Linde, F.; Lipnik, P.; Matheys, J-P.; Miller, D.

    1985-01-01

    Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at . Using the optical theorem, total cross sections are obtained with an accuracy of about

  7. Small-angle p-p elastic scattering at energies between 285 and 572 Me V

    CERN Document Server

    Aebischer, D; Greeniaus, L G; Hess, R; Junod, A; Lechanoine-Leluc, C; Nikles, J C; Rapin, D; Serre, Claude; Werren, D W

    1976-01-01

    Low energy proton-proton elastic scattering has been studied using an arrangement of multiwire proportional chambers at the CERN synchrocyclotron. Accurate measurements of the angular distribution for laboratory scattering angles in the range 1.5 to 10 degrees have been made at eight incident kinetic energies between 285 and 572 MeV. The interferences between the Coulomb and nuclear scattering amplitudes is used to determine the ratio alpha /sub p/=Re phi /sup N //sub +/(o)/Im phi /sup N//sub +/(o), where phi /sup N//sub +/(o) is the non-flip nuclear forward amplitude. alpha p is found to be positive and falling with energy, but is sensitive to the type of parameterization used. Reasonable consistency with dispersion relation calculations is obtained. (21 refs).

  8. Microscopic investigations of the backward angle anomaly in elastic α-40Ca scattering

    International Nuclear Information System (INIS)

    Langanke, K.; Frekers, D.

    1978-01-01

    Elastic α-scattering on 40 Ca is studied microscopically by the resonating group method (RGM). Absorption effects are simulated by an imaginary potential whose spatial structure is taken to be proportional to the RGM overlap exchange kernel. The experimentally well-known backward anomaly is reproduced by the calculated angular distributions, and a clear connection between the Psub(l) 2 structures at backward angles and l-phase-shift resonances is shown. In this context the consistency of various methods of defining resonances in the presence of absorption is investigated. (Auth.)

  9. Search for narrow baryons in pi /sup -/p elastic scattering at large angles

    CERN Document Server

    Baillon, Paul; Benayoun, M; Chauveau, J; Chew, D; Ferro-Luzzi, M; Kahane, J; Lellouch, D; Leruste, P; Liaud, P; Moreau, F; Perreau, J M; Séguinot, Jacques; Sené, R; Tocqueville, J; Urban, M

    1980-01-01

    Hoping to find resonant structures in the momentum dependence of pi /sup -/p elastic scattering the authors have measured the differential cross section for this reaction at c.m. angles near 90 degrees . An intense pion beam ( approximately=10/sup 7/ pi /s) has been used, together with a high incident momentum resolution (dP/P approximately =2*10/sup -4/), to scan the region of laboratory momenta from 5.75 to 13.02 GeV/c (c.m. energy from 3.42 to 5.03 GeV). The sensitivity attained by the experiment is such that signals would have been seen corresponding to the formation of non-strange baryon resonances having width larger than approximately=0.1 MeV and elasticity larger than a few per cent. Within these limits no resonances were sighted. (4 refs) .

  10. Elastic scattering

    International Nuclear Information System (INIS)

    Leader, Elliot

    1991-01-01

    With very few unexplained results to challenge conventional ideas, physicists have to look hard to search for gaps in understanding. An area of physics which offers a lot more than meets the eye is elastic and diffractive scattering where particles either 'bounce' off each other, emerging unscathed, or just graze past, emerging relatively unscathed. The 'Blois' workshops provide a regular focus for this unspectacular, but compelling physics, attracting highly motivated devotees

  11. Exotic behavior of elastic scattering differential cross-sections of weakly bound nucleus 17F at small angles

    International Nuclear Information System (INIS)

    Han Jianlong; Hu Zhengguo; Zhang Xueyin; Yuan Xiaohua; Xu Huagen; Qi Huirong; Wang Yue; Jia Fei; Wu Lijie; Ding Xianli; Gao Qi; Gao Hui; Bai Zhen

    2006-01-01

    The differential cross-sections for elastic scattering of 17 F and 17 O on 208 Pb have been measured at Radioactive Ion Beam Line at Lanzhou (RIBLL). The variation of the logarithms of differential cross-sections with the square of scattering angles shows clearly that there exists a turning point in the range of small scattering angles (6 degree-20 degree) for 17 F having exotic structure, while no turning point was observed in the 17 O elastic scattering. The experimental results have been compared with previous data. Systematical analysis on the available data seems to conclude that there is an exotic behavior of elastic scattering differential cross-sections of weakly bound nuclei with halo or skin structure as compared with that of the ordinary nuclei near stable line. Therefore the fact that the turning point of the logarithms of differential cross-sections appears at small angle for weakly bound nuclei could be used as a new probe to investigate the halo and skin phenomenon. (authors)

  12. Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; Robert Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; Charles Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; Richard HASTY; Alice Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; Jianglai Liu; Berenice Loupias; Allison Lung; Dominique Marchand; Jeffery Martin; Kenneth McFarlane; David McKee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; Gregory Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vince Sulkosky; Vincent Sulkosky; Vince Sulkosky; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; Glen Warren; Steven Wells; Steven Williamson; Stephen Wood; Chen Yan; Junho Yun; Valdis Zeps

    2007-08-01

    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 values of 0.15 and 0.25 (GeV/c)^2 with results of A_n = -4.06 +- 0.99(stat) +- 0.63(syst) and A_n = -4.82 +- 1.87(stat) +- 0.98(syst) ppm. These results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the two-photon exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

  13. Measure of back angle cross sections of antiproton-nucleus elastic scattering at 48 and 180 MeV

    International Nuclear Information System (INIS)

    Berrada, M.

    1986-04-01

    Antiproton-nucleus elastic scattering was studied in the LEAR ring at CERN. The scattering cross section at back angles (θ LAB = 142 to 164 deg inclusive) was measured using plastic scintillation detectors. Analysis of experimental data at 47 MeV for a CH target and at 182 MeV for CH, C12, 016, and 018 targets produces differential cross sections for back angles less than or equal to a few dozen microbarns. These results agree with theoretical microscopic predictions. The analysis improves understanding of antiproton-nucleus interaction and introduces a constraint on the construction of optical potentials. The antiproton-nucleus potential is shown to be highly absorbing, thereby excluding S type potentials, and removing the ambiguity arising from the analysis of antiprotonic atoms. The results also show that there is no attractive pocket in the real potential likely to lead to an increase of the back angle cross sections [fr

  14. pp-elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E; Cantale, G; Degli-Agosti, S; Hausammann, R; Heer, E; Hess, R; Lechanoine-LeLuc, C; Leo, W; Morenzoni, S; Onel, Y [Geneva Univ. (Switzerland). Dept. de Physique Nucleaire et Corpusculaire

    1983-01-01

    The aim of the elastic pp experimental program at SIN was to measure enough spin dependent parameters in order to do a direct experimental reconstruction of the elastic scattering amplitudes at a few energies between 400 and 600 MeV and at several angles between 38/sup 0/ cm and 90/sup 0/ cm. This reconstruction was not possible until recently due to lack of experimental data. Information instead has come mainly from phase shift analysis (PSA). The only way to extract the elastic scattering amplitudes without any hypotheses except those of basic symmetries, is to measure a sufficient set of spin dependent parameters at a given angle and energy. With this in view, the authors have measured at 448, 494, 515, 536 and 579 MeV, the polarization, the spin correlation parameters Asub(00nn), Asub(00ss), Asub(00kk), Asub(00ks), the 2-spin parameters Dsub(n0n0), Ksub(n00n), Dsub(s'0s0), Dsub(s'0k0) and the 3-spin parameters Msub(s'0sn), Msub(s'0kn) between 34/sup 0/ cm and 118/sup 0/ cm. A few of these parameters have also been measured at 560 and 470 MeV and at a few energies below 448 MeV. The indices refer to the polarization orientation of the scattered, recoil, beam and target particle respectively.

  15. Elastic scattering of 7Li + 27Al at several angles in the 7-11 MeV energy range

    International Nuclear Information System (INIS)

    Abriola, D.; Carnelli, P.; Arazi, A.; Figueira, J.M.; Capurro, O.A.; Cardona, M.A.; Fernandez Niello, J.O.; Hojman, D.; Fimiani, L.; Grinberg, P.; Martinez Heimann, D.; Marti, G.V.; Negri, A.E.; Pacheco, A.J.

    2010-01-01

    Elastic cross sections for the 7 Li + 27 Al system were measured at laboratory energies between 7 and 11 MeV in steps of 0.25 MeV, and angles between 135 o and 170 o in steps of 5 o . Excitation functions for the elastic scattering were measured using an array of eight Si surface-barrier detectors whereas a solid-state telescope was used to estimate and subtract background from other reactions. Contamination from α particles arising from the 7 Li breakup process at E lab ≥ 10 MeV makes the use of these energies inadvisable for RBS applications. The present results are compared with previous data obtained at 165 o (E lab ≤ 6 MeV), 140 o and 170 o (E lab ≤ 8 MeV). The experimental data were analyzed in terms of the Optical Model. Two different energy-independent potentials were found. These optical potentials allow an interpolation with physical meaning to other energies and scattering angles. The experimental cross sections will be uploaded to the IBANDL database.

  16. Static and quasi-elastic small angle neutron scattering on biocompatible ionic ferrofluids: magnetic and hydrodynamic interactions

    CERN Document Server

    Gazeau, F; Dubois, E; Perzynski, R

    2003-01-01

    We investigate the structure and dynamics of ionic magnetic fluids (MFs), based on ferrite nanoparticles, dispersed at pH approx 7 either in H sub 2 O or in D sub 2 O. Polarized and non-polarized static small angle neutron scattering (SANS) experiments in zero magnetic field allow us to study both the magnetic and the nuclear contributions to the neutron scattering. The magnetic interparticle attraction is probed separately from the global thermodynamic repulsion and compares well to direct magnetic susceptibility measurements. The magnetic interparticle correlation is in these fluid samples independent of the probed spatial scale. In contrast, a spatial dependence of the interparticle correlation is evidenced at large PHI by the nuclear structure factor. A model of magnetic interaction quantitatively explains the under-field anisotropy of the SANS nuclear contribution. In a quasi-elastic neutron spin-echo experiment, we probe the Brownian dynamics of translation of the nanoparticles in the range 1.3 sup<=...

  17. Small-angle elastic scattering of 40 and 50 GeV/c negative pions on protons

    International Nuclear Information System (INIS)

    Ioan, I.X.

    1978-01-01

    A measurement of π - p forward elastic differential cross sections at 40 and 50 keV/c is presented. The obtained ratio between the real and the imaginary part of strong amplitudes is compared with several phenomenological models proposed, in order to explain the rising total cross-sections at high energies. The data were obtained in the framework of a Dubna-UELA collaboration at Serpukhov. A brief description of the experimental apparatus is presented in the first chapter. It consists of a narrow-angle magnetostrictive wire spark chamber spectrometer. The information from six proportional wire chambers was used in an analogue electronics system to reject the scattered pions under a fixed minimum angle. The data were written on magnetic tape by a computer, which also provided on-line analysis of the quality of the data. The second chapter deals with the main features of the off-line analysis program. Processing the in-put data, particle trajectories reconstruction, preliminary event selection could be performed and by a SUMX-type program, the kinematic reconstruction and selection of elastic scattering events by appropriate cuts have been also obtained. The momentum transfer dependent corrections are presented in the next chapter. The accumulated data were corrected by substracting empty target back-grounds and inelastic events. Geometric and program efficiency were evaluated by means of the Monte-Carlo methods. The multiple Coulomb scattering was also included. The fitted differential cross-sections as functions of four-momentum transfers are presented in the fourth chapter and the ratio between the real and imaginary part of the forward amplitude, evaluated in the nuclear-Coulomb interference region. The results are discussed comparatively to a number of theoretical models, in the last chapter. Coupled with the new available data, these results are shown to be consistent with the rising of the total cross sections predicted by the dispersion relations and some

  18. Angle and energy dependence of the superratio for π+ and π- elastic scattering from 3H and 3He: Evidence for charge-symmetry violation

    International Nuclear Information System (INIS)

    Pillai, C.; Barlow, D.B.; Berman, B.L.; Briscoe, W.J.; Mokhtari, A.; Nefkens, B.M.K.; Sadler, M.E.

    1991-01-01

    Data are presented on the energy and angle dependence of the charge-symmetry superratio R and simple ratios r 1 ' and r 2 ' for π ± elastic scattering from 3 H and 3 He. r 1 ' and r 2 ' were normalized with respect to π + d and π - d elastic scattering, which is assumed to have the ratio 1.0. The beam energies are T π =142, 180, and 220 MeV, and the scattering angle, θ L , ranges from 40 degree to 110 degree. In all cases measured it is found that R>1, r 1 ' congruent 1, and r 2 ' >1. These results provide substantial evidence for charge-symmetry violation. The angular distributions for π ± H and π ± 3 He elastic scattering also have been measured and comparisons are made with various model calculations

  19. The measurement of antiproton-proton total cross sections and small-angle elastic scattering at low momentum

    International Nuclear Information System (INIS)

    Linssen, L.H.A.J.

    1986-01-01

    In this thesis two low-momentum antiproton-proton (anti pp) experiments are described. The first one is a set of 24 high statistics anti pp total cross section measurements as a function of the incoming antiproton momentum between p=388 MeV/c and p=599 MeV/c. These measurements simultaneously yield the charge exchange cross section (anti pp → anti nn). The second one comprises two high statistics anti pp small-angle elastic scattering measurements at p=233 MeV/c and p=272 MeV/c. The measurements were carried out using the high quality antiproton beam extracted from the Low Energy Antiproton Ring (LEAR) at CERN. The physics motivation for these experiments is a search for anti pp resonances or bound states on one hand, and a detailed study of the anti pp interaction on the other hand. (orig.)

  20. Angularly-resolved elastic scatter from single particles collected over a large solid angle and with high resolution

    International Nuclear Information System (INIS)

    Aptowicz, Kevin B; Chang, Richard K

    2005-01-01

    Elastic light scattering from a single non-spherical particle of various morphologies has been measured simultaneously with a large angular range (90 deg. < θ < 165 deg. and 0 deg. < φ < 360 deg.) and with high angular resolution (1024 pixels in θ and 512 pixels in φ). Because the single-shot laser pulse is short (pulse duration of 70 ns), the tumbling and flowing particle can be treated as frozen in space. The large angle two-dimensional angular optical scattering (hereafter referred to as LA TAOS) intensity pattern, I(θ,φ), has been measured for a variety of particle morphology, such as the following: (1) single polystyrene latex (PSL) sphere; (2) cluster of PSL spheres; (3) single Bacillus subtilis (BG) spore; (4) cluster of BG spores; (5) dried aggregates of bio-aerosols as well as background clutter aerosols. All these measurements were made using the second harmonic of a Nd:YAG laser (0.532 μm). Islands structures in the LA TAOS patterns seem to be the prominent feature. Efforts are being made to extract metrics from these islands and compare them to theoretical results based on the T-matrix method

  1. Elastic differential cross sections for small-angle scattering of 25-, 40-, and 60-keV protons by atomic hydrogen

    International Nuclear Information System (INIS)

    Rille, E.; Peacher, J.L.; Redd, E.; Kvale, T.J.; Seely, D.G.; Blankenship, D.M.; Olson, R.E.; Park, J.T.

    1984-01-01

    Elastic angular differential cross sections for small-angle scattering of protons by atomic hydrogen have been measured. The technique utilized unambigously distinguishes the elastically and inelastically scattered ions. The cross sections fall monotonically by 3 orders of magnitude in the angular range from 0.5 to 3.0 mrad, in the center-of-mass system. The experimental data obtained are in very good agreement with a multistate calculation and in fair agreement with both our Glauber-approximation and classical-trajectory Monte Carlo results

  2. Measurement of small angle antiproton-proton elastic scattering at √s =546 and 1800 GeV

    International Nuclear Information System (INIS)

    Abe, F.; Albrow, M.; Amidei, D.; Anway-Wiese, C.; Apollinari, G.; Atac, M.; Auchincloss, P.; Azzi, P.; Bacchetta, N.; Baden, A.R.; Badgett, W.; Bailey, M.W.; Bamberger, A.; de Barbaro, P.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Bauer, G.; Baumann, T.; Bedeschi, F.; Behrends, S.; Belforte, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Benlloch, J.; Bensinger, J.; Beretvas, A.; Berge, J.P.; Bertolucci, S.; Biery, K.; Bhadra, S.; Binkley, M.; Bisello, D.; Blair, R.; Blocker, C.; Bodek, A.; Bolognesi, V.; Booth, A.W.; Boswell, C.; Brandenburg, G.; Brown, D.; Buckley-Geer, E.; Budd, H.S.; Busetto, G.; Byon-Wagner, A.; Byrum, K.L.; Campagnari, C.; Campbell, M.; Caner, A.; Carey, R.; Carithers, W.; Carlsmith, D.; Carroll, J.T.; Cashmore, R.; Castro, A.; Cen, Y.; Cervelli, F.; Chadwick, K.; Chapman, J.; Chapin, T.J.; Chiarelli, G.; Chinowsky, W.; Cihangir, S.; Clark, A.G.; Cobal, M.; Connor, D.; Contreras, M.; Cooper, J.; Cordelli, M.; Crane, D.; Cunningham, J.D.; Day, C.; DeJongh, F.; Dell'Agnello, S.; Dell'Orso, M.; Demortier, L.; Denby, B.; Derwent, P.F.; Devlin, T.; Dickson, M.; Drucker, R.B.; Dunn, A.; Einsweiler, K.; Elias, J.E.; Ely, R.; Eno, S.; Errede, S.; Etchegoyen, A.; Farhat, B.; Frautschi, M.; Feldman, G.J.; Flaugher, B.; Foster, G.W.; Franklin, M.; Freeman, J.; Fuess, T.; Fukui, Y.; Garfinkel, A.F.; Gauthier, A.; Geer, S.; Gerdes, D.W.; Giannetti, P.; Giokaris, N.; Giromini, P.; Gladney, L.; Gold, M.; Gonzalez, J.; Goulianos, K.; Grassmann, H.; Grieco, G.M.; Grindley, R.; Grosso-Pilcher, C.; Haber, C.; Hahn, S.R.; Handler, R.; Hara, K.; Harral, B.; Harris, R.M.; Hauger, S.A.; Hauser, J.; Hawk, C.; Hessing, T.; Hollebeek, R.; Holloway, L.; Hoelscher, A.; Hong, S.; Houk, G.; Hu, P.; Hubbard, B.; Huffman, B.T.; Hughes, R.; Hurst, P.; Huth, J.; Hylen, J.; Incagli, M.; Ino, T.; Iso, H.; Jessop, C.P.; Johnson, R.P.; Joshi, U.; Kadel, R.W.; Kamon, T.; Kanda, S.; Kardelis, D.A.; Karliner, I.; Kearns, E.; Keeble, L.; Kephart, R.; Kesten, P.

    1994-01-01

    Antiproton-proton elastic scattering was measured at c.m.s. energies √s =546 and 1800 GeV in the range of four-momentum transfer squared 0.025 2 . The data are well described by the exponential form e bt with a slope b=15.28±0.58 (16.98±0.25) GeV -2 at √s =546 (1800) GeV. The elastic scattering cross sections are, respectively, σ el =12.87±0.30 and 19.70±0.85 mb

  3. Elastic and inelastic scattering of 9,11 Li + Si at backward angles in the energy range (9.5 - 25) AMeV

    International Nuclear Information System (INIS)

    Petrascu, M.; Bordeanu, C.; Isbasescu, A.; Mihai, I.; Giurgiu, M.

    1997-01-01

    Recently, an inclusive fusion experiment of 9,11 Li projectiles with Si targets, in the energy range (9.5 - 25) AMeV has been performed at Riken Ring Cyclotron-Japan using, for the detection of the fusion products, an ionization chamber, MUSIC, built in NIPNE-HH, Bucharest. In this experiment, the contribution of elastic and inelastic scattering, at forward detection angles is eliminated through the experimental set-up. For a clear investigation of the fusion process, the estimation of elastic and inelastic scattering at backward angles, between 80 angle - 180 angle was considered necessary. This estimation was made by the coupled channels computer code ECIS. ECIS is an iterative method, the first iteration of this procedure being DWBA. In the analysis of elastic and inelastic scattering of 9,11 Li projectile on Si target we assumed that the incident 9 Li and 11 Li waves are diffracted by an optical potential with an Woods-Saxon geometry. The adopted optical potential is given. For the depth of the real and imaginary volume terms we used values dependent on projectile energy and target mass number. These values have been chosen in good agreement with a semi-microscopic model with a double-folding potential. The set of optical parameters selected for the system 9,11 Li (13 AMeV) + Si is given. The presence of neutron halo of 11 Li nucleus was taken into account by using adjusted values for the parameters r R and a R . The 28 Si nucleus is considered a rigid rotor, including the couplings involving the ground state and a first to excited states. The quadrupole deformation parameter was β 2 = - 0.24. The results for the scattering of 11 Li projectile on Si target at 13 AMeV energy are given with the parameters R match , I and J max taken from the Monte Carlo simulations with PACE code. We found that the contribution of elastic and inelastic scattering for background angles, between 80 angle - 180 angle is under 2%. The contribution of a inelastic scattering taken

  4. Search for narrow baryon resonances (of masses through 3.4 and 5 GeV) through a π-p large angle elastic scattering formation experiment

    International Nuclear Information System (INIS)

    Chauveau, J.

    1981-01-01

    This work describes a search for narrow baryon resonances (of masses between 3.4 and 5 GeV) through a π - p large angle elastic scattering formation experiment. An optimization of the sensitivity of the experiment to detect resonances is obtained by the measurement of the central part of the angular distribution (/cos theta*/ -4 . The apparatus and data analysis are described in details. No narrow resonance has been found, the sensitivity of the experiment being characterized by a width GAMMA approximately equal to 1 MeV and an elasticity x approximately equal to 0.01. Finally, the differential cross section measurement is compared to some parton models [fr

  5. Multiple exchange and high-energy fixed-angle scattering

    CERN Document Server

    Halliday, I G; Orzalesi, C A; Tau, M

    1975-01-01

    The application of the eikonal ansatz to fermion fermion elastic scattering with Abelian vector gluon exchanges is discussed. The behaviours of the elastic scattering amplitude and the elastic form factor are considered and an important mechanism for fixed angle high energy elastic scattering is identified. (6 refs).

  6. Small angle neutron scattering

    International Nuclear Information System (INIS)

    Bernardini, G.; Cherubini, G.; Fioravanti, A.; Olivi, A.

    1976-09-01

    A method for the analysis of the data derived from neutron small angle scattering measurements has been accomplished in the case of homogeneous particles, starting from the basic theory without making any assumption on the form of particle size distribution function. The experimental scattering curves are interpreted with the aid the computer by means of a proper routine. The parameters obtained are compared with the corresponding ones derived from observations at the transmission electron microscope

  7. Elastic scattering at the LHC

    CERN Document Server

    Kaspar, Jan; Deile, M

    The seemingly simple elastic scattering of protons still presents a challenge for the theory. In this thesis we discuss the elastic scattering from theoretical as well as experimental point of view. In the theory part, we present several models and their predictions for the LHC. We also discuss the Coulomb-hadronic interference, where we present a new eikonal calculation to all orders of alpha, the fine-structure constant. In the experimental part we introduce the TOTEM experiment which is dedicated, among other subjects, to the measurement of the elastic scattering at the LHC. This measurement is performed primarily with the Roman Pot (RP) detectors - movable beam-pipe insertions hundreds of meters from the interaction point, that can detect protons scattered to very small angles. We discuss some aspects of the RP simulation and reconstruction software. A central point is devoted to the techniques of RP alignment - determining the RP sensor positions relative to each other and to the beam. At the end we pres...

  8. Heavy ion elastic scatterings

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1984-01-01

    Diffraction and refraction play an important role in particle elastic scattering. The optical model treats correctly and simultaneously both phenomena but without disentangling them. Semi-classical discussions in terms of trajectories emphasize the refractive aspect due to the real part of the optical potential. The separation due to to R.C. Fuller of the quantal cross section into two components coming from opposite side of the target nucleus allows to understand better the refractive phenomenon and the origin of the observed oscillations in the elastic scattering angular distributions. We shall see that the real part of the potential is responsible of a Coulomb and a nuclear rainbow which allows to determine better the nuclear potential in the interior region near the nuclear surface since the volume absorption eliminates any effect of the real part of the potential for the internal partial scattering waves. Resonance phenomena seen in heavy ion scattering will be discussed in terms of optical model potential and Regge pole analysis. Compound nucleus resonances or quasi-molecular states can be indeed the more correct and fundamental alternative

  9. Small-angle p--p elastic scattering at energies between 285 and 572 MeV

    International Nuclear Information System (INIS)

    Aebischer, D.; Favier, B.; Greeniaus, L.G.; Hess, R.; Junod, A.; Lechanoine, C.; Nikles, J.C.; Rapin, D.; Richard-Serre, C.; Werren, D.W.

    1976-01-01

    Differential cross sections for elastic p--p scattering have been measured at 285, 348, 398, 414, 455, 497, 530, and 572 MeV kinetic energy. The experiment was performed at the CERN synchrocyclotron, using multiwire proportional chambers placed directly in a proton beam. Scattering was observed for theta between approx. 15 and 10 0 in the laboratory system. The ratio α/sub p/ of the real and imaginary parts of the non-spin-flip nuclear forward amplitude was derived from the interference between the Coulomb and nuclear amplitudes. The values obtained are model dependent, but in this energy range α/sub p/ is positive and decreases with energy. Qualitatively good agreement with dispersion-relation predictions is observed

  10. (Quasi)Elastic Electron-Muon Large-Angle Scattering to a Two-Loop Approximation: Vertex Contributions

    CERN Document Server

    Bytev, V V; Shaikhatdenov, B G

    2002-01-01

    We consider a process of quasielastic e\\mu large-angle scattering at high energies with radiative corrections up to a two-loop level. The lowest order radiative correction arising both from one-loop virtual photon emission and a real soft emission are presented to a power accuracy. Two-loop level corrections are supposed to be of three gauge-invariant classes. One of them, so-called vertex contribution, is given in logarithmic approximation. Relation with the renormalization group approach is discussed.

  11. (Quasi)Elastic Electron-Muon Large-Angle Scattering to a Two-Loop Approximation Vertex Contributions

    CERN Document Server

    Bytev, V V; Shaikhatdenov, B G

    2002-01-01

    We consider a process of quasielastic e\\mu large-angle scattering at high energies with radiative corrections up to a two-loop level. The lowest order radiative correction arising both from one-loop virtual photon emission and a real soft emission are presented to a power accuracy. Two-loop level corrections are supposed to be of three gauge-invariant classes. One of them, so-called vertex contribution, is given in logarithmic approximation. Relation with the renormalization group approach is discussed.

  12. Elastic scattering and quasi-elastic transfers

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1978-01-01

    Experiments are presented which it will be possible to carry out at GANIL on the elastic scattering of heavy ions: diffraction phenomena if the absorption is great, refraction phenomena if absorption is low. The determination of the optical parameters can be performed. The study of the quasi-elastic transfer reactions will make it possible to know the dynamics of the nuclear reactions, form exotic nuclei and study their energy excitation spectrum, and analyse the scattering and reaction cross sections [fr

  13. Differential elastic and inelastic cross sections in 1. 5 <= E/sub 0/ <= 25 keV He/sup +/-H collisions at scattering angles thetasub(lab) ranging from 5' to 2/sup 0/

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, D.; Nouet, P.; Boutonnet, A.; Bergnes, C.; Dagnac, R.

    1987-09-14

    Elastic and inelastic cross sections, differential in energy loss and scattering angle, have been determined from the energy loss spectra of 1.5 - 25 keV He/sup +/ scattered from atomic hydrogen at scattering angles from 5'-2/sup 0/ (laboratory frame). The experimental results compare favourably with the experimental and theoretical data obtained at low incident energies by other authors, but for the higher energies, the present results exhibit a strong disagreement with many of the reported calculations.

  14. Monte-Carlo simulation of heavy ion elastic recoil detection analysis data to include the effects of large angle plural scattering

    International Nuclear Information System (INIS)

    Johnston, P.N.; Franich, R.D.

    1999-01-01

    Heavy Ion Elastic Recoil Detection Analysis (HIERDA) is becoming widely used to study a range of problems in materials science, however there is no standard methodology for the analysis of HIERDA spectra. Major impediments are the effects of multiple and plural scattering which are very significant, even for quite thin (∼100nm) layers of very heavy elements. To examine the effects of multiple scattering a fast FORTRAN version of TRIM has been adapted to simulate the spectrum of backscattered and recoiled ions reaching the detector. Two problems have been initially investigated. In the first, the detector is positioned beyond the critical angle for single scattering from a pure vanadium target where traditional slab analysis would not predict any scattered yield. In the second, a thin Au layer on a Si substrate is modelled for two different thicknesses of the substrate to investigate the effect of the substrate chosen. The use of multiple processors enabled the acquisition of statistically reasonable simulation spectra for scattered and recoiled ions. For each target modelled, 10 9 incident ions were tracked. The results of the simulations are compared with experimental measurements performed using ToF-E HIERDA at Lucas Heights and show good agreement except in the long tails due to Plural Scattering

  15. CONFERENCE: Elastic and diffractive scattering

    Energy Technology Data Exchange (ETDEWEB)

    White, Alan

    1989-09-15

    Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago.

  16. Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  17. Measurement of the absolute differential cross section of proton-proton elastic scattering at small angles, using ANKE-COSY facility

    Energy Technology Data Exchange (ETDEWEB)

    Bagdasarian, Zara [Forschungszentrum Juelich (Germany)

    2016-07-01

    The most accepted approach to describe nucleon-nucleon (NN) interaction is the partial wave analysis (PWA). The goal of many experiments held at COSY-Juelich has been to provide PWA with valuable precision measurements at different energies aiming to cover the full angular range. This contribution reports on the differential cross section for proton-proton elastic scattering that has been measured at a beam energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV at centre-of-mass angles between about 10 and 30 degrees. The ANKE collaboration and the COSY machine crew have jointly developed a very accurate method for determining the absolute luminosity in an experiment at an internal target position. The technique relies on measuring the energy losses due to the electromagnetic interactions of the beam as it passes repeatedly through the thin target and measuring the shift of the revolution frequency by studying the Schottky spectrum. This powerful technique allows one to measure the absolute differential cross section for elastic pp scattering with the accuracy of typically 3%. After extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations. Finally, it is shown that the data have a significant impact on the partial wave analysis.

  18. CONFERENCE: Elastic and diffractive scattering

    International Nuclear Information System (INIS)

    White, Alan

    1989-01-01

    Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago

  19. High energy elastic hadron scattering

    International Nuclear Information System (INIS)

    Fearnly, T.A.

    1986-04-01

    The paper deals with the WA7 experiment at the CERN super proton synchrotron (SPS). The elastic differential cross sections of pion-proton, kaon-proton, antiproton-proton, and proton-proton at lower SPS energies over a wide range of momentum transfer were measured. Some theoretical models in the light of the experimental results are reviewed, and a comprehensive impact parameter analysis of antiproton-proton elastic scattering over a wide energy range is presented. A nucleon valence core model for high energy proton-proton and antiproton-proton elastic scattering is described

  20. Light Scattering at Various Angles

    Science.gov (United States)

    Latimer, Paul; Pyle, B. E.

    1972-01-01

    The Mie theory of scattering is used to provide new information on how changes in particle volume, with no change in dry weight, should influence light scattering for various scattering angles and particle sizes. Many biological cells (e.g., algal cells, erythrocytes) and large subcellular structures (e.g., chloroplasts, mitochondria) in suspension undergo this type of reversible volume change, a change which is related to changes in the rates of cellular processes. A previous study examined the effects of such volume changes on total scattering. In this paper scattering at 10° is found to follow total scattering closely, but scattering at 45°, 90°, 135°, and 170° behaves differently. Small volume changes can cause very large observable changes in large angle scattering if the sample particles are uniform in size; however, the natural particle size heterogeneity of most samples would mask this effect. For heterogeneous samples of most particle size ranges, particle shrink-age is found to increase large angle scattering. PMID:4556610

  1. Quasi-elastic scattering

    International Nuclear Information System (INIS)

    Pizzi, J.R.

    1975-01-01

    In a first part, the kinematical conditions which are chosen to study quasi free scattering reactions are presented, as well as the impulse approximation which is used to interpret the experimental data. Then, the evolution of the study of these reactions in the last few years is analyzed. Three recent experiments are presented and discussed. Two of them deal with α-clusters studied by (p,pα) reaction at 157 and 600MeV. The third is concerned with d, t and 3 He clusters studied by (p,px) reaction at 75MeV [fr

  2. Elastic scattering of gamma radiation in solids

    International Nuclear Information System (INIS)

    Goncalves, O.D.

    1987-01-01

    The elastic scattering of gamma rays in solids is studied: Rayleigh scattering as well as Bragg scattering in Laue geometries. We measured Rayleigh cross sections for U, Pb, Pt, W, Sn, Ag, Mo, Cd, Zn, and Cu with gamma energies ranging from 60 to 660 KeV and angles between 5 0 and 140 0 . The experimental data are compared with form factor theories and second order perturbation theories and the limits of validity of both are established. In the 60 KeV experiment, a competition between Rayleigh and Bragg effects is found in the region of low momentum transfer. The Bragg experiments were performed using the gamma ray diffractometer from the Hahn-Meitner Institut (Berlin) with gammas of 317 KeV and angles up to 2 0 . In particular, we studied the effect of annealing in nearly perfect Czochralski Silicon crystals with high perfection in the crystallographic structure. The results are compared with Kinematical and Dynamical theories. (author)

  3. A high pressure study of calmodulin-ligand interactions using small-angle X-ray and elastic incoherent neutron scattering.

    Science.gov (United States)

    Cinar, Süleyman; Al-Ayoubi, Samy; Sternemann, Christian; Peters, Judith; Winter, Roland; Czeslik, Claus

    2018-01-31

    Calmodulin (CaM) is a Ca 2+ sensor and mediates Ca 2+ signaling through binding of numerous target ligands. The binding of ligands by Ca 2+ -saturated CaM (holo-CaM) is governed by attractive hydrophobic and electrostatic interactions that are weakened under high pressure in aqueous solutions. Moreover, the potential formation of void volumes upon ligand binding creates a further source of pressure sensitivity. Hence, high pressure is a suitable thermodynamic variable to probe protein-ligand interactions. In this study, we compare the binding of two different ligands to holo-CaM as a function of pressure by using X-ray and neutron scattering techniques. The two ligands are the farnesylated hypervariable region (HVR) of the K-Ras4B protein, which is a natural binding partner of holo-CaM, and the antagonist trifluoperazine (TFP), which is known to inhibit holo-CaM activity. From small-angle X-ray scattering experiments performed up to 3000 bar, we observe a pressure-induced partial unfolding of the free holo-CaM in the absence of ligands, where the two lobes of the dumbbell-shaped protein are slightly swelled. In contrast, upon binding TFP, holo-CaM forms a closed globular conformation, which is pressure stable at least up to 3000 bar. The HVR of K-Ras4B shows a different binding behavior, and the data suggest the dissociation of the holo-CaM/HVR complex under high pressure, probably due to a less dense protein contact of the HVR as compared to TFP. The elastic incoherent neutron scattering experiments corroborate these findings. Below 2000 bar, pressure induces enhanced atomic fluctuations in both holo-CaM/ligand complexes, but those of the holo-CaM/HVR complex seem to be larger. Thus, the inhibition of holo-CaM by TFP is supported by a low-volume ligand binding, albeit this is not associated with a rigidification of the complex structure on the sub-ns Å-scale.

  4. Angular dispersion and deflection function for heavy ion elastic scattering

    International Nuclear Information System (INIS)

    Bai Zhen; Han Jianlong; Hu Zhengguo; Chinese Academy of Sciences, Beijing

    2007-01-01

    The differential cross sections for elastic scattering products of 17 F on 208 Pb have been measured. The angular dispersion plots of ln(dσ/dθ) versus θ 2 are obtained from the angular distribution of the elastic scattering differential cross sections. Systematical analysis on the angular dispersion for the available experimental data indicates that there is an angular dispersion turning angle at forward angular range within the grazing angle. This turning angle can be clarified as nuclear rainbow in classical deflection function. The exotic behaviour of the nuclear rainbow angle offers a new probe to investigate the halo and skin phenomena. (authors)

  5. Parity Violation in elastic electron scattering : A first measurment of the parity-violating Asymmetry at Q2 = 0.631 GeV/c2 at Backward Angle.

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Stephanie L. [College of William and Mary, Williamsburg, VA (United States)

    2007-05-01

    The goal of Experiment E04-115 (the G0 backward angle measurement) at Jefferson Lab is to investigate the contributions of strange quarks to the fundamental properties of the nucleon. The experiment measures parity-violating asymmetries in elastic electron scattering off hydrogen and quasielastic electron scattering off deuterium at backward angles at Q2 = 0.631 (GeV/c)2 and Q2 = 0.232 (GeV/c)2. The backward angle measurement represents the second phase of the G0 experiment. The first phase, Experiment E00-006 (the G0 forward angle experiment), measured parity-violating asymmetries in elastic electron scattering off hydrogen at forward angles over a Q2 range of 0.1-1.0 (GeV/c)2. The experiments used a polarized electron beam and unpolarized hydrogen and deuterium liquid targets. From these measurements, along with the electromagnetic form factors, one can extract the contribution of the strange quark to the proton's charge and magnetization distributions. This thesis represents a fi

  6. Elastic and inelastic scattering of alpha particles on 58Ni and 60Ni in a broad range of energy and angle

    International Nuclear Information System (INIS)

    Budzanowski, A.; Dabrowski, H.; Freindl, L.; Grotowski, K.; Micek, S.; Planeta, R.; Strzalkowski, A.; Bosman, M.; Leleux, P.; Macq, P.; Meulders, J.P.; Pirart, C.

    1978-01-01

    The differential cross sections for α particles elastically and inelastically scattered from 5 8Ni (at 29, 34, 38, and 58 MeV) and elastically scattered from 6 0Ni (at 29 and 34 MeV), are measured together with excitation functions in the 25--38 MeV region at 178.5 0 lab. These data together with the data of 26.5, 32.3, 104, and 139 MEV for 5 8Ni and 32.3 and 104 MeV for 6 0Ni from other sources were analyzed using an optical model with volume and surface absorptions and the Saxon-Woods square form factors. The analysis yielded energy dependent depths of both real and imaginary parts of the potential and constant geometric parameters. The analytical expressions for depths of the real and both absorption potentials are obtained. The coupled channel calculations using the above optical potential were performed for the first excited state of 5 8Ni. Both elastic scattering data and coupling with the first excited state of 5 8Ni are well reproduced using the above potential in the wide scattering energy range

  7. Elastic and inelastic scattering of alpha particles from /sup 40,44/Ca over a broad range of energies and angles

    International Nuclear Information System (INIS)

    Delbar, T.; Gregoire, G.; Paic, G.; Ceuleneer, R.; Michel, F.; Vanderpoorten, R.; Budzanowski, A.; Dabrowski, H.; Freindl, L.; Grotowski, K.; Micek, S.; Planeta, R.; Strzalkowski, A.; Eberhard, K.A.

    1978-01-01

    Angular distributions for α particle elastic scattering by /sup 40,44/Ca and excitation of the 3.73 MeV 3 - collective state of 40 Ca were measured for incident energies ranging from 40 to 62 MeV. An extensive optical model analysis of these elastic scattering cross sections and other available data, using squared Woods-Saxon form factors, results in potentials with fixed geometry for both real and imaginary parts and depths with smooth energy behavior over a broad incident energy range. These results are discussed in the frame of the semi-classical approximation developed by Brink and Takigawa. The sensitiveness of the calculated elastic scattering cross sections to the real part of the potentials as a function of the projectile-target distance has been investigated by means of a notch test. Distorted-wave Born-approximtion calculations for the excitation of the 3.73 MeV 3 - state of 40 Ca are presented

  8. A new method for the determination of the real part of the hadron elastic scattering amplitude at small angles and high energies

    Energy Technology Data Exchange (ETDEWEB)

    Gauron, P. [Theory Group, Laboratoire de Physique Nucleaire et des Hautes Energies (LPNHE), CNRS, and Universite Pierre et Marie Curie, Paris (France)]. E-mail: gauron@in2p3.fr; Nicolescu, B. [Theory Group, Laboratoire de Physique Nucleaire et des Hautes Energies (LPNHE), CNRS, and Universite Pierre et Marie Curie, Paris (France)]. E-mail: nicolesc@lpnhep.in2p3.fr; Selyugin, O.V. [BLTP, JINR, Dubna, Moscow region (Russian Federation)]. E-mail: selugin@thsun1.jinr.ru

    2005-11-24

    A new method for the determination of the real part of the elastic scattering amplitude is examined for high energy proton-proton at small momentum transfer. This method allows us to decrease the number of model assumptions, to obtain the real part in a narrow region of momentum transfer and to test different models. The real part is computed at a given point t{sub min} near t=0 from the known Coulomb amplitude. Hence one obtains an important constraint on the real part of the forward scattering amplitude and therefore on the {rho}-parameter (measuring the ratio of the real to imaginary part of the scattering amplitude at t=0), which can be tested at LHC.

  9. A 3% Measurement of the Beam Normal Single Spin Asymmetry in Forward Angle Elastic Electron-Proton Scattering using the Qweak Setup

    Energy Technology Data Exchange (ETDEWEB)

    Waidyawansa, Dinayadura Buddhini [Ohio Univ., Athens, OH (United States)

    2013-08-01

    The beam normal single spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable of the imaginary part of the two-photon exchange process. Moreover, it is a potential source of false asymmetry in parity violating electron scattering experiments. The Q{sub weak} experiment uses parity violating electron scattering to make a direct measurement of the weak charge of the proton. The targeted 4% measurement of the weak charge of the proton probes for parity violating new physics beyond the Standard Model. The beam normal single spin asymmetry at Q{sub weak} kinematics is at least three orders of magnitude larger than 5 ppb precision of the parity violating asymmetry. To better understand this parity conserving background, the Q{sub weak} Collaboration has performed elastic scattering measurements with fully transversely polarized electron beam on the proton and aluminum. This dissertation presents the analysis of the 3% measurement (1.3% statistical and 2.6% systematic) of beam normal single spin asymmetry in electronproton scattering at a Q2 of 0.025 (GeV/c)2. It is the most precise existing measurement of beam normal single spin asymmetry available at the time. A measurement of this precision helps to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process.

  10. Small angle scattering and polymers

    International Nuclear Information System (INIS)

    Cotton, J.P.

    1996-01-01

    The determination of polymer structure is a problem of interest for both statistical physics and industrial applications. The average polymer structure is defined. Then, it is shown why small angle scattering, associated with isotopic substitution, is very well suited to the measurement of the chain conformation. The corresponding example is the old, but pedagogic, measurement of the chain form factor in the polymer melt. The powerful contrast variation method is illustrated by a recent determination of the concentration profile of a polymer interface. (author) 12 figs., 48 refs

  11. Absolute elastic cross sections for electron scattering from SF6

    International Nuclear Information System (INIS)

    Gulley, R.J.; Uhlmann, L.J.; Dedman, C.J.; Buckman, S.J.; Cho, H.; Trantham, K.W.

    2000-01-01

    Full text: Absolute differential cross sections for vibrationally elastic scattering of electrons from sulphur hexafluoride (SF 6 ) have been measured at fixed angles of 60 deg, 90 deg and 120 deg over the energy range of 5 to 15 eV, and also at 11 fixed energies between 2.7 and 75 eV for scattering angles between 10 deg and 180 deg. These measurements employ the magnetic angle-changing technique of Read and Channing in combination with the relative flow technique to obtain absolute elastic scattering cross sections at backward angles (135 deg to 180 deg) for incident energies below 15 eV. The results reveal some substantial differences with several previous determinations and a reasonably good level of agreement with a recent close coupling calculation

  12. Heavy ion elastic scattering of code : OPTHI

    International Nuclear Information System (INIS)

    Ismail, M.; Divatia, A.S.

    1982-01-01

    A computer code, OPTHI has been designed to calculate nuclear optical model elastic cross sections for the scattering of heavy ions. The program has been designed to be utilitarian rather than capable of giving an exact description of elastic scattering. Input format is described and the program listing is given. (M.G.B.)

  13. Asymptotic perturbative QCD in elastic scattering, color transparency and ANN

    International Nuclear Information System (INIS)

    Botts, J.

    1989-01-01

    Sorting out the various perturbative contributions to wide angel elastic hadron-hadron scattering has been the subject of recent enquiry. Distinguishing the various contributions are the transverse size of the external hadrons and the interaction region and restrictions on the internal momenta flows. For wide angle elastic hadron-hadron scattering, the interaction between two types of perturbative processes, multiple and single scattering, can be the source of interference phenomena and interesting physics. In the following, after a brief description of the leading and non-leading processes, we shall give a picture of what perturbative QCD may have to say about elastic scattering, color transparency and the spin asymmetry, A NN . 9 refs., 5 figs

  14. Elastic scattering of slow positrons by helium

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Cherepkov, N.A.; Chernysheva, L.V.; Shapiro, S.G.

    1976-01-01

    The s-, p-, d- and f-wave phaseshifts for elastic scattering of slow positrons by He are calculated using a simplified version of the random phase approximation with exchange, with virtual positronium formation effect taken into account. (author)

  15. Elastic and inelastic heavy ion scattering

    International Nuclear Information System (INIS)

    Toepffer, C.; University of the Witwatersrand, Johannesburg; Richter, A.

    1977-02-01

    In the field of elastic and inelastic heavy ion scattering, the following issues are dealt with: semiclassical descriptive approximations, optical potentials, barriers, critical radii and angular momenta, excitation functions and the application to superheavy ions and high energies. (WL) [de

  16. Elastic scattering of He$sup 3$ AT 20 Mev

    Energy Technology Data Exchange (ETDEWEB)

    Klingensmith, R. W.; Hausman, H. J.; Ploughe, W. D.

    1963-08-15

    Absolute differential elastic scattering cross sections were measured for the scattering of 20-Mev /sup 3/He particles from V, Ni, Cu, Rh, /sup 118/Sn, Sm, Yb, and Pb. Where practical the measurements were made at laboratory angles extending from 20 to 170 degrees. The diffraction-like oscillations exhibited by the elastic-to-Coulomb cross section ratios are not highly pronounced. A preliminary optical model analysis was carried out using the HUNTER automatic search code of Drisko and Bassel. A Woods-Saxon potential with Thomas type spin-orbit coupling was considered. Reasonable fits to the data were obtained. (auth)

  17. Relativistic effects in elastic scattering of electrons in TEM

    International Nuclear Information System (INIS)

    Rother, Axel; Scheerschmidt, Kurt

    2009-01-01

    Transmission electron microscopy typically works with highly accelerated thus relativistic electrons. Consequently the scattering process is described within a relativistic formalism. In the following, we will examine three different relativistic formalisms for elastic electron scattering: Dirac, Klein-Gordon and approximated Klein-Gordon, the standard approach. This corresponds to a different consideration of spin effects and a different coupling to electromagnetic potentials. A detailed comparison is conducted by means of explicit numerical calculations. For this purpose two different formalisms have been applied to the approaches above: a numerical integration with predefined boundary conditions and the multislice algorithm, a standard procedure for such simulations. The results show a negligibly small difference between the different relativistic equations in the vicinity of electromagnetic potentials, prevailing in the electron microscope. The differences between the two numeric approaches are found to be small for small-angle scattering but eventually grow large for large-angle scattering, recorded for instance in high-angle annular dark field.

  18. The elastic scattering of 14N by 10B

    International Nuclear Information System (INIS)

    Takai, H.

    1986-01-01

    The elastic scattering 10 B( 14 N, 14 N) 10 B was studied for four incident energies: 38.1, 42.0, 46.0 and 50.0 MeV. The angular distributions for these energies were determined in the center of mass frame from 16 0 to 176 0 with the introduction of target nucleus recoil detection techniques in a magnetic spectrograph with gas position sensitive detectors and in a scattering chamber with an Σ-ΔΣ detection system. For the forward angles, the angular distributions are well described by the optical model. For the backward angles, up to 160 0 , a satisfactory description is obtained by the elastic transfer analysis; for larger angles an accentuated deviation id observed. (author) [pt

  19. On the K+-nucleus elastic scattering

    International Nuclear Information System (INIS)

    Ning, P.; Men, D.

    1991-01-01

    In this paper conventional and unconventional nuclear medium effects in the K + scattering are briefly reviewed. Microscopic calculations of the K + elastic scattering on 4 He, 12 C, 40 Ca, 120 Sn at 800 MeV/c are performed and then possible swellings of nucleons in nuclei are discussed

  20. Inclusive production of large-p/sub T/ protons and quark-quark elastic scattering

    International Nuclear Information System (INIS)

    Chen, C.K.

    1978-01-01

    A proton-formation process in combination with hard quark-quark scattering is capable of explaining the observed large-p/sub T/ single-proton inclusive production data. This model implies that the inclusive production of two large-p/sub T/ protons at opposite directions is dominated by large-angle elastic scattering of two up quarks, and becomes an ideal place to study elastic quark-quark scattering. This two-proton inclusive production process is also ideal for the study of the spin structure of quark-quark elastic scattering, so the assumptions of pure vector-type quark-quark interaction and of colored quarks can be checked empirically. The consistency of applying the quark-elastic-scattering idea to large-angle elastic proton-proton scattering and to the inclusive production of large-p/sub T/ protons is also demonstrated

  1. pp and ̄pp elastic scattering

    Directory of Open Access Journals (Sweden)

    A. Donnachie

    1984-01-01

    Full Text Available We present an analysis of pp and ̄pp elastic scattering in terms of various exchanges. Three-gluon exchange dominates at large t, and single-pomeron exchange at small t. The dip seen in high-energy pp scattering is provided by the interference of both of these with double-pomeron exchange. We predict that this dip will not be found in high-energy ̄pp scattering. The dip that is seen in low-energy ̄pp scattering is the result of the additional presence of reggeon-pomeron exchange.

  2. Small-angle neutron-scattering experiments

    International Nuclear Information System (INIS)

    Hardy, A.D.; Thomas, M.W.; Rouse, K.D.

    1981-04-01

    A brief introduction to the technique of small-angle neutron scattering is given. The layout and operation of the small-angle scattering spectrometer, mounted on the AERE PLUTO reactor, is also described. Results obtained using the spectrometer are presented for three materials (doped uranium dioxide, Magnox cladding and nitrided steel) of interest to Springfields Nuclear Power Development Laboratories. The results obtained are discussed in relation to other known data for these materials. (author)

  3. Polarized deuteron elastic scattering from a polarized proton target

    Energy Technology Data Exchange (ETDEWEB)

    Schmelzer, R.; Kuiper, H.; Schoeberl, M.; Berber, S.; Hilmert, H.; Koeppel, R.; Pferdmenges, R. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Physikalisches Inst.); Zankel, H. (Graz Univ. (Austria). Inst. fuer Theoretische Physik)

    1983-01-13

    Measurements are reported of the spin correlation parameter Cy,y for the elastic scattering of 10.0 MeV vector polarized deuterons from a polarized proton target at five CM angles (76/sup 0/,85/sup 0/,98/sup 0/,115/sup 0/,132/sup 0/). The experimental results are compared with different predictions. A Faddeev type calculation on the basis of local potentials also including approximate Coulomb distortion is favoured by our experimental results.

