WorldWideScience

Sample records for angle cutting tools

  1. Development of lathe tool dynamometer and finding cutting forces using negative and positive rake angle cutting tool

    International Nuclear Information System (INIS)

    Zeb, M.A.; Irfan, M.A.

    2005-01-01

    Most output parameters in machining, such as cutting forces, temperatures, strains and the work-hardening of the chip material, are directly related to the chip formation process. The characteristics of machining processes can be well understood if the forces and strains during chip formation are known. In this research a lathe tool dynamometer was used to measure cutting forces involved in machining of Steel 1045 and Aluminum 2219 T62. High Speed Steel (HSS), cutting tools with positive and negative rake angles were used. It was observed that more cutting forces are experienced by the cutting tool with positive rake angle as compared to the forces experienced by the cutting tool with negative rake angle. For steel 1045 the cutting forces using positive rake angle cutting tool were much higher. This suggested that for harder materials using a negative rake angle is more suitable for cutting. (author)

  2. Investigation of the Effect of Cutting Tool Rake Angle on Feed Force

    OpenAIRE

    GÜNAY, Mustafa; ŞEKER, Ulvi

    2005-01-01

    This paper presents a study of investigation into cutting tool rake angle effect on feed force to have secondary important during machining. For this purpose, a dynamometer was designed and manufactured for experimental determination of the cutting forces and mounted to a CNC turning centre. With the help of two beam type load cells suitably located on the dynamometer, it became possible to sense the cutting tool deflections due to the cutting forces. AISI 1040 was used as the workpiece mater...

  3. Finite Element Modelling of the effect of tool rake angle on tool temperature and cutting force during high speed machining of AISI 4340 steel

    Science.gov (United States)

    Sulaiman, S.; Roshan, A.; Ariffin, M. K. A.

    2013-12-01

    In this paper, a Finite Element Method (FEM) based on the ABAQUS explicit software which involves Johnson-Cook material model was used to simulate cutting force and tool temperature during high speed machining (HSM) of AISI 4340 steel. In this simulation work, a tool rake angle ranging from 0° to 20° and a range of cutting speeds between 300 to 550 m/min was investigated. The purpose of this simulation analysis was to find optimum tool rake angle where cutting force is smallest as well as tool temperature is lowest during high speed machining. It was found that cutting forces to have a decreasing trend as rake angle increased to positive direction. The optimum rake angle observed between 10° and 18° due to decrease of cutting force as 20% for all simulated cutting speeds. In addition, increasing cutting tool rake angle over its optimum value had negative influence on tool's performance and led to an increase in cutting temperature. The results give a better understanding and recognition of the cutting tool design for high speed machining processes.

  4. Effect of Rake Angle on Stress, Strain and Temperature on the Edge of Carbide Cutting Tool in Orthogonal Cutting Using FEM Simulation

    Directory of Open Access Journals (Sweden)

    Hendri Yanda

    2010-11-01

    Full Text Available Demand for higher productivity and good quality for machining parts has encourage many researchers to study the effects of machining parameters using FEM simulation using either two or three dimensions version. These are due to advantages such as software package and computational times are required. Experimental work is very costly, time consuming and labor intensive. The present work aims to simulate a three-dimensional orthogonal cutting operations using FEM software (Deform-3D to study the effects of rake angle on the cutting force, effective stress, strain and temperature on the edge of carbide cutting tool. There were seven runs of simulations. All simulations were performed for various rake angles of -15 deg, -10 deg, -5 deg, 0 deg, +5 deg, +10 deg, and +15 deg. The cutting speed, feed rate and depth of cut (DOC were kept constant at 100 m/min, 0.35 mm/rev and 0.3 mm respectively. The work piece used was ductile cast iron FCD500 grade and the cutting tool was DNMA432 series (tungsten, uncoated carbide tool, SCEA = 0; and radius angle 55 deg. The analysis of results show that, the increase in the rake angle from negative to positive angle, causing the decrease in cutting force, effective stress and total Von Misses strain. The minimum of the cutting force, effective stress and total Von Misses strain were obtained at rake angle of +15 deg. Increasing the rake caused higher temperature generated on the edge of carbide cutting tool and resulted in bigger contact area between the clearance face and the workpiece, consequently caused more friction and wear. The biggest deformation was occurred in the primary deformation zone, followed by the secondary deformation zone. The highest stress was also occurred in the primary deformation zone. But the highest temperature on the chip usually occurs in secondary deformation zone, especially in the sliding region, because the heat that was generated in the sticking region increased as the workpiece was