  4. Polarized deuteron elastic scattering from a polarized proton target

    International Nuclear Information System (INIS)

    Schmelzer, R.; Kuiper, H.; Schoeberl, M.; Berber, S.; Hilmert, H.; Koeppel, R.; Pferdmenges, R.; Zankel, H.

    1983-01-01

    Measurements are reported of the spin correlation parameter Cy,y for the elastic scattering of 10.0 MeV vector polarized deuterons from a polarized proton target at five CM angles (76 0 ,85 0 ,98 0 ,115 0 ,132 0 ). The experimental results are compared with different predictions. A Faddeev type calculation on the basis of local potentials also including approximate Coulomb distortion is favoured by our experimental results. (orig.)

  5. Total cross sections and elastic scattering at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Foley, K.J.

    1985-12-05

    The need is discussed of a special purpose detector for the measurement of elastic scattering at the SSC. The detector would cover as small a solid angle as is practical. Two techniques are described briefly to measure total cross sections at hadron storage rings. The direct method is to measure the interaction rate in an IR of known luminosity - a method that gets more difficult increasing energy. A second method is to use the optical theorem. 6 refs., 1 fig. (LEW)

  6. pp elastic scattering at LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, A.K.; Ferreira, E.; Kodama, T. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, C.P. 68528, Rio de Janeiro, RJ (Brazil)

    2014-11-15

    Using a unified analytic representation for the elastic scattering amplitudes of pp scattering valid for all energies above 20 GeV, the behavior of observables in the LHC collisions in the range √(s) = 2.76-14 TeV is discussed. After the precise description of dσ/dt at 7 TeV, we discuss the energy dependence of the amplitudes and expect that the proposed analytical forms give equally good predictions for the future experiments. (orig.)

  7. pp elastic scattering at LHC energies

    International Nuclear Information System (INIS)

    Kohara, A.K.; Ferreira, E.; Kodama, T.

    2014-01-01

    Using a unified analytic representation for the elastic scattering amplitudes of pp scattering valid for all energies above 20 GeV, the behavior of observables in the LHC collisions in the range √(s) = 2.76-14 TeV is discussed. After the precise description of dσ/dt at 7 TeV, we discuss the energy dependence of the amplitudes and expect that the proposed analytical forms give equally good predictions for the future experiments. (orig.)

  8. Elastic scattering of low energy γ-rays

    International Nuclear Information System (INIS)

    Whittingham, I.B.

    1978-05-01

    Theoretical cross sections for the elastic scattering of 245, 334, 444, 779, 1086, 1112 and 1408 keV γ-rays by Pb are obtained for scattering angles up to 150 degrees. Three sets of Rayleigh scattering amplitudes have been computed using (1) the calculations of Johnson and Cheng, (2) the K shell calculations of Brown and co-workers supplemented by form factors amplitudes for higher shells, and (3) form factor amplitudes for all shells. Nuclear Thomson amplitudes have been included for all energies and, for 1408 keV, Delbruck scattering based upon the calculations of Papatzacos and Mork has been included. Nuclear resonance scattering is show to be negligble for all energies

  9. Small angle neutron scattering by polymer solutions

    International Nuclear Information System (INIS)

    Farnoux, B.; Jannink, G.

    1980-08-01

    Small angle neutron scattering is an experimental technique introduced since about 10 years for the observation of the polymer conformation in all the concentration range from dilute solution to the melt. After a brief recall of the elementary relations between scattering amplitude, index of refraction and scattered intensity, two concepts related to this last quantity (the contrast and the pair correlation function) are discussed in details

  10. Diffraction dissociation and elastic scattering

    International Nuclear Information System (INIS)

    Verebryusov, V.S.; Ponomarev, L.A.; Smorodinskaya, N.Ya.

    1987-01-01

    In the framework of Regge scheme with supercritical pomeron a model is suggested for the NN-scattering amplitude which takes into account the contribution introduced to the intermediate state by diffraction dissociation (DD) processes. The DD amplitude is written in terms of the Deck model which has been previously applied to describing the main DD features. The calculated NN cross sections are compared with those obtained experimentally. Theoretical predictions for higher energy are presented

  11. Measurement of Z dependence of elastic scattering cross-sections of 0. 145 MeV gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Ghumman, B S [Punjabi Univ., Patiala (India). Dept. of Physics

    1981-11-01

    The Z dependence of elastic scattering cross-sections of 0.145 MeV gamma rays is investigated at large scattering angles. Measurements are made with scatterers of Pb, W, Sn, Ag, Mo, Zn, Cu, Fe and Al at scattering angles from 75 deg to 150 deg. The experimental results are compared with the available theoretical and experimental data.

  12. Elastic proton-proton scattering at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Yip, K.

    2011-09-03

    Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.

  13. Elastic electron scattering at large momentum transfer

    International Nuclear Information System (INIS)

    Arnold, R.G.

    1979-05-01

    A review is given of elastic electron scattering at large momentum transfer (Q 2 > 20 fm -2 ) from nuclei with A less than or equal to 4. Recent experimental results are reviewed and the current problems in interpretation of these results are pointed out. Some questions for future experiments are posed, and a preview of possible future measurements is presented. 28 references

  14. Elastic and inelastic electron and muon scattering

    International Nuclear Information System (INIS)

    Hand, L.N.

    1977-01-01

    The current status of experiments in the field of elastic and inelastic electron and muon scattering is discussed. The talk is divided into discussions of the single arm inclusive experiments at SLAC and Fermilab; the multiparticle inclusive experiments at SLAC, Fermilab und Cornell, and a description of selected results from exclusive channel measurements on electroproduced final states. (orig.) [de

  15. Elastic Scattering of 7Li+27Al at Backward Angles in the 7-11 MeV Energy Range for Application in RBS

    International Nuclear Information System (INIS)

    Carnelli, P. F. F.; Arazi, A.; Cardona, M. A.; Figueira, J. M.; Hojman, D.; Martinez Heimann, D.; Negri, A. E.; Pacheco, A. J.; Abriola, D.; Capurro, O. A.; Fimiani, L.; Grinberg, P.; Marti, G. V.; Fernandez Niello, J. O.

    2010-01-01

    We have measured elastic excitation functions for the 7 Li+ 27 Al system, in an energy range close to its Coulomb barrier (E lab = 8.4 MeV) in steps of 0.25 MeV. For this purpose, an array of eight surface-barrier detectors was used. To get an insight on the background composition (mainly α particles), a telescope-detector was used for atomic-number identification. Identical measurements for the 6 Li+ 27 Al system are planned for the near future.

  16. Neutron spin echo scattering angle measurement (SESAME)

    International Nuclear Information System (INIS)

    Pynn, R.; Fitzsimmons, M.R.; Fritzsche, H.; Gierlings, M.; Major, J.; Jason, A.

    2005-01-01

    We describe experiments in which the neutron spin echo technique is used to measure neutron scattering angles. We have implemented the technique, dubbed spin echo scattering angle measurement (SESAME), using thin films of Permalloy electrodeposited on silicon wafers as sources of the magnetic fields within which neutron spins precess. With 30-μm-thick films we resolve neutron scattering angles to about 0.02 deg. with neutrons of 4.66 A wavelength. This allows us to probe correlation lengths up to 200 nm in an application to small angle neutron scattering. We also demonstrate that SESAME can be used to separate specular and diffuse neutron reflection from surfaces at grazing incidence. In both of these cases, SESAME can make measurements at higher neutron intensity than is available with conventional methods because the angular resolution achieved is independent of the divergence of the neutron beam. Finally, we discuss the conditions under which SESAME might be used to probe in-plane structure in thin films and show that the method has advantages for incident neutron angles close to the critical angle because multiple scattering is automatically accounted for

  17. Multiple scattering problems in heavy ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Johnston, P.N.; El Bouanani, M.; Stannard, W.B.; Bubb, I.F.; Cohen, D.D.; Dytlewski, N.; Siegele, R.

    1998-01-01

    A number of groups use Heavy Ion Elastic Recoil Detection Analysis (HIERDA) to study materials science problems. Nevertheless, there is no standard methodology for the analysis of HIERDA spectra. To overcome this deficiency we have been establishing codes for 2-dimensional data analysis. A major problem involves the effects of multiple and plural scattering which are very significant, even for quite thin (∼100 nm) layers of the very heavy elements. To examine the effects of multiple scattering we have made comparisons between the small-angle model of Sigmund et al. and TRIM calculations. (authors)

  18. Probing the phase of the elastic pp scattering amplitude with vortex proton beams

    International Nuclear Information System (INIS)

    Ivanov, I. P.

    2013-01-01

    We show that colliding vortex proton beams instead of (approximate) plane waves can lead to a direct measurement of how the overall phase of the scattering amplitude changes with the scattering angle. In elastic pp scattering, this will open a novel way to measure the parameter ρ(t) and probe the real part of the Pomeron.

  19. Probing the phase of the elastic pp scattering amplitude with vortex proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, I. P. [IFPA, Universite de Liege, Allee du 6 Aout 17, batiment B5a, 4000 Liege, Belgium Sobolev Institute of Mathematics, Koptyug avenue 4, 630090, Novosibirsk (Russian Federation)

    2013-04-15

    We show that colliding vortex proton beams instead of (approximate) plane waves can lead to a direct measurement of how the overall phase of the scattering amplitude changes with the scattering angle. In elastic pp scattering, this will open a novel way to measure the parameter {rho}(t) and probe the real part of the Pomeron.

  20. Elastic scattering of electrons from singly ionized argon

    International Nuclear Information System (INIS)

    Griffin, D.C.; Pindzola, M.S.

    1996-01-01

    Recently, Greenwood et al. [Phys. Rev. Lett. 75, 1062 (1995)] reported measurements of large-angle elastic scattering of electrons from singly ionized argon at an energy of 3.3 eV. They compared their results for the differential cross section with cross sections determined using phase shifts obtained from two different scattering potentials and found large discrepancies between theory and experiment at large angles. They state that these differences may be due to the effects of polarization of the target, which are not included in their calculations, as well as inaccurate representations of electron exchange in the local scattering potentials that are employed to determine the phase shifts. In order to test these proposed explanations of the discrepancies, we have carried out calculations of elastic scattering from Ar + using the R-matrix method. We compare both a single-state calculation, which does not include polarization, and a 17-state calculation, in which the effects of dipole polarizability are included through the use of polarization pseudostates within the close-coupling expansion, to each other and with the measurements. We find some differences between the two calculations at intermediate scattering angles, but very close agreement at angles above 100 degree. Although the calculated cross sections agree with experiment between 120 degree and 135 degree, large discrepancies persist at angles above 135 degree. We conclude that the differences between the measurements and theory cannot be explained on the basis of an inaccurate representation of electron exchange or polarization of the target. copyright 1996 The American Physical Society

  1. Multiple scattering effects in depth resolution of elastic recoil detection

    International Nuclear Information System (INIS)

    Wielunski, L.S.; Harding, G.L.

    1998-01-01

    Elastic Recoil Detection (ERD) is used to profile hydrogen and other low mass elements in thin films at surface and interfaces in a similar way that Rutherford Backscattering Spectroscopy (RBS) is used to detect and profile heavy elements. It is often assumed that the depth resolutions of these two techniques are similar. However, in contrast to typical RBS, the depth resolution of ERD is limited substantially by multiple scattering. In experimental data analysis and/or spectra simulations of a typical RBS measurement multiple scattering effects are often ignored. Computer programs used in IBA, such as RUMP, HYPRA or RBX do not include multiple scattering effects at all. In this paper, using practical thin metal structures with films containing intentionally introduced hydrogen, we demonstrate experimental ERD depth resolution and sensitivity limitations. The effects of sample material and scattering angle are also discussed. (authors)

  2. Multiple scattering effects in depth resolution of elastic recoil detection

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S.; Harding, G.L. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Telecommunications and Industrial Physics; Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, Budapest, (Hungary)

    1998-06-01

    Elastic Recoil Detection (ERD) is used to profile hydrogen and other low mass elements in thin films at surface and interfaces in a similar way that Rutherford Backscattering Spectroscopy (RBS) is used to detect and profile heavy elements. It is often assumed that the depth resolutions of these two techniques are similar. However, in contrast to typical RBS, the depth resolution of ERD is limited substantially by multiple scattering. In experimental data analysis and/or spectra simulations of a typical RBS measurement multiple scattering effects are often ignored. Computer programs used in IBA, such as RUMP, HYPRA or RBX do not include multiple scattering effects at all. In this paper, using practical thin metal structures with films containing intentionally introduced hydrogen, we demonstrate experimental ERD depth resolution and sensitivity limitations. The effects of sample material and scattering angle are also discussed. (authors). 19 refs., 4 figs.

  3. Position calibration of silicon strip detector using quasi-elastic scattering of 16O+197Au

    International Nuclear Information System (INIS)

    Yan Wenqi; Hu Hailong; Zhang Gaolong

    2013-01-01

    Background: Elastic scattering is induced by weakly unstable nuclei. Generally, a good angular resolution for angular distribution of elastic scattering is needed. The silicon strip detector is often used for this kind of experiment. Purpose: In order to use silicon strip detector to study the elastic scattering of weakly unbound nuclei, it is important to get the information of its position calibration. It is well known that the elastic scattering of stable nuclei has a good angular distribution and many experimental data have been obtained. Methods: So the scattering of stable nuclei can be used to calibrate the position information of silicon strip detector. In this experiment, the positions of silicon strip detectors are calibrated using 101 MeV and 59 MeV 16 O scattering on the 197 Au target. Results: The quasi-elastic peaks can be observed in the silicon strip detectors and the counts of quasi-elastic 16 O can be obtained. The solid angles of the silicon strip detectors are calibrated by using alpha source which has three alpha energy values. The angular distribution of quasi-elastic scattering of 16 O+ 197 Au is obtained at these two energy values. Conclusions: The experimental data of angular distribution are reasonable and fit for the principle of angular distribution of elastic scattering. It is concluded that in the experiment these silicon strip detectors can accurately give the position information and can be used for the elastic scattering experiment. (authors)

  4. Small angle neutron scattering and small angle X-ray scattering ...

    Indian Academy of Sciences (India)

    Abstract. The morphology of carbon nanofoam samples comprising platinum nanopar- ticles dispersed in the matrix was characterized by small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) techniques. Results show that the structure of pores of carbon matrix exhibits a mass (pore) fractal nature ...

  5. Modeling small angle scattering data using FISH

    International Nuclear Information System (INIS)

    Elliott, T.; Buckely, C.E.

    2002-01-01

    Full text: Small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS) are important techniques for the characterisation of samples on the nanometer scale. From the scattered intensity pattern information about the sample such as particle size distribution, concentration and particle interaction can be determined. Since the experimental data is in reciprocal space and information is needed about real space, modeling of the scattering data to obtain parameters is extremely important and several paradigms are available. The use of computer programs to analyze the data is imperative for a robust description of the sample to be obtained. This presentation gives an overview of the SAS process and describes the data-modeling program FISH, written by R. Heenan 1983-2000. The results of using FISH to obtain the particle size distribution of bubbles in the aluminum hydrogen system and other systems of interest are described. Copyright (2002) Australian X-ray Analytical Association Inc

  6. Lateral displacement in small angle multiple scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bichsel, H.; Hanson, K.M.; Schillaci, K.M. (Los Alamos National Lab., NM (USA))

    1982-07-01

    Values have been calculated for the average lateral displacement in small angle multiple scattering of protons with energies of several hundred MeV. The calculations incorporate the Moliere distribution which does not make the gaussian approximations of the distribution in projected angle and lateral deflections. Compared to other published data, such approximations can lead to errors in the lateral displacement of up to 10% in water.

  7. ELASTIC SCATTERING: How goes the Odderon?

    International Nuclear Information System (INIS)

    Fried, H.M.; Kang, Kyungsik; Tan, C-I

    1994-01-01

    Spurred by new measurements of total reaction rates and associated parameters by groups at CERN, DESY, and Fermilab, and with the scent of possible solutions to past controversies in the air, some 110 experimental and theoretical highenergy physicists gathered at Brown University (Providence, Rhode Island) for the fifth traditional 'Blois' Workshop on High-Energy Elastic and Diffractive Scattering. Very much alive is the 'Odderon' - the extra effect to explain the difference between proton-proton and proton-antiproton scattering.

  8. Small Angle X-Ray Scattering Detector

    Energy Technology Data Exchange (ETDEWEB)

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  9. Scaling relations in elastic scattering cross sections between multiply charged ions and hydrogen

    International Nuclear Information System (INIS)

    Rodriguez, V.D.

    1991-01-01

    Differential elastic scattering cross sections of bare ions from hydrogen are calculated using the eikonal approximation. The results satisfy a scaling relation involving the scattering angle, the ion charge and a factor related to the ion mass. A semiclassical explanation in terms of a distant collision hypothesis for small scattering angle is proposed. A unified picture of related scaling rules found in direct processes is discussed. (author)

  10. Experimental technique of small angle neutron scattering

    International Nuclear Information System (INIS)

    Xia Qingzhong; Chen Bo

    2006-03-01

    The main parts of Small Angle Neutron Scattering (SANS) spectrometer, and their function and different parameters are introduced from experimental aspect. Detailed information is also introduced for SANS spectrometer 'Membrana-2'. Based on practical experiments, the fundamental requirements and working condition for SANS experiments, including sample preparation, detector calibration, standard sample selection and data preliminary process are described. (authors)

  11. Studies in small angle scattering techniques

    International Nuclear Information System (INIS)

    Moellenbach, K.

    1980-03-01

    Small angle scattering of neutrons, X-rays and γ-rays are found among the spectroscopic methods developed in the recent years. Although these techniques differ from each other in many respects, e.g. radiation sources and technical equipment needed, their power to resolve physical phenomena and areas of application can be discussed in a general scheme. Selected examples are given illustrating the use of specific technical methods. Jahn-Teller driven structural phase transitions in Rare Earth zircons were studied with neutron scattering as well as small angle γ-ray diffraction. The study of neutron scattering from formations of magnetic domains in the Ising ferromagnet LiTbF 4 is a second example. Both these examples represent more than experimental test cases since the theoretical interpretations of the data obtained are discussed as well. As a last example the use of small angle scattering methods for the study of molecular biological samples is discussed. In particular the experimental procedures used in connection with scattering from aqueous solutions of proteins and protein complexes are given. (Auth.)

  12. Anomalous and resonance small-angle scattering

    International Nuclear Information System (INIS)

    Epperson, J.E.; Thiyagarajan, P.

    1988-01-01

    Significant changes in the small-angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous-dispersion terms for the scattering factor (X-rays) or scattering length (neutrons). The physics inherent in these anomalous-dispersion terms is first discussed before consideration of how they enter the relevant scattering theory. Two major areas of anomalous-scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with X-rays. However, it is pointed out that the formalism is the same for the analog experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scattering are discussed. (orig.)

  13. New focus for elastic and diffractive scattering

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    1995-01-01

    A regular feature of the international physics calendar is the International Conference on Elastic and Diffractive Scattering, known also as the Blois Workshops, after their 1985 birthplace in France. The content of this year's meeting embraced a broad spectrum of problems ranging from the classical analysis of elastic scattering and total cross-sections to the ''hard'' or deep inelastic phenomena which test the underlying quark-gluon structure of hadrons. These meetings have traditionally concentrated on broad questions of elastic and diffractive scattering, however the shift of emphasis in physics is now reflected at Blois by interest in the wide range of 'soft' hadronic processes which dominate reaction cross-sections. On the traditional side, a substantial part of the conference was devoted to analysis of forward scattering parameters like total cross-sections, real parts etc, using dispersion relations and fundamental asymptotic theorems which bound the possible growth of those parameters with energy. The present experimental situation in this field was summarized by S. Pruss, followed by theoretical presentations by B. Nicolescu, A. Donnachie, T.T. Wu, A. Martin and others. The data for proton-proton and proton-antiproton scattering seem to support dominance of the 'crossing-even' part of the scattering amplitude (which contributes equally to both proton-proton and protonantiproton scattering), with little evidence for a substantial 'odderon' term which contributes with opposite sign in the two cases. The 'pomeron' physics of high energy behaviour was a central feature of the conference. The experimental data seem to suggest that behaviour with increasing energy depends on the magnitude of the scale which characterizes the process - i.e. whether the process is ''soft'' or ''hard''. Hard processes, in general, show a much more rapid increase with increasing

  14. Small angle neutron scattering (SANS) under non-equilibrium conditions

    International Nuclear Information System (INIS)

    Oberthur, R.C.

    1984-01-01

    The use of small angle neutron scattering (SANS) for the study of systems under non-equilibrium conditions is illustrated by three types of experiments in the field of polymer research: - the relaxation of a system from an initial non-equilibrium state towards equilibrium, - the cyclic or repetitive installation of a series of non-equilibrium states in a system, - the steady non-equilibrium state maintained by a constant dissipation of energy within the system. Characteristic times obtained in these experiments with SANS are compared with the times obtained from quasi-elastic neutron and light scattering, which yield information about the equilibrium dynamics of the system. The limits of SANS applied to non-equilibrium systems for the measurement of relaxation times at different length scales are shown and compared to the limits of quasielastic neutron and light scattering

  15. Elastic π-d scattering at momentum of 552 MeV/c

    International Nuclear Information System (INIS)

    Dakhno, L.G.; Kravtsov, A.V.; Makarov, M.M.; Medvedev, V.I.; Obrant, G.Z.; Poromov, V.I.; Sarantsev, V.V.; Sokolov, G.L.; Sherman, S.G.

    1980-01-01

    The differential cross-section of the elastic π - d-scattering at the momentum of 552 MeV/c has been measured in the range of angles 20-180 deg in the L.s. by a deuterium 35-cm bubble chamber placed in a 14.8 kgf magnetic field. The total cross section of the elastic scattering is 7.9+-0.7 mbn. The results of calculations of the pion elastic scattering by deuteron performed by the Glauber theory are discussed

  16. Elastic electron scattering from the DNA bases cytosine and thymine

    International Nuclear Information System (INIS)

    Colyer, C. J.; Bellm, S. M.; Lohmann, B.; Blanco, F.; Garcia, G.

    2011-01-01

    Cross-section data for electron scattering from biologically relevant molecules are important for the modeling of energy deposition in living tissue. Relative elastic differential cross sections have been measured for cytosine and thymine using the crossed-beam method. These measurements have been performed for six discrete electron energies between 60 and 500 eV and for detection angles between 15 deg. and 130 deg. Calculations have been performed via the screen-corrected additivity rule method and are in good agreement with the present experiment.

  17. Elastic wave scattering methods: assessments and suggestions

    International Nuclear Information System (INIS)

    Gubernatis, J.E.

    1985-01-01

    The author was asked by the meeting organizers to review and assess the developments over the past ten or so years in elastic wave scattering methods and to suggest areas of future research opportunities. He highlights the developments, focusing on what he feels were distinct steps forward in our theoretical understanding of how elastic waves interact with flaws. For references and illustrative figures, he decided to use as his principal source the proceedings of the various annual Reviews of Progress in Quantitative Nondestructive Evaluation (NDE). These meetings have been the main forum not only for presenting results of theoretical research but also for demonstrating the relevance of the theoretical research for the design and interpretation of experiment. In his opinion a quantitative NDE is possible only if this relevance exists, and his major objective is to discuss and illustrate the degree to which relevance has developed

  18. Calculation of the mean scattering angle, the logarithmic decrement and its mean square

    International Nuclear Information System (INIS)

    Bersillon, O.; Caput, B.

    1984-06-01

    The calculation of the mean scattering angle, the logarithmic decrement and its mean square, starting from the Legendre polynomial expansion coefficients of the relevant elastic scattering angular distribution, is numerically studied with different methods, one of which is proposed for the usual determination of these quantities which are present in the evaluated data files ENDF [fr

  19. A mechanical velocity selector for a small angle scattering instrument on a pulsed neutron source

    International Nuclear Information System (INIS)

    Meardon, B.H.; Stewart, R.J.; Williams, W.G.

    1978-11-01

    Design parameters and performance calculations are given for a straight-slot velocity selector which can be used for discriminating between elastic and inelastic scattering events in small angle scattering experiments on a pulsed neutron source. The selector has a high transmittance over the wavelength range 3 A 5%. (author)

  20. Elastic Scattering - Past, Present and Future

    International Nuclear Information System (INIS)

    Fazal-e-Aleem; Rashid, Haris; Tahir, Sohail Afzal

    2007-01-01

    Various aspects of elastic and diffractive scattering have been studied at Fermilab and CERN. Search for more results is ongoing at RHIC and planned at LHC. In this talk, we review the progress made so far and elaborate future prospects. Theoretical study focuses on the analysis of the available data in the light of predictions of various models with special emphasis on Eikonal picture and QCD inspired models. In the light of this analysis, various possibilities have been explored with reference to RHIC and LHC measurements

  1. Elastic hadron scattering and optical theorem

    CERN Document Server

    Lokajicek, Milos V.; Prochazka, Jiri

    2014-01-01

    In principle all contemporary phenomenological models of elastic hadronic scattering have been based on the assumption of optical theorem validity that has been overtaken from optics. It will be shown that the given theorem which has not been actually proved cannot be applied to short-ranged strong interactions in any case. The actual progress in description of collision processes might then exist only if the initial states are specified on the basis of impact parameter values of colliding particles and probability dependence on this parameter is established.

  2. Quasi-Elastic Light Scattering in Ophthalmology

    Science.gov (United States)

    Ansari, Rafat R.

    The eye is not just a "window to the soul"; it can also be a "window to the human body." The eye is built like a camera. Light which travels from the cornea to the retina traverses through tissues that are representative of nearly every tissue type and fluid type in the human body. Therefore, it is possible to diagnose ocular and systemic diseases through the eye. Quasi-elastic light scattering (QELS) also known as dynamic light scattering (DLS) is a laboratory technique routinely used in the characterization of macromolecular dispersions. QELS instrumentation has now become more compact, sensitive, flexible, and easy to use. These developments have made QELS/DLS an important tool in ophthalmic research where disease can be detected early and noninvasively before the clinical symptoms appear.

  3. Scattering of elastic waves by thin inclusions

    International Nuclear Information System (INIS)

    Simons, D.A.

    1980-01-01

    A solution is derived for the elastic waves scattered by a thin inclusion. The solution is asymptotically valid as inclusion thickness tends to zero with the other dimensions and the frequency fixed. The method entails first approximating the total field in the inclusion in terms of the incident wave by enforcing the appropriate continuity conditions on traction and displacement across the interface, then using these displacements and strains in the volume integral that gives the scattered field. Expressions are derived for the far-field angular distributions of P and S waves due to an incident plane P wave, and plots are given for normalized differential cross sections of an oblate spheroidal tungsten carbide inclusion in a titanium matrix

  4. Gluon exchange in elastic hadron scattering

    International Nuclear Information System (INIS)

    Jenkovszky, L.L.; Paccanoni, F.; Chikovani, Z.E.

    1991-01-01

    It is generally accepted that the Pomeron, which determines the long-range component of the strong interaction, corresponds to exchange of gluons with the corresponding quantum numbers (the minimum number of such gluons is two). The C-odd partner of the Pomeron, the odderon, corresponds to exchange of an odd number of gluons (three or more). By means of a model of the nonperturbative gluon propagator, restrictions are obtained on the parameters of two-gluon (Pomeron) and three-gluon (odderon) exchange in hadron scattering. In the framework of this model an interpretation is proposed for the various asymptotic regimes in the behavior of the total cross section and of the differential cross section of elastic scattering at high energies

  5. Elastic electron scattering from the DNA bases: cytosine and thymine

    International Nuclear Information System (INIS)

    Colyer, C J; Bellm, S M; Lohmanny, B; Blanco, F; Garcia, G

    2012-01-01

    Relative elastic differential cross sections for elastic scattering from cytosine and thymine have been measured using the crossed beam method. The experimental data are compared with theoretical cross sections calculated by the screen corrected additivity rule method.

  6. Vector analyzing power in elastic electron-proton scattering

    International Nuclear Information System (INIS)

    Diaconescu, L.; Ramsey-Musolf, M.J.

    2004-01-01

    We compute the vector analyzing power (VAP) for the elastic scattering of transversely polarized electrons from protons at low energies using an effective theory of electrons, protons, and photons. We study all contributions through second order in E/M, where E and M are the electron energy and nucleon mass, respectively. The leading-order VAP arises from the imaginary part of the interference of one- and two-photon exchange amplitudes. Subleading contributions are generated by the nucleon magnetic moment and charge radius as well as recoil corrections to the leading-order amplitude. Working to O(E/M) 2 , we obtain a prediction for A n that is free of unknown parameters and that agrees with the recent measurement of the VAP in backward angle ep scattering

  7. Two-photon exchange in elastic electron-nucleon scattering

    International Nuclear Information System (INIS)

    Blunden, P.G.; Melnitchouk, W.; Tjon, J.A.

    2005-01-01

    A detailed study of two-photon exchange in unpolarized and polarized elastic electron-nucleon scattering is presented, taking particular account of nucleon finite size effects. Contributions from nucleon elastic intermediate states are found to have a strong angular dependence, which leads to a partial resolution of the discrepancy between the Rosenbluth and polarization transfer measurements of the proton electric to magnetic form factor ratio, G E /G M . The two-photon exchange contribution to the longitudinal polarization transfer P L is small, whereas the contribution to the transverse polarization transfer P T is enhanced at backward angles by several percent, increasing with Q 2 . This gives rise to a small, E /G M obtained from the polarization transfer ratio P T /P L at large Q 2 . We also compare the two-photon exchange effects with data on the ratio of e + p to e - p cross sections, which is predicted to be enhanced at backward angles. Finally, we evaluate the corrections to the form factors of the neutron and estimate the elastic intermediate state contribution to the 3 He form factors

  8. np elastic scattering analyzing power characteristics at intermediate energies

    International Nuclear Information System (INIS)

    Abegg, R.; Davis, C.A.; Delheij, P.P.J.; Green, P.W.; Greeniaus, L.G.; Healey, D.C.; Miller, C.A.; Rodning, N.L.; Wait, G.D.; Ahmad, M.; Cairns, E.B.; Coombes, G.H.; Lapointe, C.; McDonald, W.J.; Moss, G.A.; Roy, G.; Soukup, J.; Tkachuk, R.R.; Ye, Y.; Watson, J.W.

    1989-06-01

    Recent measurements of charge symmetry breaking in the np system at 477 MeV, and of A oonn for np elastic scattering at 220, 325 and 425 MeV also yield accurate analyzing power data. These data allow the energy dependence of the analyzing power zero-crossing angle and the slope of the analyzing power at the zero-crossing to be determined. The incident neutron energies span a region where the zero-crossing angle is strongly energy dependent (Ε n n > 350 MeV). The results are compared to current phase shift analysis predictions, recently published LAMPF data, and the predictions of the Bonn and Paris potentials. (Author) 13 refs., 2 tabs., 2 figs

  9. Spin entanglement in elastic electron scattering from lithium atoms

    Science.gov (United States)

    Bartschat, K.; Santos, S. Fonseca dos

    2017-04-01

    In two recent papers [Blum and Lohmann, Phys. Rev. Lett. 116, 033201 (2016), 10.1103/PhysRevLett.116.033201; Lohmann et al., Phys. Rev. A 94, 032331 (2016), 10.1103/PhysRevA.94.032331], the possibility of continuously varying the degree of entanglement between an elastically scattered electron and the valence electron of an alkali-metal target was discussed. To estimate how well such a scheme may work in practice, we present results for elastic electron scattering from lithium in the energy regime of 1 -5 eV and the full range of scattering angles 0∘-180∘ . The most promising regime for Bell correlations in this particular collision system are energies between about 1.5 and 3.0 eV, in an angular range around 110∘±10∘ . In addition to the relative exchange asymmetry parameter, we present the differential cross section that is important when estimating the count rate and hence the feasibility of experiments using this system.

  10. Folding models for elastic and inelastic scattering

    International Nuclear Information System (INIS)

    Satchler, G.R.

    1982-01-01

    The most widely used models are the optical model potential (OMP) for elastic scattering, and its generalization to non-spherical shapes, the deformed optical model potential (DOMP) for inelastic scattering. These models are simple and phenomenological; their parameters are adjusted so as to reproduce empirical data. Nonetheless, there are certain, not always well-defined, constraints to be imposed. The potential shapes and their parameter values must be reasonable and should vary in a smooth and systematic way with the masses of the colliding nuclei and their energy. One way of satisfying these constraints, without going back to a much more fundamental theory, is through the use of folding models. The basic justification for using potentials of the Woods-Saxon shape for nucleon-nucleus scattering, for example, is our knowledge that a nuclear density distribution is more-or-less constant in the nuclear interior with a diffuse surface. When this is folded with a short-range nucleon-nucleon interaction, the result is a similar shape with a more diffuse surface. Folding procedures allow us to incorporate many aspects of nuclear structure (although the nuclear size is one of the most important), as well as theoretical ideas about the effective interaction of two nucleons within nuclear matter. It also provides us with a means of linking information obtained from nuclear (hadronic) interactions with that from other sources, as well as correlating that from the use of different hadronic probes. Folding model potentials, single-folded potentials, and the double-folding model including applications to heavy-ion scattering are discussed

  11. Pair production in small angle Bhabha scattering

    International Nuclear Information System (INIS)

    Arbuzov, A.B.; Kuraev, Eh.A.; Merenkov, N.P.; Trentadue, L.

    1995-01-01

    The radiative corrections due to a pair production in the small angle high energy e + e - Bhabha scattering are considered. The corrections due to the production of virtual pairs as well as real soft and hard ones are calculated analytically. The collinear and semi-collinear kinematical regions of the hard pair production are taken into account. The results in the leading and next-to-leading logarithmic approximations provide the accuracy of Ο (0.1%). The results of numerical calculations show that the effects of pairs production are to be taken into account in the precise luminosity determination at LEP. 9 refs., 3 figs., 2 tabs

  12. Forward elastic scattering above the physical threshold

    Energy Technology Data Exchange (ETDEWEB)

    Avila, R.F. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Matematica, Estatistica e Computacao Cientifica; Menon, M.J. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin

    2006-07-01

    Making use of the 'extended derivative dispersion relations', recently introduced by Avila and Menon, we analyze forward elastic proton-proton and antiproton-proton scattering at any energy above the physical threshold ({radical}s=2m{sub p} {approx} 1,88 GeV). The analysis is based on an analytical parametrization for the total cross section with leading triple pole pomeron (high energies) and full nondegenerated secondary reggeons (intermediate and low energies). Experimental data on total cross section and the ratio r between the real and imaginary parts of the forward amplitude are simultaneously fitted with the CERN-Minuit code and energy cutoff at 4 GeV. We show that, the results are exactly the same as those obtained through standard integral dispersion relations. Physical implications of the results in the pomeron-reggeon context are also discussed. (author)

  13. Elastic scattering at the collider and beyond

    International Nuclear Information System (INIS)

    Henzi, R.

    1985-01-01

    Not only in hard but also in soft collisions have new, very interesting and somewhat puzzling phenomena been discovered, especially in total cross sections and connected with it in elastic scattering by the UA4 Collaboration at the CERN Collider. It has turned out that Dispersive Diffraction Theory (DDT) is quite useful for the theoretical analysis of such phenomena, especially if one has in mind to make predictions for what will happen at the future colliders. In this paper new results of DDT are presented, among them: the use of black spots to discuss saturation mechanisms for the Froissart-Martin bound; the possible emergence of Martin scaling; a missing link between geometric scaling and factorizing eikonal; the real part and the associated dip-shoulder dynamics; and the nature of the change of slope at low momentum transfer

  14. Coupled-channel optical calculation of electron-atom scattering: elastic scattering from sodium at 20 to 150 eV

    International Nuclear Information System (INIS)

    Bray, Igor; Konovalov, D.A.; McCarthy, I.E.

    1991-04-01

    A coupled-channel optical method for electron-atom scattering is applied to elastic electron-sodium scattering at energies of 20, 22.1, 54.4, 100, and 150 eV. It is demonstrated that the effect of all the inelastic channels on elastic scattering may be well reproduced by the 'ab initio' calculated complex non-local polarization potential. Whilst the experiments generally agree at small angles and therefore agree on the total elastic cross section, there is considerable discrepancy at intermediate and backward angles. 9 refs., 2 tabs., 1 fig

  15. Scattering angle-based filtering via extension in velocity

    KAUST Repository

    Kazei, Vladimir; Tessmer, Ekkehart; Alkhalifah, Tariq

    2016-01-01

    The scattering angle between the source and receiver wavefields can be utilized in full-waveform inversion (FWI) and in reverse-time migration (RTM) for regularization and quality control or to remove low frequency artifacts. The access to the scattering angle information is costly as the relation between local image features and scattering angles has non-stationary nature. For the purpose of a more efficient scattering angle information extraction, we develop techniques that utilize the simplicity of the scattering angle based filters for constantvelocity background models. We split the background velocity model into several domains with different velocity ranges, generating an

  16. Scattering angle-based filtering via extension in velocity

    KAUST Repository

    Kazei, Vladimir

    2016-09-06

    The scattering angle between the source and receiver wavefields can be utilized in full-waveform inversion (FWI) and in reverse-time migration (RTM) for regularization and quality control or to remove low frequency artifacts. The access to the scattering angle information is costly as the relation between local image features and scattering angles has non-stationary nature. For the purpose of a more efficient scattering angle information extraction, we develop techniques that utilize the simplicity of the scattering angle based filters for constantvelocity background models. We split the background velocity model into several domains with different velocity ranges, generating an

  17. Singularities of elastic scattering amplitude by long-range potentials

    International Nuclear Information System (INIS)

    Kvitsinsky, A.A.; Komarov, I.V.; Merkuriev, S.P.

    1982-01-01

    The angular peculiarities and the zero energy singularities of the elastic scattering amplitude by a long-range potential are described. The singularities of the elastic (2 → 2) scattering amplitude for a system of three Coulomb particles are considered [ru

  18. Support minimized inversion of acoustic and elastic wave scattering

    International Nuclear Information System (INIS)

    Safaeinili, A.

    1994-01-01

    This report discusses the following topics on support minimized inversion of acoustic and elastic wave scattering: Minimum support inversion; forward modelling of elastodynamic wave scattering; minimum support linearized acoustic inversion; support minimized nonlinear acoustic inversion without absolute phase; and support minimized nonlinear elastic inversion

  19. Anisotropy function for pion-proton elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Mohammad; Fazal-e-Aleem; Rashid, Haris

    1988-09-01

    By using the generalised Chou-Yang model and the experimental data on ..pi../sup -/p elastic scattering at 200 GeV/c, the anisotropy function which reflects the non-isotropic nature of elastic scattering is computed for the reaction ..pi../sup -/p -> ..pi../sup -/p.

  20. Proton-proton elastic scattering at ultrahigh energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Shaukat, M.A.; Fazal-e-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)

    1981-05-30

    The authors use a geometrical model of high-energy pp elastic scattering as proposed by Chou and Yong to analyse experimental data available at present and consider the predictions of the dipole pomeron model for pp elastic scattering at ultrahigh energies. Theoretical results for differential cross sections are compared with experimental data.

  1. Anisotropy function for proton-proton elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Mohammad; Fazal-e-Aleem; Azhar, I.A. (Punjab Univ., Lahore (Pakistan). Centre for High Energy Physics)

    1990-07-01

    By using the generalized Chou-Yang model and the experimental data on pp elastic scattering at 53 GeV, the anisotropy function which reflects the non-isotropic nature of elastic scattering is computed for the reaction pp{yields}pp. (author).

  2. Anisotropy function for proton-proton elastic scattering

    International Nuclear Information System (INIS)

    Saleem, Mohammad; Fazal-e-Aleem; Azhar, I.A.

    1990-01-01

    By using the generalized Chou-Yang model and the experimental data on pp elastic scattering at 53 GeV, the anisotropy function which reflects the non-isotropic nature of elastic scattering is computed for the reaction pp→pp. (author)

  3. Anisotropy function for pion-proton elastic scattering

    International Nuclear Information System (INIS)

    Saleem, Mohammad; Fazal-e-Aleem; Rashid, Haris

    1988-01-01

    By using the generalised Chou-Yang model and the experimental data on π - p elastic scattering at 200 GeV/c, the anisotropy function which reflects the non-isotropic nature of elastic scattering is computed for the reaction π - p → π - p. (author)

  4. Optical model theory of elastic electron- and positron-atom scattering at intermediate energies

    International Nuclear Information System (INIS)

    Joachain, C.J.

    1977-01-01

    It is stated that the basic idea of the optical model theory is to enable analysis of the elastic scattering of a particle from a complex target by replacing the complicated interactions between the beam and the target by an optical potential, or pseudopotential, in which the incident particle moves. Once the optical potential is determined the original many-body elastic scattering problem reduces to a one-body situation. The resulting optical potential is, however, a very complicated operator, and the formal expressions obtained from first principles for the optical potential can only be evaluated approximately in a few simple cases, such as high energy elastic hadron-nucleus scattering, for the the optical potential can be expressed in terms of two-body hadron-nucleon amplitudes, and the non-relativistic elastic scattering of fast charged particles by atoms. The elastic scattering of an electron or positron by a neutral atom at intermediate energies is here considered. Exchange effects between the projectile and the atomic electrons are considered; also absorption and polarisation effects. Applications of the full-wave optical model have so far only been made to the elastic scattering of fast electrons and positrons by atomic H, He, Ne, and Ar. Agreements of the optical model results with absolute measurements of differential cross sections for electron scattering are very good, an agreement that improves as the energy increases, but deteriorates quickly as the incident energy becomes lower than 50 eV for atomic H or 100 eV for He. For more complex atoms the optical model calculations also appear very encouraging. With regard to positron-atom elastic scattering the optical model results for positron-He scattering differ markedly at small angles from the corresponding electron-He values. It would be interesting to have experimental angular distributions of positron-atom elastic scattering in order to check predictions of the optical model theory. (U.K.)

  5. Measurements of sin2 θ/sub w/ from studies of the elastic scattering of neutrinos by protons and electrons

    International Nuclear Information System (INIS)

    Mann, A.K.

    1986-01-01

    This talk is intended as a brief report on studies of the elastic scattering of neutrinos by protons and electrons. Measurements of the ratios of muon antineutrino and muon neutrino elastic scattering on protons, and the corresponding ratio for elastic scattering on electrons minimize systematic experimental errors, and lead directly to values of the fundamental parameter of the electroweak interaction, the Weinberg Angle, with minimal ambiguity. Accordingly, the principal motivation in carrying out these studies was the desire to obtain and compare precise values of the Weinberg Angle from both the semileptonic and leptonic reactions as still another test of the basic validity of the standard electroweak theory. 10 refs., 11 figs

  6. Magnetic effects in the paraxial regime of elastic electron scattering

    Science.gov (United States)

    Edström, Alexander; Lubk, Axel; Rusz, Ján

    2016-11-01

    Motivated by a recent claim [Phys. Rev. Lett. 116, 127203 (2016), 10.1103/PhysRevLett.116.127203] that electron vortex beams can be used to image magnetism at the nanoscale in elastic scattering experiments, using transmission electron microscopy, a comprehensive computational study is performed to study magnetic effects in the paraxial regime of elastic electron scattering in magnetic solids. Magnetic interactions from electron vortex beams, spin polarized electron beams, and beams with phase aberrations are considered, as they pass through ferromagnetic FePt or antiferromagnetic LaMnAsO. The magnetic signals are obtained by comparing the intensity over a disk in the diffraction plane for beams with opposite angular momentum or aberrations. The strongest magnetic signals are obtained from vortex beams with large orbital angular momentum, where relative magnetic signals above 10-3 are indicated for 10 ℏ orbital angular momentum, meaning that relative signals of one percent could be expected with the even larger orbital angular momenta, which have been produced in experimental setups. All results indicate that beams with low acceleration voltage and small convergence angles yield stronger magnetic signals, which is unfortunately problematic for the possibility of high spatial resolution imaging. Nevertheless, under atomic resolution conditions, relative magnetic signals in the order of 10-4 are demonstrated, corresponding to an increase with one order of magnitude compared to previous work.

  7. ZZ ELAST2, Database of Cross Sections for the Elastic Scattering of Electrons and Positrons by Atoms

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Historical background and information: This database is an extension of the earlier database, 'Elastic Scattering of Electrons and Positrons by Atoms: Database ELAST', Report NISTIR 5188, 1993. Cross sections for the elastic scattering of electrons and positrons by atoms were calculated at energies from 1 KeV to 100 MeV. Up to 10 MeV the RELEL code of Riley was used. Above 10 MeV the ELSCAT code was used, which calculated the factored cross sections and evaluates the screening factor Kscr in WKB approximation. 2 - Application of the data: This database was developed to provide input for the transport codes, such as ETRAN, and includes differential cross sections, the total cross section, and the transport cross sections. In addition, a code TRANSX is provided that generates transport cross section of arbitrary order needed as input for the calculation of Goudsmit-Saunderson multiple-scattering angular distribution 3 - Source and scope of data: The database includes cross sections at 61 energies for electrons and 41 energies from positrons, covering the energy region from 1 KeV to 100 MeV. The number of deflection angles included in the database is 314 angles. Total and transport cross sections are also included in this package. The data files have an extension (jjj) that represents the atomic number of the target atom. The database includes auxiliary data files that enable the ELASTIC code to include the following optional modifications: (i) the inclusion of the exchange correction for electrons scattering; (ii) the conversion of the cross sections for scattering by free atoms to cross sections for scattering by atoms in solids; (iii) ti reduction of the cross sections at large angles and at high energies when the nucleus is treated as an extended rather than a point charge

  8. Analysing power for quasi-elastic pp scattering in carbon and for elastic pp scattering on free protons

    International Nuclear Information System (INIS)

    Bystricky, J.; Deregel, J.; Lehar, F.

    1984-01-01

    The ratio of the analysing powers for quasi-elastic pp scattering in carbon and for elastic scattering on free protons was measured from T = 0.52 to 2.8 GeV by scattering of the SATURNE II polarized proton beam on carbon and CH 2 . It was found to have a maximum at about 0.8 GeV. The energy dependence for quasi-elastic scattering on carbon had not been measured before above 1 GeV. The observed effect was not expected from simple models

  9. Small-angle scattering in materials science

    International Nuclear Information System (INIS)

    Paris, O.; Fratzl, P.

    1999-01-01

    Small-angle scattering (SAS) of X-rays (SAXS) or neutrons (SANS) are a powerful tools to investigate inhomogeneities in the size range from ∼ 1 nm to ∼ 100 nm. Typical examples in materials science are pores, precipitates in metal alloys or nano-particles in composites. Frequently, these inhomogeneities are not spherical and their alignment is not random, quite in contrast to many other applications of SAS. This requires the use of pinhole geometry and area detectors for the experimental set-up. The present paper focuses on evaluation techniques of two-dimensional (2D) SAS-patterns from some materials investigated by the authors, i.e. metal alloys, carbon composites, wood and bone. Although the examples shown are derived exclusively from SAXS measurements, most of them could stem from SANS measurements as well. (author)

  10. Spin asymmetries for elastic scattering in krypton at intermediate energies

    International Nuclear Information System (INIS)

    Went, M R; McEachran, R P; Lohmann, Birgit; MacGillivray, W R

    2002-01-01

    Measurements of the spin asymmetry for elastic scattering of spin-polarized electrons from krypton are presented, for incident energies in the range 20-200 eV. The measured spin asymmetries are generally small, and do not exceed 0.25 in magnitude at any energy or angle. The experimental results are compared with calculated values of the Sherman function, obtained by solution of the Dirac-Fock equations. The calculations have been performed with the inclusion of polarization and dynamic distortion potentials, and with the addition of an absorption potential to model inelastic processes. For incident energies of 50, 60 and 65 eV, the calculated values of the Sherman function are shown to be extremely sensitive to the details of the model, with the addition of the absorption potential producing dramatically different results

  11. Elastic and inelastic electron scattering on tensor polarized deuteron

    International Nuclear Information System (INIS)

    Zevakov, S.A.; Barkov, L.M.; Arenkhovel', Kh.

    2006-01-01

    The components T 20 and T 21 of the tensor analysis capability of the elastic electron scattering on deuteron are measured in the momentum transfer range of 8.4-21.6 fm -2 . The form factors of deuteron G C and G Q are defined in the momentum transfer range where the monopole charge form factor G C turns into zero. The preliminary measuring results of T 20 , T 21 and T 22 of the deuteron photodisintegration reaction in the photon energy range of 25-500 MeV and the proton departure angles equal to 20 deg-40 deg and 75 deg-105 deg are presented. The experimental results are compared with the theoretical predictions [ru

  12. Elastic and inelastic photon scattering on the atomic nuclei

    International Nuclear Information System (INIS)

    Piskarev, I.M.

    1982-01-01

    Works on investigation of elastic and inelastic scattering of photons on heavy and intermediate nuclei are briefly reviewed. Theoretical problems of nuclear and electron Tompson, Releev and Delbrueck scatterings as well as nuclear resonance scattering are briefly discussed. It is shown that differential cross section of coherent elastic scattering is expressed by means of partial amplitudes of shown processes. Experimental investigations on elastic scattering in the region of threshold energies of photonucleon reactions are described. Problems of theoretical description of elastic scattering in different variants of collective models are considered. Discussed are works, investigating channels of inelastic photon scattering with excitation of nuclear Raman effect. It is noted that to describe channels of inelastic photon scattering it is necessary to use models, that correctly regard the microscopic structure of giant resonance levels to obtain information on the nature of these levels. Investigations of processes of photon elastic and inelastic scattering connected with fundamental characteristics of atomic nucleus, permit to obtain valuable spectroscopic information on high-lying levels of nucleus. Detail investigation of photon scattering in a wide range of energies is necessary [ru

  13. Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave

    Science.gov (United States)

    Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan

    2015-08-01

    We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell’s law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications.

  14. Glancing-angle scattering of fast ions at crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mannami, Michihiko; Narumi, Kazumasa; Katoh, Humiya; Kimura, Kenji [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    Glancing angle scattering of fast ions from a single crystal surface is a novel technique to study ion-surface interaction. Results of recent studies of ion-surface interaction are reviewed for ions with velocities faster than the Fermi velocity of solid. For the ions with velocities less than the Fermi velocity of target valence electrons the ion-surface interaction shows a new aspect where only the valence electrons of target solid participate in the stopping processes. It will show that the position-dependent stopping power of a surface for these ions governed by the elastic collisions of valence electrons and the ions. A method is proposed from this position-dependent stopping power to derived the electron density distribution averaged over the plane parallel to the surface. (author)

  15. Intermediate-energy proton- 4He elastic scattering with a microscopic optical potential

    International Nuclear Information System (INIS)

    Alexander, Y.; Landau, R.H.

    1979-01-01

    A microscopic, momentum space, optical potential calculation of elastic p- 4 He scattering is compared with 100-200 MeV data over the full angular range. The least sophisticated potential explains the occurrence and energy dependence of the back angle peak. (Auth.)

  16. Theory of atom displacements induced by fast electron elastic scattering in solids

    International Nuclear Information System (INIS)

    Cruz, C. M.; Pinera, I.; Abreu, Y.; Leyva, A.

    2006-01-01

    Present contribution deals with the theoretical description of the conditions favoring the occurrence of single fast electron elastic scattering in solids, leading to the displacement of atoms from their crystalline sites. Firstly, the Moliere-Bethe-Goudsmit-Saunderson theory of Multiple Electron Scattering is applied, determining the limiting angle θ l over which the single electron elastic scattering prevails over the multiple one, leading to the evaluation of the total macroscopic cross-section for single electron elastic scattering on the basis of the Mott-Rutherford differential cross-section. On the basis of single electron elastic scattering by atoms in the solid matrix, it was determined the relative number of Atom Displacements produced by the Gamma Radiation as a primary act, as well as the energy and linear momentum of the ejected atoms. The statistical distributions of single electron elastic scattering and of those inducing Atom Displacements at different electron initial energies in comparison with the others electron inelastic scattering channels are discussed, where the statistical sampling methods on the basis of the rejection one where applied simulating different practical situations. (Full text)

  17. Elastic scattering of 12C by 28Si

    International Nuclear Information System (INIS)

    Cheng, C.M.; Maher, J.V.; Chiou, M.S.; Jordan, W.J.; Peng, J.C.; Oelert, W.; Gunn, G.D.; Snyder, F.D.

    1979-01-01

    12 C + 28 Si elastic scattering angular distributions have been measured at twenty-three bombarding energies over a range 19 MeV 0 in the bombarding energy range 30--40 MeV. No optical potential has been found to give a good account of all the data; the best potential is a surface transparent Woods-Saxon potential which has energy dependences for both real and imaginary well depths. Examination of potentials which give reasonably good fits to the 36 MeV data shows that, although these potentials agree on a real well depth at a reasonable ''strong absorption radius,'' they can have quite different Argand diagrams: even in the range of the most sensitive partial waves. A Regge analysis finds several equally good families of Regge parameters for the same choice of background potential, but larger angle data might allow this ambiguity to be lifted. A Breit-Wigner analysis gives results which are at least partially consistent with the resonance parameters reported by Ost et al. Coupled-channel calculations with a 20% reduction of real and imaginary optical model well depths give a good account of inelastic scattering to the 28 Si 2 + state while leaving the elastic scattering essentially unchanged from the predictions of the unmodified one-channel optical model. In the energy range of this study the grazing partial wave is found to be the same as the most important exit channel partial wave of the 24 Mg( 16 O, 12 C) 28 Si ground state transition

  18. Pion elastic and inelastic scattering from 15N

    International Nuclear Information System (INIS)

    Saunders, D.P.

    1991-12-01

    Data were obtained on the Clinton P. Anderson Los Alamos Meson Physics Facility Energetic Pion Channel and Spectrometer for elastic and inelastic pion scattering from ground state 15 N nuclei. States observed here included those of 0.0, 5.27, 6.32, 7.16, 7.30, 7.57, 8.31, 8.57, 9.15, 9.76, 9.9, 10.7, 11.3, 11.9, 12.5, 12.9, 13.1, 14.1, 14.4, 14.6, 15.0, 16.5, 16.9, 17.2, 17.6, 18.3, 18.7, and 18.9 MeV excitation energies. Angular distributions were obtained for scattering at angles from 25 degree to 90 degree in 5 degree increments with an incident pion energy of 164 MeV. Optical model analyses of the elastic (0 MeV) angular distributions with equal point proton and neutron densities in both momentum and coordinate space formulations accurately predict the data, although the two formulations require different energy shifts to do so. This difference is thought to be a result of the more accurate nonlocal representation of the nuclear potential in the momentum space code. Additional spectra were obtained for scattering at constant momentum transfers of .94 and 1.57 fm -1 in order to generate constant momentum transfer excitation functions. Use of these excitation functions, σ(π + )/σ(π - ) ratios, and shell model DWIA calculations allowed identification of several excited states having shell-model-like, single particle-hole, pure spin-flip excitations. Shell model and collective model DWIA calculations, as well as the q = .94 and 1.57 fm -1 excitation functions and the σ(π + )/σ(π - ) ratios indicate that the other states are generally well represented by a shell model description with collective enhancements

  19. Simulated small-angle scattering patterns for a plastically deformed model composite material

    NARCIS (Netherlands)

    Shenoy, V.B.; Cleveringa, H.H.M.; Phillips, R.; Giessen, E. van der; Needleman, A.

    2000-01-01

    The small-angle scattering patterns predicted by discrete dislocation plasticity versus local and non-local continuum plasticity theory are compared in a model problem. The problem considered is a two-dimensional model composite with elastic reinforcements in a crystalline matrix subject to

  20. Depolarization in the elastic scattering of 17 MeV polarized protons from 9Be

    International Nuclear Information System (INIS)

    Baker, M.P.

    1975-01-01

    The Wolfenstein depolarization parameter D(theta) was measured for the elastic scattering of 17-MeV protons from 9 Be at laboratory scattering angles between 70 0 and 120 0 in 10 0 steps with uncertainties ranging from 0.05 to 0.07. The reaction was initiated by polarized protons and the polarization of those protons elastically scattered by the 9 Be analyzed using a high-resolution, silicon polarimeter. Several of the measured values of D(theta) differed significantly from unity, indicating non-zero probability for proton spin-flip in the elastic scattering process. Theoretical estimates of the depolarization-parameter angular distribution have been made using a multipole expansion of the elastic-scattering amplitude in terms of the amount of angular momentum transferred to the target nucleus during the scattering process. Here the J = 0, 1 and 2 contributions to the scattering amplitude have been explicitly treated for the scattering from 9 Be(I = 3 / 2 ). The J = 0 terms are calculated using the standard, spherical optical-model. The J = 1 and 2 terms can be calculated using DWBA. Both spherical and tensor forms are considered for the J = 1 interaction. The spin-flip probabilities predicted assuming reasonable strengths for the J = 1 potentials are much smaller than those observed experimentally. The J = 2 contribution to the spin-flip probability is calculated assuming a rotational model for 9 Be. Predictions of the J = 2, elastic spin-flip probability are substantially larger than the predictions for the J = 1 contribution and are in rough agreement with the present data. The results of recent coupled-channels calculations also support the conclusion that large elastic spin-flip probabilities can be produced by the J = 2 term in the elastic scattering amplitude

  1. Polarization measurements in p-p elastic scattering between 398 and 572 MeV

    International Nuclear Information System (INIS)

    Aebischer, D.; Favier, B.; Greeniaus, L.G.; Hess, R.; Junod, A.; Lechanoine, C.; Nikles, J.C.; Rapin, D.; Werren, D.W.

    1977-01-01

    Measurements of the analyzing power for p-p elastic scattering at 398, 455, 497, 530, and 572 MeV are reported. A system of multiwire proportional chambers placed directly in a polarized beam was used to observe the angular region 1.5 0 0 . An increase in P(theta) is observed as a function of both scattering angle and incident kinetic energy. Electromagnetic-nuclear interference is used to obtain direct information in the nuclear interaction. (Auth.)

  2. Small-angle neutron scattering technique in liquid crystal studies

    International Nuclear Information System (INIS)

    Shahidan Radiman

    2005-01-01

    The following topics discussed: general principles of SAS (Small-angle Neutron Scattering), liquid crystals, nanoparticle templating on liquid crystals, examples of SAS results, prospects of this studies

  3. Coupled channels effects in heavy ion elastic scattering

    International Nuclear Information System (INIS)

    Bond, P.D.

    1977-01-01

    The effects of inelastic excitation on the elastic scattering of heavy ions are considered within a coupled channels framework. Both Coulomb and nuclear excitation results are applied to 18 O + 184 W and other heavy ion reactions

  4. Forward elastic scattering of electrons by hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Garibotti, C.R. (Instituto de Fisica Teorica, R. Pamplona 145, Sao Paulo (Brazil)); Massaro, P.A. (Bari Univ. (Italy). Ist. di Fisica)

    1978-01-11

    The available theoretical and experimental values for the elastic, inelastic and ionization cross-sections of electrons by hydrogen atoms are used to obtain the total cross-section. The optical theorem and a dispersion relation are used to calculate the forward e-H scattering amplitude for medium and high energies. Using this quantity the reliability of the Born expansion for elastic e-H scattering is tested.

  5. Soller collimators for small angle neutron scattering

    International Nuclear Information System (INIS)

    Crawford, R.K.; Epperson, J.E.; Thiyagarajan, P.

    1989-01-01

    The neutron beam transmitted through the soller collimators on the SAD (Small Angle Diffractometer) instrument at IPNS (Intense Pulsed Neutron Source) showed wings about the main beam. These wings were quite weak, but were sufficient to interfere with the low-Q scattering data. General considerations of the theory of reflection from homogeneous absorbing media, combined with the results from a Monte Carlo simulation, suggested that these wings were due to specular reflection of neutrons from the absorbing material on the surfaces of the collimator blades. The simulations showed that roughness of the surface was extremely important, with wing background variations of three orders of magnitude being observed with the range of roughness values used in the simulations. Based on the results of these simulations, new collimators for SAD were produced with a much rougher 10 B-binder surface coating on the blades. These new collimators were determined to be significantly better than the original SAD collimators. This work suggests that any soller collimators designed for use with long wavelengths should be fabricated with such a rough surface coating, in order to eliminate (or at least minimize) the undesirable reflection effects which otherwise seem certain to occur. 4 refs., 6 figs

  6. Uniqueness in inverse elastic scattering with finitely many incident waves

    International Nuclear Information System (INIS)

    Elschner, Johannes; Yamamoto, Masahiro

    2009-01-01

    We consider the third and fourth exterior boundary value problems of linear isotropic elasticity and present uniqueness results for the corresponding inverse scattering problems with polyhedral-type obstacles and a finite number of incident plane elastic waves. Our approach is based on a reflection principle for the Navier equation. (orig.)

  7. Quasi-elastic shadowing in nucleus-nucleus elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Dymarz, R; Malecki, A [Institute of Nuclear Physics, Krakow (Poland); Gluski, K [Institute of Nuclear Research, Warsaw (Poland); Picchi, P [Turin Univ. (Italy). Ist. di Fisica; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica)

    1979-01-06

    The complete evaluation of the Glauber multiple-scattering series for nucleus-nucleus collisions is a very difficult task and that is why various approximate formulae were proposed. In this work some of these approximations are discussed.

  8. Alignment creation by elastic electron scattering. A quantum treatment

    International Nuclear Information System (INIS)

    Csanak, G.; Kilcrease, D.P.; Fursa, D.V.; Bray, I.

    2004-01-01

    Alignment creation by elastic heavy particle scattering has been studied by many authors. A formula for the alignment creation cross section by elastic scattering is obtained by quantum-mechanical methods. The formula obtained differs from the analogous formula relevant for inelastic electron scattering. In the case of a J=1 to J=1 transition according to the inelastic formula, the alignment created is proportional to the quantity σ (1) - σ (0) where σ (M) is the excitation cross section of the M magnetic sublevel and thus σ (1) = (σ 1-1 + σ 10 + σ 11 )/3 and σ (0) = (σ 0-1 +σ 00 + σ 01 )/3 where σ MM' refers to the cross section of the electron impact induced M' to M transition. In the elastic scattering alignment creation formula obtained in the case of a J=1 to J=1 elastic scattering, the alignment created is proportional to the quantity q(1) - q(0) where q(1) σ (1) - σ 11 /3 and q(0) = σ 00 /3. Thus in obtaining q(M), the elastic scattering cross section by the M magnetic sublevel, σ MM' , is subtracted. This derivation considered only direct scattering, i.e. the incident electron was considered distinguishable from the target electrons. (Y.Kazumata)

  9. Study of elastic scattering between heavy ions. Reaction channel influence

    International Nuclear Information System (INIS)

    Doubre, Hubert.

    1978-01-01

    The role of absorption on the behavior of heavy ion angular distributions and excitaton functions has been investigated on light and medium mass systems. Comparison between 20 Ne+ 12 C and 16 O+ 16 O systems which lead to the same compound nucleus, shows that it originates from the direct channels strongly coupled to the entrance channel. Structures in the excitation functions occur for almost all the light systems and it is shown that the damping observed for heavier systems such as 40 Ca+ 40 Ca, essentially results on the predominance of Coulomb effects which hide the nuclear structure effects. Thus no valuable information on the details of S-matrix can be extracted for such an heavy system. A coherent description of the elastic scattering, based on a splitting of the scattering amplitude into two components, the modulus of each component varying smoothly as a function of energy and angle. The interference between these sub-amplitudes give rise to interference effects in angular distributions and excitation functions. The study of the main reaction channels of the 40 Ca+ 40 Ca system - i.e. deep inelastic reactions and fusion - also shows that the closed-shell nature of the interacting nuclei does not play any role in these processes due to the excitation processes in the first stage of the reactions which destroy the specific structure of the nuclei [fr

  10. The recoil proton polarization in πp elastic scattering

    International Nuclear Information System (INIS)

    Seftor, C.J.

    1988-09-01

    The polarization of the recoil proton for π + p and π - p elastic scattering has been measured for various angles at 547 MeV/c and 625 MeV/c by a collaboration involving The George Washington University; the University of California, Los Angeles; and Abilene Christian University. The experiment was performed at the P 3 East experimental area of the Los Alamos Meson Physics Facility. Beam intensities varied from 0.4 to 1.0 x 10 7 π - 's/sec and from 3.0 to 10.0 x 10 7 π + 's/sec. The beam spot size at the target was 1 cm in the horizontal direction by 2.5 cm in the vertical direction. A liquid-hydrogen target was used in a flask 5.7 cm in diameter and 10 cm high. The scattered pion and recoil proton were detected in coincidence using the Large Acceptance Spectrometer (LAS) to detect and momentum analyze the pions and the JANUS recoil proton polarimeter to detect and measure the polarization of the protons. Results from this experiment are compared with previous measurements of the polarization, with analyzing power data previously taken by this group, and to partial-wave analysis predictions. 12 refs., 53 figs., 18 tabs

  11. Tensor polarization in pion-deuteron elastic scattering

    International Nuclear Information System (INIS)

    Holt, R.J.; Freeman, W.S.; Geesaman, D.F.

    1985-01-01

    During this year the analysis of measurements of t 20 in π-d elastic scattering was completed and a final summary manuscript was prepared for publication. The results consists of angular distributions of the deuteron tensor polarization in π-d elastic scattering at pion energies of 140, 180, 220 and 256 MeV. Theoretical calculations in which the effects of pion absorption on the elastic channel are small reproduce the data. No rapid angular or energy dependence was found near a pion energy of 134 MeV, where another experiment at SIN has suggested the existence of dibaryon resonances

  12. Elastic scattering with the MINERνA experiment

    International Nuclear Information System (INIS)

    Ziemer, Benjamin P

    2013-01-01

    The Main Injector Experiment ν-A (MINERνA) located at Fermi National Laboratory will measure neutrino cross sections, nuclear effects from a broad range of nuclear targets and a variety of other neutrino interactions. Neutrino elastic scattering will be one of the first focuses of the MINERA collaboration; these measurements will be an important input to current and future neutrino oscillation experiments. Results of the charged current quasi-elastic channel exposure in anti-neutrino NuMI running are presented. Future elastic scattering results, both charged current and neutral current, in anti-neutrino and neutrino exposures are also discussed.

  13. Do we understand elastic scattering up to LHC energies?

    International Nuclear Information System (INIS)

    Soffer, Jacques

    2013-01-01

    The measurements of high energy (bar sign)pp and pp elastic at ISR, SPS, and Tevatron colliders have provided usefull informations on the behavior of the scattering amplitude. A large step in energy domain is accomplished with the LHC collider presently running, giving a unique opportunity to improve our knowledge on the asymptotic regime of the elastic scattering amplitude and to verify the validity of our theoretical approach, to describe the total cross section σ tot (s), the total elastic cross section σ el (s), the ratio of the real to imaginary parts of the forward amplitude ρ(s) and the differential cross section dσ (s,t)/dt.

  14. Elastic ππ scattering to two loops

    International Nuclear Information System (INIS)

    Bijnens, J.; Colangelo, G.; Gasser, J.; Ecker, G.; Sainio, M.E.

    1995-11-01

    We evaluate analytically the elastic ππ scattering amplitude to two loops in chiral perturbation theory and give numerical values for the two S-wave scattering lengths and for the phase shift difference δ 0 0 -δ 1 1 . (author)

  15. Elastic scattering of low energy γ-rays

    International Nuclear Information System (INIS)

    Whittingham, I.B.

    1978-01-01

    The current status of the theory of the elastic scattering of low energy γ rays is reviewed and a detailed analysis of the theoretical background to the recent calculation of Rayleigh scattering by W.R.Johnson and co-workers is presented

  16. New results of nuclear transparency to wide angle quasielastic scattering

    International Nuclear Information System (INIS)

    Mardor, I.

    1998-01-01

    We measured simultaneously pp elastic and quasi-elastic (p, 2p) scattering in hydro- gen, deuterium and carbon at incoming momenta of 5.9 and 7.5 GeV/c and center- of-mass scattering angles in the range 83.7 degrees to 90 degrees. We extracted the cross section ratios of quasi-elastic 12 C(p, 2p) to elastic 1 H(p, 2p) (C/H) and quasi-elastic D(p, 2p) to elastic 1 H(p, 2p) (D/H). The experiment was performed at the Brookhaven National Laboratory AGS accelerator using the EVA detector (experiment E850). For a detailed description of the experiment and the analysis. We determined that at incoming momentum of 5.9 GeV/c, the C/H ratio increases by a factor of 2 from θ cm = 89 degrees to θ cm 85 degrees, while at 7.5 GeV/c it is consistent with being flat. Further, at θ cm = 89 degrees the C/H ratio increases from 5.9 GeV/c to 7.5 GeV/c by more than 50%, while for lower θ cm the incoming momentum dependence is consistent with being flat. The rise of the C/H ratio with incoming momentum is similar to that observed in the previous measurement of the C/H ratio at θ cm near 90 degrees. The dependence of the C/H ratio on θ cm , was observed in our experiment for the first time. The D/H ratio does not depend on incoming momentum and θ cm Its absolute value is consistent with unity. The D/H ratio was measured in our experiment for the first time. The ratios discussed above are directly related to the nuclear transparency of 12 C and D. Nuclear transparency is a measure of the initial and final state interactions that the incoming and outgoing protons undergo before and after the main (p, 2p) reaction. The standard approach to nuclear transparency does not depend on the incoming momentum nor on θ cm in contradiction to the variation of the C/H ratio that we have observed. The incoming momentum dependence of the C/H ratio that we measured is similar to those of the inverse scaled pp differential cross section (s 10 (dσ/dt)) -1 where s and t are the Mandelstam variables

  17. Characterization of porous materials by small-angle scattering

    Indian Academy of Sciences (India)

    With the availability of ultra small-angle scattering instruments, one can investigate porous materials in the sub-micron length scale. Because of the increased accessible length scale vis-a-vis the multiple scattering effect, conventional data analysis procedures based on single scattering approximation quite often fail.

  18. Multiple small-angle neutron scattering studies of anisotropic materials

    CERN Document Server

    Allen, A J; Long, G G; Ilavsky, J

    2002-01-01

    Building on previous work that considered spherical scatterers and randomly oriented spheroidal scatterers, we describe a multiple small-angle neutron scattering (MSANS) analysis for nonrandomly oriented spheroids. We illustrate this with studies of the multi-component void morphologies found in plasma-spray thermal barrier coatings. (orig.)

  19. Elastic scattering of low-energy electrons from ammonia

    International Nuclear Information System (INIS)

    Alle, D.T.; Gulley, R.J.; Buckman, S.J.; Brunger, M.J.

    1992-01-01

    We report absolute differential cross section measurements for vibrationally elastic electron scattering from NH 3 at incident energies from 2-30 eV. The present results, from a crossed electron-molecular beam apparatus, represent the first comprehensive experimental attempt to quantify the elastic electron-NH 3 scattering process. At each energy studied we have integrated our differential cross section data to generate total elastic and elastic momentum transfer cross sections and a critical comparison of both our differential and integral cross sections against previous experiment and theory is provided. We also report our observation of a strong Feshbach resonance in the elastic channel at an energy of 5.59 ± 0.05 eV. (Author)

  20. Elastic scattering of positronium: Application of the confined variational method

    KAUST Repository

    Zhang, Junyi

    2012-08-01

    We demonstrate for the first time that the phase shift in elastic positronium-atom scattering can be precisely determined by the confined variational method, in spite of the fact that the Hamiltonian includes an unphysical confining potential acting on the center of mass of the positron and one of the atomic electrons. As an example, we study the S-wave elastic scattering for the positronium-hydrogen scattering system, where the existing 4% discrepancy between the Kohn variational calculation and the R-matrix calculation is resolved. © Copyright EPLA, 2012.

  1. Elastic scattering of positronium: Application of the confined variational method

    KAUST Repository

    Zhang, Junyi; Yan, Zong-Chao; Schwingenschlö gl, Udo

    2012-01-01

    We demonstrate for the first time that the phase shift in elastic positronium-atom scattering can be precisely determined by the confined variational method, in spite of the fact that the Hamiltonian includes an unphysical confining potential acting on the center of mass of the positron and one of the atomic electrons. As an example, we study the S-wave elastic scattering for the positronium-hydrogen scattering system, where the existing 4% discrepancy between the Kohn variational calculation and the R-matrix calculation is resolved. © Copyright EPLA, 2012.

  2. Importance of channel coupling for very large angle proton-nucleus scattering and the failure of the optical model

    International Nuclear Information System (INIS)

    Amado, R.D.; Sparrow, D.A.

    1984-01-01

    The importance of inelastic channels in proton-nucleus scattering grows with momentum transfer, q, so that for large q coupled channels are required. This happens when the elastic and inelastic cross sections become comparable. We incorporate these ideas in a simple analytic framework to explain the large angle p- 208 Pb elastic scattering data at 800 MeV for which standard optical model calculations have failed completely

  3. Dynamic. cap alpha. -transfer polarisation potentials and the large angle scattering of /sup 16/O + /sup 28/Si

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M S; Aleixo, A N; Canto, L F; Carrilho, P; Donangelo, R; Paula, L.S. de

    1987-07-01

    A closed expression is derived for the dynamic ..cap alpha..-transfer polarisation potential for heavy-ion elastic scattering. The back-angle angular distributions for the elastic scattering of /sup 16/O + /sup 28/Si obtained by adding this polarisation potential to the E-18 interaction are shown to be in good agreement with the data if an ..cap alpha..-transfer spectroscopic factor of 0.4 is used.

  4. Deuteron-deuteron elastic scattering at high energies

    International Nuclear Information System (INIS)

    Fazal-e-Aleem; Ali, S.

    1991-01-01

    The eikonal picture which has theoretical foundations in some areas of physics has been successful in explaining various aspects of elastic scattering at high energies. Chou and Yang first proposed a preliminary version of the eikonal model for hadron-hadron elastic scattering. The model is based on geometrical considerations in which hadrons are treated as extended objects. Elastic scattering then results from the propagation of attenuated wave function. By assuming that at high energies the scattering amplitude is purely imaginary and that the hadronic matter distribution is proportional to the charge distribution on protons, Durand and Lipes studied high energy pp scattering on the basis of this prestine model. Later on, the model was extended to other elastic reactions. However, a survey of literature shows that it has been successful only in the diffraction peak region. It has been shown that the pristine Chou-Yange model can explain the differential cross section for deuteron-deuteron elastic scattering at √s = 53 GeV in the diffraction peak region. In order to fit the large momentum transfer data, the generalized Chou-Yang model is used

  5. Fast Neutron Elastic and Inelastic Scattering of Vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Holmqvist, B; Johansson, S G; Lodin, G; Wiedling, T

    1969-11-15

    Fast neutron scattering interactions with vanadium were studied using time-of-flight techniques at several energies in the interval 1.5 to 8.1 MeV. The experimental differential elastic scattering cross sections have been fitted to optical model calculations and the inelastic scattering cross sections have been compared with Hauser-Feshbach calculations, corrected for the fluctuation of compound-nuclear level widths.

  6. Quantum mechanical study of elastic scattering and rotational excitation of CO by electrons

    Science.gov (United States)

    Onda, K.; Truhlar, D. G.

    1980-01-01

    Coupling calculations of differential, integral, and momentum transfer cross sections for pure elastic scattering and rotational excitation of CO by electron impact are reported. The calculations are based on a static charge distribution that has correct dipole and quadrupole moments, has cusps at the nuclei, and is augmented by an SCF treatment of charge polarization and a local approximation for exchange. The rotationally summed cross sections, with no adjustable parameters in the scattering calculation, are in reasonably good agreement with the experimental cross sections but are somewhat larger at small scattering angles.

  7. The polarization of MeV neutrons elastically scattered from 4He

    International Nuclear Information System (INIS)

    Bond, J.E.; Firk, F.W.K.

    1976-01-01

    The analyzing power of 4 He for neutron elastic scattering has been measured at four angles between 20 0 and 80 0 (lab) throughout the energy range 1.5-6.0 MeV using a double-scattering method. The intense flux of polarized neutrons was generated via the reactions Pb(γ, n)→ 12 C(n, n(pol.) 12 C, and the magnitude of the polarization of the neutron beam measured absolutely in a separate double-scattering experiment. Neutron energies were determined with a nanosecond time-of-flight spectrometer, and the generalized neutron spin-precession method was used to minimize systematic uncertainties. (Auth.)

  8. Elastic scattering research at a 1 MW long pulse spallation neutron source

    International Nuclear Information System (INIS)

    Crawford, R.K.

    1995-01-01

    The elastic scattering working group investigated instrumentation for powder diffraction, single-crystal diffraction, small-angle diffraction, and reflectometry. For this purpose, three subgroups were formed; one for powder diffraction and single-crystal diffraction, one for small-angle diffraction, and one for reflectometry. For the most part these subgroups worked separately, but for part of the time the reflectometry and small-angle diffraction subgroups met together to discuss areas of common interest. Contributors in each of these subgroups are indicated below along with the discussion of these subgroup deliberations

  9. Quasi-elastic Neutrino Scattering - an Overview

    International Nuclear Information System (INIS)

    Sobczyk, Jan T.

    2011-01-01

    A non-technical overview of charge current quasi-elastic neutrino interaction is presented. Many body computations of multinucleon ejection which is proposed to explain recent large axial mass measurements are discussed. A few comments on recent experimental results reported at NuInt11 workshop are included.

  10. Evolution of elastic x-ray scattering in laser-shocked warm dense lithium.

    Science.gov (United States)

    Kugland, N L; Gregori, G; Bandyopadhyay, S; Brenner, C M; Brown, C R D; Constantin, C; Glenzer, S H; Khattak, F Y; Kritcher, A L; Niemann, C; Otten, A; Pasley, J; Pelka, A; Roth, M; Spindloe, C; Riley, D

    2009-12-01

    We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly- alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z[over ] and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

  11. Evolution of elastic x-ray scattering in laser-shocked warm dense lithium

    International Nuclear Information System (INIS)

    Kugland, N. L.; Niemann, C.; Gregori, G.; Bandyopadhyay, S.; Spindloe, C.; Brenner, C. M.; Brown, C. R. D.; Constantin, C.; Glenzer, S. H.; Khattak, F. Y.; Kritcher, A. L.; Otten, A.; Pelka, A.; Roth, M.; Pasley, J.; Riley, D.

    2009-01-01

    We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-α photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 deg. using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

  12. Robust parameterization of elastic and absorptive electron atomic scattering factors

    International Nuclear Information System (INIS)

    Peng, L.M.; Ren, G.; Dudarev, S.L.; Whelan, M.J.

    1996-01-01

    A robust algorithm and computer program have been developed for the parameterization of elastic and absorptive electron atomic scattering factors. The algorithm is based on a combined modified simulated-annealing and least-squares method, and the computer program works well for fitting both elastic and absorptive atomic scattering factors with five Gaussians. As an application of this program, the elastic electron atomic scattering factors have been parameterized for all neutral atoms and for s up to 6 A -1 . Error analysis shows that the present results are considerably more accurate than the previous analytical fits in terms of the mean square value of the deviation between the numerical and fitted scattering factors. Parameterization for absorptive atomic scattering factors has been made for 17 important materials with the zinc blende structure over the temperature range 1 to 1000 K, where appropriate, and for temperature ranges for which accurate Debye-Waller factors are available. For other materials, the parameterization of the absorptive electron atomic scattering factors can be made using the program by supplying the atomic number of the element, the Debye-Waller factor and the acceleration voltage. For ions or when more accurate numerical results for neutral atoms are available, the program can read in the numerical values of the elastic scattering factors and return the parameters for both the elastic and absorptive scattering factors. The computer routines developed have been tested both on computer workstations and desktop PC computers, and will be made freely available via electronic mail or on floppy disk upon request. (orig.)

  13. pp Elastic Scattering: New Results from EDDA (COSY)

    International Nuclear Information System (INIS)

    Scobel, W.; EDDA Collaboration

    2000-01-01

    In the EDDA experiment excitation functions of proton--proton elastic scattering are studied with narrow steps in the projectile momentum range from 0.8 to 3.4 GeV/c and angular range 35 o ≤ Θ cm ≤ 90 o with a detector providing ΔΘ cm ∼ 1.4 o resolution and 85% solid angle coverage. Measurements are performed continuously during projectile acceleration on the Cooler Synchrotron COSY. In phase 1 of the experiment spin-averaged differential cross sections dσ/dOmega have been measured with an internal CH 2 fiber target; background corrections were derived from measurements with a carbon fiber target and from Monte Carlo simulations of inelastic pp contributions. The results provide excitation functions and angular distributions of high precision and internal consistency. In phase 2 of the experiment excitation functions of the analyzing power A N have been measured using a polarized (P≥75%) atomic beam target, and those of the polarization correlation parameters A NN , A SS and A SL will be measured later on with the polarized COSY beam. The measured excitation functions are compared to recent phase shift analyses, and their impact on them is discussed. So far evidence for narrow structures was neither found in the spin-averaged cross sections nor in the analyzing powers

  14. pp Elastic Scattering: New Results from EDDA (COSY)

    International Nuclear Information System (INIS)

    Scobel, W.; EDDA Collaboration

    2000-01-01

    In the EDDA experiment excitation functions of proton - proton elastic scattering are studied with narrow steps in the projectile momentum range from 0.8 to 3.4 GeV/c and angular range 35 degree ≤ Θ cm ≤ 90 degree with a detector providing ΔΘ cm ∼ 1.4degree resolution and 85% solid angle coverage. Measurements are performed continuously during projectile acceleration on the Cooler Synchrotron COSY. In phase 1 of the experiment spin-averaged differential cross sections dσ/dΩ have been measured with an internal CH 2 fiber target; background corrections were derived from measurements with a carbon fiber target and from Monte Carlo simulations of inelastic pp contributions. The results provide excitation functions and angular distributions of high precision and internal consistency. In phase 2 of the experiment excitation functions of the analyzing power A N have been measured using a polarized (P≥75%) atomic beam target, and those of the polarization correlation parameters A NN , A SS and A SL will be measured later on with the polarized COSY beam. The measured excitation functions are compared to recent phase shift analyses, and their impact on them is discussed. So far evidence for narrow structures was neither found in the spin-averaged cross sections nor in the analyzing powers

  15. pp Elastic Scattering: New results from EDDA (COSY)

    International Nuclear Information System (INIS)

    Scobel, W.

    2000-01-01

    In the EDDA experiment excitation functions of proton-proton elastic scattering are studied with narrow steps in the projectile momentum range from 0.8 to 3.4 GeV/c and the angular range 35 deg. ≤Θ cm ≤90 deg. with a detector providing ΔΘ cm ≅1.4 deg. resolution and 85% solid angle coverage. Measurements are performed continuously during projectile acceleration in the Cooler Synchrotron COSY. In phase 1 of the experiment spin-averaged differential cross sections dσ/dΩ have been measured with an internal CH 2 fiber target; background corrections were derived from measurements with a carbon fiber target and from Monte Carlo simulations of inelastic pp contributions. The results provide excitation functions and angular distributions of high precision and internal consistency. In phase 2 of the experiment excitation functions of the analyzing power A N have been measured using a polarized (P≥75%) atomic beam target, and those of the polarization correlation parameters A NN , A SS and A SL will be measured lateron with the polarized COSY beam. The measured excitation functions are compared to recent phase shift analyses, and their impact on them is discussed. So far evidence for narrow structures was neither found in the spin averaged cross sections nor in the analyzing powers

  16. pp Elastic Scattering: New results from EDDA (COSY)

    Science.gov (United States)

    Scobel, W.

    2000-06-01

    In the EDDA experiment excitation functions of proton-proton elastic scattering are studied with narrow steps in the projectile momentum range from 0.8 to 3.4 GeV/c and the angular range 35°⩽Θcm⩽90° with a detector providing ΔΘcm≈1.4° resolution and 85% solid angle coverage. Measurements are performed continuously during projectile acceleration in the Cooler Synchrotron COSY. In phase 1 of the experiment spin-averaged differential cross sections dσ/dΩ have been measured with an internal CH2 fiber target; background corrections were derived from measurements with a carbon fiber target and from Monte Carlo simulations of inelastic pp contributions. The results provide excitation functions and angular distributions of high precision and internal consistency. In phase 2 of the experiment excitation functions of the analyzing power AN have been measured using a polarized (P⩾75%) atomic beam target, and those of the polarization correlation parameters ANN, ASS and ASL will be measured lateron with the polarized COSY beam. The measured excitation functions are compared to recent phase shift analyses, and their impact on them is discussed. So far evidence for narrow structures was neither found in the spin averaged cross sections nor in the analyzing powers.

  17. Spin entanglement in elastic electron scattering from quasi-one electron atoms

    Science.gov (United States)

    Fonseca Dos Santos, Samantha; Bartschat, Klaus

    2017-04-01

    We have extended our work on e-Li collisions to investigate low-energy elastic electron collisions with atomic hydrogen and other alkali targets (Na,K,Rb). These systems have been suggested for the possibility of continuously varying the degree of entanglement between the elastically scattered projectile and the valence electron. In order to estimate how well such a scheme may work in practice, we carried out overview calculations for energies between 0 and 10 eV and the full range of scattering angles 0° -180° . In addition to the relative exchange asymmetry parameter that characterizes the entanglement, we present the differential cross section in order to estimate whether the count rates in the most interesting energy-angle regimes are sufficient to make such experiments feasible in practice. Work supported by the NSF under PHY-1403245.

  18. Small-angle neutron scattering studies of sodium butyl benzene

    Indian Academy of Sciences (India)

    Na-NBBS), in aqueous solutions is investigated by small-angle neutron scattering (SANS). Nearly ellipsoidal aggregates of Na-NBBS at concentrations well above its minimum hydrotrope concentration were detected by SANS. The hydrotrope ...

  19. Low angle X-ray scattering

    International Nuclear Information System (INIS)

    Torrianni, I.L.

    1983-01-01

    The theoretical and experimental problems appearing in diffraction experiments at very low angles by several kinds of materials are discussed. The importance of synchrotron radiation in such problems is shown. (L.C.) [pt

  20. The calibration of elastic scattering angular distribution at low energies on HIRFL-RIBLL

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G.X. [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zhang, G.L., E-mail: zgl@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Lin, C.J., E-mail: cjlin@ciae.ac.cn [China Institute of Atomic Energy, Beijing 102413 (China); Qu, W.W. [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); School of Radiation Medicine and Protection, Medical College of Soochow University, Soochow 215123 (China); Yang, L.; Ma, N.R. [China Institute of Atomic Energy, Beijing 102413 (China); Zheng, L. [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Jia, H.M.; Sun, L.J. [China Institute of Atomic Energy, Beijing 102413 (China); Liu, X.X.; Chu, X.T.; Yang, J.C. [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Wang, J.S.; Xu, S.W.; Ma, P.; Ma, J.B.; Jin, S.L.; Bai, Z.; Huang, M.R. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zang, H.L. [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); and others

    2017-02-21

    The precise calibration of angular distribution of heavy-ion elastic scattering induced by Radioactive Ion Beams (RIBs) at energies around Coulomb barrier on the Radioactive Ion Beam Line in Lanzhou (RIBLL) at the Heavy-Ion Research Facility in Lanzhou (HIRFL) is presented. The beam profile and the scattering angles on the target are deduced by a measurement with two Multi Wire Proportional Chambers (MWPC), and four sets of detector telescopes (including Double-sided Silicon Strip Detectors (DSSD) placed systematically along the beam line, incorporating with Monte Carlo simulation. The MWPCs were used to determine the beam trajectory before the target, and the energies and the positions of scattered particles on the detectors were measured by the DSSDs. Minor corrections on the beam spot and the detector position are performed by assuming the pure Rutherford scattering at angles which are smaller than the related grazing angle. This method is applied for the elastic scattering of {sup 17}F on {sup 89}Y target at E{sub lab}=59 MeV and 50 MeV.

  1. Measurement of the analysing power of elastic proton-proton scattering at 582 MeV

    International Nuclear Information System (INIS)

    Berdoz, A.; Favier, B.; Foroughi, F.; Weddigen, C.

    1984-01-01

    The authors have measured the analysing power of elastic proton-proton scattering at 582 MeV for 14 angles from 20 to 80 0 CM. The angular range was limited to >20 0 by the energy loss of the recoil protons. The experiment was performed at the PM1 beam line at SIN. A beam intensity of about 10 8 particles s -1 was used. (Auth.)

  2. Multigroup P8 - elastic scattering matrices of main reactor elements

    International Nuclear Information System (INIS)

    Garg, S.B.; Shukla, V.K.

    1979-01-01

    To study the effect of anisotropic scattering phenomenon on shielding and neutronics of nuclear reactors multigroup P8-elastic scattering matrices have been generated for H, D, He, 6 Li, 7 Li, 10 B, C, N, O, Na, Cr, Fe, Ni, 233 U, 235 U, 238 U, 239 Pu, 240 Pu, 241 Pu and 242 Pu using their angular distribution, Legendre coefficient and elastic scattering cross-section data from the basic ENDF/B library. Two computer codes HSCAT and TRANS have been developed to complete this task for BESM-6 and CDC-3600 computers. These scattering matrices can be directly used as input to the transport theory codes ANISN and DOT. (auth.)

  3. Proton-4He elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Auger, J.P.; Gillespie, J.; Lombard, R.J.

    1975-12-01

    Differential elastic cross sections and polarizations are calculated in a multiple scattering formalism for proton- 4 He scattering for energies in the range 0.6-24GeV and for momentum transfers up to 4.0fmsup(-1). The calculations include Coulomb and spin effects. Corrections due to target-nucleon overlap and charge exchange are estimated. The results are compared with experimental data [fr

  4. Elastic scattering of low energy electrons by hydrogen molecule

    International Nuclear Information System (INIS)

    Freitas, L.C.G.; Mu-Tao, L.; Botelho, L.F.

    1987-01-01

    The coherent version of the Renormalized Multiple-Centre Potential Model (RMPM) has been extended to treat the elastic scattering of low energy electrons by H2 molecule. The intramolecular Multiple Scattering (MS) effect has also been included. The comparison against the experimental data shows that the inclusion of the MS improves significantly with experiment. The extension of the present method to study electron-polyatomic molecule interaction is also discussed. (author) [pt

  5. Extreme values of the analyzing power in dα elastic scattering

    International Nuclear Information System (INIS)

    Jenny, B.; Grueebler, W.; Koenig, V.; Schmelzbach, P.A.

    1985-01-01

    An investigation of states of maximum possible polarization in dα elastic scattering has been carried out between 3 and 43 MeV deuteron energy. Two different types of such maxima were found. In the first type, analyzing power components reach their theoretical maximum values. A second type does not generally yield observables with maximum possible values, but has parameters that lie well within the range allowed. It is particular combination of values that constitutes a state of maximum possible polarization. The search for the two types of maxima was made with the aid of a phase-shift analysis. Several maxima of both kinds were found in the elastic scattering under investigation. The energies and scattering angles for these points have been determined. In most cases a state of maximum polarization indicates a resonant state in the compound system. (orig.)

  6. Calculation of atom ranges in solids for quasi-small-angle scattering

    International Nuclear Information System (INIS)

    Pustovit, A.N.

    2004-01-01

    A formula for quasi-small-angle scattering of atomic particle and power law interaction potential have been used for the calculation of the differential cross-section, elastic stopping cross-section and a mean projected range in a solid. It is found that the limit energy transfer in the collisions depends on the screening of the power law interaction potentials. The calculated mean ranges in matter are compared with experimental data [ru

  7. Progress in small angle neutron scattering activities in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Abudl Aziz Bin [Industrial Technology Division, Malaysian Institute for Nuclear Technology Research (MINT) (Indonesia)

    2000-10-01

    Research activities by use of small angle neutron scattering in Malaysia are briefly reported. Scattered neutron data are displayed in two or three-dimensional isometric view by the data acquisition system. Visual Basic is utilized for data acquisition and MathCad for data processing and analyses. (Y. Kazumata)

  8. Progress in small angle neutron scattering activities in Malaysia

    International Nuclear Information System (INIS)

    Mohamed, Abudl Aziz Bin

    2000-01-01

    Research activities by use of small angle neutron scattering in Malaysia are briefly reported. Scattered neutron data are displayed in two or three-dimensional isometric view by the data acquisition system. Visual Basic is utilized for data acquisition and MathCad for data processing and analyses. (Y. Kazumata)

  9. Small angle X-ray scattering from hydrating tricalcium silicate

    International Nuclear Information System (INIS)

    Vollet, D.

    1983-01-01

    The small-angle X-ray scattering technique was used to study the structural evolution of hydrated tricalcium silicate at room temperature. The changes in specific area of the associated porosity and the evolution of density fluctuations in the solid hydrated phase were deduced from the scattering data. A correlation of these variations with the hydration mechanism is tried. (Author) [pt

  10. On Small-Angle Neutron Scattering from Microemulsion Droplets the Role of Shape Fluctuations

    CERN Document Server

    Lisy, V

    2001-01-01

    The form factor and intensity of static neutron scattering from microemulsion droplets are calculated. The droplet is modeled by a double-layered sphere consisting of a fluid core and a thin surfactant layer, immersed in another fluid. All the three components are incompressible and characterized by different scattering length densities. As distinct from previous descriptions of small-angle neutron scattering (SANS), we consistently take into account thermal fluctuations of the droplet shape, to the second order of the fluctuations of the droplet radius. The properties of the layer are described within Helfrich's concept of the elasticity of curved interfaces. It is shown that in many cases the account for the fluctuations is essential for the interpretation of SANS. Information about two elastic constants \\kappa and \\bar\\kappa (so far extracted from the experiments in the combination 2\\kappa+\\bar\\kappa) can be now simultaneously obtained from SANS for system in conditions of two-phase coexistence. As an illu...

  11. SWIMS: a small-angle multiple scattering computer code

    International Nuclear Information System (INIS)

    Sayer, R.O.

    1976-07-01

    SWIMS (Sigmund and WInterbon Multiple Scattering) is a computer code for calculation of the angular dispersion of ion beams that undergo small-angle, incoherent multiple scattering by gaseous or solid media. The code uses the tabulated angular distributions of Sigmund and Winterbon for a Thomas-Fermi screened Coulomb potential. The fraction of the incident beam scattered into a cone defined by the polar angle α is computed as a function of α for reduced thicknesses over the range 0.01 less than or equal to tau less than or equal to 10.0. 1 figure, 2 tables

  12. Rayleigh scattering and nonlinear inversion of elastic waves

    Energy Technology Data Exchange (ETDEWEB)

    Gritto, Roland [Univ. of California, Berkeley, CA (United States)

    1995-12-01

    Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of -100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to kpR = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.

  13. Information on pion-nucleus optical potentials from elastic scattering

    International Nuclear Information System (INIS)

    Friedman, E.

    1983-02-01

    Data on the elastic scattering of pions by nuclei between 20 and 230 MeV is analyzed in an almost model-independent fashion. The real part of the potential, which is described by a bias-free Fourier-Bessel series, is found to have the typical Kisslinger or Laplacian-like shape between 30 and 80 MeV

  14. Proton-proton elastic scattering with massive gluons

    International Nuclear Information System (INIS)

    Sauter, Werner K.; Ducati, M.B. Gay

    2001-01-01

    In this contribution different approaches to generate a gluon mass are discussed. More specially a recent result for the gluon propagator with a dynamical mass, proposal by Gorbar and Natale, is used in connection with the Landshoff-Nachtmann model for the Pomeron to describe the elastic differential cross section for pp scattering, with good agreement. (author)

  15. Elastic scattering of surface plasmon polaritons: Modeling and experiment

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Coello, V.

    1998-01-01

    excitation wavelengths (594 and 633 nm) and different metal (silver and gold) films. The near-field optical images obtained are related to the calculated SPP intensity distributions demonstrating that the model developed can be successfully used in studies of SPP elastic scattering, e.g., to design...

  16. Description of elastic scattering in U-matrix method

    International Nuclear Information System (INIS)

    Edneral, V.F.; Troshin, S.M.; Tyurin, N.E.; Khrustalev, O.A.

    1975-01-01

    The elastic pp-scattering has been analyzed using a generalized reaction matrix (the U-matrix). A good agreement has been reached with the experimental total cross sections for the (pp) reaction beginning with an energy of 30 GeV and for the dsub(t)(dt)(pp) for four ISR energies [ru

  17. Double folding model analysis of elastic scattering of halo nucleus ...

    Indian Academy of Sciences (India)

    carried out which provide valuable insight for improving our understanding of nuclear reactions. One of the interesting aspects is to understand the effect of the halo structure, on elastic scattering cross-sections at near-Coulomb barrier energies in reactions induced by neutron halo nuclei and weakly bound radioactive ...

  18. Neutron-proton elastic scattering at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-e-Aleem (Punjab Univ., Lahore (Pakistan). Dept. of Physics)

    1980-09-06

    The most recent measurements of the differential and total cross sections of neutron-proton elastic scattering from 70 to 400 GeV/c have been explained by using rho as a simple pole and pomeron as a dipole. The predictions are also made regarding the energy dependence of dip and bump structure in angular distribution.

  19. Alpha-deuteron elastic scattering around 40 MeV

    International Nuclear Information System (INIS)

    De, A.; Karmakar, S.; Roychaudhury, T.; Dasgupta, S.S.; Chintalapudi, S.N.; Ismail, M.; Banerjee, S.R.; Divatia, A.S.

    1989-01-01

    Differential cross section for alpha-deuteron elastic scattering has been measured at several energies around 40 MeV incident alpha. General behaviour of angular distributions remaining close to that predicted by Faddeev type calculations, a sharp energy dependence is observed. (author). 8 refs

  20. TOTEM Results on Elastic Scattering and Total Cross-Section

    CERN Document Server

    Kašpar, Jan

    2015-01-01

    TOTEM is an LHC experiment dedicated to forward hadronic physics. In this contribution, two main parts of its physics programme - proton-proton elastic scattering and total cross-section - are discussed. The analysis procedures are outlined and their status is reviewed.

  1. The Current Status of High Energy Elastic Scattering

    Science.gov (United States)

    Block, Martin M.; Kang, Kyungsik; White, Alan R.

    The recent total cross section, σtot, and ρ-value results from the Fermilab Tevatron Collider experiments,1,2 presented at the 4th “Blois” Workshop on Elastic and Diffractive Scattering, held at Elba in May 1991, provide a natural springboard from which to launch a focused review of the field.

  2. Phenomenological models of elastic nucleon scattering and predictions for LHC

    Czech Academy of Sciences Publication Activity Database

    Kašpar, J.; Kundrát, Vojtěch; Lokajíček, Miloš; Procházka, J.

    2010-01-01

    Roč. 843, č. 1 (2010), s. 84-106 ISSN 0550-3213 R&D Projects: GA MŠk LA08015 Institutional research plan: CEZ:AV0Z10100502 Keywords : high energy elastic hadron scattering Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.642, year: 2010

  3. Large-t elastic scattering and diffraction dissocation

    International Nuclear Information System (INIS)

    Timmermans, J.

    1985-01-01

    Recent results, both from the ISR and the S anti p pS Collider, on proton-antiproton elastic scattering at large values of the four-momentum transfer squared, are presented. The results are compared with predictions of several theoretical models of high-energy collisions. Single diffraction dissociation at the Collider is also discussed. (author)

  4. Large-t elastic scattering and diffraction dissocation

    International Nuclear Information System (INIS)

    Timmermans, J.

    1985-05-01

    Recent results, both from the ISR and the SantippS Collider, on proton-antiproton elastic scattering at large values of the four-momentum transfer squared, are presented. The results are compared with predictions of several theoretical models of high-energy collisions. Single diffraction dissociation at the Collider is also discussed. (orig.)

  5. Simulating elastic light scattering using high performance computing methods

    NARCIS (Netherlands)

    Hoekstra, A.G.; Sloot, P.M.A.; Verbraeck, A.; Kerckhoffs, E.J.H.

    1993-01-01

    The Coupled Dipole method, as originally formulated byPurcell and Pennypacker, is a very powerful method tosimulate the Elastic Light Scattering from arbitraryparticles. This method, which is a particle simulationmodel for Computational Electromagnetics, has one majordrawback: if the size of the

  6. Singlet channel coupling in deuteron elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Al-Khalili, J.S.; Tostevin, J.A.; Johnson, R.C.

    1990-01-01

    Intermediate energy deuteron elastic scattering is investigated in a three-body model incorporating relativistic kinematics. The effects of deuteron breakup to singlet spin intermediate states, on the elastic scattering observables for the 58 Ni(d vector, d) 58 Ni reaction at 400 and 700 MeV, are studied quantitatively. The singlet-breakup contributions to the elastic amplitude are estimated within an approximate two-step calculation. The calculation makes an adiabatic approximation in the intermediate states propagator which allows the use of closure over the np intermediate states continuum. The singlet channel coupling is found to produce large effects on the calculated reaction tensor analysing power A yy , characteristic of a dynamically induced second-rank tensor interaction. By inspection of the calculated breakup amplitudes we show this induced interaction to be of the T L tensor type. (orig.)

  7. Do we understand elastic scattering up to LHC energies?

    Energy Technology Data Exchange (ETDEWEB)

    Soffer, Jacques [Physics Department, Temple University, Philadelphia, PA 19122-6082 (United States)

    2013-04-15

    The measurements of high energy (bar sign)pp and pp elastic at ISR, SPS, and Tevatron colliders have provided usefull informations on the behavior of the scattering amplitude. A large step in energy domain is accomplished with the LHC collider presently running, giving a unique opportunity to improve our knowledge on the asymptotic regime of the elastic scattering amplitude and to verify the validity of our theoretical approach, to describe the total cross section {sigma}{sub tot}(s), the total elastic cross section {sigma}{sub el}(s), the ratio of the real to imaginary parts of the forward amplitude {rho}(s) and the differential cross section d{sigma} (s,t)/dt.