  5. Development of an artificial vision system for the automatic evaluation of the cutting angles of worn tools

    Directory of Open Access Journals (Sweden)

    Gianni Campatelli

    2016-03-01

    Full Text Available This article presents a new method to evaluate the geometry of dull cutting tools in order to verify the necessity of tool re-sharpening and to decrease the tool grinding machine setup time, based on a laser scanning approach. The developed method consists of the definition of a system architecture and the programming of all the algorithms needed to analyze the data and provide, as output, the cutting angles of the worn tool. These angles are usually difficult to be measured and are needed to set up the grinding machine. The main challenges that have been dealt with in this application are related to the treatment of data acquired by the system’s cameras, which must be specific for the milling tools, usually characterized by the presence of undercuts and sharp edges. Starting from the architecture of the system, an industrial product has been designed, with the support of a grinding machine manufacturer. The basic idea has been to develop a low-cost system that could be integrated on a tool sharpening machine and interfaced with its numeric control. The article reports the developed algorithms and an example of application.

  6. Effect of Rake Angle on Stress, Strain and Temperature on the Edge of Carbide Cutting Tool in Orthogonal Cutting Using FEM Simulation

    OpenAIRE

    Hendri Yanda; Jaharah A. Ghani; Che Hassan Che Haron

    2010-01-01

    Demand for higher productivity and good quality for machining parts has encourage many researchers to study the effects of machining parameters using FEM simulation using either two or three dimensions version. These are due to advantages such as software package and computational times are required. Experimental work is very costly, time consuming and labor intensive. The present work aims to simulate a three-dimensional orthogonal cutting operations using FEM software (Deform-3D) to study ...

  7. Sharper angle, higher risk? The effect of cutting angle on knee mechanics in invasion sport athletes.

    Science.gov (United States)

    Schreurs, Mervin J; Benjaminse, Anne; Lemmink, Koen A P M

    2017-10-03

    Cutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles. 13 males and 16 females performed cuts at different angles (45°, 90°, 135° and 180°) at maximum speed. 3D kinematics and kinetics were collected. To determine differences across cutting angles (45°, 90°, 135° and 180°) and sex (female, male), a 4×2 repeated measures ANOVA was conducted followed by post hoc comparisons (Bonferroni) with alpha level set at α≤0.05a priori. At all cutting angles, males showed greater knee flexion angles than females (pknee flexion -42.53°±8.95°, females decreased their knee flexion angle from -40.6°±7.2° when cutting at 45° to -36.81°±9.10° when cutting at 90°, 135° and 180° (pKnee flexion moment decreased for both sexes when cutting towards sharper angles (pknee valgus moments than females. For both sexes, knee valgus moment increased towards the sharper cutting angles and then stabilized compared to the 45° cutting angle (pknee kinematics and kinetics. Sharper cutting angles place the knee more at risk. However, females and males handle this differently, which has implications for injury prevention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sharper angle, higher risk? The effect of cutting angle on knee mechanics in invasion sport athletes

    NARCIS (Netherlands)

    Schreurs, Mervin J.; Benjaminse, Anne; Lemmink, Koen A. P. M.

    2017-01-01

    Introduction: Cutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles. Material and methods: 13 males and 16 females performed cuts at different angles (45°, 90°,

  9. COMPUTER AIDED DESIGN OF CUTTING TOOLS

    Directory of Open Access Journals (Sweden)

    Jakub Matuszak

    2015-11-01

    Full Text Available Correct and stable machining process requires an appropriate cutting tool. In most cases the tool can be selected by using special tool catalogs often available in online version. But in some cases there is a need to design unusual tools, for special treatment, which are not available in tool manufacturers’ catalogs. Proper tool design requires strength and geometric calculations. Moreover, in many cases specific technical documentation is required. By using Computer Aided Design of cutting tools this task can be carried out quickly and with high accuracy. Cutting tool visualization in CAD programs gives a clear overview of the design process. Besides, these programs provide the ability to simulate real machining process. Nowadays, 3D modeling in CAD programs is a fundamental tool for engineers. Therefore, it is important to use them in the education process.

  10. Micromachining with Nanostructured Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    The purpose of the brief is to explain how nanostructured tools can be used to machine materials at the microscale.  The aims of the brief are to explain to readers how to apply nanostructured tools to micromachining applications. This book describes the application of nanostructured tools to machining engineering materials and includes methods for calculating basic features of micromachining. It explains the nature of contact between tools and work pieces to build a solid understanding of how nanostructured tools are made.

  11. Ceramic cutting tools materials, development and performance

    CERN Document Server

    Whitney, E Dow

    1994-01-01

    Interest in ceramics as a high speed cutting tool material is based primarily on favorable material properties. As a class of materials, ceramics possess high melting points, excellent hardness and good wear resistance. Unlike most metals, hardness levels in ceramics generally remain high at elevated temperatures which means that cutting tip integrity is relatively unaffected at high cutting speeds. Ceramics are also chemically inert against most workmetals.

  12. Effects of Cutting Tool Parameters on Vibration

    Directory of Open Access Journals (Sweden)

    Ince Mehmet Alper

    2016-01-01

    Full Text Available This paper presents of the influence on vibration of Co28Cr6Mo medical alloy machined on a CNC lathe based on cutting parameters (rotational speed, feed rate, depth of cut and tool tip radius. The influences of cutting parameters have been presented in graphical form for understanding. To achieve the minimum vibration, the optimum values obtained for rpm, feed rate, depth of cut and tool tip radius were respectively, 318 rpm, 0.25 mm/rev, 0.9 mm and 0.8 mm. Maximum vibration has been revealed the values obtained for rpm, feed rate, depth of cut and tool tip radius were respectively, 636 rpm, 0.1 mm/rev, 0,5 mm and 0.8 mm.

  13. Effect of the Cutting Tool Geometry on the Tool Wear Resistance When Machining Inconel 625

    Directory of Open Access Journals (Sweden)

    Tomáš Zlámal

    2017-12-01

    Full Text Available The paper deals with the design of a suitable cutting geometry of a tool for the machining of the Inconel 625 nickel alloy. This alloy is among the hard-to-machine refractory alloys that cause very rapid wear on cutting tools. Therefore, SNMG and RCMT indexable cutting insert were used to machine the alloy. The selected insert geometry should prevent notch wear and extend tool life. The alloy was machined under predetermined cutting conditions. The angle of the main edge and thus the size and nature of the wear changed with the depth of the material layer being cut. The criterion for determining a more suitable cutting geometry was the tool’s durability and the roughness of the machined surface.

  14. Asymmetric-cut variable-incident-angle monochromator.

    Science.gov (United States)