  8. Measurements of iT11 in πd elastic scattering at 49 MeV

    International Nuclear Information System (INIS)

    Kohler, M.; Stevenson, N.R.

    1993-10-01

    Measurements of the vector analyzing power iT 11 in πd elastic scattering at 49 MeV have been performed using a dynamically polarized target and a magnetic spectrometer. Data at seven π + laboratory scattering angles between 50 deg. and 130 deg. were taken together with a complementary measurement at 60 deg. for π - d elastic scattering. In general, we find agreement with models that include the πN P 11 amplitude and disagreement with models that exclude or suppress it. (authors) 17 refs., 1 tab., 2 figs

  9. Fast-neutron total and elastic-scattering cross sections of elemental indium

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Broad-resolution neutron total cross sections of elemental indium were measured from 0.8 to 4.5 MeV. Differential-elastic-scattering cross sections were measured from approx. = 1.5 to 3.8 MeV at intervals of approx. = 50 to 200 keV and at scattering angles in the range 20 to 160 degrees. The experimental results are interpreted in terms of the optical-statistical model and are compared with respective values given in ENDF/B-V

  10. Fast-neutron elastic-scattering cross sections of elemental tin

    International Nuclear Information System (INIS)

    Budtz-Jorgensen, C.; Guenther, P.T.; Smith, A.

    1982-07-01

    Broad-resolution neutron-elastic-scattering cross sections of elemental tin are measured from 1.5 to 4.0 MeV. Incident-energy intervals are approx. 50 keV below 3.0 MeV and approx. 200 keV at higher energies. Ten to twenty scattering angles are used, distributed between approx. 20 and 160 0 . The experimental results are used to deduce the parameters of a spherical optical-statistical model and they are also compared with corresponding values given in ENDF/B-V

  11. Elastic scattering of polarized neutrons by 3He at low energy

    International Nuclear Information System (INIS)

    Drigo, L.; Tornielli, G.; Zannoni, G.

    1982-01-01

    Elastic scattering by 3 He for 1.67, 2.43, 3.0, 3.4 and 7.8 MeV neutron beams of known polarization was measured at seven angles from 25 0 to 155 0 using a high pressure gas scintillation counter. The geometrical and multiple scattering effects were accounted for by the Monte Carlo technique. The corrected results were compared with previous experimental data and with the existing predictions based on microscopic calculations and phenomenological analyses. (author)

  12. Parity Violation in Elastic Electron-Proton Scattering and the Proton's Strange Magnetic Form Factor

    International Nuclear Information System (INIS)

    Spayde, D. T.; Averett, T.; Barkhuff, D.; Beck, D. H.; Beise, E. J.; Benson, C.; Breuer, H.; Carr, R.; Covrig, S.; DelCorso, J.

    2000-01-01

    We report a new measurement of the parity-violating asymmetry in elastic electron scattering from the proton at backward scattering angles. This asymmetry is sensitive to the strange magnetic form factor of the proton as well as electroweak axial radiative corrections. The new measurement of A=-4.92±0.61±0.73 ppm provides a significant constraint on these quantities. The implications for the strange magnetic form factor are discussed in the context of theoretical estimates for the axial corrections. (c) 2000 The American Physical Society

  13. Antinucleon-nucleus elastic and inelastic scattering

    International Nuclear Information System (INIS)

    Dover, C.B.; Millener, D.J.

    1985-01-01

    A general overview of the utility of antinucleon (anti N)-nucleus inelastic scattering studies is presented, emphasizing both the sensitivity of the cross sections to various components of the N anti N transition amplitudes and the prospects for the exploration of some novel aspects of nuclear structure. We start with an examination of the relation between NN and N anti N potentials, focusing on the coherences predicted for the central, spin-orbit and tensor components, and how these may be revealed by measurements of two-body spin observables. We next discuss the role of the nucleus as a spin and isospin filter, and show how, by a judicious choice of final state quantum numbers (natural or unnatural parity states, isospin transfer ΔT = 0 or 1) and momentum transfer q, one can isolate different components of the N anti N transition amplitude. Various models for the N anti N interaction which give reasonable fits to the available two-body data are shown to lead to strikingly different predictions for certain spin-flip nuclear transitions. We suggest several possible directions for future anti N-nucleus inelastic scattering experiments, for instance the study of spin observables which would be accessible with polarized anti N beams, charge exchange reactions, and higher resolution studies of the (anti p, anti p') reaction. We compare the antinucleon and the nucleon as a probe of nuclear modes of excitation. 40 refs., 13 figs

  14. Elastic positron-cadmium scattering at low energies

    International Nuclear Information System (INIS)

    Bromley, M. W. J.; Mitroy, J.

    2010-01-01

    The elastic and annihilation cross sections for positron-cadmium scattering are reported up to the positronium-formation threshold (at 2.2 eV). The low-energy phase shifts for the elastic scattering of positrons from cadmium were derived from the bound and pseudostate energies of a very large basis configuration-interaction calculation of the e + -Cd system. The s-wave binding energy is estimated to be 126±42 meV, with a scattering length of A scat =(14.2±2.1)a 0 , while the threshold annihilation parameter, Z eff , was 93.9±26.5. The p-wave phase shift exhibits a weak shape resonance that results in a peak Z eff of 91±17 at a collision energy of about 490±50 meV.

  15. The elastic scattering between heavy ions using Glauber model

    International Nuclear Information System (INIS)

    Esmael, E.H.; El-Muhbad, SH.A.

    2002-01-01

    The differential cross sections of the elastic scattering of 1 2 C+ 12 C at energies 1016, 1449 and 2400 MeV and 1 6O +1 2C at energy 1503 MeV are calculated using high energy folding model. An analytical expression for the optical potential is derived. The effect of introducing imaginary phase and the dependence of the ratio of the real to imaginary parts of the forward nucleon-nucleon scattering amplitude on the square of momentum transfer are taken into consideration. Two different types of nuclear densities of the projectile and the target nuclei are considered. The considered systems of interaction are studied by using both modified Glauber I and modified Glauber II. The results show that the elastic scattering differential cross section for the considered interacting systems can be satisfactorily reproduced by this model

  16. Comparison of matrix methods for elastic wave scattering problems

    International Nuclear Information System (INIS)

    Tsao, S.J.; Varadan, V.K.; Varadan, V.V.

    1983-01-01

    This article briefly describes the T-matrix method and the MOOT (method of optimal truncation) of elastic wave scattering as they apply to A-D, SH- wave problems as well as 3-D elastic wave problems. Two methods are compared for scattering by elliptical cylinders as well as oblate spheroids of various eccentricity as a function of frequency. Convergence, and symmetry of the scattering cross section are also compared for ellipses and spheroidal cavities of different aspect ratios. Both the T-matrix approach and the MOOT were programmed on an AMDHL 470 computer using double precision arithmetic. Although the T-matrix method and MOOT are not always in agreement, it is in no way implied that any of the published results using MOOT are in error

  17. Elastic and inelastic scattering of polarized lithium-7 on magnesium-26

    International Nuclear Information System (INIS)

    Ott, W.

    1986-01-01

    The elastic and inelastic scattering of polarized 7 Li on 26 Mg was studied at an incident energy of 44 MeV. Measured were the cross sections and the vector analyzing power, three tensor analysing powers, and a third-stage analyzing power for elastic scattering, projectile excitation, target excitation, and double excitation. The cross sections show just as the largest part of the analyzing powers characteristic Fraunhofer oscillations caused by interferences of nearside and farside scattering. From the analysis of the tensor analyzing powers of the elastic scattering by means of generalized shape-effect relations results that the largest contribution for the tensor analyzing powers arises from a Tsub(R) tensor potential. No indications of other tensor interactions like for instance a Tsub(P) tensor interaction were found. At large scattering angles also an influence of the effective spin-orbit interaction generated by channel couplings on the tensor analyzing powers and interferences of spin-orbit and tensor interaction is to be seen. (orig./HSI) [de

  18. Asymptotic angular dependences of exclusive hadron large-angle scattering

    International Nuclear Information System (INIS)

    Goloskokov, S.V.; Kudinov, A.V.; Kuleshov, S.P.

    1979-01-01

    Asymptotic approach to the description of the large-angle scattering amplitudes of the meson-nucleon and nucleon-nucleon scattering is studied. The paper is based on the Mandelstam representation and quark counting rules. The crossing summetry, SU-3 symmetry and spin effects are taken into account. Formulae obtained are used for the description of the differential cross sections of πsup(+-)p, pp and pn scattering. The predictions about ksup(+-)p and p anti p scattering are made. It is shown that formulae provide quantitative description of experimental data for the considered reactions

  19. Scattering-angle based filtering of the waveform inversion gradients

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-01-01

    Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it's ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.

  20. Scattering-angle based filtering of the waveform inversion gradients

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-11-22

    Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it\\'s ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.

  1. Detailed Monte Carlo simulation of electron elastic scattering

    International Nuclear Information System (INIS)

    Chakarova, R.

    1994-04-01

    A detailed Monte Carlo model is described which simulates the transport of electrons penetrating a medium without energy loss. The trajectory of each electron is constructed as a series of successive interaction events - elastic or inelastic scattering. Differential elastic scattering cross sections, elastic and inelastic mean free paths are used to describe the interaction process. It is presumed that the cross sections data are available and the Monte Carlo algorithm does not include their evaluation. Electrons suffering successive elastic collisions are followed until they escape from the medium or (if the absorption is negligible) their path length exceeds a certain value. The inelastic events are thus treated as absorption. The medium geometry is a layered infinite slab. The electron source could be an incident electron beam or electrons created inside the material. The objective is to obtain the angular distribution, the path length and depth distribution and the collision number distribution of electrons emitted through the surface of the medium. The model is applied successfully to electrons with energy between 0.4 and 20 keV reflected from semi-infinite homogeneous materials with different scattering properties. 16 refs, 9 figs

  2. Stochastic modelling of fusion-product transport and thermalization with nuclear elastic scattering

    International Nuclear Information System (INIS)

    Deveaux, J.C.

    1983-01-01

    Monte Carlo methods are developed to model fusion-product (fp) transport and thermalization with both Rutherford scattering and nuclear elastic scattering (NES) in high-temperature (T/sub i/, T/sub e-/ > 50 keV), advanced-fuel (e.g. Cat-D, D- 3 He) plasmas. A discrete-event model is used to superimpose NES collisions on a Rutherford scattering model that contains the Spitzer coefficients of drag, velocity diffusion (VD), and pith-angle scattering (PAS). The effects of NES on fp transport and thermalization are investigated for advanced-fuel, Field-Reversed Mirror (FRM) plasmas that have a significant Hamiltonian-canonical angular momentum (H-Ptheta) space loss cone which scales with the characteristic size (S identical with R/sub HV//3p/sub i/) and applied vacuum magnetic field (B 0 )

  3. Elastic scattering and total cross section at very high energies

    International Nuclear Information System (INIS)

    Castaldi, R.; Sanguinetti, G.

    1985-01-01

    The aim of this review is to summarize the recent progress in the field of elastic scattering and total cross section in this new energy domain. In Section 2 a survey of the experimental situation is outlined. The most significant data are presented, with emphasis on the interpretation, not the specific details or technicalities. This section is therefore intended to give a self-contained look at the field, especially for the nonspecialist. In Section 3, hadron scattering at high energy is described in an impact parameter picture, which provides a model-independent intuitive geometrical representation. The diffractive character of elastic scattering, seen as the shadow of inelastic absorption, is presented as a consequence of unitarity in the s-channel. Spins are neglected throughout this review, inasmuch as the asymptotic behavior in the very high-energy limit is the main concern here. In Section 4 some relevant theorems are recalled on the limiting behavior of hadron-scattering amplitudes at infinite energy. There is also a brief discussion on how asymptotically rising total cross sections imply scaling properties in the elastic differential cross sections. A quick survey of eikonal models is presented and their predictions are compared with ISR and SPS Collider data

  4. Kinematic aspects of pion-nucleus elastic scattering

    International Nuclear Information System (INIS)

    Weiss, D.L.; Ernst, D.J.

    1982-01-01

    The inclusion of relativistic kinematics in the theory of elastic scattering of pions from nuclei is examined. The investigation is performed in the context of the first order impulse approximation which incorporates the following features: (1) Relative momentum are defined according to relativistic theories consistent with time reversal invariance. (2) The two-nucleon interaction is a new, multichannel, separable potential model consistent with the most recent data derived from a recent nonpotential model of Ernst and Johnson. (3) The recoil of the pion-nucleon interacting pair and its resultant nonlocality are included. (4) The Fermi integral is treated by an optimal factorization approximation. It is shown how a careful definition of an intrinsic target density leads to an unambiguous method for including the recoil of the target. The target recoil corrections are found to be large for elastic scattering from 4 He and not negligible for scattering from 12 C. Relativistic potential theory kinematics, kinematics which result from covariant reduction approaches, and kinematics which result from replacing masses by energies in nonrelativistic formulas are compared. The relativistic potential theory kinematics and covariant reduction kinematics are shown to produce different elastic scattering at all pion energies examined (T/sub π/<300 MeV). Simple extensions of nonrelativistic kinematics are found to be reasonable approximations to relativistic potential theory

  5. pp Elastic Scattering at LHC and Nucleon Structure

    CERN Document Server

    Islam, M M; Prokudin, A V

    2003-01-01

    High energy elastic pp differential cross section at LHC at the c.m. energy 14 TeV is predicted using the asymptotic behavior of tot(s) and (s), and the measured p differential cross section at =546 GeV. The phenomenological investigation has progressively led to an effective field theory model that describes the nucleon as a chiral bag embedded in a quark-antiquark condensed ground state. The measurement of pp elastic scattering at LHC up to large |t| 10 GeV2 by the TOTEM group will be crucial to test this structure of the nucleon.

  6. On model-independent analyses of elastic hadron scattering

    International Nuclear Information System (INIS)

    Avila, R.F.; Campos, S.D.; Menon, M.J.; Montanha, J.

    2007-01-01

    By means of an almost model-independent parametrization for the elastic hadron-hadron amplitude, as a function of the energy and the momentum transfer, we obtain good descriptions of the physical quantities that characterize elastic proton-proton and antiproton-proton scattering (total cross section, r parameter and differential cross section). The parametrization is inferred on empirical grounds and selected according to high energy theorems and limits from axiomatic quantum field theory. Based on the predictive character of the approach we present predictions for the above physical quantities at the Brookhaven RHIC, Fermilab Tevatron and CERN LHC energies. (author)

  7. Effects of configuration mixing in heavy-ion elastic scattering

    International Nuclear Information System (INIS)

    Cappuzzello, F.; Bondi, M.; Nicoloso, D.; Tropea, S.; Lubian, J.; Gomes, P.R.S.; Linares, R.; Oliveira, J.R.B.; Chamon, L.C.; Gasques, L.R.; Agodi, C.; Carbone, D.; Cavallaro, M.; Cunsolo, A.; De Napoli, M.; Nunes Garcia, V.; Paes, B.; Foti, A.

    2014-01-01

    A theoretical study of the influence of configuration mixing on elastic scattering cross section is performed for the system 16 O + 27 Al at 100 MeV. A simple two-state model space, including the 27 Al 5/2 + ground and 5/2 + excited state at 2.73 MeV, is used in the coupled channel equations. The results indicate that even a weak degree of mixing is able to sizeably affect the elastic cross section, determining mainly a damping of Fraunhofer oscillations, as observed in the experiments. (authors)

  8. $pp$ Elastic Scattering at LHC and Nucleon Structure

    CERN Document Server

    Islam, M M; Prokudin, A V

    2003-01-01

    High energy elastic pp differential cross section at LHC at the c.m. energy 14 TeV is predicted using the asymptotic behavior of sigma-tot(s) and rho(s), and the measured pbar-p differential cross section at sqrt{s}=546 GeV. The phenomenological investigation has progressively led to an effective field theory model that describes the nucleon as a chiral bag embedded in a quark-antiquark condensed ground state. The measurement of pp elastic scattering at LHC up to large |t| >~ 10 GeV^2 by the TOTEM group will be crucial to test this structure of the nucleon.

  9. Tensor polarization in pion-deuteron elastic scattering

    International Nuclear Information System (INIS)

    Holt, R.J.

    1983-01-01

    The angular dependence of the tensor polarization t 20 /sup lab/ of recoiling deuterons in π-d elastic scattering was measured as a function of incident pion energy in the range 134 to 256 MeV. No evidence was found for rapid energy or angular dependences in t 20 /sup lab/. The results agree most favorably with theoretical calculations in which the P 11 π-N amplitude has been removed altogether. This agreement is consistent with a small effect of pion absorption on the elastic channel. 14 references

  10. Impact parameter dynamics in quantum theory in large angle scattering

    International Nuclear Information System (INIS)

    Andriyanov, A.A.

    1975-01-01

    High energy behaviour of a free particle Green's function is studied for construction of the scattering amplitude. The main part of the Green's function is determined by eikonal scattering along the mean moment and by the total scattering along the transfered momentum. This ''impact'' approximation may be included as a first approximation in the iteration scheme for the scattering amplitude along the mean momentum, i.e. the ''impact'' perturbation theory. With the help of the ''impact'' approximation an expansion of the scattering amplitude in the impact parameter depending on interaction is obtained. These expansions are more correct than the eikonal expansions at large angle scattering. The results are illustrated grafically foe the exponential and the Yukawa potentials

  11. Elastic meson-nucleon partial wave scattering analyses

    International Nuclear Information System (INIS)

    Arndt, R.A.

    1986-01-01

    Comprehensive analyses of π-n elastic scattering data below 1100 MeV(Tlab), and K+p scattering below 3 GeV/c(Plab) are discussed. Also discussed is a package of computer programs and data bases (scattering data, and solution files) through which users can ''explore'' these interactions in great detail; this package is known by the acronym SAID (for Scattering Analysis Interactive Dialin) and is accessible on VAX backup tapes, or by dialin to the VPI computers. The π-n, and k+p interactions will be described as seen through the SAID programs. A procedure will be described for generating an interpolating array from any of the solutions encoded in SAID; this array can then be used through a fortran callable subroutine (supplied as part of SAID) to give excellent amplitude reconstructions over a broad kinematic range

  12. Small-angle neutron scattering in materials science

    International Nuclear Information System (INIS)

    Fratzl, P.

    1999-01-01

    Small-angle scattering (SAS) in an ideal tool for studying the structure of materials in the mesoscopic size range between 1 and about 100 nanometers. The basic principles of the method are reviewed, with particular emphasis on data evaluation and interpretation for isotropic as well as oriented or single-crystalline materials. Examples include metal alloys, composites and porous materials. The last section gives a comparison between the use of neutrons and (synchrotron) x-rays for small-angle scattering in materials physics. (author)

  13. Ultra-small-angle neutron scattering. History, developments and applications

    International Nuclear Information System (INIS)

    Koizumi, Satoshi; Yamaguchi, Daisuke

    2011-01-01

    Ultra-small-angle neutron scattering (USANS), which is a scattering method observing in a q-region of q=10 -3 nm -1 , was initiated by double crystal (Bonse-Hart) method. Recently, a focusing USANS method was developed by combining a pin-hole type spectrometer and focusing lenses. These two methods, which are complementary to each other, were employed to achieve wide q-observations on microbial cellulose, actin cytoskeleton, tire, and membrane-electrolyte assembly of fuel cell. (author)

  14. Small-angle X-ray scattering of solutions

    International Nuclear Information System (INIS)

    Koch, M.H.J.; Stuhrmann, H.B.; Vachette, P.; Tardieu, A.

    1982-01-01

    The use of synchrotron radiation in small-angle X-ray scattering (SAXS) techniques in biological structural studies is described. The main features of the monochromatic radiation systems and the white radiation systems are considered. The detectors, data acquisition and experimental procedures are briefly described. Experimental results are presented for 1) measurements on dilute solutions and weak scatterers, 2) measurement of conformational transitions, 3) contrast variation experiments, 4) time-resolved measurements and 5) complex contrast variation. (U.K.)

  15. Small angle neutron scattering from hydrated cement pastes

    International Nuclear Information System (INIS)

    Sabine, T.M.; Bertram, W.K.; Aldridge, L.P.

    1996-01-01

    Small angle neutron scattering (SANS) was used to study the microstructure of hydrating cement made with, and without silica fume. Some significant differences were found between the SANS spectra of pastes made from OPC (ordinary Portland cement) and DSP (made with silica fume and superplasticiser). The SANS spectra are interpreted in terms of scattering from simple particles. Particle growth was monitored during hydration and it was found that the growth correlated with the heat of hydration of the cement

  16. Inversion of electron-water elastic scattering data

    International Nuclear Information System (INIS)

    Lun, A.; Chen, X.J.; Allen, L.J.; Amos, K.

    1994-01-01

    Fixed energy inverse scattering theory has been used to analyse the differential cross-sections for the elastic scattering of electrons from water molecules. Both semiclassical (WKB) and fully quantal inversion methods have been used with data taken in the energy range 100 to 1000 eV. Constrained to be real, the local inversion potentials are found to be energy dependent; a dependence that can be interpreted as the local equivalence of true nonlocality in the actual interaction. 14 refs., 4 tabs., 8 figs

  17. Isobaric intermediate states in proton-nucleus elastic scattering

    International Nuclear Information System (INIS)

    Auger, J.P.; Lazard, C.; Lombard, R.J.

    1981-05-01

    The effects of the propagation of isobaric nucleon states in the intermediate steps of the multiple scattering have been studied with application on the proton- 4 He elastic scattering at 1 GeV. The calculations are performed in the Glauber model and results are given for the differential cross section, the polarization and the spin rotation parameter. In our conclusions we stress the large cancellations observed between terms of various orders and the great sensitivity of the effects to the nucleon-nucleon amplitudes

  18. Model of K+p elastic scattering at high energies

    International Nuclear Information System (INIS)

    Fazal-e-Aleem

    1985-01-01

    Very recent measurements of the angular distribution for K + p elastic scattering which show a structure near -t = 3.8(GeV/c) 2 , together with the total cross section and ratio of the real and imaginary parts of the scattering amplitude for 50 2 , have been fitted by using a simple Regge-pole model with phenomenological residue functions. The break in the slope near -t = 0.5 (GeV/c) 2 observed in the differential cross section has also been explained

  19. Normal Spin Asymmetries in Elastic Electron-Proton Scattering

    International Nuclear Information System (INIS)

    M. Gorchtein; P.A.M. Guichon; M. Vanderhaeghen

    2004-01-01

    We discuss the two-photon exchange contribution to observables which involve lepton helicity flip in elastic lepton-nucleon scattering. This contribution is accessed through the single spin asymmetry for a lepton beam polarized normal to the scattering plane. We estimate this beam normal spin asymmetry at large momentum transfer using a parton model and we express the corresponding amplitude in terms of generalized parton distributions. We further discuss this observable in the quasi-RCS kinematics which may be dominant at certain kinematical conditions and find it to be governed by the photon helicity-flip RCS amplitudes

  20. Normal Spin Asymmetries in Elastic Electron-Proton Scattering

    International Nuclear Information System (INIS)

    Gorchtein, M.; Guichon, P.A.M.; Vanderhaeghen, M.

    2005-01-01

    We discuss the two-photon exchange contribution to observables which involve lepton helicity flip in elastic lepton-nucleon scattering. This contribution is accessed through the single spin asymmetry for a lepton beam polarized normal to the scattering plane. We estimate this beam normal spin asymmetry at large momentum transfer using a parton model and we express the corresponding amplitude in terms of generalized parton distributions. We further discuss this observable in the quasi-RCS kinematics which may be dominant at certain kinematical conditions and find it to be governed by the photon helicity-flip RCS amplitudes

  1. Magnetic nanoparticles studied by small angle X-ray scattering

    International Nuclear Information System (INIS)

    Oliveira, Cristiano Luis Pinto; Antonel, Soledad; Negri, Martin

    2011-01-01

    because they exhibit magnetic (ferromagnetic) and electrical properties in the same material. Then, the nickel nanoparticles could be used for the development of electroelastic materials. In this case, the electrical conductivity of the material can be strongly dependent on the applied magnetic field, for example the case of nickel metal nanoparticles dispersed in a polymer, resulting in an anisotropic material with combined piezomagnetic and piezoelectric properties. In order to investigate the structural characteristics of cobalt-iron oxides and nickel nanoparticles, powder samples of those magnetic materials were studied by Small-Angle X-Ray Scattering. As will be shown, from the analysis and modeling of the scattering data, structural information could be obtained, enabling a detailed description of the structural properties of the studied samples which could be directly correlated to the magnetic properties. (author)

  2. Magnetic nanoparticles studied by small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cristiano Luis Pinto [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Grupo de Fluidos Complexos; Antonel, Soledad; Negri, Martin [Universidad de Buenos Aires (UBA) (Argentina). Facultad de Ciencias Exactas y Naturales. Dept. de Quimica Inorganica, Analitica y Quimica Fisica

    2011-07-01

    nanoparticles are very interesting because they exhibit magnetic (ferromagnetic) and electrical properties in the same material. Then, the nickel nanoparticles could be used for the development of electroelastic materials. In this case, the electrical conductivity of the material can be strongly dependent on the applied magnetic field, for example the case of nickel metal nanoparticles dispersed in a polymer, resulting in an anisotropic material with combined piezomagnetic and piezoelectric properties. In order to investigate the structural characteristics of cobalt-iron oxides and nickel nanoparticles, powder samples of those magnetic materials were studied by Small-Angle X-Ray Scattering. As will be shown, from the analysis and modeling of the scattering data, structural information could be obtained, enabling a detailed description of the structural properties of the studied samples which could be directly correlated to the magnetic properties. (author)

  3. Measurement of neutrino flux from neutrino-electron elastic scattering

    Science.gov (United States)

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration

    2016-06-01

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  4. Phenomenological models of elastic nucleon scattering and predictions for LHC

    CERN Document Server

    Kundrat, V; Lokajicek, M; Prochazka, J

    2011-01-01

    The hitherto analyses of elastic collisions of charged nucleons involving common influence of Coulomb and hadronic scattering have been based practically on West and Yennie formula. However, this approach has been shown recently to be inadequate from experimental as well as theoretical points of view. The eikonal model enabling to determine physical characteristics in impact parameter space seems to be more pertinent. The contemporary phenomenological models admit, of course, different distributions of collision processes in the impact parameter space and cannot give any definite answer. Nevertheless, some predictions for the planned LHC energy that have been given on their basis may be useful, as well as the possibility of determining the luminosity from elastic scattering. (C) 2010 Elsevier B.V. All rights reserved.

  5. Elastic nucleon-deuteron scattering and breakup with chiral forces

    Directory of Open Access Journals (Sweden)

    Witała Henryk

    2016-01-01

    Full Text Available Results on three-nucleon (3N elastic scattering and breakup below the pion production threshold are discussed. The large discrepancies found between a theory based on numerical solutions of 3N Faddeev equations with standard nucleon-nucleon (NN potentials only and data point to the need for three-nucleon forces (3NF’s. This notion is supported by the fact that another possible reason for the discrepancies in elastic nucleon-deuteron (Nd scattering, relativistic effects, turned out to be small. Results for a new generation of chiral NN forces (up to N4LO together with theoretical truncation errors are shown. They support conclusions obtained with standard NN potentials

  6. Invariant potential for elastic pion--nucleus scattering

    International Nuclear Information System (INIS)

    Cammarata, J.B.; Banerjee, M.K.

    1976-01-01

    From the Wick-Dyson expansion of the exact propagator of a pion in the presence of a nucleus, an invariant potential for crossing symmetric elastic pion-nucleus scattering is obtained in terms of a series of pion-nucleon diagrams. The Chew-Low theory is used to develop a model in which the most important class of diagrams is effectively summed. Included in this model is the exclusion principle restriction on the pion-bound nucleon interaction, the effects of the binding of nucleons, a kinematic transformation of energy from the lab to the πN center of mass frame, and the Fermi motion and recoil of the target nucleons. From a numerical study of the effects of these processes on the π- 12 C total cross section, the relative importance of each is determined. Other processes contributing to the elastic scattering of pions not included in the present model are also discussed

  7. Differential cross sections for e-bar CO elastic scattering

    International Nuclear Information System (INIS)

    Raj, Deo; Meetu

    2005-01-01

    In a recent investigation, Raj and Kumar modified the absorption potential of Staszewska el at al in such a way that it yielded the best agreement between theory and experiment for elastic cross sections when applied to e-bar - O 2 scattering over a wide incident energy range. In the present investigation, the same modified absorption potential of Raj and Kumar has been employed to obtain the elastic differential cross sections (EDCS) for electron scattering by CO molecules at intermediate energies (100-800 eV). The independent atom model alongwith partial waves has been used for these calculations.The present results of EDCS are in fairly good agreement with the experimental data. (author)

  8. Proton-proton elastic scattering measurements at COSY

    Energy Technology Data Exchange (ETDEWEB)

    Bagdasarian, Zara [Forschungszentrum Juelich, Juelich (Germany); Tbilisi State University, Tbilisi (Georgia); Collaboration: ANKE-Collaboration

    2014-07-01

    To construct the reliable phase shift analysis (PSA) that can successfully describe the nucleon-nucleon (NN) interaction it is necessary to measure variety of experimental observables for both proton-proton (pp) and neutron-proton (np) elastic scattering. The polarized beams and targets at COSY-ANKE facility allow a substantial contribution to the existing database. The experiment was carried out in April 2013 at ANKE using a transversely polarized proton beam incident on an unpolarized hydrogen cluster target. Six beam energies of T{sub p}=0.8,1.6,1.8,2.0,2.2,2.4 GeV were used. The aim of this talk is to present the preliminary results for the analyzing power (A{sub y}) for the pp elastic scattering in the so-far unexplored 5 <θ{sub cm}<30 angular range. Our measurements are also compared to the world data and current partial wave solutions.

  9. Absolute differential cross sections for elastic scattering of electrons by helium, neon, argon and molecular nitrogen

    International Nuclear Information System (INIS)

    Jansen, R.H.J.; De Heer, F.J.; Luyken, H.J.; Van Wingerden, B.

    1976-01-01

    An electron spectrometer has been constructed for the study of elastic and inelastic electron scattering processes. Up to now the apparatus has been used to measure differential cross sections of electrons elastically scattered by He, Ne, Ar and N 2 . Direct absolute cross section measurements were performed on N 2 at 500 eV impact energy and at scattering angles between 5 0 and 9 0 . Relative cross section measurements were done on He, Ne, Ar and N 2 at impact energies between 100 and 3000 eV and scattering angles between 5 0 and 55 0 . The relative cross sections were put on an absolute scale by means of the apparatus calibration factor derived from the absolute measurements on N 2 . The experimental apparatus and procedure are described in detail. The results are discussed and compared with those of other experimental and theoretical groups. Analysis of the exponential behaviour of the differential cross section as a function of momentum transfer yielded apparent polarizabilities of the target. (author)

  10. Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles.

    Science.gov (United States)

    Krywonos, Andrey; Harvey, James E; Choi, Narak

    2011-06-01

    Scattering effects from microtopographic surface roughness are merely nonparaxial diffraction phenomena resulting from random phase variations in the reflected or transmitted wavefront. Rayleigh-Rice, Beckmann-Kirchhoff. or Harvey-Shack surface scatter theories are commonly used to predict surface scatter effects. Smooth-surface and/or paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. A recent linear systems formulation of nonparaxial scalar diffraction theory applied to surface scatter phenomena resulted first in an empirically modified Beckmann-Kirchhoff surface scatter model, then a generalized Harvey-Shack theory that produces accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattered angles than the classical Beckmann-Kirchhoff and the original Harvey-Shack theories. These new developments simplify the analysis and understanding of nonintuitive scattering behavior from rough surfaces illuminated at arbitrary incident angles.

  11. Nucleon in nuclei from quasi-elastic electron scattering

    International Nuclear Information System (INIS)

    Gerard, A.

    1987-04-01

    One challenging problem in modern nuclear physics is to understand how the internal structure of the nucleon interferes with the dynamics of nucleons in a nucleus. The purpose of this paper is to review the present status of data in quasi-elastic electron scattering, to connect them with recent theoretical developments and to outline some future directions of research not accessible to present electron facilities

  12. Systematics of elastic scattering at high and intermediate energy

    Energy Technology Data Exchange (ETDEWEB)

    Dias De Deus, J [Instituto de Fisica e Matematica, Lisboa (Portugal); Kroll, P [Wuppertal Univ. (Gesamthochschule) (Germany, F.R.)

    1977-01-01

    A model for elastic scattering valid in the intermediate and high-energy region is proposed. The model includes three kinds of entities: the pomeron, a universal GS pomeron; the reggeons, also universal and of GS type; and the core, a low-energy central real piece required by dispersion relations. The number of free functions and parameters is rather small. The approach supports naive duality and, in general, agrees with the results of absorptive models.

  13. Polarization Measurements in elastic electron-deuteron scattering

    International Nuclear Information System (INIS)

    Garcon, M.

    1989-01-01

    The deuteron electromagnetic form factors, are recalled. The experiment, recently performed in the Bates accelerator (M.I.T.), is described. The aim of the experiment is the measurement of the tensor polarization of the backscattered deuteron, in the elastic electron-deuteron scattering, up to q = 4.6 f/m. Different experimental methods, concerning the determination of this observable, are compared. Several improvement possibilities in this field are suggested

  14. Proton-proton elastic scattering at ultrahigh energies

    International Nuclear Information System (INIS)

    Saleem, M.; Shaukat, M.A.; Fazal-e-Aleem

    1981-01-01

    Recent experimental results on proton-proton elastic scattering at high energies are discussed in the context of the comments by Chou and Yang. There does not appear to be any tendency that the experimental results would agree with the predictions of the geometrical model even at ultrahigh energies. The angular distribution structure as described by using the dipole pomeron is consistent with the experimental data at presently available high energies and predicts results quite different from the geometrical model. (author)

  15. Proton-proton elastic scattering at ultrahigh energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Shaukat, M.A.; Fazal-e-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)

    1981-05-30

    Recent experimental results on proton-proton elastic scattering at high energies are discussed in the context of the comments by Chou and Yang. There does not appear to be any tendency that the experimental results would agree with the predictions of the geometrical model even at ultrahigh energies. The angular distribution structure as described by using the dipole pomeron is consistent with the experimental data at presently available high energies and predicts results quite different from the geometrical model.

  16. The complete experiment for backward elastic dp scattering

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Piskunov, N.M.; Sitnik, I.M.

    1996-01-01

    The problem of the complete experiment in backward elastic dp scattering is analyzed. All effects due to polarization of one or two initial and one of secondary particles are considered. It is shown that the minimal set of measurements allowing to reconstruct each of four amplitudes describing this process does not comprise too complicated experiments and is quite realistic nowadays. The geography of realization of the complete experiment is briefly reviewed. 21 refs

  17. Elastic scattering crossovers from 50 to 175 GeV

    International Nuclear Information System (INIS)

    Anderson, R.L.; Ayres, D.S.; Barton, D.S.; Brenner, A.E.; Butler, J.; Cutts, D.; DeMarzo, C.; Diebold, R.; Elias, J.E.; Fines, J.; Friedman, J.I.; Gittelman, B.; Gottschalk, B.; Guerriero, L.; Gustavson, D.; Kendall, H.W.; Lanou, R.E.; Lavopa, P.; Levinson, L.J.; Litt, J.; Loh, E.; Maclay, G.J.; Maggi, G.; Massimo, J.T.; Meunier, R.; Mikenberg, G.; Nelson, B.; Posa, F.; Rich, K.; Ritson, D.M.; Rosenson, L.; Selvaggi, G.; Sogard, M.; Spinelli, P.; Verdier, R.; Waldner, F.; Weitsch, G.A.

    1976-01-01

    A comparison of K/sup plus-or-minus/p and p/sup plus-or-minus/p elastic scattering is made for incident energy 50 to 175 GeV. Average values of 0.19 +- 0.04 and 0.11 +- 0.02 GeV 2 were found for the invariant-momentum-transfer values of the Kp and pp crossover points, respectively

  18. Small angle x-ray scattering from proteins in solution

    International Nuclear Information System (INIS)

    de Souza, C.F.; Torriani, I.L.; Bonafe, C.F.S.; Merrelles, N.C.; Vachette, P.

    1989-01-01

    In this work the authors report experiments performed with giant respiratory proteins from annelids (erythrocruorins), known to have a molecular weight in the order of four million Daltons. Preliminary x-ray scattering data was obtained using a conventional rotating anode source. High resolution small angle scattering curves were obtained with synchrotron radiation from the DCI storage ring at LURE. Data from solutions with several protein concentrations were analyzed in order to determine low resolution dimensional parameters, using Guinier plots from the smeared scattering curves and the inverse transformation method

  19. Elastic and quasielastic scattering of light nuclei in the theory of multiple scattering

    International Nuclear Information System (INIS)

    Ismatov, E.I.; Kuterbekov, K.A.; Dzhuraev, Sh.Kh.; Ehsaniyazov, Sh.P.; Zholdasova, S.M.

    2005-01-01

    In the work the calculation method for diffraction scattering amplitudes of light nuclei by heavy nuclei is developed. For A 1 A 2 -scattering effects of pair-, three-fold, and four-fold screenings are estimated. It is shown, that in amplitude calculations for A 1 A 2 elastic scattering it is enough come to nothing more than accounting of total screenings in the first order. Analysis of nucleus-nucleus scattering sensitive characteristics to choice of single-particle nuclear densities parametrization is carried out

  20. Measurement of elastic light scattering from two optically trapped microspheres and red blood cells in a transparent medium.

    Science.gov (United States)

    Kinnunen, Matti; Kauppila, Antti; Karmenyan, Artashes; Myllylä, Risto

    2011-09-15

    Optical tweezers can be used to manipulate small objects and cells. A trap can be used to fix the position of a particle during light scattering measurements. The places of two separately trapped particles can also be changed. In this Letter we present elastic light scattering measurements as a function of scattering angle when two trapped spheres are illuminated with a He-Ne laser. This setup is suitable for trapping noncharged homogeneous spheres. We also demonstrate measurement of light scattering patterns from two separately trapped red blood cells. Two different illumination schemes are used for both samples.

  1. Molecular bonding in SF6 measured by elastic electron scattering

    International Nuclear Information System (INIS)

    Miller, J.D.; Fink, M.

    1992-01-01

    Elastic differential cross-section measurements of gaseous SF 6 were made with 30 keV electrons in the range of 0.25 bohrs -1 ≤s≤10 bohrs -1 . Structural parameters derived in this study closely matched those found in an earlier total (elastic plus inelastic) scattering investigation. Multiple-scattering effects were incorporated in the structural refinement. The discrepancies between the independent atom model and the measured differential cross section reproduce earlier total scattering results for momentum transfers of greater than 5 bohrs -1 . By extending the measurements to smaller s values, a closer examination of a Hartree--Fock calculation for SF 6 was possible. It was found that the difference curve obtained from the Hartree--Fock calculation matched the experimental data in this region. A more quantitative analysis was performed using the analytic expressions of Bonham and Fink to compute moments of the molecular charge distribution from the differential cross-section data. Comparison of these results with similar fits to the Hartree--Fock calculation confirmed the good agreement between the Hartree--Fock calculation and the current elastic data

  2. The Profile of Inelastic Collisions from Elastic Scattering Data

    Directory of Open Access Journals (Sweden)

    I. M. Dremin

    2015-01-01

    Full Text Available Using the unitarity relation in combination with experimental data about the elastic scattering in the diffraction cone, it is shown how the shape and the darkness of the inelastic interaction region of colliding protons change with increase of their energies. In particular, the collisions become fully absorptive at small impact parameters at LHC energies that results in some special features of inelastic processes. Possible evolution of this shape with the dark core at the LHC to the fully transparent one at higher energies is discussed that implies that the terminology of the black disk would be replaced by the black toroid. The approach to asymptotics is disputed. The ratio of the real to imaginary parts of the nonforward elastic scattering amplitude is briefly discussed. All the conclusions are only obtained in the framework of the indubitable unitarity condition using experimental data about the elastic scattering of protons in the diffraction cone without any reference to quantum chromodynamics (QCD or phenomenological approaches.

  3. Angle dependence of Andreev scattering at semiconductor-superconductor interfaces

    DEFF Research Database (Denmark)

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    1999-01-01

    We study the angle dependence of the Andreev scattering at a semiconductor-superconductor interface, generalizing the one-dimensional theory of Blonder, Tinkham, and Klapwijk (BTK),An increase of the momentum parallel to the interface leads to suppression of the probability of Andreev reflection...... and increase of the probability of normal reflection. We show that in the presence of a Fermi velocity mismatch between the semiconductor and the superconductor the angles of incidence and transmission are related according to the well-known Snell's law in optics. As a consequence there is a critical angle...

  4. Some remarks on the neutron elastic- and enelastic-scattering cross sections of palladium

    International Nuclear Information System (INIS)

    Chiba, S.; Guenther, P.T.; Smith, A.B.

    1989-05-01

    The cross sections for the elastic-scattering of 5.9, 7.1 and 8.0 MeV neutrons from elemental palladium were measured at forty scattering angles distributed between ∼15/degree/ and 160/degree/. The inelastic-scattering cross sections for the excitation of palladium levels at energies of 260 keV to 560 keV were measured with high resolution at the same energies, and at a scattering angle of 80/degree/. The experimental results were combined with lower-energy values previously obtained by this group to provide a comprehensive data base extending from near the inelastic-scattering threshold to 8 MeV. That data base was interpreted in terms of a coupled-channel model, including the inelastic excitation of one- and two-phonon vibrational levels of the even isotopes of palladium. It was concluded that the palladium inelastic-scattering cross section, at the low energies of interest in assessment of fast-fission-reactor performance, are large (∼50% greater than given in widely used evaluated fission-product data files). They primarily involve compound-nucleus processes, with only a small direct-reaction component attributable to the excitation of the one-phonon, 2 + , vibrational levels of the even isotopes of palladium. 24 refs., 6 figs

  5. An experimental test of charge symmetry in n-p elastic scattering

    International Nuclear Information System (INIS)

    Birchall, J.; Davison, N.E.; Gubler, H.P.

    1982-06-01

    An experiment is described to investigate the isospin-mixing, charge-symmetry breaking component in the n-p interaction. The experiment measures the difference ΔA between the neutron and proton analyzing power Asub(n) and Asub(p) in n-p elastic scattering at 500 MeV. The experiment consists of two interleaved phases in which polarised neutrons, respectively unpolarised neutrons are scattered from an unpolarised, respectively polarised proton target of the frozen spin type. Designed as a null-measurement requiring no accurately known polarisation standards, the experiment determines the difference in angle at which Asub(n) and Asub(p) cross through zero. It is intended to provide an unambiguous test of a class IV charge-symmetry breaking effect to the level of ΔA approximately equal to 0.001, corresponding to a laboratory angle difference at zero crossing of approximately 0.05 0

  6. Analyses of pion-40Ca elastic scattering data using the Klein–Gordon equation

    International Nuclear Information System (INIS)

    Shehadeh, Z.F.

    2009-01-01

    The elastic scattering data for incident pion energies of 130, 163.3, 180, and 230 MeV on 40 Ca have been analyzed using the full Klein–Gordon equation (KGE), as opposed to its approximate form which renders it to the format of a Schroedinger equation with an energy-dependent potential (RSE). Calculated angular distributions, using KGE and RSE, for all four cases are nearly the same up to about 70° but differ significantly at larger angles. To fit the large-angle data of 163.3 MeV, the nature of the old potential determined by using RSE needs to be revised. The new potentials in four cases are presented and they are compatible with those determined from the inverse scattering theory at a fixed energy in the surface region. (author)

  7. High-energy elastic and quasi-elastic deuteron-nucleus scattering

    International Nuclear Information System (INIS)

    Tekou, Amouzou

    1974-01-01

    A study is made of deuteron-nucleus elastic and quasi-elastic scattering and the connection between the opaque nucleus model and the Glauber model is pointed out. The contributions to different cross-sections of the collisions in which the nucleus, excited by one of the nucleons of the deuteron, is brought back to the ground state by the other nucleon is analysed. Coherent deuteron disintegration is found to be highly improbable when the target nucleus is heavy and incoherent disintegration accounts for nearly all the deuteron disintegration. Thus a correct comparison between theoretical and experimental data on proton stripping must take the incoherent deuteron disintegration into consideration

  8. Small angle neutron scattering studies of mixed micelles of sodium

    Indian Academy of Sciences (India)

    The aqueous solutions of sodium cumene sulphonate (NaCS) and its mixtures with each of cetyl trimethylammonium bromide (CTAB) and sodium dodecyl sulphate (SDS) are characterized by small angle neutron scattering (SANS). NaCS when added to CTAB solution leads to the formation of long rod-shaped micelles with ...

  9. Spin-Echo Small-Angle Neutron Scattering Development

    NARCIS (Netherlands)

    Uca, O.

    2003-01-01

    Spin-Echo Small-Angle Neutron Scattering (SESANS) instrument is a novel SANS technique which enables one to characterize distances from a few nanometers up to the micron range. The most striking difference between normal SANS and SESANS is that in SESANS one gets information in real space, whereas

  10. Small-angle neutron scattering studies on water soluble complexes ...

    Indian Academy of Sciences (India)

    ... by small-angle neutron scattering. SANS data showed a positive indication of the formation of RCP-SDS complexes. Even though the complete structure of the polyion complexes could not be ascertained, the results obtained give us the information on the local structure in these polymer-surfactant systems. The data were ...

  11. Small Angle Neutron Scattering instrument at Malaysian TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mohd, Shukri; Kassim, Razali; Mahmood, Zal Uyun [Malaysian Inst. for Nuclear Technology Research (MINT), Bangi, Kajang (Malaysia); Radiman, Shahidan

    1998-10-01

    The TRIGA MARK II Research reactor at the Malaysian Institute for Nuclear Research (MINT) was commissioned in July 1982. Since then various works have been performed to utilise the neutrons produced from this steady state reactor. One of the project involved the Small Angle Neutron Scattering (SANS). (author)

  12. A national facility for small angle neutron scattering

    International Nuclear Information System (INIS)

    Buyers, W.J.L.; Katsaras, J.; Mellors, W.; Potter, M.M.; Powell, B.M.; Rogge, R.B.; Root, J.H.; Tennant, D.C.; Tun, Z.

    1995-01-01

    A world-class small angle neutron scattering (SANS) facility is proposed for Canada. It will provide users from the fields of biology, chemistry, physics, materials science and engineering with a uniquely powerful tool for investigating microstructural properties whose length scales lie in the optical to atomic range. (author). 7 refs

  13. Characterization of alumina using small angle neutron scattering (SANS)

    International Nuclear Information System (INIS)

    Megat Harun Al Rashidn Megat Ahmad; Abdul Aziz Mohamed; Azmi Ibrahim; Che Seman Mahmood; Edy Giri Rachman Putra; Muhammad Rawi Muhammad Zin; Razali Kassim; Rafhayudi Jamro

    2007-01-01

    Alumina powder was synthesized from an aluminium precursor and studied using small angle neutron scattering (SANS) technique and complemented with transmission electron microscope (TEM). XRD measurement confirmed that the alumina produced was high purity and highly crystalline αphase. SANS examination indicates the formation of mass fractals microstructures with fractal dimension of about 2.8 on the alumina powder. (Author)

  14. Progress in small angle neutron scattering activities in Malaysia

    International Nuclear Information System (INIS)

    Abdul Aziz Bin Mohamed; Azali Bin Muhamad; Shukri Bin Mohd

    1999-01-01

    The current status of SANS (Small Angle Neutron Scattering facility) activities in Malaysia has been presented. Many works need to be done for system improvement before the system can be confidently used as one of effective quality control tools in materials production and engineering sectors. (author)

  15. A national facility for small angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Buyers, W J.L.; Katsaras, J; Mellors, W; Potter, M M; Powell, B M; Rogge, R B; Root, J H; Tennant, D C; Tun, Z [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Epand, R; Gaulin, B D [McMaster Univ., Hamilton, ON (Canada)

    1995-09-15

    A world-class small angle neutron scattering (SANS) facility is proposed for Canada. It will provide users from the fields of biology, chemistry, physics, materials science and engineering with a uniquely powerful tool for investigating microstructural properties whose length scales lie in the optical to atomic range. (author). 7 refs.

  16. Small angle neutron scattering studies on the interaction of cationic

    Indian Academy of Sciences (India)

    The structure of the protein–surfactant complex of bovine serum albumin (BSA) and cationic surfactants has been studied by small angle neutron scattering. At low concentrations, the CTAB monomers are observed to bind to the protein leading to an increase in its size. On the other hand at high concentrations, surfactant ...

  17. Small-angle neutron scattering studies of nonionic surfactant: Effect

    Indian Academy of Sciences (India)

    Micellar solution of nonionic surfactant -dodecyloligo ethyleneoxide surfactant, decaoxyethylene monododecyl ether [CH3(CH2)11(OCH2CH2)10OH], C12E10 in D2O solution have been analysed by small-angle neutron scattering (SANS) at different temperatures (30, 45 and 60°C) both in the presence and absence of ...

  18. Small-angle neutron scattering in materials science - an introduction

    International Nuclear Information System (INIS)

    Fratzl, P.

    1996-01-01

    The basic principles of the application of small-angle neutron scattering to materials research are summarized. The text focusses on the classical methods of data evaluation for isotropic and for anisotropic materials. Some examples of applications to the study of alloys, porous materials, composites and other complex materials are given. (author) 9 figs., 38 refs

  19. Small-angle neutron scattering from colloidal dispersions

    International Nuclear Information System (INIS)

    Ottewill, R.H.

    1991-01-01

    A survey is given of recent work on the use of small-angle neutron scattering to examine colloidal dispersions. Particular attention is given to the determination of particle size and polydispersity, the determination of particle morphology and the behaviour of concentrated colloidal dispersions, both at rest and under the influence of an applied shear field. (orig.)

  20. Elastic scattering of protons at the nucleus 6He in the Glauber multiple scattering theory

    International Nuclear Information System (INIS)

    Prmantayeva, B.A.; Temerbayev, A.A.; Tleulessova, I.K.; Ibrayeva, E.T.

    2011-01-01

    Calculation is submitted for the differential cross sections of elastic p 6 He-scattering at energies of 70 and 700 MeV/nucleon within the framework of the Glauber theory of multiple diffraction scattering. We used the three-particle wave functions: α-n-n with realistic intercluster potentials. The sensitivity of elastic scattering to the proton-nuclear interaction and the structure of nuclei had been investigated. It is shown that the contribution of small components of the wave function as well as the multiplicity of the scattering operator Ω should be considered to describe a cross-section in broad angular range . A comparison with available experimental data was made. (author)

  1. A new model for elastic deuteron-deuteron scattering

    International Nuclear Information System (INIS)

    Etim, E.; Satta, L.