    Smither, R K; Graber, T J; Fernandez, P B; Mills, D M

    2012-03-01

    A novel asymmetric-cut variable-incident-angle monochromator was constructed and tested in 1997 at the Advanced Photon Source of Argonne National Laboratory. The monochromator was originally designed as a high heat load monochromator capable of handling 5-10 kW beams from a wiggler source. This was accomplished by spreading the x-ray beam out on the surface an asymmetric-cut crystal and by using liquid metal cooling of the first crystal. The monochromator turned out to be a highly versatile monochromator that could perform many different types of experiments. The monochromator consisted of two 18° asymmetrically cut Si crystals that could be rotated about 3 independent axes. The first stage (Φ) rotates the crystal around an axis perpendicular to the diffraction plane. This rotation changes the angle of the incident beam with the surface of the crystal without changing the Bragg angle. The second rotation (Ψ) is perpendicular to the first and is used to control the shape of the beam footprint on the crystal. The third rotation (Θ) controls the Bragg angle. Besides the high heat load application, the use of asymmetrically cut crystals allows one to increase or decrease the acceptance angle for crystal diffraction of a monochromatic x-ray beam and allows one to increase or decrease the wavelength bandwidth of the diffraction of a continuum source like a bending-magnet beam or a normal x-ray-tube source. When the monochromator is used in the doubly expanding mode, it is possible to expand the vertical size of the double-diffracted beam by a factor of 10-15. When this was combined with a bending magnet source, it was possible to generate an 8 keV area beam, 16 mm wide by 26 mm high with a uniform intensity and parallel to 1.2 arc sec that could be applied in imaging experiments.

  15. Researches regarding cutting tool condition monitoring

    Directory of Open Access Journals (Sweden)

    Inţă Marinela

    2017-01-01

    Full Text Available The paper main purpose is monitoring of tool wear in metal cutting using neural networks due to their ability of learning and adapting their self, based on experiments. Monitoring the cutting process is difficult to perform on-line because of the complexity of tool wear process, which is the most important parameter that defines the tool state at a certain moment. Most of the researches appraise the tool wear by indirect factors such as forces, consumed power, vibrations or the surface quality. In this case, it is important to combine many factors for increasing the accuracy of tool wear prediction and establish the admissible size of wear. For this, paper both the theoretical data obtained from FEM analyze and experimental ones are used and compared in order to appreciate the reliability of the results.

  16. High Performance Grinding and Advanced Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    High Performance Grinding and Advanced Cutting Tools discusses the fundamentals and advances in high performance grinding processes, and provides a complete overview of newly-developing areas in the field. Topics covered are grinding tool formulation and structure, grinding wheel design and conditioning and applications using high performance grinding wheels. Also included are heat treatment strategies for grinding tools, using grinding tools for high speed applications, laser-based and diamond dressing techniques, high-efficiency deep grinding, VIPER grinding, and new grinding wheels.

  17. Research Results Of Stress-Strain State Of Cutting Tool When Aviation Materials Turning

    Science.gov (United States)

    Serebrennikova, A. G.; Nikolaeva, E. P.; Savilov, A. V.; Timofeev, S. A.; Pyatykh, A. S.

    2018-01-01

    Titanium alloys and stainless steels are hard-to-machine of all the machining types. Cutting edge state of turning tool after machining titanium and high-strength aluminium alloys and corrosion-resistant high-alloy steel has been studied. Cutting forces and chip contact arears with the rake surface of cutter has been measured. The relationship of cutting forces and residual stresses are shown. Cutting forces and residual stresses vs value of cutting tool rake angle relation were obtained. Measurements of residual stresses were performed by x-ray diffraction.

  18. Comparative assessment of several dismantling cutting tools

    International Nuclear Information System (INIS)

    Pilot, G.; Bernard, J.; Lorin, C.; Ravera, J.P.

    1992-01-01

    The research work relates to semi-industrial scale testing in air of various relevant cutting tools (plasma torch, arc-air, grinder, alternating saw) for mild steel and stainless steel with thicknesses of 10, 30 and 50 mm. Its originality is a comparison between tools in the same normalized conditions of use in order to determine the performances of the different techniques and to measure all the generated secondary solid wastes. Among the tested tools, the plasma torch is the fastest and the alternating saw the slowest. The arc-air produces the widest kerf and thus the most wastes. The electrode of the arc-air and the wheel of the grinder wear the swiftest. The alternating saw generates the least mass of aerosols. (author). 1 ref., 7 figs

  19. Stability analysis of multipoint tool equipped with metal cutting ceramics

    Science.gov (United States)

    Maksarov, V. V.; Khalimonenko, A. D.; Matrenichev, K. G.