    1988-01-01

    Straightforward application of the Glauber multiple scattering theory is drammatically challenged by data on elastic deuteron-deuteron scattering. The challenge has been argued to be met by an improved representation of the ground state wave function of the deuteron as an admixture of S-and D-waves. In the light of the failure of the Glauber and geometrical picture models in general, to explain proton-proton and proton-antiproton scattering data up to and including collider energies and for all momentum transfers, this argument becomes less and less compelling and more and more unconvincing. A model inspired by unitarity and which produces substantial elastic scattering through a unitarity sum over a specific class of intermediate states is presented. The model fits not only deuteron-deuteron, but also proton-proton, proton-antiproton and αN -> αN (N =α, d, He 3 ) data for all energies and momentum transfers. No detailed knowledge of ground state wave functions is required

  2. Observations of resonance-like structures for positron-atom elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Dou, L.; Kauppila, W.E.; Kwan, C.K.; Stein, T.S.

    1993-01-01

    We have measured absolute values of elastic differential cross sections (DCS's) for positron (e + ) scattering by argon (8.7-300 eV), krypton (6.7-400 eV), and also neon (13.6-400 eV) using a crossed-beam experimental setup. When the DCS's are plotted at fixed scattering angles of 30 degrees, 60 degrees, 90 degrees, and 120 degrees versus energy it has been found that well-defined resonance-like structures were found at an energy of 55-60 eV for argon and at 25 and 200 eV for krypton, with a broader structure found between 100-200 eV for neon. These observed resonance-like structures are unusual because they occur at energies well above the known inelastic thresholds for these atoms. They may represent examples of open-quotes coupled channel shape resonancesclose quotes, first predicted by Higgins and Burke for e + -H scattering in the vicinity of 36 eV (width ∼ 4 eV), which occurs only when both the elastic and positronium formation scattering channels are considered together. A more recent e + -H calculation by Hewitt et al. supports the Higgins and Burke prediction. These predictions and the present observations suggest the existence of a new type of atomic scattering resonance

  3. Simulation of effects of incident beam condition in p-p elastic scattering

    International Nuclear Information System (INIS)

    Yu Lei; Zhang Gaolong; Le Xiaoyun; Tanihata, I.

    2014-01-01

    The simulation is performed for the monitors of beam direction and beam position for p-p elastic scattering. We set several variables to simulate the monitors of incident beam condition changes: beam positions at the quadrupole magnet and target in beam line polarimeter (BLP2), distance between quadrupole magnet and target, size of plastic scintillators, distance between the target in BLP2 and the centers of plastic scintillators, and beam polarization. Through the rotation of the coordinate system, the distributions of scattered and recoiled protons in the laboratory system were obtained. By analyzing the count yields in plastic scintillators at different beam positions, we found that the beam incident angular change (0.35°) could be detected when the asymmetry of geometries of left and right scintillators in BLP2 was changed by 6%. Therefore, the scattering angle measured in the experiment can be tracked by these monitors. (authors)

  4. Elastic scattering and transport coefficients for a quark plasma in SUf(3) at finite temperatures

    Science.gov (United States)

    Rehberg, P.; Klevansky, S. P.; Hüfner, J.

    1996-02-01

    The temperature dependence of the elastic-scattering processes qq' → qq' and q overlineq' → q overlineq' , with q, q' = u, d, s is studied as a function of the scattering angle and the center-of-mass energy of the collision within the framework of the SUf(3) Nambu-Jona-Lasinio model. Critical scattering at threshold is observed in the q overlineq' → q overlineq' process, leading to an enhancement of the cross section as occurs in the phenomenon of critical opalescence. Transport properties such as viscosity, mean free paths and thermal relaxation times are calculated. Strangeness enhancement is investigated via the chemical relaxation times, which are found to be considerably higher than those calculated via perturbative QCD. A comparison with the experimental values for the strangeness enhancement in S + S collisions leads to an upper limit of 4 fm/ c for the lifetime of the plasma.

  5. Elastic helium scattering studies of ordered overlayers of Ar, Kr, and Xe physisorbed on Ag(111)

    International Nuclear Information System (INIS)

    Gibson, K.D.; Cerjan, C.; Light, J.C.; Sibener, S.J.

    1988-01-01

    We describe experiments that measured the angle resolved intensity of He (E/sub i/ = 18 and 66 meV) elastically scattering from the surfaces of rare gas overlayers physisorbed on Ag(111). These studies were done on a layer-by-layer basis for 1, 2, 3, and ∼25 ordered overlayers of Ar, Kr, and Xe. Two types of experiments are described. The first is diffraction, where the scattered He intensity was measured as a function of the detector angle, with the incident polar and azimuthal angles held constant. In the second type of experiment, selective adsorption, we measured the specular intensity as a function of incident angle. The purpose of these experiments was to examine the He--surface potential, to assess the relative contributions that various He--rare gas pair potentials, nonadditive multibody terms, and He--substrate interactions make to the systems studied. The experiments are compared with the results of accurate close-coupling calculations, in order to quantitatively perform these assessments. The comparisons between the selective adsorption data and scattering calculations demonstrate the extreme sensitivity that such measurements have to the He--surface potential. In particular, observable changes in the calculated selective adsorption spectra appear when different He--rare gas potentials are tested, or when various nonadditive terms are included in the potential. The results suggest that further refinements in the He-heavy--rare gas pair potentials may be in order

  6. Elastic and inelastic scattering of {sup 15}N ions by {sup 9}Be at 84 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Rudchik, A.T., E-mail: rudchik@kinr.kiev.ua [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Chercas, K.A. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Kemper, K.W. [Physics Department, Florida State University, Tallahassee, FL 32306-4350 (United States); Rusek, K. [Heavy Ion Laboratory of Warsaw University, ul. L. Pasteura 5A, PL-02-093 Warsaw (Poland); Rudchik, A.A.; Herashchenko, O.V. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Koshchy, E.I. [Kharkiv National University, pl. Svobody 4, 61077 Kharkiv (Ukraine); Pirnak, Val.M. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Piasecki, E.; Trzcińska, A. [Heavy Ion Laboratory of Warsaw University, ul. L. Pasteura 5A, PL-02-093 Warsaw (Poland); Sakuta, S.B. [Russian Research Center “Kurchatov Institute”, Kurchatov Sq. 1, 123182 Moscow (Russian Federation); Siudak, R. [H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland); Strojek, I. [National Center for Nuclear Researches, ul. Hoża 69, PL-00-681 Warsaw (Poland); Stolarz, A. [Heavy Ion Laboratory of Warsaw University, ul. L. Pasteura 5A, PL-02-093 Warsaw (Poland); Ilyin, A.P.; Ponkratenko, O.A.; Stepanenko, Yu.M.; Shyrma, Yu.O. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Szczurek, A. [H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland); Uleshchenko, V.V. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine)

    2016-03-15

    Angular distributions of the {sup 9}Be + {sup 15}N elastic and inelastic scattering were measured at E{sub lab}({sup 15}N) = 84 MeV (E{sub c.m.} = 31.5 MeV) for the 0–6.76 MeV states of {sup 9}Be and 0–6.32 MeV states of {sup 15}N. The data were analyzed within the optical model and coupled-reaction-channels method. The elastic and inelastic scattering, spin reorientations of {sup 9}Be in ground and excited states and {sup 15}N in excited states as well as the most important one- and two-step transfer reactions were included in the channels-coupling scheme. The parameters of the {sup 9}Be + {sup 15}N optical potential of Woods–Saxon form as well as deformation parameters of these nuclei were deduced. The analysis showed that the {sup 9}Be + {sup 15}N pure potential elastic scattering dominates at the forward angles whereas the ground state spin reorientation of {sup 9}Be gives a major contribution to the elastic scattering cross sections at the large angles. Contributions from particle transfers are found to be negligible for the present scattering system.

  7. An l-window formalism for elastic heavy-ion scattering

    International Nuclear Information System (INIS)

    Rowley, N.

    1980-01-01

    It is shown that the heavy-ion elastic scattering amplitude may be written as an exact summation over sharp cut-off Coulomb amplitudes with coefficients which are simply the differences of successive nuclear S-matrix elements. Thus in the case of strong absorption the coefficients are non-zero only over a small range of angular momenta, formally making the elastic amplitude similar to those for inelastic scattering and transfer reactions in that it possesses an 'l window'. Some good approximations to the sharp cut-off Coulomb amplitudes are given enabling the results obtained by the usual integral techniques for dealing with smooth S matrices to be rederived simply. A simple means of studying cases where the transition from no absorption to total absorption takes place over a very small range of angular momenta is also provided. The case of identical spin-zero ions, in particular the system 16 0 + 16 0, is discussed and a qualitative understanding of many of the experimental results and of previous fits to the data obtained. Large-angle scattering of non-identical ions is also mentioned and the l-window formalism suggests that the angular distributions for the elastic and other channels should be very similar in this region. (author)

  8. Quasi-elastic Scattering Measurements in the 6,7Li+144Sm Systems

    International Nuclear Information System (INIS)

    Capurro, O. A.; Arazi, A.; Fernandez Niello, J. O.; Figueira, J. M.; Marti, G. V.; Martinez Heimann, D.; Negri, A. E.; Pacheco, A. J.; Monteiro, D. S.; Otomar, D. R.; Gomes, P. R. S.; Guimaraes, V.

    2009-01-01

    In the present work, results of measurements of quasi-elastic scattering cross sections using a silicon-telescope detector at backward angles are reported. They allowed us to deduce fusion barrier distributions from the first derivative of the corresponding excitation function (-d(dσ qes /dσ Rut )/dE). We report data for the systems 6,7 Li on 144 Sm which are characterized by loosely bound projectiles onto a closed neutron shell target. The experimental excitation functions and the associated barrier distributions are compared for both systems.

  9. Quasi-elastic Charm Production In Neutrino-nucleon Scattering

    CERN Document Server

    Bischofberger, M

    2005-01-01

    A study of quasi elastic charm production in charged current neutrino-nucleon scattering is presented. A sample of about 1.3 million interactions recorded with the NOMAD detector in the CERN SPS wide band neutrino beam has been searched for quasi elastically produced charmed baryons ( L+c,Sc and S*c ). The search has been performed in two exclusive decay channels of the L+c, both including a L . Also, the semi-inclusive decay channels L+c,Sc,S *c→L+X have been studied. Kinematic selection criteria have been chosen in order to obtain samples enriched with quasi elastic charm events. Signal efficiencies and background expectations have been estimated by Monte Carlo simulations. The observed number of events in each searched channel has been found to agree with the background expectation from charged and neutral current reactions and an upper limit for the cross section has been derived. For the quasi elastic charm production cross section averaged over the neutrino energy spectrum (&lan...

  10. Low-angle X-ray scattering from spices

    International Nuclear Information System (INIS)

    Desouky, O.S.; Ashour, Ahmed H.; Abdullah, Mohamed I.; Elshemey, Wael M.

    2002-01-01

    Low-angle scattering of X-rays is characterized by the presence of one or more peaks in the forward direction of scattering. These peaks are due to the interference of photons coherently scattered from the molecules of the medium. Thus these patterns are closely linked to the molecular structure of the investigated medium. In this work, low-angle X-ray scattering (LAXS) profiles of five spices; pimpinella anisum (anise), coriandrum sativum (coriander), cuminum cyminum (cumin), foenculum vulgare (fennel) and nigella sativa (nigella or black cumin) are presented after extensive measurements. It is found that all spices exhibit one characteristic peak at a scattering angle around 10 deg. This is equivalent to a value x=0.0565 A -1 , where x=sin(θ/2)/λ. The full width at half maximum (FWHM) of this peak is found to be characteristic for each type of the investigated spices. The possibility to detect the irradiation of these spices from their LAXS profiles is also examined after 10, 20, 30 and 40 kGy doses of gamma radiation. Except for anise, coriander and cumin at 40 kGy, there are no detectable deviations from the control samples in the scattering profiles of irradiated samples. These results comply with the recommendations of the FDA (US Food and Drug Administration) which defines 30 kGy as the maximum dose for irradiation of spices. The present technique could be used to detect over-irradiation, which causes damage to the molecular structure of some spices

  11. Transport cross section for small-angle scattering

    International Nuclear Information System (INIS)

    D'yakonov, M.I.; Khaetskii, A.V.

    1991-01-01

    Classical mechanics is valid for describing potential scattering under the conditions (1) λ much-lt α and (2) U much-gt ℎυ/α, where λ is the de Broglie wavelength, α is the characteristic size of the scatterer, U is the characteristic value of the potential energy, and υ is the velocity of the scattered particle. The second of these conditions means that the typical value of the classical scattering angle is far larger than the diffraction angle λ/α. In this paper the authors show that this second condition need not hold in a derivation of the transport cross section. In other words, provided that the condition λ much-lt α holds, it is always possible to calculate the transport cross section from the expressions of classical mechanics, even in the region U approx-lt ℎυ/α, where the scattering is diffractive,and the differential cross section is greatly different from the classical cross section. The transport cross section is found from the classical expression even in the anticlassical case U much-lt ℎυ/α, where the Born approximation can be used

  12. Resonance effects in elastic cross sections for electron scattering on pyrimidine: Experiment and theory.

    Science.gov (United States)

    Regeta, Khrystyna; Allan, Michael; Winstead, Carl; McKoy, Vincent; Mašín, Zdeněk; Gorfinkiel, Jimena D

    2016-01-14

    We measured differential cross sections for elastic (rotationally integrated) electron scattering on pyrimidine, both as a function of angle up to 180(∘) at electron energies of 1, 5, 10, and 20 eV and as a function of electron energy in the range 0.1-14 eV. The experimental results are compared to the results of the fixed-nuclei Schwinger variational and R-matrix theoretical methods, which reproduce satisfactorily the magnitudes and shapes of the experimental cross sections. The emphasis of the present work is on recording detailed excitation functions revealing resonances in the excitation process. Resonant structures are observed at 0.2, 0.7, and 4.35 eV and calculations for different symmetries confirm their assignment as the X̃(2)A2, Ã(2)B1, and B̃(2)B1 shape resonances. As a consequence of superposition of coherent resonant amplitudes with background scattering the B̃(2)B1 shape resonance appears as a peak, a dip, or a step function in the cross sections recorded as a function of energy at different scattering angles and this effect is satisfactorily reproduced by theory. The dip and peak contributions at different scattering angles partially compensate, making the resonance nearly invisible in the integral cross section. Vibrationally integrated cross sections were also measured at 1, 5, 10 and 20 eV and the question of whether the fixed-nuclei cross sections should be compared to vibrationally elastic or vibrationally integrated cross section is discussed.

  13. Microanalysis of solid surfaces by nuclear reactions and elastic scattering

    International Nuclear Information System (INIS)

    Agius, B.

    1975-01-01

    The principles involved in the use of monokinetic light ions beams, of about 1MeV, to the study of surface phenomena are presented. Two complementary techniques are described: the use of elastic scattering, which allows the analysis of impurity elements heavier than the substrate components and the use of nuclear reactions specific of light elements. Typical sensitivities are of the order of 10 11 at/cm 2 in good cases. The depth resolution varies, according to the cases, from about a hundred angstroems to a few thousand angstroems [fr

  14. Mesonic effects in the elastic electron deuteron scattering

    International Nuclear Information System (INIS)

    Konopka, G.

    1981-01-01

    The present thesis was concerned with the study of the electromagnetic structure of the deuteron in the framework of the OBE model using elastic electron-deuteron scattering with high momentum transfer. In the framework of the S-matrix formalism the differential cross sections was derived in first Born approximation. The calculation of the invariant amplitude led to the introduction of the electric and magnetic structure functions. From these structure functions the electromagnetic form factor was calculated. Furthermore the effective OBE-potential was derived in the framework of a projection procedure on the base of unitary transformations. (orig./HSI). [de

  15. Theoretical study of the electron-cluster elastic scattering

    International Nuclear Information System (INIS)

    Descourt, P.; Guet, C.; Farine, M.

    1997-01-01

    The properties of the clusters consisting of some tens to several hundreds of alkali atoms are generally quite well described in the jellium approximation. This approximation treats the cluster as a charged Fermi liquid of finite size. The optical response predicted by this approximation and taking into account the electron-electron correlations of the Hartree-Fock mean field agrees rather well with the experiment. The objective of this work was to obtain a quantal many-body formalism, within jellium approximation, applicable to elastic scattering of electrons from an alkali-metal-cluster. Influence of correlations on the phase shifts was also taken into account

  16. Spin asymmetry in resonant electron-hydrogen elastic scattering

    International Nuclear Information System (INIS)

    McCarthy, I.E.; Shang, Bo.

    1993-02-01

    Differential cross sections and asymmetries at 90 deg. and 30 deg are calculated for electron-hydrogen elastic scattering over the energies of the lowest 1 S and 3 P resonances using a nine-state coupled-channels calculation with and without continuum effects, which are represented by an equivalent-local polarization potential. The polarization potential improves agreement with experiment in general for the spin-averaged cross sections. It is suggested that continuum effects would be critically tested by asymmetry measurement at 30 deg over the 1 S resonance. 7 refs., 4 figs

  17. Parity Non-Conservation in Proton-Proton Elastic Scattering

    International Nuclear Information System (INIS)

    Brown, V.R.; B.F. Gibson; J.A. Carlson; R. Schiavilla

    2002-01-01

    The parity non-conserving longitudinal asymmetry in proton-proton (pp) elastic scattering is calculated in the lab-energy range 0-350 MeV using contemporary, realistic strong-interaction potentials combined with a weak-interaction potential comprised of rho- and omega-meson exchanges as exemplified by the DDH model. Values for the rho- and omega-meson coupling constants, h rho rho rho and h rho rho omega , are determined from comparison with the measured asymmetries at 13.6 MeV, 45 MeV, and 221 MeV

  18. Selectron production in quasi-elastic electron-proton scattering

    International Nuclear Information System (INIS)

    Bartels, J.; Hollik, W.

    1985-08-01

    We calculate the cross section for the production of selectrons in quasi-elastic electron proton scattering at HERA energies. In the region of very small momentum transfer the cross section turns out to be large: e.g. sigma=36 pb for a selectron mass of 60 GeV, tsub(min) 2 ), and photino mass small compared to the selectron mass. Together with the clean experimental signature, this large cross section makes the reaction e+P->e+γ tilde+P one of the most promising HERA-processes in connection with the search for supersymmetric particles. (orig.)

  19. Scattering angle base filtering of the inversion gradients

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-01-01

    Full waveform inversion (FWI) requires a hierarchical approach based on the availability of low frequencies to maneuver the complex nonlinearity associated with the problem of velocity inversion. I develop a model gradient filter to help us access the parts of the gradient more suitable to combat this potential nonlinearity. The filter is based on representing the gradient in the time-lag normalized domain, in which low scattering angles of the gradient update are initially muted. The result are long-wavelength updates controlled by the ray component of the wavefield. In this case, even 10 Hz data can produce near zero wavelength updates suitable for a background correction of the model. Allowing smaller scattering angle to contribute provides higher resolution information to the model.

  20. Small Angle Neutron Scattering From Iron. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M; Abdel-Kawy, A; Naguib, K; Habib, N; Kilany, M [Reactor and Neutron Physics Dept., Nuclear Research Centre, AEA, Cairo, (Egypt); Wahba, M [Faculty of Engineering, ain Shams University, Cairo, (Egypt); Ashry, A [Faculty of Education, Ain Shams University, Cairo, (Egypt)

    1996-03-01

    The total neutron cross-section measurements have been carried out for iron in both metallic and powder forms in the wavelengths band 0.35 nm to 0.52 nm. The measurements were performed using the TOF spectrometer installed in front of one of the horizontal channels of the ET-RR-1 reactor. The observed behavior for the small-angle neutron scattering cross-section of iron powder was analyzed in terms of its particle diameter, incident neutron wavelength and beam divergence. It was found that for iron particles of diameter 25 {mu}m the small-angle neutron scattering is only due to refraction of neutron wave traversing the particles. A method was established to determine the particle size of iron powders within an accuracy of 8% which is higher than that obtained by mesh analysis. 4 figs., 1 tab.

  1. Elastic scattering of low-energy electrons with Sr atoms

    International Nuclear Information System (INIS)

    Yuan, J.; Zhang, Z.; Wan, H.

    1990-01-01

    Static-exchange, plus correlation-polarization-potential calculations are performed for elastic low-energy electron scattering from Sr atoms while paying attention to the low-lying shape resonances. The correlation potential is calculated both with and without a scaling factor. A 2 D-shape resonance is produced at 1.0 eV with a parameter-free, and at 1.25 eV with a scaled, correlation potential. No 2 P-shape resonances are predicted, but evidence to support the existence of a stable negative ion Sr - in the 5s 2 5p electron configuration is given from the viewpoint of electron scattering. The bound energy of the extra electron in the negative ion is estimated by transforming the phase shift of the corresponding partial wave into the polarization quantum-defect number and extrapolating the number from positive to negative energies

  2. α4He elastic scattering at high energies

    International Nuclear Information System (INIS)

    Usmani, A.A.; Usmani, Q.N.

    1988-03-01

    Differential cross sections for α 4 He elastic scattering have been calculated at incident α particle momenta of 4.32, 5.07 and 7.0 GeV/c within the framework of the Glauber multiple scattering theory. The full Glauber amplitude is calculated using the Monte Carlo method for evaluating multidimensional integrals. We find that, in general, the more realistic double Gaussian model for the density brings theory closer to experiment as compared to the generally used single Gaussian model. Our results with the double Gaussian model are in fairly good agreement with the experimented data at 4.32 and 5.07 GeV/c. (author). 11 refs, 4 figs, 1 tab

  3. Hard pair production in large-angle Bhabha scattering

    International Nuclear Information System (INIS)

    Arbuzov, A.B.; Trentadue, L.

    1996-01-01

    The cross section of hard pair production in large-angle Bhabha scattering calculated in the leading and next-to-leading logarithmic approximations. Eight regions of the collinear kinematics, when the final particles imitate a process of the 2 →2 type, and three semicollinear regions, when the final particles imitate a process of the 2→3 type, are considered. Analytical formulae for differential cross sections are presented. (orig.)

  4. Large-angle Bhabha scattering at LEP 1

    Science.gov (United States)

    Beenakker, Wim; Passarino, Giampiero

    1998-04-01

    A critical assessment is given of the theoretical uncertainty in the predicted cross-sections for large-angle Bhabha scattering at LEP 1, with or without t-channel subtraction. To this end a detailed comparison is presented of the results obtained with the programs ALIBABA and TOPAZ0. Differences in the implementation of the radiative corrections and the effect of missing higher-order terms are critically discussed. © 1998

  5. Geometry Survey of the Time-of-Flight Neutron-Elastic Scattering (Antonella) Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Oshinowo, Babatunde O. [Fermilab; Izraelevitch, Federico [Buenos Aires U.

    2016-10-17

    The Antonella experiment is a measurement of the ionization efficiency of nuclear recoils in silicon at low energies [1]. It is a neutron elastic scattering experiment motivated by the search for dark matter particles. In this experiment, a proton beam hits a lithium target and neutrons are produced. The neutron shower passes through a collimator that produces a neutron beam. The beam illuminates a silicon detector. With a certain probability, a neutron interacts with a silicon nucleus of the detector producing elastic scattering. After the interaction, a fraction of the neutron energy is transferred to the silicon nucleus which acquires kinetic energy and recoils. This kinetic energy is then dissipated in the detector producing ionization and thermal energy. The ionization produced is measured with the silicon detector electronics. On the other hand, the neutron is scattered out of the beam. A neutron-detector array (made of scintillator bars) registers the neutron arrival time and the scattering angle to reconstruct the kinematics of the neutron-nucleus interaction with the time-of-flight technique [2]. In the reconstruction equations, the energy of the nuclear recoil is a function of the scattering angle with respect to the beam direction, the time-of-flight of the neutron and the geometric distances between components of the setup (neutron-production target, silicon detector, scintillator bars). This paper summarizes the survey of the different components of the experiment that made possible the off-line analysis of the collected data. Measurements were made with the API Radian Laser Tracker and I-360 Probe Wireless. The survey was completed at the University of Notre Dame, Indiana, USA in February 2015.

  6. [Particle Size and Number Density Online Analysis for Particle Suspension with Polarization-Differentiation Elastic Light Scattering Spectroscopy].

    Science.gov (United States)

    Chen, Wei-kang; Fang, Hui

    2016-03-01

    The basic principle of polarization-differentiation elastic light scattering spectroscopy based techniques is that under the linear polarized light incidence, the singlely scattered light from the superficial biological tissue and diffusively scattered light from the deep tissue can be separated according to the difference of polarization characteristics. The novel point of the paper is to apply this method to the detection of particle suspension and, to realize the simultaneous measurement of its particle size and number density in its natural status. We design and build a coaxial cage optical system, and measure the backscatter signal at a specified angle from a polystyrene microsphere suspension. By controlling the polarization direction of incident light with a linear polarizer and adjusting the polarization direction of collected light with another linear polarizer, we obtain the parallel polarized elastic light scattering spectrum and cross polarized elastic light scattering spectrum. The difference between the two is the differential polarized elastic light scattering spectrum which include only the single scattering information of the particles. We thus compare this spectrum to the Mie scattering calculation and extract the particle size. We then also analyze the cross polarized elastic light scattering spectrum by applying the particle size already extracted. The analysis is based on the approximate expressions taking account of light diffusing, from which we are able to obtain the number density of the particle suspension. We compare our experimental outcomes with the manufacturer-provided values and further analyze the influence of the particle diameter standard deviation on the number density extraction, by which we finally verify the experimental method. The potential applications of the method include the on-line particle quality monitoring for particle manufacture as well as the fat and protein density detection of milk products.

  7. Efficient scattering angle filtering for Full waveform inversion

    KAUST Repository

    Alkhalifah, Tariq Ali

    2015-01-01

    Controlling the scattering angles between the state and the adjoint variables for the energy admitted into an inversion gradient or an image can help improve these functions for objectives in full waveform inversion (FWI) or seismic imaging. However, the access of the scattering angle information usually requires an axis extension that could be costly, especially in 3D. For the purpose of a scattering angle filter, I develop techniques that utilize the mapping nature (no domain extension) of the filter for constant-velocity background models to interpolate between such filtered gradients using the actual velocity. The concept has well known roots in the application of phase-shift-plus-interpolation utilized commonly in the downward continuation process. If the difference between the minimum and maximum velocity of the background medium is large, we obtain filtered gradients corresponding to more constant velocity backgrounds and use linear interpolation between such velocities. The accuracy of this approximation for the Marmousi model gradient demonstrates the e ectiveness of the approach.

  8. Efficient scattering angle filtering for Full waveform inversion

    KAUST Repository

    Alkhalifah, Tariq Ali

    2015-08-19

    Controlling the scattering angles between the state and the adjoint variables for the energy admitted into an inversion gradient or an image can help improve these functions for objectives in full waveform inversion (FWI) or seismic imaging. However, the access of the scattering angle information usually requires an axis extension that could be costly, especially in 3D. For the purpose of a scattering angle filter, I develop techniques that utilize the mapping nature (no domain extension) of the filter for constant-velocity background models to interpolate between such filtered gradients using the actual velocity. The concept has well known roots in the application of phase-shift-plus-interpolation utilized commonly in the downward continuation process. If the difference between the minimum and maximum velocity of the background medium is large, we obtain filtered gradients corresponding to more constant velocity backgrounds and use linear interpolation between such velocities. The accuracy of this approximation for the Marmousi model gradient demonstrates the e ectiveness of the approach.

  9. Comparison of models and measurements of angle-resolved scatter from irregular aerosols

    International Nuclear Information System (INIS)

    Milstein, Adam B.; Richardson, Jonathan M.

    2015-01-01

    We have developed and validated a method for modeling the elastic scattering properties of biological and inert aerosols of irregular shape at near- and mid-wave infrared wavelengths. The method, based on Gaussian random particles, calculates the ensemble-average optical cross section and Mueller scattering matrix, using the measured aerodynamic size distribution and previously-reported refractive index as inputs. The utility of the Gaussian particle model is that it is controlled by only two parameters (σ and Γ) which we have optimized such that the model best reproduces the full angle-resolved Mueller scattering matrices measured at λ=1.55 µm in the Standoff Aerosol Active Signature Testbed (SAAST). The method has been applied to wet-generated singlet biological spore samples, dry-generated biological spore clusters, and kaolin. The scattering computation is performed using the Discrete Dipole Approximation (DDA), which requires significant computational resources, and is thus implemented on LLGrid, a large parallel grid computer. For the cases presented, the best fit Gaussian particle model is in good qualitative correspondence with microscopy images of the corresponding class of particles. The measured and computed cross sections agree well within a factor of two overall, with certain cases bearing closer correspondence. In particular, the DDA reproduces the shape of the measured scatter function more accurately than Mie predictions. The DDA-computed depolarization factors are also in good agreement with measurement. - Highlights: • We model elastic scattering of biological and inert aerosols of irregular shape. • We calculate cross sections and Mueller matrix using random particle shape model. • Scatter models employ refractive index and measured size distribution as inputs. • Discrete dipole approximation (DDA) with parallelization enables model calculations. • DDA-modeled cross section and Mueller matrix agree well with measurements at 1.55 μm

  10. Small-angle neutron scattering instrument at MINT

    International Nuclear Information System (INIS)

    Mohd Ali Sufi; Yusof Abdullah; Razali Kassim; Hamid; Shahidan Radiman; Mohammad Deraman; Abdul Ghaffar Ramli

    1996-01-01

    The Small Angle Neutron Scattering (SANS) Instrument has been developed at Malaysian Institute for Nuclear Technology Research (MINT) for studying structural properties of materials on the length scale 1 nm to 100 nm. This is the length scale which is relevant for many topics within soft condensed matter, like polymers, colloids, biological macromolecules, etc. The SANS is a complementary technique to X-ray and electron scattering. However, while these later techniques give information on structures near surface, SANS concerns the structure of the bulk. Samples studied by SANS technique are typically bulk materials of the sizes mm's to cm's, or materials dissolved in a liquid. This paper described the general characteristics of SANS instrument as well as the experimental formulation in neutron scattering. The preliminary results obtained by this instrument are shown

  11. Measurement of charge symmetry breaking in np elastic scattering at 350 MeV

    International Nuclear Information System (INIS)

    Abegg, R.; Berdoz, A.R.; Birchall, J.

    1994-10-01

    TRIUMF experiment 369, a measurement of charge symmetry breaking in np elastic scattering at 350 MeV, has completed data taking. Scattering asymmetries were measured with a polarized (unpolarized) neutron beam incident on an unpolarized (polarized) frozen spin target. Coincident scattered neutrons and recoil protons were detected by a mirror symmetric detection system in the center-of-mass angle range from 50 deg - 90 deg. A preliminary result for the difference of the zero-crossing angles, where analyzing powers cross zero, is Δθ cm = 0.445 deg ± 0.054 deg (stat.) ± 0.051 deg (syst.) based on fits over the angle range 53.4 deg ≤ θ cm ≤ 86.9 deg. The difference of the analyzing powers ΔA ≡ A n - A p , where the subscripts denote polarized nucleons, was deduced with dA/dθ cm = (-1.35 ± 0.05) x 10 -2 deg -1 to be [60 ± 7(stat.) ± 7(syst.) ± 2(syst.)] x 10 -4 . (author). 11 refs., 6 figs

  12. Halo structure of 8B determined from intermediate energy proton elastic scattering in inverse kinematics

    Science.gov (United States)

    Korolev, G. A.; Dobrovolsky, A. V.; Inglessi, A. G.; Alkhazov, G. D.; Egelhof, P.; Estradé, A.; Dillmann, I.; Farinon, F.; Geissel, H.; Ilieva, S.; Ke, Y.; Khanzadeev, A. V.; Kiselev, O. A.; Kurcewicz, J.; Le, X. C.; Litvinov, Yu. A.; Petrov, G. E.; Prochazka, A.; Scheidenberger, C.; Sergeev, L. O.; Simon, H.; Takechi, M.; Tang, S.; Volkov, V.; Vorobyov, A. A.; Weick, H.; Yatsoura, V. I.

    2018-05-01

    The absolute differential cross section for small-angle proton elastic scattering on the proton-rich 8B nucleus has been measured in inverse kinematics for the first time. The experiment was performed using a secondary radioactive beam with an energy of 0.7 GeV/u at GSI, Darmstadt. The active target, namely hydrogen-filled time projection ionization chamber IKAR, was used to measure the energy, angle and vertex point of the recoil protons. The scattering angle of the projectiles was simultaneously determined by the tracking detectors. The measured differential cross section is analyzed on the basis of the Glauber multiple scattering theory using phenomenological nuclear-density distributions with two free parameters. The radial density distribution deduced for 8B exhibits a halo structure with the root-mean-square (rms) matter radius Rm = 2.58 (6) fm and the rms halo radius Rh = 4.24 (25) fm. The results on 8B are compared to those on the mirror nucleus 8Li investigated earlier by the same method. A comparison is also made with previous experimental results and theoretical predictions for both nuclei.

  13. Direct sampling methods for inverse elastic scattering problems

    Science.gov (United States)

    Ji, Xia; Liu, Xiaodong; Xi, Yingxia

    2018-03-01

    We consider the inverse elastic scattering of incident plane compressional and shear waves from the knowledge of the far field patterns. Specifically, three direct sampling methods for location and shape reconstruction are proposed using the different component of the far field patterns. Only inner products are involved in the computation, thus the novel sampling methods are very simple and fast to be implemented. With the help of the factorization of the far field operator, we give a lower bound of the proposed indicator functionals for sampling points inside the scatterers. While for the sampling points outside the scatterers, we show that the indicator functionals decay like the Bessel functions as the sampling point goes away from the boundary of the scatterers. We also show that the proposed indicator functionals continuously dependent on the far field patterns, which further implies that the novel sampling methods are extremely stable with respect to data error. For the case when the observation directions are restricted into the limited aperture, we firstly introduce some data retrieval techniques to obtain those data that can not be measured directly and then use the proposed direct sampling methods for location and shape reconstructions. Finally, some numerical simulations in two dimensions are conducted with noisy data, and the results further verify the effectiveness and robustness of the proposed sampling methods, even for multiple multiscale cases and limited-aperture problems.

  14. Impact picture and internal matter motion for elastic scattering

    International Nuclear Information System (INIS)

    Bourrely, C.; Soffer, J.; Wu, T.T.

    1978-01-01

    Since four-dimensional relativistic quantum field theories have all the desirable properties such as particle production, unitarity, and analyticity, they provide a useful way to gain theoretical knowledge not only for weak and electromagnetic processes but also for strong interactions. For the dynamics of strong interactions, because of the necessity of understanding all orders of perturbation theory, the simplest case is the high energy limit. After a brief review of the general features of elastic scattering in field theories, the need of developing a phenomenology in order to make contact with present and future experimental data is discussed. Such a phenomenology must satisfy the dual requirement of, on the one hand, giving an accurate description of hadronic experimental data at high energies and, on the other hand, having the s → infinity behavior obtained from field theories. Recent improvements on such a phenomenology are emphasized, and include better parametrization and proper Regge background and spin effects. In particular, the spin of the proton is taken into account by using the concept of hadronic matter current of Chou and Yang. In addition to the total and differential cross sections for ISABELLE energies, predictions are obtained for both polarization and R parameters for proton--proton elastic scattering. Sore theoretical problems for the future are outlined

  15. Purely elastic scattering theories and their ultraviolet limits

    International Nuclear Information System (INIS)

    Klassen, T.R.; Chicago Univ., IL; Melzer, E.

    1990-01-01

    We use the thermodynamic Bethe ansatz to find the finite-size corrections to the ground-state energy in an arbitrary (1+1)-dimensional purely elastic scattering theory. The leading finite-size effects are characterized by tilde c=c-12d 0 , where c and d 0 are the central charge and the lowest scaling dimension, respectively, of the (possibly nonunitary) CFT describing the ultraviolet limit of the massive scattering theory. After presenting the purely elastic S-matrix theories that emerged in recent discussions of perturbed CFTs, we calculate their finite-size scaling coefficient tilde c. Our results show that the UV limits of the 'minimal' S-matrix theories are the unperturbed CFTs in question. On the other hand, the S-matrices which have been suggested to describe affine Toda field theories, differing from the minimal S-matrices by coupling-dependent factors, are seen to have free bosonic CFTs as their UV limits. We also discuss some interesting properties of tilde c. In particular, we suggest that tilde c is a measure of the number of degrees of freedom of an arbitrary two-dimensional CFT. (orig.)

  16. Nucleon-nucleon scattering studies at small angles at COSY-ANKE

    Energy Technology Data Exchange (ETDEWEB)

    Bagdasarian, Zara [Forschungszentrum Juelich, Juelich (Germany); Tbilisi State University, Tbilisi (Georgia); Collaboration: ANKE-Collaboration

    2015-07-01

    The most accepted approach to describe nucleon-nucleon (NN) interaction is the partial wave analysis (PWA). The SAID database and analysis program comprise various experimental observables at different energies over the full angular range and express them in the partial waves. The goal of the experiments held at COSY-Juelich is to provide SAID with new valuable measurements. Scattering data was taken at small angles for six beam energies between 0.8 and 2.4 GeV with polarized proton beam incident on both proton and deuteron unpolarized targets using the ANKE spectrometer. First, the results of the proton-proton (pp) scattering analyzing power and cross section are presented. While pp data closes a very important gap at small angles in the database, proton-neutron (pn) data is a crucial contribution to the almost non-explored pn database above 800 MeV. Therefore, the talk will mainly concentrate on the proton-deuteron (pd) scattering studies, which includes the overview of the older COSY experiments with polarized deuteron beam, and the abovementioned new experiment with polarized proton beam and unpolarized deuteron target. The presentation will show the most recent results of the analyzing powers of pd elastic and pn scattering.

  17. Hard two-photon contribution to elastic lepton-proton scattering determined by the OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, B.S. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ice, L.D. [Arizona State Univ., Tempe, AZ (United States); Khaneft, D. [Mainz Univ. (Germany); Collaboration: OLYMPUS Collaboration; and others

    2016-12-15

    The OLYMPUS collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R{sub 2γ}, a direct measure of the contribution of hard two- photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ∼20 to 80 . The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved GEM and MWPC detectors at 12 , as well as symmetric Moeller/Bhabha calorimeters at 1.29 . A total integrated luminosity of 4.5 fb{sup -1} was collected. In the extraction of R{sub 2γ}, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R{sub 2γ}, presented here for a wide range of virtual photon polarization 0.456<ε<0.978, are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.

  18. Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering Determined by the OLYMPUS Experiment

    Science.gov (United States)

    Henderson, B. S.; Ice, L. D.; Khaneft, D.; O'Connor, C.; Russell, R.; Schmidt, A.; Bernauer, J. C.; Kohl, M.; Akopov, N.; Alarcon, R.; Ates, O.; Avetisyan, A.; Beck, R.; Belostotski, S.; Bessuille, J.; Brinker, F.; Calarco, J. R.; Carassiti, V.; Cisbani, E.; Ciullo, G.; Contalbrigo, M.; de Leo, R.; Diefenbach, J.; Donnelly, T. W.; Dow, K.; Elbakian, G.; Eversheim, P. D.; Frullani, S.; Funke, Ch.; Gavrilov, G.; Gläser, B.; Görrissen, N.; Hasell, D. K.; Hauschildt, J.; Hoffmeister, Ph.; Holler, Y.; Ihloff, E.; Izotov, A.; Kaiser, R.; Karyan, G.; Kelsey, J.; Kiselev, A.; Klassen, P.; Krivshich, A.; Lehmann, I.; Lenisa, P.; Lenz, D.; Lumsden, S.; Ma, Y.; Maas, F.; Marukyan, H.; Miklukho, O.; Milner, R. G.; Movsisyan, A.; Murray, M.; Naryshkin, Y.; Perez Benito, R.; Perrino, R.; Redwine, R. P.; Rodríguez Piñeiro, D.; Rosner, G.; Schneekloth, U.; Seitz, B.; Statera, M.; Thiel, A.; Vardanyan, H.; Veretennikov, D.; Vidal, C.; Winnebeck, A.; Yeganov, V.; Olympus Collaboration

    2017-03-01

    The OLYMPUS Collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R2 γ , a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ≈20 ° to 80°. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved gas electron multiplier and multiwire proportional chamber detectors at 12°, as well as symmetric Møller or Bhabha calorimeters at 1.29°. A total integrated luminosity of 4.5 fb-1 was collected. In the extraction of R2 γ, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R2 γ, presented here for a wide range of virtual photon polarization 0.456 <ɛ <0.978 , are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.

  19. Biological Small Angle Scattering: Techniques, Strategies and Tips

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Barnali [University at Buffalo (SUNY); Muñoz, Inés G. [Centro Nacional de Investigaciones Oncológicas Madrid, Madrid, Spain; Urban, Volker S. [ORNL; Qian, Shuo [ORNL

    2017-12-01

    This book provides a clear, comprehensible and up-to-date description of how Small Angle Scattering (SAS) can help structural biology researchers. SAS is an efficient technique that offers structural information on how biological macromolecules behave in solution. SAS provides distinct and complementary data for integrative structural biology approaches in combination with other widely used probes, such as X-ray crystallography, Nuclear magnetic resonance, Mass spectrometry and Cryo-electron Microscopy. The development of brilliant synchrotron small-angle X-ray scattering (SAXS) beam lines has increased the number of researchers interested in solution scattering. SAS is especially useful for studying conformational changes in proteins, highly flexible proteins, and intrinsically disordered proteins. Small-angle neutron scattering (SANS) with neutron contrast variation is ideally suited for studying multi-component assemblies as well as membrane proteins that are stabilized in surfactant micelles or vesicles. SAS is also used for studying dynamic processes of protein fibrillation in amyloid diseases, and pharmaceutical drug delivery. The combination with size-exclusion chromatography further increases the range of SAS applications.The book is written by leading experts in solution SAS methodologies. The principles and theoretical background of various SAS techniques are included, along with practical aspects that range from sample preparation to data presentation for publication. Topics covered include techniques for improving data quality and analysis, as well as different scientific applications of SAS. With abundant illustrations and practical tips, we hope the clear explanations of the principles and the reviews on the latest progresses will serve as a guide through all aspects of biological solution SAS.The scope of this book is particularly relevant for structural biology researchers who are new to SAS. Advanced users of the technique will find it helpful for

  20. Quasi-elastic scattering of electrons from 40Ca at high momentum transfer

    International Nuclear Information System (INIS)

    Yates, T.C.

    1992-01-01

    Previous quasi-elastic electron scattering experiments have yielded seemingly inconsistent results when the integrated longitudinal strength is compared to calculations using the relativistic fermi gas model. Measurements made at Saclay on 12 C, 40 Ca, 48 Ca, 56 Fe, and 208 Pb indicated a smaller integrated longitudinal strength than expected on the basis of the relativistic fermi gas model. However, 238 U data taken at Bates showed nearly the full expected longitudinal strength at a momentum transfer of 550 MeV/c. This is one of the outstanding discrepancies in nuclear physics. Earlier experiments were hampered in that high momentum transfer could not be obtained at forward angles where the longtudinal strength is a large fraction of the total strength. The present experiment was designed to take advantage of the higher energy capability (greater than 800 MeV) at Bates recirculated linac in order to obtain momentum transfers greater than 600 MeV/c at a scattering angle of 45.5 degrees. Under these conditions the longitudinal strength is 40-75% of the total quasi-elastic strength

  1. Low angle X-ray scattering in biological tissues

    International Nuclear Information System (INIS)

    Lemos, Carla; Braz, Delson; Pinto, Nivia G.V.; Lima, Joao C.; Castro, Carlos R.F.; Filgueiras, R.A.; Mendonca, Leonardo; Lopes, Ricardo T.; Barroso, Regina C.

    2007-01-01

    Low-angle x-ray scatter (LAXS) for tissue characterization is based on the differences which result from the interference of photons coherently scattered from molecules of each sample. Biological samples (bone, blood and blood components) have been studied in recent years in our laboratory using powder diffractometer. The scattering information was obtained using a Shimadzu DRX 6000 diffractometer at the Nuclear Instrumentation Laboratory, Rio de Janeiro, Brazil. Unpolarized monoenergetic Kα radiation from Cu provided 8.04 keV photons. The measurements were made in reflection mode (θ-2θ geometry), with the sample stationary on a goniometer which rotates the sample and detector about an axis lying in the plane of the top of the sample holder. LAXS profiles from whole blood, plasma and formed elements were measured to investigate the nature of scattering from such lyophilized samples. The statistical analysis shows that the variation found for the characterization parameters is significant for whole blood considering the age. Gender was positively associated with the variation of the second peak position for the profiles obtained for formed elements. The correlation of the measured relative coherent intensity with the mineral content in the bone samples was investigated. These results suggest that the measurement of bone mineral content within trabecular bone can be performed by using quantitative coherent scattering information. (author)

  2. Measurement of the polarization correlation coefficient in elastic pp scattering at 610 MeV

    International Nuclear Information System (INIS)

    Borisov, N.S.; Glonti, L.N.; Kazarinov, M.Yu.

    1977-01-01

    The polarization correlation coefficient Csub(nn) for elastic pp scattering at 610+-10 MeV was measured for four scattering angles: 40, 67, 78 and 90 deg (c.m.s.). A polarized proton beam with a maximum polarization of 0.39+-0.02 and a polarized proton target of the frozen type were used. The maximum polarization of the target was 0.97+-0.04. The experimental procedure is described in detail. The Csub(nn) measured are compared with the results of a phase analysis and the findings at 575 MeV obtained elsewhere. The Csub(nn) coefficients are shown to be valuable to discriminate alternative solutions of the phase analysis. The polarized proton targets of the frozen type, no accounting the complexity of their design, are emphasized to be rather reliable and convenient devices for conducting experiments at accelerators

  3. Polarization measurements for P-12C elastic scattering between 40-75 MeV

    International Nuclear Information System (INIS)

    Kato, S.; Okada, K.; Kondo, M.; Shimizu, A.; Hosono, K.; Saito, T.; Matsuoka, N.; Nagamachi, S.; Nisimura, K.; Tamura, N.

    1980-01-01

    Absolute values of the polarization in p- 12 C elastic scattering have been measured at 60.0 and 64.5 MeV at 47.5 0 in the laboratory system using a double scattering method and a method to measure an asymmetry with a polarized beam. The results are P(60.0 MeV, 47.5 0 ) = 0.965 +- 0.011 and P(64.5 MeV, 47.5 0 ) = 0.975 +- 0.011. Based on these values, the polarization measurements have been extended to the energy range from 40-75 MeV at several angles around 47.5 0 using the polarized proton beam and the energy degrader. Differential cross sections and polarizations from 15-115 0 are also presented at 65 MeV. These data will be valuable for the monitoring of beam polarization in this energy region. (orig.)

  4. On the representation of electron multiple elastic-scattering distributions for Monte Carlo calculations

    International Nuclear Information System (INIS)

    Kawrakow, I.; Bielajew, A.F.

    1998-01-01

    A new representation of elastic electron-nucleus (Coulomb) multiple-scattering distributions is developed. Using the screened Rutherford cross section with the Moliere screening parameter as an example, a simple analytic angular transformation of the Goudsmit-Saunderson multiple-scattering distribution accounts for most of the structure of the angular distribution leaving a residual 3-parameter (path-length, transformed angle and screening parameter) function that is reasonably slowly varying and suitable for rapid, accurate interpolation in a computer-intensive algorithm. The residual function is calculated numerically for a wide range of Moliere screening parameters and path-lengths suitable for use in a general-purpose condensed-history Monte Carlo code. Additionally, techniques are developed that allow the distributions to be scaled to account for energy loss. This new representation allows ''''on-the-fly'''' sampling of Goudsmit-Saunderson angular distributions in a screened Rutherford approximation suitable for class II condensed-history Monte Carlo codes. (orig.)

  5. Large Logarithms in the Beam Normal Spin Asymmetry of Elastic Electron--Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Andrei Afanasev; Mykola Merenkov

    2004-06-01

    We study a parity-conserving single-spin beam asymmetry of elastic electron-proton scattering induced by an absorptive part of the two-photon exchange amplitude. It is demonstrated that excitation of inelastic hadronic intermediate states by the consecutive exchange of two photons leads to logarithmic and double-logarithmic enhancement due to contributions of hard collinear quasi-real photons. The asymmetry at small electron scattering angles is expressed in terms of the total photoproduction cross section on the proton, and is predicted to reach the magnitude of 20-30 parts per million. At these conditions and fixed 4-momentum transfers, the asymmetry is rising logarithmically with increasing electron beam energy, following the high-energy diffractive behavior of total photoproduction cross section on the proton.

  6. Measurement of the parity violation in quasi-elastic electroweak electron-scattering from 9Be

    International Nuclear Information System (INIS)

    Achenbach, W.; Andresen, H.G.

    1987-01-01

    Measurement of the Parity Violation in Quasi-Elastic Electroweak Electron-Scattering from 9 Be in the energy range of about 300 MeV is fulfilled. The measurement of the parity violating asymmetry is obtained by a comparison of scattering for a + helicity beam to that for a - helicity beams. To permit a meaningful comparison required that the + helicity and the - helicity beams being identical in all other respects. Measurements at different energies and targets (hydrogen, deuterium) in the medium energy region will allow to determine α, β, γ, δ in a model-independent way. Regarding future experiments at the Mainz microtron cw accelerator, coincidence experiments will open new experimental possibilities for large solid angle detector systems

  7. Fast-neutron elastic scattering from elemental vanadium

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Lawson, R.D.