    2017-10-01

    The article highlights the issues of determining the stability of the cutting process by a multipoint cutting tool equipped with cutting ceramics. There were some recommendations offered on the choice of parameters of replaceable cutting ceramic plates for milling based of the conducted researches. Ceramic plates for milling are proposed to be selected on the basis of value of their electrical volume resistivity.

  20. Experimental research on the durability cutting tools for cutting-off steel profiles

    Directory of Open Access Journals (Sweden)

    Cristea Alexandru

    2017-01-01

    Full Text Available The production lines used for manufacturing U-shaped profiles are very complex and they must have high productivity. One of the most important stages of the fabrication process is the cutting-off. This paper presents the experimental research and analysis of the durability of the cutting tools used for cutting-off U-shaped metal steel profiles. The results of this work can be used to predict the durability of the cutting tools.

  1. THE MACHINING OF HARDENED CARBON STEELS BY COATED CUTTING TOOLS

    Directory of Open Access Journals (Sweden)

    Yusuf ŞAHİN

    2001-02-01

    Full Text Available The investigation of machining AISI 1050 carbon steels hardened to the 60 HRC hardness was carried out to determine the tool life and wear behaviour of the various cutting tools under different conditions. These experiments were conducted at using coated ceramic cutting tools and carbide cutting tools. The experimental results showed that the coated ceramic tools exhibited better performance than those of the coated carbide tools when machining the hardened steels. Moreover, wear behaviour of cutting tools were investigated in a scanning electron microscope. Electron microscopic examination also indicated that flank wear, thermal cracks on the tool nose combined with the nose deformation on the tools were responsible for the wear behaviour of the ceramic tools. For the carbide tools, however, removal of coated material from the substrate tool and combined with the crater wear were effective for the machining the hardened steel.

  2. Development of thick wall welding and cutting tools for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Nakahira, Masataka; Takahashi, Hiroyuki; Akou, Kentaro; Koizumi, Koichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The Vacuum Vessel, which is a core component of International Thermonuclear Experimental Reactor (ITER), is required to be exchanged remotely in a case of accident such as superconducting coil failure. The in-vessel components such as blanket and divertor are planned to be exchanged or fixed. In these exchange or maintenance operations, the thick wall welding and cutting are inevitable and remote handling tools are necessary. The thick wall welding and cutting tools for blanket are under developing in the ITER R and D program. The design requirement is to weld or cut the stainless steel of 70 mm thickness in the narrow space. Tungsten inert gas (TIG) arc welding, plasma cutting and iodine laser welding/cutting are selected as primary option. Element welding and cutting tests, design of small tools to satisfy space requirement, test fabrication and performance tests were performed. This paper reports the tool design and overview of welding and cutting tests. (author)

  3. The Effects of Cryogenic Treatment on Cutting Tools

    Science.gov (United States)

    Kumar, Satish; Khedkar, Nitin K.; Jagtap, Bhushan; Singh, T. P.

    2017-08-01

    Enhancing the cutting tool life is important and economic factor to reduce the tooling as well as manufacturing cost. The tool life is improved considerably by 92 % after cryogenic treatment. The cryogenic treatment is a one-time permanent, sub-zero heat treatment that entirely changes cross-section of cutting tool. The cryogenic treatment is carried out with deep freezing of cutting tool materials to enhance physical and mechanical properties. The cryogenic treatment improves mechanical such as hardness, toughness and tribological properties such as wear resistance, coefficient of friction, surface finish, dimensional stability and stress relief. The deep cryogenic treatment is the most beneficial treatment applied on cutting tools. The cryogenic treatment is the most advanced heat treatment and popular to improve performance of the cutting tool. The optimization of cryogenic treatment variables is necessary to improve tool life. This study reviews the effects of cryogenic treatment on microstructure, tribological properties of tool steels and machining applications of cutting tool by investigating the surface and performing the surface characterization test like SEM. The economy of cutting tool can be achieved by deep cryogenic treatment.