    1988-03-01

    Differential neutron elastic- and inelastic-scattering cross sections of vanadium were measured from 4.5 to 10 MeV. These results were combined with previous 1.5 to 4.0 MeV data from this laboratory, the 11.1 MeV elastic-scattering results obtained at Ohio University, and the reported neutron total cross sections to energies of ∼20.0 MeV, to form a data base which was interpreted in terms of the spherical optical-statistical model. A fit to the data was achieved by making both the strengths and geometries of the optical-model potential energy dependent. This energy dependence was large below ∼6.0 MeV. Above ∼6.0 MeV the energy dependencies are smaller, and similar to those characteristic of global models. Using the dispersion relationship and the method of moments, the optical-model potential energy deduced from 0.0 to 11.1 MeV neutron-scattering data was extrapolated to higher energies and to the bound-state regime. This extrapolation leads to predicted neutron total cross sections that are within 3% of the experimental values throughout the energy range 0.0 to 20.0 MeV. Furthermore, the values of the volume-integral-per-nucleon of the real potential are in excellent agreement with those needed to reproduce the observed binding energies of particle- and hole-states. The latter gives clear evidence of the Fermi surface anomaly. Using only the 0.0 to 11.1 MeV data, the predicted E < O behavior of the strength and radius of the real shell-model Woods-Saxon potential are somewhat different from those obtained by Mahaux and Sartor in their analysis of nuclei near closed shells. 61 refs., 9 figs., 2 tabs

  8. Electron and positron atomic elastic scattering cross sections

    International Nuclear Information System (INIS)

    Stepanek, Jiri

    2003-01-01

    A method was developed to calculate the total and differential elastic-scattering cross sections for incident electrons and positrons in the energy range from 0.01 eV to 1 MeV for atoms of Z=1-100. For electrons, hydrogen, helium, nitrogen, oxygen, krypton, and xenon, and for positrons, helium, neon, and argon atoms were considered for comparison with experimental data. First, the variationally optimized atomic static potentials were calculated for each atom by solving the Dirac equations for bound electron states. Second, the Dirac equations for a free electron or positron are solved for an atom using the previously calculated static potential accomplished (in the case of electrons) by 'adjusted' Hara's exchange potential for a free-state particle. Additional to the exchange effects, the charge cloud polarization effects are considered applying the correlation-polarization potential of O'Connell and Lane (with correction of Padial and Norcross) for incident electrons, and of Jain for incident positrons. The total, cutoff and differential elastic-scattering cross sections are calculated for incident electrons and positrons with the help of the relativistic partial wave analysis. The solid state effects for scattering in solids are described by means of a muffin-tin model, i.e. the potentials of neighboring atoms are superpositioned in such a way that the resulting potential and its derivative are zero in the middle distance between the atoms. The potential of isolated atom is calculated up to the radius at which the long-range polarization potential becomes a value of -10 -8

  9. Resonant elastic scattering, inelastic scattering and astrophysical reactions; Diffusion elastique resonante, diffusion inelastique et reactions astrophysiques

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira Santos, F. [Grand Accelerateur National d' Ions Lourds, UMR 6415, 14 - Caen (France)

    2007-07-01

    Nuclear reactions can occur at low kinetic energy. Low-energy reactions are characterized by a strong dependence on the structure of the compound nucleus. It turns out that it is possible to study the nuclear structure by measuring these reactions. In this course, three types of reactions are treated: Resonant Elastic Scattering (such as N{sup 14}(p,p)N{sup 14}), Inelastic Scattering (such as N{sup 14}(p,p')N{sup 14*}) and Astrophysical reactions (such as N{sup 14}(p,{gamma})O{sup 15}). (author)

  10. Analyzing power for π-p elastic scattering in the energy region of the Roper resonance

    International Nuclear Information System (INIS)

    Mokhtari, A.; Briscoe, W.J.; Eichon, A.D.; Fitzgerald, D.H.; Kim, G.J.; Nefkens, B.M.K.; Wightman, J.A.; Sadler, M.E.

    1986-01-01

    High-precision measurements of the analyzing power A/sub N/ in π - p elastic scattering at p/sub π/ = 471--687 MeV/c are presented and compared with the results of recent πN partial-wave analyses (PWA's) by the Karlsruhe-Helsinki, CMU-LBL, and VPI groups. While agreeing with the main features of the measured angular dependence of A/sub N/, the three PWA's yield larger values than the measurements at forward angles at p/sub π/ = 471, 547, and 625 MeV/c. At 687 MeV/c the PWA's do not agree with the data at far backward angles. We estimate the effect of our data on the phase shifts in this energy region, which includes the Roper resonance

  11. Pitch Angle Scattering of Energetic Electrons by Plasmaspheric Hiss Emissions

    Science.gov (United States)

    Tobita, M.; Omura, Y.; Summers, D.

    2017-12-01

    We study scattering of energetic electrons in pitch angles and kinetic energies through their resonance with plasmaspheric hiss emissions consisting of many coherent discrete whistler-mode wave packets with rising and falling frequencies [1,2,3]. Using test particle simulations, we evaluate the efficiency of scattering, which depends on the inhomogeneity ratio S of whistler mode wave-particle interaction [4]. The value of S is determined by the wave amplitude, frequency sweep rate, and the gradient of the background magnetic field. We first modulate those parameters and observe variations of pitch angles and kinetic energies of electrons with a single wave under various S values so as to obtain basic understanding. We then include many waves into the system to simulate plasmaspheric hiss emissions. As the wave packets propagate away from the magnetic equator, the nonlinear trapping potential at the resonance velocity is deformed, making a channel of gyrophase for untrapped electrons to cross the resonance velocity, and causing modulations in their pitch angles and kinetic energies. We find efficient scattering of pitch angles and kinetic energies because of coherent nonlinear wave-particle interaction, resulting in electron precipitations into the polar atmosphere. We compare the results with the bounce averaged pitch angle diffusion coefficient based on quasi-linear theory, and show that the nonlinear wave model with many coherent packets can cause scattering of resonant electrons much faster than the quasi-linear diffusion process. [1] Summers, D., Omura, Y., Nakamura, S., and C. A. Kletzing (2014), Fine structure of plasmaspheric hiss, J. Geophys. Res., 119, 9134-9149. [2] Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562. [3] Nakamura, S., Y

  12. Heavy ion elastic and quasi-elastic scattering above E/A = 30 MeV

    International Nuclear Information System (INIS)

    Barrette, J.

    1986-05-01

    At high energy, heavy-ion elastic scattering probes the ion-ion potential in a large domain much inside the strong absorption radius. This results in a more precise determination of the real part of the nuclear potential and a consistent picture of its evolution with energy begins to emerge. It is relatively similar to that observed in light ion scattering. Even if the inelastic angular distributions seem to contain less refractive or interior contribution, coupled channel effects from these states are still important at least up to 20 MeV/n. Heavy-ion induced transfer reactions to discrete states have small cross sections but present a very strong selectivity for states with the highest available spin and could thus provide new and interesting spectroscopic information

  13. A simple algorithm for calculating the scattering angle in atomic collisions

    International Nuclear Information System (INIS)

    Belchior, J.C.; Braga, J.P.

    1996-01-01

    A geometric approach to calculate the classical atomic scattering angle is presented. The trajectory of the particle is divided into several straight-lines and changing in direction from one sector to the other is used to calculate the scattering angle. In this model, calculation of the scattering angle does not involve either the direct evaluation of integrals nor classical turning points. (author)

  14. Elastic scattering of helium ions on 9Be nuclei and exchange mechanisms

    International Nuclear Information System (INIS)

    Burtebaev, N.; Dujsebaev, B.A.

    1999-01-01

    Among nuclei of 1p-shell 9 Be is an extremely deformed nucleus with cluster structure. This considerably impedes determination of nucleus-nucleus potential of interaction. The latter relates to the fact that cross-section of 3 He ion and ?-particle elastic scattering on light nuclei is formed by not only mechanism of mere potential nature but also by other processes of heavy breakaway and displacement as well as by effects of channel relation. Final probability of 6 He+ and 3 He and 5 He+? cluster existence in 9 Be nucleus can be determined in the processes of 3 He or ?-particle ion scattering. As a result, it can cause considerable growth of cross-section under backward angles due to exchange of impinging particle with identical cluster in a nucleus. In order to study the contribution of different mechanisms into formation of cross-section of elastic scattering of helium nuclides on 9 Be nucleus we have performed series of experiments in broad angular range at energies 8-20 MeV/nucleon at derived beams of isochronous cyclotron of the Institute of Nuclear Physics of Kazakhstan national Nuclear Centre

  15. 8B + 208Pb Elastic Scattering at Coulomb Barrier Energies

    Science.gov (United States)

    La Commara, M.; Mazzocco, M.; Boiano, A.; Boiano, C.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Strano, E.; Torresi, D.; Yamaguchi, H.; Kahl, D.; Di Meo, P.; Grebosz, J.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Iwasa, N.; Jeong, S. C.; Jia, H. M.; Kim, Y. H.; Kimura, S.; Kubono, S.; Lin, C. J.; Miyatake, H.; Mukai, M.; Nakao, T.; Nicoletto, M.; Sakaguchi, Y.; Sánchez-Benítez, A. M.; Soramel, F.; Teranishi, T.; Wakabayashi, Y.; Watanabe, Y. X.; Yang, L.; Yang, Y. Y.

    2018-02-01

    The scattering process of weakly-bound nuclei at Coulomb barrier energies provides deep insights on the reaction dynamics induced by exotic nuclei. Within this framework, we measured for the first time the scattering process of the short-lived Radioactive Ion Beam (RIB) 8B (Sp = 0.1375 MeV) from a 208Pb target at 50 MeV beam energy. The 8B RIB was produced by means of the in-flight facility CRIB (RIKEN, Japan) with an average intensity on target of 10 kHz and a purity about 25%. Elastically scattering ions were detected in the angular range θc.m. = 10°-160° by means of the detector array EXPADES. A preliminary optical model analysis indicates a total reaction cross section of about 1 b, a value, once reduced, 2-3 times larger than those obtained for the reactions induced by the stable weakly-bound projectiles 6,7Li on a 208Pb target in the energy range around the Coulomb barrier.

  16. Physics of pitch angle scattering and velocity diffusion. I - Theory

    Science.gov (United States)

    Karimabadi, H.; Krauss-Varban, D.; Terasawa, T.

    1992-01-01

    A general theory for the pitch angle scattering and velocity diffusion of particles in the field of a spectrum of waves in a magnetized plasma is presented. The test particle theory is used to analyze the particle motion. The form of diffusion surfaces is examined, and analytical expressions are given for the resonance width and bounce frequency. The resonance widths are found to vary strongly as a function of harmonic number. The resulting diffusion can be quite asymmetric with respect to pitch angle of 90 deg. The conditions for the onset of pitch angle scattering and energy diffusion are explained in detail. Some of the known shortcomings of the standard quasi-linear theory are also addressed, and ways to overcome them are shown. In particular, the often stated quasi-linear gap at 90 deg is found to exist only under very special cases. For instance, oblique wave propagation can easily remove the gap. The conditions for the existence of the gap are described in great detail. A new diffusion equation which takes into account the finite resonance widths is also discussed. The differences between this new theory and the standard resonance broadening theory is explained.

  17. Modelling Elastic Scattering and Light Transport in 3D Collagen Gel Constructs

    National Research Council Canada - National Science Library

    Bixio, L

    2001-01-01

    A model of elastic scattering and light propagation is presented, which can be used to obtain the scattering coefficient, the index of refraction and the distribution of the collagen fibrils in a gel...

  18. Sizing of single evaporating droplet with Near-Forward Elastic Scattering Spectroscopy

    Science.gov (United States)

    Woźniak, M.; Jakubczyk, D.; Derkachov, G.; Archer, J.

    2017-11-01

    We have developed an optical setup and related numerical models to study evolution of single evaporating micro-droplets by analysis of their spectral properties. Our approach combines the advantages of the electrodynamic trapping with the broadband spectral analysis with the supercontinuum laser illumination. The elastically scattered light within the spectral range of 500-900 nm is observed by a spectrometer placed at the near-forward scattering angles between 4.3 ° and 16.2 ° and compared with the numerically generated lookup table of the broadband Mie scattering. Our solution has been successfully applied to infer the size evolution of the evaporating droplets of pure liquids (diethylene and ethylene glycol) and suspensions of nanoparticles (silica and gold nanoparticles in diethylene glycol), with maximal accuracy of ± 25 nm. The obtained results have been compared with the previously developed sizing techniques: (i) based on the analysis of the Mie scattering images - the Mie Scattering Lookup Table Method and (ii) the droplet weighting. Our approach provides possibility to handle levitating objects with much larger size range (radius from 0.5 μm to 30 μm) than with the use of optical tweezers (typically radius below 8 μm) and analyse them with much wider spectral range than with commonly used LED sources.

  19. Fitting phase shifts to electron-ion elastic scattering measurements

    International Nuclear Information System (INIS)

    Per, M.C.; Dickinson, A.S.

    2000-01-01

    We have derived non-Coulomb phase shifts from measured differential cross sections for electron scattering by the ions Na + , Cs + , N 3+ , Ar 8+ and Xe 6+ at energies below the inelastic threshold. Values of the scaled squared deviation between the observed and fitted differential cross sections, χ 2 , for the best-fit phase shifts were typically in the range 3-6 per degree of freedom. Generally good agreement with experiment is obtained, except for wide-angle scattering by Ar 8+ and Xe 6+ . Current measurements do not define phase shifts to better than approx. 0.1 rad even in the most favourable circumstances and uncertainties can be much larger. (author)

  20. A theory of low energy π-3He elastic scattering

    International Nuclear Information System (INIS)

    Geffen, F.M.M. van.

    1991-01-01

    The main aim of this work is the construction of a first-order optical potential for the scattering of pions by 3 He at low energy with as few approximations as possible. In particular the Fermi motion is treated extremely carefully by using microscopic 3 He wave functions and by performing the complete Fermi-integral. Differential cross-sections and analyzing powers have been calculated. In a detailed comparison between the first-order optical with one which results from using the semi-factored approximation, it became clear that the latter has the following shortcomings: 1. the dependence of the subenergy on the pion-nucleus scattering angle, and 2. the independence of this energy on the relative motion of the spectator nucleons. (author). 101 refs.; 15 figs.; 3 tabs

  1. On small-angle neutron scattering from microemulsion droplets: the role of shape fluctuations

    International Nuclear Information System (INIS)

    Lisy, V.; Brutovsky, B.

    2001-01-01

    The form factor and intensity of static neutron scattering from microemulsion droplets are calculated. The droplet is modeled by a double-layered sphere consisting of a fluid core and a thin surfactant layer, immersed in another fluid. All the three components are incompressible and characterized by different scattering length densities. As distinct from previous descriptions of small-angle neutron scattering (SANS), we consistently take into account thermal fluctuations of the droplet shape, to the second order of the fluctuations of the droplet radius. The properties of the layer are described within Helfrich's concept of the elasticity of curved interfaces. It is shown that in many cases the account for the fluctuations is essential for the interpretation of SANS. Information about two elastic constants k and k bar (so far extracted from the experiments in the combination 2k + k bar) can be now simultaneously obtained from SANS for the system in conditions of two-phase coexistence. As an illustration, the theory is applied for the quantitative description of SANS experiments from the literature

  2. Energy evolution of the large-t elastic scattering and its correlation with multiparticle production

    International Nuclear Information System (INIS)

    Troshin, S. M.

    2013-01-01

    It is emphasized that the collective dynamics associated with color confinement is dominating over a point-like mechanism related to a scattering of the proton constituents at the currently available values of the momentum transferred in proton elastic scattering at the LHC. Deep-elastic scattering and its role in the dissimilation of the absorptive and reflective asymptotic scattering mechanisms are discussed with emphasis on the experimental signatures associated with the multiparticle production processes.

  3. Energy evolution of the large-t elastic scattering and its correlation with multiparticle production

    Energy Technology Data Exchange (ETDEWEB)

    Troshin, S. M. [Institute for High Energy Physics, Protvino, Moscow Region, 142281 (Russian Federation)

    2013-04-15

    It is emphasized that the collective dynamics associated with color confinement is dominating over a point-like mechanism related to a scattering of the proton constituents at the currently available values of the momentum transferred in proton elastic scattering at the LHC. Deep-elastic scattering and its role in the dissimilation of the absorptive and reflective asymptotic scattering mechanisms are discussed with emphasis on the experimental signatures associated with the multiparticle production processes.

  4. Morphology, surface roughness, electron inelastic and quasi-elastic scattering in elastic peak electron spectroscopy of polymers

    International Nuclear Information System (INIS)

    Lesiak, B.; Kosinski, A.; Nowakowski, R.; Koever, L.; Toth, J.; Varga, D.; Cserny, I.; Sulyok, A.; Gergely, G.

    2006-01-01

    Complete text of publication follows. Elastic peak electron spectroscopy (EPES) deals with the interaction of electrons with atoms of a solid surface, studying the distribution of electrons backscattered elastically. The nearest vicinity of the elastic peak, (low kinetic energy region) reflects both, electron inelastic and quasi-elastic processes. The incident electrons produce surface excitations, inducing surface plasmons with the corresponding loss peaks separated by 1 - 20 eV energy from the elastic peak. Quasi-elastic losses result from the recoil of scattering atoms of different atomic number, Z. The respective energy shift and Doppler broadening of the elastic peak depend on Z, the primary electron energy, E, and the measurement geometry. Quantitative surface analytical application of EPES, such as determination of parameters describing electron transport, requires a comparison of experimental data with corresponding data derived from Monte Carlo (MC) simulation. Several problems occur in EPES studies of polymers. The intensity of elastic peak, considered in quantitative surface analysis, is influenced by both, the inelastic and quasi-elastic scattering processes (especially for hydrogen scattering atoms and primary electron energy above 1000 eV). An additional factor affecting the elastic peak intensity is the surface morphology and roughness. The present work compares the effect of these factors on the elastic peak intensity for selected polymers (polyethylene, polyaniline and polythiophenes). X-ray photoelectron spectroscopy (XPS) and helium pycnometry are applied for deriving the surface atomic composition and the bulk density, while scanning electron microscopy (SEM) and atomic force microscopy (AFM) for determining surface morphology and roughness. According to presented results, the influence of surface morphology and roughness is larger than those of surface excitations or recoil of hydrogen atoms. The component due to recoil of hydrogen atoms can be

  5. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    International Nuclear Information System (INIS)

    Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-01

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å

  6. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    Science.gov (United States)

    Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-01

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  7. Small angle scattering from protein/sugar conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Andrew [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia)]. E-mail: ajj@nist.gov; White, John [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia)

    2006-11-15

    The Maillard reaction between free amine groups on proteins and sugars is well known. We have examined the effect of the reaction of the casein group of milk proteins with sugars on their nanoscale structure and aggregation. The small angle neutron scattering from beta casein and sodium caseinate and their sugar conjugates have been studied as a function of solution concentration. At high conjugate concentration (greater than ca. 5mg/ml) the addition of sugar reduces supra-micellar aggregation of the protein whilst at lower concentration, where the protein is expected to be deaggregated already, little effect is seen. Guinier analysis of the scattering data show a radius of gyration of around 75A-bar for beta casein in solution and around 80A-bar for the sucrose conjugate.

  8. Small angle scattering from protein/sugar conjugates

    International Nuclear Information System (INIS)

    Jackson, Andrew; White, John

    2006-01-01

    The Maillard reaction between free amine groups on proteins and sugars is well known. We have examined the effect of the reaction of the casein group of milk proteins with sugars on their nanoscale structure and aggregation. The small angle neutron scattering from beta casein and sodium caseinate and their sugar conjugates have been studied as a function of solution concentration. At high conjugate concentration (greater than ca. 5mg/ml) the addition of sugar reduces supra-micellar aggregation of the protein whilst at lower concentration, where the protein is expected to be deaggregated already, little effect is seen. Guinier analysis of the scattering data show a radius of gyration of around 75A-bar for beta casein in solution and around 80A-bar for the sucrose conjugate

  9. Small angle neutron scattering using a triple axis spectrometer

    International Nuclear Information System (INIS)

    Ahmed, F.U.; Goyal, P.S.; Kamal, L.; Yunus, S.M.; Datta, T.K.; Rahman, M.O.; Azad, A.K.; Begum, S.; Zakaria, A.K.

    1994-01-01

    SANS techniques has been developed on a triple axis neutron spectrometer at TRIGA Mark II (3 MW) research reactor, AERE, Savar, Dhaka, Bangladesh. Double crystal (with very small mosaic spread ∼ 1 min.) diffraction known as Bonse and Hart's method has been employed. Such a device is a useful tool for small angle scattering in the Q range between 10 -5 and 10 -1 Angstroms -1 and for real time experiments at short time scales. Therefore, large objects and large distance interparticle correlations can be easily investigated. The results of SANS' measurements using alumina (A1 2 0 3 ) sample are presented. The radius of gyration has been determined and the data has been fitted to the scattering function of a sphere. 9 refs., 6 figs.,

  10. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A. E., E-mail: schmidt@omrb.pnpi.spb.ru; Shvetsov, A. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation); Kuklin, A. I. [Joint Institute for Nuclear Research (Russian Federation); Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation)

    2016-01-15

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  11. Small angle scattering from protein/sugar conjugates

    Science.gov (United States)

    Jackson, Andrew; White, John

    2006-11-01

    The Maillard reaction between free amine groups on proteins and sugars is well known. We have examined the effect of the reaction of the casein group of milk proteins with sugars on their nanoscale structure and aggregation. The small angle neutron scattering from beta casein and sodium caseinate and their sugar conjugates have been studied as a function of solution concentration. At high conjugate concentration (greater than ca. 5 mg/ml) the addition of sugar reduces supra-micellar aggregation of the protein whilst at lower concentration, where the protein is expected to be deaggregated already, little effect is seen. Guinier analysis of the scattering data show a radius of gyration of around 75 A˚ for beta casein in solution and around 80 A˚ for the sucrose conjugate.

  12. X-ray small angle scattering of polymer solutions

    International Nuclear Information System (INIS)

    Koyama, Ryuzo

    1975-01-01

    In recent papers, the calculated results were reported on the angular dependence of the intensity of scattered light or X-ray by chain polymers, on the basis of a stiff chain model. As the results, the curves of S 2 P (theta) corresponding to Kratky plot, for different molecular expansion, showed a plateau, and the height of the plateau was proportional to the inverse of molecular expansion coefficient α 2 . But as seen later, there is some possibility that the assumption made in the calculation overestimated the expansion of small segments which theoretically determines scattering curves at large scattering angles, such as the plateau. Accordingly, modified calculation was carried out by adopting the stiff chain polymer model as the previous case. When the contour length of a chain segment is very long, it can be treated approximately as a Gaussian coil, thus the equation for a chain segment expansion coefficient α (t) was obtained. Then the mean square distance of chain segments of polymer molecules was able to be determined, and the equation for a particle scattering factor P(theta) was obtained. The numerical calculation of P(theta) showed that this modified assumption considerably decreased the effect of molecular expansion on P(theta), and the curves of S 2 P(theta) increased monotonously without showing the plateau. The result of this calculation was compared with the experimental curves of polystyrene-toluene solution, and the agreement better than before was obtained. (Kako, I.)

  13. Large-angle hadron scattering at high energies

    International Nuclear Information System (INIS)

    Goloskokov, S.V.; Kudinov, A.V.; Kuleshov, S.P.

    1981-01-01

    Basing on the quasipotential Logunov-Tavkhelidze approach, corrections to the amplitude of high-energy large-angle meson-nucleon scattering are estimated. The estimates are compared with the available experimental data on pp- and π +- p-scattering, so as to check the adequacy of the suggested scheme to account for the preasymptotic deffects. The compared results are presented in the form of tables and graphs. The following conclusions are drawn: 1. the account for corrections, due to the long-range interaction, to the amplituda gives a good aghreee main asymptotic termment between the theoretical and experimental data. 2. in the case of π +- p- scattering the corrections prove to be comparable with the main asymptotic term up to the values of transferred pulses psub(lambdac)=50 GeV/c, which results in a noticeable deviation form the quark counting rules at such energies. Nevertheless, the preasymptotic formulae do well, beginning with psub(lambdac) approximately 6 GeV/c. In case of pp-scattering the corrections are mutually compensated to a considerable degree, and the deviation from the quark counting rules is negligible

  14. Disordered porous solids : from chord distributions to small angle scattering

    Science.gov (United States)

    Levitz, P.; Tchoubar, D.

    1992-06-01

    Disordered biphasic porous solids are examples of complex interfacial media. Small angle scattering strongly depends on the geometrical properties of the internal surface partitioning a porous system. Properties of the second derivative of the bulk autocorrelation function quantitatively defines the level of connection between the small angle scattering and the statistical properties of this interface. A tractable expression of this second derivative, involving the pore and the mass chord distribution functions, was proposed by Mering and Tchoubar (MT). Based on the present possibility to make a quantitative connection between imaging techniques and the small angle scattering, this paper tries to complete and to extend the MT approach. We first discuss how chord distribution functions can be used as fingerprints of the structural disorder. An explicit relation between the small angle scattering and these chord distributions is then proposed. In a third part, the application to different types of disorder is critically discussed and predictions are compared to available experimental data. Using image processing, we will consider three types of disorder : the long-range Debye randomness, the “ correlated " disorder with a special emphasis on the structure of a porous glass (the vycor), and, finally, complex structures where length scale invariance properties can be observed. Les solides poreux biphasiques sont des exemples de milieux interfaciaux complexes. La diffusion aux petits angles (SAS) dépend fortement des propriétés géométriques de l'interface partitionant le milieu poreux. Les propriétés de la dérivée seconde de la fonction d'autocorrélation de densité définit quantitativement le niveau de connection entre la diffusion aux petits angles et les caractéristiques statistiques de cette interface. Une expression utilisable de cette seconde dérivée, impliquant les distributions de cordes associées à la phase massique et au réseau de pores, fut

  15. Near- and subbarrier elastic and quasielastic scattering of the weakly bound 6Li projectile on 144Sm

    International Nuclear Information System (INIS)

    Monteiro, D. S.; Otomar, D. R.; Lubian, J.; Gomes, P. R. S.; Capurro, O. A.; Marti, G. V.; Arazi, A.; Figueira, J. M.; Heimann, D. Martinez; Negri, A. E.; Pacheco, A. J.; Niello, J. O. Fernandez; Guimaraes, V.

    2009-01-01

    High-precision data of backward-angle elastic and quasielastic scattering for the weakly bound 6 Li projectile on 144 Sm target at deep-sub-barrier, near-, and above-barrier energies were measured. From the deep-sub-barrier data, the surface diffuseness of the nuclear interacting potential was studied. Barrier distributions were extracted from the first derivatives of the elastic and quasielastic excitation functions. It is shown that sequential breakup through the first resonant state of the 6 Li is an important channel to be included in coupled-channels calculations, even at deep-sub-barrier energies

  16. An IBEM solution to the scattering of plane SH-waves by a lined tunnel in elastic wedge space

    Science.gov (United States)

    Liu, Zhongxian; Liu, Lei

    2015-02-01

    The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space. According to the theory of single-layer potential, the scattered-wave field can be constructed by applying virtual uniform loads on the surface of lined tunnel and the nearby wedge surface. The densities of virtual loads can be solved by establishing equations through the continuity conditions on the interface and zero-traction conditions on free surfaces. The total wave field is obtained by the superposition of free field and scattered-wave field in elastic wedge space. Numerical results indicate that the IBEM can solve the diffraction of elastic wave in elastic wedge space accurately and efficiently. The wave motion feature strongly depends on the wedge angle, the angle of incidence, incident frequency, the location of lined tunnel, and material parameters. The waves interference and amplification effect around the tunnel in wedge space is more significant, causing the dynamic stress concentration factor on rigid tunnel and the displacement amplitude of flexible tunnel up to 50.0 and 17.0, respectively, more than double that of the case of half-space. Hence, considerable attention should be paid to seismic resistant or anti-explosion design of the tunnel built on a slope or hillside.

  17. Observing shape resonances in ultraslow H^++H elastic scattering

    Science.gov (United States)

    Macek, J. H.; Schultz, D. R.; Ovchinnikov, S. Yu.; Krstic, P. S.

    2004-05-01

    We have calculated highly accurate elastic and charge transfer cross sections for proton-hydrogen scattering at energies 0.0001-10 eV, using fully quantal approach (P.S. Krstic and D.R. Schultz, J. Phys. B 32, 3485 (1999)). A number of resonances are observed. We calculate the positions and widths of the shape resonances in the effective potentials for various orbital angular momenta (J. H. Macek and S. Yu. Ovchinnikov, Phys. Rev. A 50, 468 (1994)). These correlate well with the observed resonances. We acknowledge support from the US DOE through ORNL, managed by UT-Battelle, LLC under contract DE-AC05-00OR22725.

  18. p-barp elastic scattering at high energies

    International Nuclear Information System (INIS)

    Padua, A.B. de.

    1986-01-01

    The p-bar p elastic scattering is analysed in the energy range 9.78 pp werefitted under the hypothesis of a pure imaginary amplitude and writted as a sum of exponentials, that is, a(s,t) = a(s,O) Σ n i=l α i exp β i t. Using the parameters a(s,O), α i and β i we obtained the absorption constante K- pp , the form factor and the mean square radius of the - p matter distribution by the Chou-Yang model. These calculations reveal a dip around -t ≅ 1.3 (GeV/c) 2 at 31 and 62 GeV. (author) [pt

  19. Elastic scattering, fusion, and breakup of light exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kolata, J.J. [University of Notre Dame, Physics Department, Notre Dame, IN (United States); Guimaraes, V. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Aguilera, E.F. [Instituto Nacional de Investigaciones Nucleares, Departamento de Aceleradores, Mexico, Distrito Federal (Mexico)

    2016-05-15

    The present status of fusion reactions involving light (A< 20) radioactive projectiles at energies around the Coulomb barrier (E<10 MeV per nucleon) is reviewed, emphasizing measurements made within the last decade. Data on elastic scattering (providing total reaction cross section information) and breakup channels for the involved systems, demonstrating the relationship between these and the fusion channel, are also reviewed. Similarities and differences in the behavior of fusion and total reaction cross section data concerning halo nuclei, weakly-bound but less exotic projectiles, and strongly-bound systems are discussed. One difference in the behavior of fusion excitation functions near the Coulomb barrier seems to emerge between neutron-halo and proton-halo systems. The role of charge has been investigated by comparing the fusion excitation functions, properly scaled, for different neutron- and proton-rich systems. Possible physical explanations for the observed differences are also reviewed. (orig.)

  20. np Elastic-scattering experiments with polarized neutron beams

    International Nuclear Information System (INIS)

    Chalmers, J.S.; Ditzler, W.R.; Hill, D.

    1985-01-01

    Measurements of the spin transfer parameters, K/sub NN/ and K/sub LL/, at 500, 650, and 800 MeV are presented for the reaction p-vector d → n-vector pp at 0 0 . The data are useful input to the NN data base and indicate that the quasi-free charge exchange (CEX) reaction is a useful mechanism for producing neutrons with at least 40% polarization at energies as low as 500 MeV. Measurements of np elastic scattering observables C/sub LL/ and C/sub SL/ covering 35 0 to 172 0 are performed using a polarized neutron beam at 500, 650, and 800 MeV. Preliminary results are presented. 3 refs., 6 figs

  1. Analysis of elastic scattering at low momentum transfer

    International Nuclear Information System (INIS)

    Pumplin, J.

    1991-11-01

    A method for analyzing high energy elastic scattering data is described, which improves on previous methods to extract σ tot , σ el , B, and ρ=ReM(0)/ImM(0) from experiment by properly allowing for the curvature of 1ndσ/dt with t. The method is used to make a critical analysis of data at √s=19.4, 546, and 1800 GeV. It is found that previous analyses systematically underestimate the forward slope B. The large value of ρ obtained by UA4 at √s=546 GeV is shown to be doubtful. The method described here should aid in the analysis of forthcoming data from UA4/2 and E710. (orig.)

  2. Detection of supernova neutrinos by neutrino-proton elastic scattering

    International Nuclear Information System (INIS)

    Beacom, John F.; Farr, Will M.; Vogel, Petr

    2002-01-01

    We propose that neutrino-proton elastic scattering, ν+p→ν+p, can be used for the detection of supernova neutrinos in scintillator detectors. Though the proton recoil kinetic energy spectrum is soft, with T p ≅2E ν 2 /M p , and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from ν(bar sign) e +p→e + +n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy and temperature of ν μ , ν τ , ν(bar sign) μ , and ν(bar sign) τ . The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos

  3. Elliptic flow from Coulomb interaction and low density elastic scattering

    Science.gov (United States)

    Sun, Yuliang; Li, Qingfeng; Wang, Fuqiang

    2018-04-01

    In high energy heavy ion collisions and interacting cold atom systems, large elliptic flow anisotropies have been observed. For the large opacity (ρ σ L ˜103 ) of the latter hydrodynamics is a natural consequence, but for the small opacity (ρ σ L ˜1 ) of the former the hydrodynamic description is questionable. To shed light onto the situation, we simulate the expansion of a low density argon ion (or atom) system, initially trapped in an elliptical region, under the Coulomb interaction (or elastic scattering). Significant elliptic anisotropy is found in both cases, and the anisotropy depends on the initial spatial eccentricity and the density of the system. The results may provide insights into the physics of anisotropic flow in high energy heavy ion collisions and its role in the study of quantum chromodynamics.

  4. Effect of the Pauli principle in elastic scattering

    International Nuclear Information System (INIS)

    Picklesimer, A.; Thaler, R.M.

    1981-01-01

    The effect of imposition of the Pauli principle for two-fragment elastic nuclear scattering is examined. It is shown that the antisymmetrized problem can be cast into the Lippmann-Schwinger form with an effective interaction in which the effect of the Pauli principle is entirely absorbed into the effective interaction potential operator. This result enables the formalism to be developed in analogy with the unsymmetrized formulation. Central to the approach is the choice of the off-shell extension of the transition operator. Comparison is made with a previously proposed treatment based on a different off-shell extension. It is shown that both the antisymmetrized transition operator and the associated optical potential proposed herein are readily expressed as spectator expansions in which the effect of the Pauli principle among the active fermions is incorporated in a physically appealing fashion at each stage of the expansion

  5. EDS'09: 13th International Conference on Elastic & Diffractive Scattering

    CERN Document Server

    CERN. Geneva

    2009-01-01

    The series of International Conferences on Elastic and Diffractive Scattering was founded in 1985 in the picturesque old French town of Blois, famous for its XIV - XVIIth century château, inside of which the first meeting took place. Since then, meetings have been organised every two years in different places of the world: New York (1987), Evanston (1989), Isola d'Elba (1991), Providence (1993), Blois (1995), Seoul (1997), Protvino (1999), Prague (2001), Helsinki (2003), Blois (2005) and Hamburg (2007). The conference will focus on the most recent experimental and theoretical results in particle physics with an emphasis on Quantum Chromodynamics (QCD). http://cern.ch/eds09/ The conference agenda is now full. No further contributions can be accepted.

  6. Proton and neutron densities from elastic electron scattering

    International Nuclear Information System (INIS)

    Frois, B.

    1979-01-01

    Elastic electron scattering has now determined extremely fine details of the shape of the nuclear groound state. The combination of (e,e) and muonic X-rays data are giving informations that are among the most precise on nuclear structure. This enables to see all the limitations of existing theories. However, we begin to have a very coherent description of nuclei with the self consistent field theories to a few percent. A very significant progress has been achieved with the calculations of RPA correlations in the round state in a self consistent way. Only recent experiments (on medium and heavy nuclei) of some significance for the understanding of the structure of the nucleus are reviewed

  7. Influence of surface roughness on the elastic-light scattering patterns of micron-sized aerosol particles

    Science.gov (United States)

    Auger, J.-C.; Fernandes, G. E.; Aptowicz, K. B.; Pan, Y.-L.; Chang, R. K.

    2010-04-01

    The relation between the surface roughness of aerosol particles and the appearance of island-like features in their angle-resolved elastic-light scattering patterns is investigated both experimentally and with numerical simulation. Elastic scattering patterns of polystyrene spheres, Bacillus subtilis spores and cells, and NaCl crystals are measured and statistical properties of the island-like intensity features in their patterns are presented. The island-like features for each class of particle are found to be similar; however, principal-component analysis applied to extracted features is able to differentiate between some of the particle classes. Numerically calculated scattering patterns of Chebyshev particles and aggregates of spheres are analyzed and show qualitative agreement with experimental results.

  8. Scattering phase shift for elastic two pion scattering and the rho resonance in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Gutzwiller, Simone

    2012-10-08

    In this thesis we use lattice QCD to compute scattering phase shifts for elastic two-pion scattering in the isospin I=1 channel. Using Luescher's formalism, we derive the scattering phase shifts for different total momenta of the two-pion system in a non-rest frame. Furthermore we analyse the symmetries of the non-rest frame lattices and construct 2-pion and rho operators transforming in accordance with these symmetries. The data was collected for a 32{sup 3} x 64 and a 40{sup 3} x 64 lattice with N{sub f}=2 clover improved Wilson fermions at a pion mass around 290 MeV and a lattice spacing of about 0.072 fm.

  9. Scattering phase shift for elastic two pion scattering and the rho resonance in lattice QCD

    International Nuclear Information System (INIS)

    Gutzwiller, Simone

    2012-01-01

    In this thesis we use lattice QCD to compute scattering phase shifts for elastic two-pion scattering in the isospin I=1 channel. Using Luescher's formalism, we derive the scattering phase shifts for different total momenta of the two-pion system in a non-rest frame. Furthermore we analyse the symmetries of the non-rest frame lattices and construct 2-pion and rho operators transforming in accordance with these symmetries. The data was collected for a 32 3 x 64 and a 40 3 x 64 lattice with N f =2 clover improved Wilson fermions at a pion mass around 290 MeV and a lattice spacing of about 0.072 fm.

  10. Forward diffraction amplitude of pp and pp elastic scattering at accelerator energies

    International Nuclear Information System (INIS)

    Kawasaki, M.; Maehara, T.; Yonezawa, M.

    2004-01-01

    A simple relation between the total cross section and the forward exponential slope of the elastic differential cross section of pp and pp scattering is indicated. An interpretation of this relation is presented as the formation of a black-disk structure for the elastic diffraction interaction of hadron-hadron scattering at the nonasymptotic energy region

  11. Low energy elastic electron scattering from polyatomic targets

    International Nuclear Information System (INIS)

    Khakoo, M A

    2008-01-01

    New differential cross-section measurements for elastic electron scattering from ethylene (C 2 H 4 ), three primary alcohols, methanol (CH 3 OH), ethanol (C 2 H 5 OH) and propanol (C 3 H 7 OH) are reported. The measurements are obtained using the relative flow method with a thin aperture as the collimating target gas source. The relative flow method is applied without the molecular diameters restriction imposed by the relative flow pressure condition on helium (the calibrating gas) and the unknown gases (the primary alcohols). The experimental data were taken at incident electron energies of 1eV, 2eV, 5eV, 10eV, 15eV, 20eV, 30eV, 50eV and 100eV, but only a brief survey of these results will be made here. The experimental results are compared to theoretical differential cross-sections are obtained by using the variational multi-channel Schwinger method. Initial comparisons between theory and experiment show that present theory is well-able to model low electron scattering from these polyatomic targets.

  12. Nuclear isospin mixing and elastic parity-violating electron scattering

    International Nuclear Information System (INIS)

    Moreno, O.; Sarriguren, P.; Moya de Guerra, E.; Udias, J.M.; Donnelly, T.W.; Sick, I.

    2009-01-01

    The influence of nuclear isospin mixing on parity-violating elastic electron scattering is studied for the even-even, N=Z nuclei 12 C, 24 Mg, 28 Si, and 32 S. Their ground-state wave functions have been obtained using a self-consistent axially-symmetric mean-field approximation with density-dependent effective two-body Skyrme interactions. Some differences from previous shell-model calculations appear for the isovector Coulomb form factors which play a role in determining the parity-violating asymmetry. To gain an understanding of how these differences arise, the results have been expanded in a spherical harmonic oscillator basis. Results are obtained not only within the plane-wave Born approximation, but also using the distorted-wave Born approximation for comparison with potential future experimental studies of parity-violating electron scattering. To this end, for each nucleus the focus is placed on kinematic ranges where the signal (isospin-mixing effects on the parity-violating asymmetry) and the experimental figure-of-merit are maximized. Strangeness contributions to the asymmetry are also briefly discussed, since they and the isospin mixing contributions may play comparable roles for the nuclei being studied at the low momentum transfers of interest in the present work.

  13. Alignment creation in atomic ensembles by elastic electron scattering; the case of 138Ba(...6s6p 1P1) atoms

    International Nuclear Information System (INIS)

    Trajmar, S.; Kanik, I.; LeClair, L.R.; Khakoo, M.A.; Bray, I.; Fursa, D.; Csanak, G.

    1998-01-01

    We describe some of our results from a joint experimental and theoretical program concerning elastic electron scattering by 138 Ba(...6s6p 1 P 1 ) atoms. From the experimental results, we derived various scattering parameters and magnetic sublevel specific differential elastic scattering cross sections at impact energy (E 0 ) of 20.0 eV and at scattering angles (θ) of 10deg, 15deg, and 20deg. The same parameters and cross sections were calculated by the convergent close coupling (CCC) approximation and compared to the experimental results. An excellent agreement, found for the two sets of data, gave us confidence in the CCC method and allowed us to extend the angular and energy ranges for the purpose of generating integral elastic scattering cross sections needed for the deduction of the alignment creation cross sections. (J.P.N.)

  14. Elastic and Raman scattering of 8.5-11.4 MeV photons from 159Tb, 165Ho, and 237Np

    International Nuclear Information System (INIS)

    Bar-Noy, T.; Moreh, R.

    1977-01-01

    Differential cross sections for elastic and inelastic Raman scattering from the deformed heavy nuclei 159 Tb, 165 Ho and 237 Np were measured at five energies between 8.5 and 11.4 MeV. Angular distributions at four angles between 90 0 and 140 0 for both elastic and inelastic scattering at 9.0 and 11.4 MeV were also measured. The monoenergetic photons were obtained from thermal neutron capture in Ni and Cr. All the angular distributions and the elastic and Raman scattering at the higher energies are in good overall agreement with theoretical predictions. The theory is based on a modified simple rotator model of the giant resonance in which the effect of Delbrueck scattering was included. A trend of both the elastic and Raman scattering at lower energies to be stronger than expected are suggested by the data. However, the ratio between the Raman and elastic scattering seem to be in good agreement with theory throughout the whole energy range. This shows that there is no need to introduce a direct nonresonant component to the imaginary part of the elastic scattering amplitude to explain the experimental data. (Auth.)

  15. Recoil-proton polarization in πp elastic scattering at 547 and 625 MeV/c

    International Nuclear Information System (INIS)

    Seftor, C.J.; Adrian, S.D.; Briscoe, W.J.; Mokhtari, A.; Taragin, M.F.; Sadler, M.E.; Barlow, D.B.; Nefkens, B.M.K.; Pillai, C.

    1989-01-01

    The polarization of the recoil proton in π + p and π - p elastic scattering using a liquid-hydrogen target has been measured for backward angles at 547 and 625 MeV/c. The scattered pion and recoil proton were detected in coincidence using the large-acceptance spectrometer to detect and analyze the momentum of the pions and the JANUS polarimeter to identify and measure the polarization of the protons. Results from this experiment agree with other measurements of the recoil polarization, with analyzing-power data previously taken by this group, and with predictions of partial-wave analyses

  16. Problems of phenomenological description of elastic pp scattering at the LHC predictions of contemporary models

    CERN Document Server

    Kundrát, Vojtech; Kaspar, Jan; Procházka, Jirí

    2010-01-01

    The standard description of common influence of both the Coulomb and hadronic elastic scattering in the proton - proton elastic collisions at high energies with the help of West and Yennie complete amplitude is shown to be theoretically inconsistent. The approach being based on the eikonal model amplitude removes these troubles. The preference of its applica- tion to the analysis of experimental data and in obtaining the predictions of contemporary models for proton - proton high energy elastic hadronic scattering are discussed.

  17. Microscopic dynamics of the hydrogen bonded systems studied by quasi-elastic slow neutron scattering

    International Nuclear Information System (INIS)

    Padureanu, I.; Aranghel, D.; Radulescu, A.; Ion, M.; Lechner, R. E.; Desmedt, A.; Pieper, J.

    2002-01-01

    provide a satisfactory description of supercooled liquid dynamics. In order to contribute to an answer, we performed a new experiment of incoherent slow neutron scattering. Part of the obtained results is presented in a previously paper. Neutron scattering experiments were done at the time of flight spectrometer NEAT of the Berlin Neutron Scattering Center(BENSC). In this study we have used cold neutrons with the wavelength of λ = 5.1 A, which corresponds to an incident energy E o = 3.145 meV and a resolution ΔE = 98 μeV (full width at half-maximum, FWHM, of the elastic line of the vanadium sample). The scattering spectra were taken with 140 detectors in a large angular range 15.41 angle -1 for the elastic wave and the energy transfer hω s (θ,ω). The final data are obtained at 27 scattering angles as a function of the energy transfer hω for 8 temperatures 50 K, 100 K, 150 K, 188 K, 240 K, 290 K, 320 K and 400 K. The data have been also analyzed in terms of the generalized frequency distribution g (ω), the angular distribution dσ/dΩ of the quasi-elastically scattered neutrons and the observed line width ΔE = f (Q 0 2 , T). An obvious feature attribute to as boson peak is present at all temperatures from 50 K to 290 K in the dynamic scattering function Ss (θ,ω) and the generalized frequency distribution g (ω)/ω 2 of glycerol. The temperature dependence of the peak position shows an anomalous behavior near T g . This effect proves a soft dynamics additionally to the acoustic modes. At the same time the temperature dependence of the FWHM of the quasielastic line leads to a possible two step process approach in glycerol. (authors)

  18. Ionization, photoelectron dynamics and elastic scattering in relativistic, ultra-strong field

    Science.gov (United States)

    Luo, Sui

    wave-function spread. A relativistic rescattering enhancement occurs at 2 x 1018 W/cm2, commensurate with relativistic motion of a classical electron in a single field cycle. The good comparison between the results with available experiments suggests the theory approach is well suited to modeling scattering in the ultrastrong intensity regime. We investigate the elastic scattering process as it changes from strong to ultrastrong fields with the photoelectron angular distributions from Ne, Ar, and Xe. Noble gas species with Hartree-Fock scattering potentials show a reduction in elastic rescattering with the increasing energy of ultrastrong fields. It is found that as one increases the returning photoelectron energy, rescattering becomes the dominating mechanism behind the yield distribution as the emission angle for all the species extends from 0° to 90°. The relativistic effects and the magnetic field do not change the angular distribution until one is well into the Gamma r "1 regime where the Lorentz defection significantly reduces the yield. As we proceed to the highest energy, the angular emission range narrows as the mechanism changes over to backscattering into narrow angles along the electric field.

  19. Structure and dynamics of nonaqueous electrolyte solutions by small angle neutron scattering, brownian dynamics and primitive model theories

    International Nuclear Information System (INIS)

    Kunz, W.; Turq, P.

    1990-01-01

    The study of electrolyte solutions by small angle neutron scattering (static) of quasi-elastic neutron scattering (dynamics) gives new perspectives to the primitive model of electrolytes, for both static and dynamic properties of those systems. Whereas all properties can be interpreted by brownian dynamics, integral equations cannot be used at the present time to get transport coefficients in all cases. As regards the choice of the potentials at the McMillan Mayer level, specific Gurney terms for solvation are not needed for tetraalkylammonium salts. (orig.)

  20. Investigation of silicon width (p, p') resonance scattering in left angle 110 right angle channeling direction

    International Nuclear Information System (INIS)

    Ditroi, F.; Meyer, J.D.; Michelmann, R.; Kislat, D.; Bethge, K.

    1994-01-01

    Crystalline silicon samples were investigated both in channeling and random directions by using the (p, p') resonance scattering at 2.3 MeV bombarding energy. The samples were positioned in the scattering chamber of a VdG accelerator after 2 m collimating path. The peaks due to the resonance at 2.1 MeV were measured at different angles in the vicinity of the channeling and random directions. A peak shift and broadening was seen at the channeling and near channeling directions compared with the random one. The spectra were also simulated using our modified Monte Carlo calculation method for stopping, range and energy distribution in highly ordered materials. The energy shift and the broadening between the random and the channeling spectra were compared and explained. (orig.)

  1. Study of the elastic scattering differential cross sections of a proton beam by a cesium target

    International Nuclear Information System (INIS)

    El Maddarsi, Mohamed.

    1978-01-01

    The elastic differential cross section of H + on Cs is studied experimentally and theoretically. The experimental device is described, after which the differential cross-section values obtained as a function of the laboratory angle are given for four incident energies: 13.4 eV, 15.1 eV, 17.7 eV and 24.2 eV. By means of an interaction potential of the quasi-molecule H + Cs the differential cross sections are calculated for the same incident energies; this calculation uses the semi-classical method of stationary phases which shows clearly the limits of conventional description and the changes introduced by quantum effects. Very good agreement is obtained between theoretical and experimental results, which shows that elastic scattering is very little perturbed by inelastic channels in this energy range. The estimated inelastic cross section at 24 eV is about 1.9 10 -15 cm 2 , corresponding to 1.6% of the scattering process [fr

  2. Semimicroscopic analysis of 6Li+28Si elastic scattering at 76 to 318 MeV

    Science.gov (United States)

    Hassanain, M. A.; Anwar, M.; Behairy, Kassem O.

    2018-04-01

    Using the α-cluster structure of colliding nuclei, the elastic scattering of 6Li+28Si at energies from 76 to 318 MeV has been investigated by the use of the real folding cluster approach. The results of the cluster analysis are compared with those obtained by the CDM3Y6 effective density- and energy-dependent nucleon-nucleon (NN) interaction based upon G -matrix elements of the M3Y-Paris potential. A Woods-Saxon (WS) form was used for the imaginary potential. For all energies and derived potentials, the diffraction region was well reproduced, except at Elab=135 and 154 MeV at large angle. These results suggest that the addition of the surface (DWS) imaginary potential term to the volume imaginary potential is essential for a correct description of the refractive structure of the 6Li elastic scattering distribution at these energies. The energy dependence of the total reaction cross sections and that of the real and imaginary volume integrals is also discussed.

  3. A fast filter processor as a part of the trigger logic in an elastic scattering experiment

    International Nuclear Information System (INIS)

    Kenyon Gjerpe, I.

    1981-01-01

    A fast special purpose processor as a part of the trigger logic in an elastic scattering experiment is described. The decision to incorporate such a processor was taken because the trigger rate was estimated to be an order of magnitude higher than the date taking capability of the on-line minicomputer, a NORD 10. The processor is capable of checking the coplanarity and the opening angle of the two outgoing tracks within about 100 μs. This is done with a spatial resolution of 1 mm by using two points each track given by 3 MWPCs. For comparison this is two orders of magnitude faster than the same algorithm coded in assembly language on a PDP 11/40. The main contribution to this increased speed is due to extensive use of pipelining and parallelism. When running with the processor in the trigger, 75% more elastic events per incoming beam particle were collected, and 3 times as many elastic events per trigger were recorded on to tape for further in-depth analysis, than previously. Due to major improvements in the primary trigger logic this was less than the gain initially anticipated. A first version of the processor was designed and constructed in the CERN DD division by J. Joosten, M. Letheren and B. Martin under the supervision of C. Verkerk. The author was involved in the final design, construction and testing, and subsequently was responsible for the intergration, programming and running of the processor in the experiment. (orig.)

  4. Analysis of Quasi-Elastic e-n and e-p Scattering from Deuterium

    Science.gov (United States)

    Balsamo, Alexander; Gilfoyle, Gerard; CLAS12 Collaboration

    2017-09-01

    One of Jefferson Lab's goals is to unravel the quark-gluon structure of nuclei. We will use the ratio, R, of electron-neutron to electron-proton scattering on deuterium to probe the magnetic form factor of the neutron. We have developed an end-to-end analysis from simulation to extraction of R in quasi-elastic kinematics for an approved experiment with the CLAS12 detector. We focus on neutrons detected in the CLAS12 calorimeters and protons measured with the CLAS12 forward detector. Events were generated with the Quasi-Elastic Event Generator (QUEEG) and passed through the Monte Carlo code gemc to simulate the CLAS12 response. These simulated events were reconstructed using the latest CLAS12 Common Tools. We first match the solid angle for e-n and e-p events. The electron information is used to predict the path of both a neutron and proton through CLAS12. If both particles interact in CLAS12 the e-n and e-p events have the same solid angle. We select QE events by searching for nuclei near the predicted position. An angular cut between the predicted 3-momentum of the nucleon and the measured value, θpq, separates QE and inelastic events. We will show the simulated R as a function of the four-momentum transfer Q2. Work supported by the University of Richmond and the US Department of Energy.

  5. Experimental study of pion-nucleus elastic scattering above the Δ-resonance with the SKS spectrometer

    International Nuclear Information System (INIS)

    Takahashi, Toshiyuki

    1995-11-01

    Differential cross sections of the pion elastic scattering in the GeV/c region were systematically measured by using a newly constructed superconducting kaon spectrometer at KEK. The pion incident momenta were 610, 710, 790, and 895 MeV/c for 12 C(π - , π - ) 12 C and 790 MeV/c for 208 Pb(π ± , π ± ) 208 Pb. We have obtained the cross sections with absolute normalization uncertainty of about 10%. The π - -p scattering data measured with a CH target agree well with the phase-shift calculations, which confirms the accuracy of the absolute values of the cross sections. The angular distributions of the differential cross sections for 12 C were compared with calculations by a first-order optical potential model. The calculation reproduces the data at forward scattering-angle regions except at 610 MeV/c, although it underestimates at large-angle region. The present data at 790 MeV/c are in between the BNL data at 800 MeV/c and the calculation, although our data are consistent with the BNL data within their systematic errors. The incident momentum dependence of σ total , σ R , and σ elastic , which were extracted by fitting the angular distributions, is different from that of the calculation with free π-N elementary amplitudes. It is well explained by taking account of Fermi motion. The 208 Pb data are well reproduced by the optical potential model. The root mean square radius of the neutron distribution has been deduced from π + and π - elastic scattering for the first time. Although the result has a model ambiguity, it agrees with that deduced from the proton elastic scattering. It is, however, smaller than the prediction of the relativistic Hartree calculation. (author). 55 refs

  6. Elastic scattering, inelastic scattering, and transfer reactions induced by 12C bombardment of 12C

    International Nuclear Information System (INIS)

    Stokstad, R.G.; Wieland, R.M.; Fulmer, C.B.; Hensley, D.C.; Raman, S.; Snell, A.H.; Stelson, P.H.

    1977-06-01

    Graphs and tables of differential cross sections are presented for the elastic scattering of 12 C by 12 C, the single excitation (Q = -4.43 MeV) and the mutual excitation (Q = -8.86 MeV) for 14 bombarding energies in the range 70.7 less than or equal to E/sub lab/ less than or equal to 126.7 MeV. Differential cross sections for one- and two-nucleon transfer are presented for E/sub lab/ = 93.8 MeV

  7. An evaluation of diverse methods of obtaining effective Schroedinger interaction potentials for elastic scattering

    International Nuclear Information System (INIS)

    Amos, K.; Allen, L.J.; Steward, C.; Hodgson, P.E.; Sofianos, S.A.

    1995-01-01

    Direct solution of the Schroedinger equation and inversion methods of analysis of elastic scattering data are considered to evaluate the information that they can provide about the physical interaction between colliding nuclear particles. It was found that both optical model and inversion methods based upon inverse scattering theories are subject to ambiguities. Therefore, it is essential that elastic scattering data analyses are consistent with microscopic calculations of the potential. 25 refs

  8. An evaluation of diverse methods of obtaining effective Schroedinger interaction potentials for elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Amos, K.; Allen, L.J.; Steward, C. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Hodgson, P.E. [Oxford Univ. (United Kingdom). Dept. of Physics; Sofianos, S.A. [University of South Africa (UNISA), Pretoria (South Africa). Dept. of Physics

    1995-10-01

    Direct solution of the Schroedinger equation and inversion methods of analysis of elastic scattering data are considered to evaluate the information that they can provide about the physical interaction between colliding nuclear particles. It was found that both optical model and inversion methods based upon inverse scattering theories are subject to ambiguities. Therefore, it is essential that elastic scattering data analyses are consistent with microscopic calculations of the potential. 25 refs.

  9. The prediction of Neutron Elastic Scattering from Tritium for E(n) = 6-14 MeV

    International Nuclear Information System (INIS)

    Anderson, J.D.; Dietrich, F.S.; Luu, T.; McNabb, D.P.; Navratil, P.; Quaglioni, S.

    2010-01-01

    In a recent report Navratil et al. evaluated the angle-integrated cross section and the angular distribution for 14-MeV n+T elastic scattering by inferring these cross sections from accurately measured p+3He angular distributions. This evaluation used a combination of two theoretical treatments, based on the no-core shell model and resonating-group method (NCSM/RGM) and on the R-matrix formalism, to connect the two charge-symmetric reactions n+T and p+ 3 He. In this report we extend this treatment to cover the neutron incident energy range 6-14 MeV. To do this, we evaluate angle-dependent correction factors for the NCSM/RGM calculations so that they agree with the p+ 3 He data near 6 MeV, and using the results found earlier near 14 MeV we interpolate these correction factors to obtain correction factors throughout the 6-14 MeV energy range. The agreement between the corrected NCSM/RGM and R-Matrix values for the integral elastic cross sections is excellent (±1%), and these are in very good agreement with total cross section experiments. This result can be attributed to the nearly constant correction factors at forward angles, and to the evidently satisfactory physics content of the two calculations. The difference in angular shape, obtained by comparing values of the scattering probability distribution P(μ) vs. μ(the cosine of the c.m. scattering angle), is about ±4% and appears to be related to differences in the two theoretical calculations. Averaging the calculations yields P(μ) values with errors of ±2 1/2 % or less. These averaged values, along with the corresponding quantities for the differential cross sections, will form the basis of a new evaluation of n+T elastic scattering. Computer files of the results discussed in this report will be supplied upon request.

  10. The prediction of Neutron Elastic Scattering from Tritium for E(n) = 6-14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J D; Dietrich, F S; Luu, T; McNabb, D P; Navratil, P; Quaglioni, S

    2010-06-14

    In a recent report Navratil et al. evaluated the angle-integrated cross section and the angular distribution for 14-MeV n+T elastic scattering by inferring these cross sections from accurately measured p+3He angular distributions. This evaluation used a combination of two theoretical treatments, based on the no-core shell model and resonating-group method (NCSM/RGM) and on the R-matrix formalism, to connect the two charge-symmetric reactions n+T and p+{sup 3}He. In this report we extend this treatment to cover the neutron incident energy range 6-14 MeV. To do this, we evaluate angle-dependent correction factors for the NCSM/RGM calculations so that they agree with the p+{sup 3}He data near 6 MeV, and using the results found earlier near 14 MeV we interpolate these correction factors to obtain correction factors throughout the 6-14 MeV energy range. The agreement between the corrected NCSM/RGM and R-Matrix values for the integral elastic cross sections is excellent ({+-}1%), and these are in very good agreement with total cross section experiments. This result can be attributed to the nearly constant correction factors at forward angles, and to the evidently satisfactory physics content of the two calculations. The difference in angular shape, obtained by comparing values of the scattering probability distribution P({mu}) vs. {mu}(the cosine of the c.m. scattering angle), is about {+-}4% and appears to be related to differences in the two theoretical calculations. Averaging the calculations yields P({mu}) values with errors of {+-}2 1/2 % or less. These averaged values, along with the corresponding quantities for the differential cross sections, will form the basis of a new evaluation of n+T elastic scattering. Computer files of the results discussed in this report will be supplied upon request.

  11. Report of study meeting on nuclear physics of quasi-elastic scattering

    International Nuclear Information System (INIS)

    1992-10-01

    This meeting was held for three days from June 8 to 10, 1992, as one of the study meetings of Research Center for Nuclear Physics, Osaka University. The lectures were given on spin observables in quasi-elastic scattering, calculation of spin observables in 12 C, 40 Ca(p,n) reaction in quasifree scattering region, present state of quasi-elastic scattering, first results of (p,n) quasifree scattering with the new facility of the RCNP, spin-isospin response function and effect of Δ-hole configuration in finite nuclei, effective polarization of nuclei and observed amount of spin, (p,2p) measurement in the RCNP, quasi-elastic scattering in 2 H, 3 He and 4 He of polarized protons, quasifree Δ formation, 3 He(gamma, pπ ± ) reaction in Δ region, search for isobar components in 3 He by quasifree knockout studies, nonquasi-elastic process in photonuclear reaction, QF and NQF processes in gamma d→π + π - pn, coincidence scattering experiment in quasi-elastic scattering region, exclusive electron scattering of 3 He with full inclusion of final state interaction, quasi-elastic electron scattering and internucleon correlation and 13 other themes. (K.I.)

  12. Project study of a small-angle neutron scattering apparatus

    International Nuclear Information System (INIS)

    Schedler, E.; Pollet, J.L.

    1979-03-01

    This design study deals with the set up of a low angle scattering apparatus in the HMI reactor hall in Berlin. The experiences of other institutes with facilities of a similar type, - especially with D11 and D17 of the ILL in Grenoble, the set up the KFA in Juelich and of the PTB in Braunschweig -, are included to a large extend. The aim of this paper is - to define the necessary boundary conditions for the construction (including: installation of a cold source, the beam line, the neutron guide pipe and an extention of the reactor hall), -to determine the properties of the planned apparatus, especially in comparison with D11, probably the most versatile instrument, - to make desitions for the design of the components, - to work out the detailed drawings for construction - to estimate the costs and the time necessary for construction, if industrial manufacturers set up the project. (orig.) [de

  13. The single-angle neutron scattering facility at Pelindaba

    International Nuclear Information System (INIS)

    Hofmeyr, C.; Mayer, R.M.; Tillwick, D.L.; Starkey, J.R.

    1978-05-01

    The small-angle neutron scattering facility at the SAFARI-1 reactor is described in detail, and with reference to theoretical and practical design considerations. Inexpensive copper microwave guides used as a guide-pipe for slow neutrons provided the basis for a useful though comparatively simple facility. The neutron-spectrum characteristics of the final facility in different configurations of the guide-pipe (both S and single-curved) agree wel with expected values based on results obtained with a test facility. The design, construction, installation and alignment of various components of the facility are outlined, as well as intensity optimisation. A general description is given of experimental procedures and data-aquisition electronics for the four-position sample holder and counter array of up to 18 3 He detectors and a beam monitor [af

  14. User's guide for the small-angle neutron scattering facility

    International Nuclear Information System (INIS)

    Vlak, W.A.H.M.; Werkhoven, E.J.

    1989-04-01

    This report serves as a manual for the users of the small-angle neutron scattering instrument located at beamport HB3 of the High Flux Reactor in Petten. The main part of the text is devoted to the control of the facility and the data handling by means of a μVAX computer. Also, the various possibilities to access the facility across computer networks are discussed. A collection of menu-driven and command-driven programs, which utilize the flexibility of the VMS operating system without requiring detailed knowledge of the user about the computer environment, enables to control the instrument. For the convenience of the experienced user, who might wish to update or extend the software, a technical supplement is included. 15 figs.; 8 refs

  15. A small angle neutron scattering study of thermoplastic elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Sutiarso,; Edy Giri, R Putra; Andon, Insani; Sudirman,; Sudaryanto, [Materials Science Research Centre, National Atomic Energy Agency, Jakarta (Indonesia)

    1998-10-01

    A bilateral scientific cooperation, in the small angle neutron scattering has been agreed upon between CIAE, China and BATAN, Indonesia as well as MINT Malaysia. As stated in the agreed proposal that the objective of this cooperation, in the initial stage (stage-1), was to have a regional intercomparison measurements of SANS instruments in order to determine their characteristic/performance. Therefore, this report is supposed to describe the progress in the SANS instrument development of each country involved during the period of 1996/97 and some activities related to the SANS instrument. Since, up to now, we have not yet received any progresses reported from either China or Malaysia, this report will describe the progress of SANS`s activities in BATAN only. (author)

  16. Small angle X-ray scattering on concentrated hemoglobin solutions

    International Nuclear Information System (INIS)

    Zinke, M.; Damaschun, G.; Mueller, J.J.; Ruckpaul, K.

    1978-01-01

    The small-angle X-ray scattering technique was used to determine the intermolecular structure and interaction potentials in oxi-and deoxi-hemoglobin solutions. The pair correlation function obtained by the ZERNICKE-PRINS equation characterizes the intermolecular structure of the hemoglobin molecules. The intermolecular structure is concentration dependent. The hemoglobin molecules have a 'short range order structure' with a range of about 4 molecule diameters at 324 g/l. The potential functions of the hemoglobin-hemoglobin interaction have been determined on the basis of fluid theories. Except for the deoxi-hemoglobin solution having the concentration 370 g/l, the pair interaction consists in a short repulsion and a weak short-range attraction against kT. The potential minimum is between 1.2 - 1.5 nm above the greatest hemoglobin diameter. (author)

  17. The small angle neutron scattering study on the segmented polyurethane

    International Nuclear Information System (INIS)

    Sudirman; Gunawan; Prasetyo, S.M.; Karo Karo, A.; Lahagu, I.M.; Darwinto, Tri

    1999-01-01

    The distance between hard segment (HS) and soft segment (SS) of segmented polyurethane have been determined using the Small Angle Neutron Scattering (SANS) technique. The segmented Polyurethanes (SPU) are linear multiblock copolymers, which include elastomer thermoplastic. SPU consist of hard segment and soft segment, each has tendency to make a group with similar type to form a domain. The soft segments used were polypropylene glycol (PPG) and 4,4 diphenylmethane diisocyanate (MDI), while l,4 butanediol (BD) was used as hard segment. The characteristic of SPU depends on its phase structure which is affected by several factors, such as type of chemical formula and the composition of the HS and SS, solvent as well as the synthesizing process. The samples used in this study were SPU56 and SPU68. Based on the appearance of SANS profile, it was obtained that domain distances are 12.32 nm for the SPU56 and 19 nm for the SPU68. (author)

  18. Practical way to avoid spurious geometrical contributions in Brillouin light scattering experiments at variable scattering angles.

    Science.gov (United States)

    Battistoni, Andrea; Bencivenga, Filippo; Fioretto, Daniele; Masciovecchio, Claudio

    2014-10-15

    In this Letter, we present a simple method to avoid the well-known spurious contributions in the Brillouin light scattering (BLS) spectrum arising from the finite aperture of collection optics. The method relies on the use of special spatial filters able to select the scattered light with arbitrary precision around a given value of the momentum transfer (Q). We demonstrate the effectiveness of such filters by analyzing the BLS spectra of a reference sample as a function of scattering angle. This practical and inexpensive method could be an extremely useful tool to fully exploit the potentiality of Brillouin acoustic spectroscopy, as it will easily allow for effective Q-variable experiments with unparalleled luminosity and resolution.

  19. Sensitivity of the elastic scattering matrix elements to the range of the inelastic potentials

    International Nuclear Information System (INIS)

    Rawitscher, G.H.; Rasoanaivo, R.Y.

    1983-01-01

    The solution to a system of coupled equations is examined with regard to the effect of the long range part of the inelastic potentials upon the elastic phase shifts. It is found that those parts of the inelastic potentials which occur beyond the range of the elastic to inelastic transition potentials affect the elastic phase shifts in only a minor way. The proof is given theoretically by means of a Green's function formulation which includes the long range part of the inelastic potentials perturbatively. When applied to the calculation of the effect of breakup on the deuteron-nucleus elastic scattering, the argument confirms the finding that errors in the long range part of the potentials in the breakup channels do not sensitively affect the elastic deuteron scattering cross section. This result explains why the elastic scattering is not very sensitive to the choice of the discretization procedure of the breakup space

  20. Small-angle neutron scattering at pulsed spallation sources

    International Nuclear Information System (INIS)

    Seeger, P.A.; Hjelm, R.P. Jr.

    1990-01-01

    The importance of small-angle neutron scattering (SANS) in biological, chemical, physical, and engineering research mandates that all intense neutron sources be equipped with SANS instruments. Four existing instruments are described, and the general differences between pulsed-source and reactor-based instrument designs are discussed. The basic geometries are identical, but dynamic range is achieved by using a broad band of wavelengths (with time-of-flight analysis) rather than by moving the detector. This allows a more optimized collimation system. Data acquisition requirements at a pulsed source are more severe, requiring large, fast histogramming memories. Data reduction is also more complex, as all wave length-dependent and angle-dependent backgrounds and non-linearities must be accounted for before data can be transformed to intensity vs Q. A comparison is shown between the Los Alamos pulsed instrument and D-11 (Institute Laue-Langevin), and examples from the four major topics of the conference are shown. The general conclusion is that reactor-based instruments remain superior at very low Q or if only a narrow range of Q is required, but that the current generation of pulsed-source instruments is competitive at moderate Q and may be faster when a wide range of Q is required. In principle, a user should choose which facility to use on the basis of optimizing the experiment; in practice the tradeoffs are not severe and the choice is usually made on the basis of availability

  1. Small-angle neutron scattering at pulsed spallation sources

    International Nuclear Information System (INIS)

    Seeger, P.A.; Hjelm, R.P. Jr.

    1991-01-01

    The importance of small-angle neutron scattering (SANS) in biological, chemical, physical and engineering research mandates that all intense neutron sources be equipped with SANS instruments. Four existing instruments at pulsed sources are described and the general differences between pulsed-source and reactor-based instrument designs are discussed. The basic geometries are identical, but dynamic range is generally achieved by using a broad band of wavelengths (with time-of-flight analysis) rather than by moving the detector. This allows optimization for maximum beam intensity at a given beam size over the full dynamic range with fixed collimation. Data-acquisition requirements at a pulsed source are more severe, requiring large fast histrograming memories. Data reduction is also more complex, as all wavelength-dependent and angle-dependent backgrounds and nonlinearities must be accounted for before data can be transformed to intensity vs momentum transfer (Q). A comparison is shown between the Los Alamos pulsed instrument and D11 (Institut Laue-Langevin) and examples from the four major topics of the conference are shown. The general conclusion is that reactor-based instruments remain superior at very low Q or if only a narrow range of Q is required, but that the current generation of pulsed-source instruments is competitive of moderate Q and may be faster when a wide range of Q is required. (orig.)

  2. Relativistic corrections to the elastic electron scattering from 208Pb

    International Nuclear Information System (INIS)

    Chandra, H.; Sauer, G.

    1976-01-01

    In the present work we have calculated the differential cross sections for the elastic electron scattering from 208 Pb using the charge distributions resulting from various corrections. The point proton and neutron mass distributions have been calculated from the spherical wave functions for 208 Pb obtained by Kolb et al. The relativistic correction to the nuclear charge distribution coming from the electromagnetic structure of the nucleon has been accomplished by assuming a linear superposition of Gaussian shapes for the proton and the neutron charge form factor. Results of this calculation are quite similar to an earlier calculation by Bertozzi et al., who have used a different wave function for 208 Pb and have assumed exponential smearing for the proton corresponding to the dipole fit for the form factor. Also in the present work, reason for the small spin orbit contribution to the effective charge distribution is discussed in some detail. It is also shown that the use of a single Gaussian shape for the proton smearing usually underestimates the actual theoretical cross section

  3. Portable bacterial identification system based on elastic light scatter patterns

    Directory of Open Access Journals (Sweden)

    Bae Euiwon

    2012-08-01

    Full Text Available Abstract Background Conventional diagnosis and identification of bacteria requires shipment of samples to a laboratory for genetic and biochemical analysis. This process can take days and imposes significant delay to action in situations where timely intervention can save lives and reduce associated costs. To enable faster response to an outbreak, a low-cost, small-footprint, portable microbial-identification instrument using forward scatterometry has been developed. Results This device, weighing 9 lb and measuring 12 × 6 × 10.5 in., utilizes elastic light scatter (ELS patterns to accurately capture bacterial colony characteristics and delivers the classification results via wireless access. The overall system consists of two CCD cameras, one rotational and one translational stage, and a 635-nm laser diode. Various software algorithms such as Hough transform, 2-D geometric moments, and the traveling salesman problem (TSP have been implemented to provide colony count and circularity, centering process, and minimized travel time among colonies. Conclusions Experiments were conducted with four bacteria genera using pure and mixed plate and as proof of principle a field test was conducted in four different locations where the average classification rate ranged between 95 and 100%.

  4. Exploration of Elastic Scattering Rates for Supersymmetric Dark Matter

    CERN Document Server

    Ellis, Jonathan Richard; Olive, Keith A; Ellis, John

    2001-01-01

    We explore the possible cross sections for the elastic scattering of neutralinos chi on nucleons p,n in the minimal supersymmetric extension of the standard model (MSSM). Universality of the soft supersymmetry-breaking scalar masses for the Higgs multiplets is not assumed, but the MSSM parameters are nevertheless required to lead consistently to an electroweak vacuum. We explore systematically the region of MSSM parameter space where LEP and other accelerator constraints are respected, and the relic neutralino density lies in the range 0.1 < Omega_chi h^2 < 0.3 preferred by cosmology. We also discuss models with Omega_chi h^2 < 0.1, in which case we scale the density of supersymmetric dark matter in our galactic halo by Omega_chi h^2 / 0.1, allowing for the possible existence of some complementary form of cold dark matter. We find values of the cross sections that are considerably lower than the present experimental sensitivities. At low neutralino masses, m_chi < 100 GeV, the cross sections may b...

  5. Which potentials have to be surface peaked to reproduce large angle proton scattering at high energy?

    International Nuclear Information System (INIS)

    Raynal, J.

    1990-01-01

    Corrections to the usual form factors of the optical potential are studied with a view to getting a better fit for proton elastic scattering at large angles on 40 Ca at 497 and 800 MeV. When a real surface form factor is added to the central potential in the Schrodinger formalism, the experimental data are as well reproduced as in the standard Dirac formalism. Coupling to the strong 3 - collective state gives a better fit. The use of surface corrections to the imaginary Dirac potential also gives improved results. A slightly better fit is obtained by coupling to the 3 - state with, at the same time, a weakening of these corrections. Further corrections to the potential do not give significant improvements

  6. Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules

    Science.gov (United States)

    Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; Schoff, M.; Shuldberg, C.; Landen, O. L.; Glenzer, S. H.; Falcone, R. W.; Gericke, D. O.; Döppner, T.

    2018-03-01

    We investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the charge state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Finally, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.

  7. Resonant heavy-ion elastic scattering from s-d shell nuclei

    International Nuclear Information System (INIS)

    DeVries, R.M.

    1978-01-01

    Angular distributions at angles 130 less than theta/sub cm/ less than 180 0 were measured for 12 C + 28 Si, 32 S, 40 Ca as well as 9 Be, 13 C + 28 Si in the energy range 20 MeV less than or equal to E/sub cm/ less than or equal to 35 MeV. Cross sections rising towards 180 0 are observed for all reactions. Excitation functions for the back-angle enhancement show distinct structures, most pronounced for 12 C + 28 Si. Angular distributions for 12 C, especially those corresponding to peaks in the excitation function show oscillations of the type vertical bar P/sub J/(cos theta) vertical bar 2 . The 12 C back-angle enhancement decreases with target mass. Backscattering of the nonalpha nuclei 9 Be and 13 C is reduced by about two orders of magnitude in comparison with 12 C. Similar measurements for the 28 Si( 12 C, 16 O) 24 Mg reaction and 16 O + 24 Mg elastic scattering allow comparison of reaction data with the corresponding entrance and exit channel data. Standard theoretical approaches fail to explain all the observed effects

  8. 7Li neutron-induced elastic scattering cross section measurement using a slowing-down spectrometer

    Directory of Open Access Journals (Sweden)

    Heusch M.

    2010-10-01

    Full Text Available A new integral measurement of the 7Li neutron induced elastic scattering cross section was determined in a wide neutron energy range. The measurement was performed on the LPSC-PEREN experimental facility using a heterogeneous graphite-LiF slowing-down time spectrometer coupled with an intense pulsed neutron generator (GENEPI-2. This method allows the measurement of the integral elastic scattering cross section in a slowing-down neutron spectrum. A Bayesian approach coupled to Monte Carlo calculations was applied to extract naturalC, 19F and 7Li elastic scattering cross sections.

  9. A novel application of small-angle scattering techniques: Quality assurance testing of virus quantification technology

    International Nuclear Information System (INIS)

    Kuzmanovic, Deborah A.; Elashvili, Ilya; O'Connell, Catherine; Krueger, Susan

    2008-01-01

    Small-angle scattering (SAS) techniques, like small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS), were used to measure and thus to validate the accuracy of a novel technology for virus sizing and concentration determination. These studies demonstrate the utility of SAS techniques for use in quality assurance measurements and as novel technology for the physical characterization of viruses

  10. A new potential of π-nucleus scattering and its application to nuclear structure study using elastic scattering and charge exchange reactions

    International Nuclear Information System (INIS)

    Durand, Gerard.

    1974-01-01

    First the different theories used for studying pion-nucleus scattering and especially Glauber microscopic model and Kisslinger optical model are summarized. From the comparison of these two theories it was concluded that Kisslinger's was better for studying pion-nucleus scattering near the (3/2-3/2) resonance. The potential was developed, with a local corrective term, proposed by this author. This new term arises from taking into account correctly the Lorentz transformation from the pion-nucleon center of mass to the pion nucleus center of mass system. A coupled-channel formalism was developed allowing the study of pion-nucleus elastic scattering and also the study of single and double charge exchange reactions on nucleus with N>Z. The influence of the new term and the shape of nucleon densities on π- 12 C scattering was studied near 200MeV. It was found that at the nucleus surface the neutron density was larger than the proton density. On the other hand, a maximum of sensibility to the different nuclear parameters was found near 180MeV and for elastic scattering angles greater than 100 deg. The calculations of the total cross section for simple and double charge exchange for 13 C and 63 Cu yielded results simular to those of previous theories and showed the same discrepancy between theory and experiment in the resonance region [fr

  11. Phase variation of nucleon-nucleon amplitude for proton-12C elastic scattering

    International Nuclear Information System (INIS)

    Deng Yibing; Wang Shilai; Yin Gaofang

    2006-01-01

    Franco and Yin studied for α- 4 He, 3 He, 2 He, 1 He elastic-scattering by using the phase of the nucleon-nucleon elastic-scattering amplitude varies with momentum transfer in the framework of Glauber multiple scattering theory at intermediate energy. The phase variation leads to large changes in the differential cross sections, and brings the Glauber theory into agreement with experimental data. Later Lombard and Maillet is based on the suggestion by Franco and Yin studied for the p- 4 He elastic-scattering in the framework of Glauber theory, and found this phase to be actually important for the description of spin observables. Recently Wang Shilai and Deng Yibing et al studied for the p- 4 He elastic-scattering in the framework of KMT multiple scattering theory at intermediate energy, and found this phase lead to differential cross sections and polarization, which are in better agreement with experimental data. This paper is based on the suggestion by Franco and Yin that the phase of the nucleon-nucleon scattering amplitude should vary with momentum transfer. The proton elastic scattering on 12 C is studied in the KMT multiple scattering theory with microscopic momentum space first term optical potential. The Coulomb interactions are taken into account in our calculation. The theoretical calculation results show that the phase leads to differential cross section and polarization are in better agreement with experimental data. In conclusion this phase is actually important in the framework of KMT theory. (authors)

  12. Scanning small angle X-ray scattering investigations of bone

    International Nuclear Information System (INIS)

    Rinnerthaler, S.

    1998-06-01

    An important characteristic of bone is its strength, which is determined by bone mass, architecture and material quality. From a physical point of view bone is a composite material consisting of an organic matrix (collagen) and of inlets of mineral crystals (hydroxyapatite). These components build up a hierarchical, heterogeneous structure. The size of the mineral crystals lies in the nano-meter range and can be investigated by positionsensitive Small-Angle X-ray Scattering (Scanning-SAXS) in a non-destructive way. The average thickness, the degree and direction of the predominant orientation, as well as some information about shape and arrangement of the mineral crystals were determined in bones of humans, mice, and baboons by Scanning-SAXS with respect to age, bone diseases (osteogenesis imperfecta, pycnodysostosis) or medical treatments (fluoride or alendronate) of osteoporosis. The crystal thickness and the degree of orientation is much smaller in young individuals than in adults and the predominant orientation of the mineral crystals is different in a mixture of bone and mineralized cartilage compared to bone. Further, because position-resolved measurements are now possible, results from Scanning-SAXS measurements could be compared with the results of other position resolved methods. Due to this new feature it was possible, for the first time, to correlate directly 'mottled' bone visible in back-scattered electron imaging with small η-parameters evaluated from SAXS-patterns and the course of the collagen fibers with the predominant orientation of the mineral crystals. Scanning-SAXS proved to be a powerful tool to characterize bone nano-structure. (author)

  13. Negative pion-nucleus elastic scattering at 20 and 40 MeV

    International Nuclear Information System (INIS)

    Burleson, G.; Blanpied, G.; Cottingame, W.; Daw, G.; Park, B.; Seth, K.K.; Barlow, D.; Iversen, S.; Kaletka, M.; Nann, H.; Saha, A.; Smith, D.; Redwine, R.P.; Burger, W.; Farkhondeh, M.; Saghai, B.; Anderson, R.

    1994-01-01

    Differential cross sections for the elastic scattering of 20 and 40 MeV π - by nuclei ranging from 12 C to 208 Pb are reported. Comparisons are made with the predictions of the Michigan State University (MSU) optical potential

  14. The scattering potential of partial derivative wavefields in 3-D elastic orthorhombic media: an inversion prospective

    KAUST Repository

    Oh, Juwon; Alkhalifah, Tariq Ali

    2016-01-01

    that includes large offsets, full azimuth, and multicomponent sensors, the potential for trade-off between the elastic orthorhombic parameters are large. The first step to understanding such trade-off is analysing the scattering potential of each parameter

  15. A least squares calculational method: application to e±-H elastic scattering

    International Nuclear Information System (INIS)

    Das, J.N.; Chakraborty, S.

    1989-01-01

    The least squares calcualtional method proposed by Das has been applied for the e ± -H elastic scattering problems for intermediate energies. Some important conclusions are made on the basis of the calculation. (author). 7 refs ., 2 tabs

  16. Two-photon exchange corrections in elastic lepton-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr; Vanderhaeghen, Marc [Johannes Gutenberg Universitaet Mainz (Germany)

    2015-07-01

    The measured value of the proton charge radius from the Lamb shift of energy levels in muonic hydrogen is in strong contradiction, by 7-8 standard deviations, with the value obtained from electronic hydrogen spectroscopy and the value extracted from unpolarized electron-proton scattering data. The dominant unaccounted higher order contribution in scattering experiments corresponds to the two photon exchange (TPE) diagram. The elastic contribution to the TPE correction was studied with the fixed momentum transfer dispersion relations and compared to the hadronic model with off-shell photon-nucleon vertices. A dispersion relation formalism with one subtraction was proposed. Theoretical predictions of the TPE elastic contribution to the unpolarized elastic electron-proton scattering and polarization transfer observables in the low momentum transfer region were made. The TPE formalism was generalized to the case of massive leptons and the elastic contribution was evaluated for the kinematics of upcoming muon-proton scattering experiment (MUSE).

  17. Contribution of alpha cluster exchange to elastic and inelastic 16O--20Ne scattering

    International Nuclear Information System (INIS)

    Stock, R.; Schneider, W.F.W.; Jahnke, U.; Hendrie, D.L.; Mahoney, J.; Maguire, C.F.; Scott, D.K.; Wolschin, G.

    1975-01-01

    The cluster structure of the ground state rotational band of 20 Ne was studied via the elastic and inelastic scattering of 50 MeV 20 Ne from 16 O. Angular distributions are compared with microscopic calculations

  18. Theoretical predictions for pp and panti p elastic scattering in the TeV energy domain

    International Nuclear Information System (INIS)

    Bourrely, C.; Martin, A.

    1984-01-01

    We present theoretical predictions on total cross-sections and elastic scattering in the TeV energy domain obtained from the present experimental situation at the ISR and the panti p Collider. (orig.)

  19. Ordered array of ω particles in β-Ti matrix studied by small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Šmilauerová, J.; Harcuba, P.; Stráský, J.; Stráská, J.; Janeček, M.; Pospíšil, J.; Kužel, R.; Brunátová, T.; Holý, V.; Ilavský, J.

    2014-01-01

    Nanosized particles of ω phase in a β-Ti alloy were investigated by small-angle X-ray scattering using synchrotron radiation. We demonstrated that the particles are spontaneously weakly ordered in a three-dimensional cubic array along the 〈100〉-directions in the β-Ti matrix. The small-angle scattering data fit well to a three-dimensional short-range-order model; from the fit we determined the evolution of the mean particle size and mean distance between particles during ageing. The self-ordering of the particles is explained by elastic interaction between the particles, since the relative positions of the particles coincide with local minima of the interaction energy. We performed numerical Monte Carlo simulation of the particle ordering and we obtained a good agreement with the experimental data

  20. Measurement of the Weak Mixing Angle in Moller Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Klejda, B.

    2005-01-28

    scattering. This value corresponds to a weak mixing angle at Q{sup 2} = 0.026 (GeV/c){sup 2} of sin{sup 2} {theta}{sub w{ovr MS}} = 0.2379 {+-} 0.0016 (stat.) {+-} 0.0013 (syst.), which is -0.3 standard deviations away from the Standard Model prediction: sin{sup 2} {theta}{sub w{ovr MS}}{sup predicted} = 0.2385 {+-} 0.0006 (theory). The E158 measurement of sin{sup 2} {theta}{sub w} at a precision of {delta}(sin{sup 2} {theta}{sub w}) = 0.0020 provides new physics sensitivity at the TeV scale.

  1. Universal fit to p-p elastic diffraction scattering from the Lorentz contracted geometrical model

    International Nuclear Information System (INIS)

    Hansen, P.H.; Krisch, A.D.

    1976-01-01

    The prediction of the Lorentz contracted geometical model for proton-proton elastic scattering at small angles is examined. The model assumes that when two high energy particles collide, each behaves as a geometrical object which has a Gaussian density and is spherically symmetric except for the Lorentz contraction in the incident direction. It is predicted that dsigma/dt should be independent of energy when plotted against the variable β 2 P 2 sub(perpendicular) sigmasub(TOT)(s)/38.3. Thus the energy dependence of the diffraction peak slope (b in an esup(-b mod(t))plot) is given by b(s)=A 2 β 2 sigmasub(TOT)(s)/38.3 where β is the proton's c.m. velocity and A is its radius. Recently measured values of sigmasub(TOT)(s) were used and an excellent fit obtained to the elastic slope in both t regions [-t 2 and 0.1 2 ] at all energies from s=6 to 4000(GeV/c) 2 . (Auth.)

  2. 14O+p elastic scattering in a microscopic cluster model

    International Nuclear Information System (INIS)

    Descouvemont, P.; Baye, D.; Leo, F.

    2006-01-01

    The 14O+p elastic scattering is analyzed in a fully microscopic cluster model. With the Resonating Group Method associated with the microscopic R-matrix theory, phase shifts and cross sections are calculated. Data on 16O+p are used to test the precision of the model. For the 14O+p elastic scattering, an excellent agreement is found with recent experimental data. Resonances properties in 15F are discussed

  3. Wide angle Compton scattering within the SCET factorization framework

    International Nuclear Information System (INIS)

    Kivel, N.

    2016-01-01

    Existing data for the electromagnetic proton form factors and for the cross section of the wide angle Compton scattering (WACS) show that the hard two-gluon exchange mechanism (collinear factorization) is still not applicable in the kinematical region where Mandelstam variables s ∼ -t ∼ -u are about a few GeV 2 . On the other hand these observables can be described in phenomenological models where spectator quarks are soft which assumes a large contribution due to the soft-overlap mechanism. It turns out that the simple QCD factorization picture is not complete and must also include the soft-overlap contribution which can be described as a certain matrix element in the soft collinear effective theory (SCET). Then the leading power contribution to WACS amplitude is described as a sum of the hard- and soft-spectator contributions. The existing experimental data allows one to check certain conclusions based on the assumption about dominant role of the soft-spectator mechanism. (author)

  4. Magnetic small-angle scattering of subthermal neutrons by internal stress fields in work-hardened nickel single crystals oriented for multiple glide

    International Nuclear Information System (INIS)

    Vorbrugg, W.; Schaerpf, O.

    1975-01-01

    The small-angle scattering of Ni single crystals with (111) and (100) axis orientation is measured by a photographic method in the work-hardened state after tensile deformation. Parameters are the external magnetic field H parallel to the axis (600 2 ]<=8,8), and the elastic stress tausub(el)(0<=tausub(el)<=tausub(pl)) applied to the deformed crystals during the experiments. The scattering is found to be anisotropic and characteristic for the chosen orientation. The quantitative photometric analysis shows that the parameters mentioned above only influence the intensity but not the distribution of the scattered neutrons. The scattering increases with the elastic stress and decreases with the magnetic field. In particular, in the unloaded state there is a linear relation between the scattered intensity and the plastic shear stress. (author)

  5. Proposal for the design of a small-angle neutron scattering facility at a pulsed neutron source

    International Nuclear Information System (INIS)

    Kley, W.

    1980-01-01

    The intensity-resolution-background considerations of an optimized small angle neutron scattering facility are reviewed for the special case of a pulsed neutron source. In the present proposal we conclude that for 'true elastic scattering experiments' filters can be used instead of expensive neutron guide tubes since low background conditions can be achieved by a combined action of filters as well as a proper time gating of the twodimensional detector. The impinging neutron beam is monochromatized by phasing a disk chopper to the neutron source pulses and in the scattered beam a second disk chopper is used to eliminate the inelastically scattered neutrons. Therefore, no time of fligh analysis is necessary for the scattered neutron intensity and true-elastic conditions are obtained by simply gating the two-dimensional detector. Considering a 4 m thick shield for the pulsed neutron source and choosing for optimum conditions a detector area element of (2.5 cm) 2 and a sample area of (1.25 cm) 2 , than for a minimum sample-detector-distance of 1.5 m, a maximum neutron source diameter of 6.67 cm is required in order to maintain always the optimum intensity- and resolution requirements

  6. Reaction Mechanism and Structure Interplay for Proton Elastic Scattering from Halo Nuclei

    International Nuclear Information System (INIS)

    Crespo, R.; Johnson, R.C.

    1999-01-01

    The aim of this work is to clarify what properties of the projectile w.f. are relevant to describe elastic scattering of halo nuclei from stable nuclei. In particular, we examine how far elastic scattering observables probe correlation effects among projectile nucleons. Our treatment is based on a multiple scattering expansion of the proton-projectile transition amplitude in a form which is well adapted to the weakly bound cluster picture of halo nuclei. In the specific case of 11 Li scattering from protons at 800 MeV/u we show that because core recoil effects are significant, scattering cross sections can not, in general, be deduced from knowledge of the total matter density alone. We advocate that the optical potential concept for the scattering of halo nuclei on protons should be avoided and that the multiple scattering series for the full transition amplitude should be used instead

  7. Reaction mechanism and structure interplay for proton elastic scattering from halo nuclei

    International Nuclear Information System (INIS)

    Crespo, R.; Johnson, R. C.

    1999-01-01

    The aim of this work is to clarify what properties of the projectile w.f. are relevant to describe elastic scattering of halo nuclei from stable nuclei. In particular, we examine how far elastic scattering observables probe correlation effects among projectile nucleons. Our treatment is based on a multiple scattering expansion of the proton-projectile transition amplitude in a form which is well adapted to the weakly bound cluster picture of halo nuclei. In the specific case of 11 Li scattering from protons at 800 MeV/u we show that because core recoil effects are significant, scattering crosssections cannot, in general, be deduced from knowledge of the total matter density alone. We advocate that the optical potential concept for the scattering of halo nuclei on protons should be avoided and that the multiple scattering series for the full transition amplitude should be used instead

  8. TOF-SEMSANS—Time-of-flight spin-echo modulated small-angle neutron scattering

    NARCIS (Netherlands)

    Strobl, M.; Tremsin, A.S.; Hilger, A.; Wieder, F.; Kardjilov, N.; Manke, I.; Bouwman, W.G.; Plomp, J.

    2012-01-01

    We report on measurements of spatial beam modulation of a polarized neutron beam induced by triangular precession regions in time-of-flight mode and the application of this novel technique spin-echo modulated small-angle neutron scattering (SEMSANS) to small-angle neutron scattering in the very

  9. Ambiguities in the elastic scattering of 8 MeV neutrons from adjacent nuclei

    International Nuclear Information System (INIS)

    Smith, A.B.; Lawson, R.D.; Guenther, P.T.

    1989-10-01

    Ratios of the cross sections for elastic scattering of 8 MeV neutrons from adjacent nuclei are measured over the angular range ∼20 degree - 160 degree for the target pairs 51 V/Cr, 59 Co/ 58 Ni, Cu/Zn, 89 Y/ 93 Nb, 89 Y/Zr, 93 Nb/Zr, In/Cd and 209 Bi/Pb. The observed ratios vary from unity by as much as a factor of ∼2 at some angles for the lighter target pairs. Approximately half the measured ratios are reasonably explained by a simple spherical optical model, including size and isospin contributions. In all cases, the geometry of the real optical--model potential is essentially the same for neighboring nuclei, and the real--potential strengths are consistent with the Lane model. In contrast, it is found that the imaginary potential may be quite different for adjacent nuclei, and the nature of this difference is examined. It is shown that the spin--spin interaction has a negligible effect on the calculation of the elastic--scattering ratios, but that channel coupling, leading to a large reorientation of the target ground state, can be a consideration, particularly in the 59 Co/ 58 Ni case. In the A ∼ 50--60 region the calculated ratios are sensitive to spin--orbit effects, but the exact nature of this interaction must await more definitive polarization measurements. The measured and calculated results suggest that the concept of a conventional ''global'' or even ''regional'' optical potential provides no more than a qualitative representation of the physical reality for a number of cases. 48 refs., 14 figs., 3 tabs

  10. Ambiguities in the elastic scattering of 8 MeV neutrons from adjacent nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Lawson, R.D.; Guenther, P.T.

    1989-10-01

    Ratios of the cross sections for elastic scattering of 8 MeV neutrons from adjacent nuclei are measured over the angular range {approx}20{degree} {minus} 160{degree} for the target pairs {sup 51}V/Cr, {sup 59}Co/{sup 58}Ni, Cu/Zn, {sup 89}Y/{sup 93}Nb, {sup 89}Y/Zr, {sup 93}Nb/Zr, In/Cd and {sup 209}Bi/Pb. The observed ratios vary from unity by as much as a factor of {approx}2 at some angles for the lighter target pairs. Approximately half the measured ratios are reasonably explained by a simple spherical optical model, including size and isospin contributions. In all cases, the geometry of the real optical--model potential is essentially the same for neighboring nuclei, and the real--potential strengths are consistent with the Lane model. In contrast, it is found that the imaginary potential may be quite different for adjacent nuclei, and the nature of this difference is examined. It is shown that the spin--spin interaction has a negligible effect on the calculation of the elastic--scattering ratios, but that channel coupling, leading to a large reorientation of the target ground state, can be a consideration, particularly in the {sup 59}Co/{sup 58}Ni case. In the A {approx} 50--60 region the calculated ratios are sensitive to spin--orbit effects, but the exact nature of this interaction must await more definitive polarization measurements. The measured and calculated results suggest that the concept of a conventional global'' or even regional'' optical potential provides no more than a qualitative representation of the physical reality for a number of cases. 48 refs., 14 figs., 3 tabs.

  11. Generalized theory of resonance excitation by sound scattering from an elastic spherical shell in a nonviscous fluid.

    Science.gov (United States)

    Mitri, Farid G

    2012-08-01

    This work presents the general theory of resonance scattering (GTRS) by an elastic spherical shell immersed in a nonviscous fluid and placed arbitrarily in an acoustic beam. The GTRS formulation is valid for a spherical shell of any size and material regardless of its location relative to the incident beam. It is shown here that the scattering coefficients derived for a spherical shell immersed in water and placed in an arbitrary beam equal those obtained for plane wave incidence. Numerical examples for an elastic shell placed in the field of acoustical Bessel beams of different types, namely, a zero-order Bessel beam and first-order Bessel vortex and trigonometric (nonvortex) beams are provided. The scattered pressure is expressed using a generalized partial-wave series expansion involving the beam-shape coefficients (BSCs), the scattering coefficients of the spherical shell, and the half-cone angle of the beam. The BSCs are evaluated using the numerical discrete spherical harmonics transform (DSHT). The far-field acoustic resonance scattering directivity diagrams are calculated for an albuminoidal shell immersed in water and filled with perfluoropropane gas, by subtracting an appropriate background from the total far-field form function. The properties related to the arbitrary scattering are analyzed and discussed. The results are of particular importance in acoustical scattering applications involving imaging and beam-forming for transducer design. Moreover, the GTRS method can be applied to investigate the scattering of any beam of arbitrary shape that satisfies the source-free Helmholtz equation, and the method can be readily adapted to viscoelastic spherical shells or spheres.

  12. Measurement of Elastic Scattering and of Total Cross-Section at the CERN $\\bar{p}p$ Collider

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to measure elastic scattering and the total cross-section at the $\\bar{p}p$ collider. \\\\ \\\\ Up to 1983 the experimental apparatus was composed of two parts : \\item 1) Telescopes of high accuracy drift and proportional chambers and counters inserted into vertically moveable sections of the vacuum chamber ('Roman pots'), detect elastic scattering in the angular region from .5 mrad up to about 3 mrad. \\item 2) The total inelastic rate is measured with a forward/backward system of drift chambers and counter hodoscopes and the UA2 central detector covering together @= 4@p solid angle. \\end{enumerate}\\\\ \\\\ With these two set-ups, the measured value of the total cross-section confirms extrapolation with (ln s)|2 behaviour. Elastic scattering and diffraction dissociation were measured in the range .03~$<$~-t~$<$~1.6~GeV|2. \\\\ \\\\ From 1984 on, six horizontally moveable ``Roman Pots'' have been installed farther away from the intersection region (up to 100~m). Using an especially desi...

  13. Investigations of time resolved x-ray wide-angle scattering and x-ray small-angle scattering at DESY

    International Nuclear Information System (INIS)

    Zachmann, H.G.; Gehrke, R.; Prieske, W.; Riekel, C.

    1985-01-01

    Instrumentation is described for the simultaneous wide-angle and small-angle x-ray scattering. The method was applied to the study of the isothermal crystallization of polyethylene terephthalates. In agreement with the classical theories of crystallization, the data showed that the density difference between the crystals and the non-crystalline regions does not change with time. The mechanisms of melting, recrystallization, and crystal thickening were investigated by small-angle x-ray scattering with stepwise changes and continuous changes of temperature using polyethylene terephthalate

  14. Superstring elastic scattering at √s≥1019 GeV. The covariant loop calculus approach

    International Nuclear Information System (INIS)

    Bellini, A.; Cristofano, G.; Fabbrichesi, M.; Roland, K.; Texas Univ., Austin, TX

    1990-01-01

    We study quantum gravity by considering the elastic scattering of two on-shell string ground states in the large s, fixed t asymptotic limit. The amplitude is computed by means of the covariant loop calculus which turns out to be a powerful method in the study of such a Regge regime. The leading contribution in powers of s is shown to factorize at any g-loop order in a product of g+1 tree amplitudes times the expectation value of a factorized operator. The cumulative effect of these contributions - once it has been resummed - restores unitarity in the theory and gives a deflection angle in agreement with the linear approximation to general relativity. In the process, it is possible to determine the normalization dictated by unitarity of all terms in the topological expansion. Next, the first sub-leading contribution is calculated at the two-loop order, the so-called H-diagram. A resummation of such terms gives rise to the first non-linear correction in the deflection angle. Our results are in agreement with previous work by Amati, Ciafaloni and Veneziano in the framework of Regge-Gribov techniques. The correspondence between the two approaches is discussed. (orig.)

  15. Theoretical study of the influence of small angle scattering on diffraction enhanced imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Peiping [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)], E-mail: zhupp@ihep.ac.cn; Huang Wanxia; Yuan, Qingxi [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Wang Junyue; Shu Hang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Graduate School of the Chinese Academy of Sciences, 100864 Beijing (China); Chen Bo [Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)], E-mail: wuzy@ihep.ac.cn

    2007-07-15

    Small angle scattering plays an important role in diffraction enhanced imaging (DEI). The DEI equation proposed by Chapman is accepted and widely used by many applications in medical, biological and material researches. However, in this framework the contribution of the small angle scattering determined by the crystal analyzer is neglected and the extinction contrast caused by the rejection of the small angle scattering by the analyzer is not explicitly expressed. In this contribution we introduce two additional terms in the DEI equation that describe the additional background introduced by the small angle scattering collected by the analyzer crystal and the extinction contrast associated to the rejection of the small angle scattering by the analyzer crystal, respectively. Four kinds of images of the DEI method were considered by using these revised equations and results were presented and discussed.

  16. Theoretical study of the influence of small angle scattering on diffraction enhanced imaging

    International Nuclear Information System (INIS)

    Zhu Peiping; Huang Wanxia; Yuan, Qingxi; Wang Junyue; Shu Hang; Chen Bo; Wu Ziyu

    2007-01-01

    Small angle scattering plays an important role in diffraction enhanced imaging (DEI). The DEI equation proposed by Chapman is accepted and widely used by many applications in medical, biological and material researches. However, in this framework the contribution of the small angle scattering determined by the crystal analyzer is neglected and the extinction contrast caused by the rejection of the small angle scattering by the analyzer is not explicitly expressed. In this contribution we introduce two additional terms in the DEI equation that describe the additional background introduced by the small angle scattering collected by the analyzer crystal and the extinction contrast associated to the rejection of the small angle scattering by the analyzer crystal, respectively. Four kinds of images of the DEI method were considered by using these revised equations and results were presented and discussed

  17. Breakup coupling effects on near-barrier quasi-elastic scattering of 6,7Li on 144Sm

    International Nuclear Information System (INIS)

    Otomar, D. R.; Lubian, J.; Gomes, P. R. S.; Monteiro, D. S.; Capurro, O. A.; Arazi, A.; Figueira, J. M.; Marti, G. V.; Heimann, D. Martinez; Negri, A. E.; Pacheco, A. J.; Niello, J. O. Fernandez; Guimaraes, V.; Chamon, L. C.

    2009-01-01

    Excitation functions of quasi-elastic scattering at backward angles have been measured for the 6,7 Li+ 144 Sm systems at near-barrier energies, and fusion barrier distributions have been extracted from the first derivatives of the experimental cross sections with respect to the bombarding energies. The data have been analyzed in the framework of continuum discretized coupled-channel calculations, and the results have been obtained in terms of the influence exerted by the inclusion of different reaction channels, with emphasis on the role played by the projectile breakup.

  18. Theoretical aspects of high energy elastic nucleon scattering

    CERN Document Server

    Kundrat, Vojtech; Lokajicek, Milos

    2010-01-01

    The eikonal model must be denoted as strongly preferable for the analysis of elastic high-energy hadron collisions. The given approach allows to derive corresponding impact parameter profiles that characterize important physical features of nucleon collisions, e.g., the range of different forces. The contemporary phenomenological analysis of experimental data is, however, not able to determine these profiles unambiguously, i.e., it cannot give the answer whether the elastic hadron collisions are more central or more peripheral than the inelastic ones. However, in the collisions of mass objects (like protons) the peripheral behavior of elastic collisions should be preferred.

  19. An application of the Dipole Pomeron model to the pion-proton elastic scattering

    International Nuclear Information System (INIS)

    Covolan, R.J.M.; Leite, E.E.; Montanha, J.; Soares, M.S.

    1994-01-01

    The Pomeron model is applied to the pion-proton elastic scattering aiming to describe the total and differential cross sections and the ρ ratio between the scattering amplitude real and imaginary parts. It is also discussed how far the present available experimental results lead to the necessity of adopting a (α 0 > 1) supercritical trajectory. (author). 3 refs., 4 figs

  20. Nuclear and partonic dynamics in high energy elastic nucleus-nucleus scattering

    International Nuclear Information System (INIS)

    Malecki, A.

    1991-01-01

    A hybrid description of diffraction which combines a geometrical modelling of multiple scattering with many-channel effects resulting from intrinsic dynamics on nuclear and sub-nuclear level is presented. The application to the 4 He- 4 He elastic scattering is very satisfactory. Our analysis suggests that at large momentum transfers the parton constituents of nucleons immersed in nuclei are deconfined. (author)

  1. Resolution effects and analysis of small-angle neutron scattering data

    DEFF Research Database (Denmark)

    Pedersen, J.S.

    1993-01-01

    A discussion of the instrumental smearing effects for small-angle neutron scattering (SANS) data sets is given. It is shown that these effects can be described by a resolution function, which describes the distribution of scattering vectors probed for the nominal values of the scattering vector...

  2. Elimination of the 12 C and 16 O in the elastic scattering of 14 C by polarized protons

    International Nuclear Information System (INIS)

    Avila A, O.L.; Ramirez T, J.J.; Murillo O, G.; Fernandez B, M.

    1991-04-01

    The study of the elastic scattering of 14 C for polarized protons it provides information on the nuclear structure of 15 N. In the Tandem accelerator of the Nuclear Center in collaboration with the University of Notre Dame is carrying out this study to energy between 5.0 and 9.0 MeV in steps of 10 keV. The measures of differential section and vectorial analyzer power are subjected to shift analysis of phase being able to determine the parameters of the excited levels of 15 N that are it angular momentum, parity, level width and elastic width. The details of this experiment are presented in the ACEL-9102 technical report while in this work it was discussed the way in that contributions of 12 C and 16 O are eliminated that are present as impurities in our target of 14 C. At small angles the elastic components of these impurities are shoveled with the elastic of 14 C. In the experiment carried out in the Nuclear Center were take measures of differential section for 6 angles; 35, 45, 55, 65, 145 and 165 using surface barrier detectors. It is observed that it exists shovels at 35, 45, 55 and 65 while at 145 and 165 the 12 C, the 14 C and the 16 O are totally separate. With the purpose of being able to subtract of the elastic of 14 C the proportion of 12 C, it was decided to bombard a target of 12 C leaving the same geometry that had been used to bombard 14 C. With this also carried out the reaction 12 C (p,p) 12 C between 5.0 and 9.0 MeV in steps of 50 keV. Starting from these spectra are the integration (yield) of the elastic of 12 C. (Author)

  3. Discerning the neutron density distribution of 208Pb from nucleon elastic scattering

    International Nuclear Information System (INIS)

    Karataglidis, S.; Amos, K.; University of Melbourne, VIC; Brown, B.A.; Deb, P.K.

    2001-01-01

    We seek a measure of the neutron density of 208 Pb from analyses of intermediate energy nucleon elastic scattering. The pertinent model for such analyses is based on coordinate space nonlocal optical potentials obtained from model nuclear ground state densities. As a calibration of the use of Skyrme-Hartree-Fock models the elastic scattering from 40 Cawas considered as well. Those potentials give predictions of integral observables and of angular distributions which show sensitivity to the neutron density. When compared with experiment, and correlated with analyses of electron scattering data, the results suggest that 208 Pb has a neutron skin thickness ∼ 0.17 fm

  4. Measurement of recoil photon polarisation in the electron-proton elastic scattering

    International Nuclear Information System (INIS)

    Buon, Jean

    1965-02-01

    This research thesis reports and discusses an experiment which aimed at checking the validity of the Born approximation at the first order in the elastic scattering of high energy electrons on protons. In this experiment, the recoil proton polarisation is measured in an elastic scattering of electrons with energy of 950 MeV and scattering at about 90 degrees in the mass centre system. The author describes the experimental installation, its operation and data collection, reports the analysis of photos and polarisation calculations and errors [fr

  5. Second-class currents and DELTA s in nu(nu-bar)p elastic scattering

    CERN Document Server

    Wilkinson, D H

    2001-01-01

    nu(nu-bar)p elastic scattering is sensitive to the magnitude, DELTA s, of the strange quark's presence within the proton. But it is also sensitive to the strength of second-class currents so we must be assured that the effect of such currents, having regard for the experimental upper limit to their strength, is negligible before extracting DELTA s from such scattering. It is shown that searches for DELTA s through nu(nu-bar)p elastic scattering are unlikely to be troubled by this consideration below neutrino energies of about 0.1 GeV but that at higher energies very serious uncertainty arises.

  6. Determination of baryon-baryon elastic scattering phase shift from finite volume spectra in elongated boxes

    Science.gov (United States)

    Li, Ning; Wu, Ya-Jie; Liu, Zhan-Wei

    2018-01-01

    The relations between the baryon-baryon elastic scattering phase shifts and the two-particle energy spectrum in the elongated box are established. We studied the cases with both the periodic boundary condition and twisted boundary condition in the center of mass frame. The framework is also extended to the system of nonzero total momentum with periodic boundary condition in the moving frame. Moreover, we discussed the sensitivity functions σ (q ) that represent the sensitivity of higher scattering phases. Our analytical results will be helpful to extract the baryon-baryon elastic scattering phase shifts in the continuum from lattice QCD data by using elongated boxes.

  7. A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Bennett N., E-mail: bennett.walker@fda.hhs.gov [Optical Therapeutics and Medical Nanophotonics Laboratory, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States); Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States); James, Robert H.; Ilev, Ilko K. [Optical Therapeutics and Medical Nanophotonics Laboratory, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States); Calogero, Don [Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States)

    2015-09-15

    Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearly 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter.

  8. A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses

    International Nuclear Information System (INIS)

    Walker, Bennett N.; James, Robert H.; Ilev, Ilko K.; Calogero, Don

    2015-01-01

    Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearly 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter

  9. Numerical modelling of multiple scattering between two elastical particles

    DEFF Research Database (Denmark)

    Bjørnø, Irina; Jensen, Leif Bjørnø

    1998-01-01

    in suspension have been studied extensively since Foldy's formulation of his theory for isotropic scattering by randomly distributed scatterers. However, a number of important problems related to multiple scattering are still far from finding their solutions. A particular, but still unsolved, problem......Multiple acoustical signal interactions with sediment particles in the vicinity of the seabed may significantly change the course of sediment concentration profiles determined by inversion from acoustical backscattering measurements. The scattering properties of high concentrations of sediments...... is the question of proximity thresholds for influence of multiple scattering in terms of particle properties like volume fraction, average distance between particles or other related parameters. A few available experimental data indicate a significance of multiple scattering in suspensions where the concentration...

  10. Elasticity of Tantalum to 105 Gpa using a stress and angle-resolved x-ray diffraction

    International Nuclear Information System (INIS)

    Cynn, H; Yoo, C S

    1999-01-01

    Determining the mechanical properties such as elastic constants of metals at Mbar pressures has been a difficult task in experiment. Following the development of anisotropic elastic theory by Singh et al.[l], Mao et a1.[2] have recently developed a novel experimental technique to determine the elastic constants of Fe by using the stress and energy-dispersive x-ray diffraction (SEX). In this paper, we present an improved complementary technique, stress and angle-resolved x-ray diffraction (SAX), which we have applied to determine the elastic constants of tantalum to 105 GPa. The extrapolation of the tantalum elastic data shows an excellent agreement with the low-pressure ultrasonic data[3]. We also discuss the improvement of this SAX method over the previous SEX.[elastic constant, anisotropic elastic theory, angle-dispersive synchrotron x-ray diffraction, mechanical properties

  11. Investigations of homologous disaccharides by elastic incoherent neutron scattering and wavelet multiresolution analysis

    Energy Technology Data Exchange (ETDEWEB)

    Magazù, S.; Migliardo, F. [Dipartimento di Fisica e di Scienze della Terra dell’, Università degli Studi di Messina, Viale F. S. D’Alcontres 31, 98166 Messina (Italy); Vertessy, B.G. [Institute of Enzymology, Hungarian Academy of Science, Budapest (Hungary); Caccamo, M.T., E-mail: maccamo@unime.it [Dipartimento di Fisica e di Scienze della Terra dell’, Università degli Studi di Messina, Viale F. S. D’Alcontres 31, 98166 Messina (Italy)

    2013-10-16

    Highlights: • Innovative multiresolution wavelet analysis of elastic incoherent neutron scattering. • Elastic Incoherent Neutron Scattering measurements on homologues disaccharides. • EINS wavevector analysis. • EINS temperature analysis. - Abstract: In the present paper the results of a wavevector and thermal analysis of Elastic Incoherent Neutron Scattering (EINS) data collected on water mixtures of three homologous disaccharides through a wavelet approach are reported. The wavelet analysis allows to compare both the spatial properties of the three systems in the wavevector range of Q = 0.27 Å{sup −1} ÷ 4.27 Å{sup −1}. It emerges that, differently from previous analyses, for trehalose the scalograms are constantly lower and sharper in respect to maltose and sucrose, giving rise to a global spectral density along the wavevector range markedly less extended. As far as the thermal analysis is concerned, the global scattered intensity profiles suggest a higher thermal restrain of trehalose in respect to the other two homologous disaccharides.

  12. Manifestation of 12-quark bag state of 4He nucleus in elastic d4He scattering

    International Nuclear Information System (INIS)

    Mosallem, A.M.; Uzhinskij, V.V.

    2002-01-01

    The 4 He d elastic scattering at the momentum of 19.8 GeV/c is analyzed in the framework of the Glauber theory. The scattering amplitude was evaluated using different sets of values of the nucleon-nucleon amplitude parameters and the 4 He density function as a superposition of the Gaussian functions. It is shown that it is impossible to describe simultaneously the p 4 He and d 4 He elastic scattering cross sections using the same set of the NN-amplitude parameters. Inclusion of the twelve-quark bag admixture to the ground state of the 4 He nucleus in the calculations allows one to reproduce the experimental data quite well. It is shown that the admixture manifests itself in the d 4 He elastic scattering in the whole region of the momentum transfer. At small t the effect can be at the level of ∼ 10%. At large t it can be ∼30%

  13. Modifications of nucleons in nuclei in quasi-elastic electron-nucleus scattering

    International Nuclear Information System (INIS)

    Mulders, P.J.

    1988-01-01

    In inelastic electron scattering two scaling regions are observed in which the scattering is dominated by quasi-elastic scattering. For large momentum transfers, √Q 2 > 2 GeV/c, the scattering process is dominated by quasi-elastic scattering off quarks, whereas for √Q 2 ≅ 0.5 GeV/c the dominant contribution is quasi-elastic scattering off nucleons. This corresponds nicely to our first order picture of the nucleus consisting of nucleons, which in turn are composed of quarks. In the nucleon-scaling region, possible modifications of nucleon properties show up through a study of the Q 2 dependence and the relative strength of the transverse and longitudinal cross sections. Results of both inclusive (e,e') and exclusive (e,e'p) experiments in the quasi-elastic scattering region indeed show a behavior that could indicate modifications of intrinsic properties of individual nucleons in the nucleus, although the question remains if one has correctly disentangled the effects of the (long range) interactions between nucleons and those connected to the internal structure of nucleons. Even so, a simple (one-parameter) size rescaling for nucleons appears to be inconsistent with the data and also with some known conventional nuclear physics observables. Therefore the inclusion of two-nucleon correlations appears necessary in order to be able to understand the data. Such correlations can for instance be due to the effect of the Pauli principle on the quark level. (orig.)

  14. Effect of different electron elastic-scattering cross sections on inelastic mean free paths obtained from elastic-backscattering experiments

    International Nuclear Information System (INIS)

    Jablonskiz, A.; Salvatz, F.; Powellz, C.J.

    2004-01-01

    Inelastic mean free paths (IMFPs) of electrons with energies between 100 eV and 5,000 eV have been frequently obtained from measurements of elastic-backscattering probabilities for different specimen materials. A calculation of these probabilities is also required to determine IMFPs. We report calculations of elastic-backscattering probabilities for gold at energies of 100 eV and 500 eV with differential elastic-scattering cross sections obtained from the Thomas-Fermi-Dirac potential and the more reliable Dirac-Hartree-Fock potential. For two representative experimental configurations, the average deviation between IMFPs obtained with cross sections from the two potentials was 11.4 %. (author)

  15. Elastic and Diffractive Scattering - Proceedings of the International Conference on Vth Blois Workshop

    Science.gov (United States)

    Kang, K.; Fried, H. M.; Tan, C.-I.

    1994-02-01

    The Table of Contents for the book is as follows: * Preface * `Overview' on Elastic Scattering and Total Cross-Sections * A Precise Measurement of the Real Part of the Elastic Scattering Amplitude at the {S bar{p}pS} * Luminosity Dependent Measurement of the p bar{p} Total Cross Section at √{s} = 541 GeV * Status of Fermilab E-710 * Luminosity-Independent Measurement of bar{p}p Elastic Scattering, Single Diffraction, Dissociation and Total Cross Section at √{s} = 546 and 1800 GeV * Phase Relations Revisited: A Challenge for SSC and LHC * Status of Near-Forward Elastic Scattering * bar{p}p Collisions at √{s} = 1.8 TeV: p, σt and B * p bar{p} Forward Scattering Parameters Results from Fermilab E760 * Photoproduction Results from H1 at HERA * Total and Jet Photoproduction Cross Sections at HERA and Fermilab * Minijet Model for High Energy γp Cross Sections * The Pomeron as Massive Gluons * Large N Theories with Glueball-like Spectra * Unitarity Relations for Gluonic Pomeron * The Donnachie-Landshoff Pomeron vs. QCD * The Odderon Intercept in Perturbative QCD * Theoret. and Phenomenol. Aspects of the Odderon * First Theorist's Gaze at HERA Data at Low xB * H1 Results for Structure Functions at Small x * Partial Photoproduction Cross Sections at √{s} ≈prox 180 GeV and First Results on F2 of the Proton from the ZEUS Experiment * Observation of a New Class of Events in Deep Inelastic Scattering * Jet Production in Muon-Proton and Muon-Nuclei Scattering at Fermilab-E665 * D0 Studies of Perturbative QCD * Large Rapidity Gaps and Single Diffraction Dissociation in High Energy pp and bar{p}p Collisions * Hadron and Reggeon Structure in High Energy Collisions * Monte Carlo Studies of Diffractive Processes in Deep Inelastic Scattering * Elastic Parton-Parton Amplitudes in Geometrical Models * Non-Perturbative QCD Calculations of High-Energy Observables * Effective Field Theory for Diffractive QCD Processes * High Energy Behavior of σtot, ρ, and B - Asymptotic

  16. Dominance of strong absorption in 9Be + 28Si elastic scattering

    International Nuclear Information System (INIS)

    Zisman, M.S.; Cramer, J.G.; DeVries, R.M.; Goldberg, D.A.; Watson, J.W.

    1979-07-01

    Because the character of the scattering changes markedly from 6 Li to 12 C projectiles, a study of the 9 Be + 28 Si system was undertaken to examine the transition region. Data were measured at 121.0 and 201.6 MeV. Low-energy data of other investigators were used to carry out global optical model searches. It was found that the elastic scattering of 9 Be from 28 Si is dominated at all energies by relatively strong absorption. This removes much of the sensitivity to the real potential, and even elastic scattering data spanning a range of energies from 13 to 201 MeV do not allow a unique determination of the potential parameters. There is at least circumstantial evidence that 6 Li scattering at low energies (and by implication also 9 Be scattering) may be strongly influenced by breakup processes, although it is not clear that the mechanism is the same. 3 figures, 1 table

  17. Quasi-elastic scattering an alternative tool for mapping the fusion barriers for heavy-ion induced fusion reaction

    International Nuclear Information System (INIS)

    Behera, B.R.

    2016-01-01

    Heavy element synthesis through heavy-ion induced fusion reaction is an active field in contemporary nuclear physics. Exact knowledge of fusion barrier is one of the essential parameters for planning any experiments for heavy element production. Theoretically there are many models available to predict the exact barrier. Though these models are successful for predicting the fusion of medium mass nuclei, it somehow fails for predicting the exact location of barrier for fusion of heavy nuclei. Experimental determination of barrier for such reactions is required for future experiments for the synthesis of heavy elements. Traditionally fusion barrier is determined taking a double derivative of fusion excitation function. However, such method is difficult in case of fusion of heavy nuclei due to its very low fusion/capture cross section and its experimental complications. Alternatively fusion barrier can be determined by measuring the quasi-elastic cross section at backward angles. This method can be applied for determining the fusion barrier for the fusion of heavy nuclei. Experimental determination of fusion barrier by different methods and comparison of the fusion excitation function and quasi-elastic scattering methods for the determination of fusion barrier are reviewed. At IUAC, New Delhi recently a program has been started for the measurement of fusion barrier through quasi-elastic scattering methods. The experimental facility and the first results of the experiments carried out with this facility are presented. (author)

  18. Study of Coulomb effects using the comparison of positrons and electrons elastic scattering on nuclei

    International Nuclear Information System (INIS)

    Breton, Vincent

    1990-01-01

    We have studied Coulomb effects in the electron-nucleus interaction by measuring electron and positron elastic scattering. The Coulomb field of the nucleus acts differently on theses particles because of their opposite charges. The experiment took place at the Accelerateur Lineaire de Saclay, with 450 MeV electrons and positrons. We measured the emittance of the positron and electron beams. We compared electron and positron beams having the same energy, the same emittance and the same intensity. This way, we measured positron scattering cross sections with 2 % systematic error. By comparing positron and electron elastic scattering cross sections for momentum transfers between 1 and 2 fm -1 , on a Lead 208 target, we showed that the calculations of Coulomb effects in elastic scattering are in perfect agreement with experimental results. The comparison of positron and electron elastic scattering cross sections on Carbon showed that dispersive effects are smaller than 2 % outside the diffraction minima. These two results demonstrate in a definitive way that electron scattering allows to measure charge densities in the center of nuclei with an accuracy of the order of 1 %. (author) [fr

  19. Antiproton-proton elastic scattering at 3.0 and 4.0 GeV/C

    International Nuclear Information System (INIS)

    Unamuno, S.

    1965-01-01

    This paper presents the results-obtained in studying the two-prong interactions observed in the Saclay 81 cm hydrogen bubble chamber exposed to the 3.0 and 4.0 GeV/c antiproton beams from CERN Proton-Synchroton. Total elastic cross-sections corresponding to both energies are given. The results are given. The results are compared with those of p-p scaterring at different energies and with those of p-p scattering. Several optical-models, from the simples one (the black disk model) to a rather elaborated, four-parameters model have been applied. These models can explain some of the experimental results but fail in predicting the angular distribution of large angle scattering. (Author)

  20. Neutral current in the Weinberg-Salam gauge model and elastic scattering of neutrinos and antineutrinos on nucleons

    International Nuclear Information System (INIS)

    Sidhu, D.P.

    1976-01-01

    We study the elastic scattering of neutrinos and antineutrinos on nucleons in the Weinberg-Salam model of the neutral current. In particular, we incorporate into our calculation the experimental cuts relevant to the two recent BNL experiments and also fold in the BNL ν and anti ν spectra. Sensitivity of the calculation to the changes in the axial-vector-meson mass and the Weinberg angle are explored. We conclude that the Weinberg-Salam model prediction for R/sub el/ = / and the differential-cross-section measurements are not inconsistent with the data provided the uncertainty in the mass of the axial-vector meson M/sub A/ is taken into account. Similar predictions are given for anti νN scattering

  1. About statistical process contribution to elastic diffraction scattering

    International Nuclear Information System (INIS)

    Ismanov, E.I.; Dzhuraev, Sh. Kh.; Paluanov, B.K.

    1999-01-01

    The experimental data on angular distribution show two basic properties. The first one is the presence of back and front peaks. The second one is the angular isotropic distribution near 90 degree, and has a big energy dependence. Different models for partial amplitudes a dl of the diffraction statistical scattering, particularly the model with Gaussian and exponential density distribution, were considered. The experimental data on pp-scattering were analyzed using the examined models

  2. Corrections to the large-angle scattering amplitude

    International Nuclear Information System (INIS)

    Goloskokov, S.V.; Kudinov, A.V.; Kuleshov, S.P.

    1979-01-01

    High-energy behaviour of scattering amplitudes is considered within the frames of Logunov-Tavchelidze quasipotential approach. The representation of scattering amplitude of two scalar particles, convenient for the study of its asymptotic properties is given. Obtained are corrections of the main value of scattering amplitude of the first and the second orders in 1/p, where p is the pulse of colliding particles in the system of the inertia centre. An example of the obtained formulas use for a concrete quasipotential is given

  3. Radius anomaly in the diffraction model for heavy-ion elastic scattering

    Science.gov (United States)

    Pandey, L. N.; Mukherjee, S. N.

    1984-04-01

    The elastic scattering of heavy ions, 20Ne on 208Pb, 20Ne on 235U, 84Kr on 208Pb, and 84Kr on 232Th, is examined within the framework of Frahn's diffraction model. An analysis of the experiment using the "quarter point recipe" of the expected Fresnel cross sections yields a larger radius for 208Pb than the radii for 235U and 232Th. It is shown that inclusion of the nuclear deformation in the model removes the above anomaly in the radii, and the assumption of smooth cutoff of the angular momentum simultaneously leads to a better fit to elastic scattering data, compared to those obtained by the earlier workers on the assumption of sharp cutoff. [NUCLEAR REACTIONS Elastic scattering, 20Ne+208Pb (161.2 MeV), 20Ne+235U (175 MeV), 84Kr+208Pb (500 MeV), 84Kr+232Th (500 MeV), diffraction model, nuclear deformation.

  4. Elastic scattering of 90 - 120 MeV 3He particles and unique optical potential

    International Nuclear Information System (INIS)

    Hyakutake, M.; Matoba, M.; Kumabe, I.; Fukada, M.; Komatuzaki, T.

    1978-01-01

    The elastic scattering of 109.2 MeV 3 He particles by 40 Ca, 58 Ni, 90 Zr and 116 Sn has been investigated over a wide angular range. The elastic scattering cross sections have been analyzed in terms of the optical model. The data for each nucleus studied were sufficient to eliminate the discrete ambiguity in the strength of the optical potential; the unique potential which fits the data has real well depth of about 100 MeV and a corresponding volume integral per nucleon pair of about 310 MeV fm 3 . The elastic scattering of 3 He particles by 58 Ni has been further measured at bombarding energies of 89.3 and 118.5 MeV, and the incident-energy dependence of the optical potential of 3 He particles for 58 Ni was obtained. (author)

  5. Experimental study of the fusion dynamics of 32,34S + 197Au with quasi-elastic scattering

    International Nuclear Information System (INIS)

    Schuck, T.J.; Dasgupta, M.; Timmers, H.

    2000-01-01

    Full text: The fusion dynamics of heavy systems, such as 64 Ni + 208 Pb, leading to the synthesis of super-heavy elements is presently not fully understood. Typical beam energies in such reactions are of the order or smaller than the Coulomb barrier height to minimize the excitation energy of the compound system and increase the survival probability of evaporation residues. It is known that at such energies the relative motion of projectile and target couples to internal degrees of freedom of the system, such as collective motion and particle transfer. This can give rise to a distribution of fusion barriers, which generally leads to an enhancement of the fusion cross-section below the Coulomb barrier. The important role of the individual degrees of freedom can be identified by extracting representations of the barrier distribution from fusion excitation functions. Complementary representations can be obtained from measurements of the quasi-elastic or elastic scattering excitation functions at backward angles. The sensitivity of the representations from scattering is limited to the lower energy part of the barrier distribution, which, however, may contain important signatures of positive Q-value neutron transfer channels. Neutron transfer may be a precursor of neutron flow and neck-formation, which are considered in macroscopic models of the fusion of heavy systems. In order to study the influence of neutron transfer in heavy fusion reactions, quasielastic scattering has been measured for 32 , 34 S + 197 Au at energies spanning the Coulomb barrier. The quasi-elastic yield, including inelastic and transfer reactions, was detected at 165 deg with a Si-surface barrier detector. The excitation functions have been normalized to Rutherford scattering, detected at 30 deg using an existing gas ionisation detector. Representations of the barrier distributions have been extracted and are compared with earlier measurements for 32 S + 208 Pb

  6. Complex Correlation Kohn-T Method of Calculating Total and Elastic Cross Sections. Part 1; Electron-Hydrogen Elastic Scattering

    Science.gov (United States)

    Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We report on the first part of a study of electron-hydrogen scattering, using a method which allows for the ab initio calculation of total and elastic cross sections at higher energies. In its general form the method uses complex 'radial' correlation functions, in a (Kohn) T-matrix formalism. The titled method, abbreviated Complex Correlation Kohn T (CCKT) method, is reviewed, in the context of electron-hydrogen scattering, including the derivation of the equation for the (complex) scattering function, and the extraction of the scattering information from the latter. The calculation reported here is restricted to S-waves in the elastic region, where the correlation functions can be taken, without loss of generality, to be real. Phase shifts are calculated using Hylleraas-type correlation functions with up to 95 terms. Results are rigorous lower bounds; they are in general agreement with those of Schwartz, but they are more accurate and outside his error bounds at a couple of energies,

  7. A comparison of pp and pp elastic scattering at 90 degrees

    CERN Document Server

    Eisenhandler, E F; Astbury, A; Gibson, W R; Harrison, M; Hojvat, C; Jones, D P; Kalmus, Peter I P; Kemp, M A R; Lee Chi Kwong, L; Parsons, A S L; Pritchard, T W; Range, W H; Rush, A D; Usher, E C; Williams, D T; Woulds, J N

    1974-01-01

    A study of low momentum antiproton-proton interactions in the momentum range 0.7 to 2.4 GeV/c has yielded differential cross sections for the elastic channel. An observation of one property of the data when compared with pp elastic scattering within the framework of quark- parton models is presented. The pp and pp systems, related by crossing symmetry, provided significant constraints on any particular model. (13 refs).

  8. A dynamic elastic and inelastic scattering theory of high-energy electrons

    International Nuclear Information System (INIS)

    Wang Zhonglin

    1990-01-01

    A review is given on the applications of elastic multislice theory for simulating the images and diffractions of reflection electron microscopy. The limitation of this theory is illustrated according to some experimental observations. A generalized elastic and inelastic multislice theory is then introduced from quantum mechanics; its applications for approaching inelastic plasmon excitation and phonon excitation (or thermal diffuse scattering) are discussed. The energy-filtered inelastic high resolution images can be simulated based on this theory

  9. High-Energy antipp and pp Elastic Scattering and Nucleon Structure

    International Nuclear Information System (INIS)

    Islam, M.M.; Innocente, V.; Fearnley, T.; Sanguinetti, G.

    1987-01-01

    High-energy antipp and pp elastic data from the CERN Collider and the ISR are analyzed in the nucleon valence core model. Diffraction is described by a profile function that incorporates crossing symmetry and saturation of Froissart-Martin bound. The model is found to provide a very satisfactory description of the elastic scattering over the whole range of energy and momentum transfer. Implications of the analysis on QCD models of nucleon structure are pointed out

  10. High-Energy antipp and pp Elastic Scattering and Nucleon Structure

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.M.; Innocente, V.; Fearnley, T.; Sanguinetti, G.

    1987-07-15

    High-energy antipp and pp elastic data from the CERN Collider and the ISR are analyzed in the nucleon valence core model. Diffraction is described by a profile function that incorporates crossing symmetry and saturation of Froissart-Martin bound. The model is found to provide a very satisfactory description of the elastic scattering over the whole range of energy and momentum transfer. Implications of the analysis on QCD models of nucleon structure are pointed out.

  11. Quarkonia propagation in QGP: study of elastic and inelastic scattering processes

    International Nuclear Information System (INIS)

    Berrehrah, H; Aichelin, J; Gossiaux, P B

    2011-01-01

    We propose to study the quarkonia (φ) propagation in the QGP. We are especially interested in the elastic and inelastic scattering process of these quarkonia in the medium. We developed the Bethe-Salpeter formalism to calculate the elastic cross section (σ elas ) for φ - gluon/hadron. Results obtained in this work show that σ elas (φ - gluon/hadron) might have non negligible effects in the study of Q Q-bar propagation.

  12. Demonstration of a novel technique to measure two-photon exchange effects in elastic e±p scattering

    Science.gov (United States)

    Moteabbed, M.; Niroula, M.; Raue, B. A.; Weinstein, L. B.; Adikaram, D.; Arrington, J.; Brooks, W. K.; Lachniet, J.; Rimal, Dipak; Ungaro, M.; Afanasev, A.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bennett, R. P.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lewis, S.; Lu, H. Y.; MacCormick, M.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moriya, K.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S.; Strauch, S.; Tang, W.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2013-08-01

    Background: The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections.Purpose: The TPE contributions depend on the sign of the lepton charge in e±p scattering, but the luminosities of secondary positron beams limited past measurement at large scattering angles, where the TPE effects are believe to be most significant. We present the results of a new experimental technique for making direct e±p comparisons, which has the potential to make precise measurements over a broad range in Q2 and scattering angles.Methods: We use the Jefferson Laboratory electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton.Results: The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q2 and scattering angle. Nonetheless, this measurement yields a data sample for e±p with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. Because we ran with only one polarity for the chicane, we are unable

  13. Stagger angle dependence of inertial and elastic coupling in bladed disks

    Science.gov (United States)

    Crawley, E. F.; Mokadam, D. R.

    1984-01-01

    Conditions which necessitate the inclusion of disk and shaft flexibility in the analysis of blade response in rotating blade-disk-shaft systems are derived in terms of nondimensional parameters. A simple semianalytical Rayleigh-Ritz model is derived in which the disk possesses all six rigid body degrees of freedom, which are elastically constrained by the shaft. Inertial coupling by the rigid body motion of the disk on a flexible shaft and out-of-plane elastic coupling due to disk flexure are included. Frequency ratios and mass ratios, which depend on the stagger angle, are determined for three typical rotors: a first stage high-pressure core compressor, a high bypass ratio fan, and an advanced turboprop. The stagger angle controls the degree of coupling in the blade-disk system. In the blade-disk-shaft system, the stagger angle determines whether blade-disk motion couples principally to the out-of-plane or in-plane motion of the disk on the shaft. The Ritz analysis shows excellent agreement with experimental results.

  14. Small angle X-ray scattering experiments with three-dimensional imaging gas detectors

    International Nuclear Information System (INIS)

    La Monaca, A.; Iannuzzi, M.; Messi, R.

    1985-01-01

    Measurements of small angle X-ray scattering of lupolen - R, dry collagen and dry cornea are presented. The experiments have been performed with synchrotron radiation and a new three-dimensional imaging drif-chamber gas detector

  15. A full-angle Monte-Carlo scattering technique including cumulative and single-event Rutherford scattering in plasmas

    Science.gov (United States)

    Higginson, Drew P.

    2017-11-01

    We describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event. We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10-3 to 0.3-0.7; the upper limit corresponds to Coulomb logarithm of 20-2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.

  16. Proceedings of the International school and symposium on small angle scattering

    International Nuclear Information System (INIS)

    Borbely, S.; Rosta, L.

    1999-04-01

    The meeting was devoted to small angle neutron and X-ray scattering with regard to the wide interest for this method in various fields of basic and applied research. Scientists from European laboratories gave introductory talks to various subject fields related to small angle scattering (SAS) techniques or data analysis methods as well as topical research area e.g. soft condensed matter, biology or materials science. An important number of contributed talks were presented on neutron or X-ray scattering and even on combining both of them, demonstrating the very useful complementarity of these methods. Some other papers give nice examples of SAS experiments completed by results of other techniques such as NMRE of light scattering. The variety of presented contributions is a nice demonstration for the interdisciplinary use of small angle scattering from physics through biology, chemistry, materials science to engineering. 18 items are indexed separately for the INIS database. (K.A.)

  17. Study of the electrons elastic scattering by atoms through pseudopotentials

    International Nuclear Information System (INIS)

    Bettega, M.H.F.

    1990-01-01

    Pseudopotentials allow an extraordinary simplification in the calculation of the electronic structure of atoms, molecules and crystals. Though they have been used extensively for electronic structure calculations, little is known of their applicability to scattering. A study of the pseudopotentials of Bachelet, Hamann and Schuter in the electron scattering by atoms was made, calculating phase-shifts and cross sections for angular momenta 1=0,1 and 2 and energy up to 5 R y. The results for the pseudopotential were compared all-electron calculations. The agreement is very good in a broad energy band. A simplification of the calculation of scattering by complex molecules where an all-electron calculation is impossible is aimed. (author)

  18. The analysis of the elastic scattering of 11Be and 6Li by adiabatic approximation

    International Nuclear Information System (INIS)

    Takagi, S.

    2000-01-01

    The unstable nuclei, particularly, the neutron halo nuclei which exist near by the neutron dripline, are recently one of the interesting topics in the nuclear physics. By the adiabatic approximation, R. C. Jhonson et al. have reproduced the experimental differential cross-section of the elastic scattering of the neutron halo nucleus 11 Be (+ l2 C) [1]. We have applied their method to the elastic scattering of another nucleus 6 Li which is not a halo nucleus but has the cluster structure as 11 Be. But it couldn't reproduce the experimental data, so that the method of Johnson et al. is poor in the case of 6 Li. (author)

  19. Sub-barrier fusion and near-barrier quasi-elastic scattering

    International Nuclear Information System (INIS)

    Kolata, J.J.; Tighe, R.J.

    1990-01-01

    Elastic scattering of 32 S on 58,64 Ni and fusion of 32 S+ 58,64 Ni and 34 S+ 64 Ni have been measured at energies near the Coulomb barrier. Our results differ in several important respects from previous measurements on these systems. Coupled-channels calculations which explicitly allow for inelastic excitation and single-nucleon transfer reproduce the main features of the new data. Near-barrier elastic scattering of 48 Ca on 40 Ca has also been measured. These data provide evidence for the effect of strong coupling to positive Q-value channels other than single-nucleon transfer. 18 refs., 3 figs

  20. Influence of the halo upon angular distributions for elastic scattering and breakup

    International Nuclear Information System (INIS)

    Capel, P.; Hussein, M.S.; Baye, D.

    2010-01-01

    The angular distributions for elastic scattering and breakup of halo nuclei are analysed using a near-side/far-side decomposition within the framework of the dynamical eikonal approximation. This analysis is performed for 11 Be impinging on Pb at 69 MeV/nucleon. These distributions exhibit very similar features. In particular they are both near-side dominated, as expected from Coulomb-dominated reactions. The general shape of these distributions is sensitive mostly to the projectile-target interactions, but is also affected by the extension of the halo. This suggests the elastic scattering not to be affected by a loss of flux towards the breakup channel.

  1. Elastic scattering and total reaction cross section for the 6He + 27Al system

    International Nuclear Information System (INIS)

    Benjamim, E.A.; Lepine-Szily, A.; Mendes Junior, D.R.; Lichtenthaeler, R.; Guimaraes, V.; Gomes, P.R.S.; Chamon, L.C.; Hussein, M.S.; Moro, A.M.; Arazi, A.; Padron, I.; Alcantara Nunez, J.; Assuncao, M.; Barioni, A.; Camargo, O.; Denke, R.Z.; Faria, P.N. de; Pires, K.C.C.

    2007-01-01

    The elastic scattering of the radioactive halo nucleus 6 He on 27 Al target was measured at four energies close to the Coulomb barrier using the RIBRAS (Radioactive Ion Beams in Brazil) facility. The Sao Paulo Potential (SPP) was used and its diffuseness and imaginary strength were adjusted to fit the elastic scattering angular distributions. Reaction cross-sections were extracted from the optical model fits. The reduced reaction cross-sections of 6 He on 27 Al are similar to those for stable, weakly bound projectiles as 6,7 Li, 9 Be and larger than stable, tightly bound projectile as 16 O on 27 Al

  2. Optical diagnostics based on elastic scattering: An update of clinical demonstrations with the Optical Biopsy System

    Energy Technology Data Exchange (ETDEWEB)

    Bigio, I.J.; Boyer, J.; Johnson, T.M.; Lacey, J.; Mourant, J.R. [Los Alamos National Lab., NM (United States); Conn, R. [Lovelace Medical Center, Albuquerque, NM (United States); Bohorfoush, A. [Wisconsin Medical School, Milwaukee, WI (United States)

    1994-10-01

    The Los Alamos National Laboratory has continued the development of the Optical Biopsy System (OBS) for noninvasive, real-time in situ diagnosis of tissue pathologies. Our clinical studies have expanded since the last Biomedical Optics Europe conference (Budapest, September 1993), and we report here on the latest results of clinical tests in gastrointestinal tract. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the tissue. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the fact that many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength-dependence of elastic scattering. The OBS employs a small fiberoptic probe that is amenable to use with any endoscope or catheter, or to direct surface examination. The probe is designed to be used in optical contact with the tissue under examination and has separate illuminating and collecting fibers. Thus, the light that is collected and transmitted to the analyzing spectrometer must first scatter through a small volume of the tissue before entering the collection fiber(s). Consequently, the system is also sensitive to the optical absorption spectrum of the tissue, over an effective operating range of <300 to 950 nm, and such absorption adds valuable complexity to the scattering spectral signature.

  3. Advances on detectors for low-angle scattering of epithermal neutrons

    International Nuclear Information System (INIS)

    Perelli Cippo, E; Gorini, G; Tardocchi, M; Andreani, C; Pietropaolo, A; Senesi, R; Rhodes, N J; Schoonveld, E M

    2008-01-01

    The Very Low Angle Detector (VLAD) installed at the ISIS spallation neutron source is a novel instrument for epithermal neutron scattering with a range of applications in solid state physics. VLAD extends the kinematical space of the VESUVIO spectrometer to low momentum transfers at neutron energies above 1 eV. Measurements at scattering angles as low as 1° have been made with limitations due to the achievable signal/background ratio. (technical design note)

  4. Magnetoconductivity of quantum wires with elastic and inelastic scattering

    DEFF Research Database (Denmark)

    Bruus, Henrik; Flensberg, Karsten; Smith

    1993-01-01

    We use a Boltzmann equation to determine the magnetoconductivity of quantum wires. The presence of a confining potential in addtion to the magnetic field removes the degeneracy of the Landau levels and allows one to associate a group velocity with each single-particle state. The distribution...... function describing the occupation of these single-particle states satisfies a Boltzmann equation, which may be solved exactly in the case of impurity scattering. In the case where the electrons scatter against both phonons and impurities we solve numerically—and in certain limits analytically—the integral...

  5. Hybrid Theory of Electron-Hydrogenic Systems Elastic Scattering

    Science.gov (United States)

    Bhatia, A. K.

    2007-01-01

    Accurate electron-hydrogen and electron-hydrogenic cross sections are required to interpret fusion experiments, laboratory plasma physics and properties of the solar and astrophysical plasmas. We have developed a method in which the short-range and long-range correlations can be included at the same time in the scattering equations. The phase shifts have rigorous lower bounds and the scattering lengths have rigorous upper bounds. The phase shifts in the resonance region can be used to calculate very accurately the resonance parameters.

  6. Excitation function of elastic $pp$ scattering from a unitarily extended Bialas-Bzdak model

    CERN Document Server

    Nemes, F.; Csanád, M.

    2015-01-01

    The Bialas-Bzdak model of elastic proton-proton scattering assumes a purely imaginary forward scattering amplitude, which consequently vanishes at the diffractive minima. We extended the model to arbitrarily large real parts in a way that constraints from unitarity are satisfied. The resulting model is able to describe elastic $pp$ scattering not only at the lower ISR energies but also at $\\sqrt{s}=$7~TeV in a statistically acceptable manner, both in the diffractive cone and in the region of the first diffractive minimum. The total cross-section as well as the differential cross-section of elastic proton-proton scattering is predicted for the future LHC energies of $\\sqrt{s}=$13, 14, 15~TeV and also to 28~TeV. A non-trivial, significantly non-exponential feature of the differential cross-section of elastic proton-proton scattering is analyzed and the excitation function of the non-exponential behavior is predicted. The excitation function of the shadow profiles is discussed and related to saturation at small ...

  7. Azimuthal asymmetry of recoil electrons in neutrino-electron elastic scattering as signature of neutrino nature

    Energy Technology Data Exchange (ETDEWEB)

    Sobkow, W.; Blaut, A. [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland)

    2016-05-15

    In this paper, we analyze the theoretically possible scenario beyond the standard model in order to show how the presence of the exotic scalar, tensor, V + A weak interactions in addition to the standard vector-axial (V - A) ones may help to distinguish the Dirac from Majorana neutrinos in the elastic scattering of an (anti)neutrino beam off the unpolarized electrons in the relativistic limit. We assume that the incoming (anti)neutrino beam comes from the polarized muon decay at rest and is the left-right chiral superposition with assigned direction of the transversal spin polarization with respect to the production plane. Our analysis is carried out for the flavour (current) neutrino eigenstates. It means that the transverse neutrino polarization estimates are the same both for the Dirac and Majorana cases. We display that the azimuthal asymmetry in the angular distribution of recoil electrons is generated by the interference terms between the standard and exotic couplings, which are proportional to the transversal (anti)neutrino spin polarization and independent of the neutrino mass. This asymmetry for the Majorana neutrinos is larger than for the Dirac ones. We also indicate the possibility of utilizing the azimuthal asymmetry measurements to search for the new CP-violating phases. Our study is based on the assumption that the possible detector (running for 1 year) has the shape of a flat circular ring, while the intense neutrino source is located in the centre of the ring and polarized perpendicularly to the ring. In addition, the large low-threshold, real-time detector is able to measure with a high resolution both the polar angle and the azimuthal angle of outgoing electron momentum. Our analysis is model-independent and consistent with the current upper limits on the non-standard couplings. (orig.)

  8. Resonance estimates for single spin asymmetries in elastic electron-nucleon scattering

    International Nuclear Information System (INIS)

    Barbara Pasquini; Marc Vanderhaeghen

    2004-01-01

    We discuss the target and beam normal spin asymmetries in elastic electron-nucleon scattering which depend on the imaginary part of two-photon exchange processes between electron and nucleon. We express this imaginary part as a phase space integral over the doubly virtual Compton scattering tensor on the nucleon. We use unitarity to model the doubly virtual Compton scattering tensor in the resonance region in terms of γ* N → π N electroabsorption amplitudes. Taking those amplitudes from a phenomenological analysis of pion electroproduction observables, we present results for beam and target normal single spin asymmetries for elastic electron-nucleon scattering for beam energies below 1 GeV and in the 1-3 GeV region, where several experiments are performed or are in progress

  9. Unified quantum theory of elastic and inelastic atomic scattering from a physisorbed monolayer solid

    DEFF Research Database (Denmark)

    Bruch, L. W.; Hansen, Flemming Yssing; Dammann, Bernd

    2017-01-01

    A unified quantum theory of the elastic and inelastic scattering of low energy He atoms by a physisorbed monolayer solid in the one-phonon approximation is given. It uses a time-dependent wave packet with phonon creation and annihilation components and has a self-consistent feedback between...... the wave functions for elastic and inelastic scattered atoms. An attenuation of diffraction scattering by inelastic processes thus is inherent in the theory. The atomic motion and monolayer vibrations in the harmonic approximation are treated quantum mechanically and unitarity is preserved. The evaluation...... of specific one-phonon events includes contributions from diffuse inelastic scattering in other phonon modes. Effects of thermally excited phonons are included using a mean field approximation. The theory is applied to an incommensurate Xe/Pt(111) monolayer (incident energy Ei = 4-16 meV), a commensurate Xe...

  10. Small-angle scattering theory revisited: Photocurrent and spatial localization

    DEFF Research Database (Denmark)

    Basse, N.P.; Zoletnik, S.; Michelsen, Poul

    2005-01-01

    In this paper theory on collective scattering measurements of electron density fluctuations in fusion plasmas is revisited. We present the first full derivation of the expression for the photocurrent beginning at the basic scattering concepts. Thereafter we derive detailed expressions for the auto......- and crosspower spectra obtained from measurements. These are discussed and simple simulations made to elucidate the physical meaning of the findings. In this context, the known methods of obtaining spatial localization are discussed and appraised. Where actual numbers are applied, we utilize quantities from two...

  11. Breakup threshold anomaly in the elastic scattering of 6Li on 27Al

    International Nuclear Information System (INIS)

    Figueira, J. M.; Niello, J. O. Fernandez; Abriola, D.; Arazi, A.; Capurro, O. A.; Barbara, E. de; Marti, G. V.; Heimann, D. Martinez; Negri, A. E.; Pacheco, A. J.; Padron, I.; Gomes, P. R. S.; Lubian, J.; Correa, T.; Paes, B.

    2007-01-01

    Elastic scattering of the weakly bound 6 Li on 27 Al was measured at near-barrier energies. The data analysis was performed using a Woods-Saxon shape optical potential and also using the double-folding Sao Paulo potential. The results show the presence of the breakup threshold anomaly (BTA), an anomalous behavior when compared with the scattering of tightly bound nuclei. This behavior is attributed to a repulsive polarization potential produced by the coupling to the continuum breakup states

  12. Hadron-proton elastic scattering at 50, 100, and 200 GeV/c momentum

    International Nuclear Information System (INIS)

    Akerlof, C.W.; Kotthaus, R.; Loveless, R.L.; Meyer, D.I.; Ambats, I.; Meyer, W.T.; Ward, C.E.W.; Eartly, D.P.; Lundy, R.A.; Pruss, S.M.; Yovanovitch, D.D.; Rust, D.R.

    1976-01-01

    Elastic scattering of hadrons on protons has been measured at momenta of 50, 100, and 200 GeV/c. The meson-proton scattering is found to be independent of momentum and meson type for -t > 0.8 (GeV/c) 2 . The momentum dependence of the pp dip at -t = 1.4 (GeV/c) 2 was investigated. Slope parameters are given

  13. Analysis of the angular distributions of elastically scattered neutrons for 235U

    International Nuclear Information System (INIS)

    Sukhovitskij, E.Sh.; Benderskij, A.R.; Konshin, V.A.

    1976-01-01

    Experimental data on the angular distributions of 0.5-15 MeV neutrons elastically scattered by 235 U nuclei are analysed on the basis of Bessel functions and Legendre polynomial expansions. The advantages of the method are that there are no negative cross-sections and relatively few expansion coefficients and that experimental data on scattering at 0 0 and 180 0 are not needed. (author)

  14. Elastic scattering of a Bose-Einstein condensate at a potential landscape

    International Nuclear Information System (INIS)

    Březinová, Iva; Burgdörfer, Joachim; Lode, Axel U J; Streltsov, Alexej I; Cederbaum, Lorenz S; Alon, Ofir E; Collins, Lee A; Schneider, Barry I

    2014-01-01

    We investigate the elastic scattering of Bose-Einstein condensates at shallow periodic and disorder potentials. We show that the collective scattering of the macroscopic quantum object couples to internal degrees of freedom of the Bose-Einstein condensate such that the Bose-Einstein condensate gets depleted. As a precursor for the excitation of the Bose-Einstein condensate we observe wave chaos within a mean-field theory

  15. The dispersion relation for the forward elastic electron-atom scattering amplitude

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1978-01-01

    The analytical properties of forward elastic electron-atom scattering amplitude are discussed. It is noted that the occurrence of exchange between the incoming and atomic electrons leads to the appearance of a number of singularities on the negative real axis in the complex energy plane. The conclusion is drawn that the dispersion relation for the forward electron-atom scattering amplitude should also include an integration over the negative energy from - I to - infinity, where I is the ionization potential. (author)

  16. Elastic neutron diffuse scattering in Zr(Ca, Y)O2-x

    International Nuclear Information System (INIS)

    Barberis, P.; Beuneu, B.; Novion, C.H. de.

    1990-01-01

    Elastic neutron diffuse scattering has been measured in cubic Zr(Ca, Y)O 2-x at room temperature. The very high diffuse scattering (up to 70 Laue) is explained mostly by the oxygen displacements along directions, and by Ca displacements along . The weak short-range order contribution strongly suggests that oxygen vacancies tend to place as second rather than at first neighbours of a Ca stabilizing ion

  17. Elastic scattering of protons on 8Li nucleus in inverse kinematics

    International Nuclear Information System (INIS)

    Zhusupov, M.A.; Ibraeva, E.T.; Sanfirova, A.B.; Imambekov, O.

    2002-01-01

    In the present paper the proton elastic scattering on 8 Li in inverse kinematics is studies. The inverse kinematics means that a beam of radioactive nuclei is scattered on a stable hydrogen target. Proton as a target has an advantage during the interaction since it is stable and mechanism of proton-nucleus scattering is quite simple. 8 Li nucleus is considered in the three-body αtn-model with realistic potential of inter-cluster interactions. The wave function of this nucleus is calculated in the work where it was shown that such model well describes the main spectroscopic characteristics of the nucleus, root-mean square radius, binding energy, location of low laying energy levels, magnetic momentum and also total cross section and 7 Li(n, γ) 8 Li reaction rate at a wide energy region. Within Glauber-Sitenko multiply scattering theory, the differential cross section of elastic p 8 Li-scattering has been calculated. The first and the second multiplicities of scattering on nucleons and clusters of the nucleus were taken into account in Ω multiply scattering operator. There were considered several cases when as the initial parameters both amplitudes of nucleon-nucleon and nucleon-cluster scattering were taken. Sensitivity of the differential cross section both to the different wave functions of the target-nucleus and to the parameters of the elementary amplitudes and sensitivity to the scattering multiplicities at several beam energies has been investigated. Comparison with differential cross sections of elastic p 6 Li- and p 7 Li scattering has been carried out

  18. Small-angle scattering from GP zones in Al–Cu alloy

    Indian Academy of Sciences (India)

    ... and smallangle scattering experiments were carried on the powdered samples as a function of time during artificial aging. Small-angle scattering data were analysed, and evidence has been obtained for the occurrence of spinodal decomposition as the mechanism responsible in the early stages of formation of GP zones.

  19. Small-angle neutron-scattering studies of the magnetic phase diagram of MnSi

    DEFF Research Database (Denmark)

    Harris, P.; Lebech, B.; Hae Seop Shim

    1995-01-01

    The antiferromagnetic order of MnSi has been studied as function of temperature and applied magnetic field using small-angle neutron scattering. The results were analyzed using the three-dimensional resolution function and the scattering cross-section to model the diffraction data. Physical...

  20. Small-Angle Neutron Scattering Study of Structural Changes in Temperature-Sensitive Microgel Colloids

    NARCIS (Netherlands)

    Stieger, M.A.; Richtering, W.; Pedersen, J.S.; Lindner, P.

    2004-01-01

    The structure of temperature-sensitive poly(N-isopropylacrylamide) microgels in dilute suspension was investigated by means of small-angle neutron scattering. A direct modeling expression for the scattering intensity distribution was derived which describes very well the experimental data at all