  4. Tool Wear Mechanisms during Cutting of Soda Lime Glass

    Science.gov (United States)

    Konneh, Mohamed; Nasima Bagum, Mst.; Yeakub Ali, Mohammad; Arif, Tasnim Firdaus Bt. Mohamed

    2018-01-01

    Soda lime glass milling has high performance application. It is a challenging task to achieve fracture free surface on this material due to its brittle nature. High-speed end milling is capable to achieve ductile mode in an enhance flexibility. In this research, end milling of soda lime using uncoated carbide tool was performed where spindle speed varied from 20,000 to 40,000 rpm, cutting depth from 10 to 30 µm and feed rate from 5 to 20 mm/min in dry condition. The effects of cutting parameters (cutting speed, feed per tooth and depth of cut) on tool flank wear as well as wear mechanisms of tool flank investigated. Investigation showed that feed per edge has most influencing effect followed by cutting speed and depth of cut on flank wear and the main wear mechanism is abrasion wear. In some cases, oxidation, thermal diffusion and recast layer on tool flank also observed.

  5. Gear cutting tools fundamentals of design and computation

    CERN Document Server

    Radzevich, Stephen P

    2010-01-01

    Presents the DG/K-based method of surface generation, a novel and practical mathematical method for designing gear cutting tools with optimal parameters. This book proposes a scientific classification for the various kinds of the gear machining meshes, discussing optimal designs of gear cutting tools.

  6. Optimum angle-cut of collimator for dense objects in high-energy proton radiography

    Science.gov (United States)

    Xu, Hai-Bo; Zheng, Na

    2016-02-01

    The use of minus identity lenses with an angle-cut collimator can achieve high contrast images in high-energy proton radiography. This article presents the principles of choosing the angle-cut aperture of the collimator for different energies and objects. Numerical simulation using the Monte Carlo code Geant4 has been implemented to investigate the entire radiography for the French test object. The optimum angle-cut apertures of the collimators are also obtained for different energies. Supported by NSAF (11176001) and Science and Technology Developing Foundation of China Academy of Engineering Physics (2012A0202006)

  7. Surface dimpling on rotating work piece using rotation cutting tool

    Science.gov (United States)

    Bhapkar, Rohit Arun; Larsen, Eric Richard

    2015-03-31

    A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupled to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.

  8. Cutting tool for removing materials from well bore

    International Nuclear Information System (INIS)

    Lynde, G.D.; Harvey, H.H. Jr.

    1991-01-01

    This patent describes a cutting tool adapted to be positioned downhole in a well bore for removing a metal member from the well bore; a tool body adapted to be received within said well bore and to be supported at its upper end for rotation about a longitudinal axis; blades at spaced intervals on the body and extending outwardly therefrom, each of the blades having a base with a leading surface relative to the direction of rotation; closely spaced cutting elements of hard cutting material secured to said leading surface of the base in a plurality of transversely extending rows, each cutting element being of a predetermined size and shape and arranged in a predetermined generally symmetrical pattern on the base relative to the other elements, each of said cutting elements having an exposed from cutting face forming a cutting surface, a rear face secured to the leading surface of said base, a peripheral surface extending between said faces, and a relatively sharp edge formed at the juncture of the front face and peripheral surface; the front cutting face of each cutting element being arranged and constructed for directing an extending end portion of a turning cut form said member to effect a breaking of said turning from the member being cut in a predetermined manner to minimize interesting of the turning

  9. Development of bore tools for pipe welding and cutting

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Ito, Akira; Takiguchi, Yuji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    In the International Thermonuclear Experimental Reactor (ITER), in-vessel components replacement and maintenance requires that connected cooling pipes be cut and removed beforehand and that new components be installed to which cooling pipes must be rewelded. All welding must be inspected for soundness after completion. These tasks require a new task concept for ensuring shielded areas and access from narrow ports. Thus, it became necessary to develop autonomous locomotion welding and cutting tools for branch and main pipes to weld pipes by in-pipe access; a system was proposed that cut and welded branch and main pipes after passing inside pipe curves, and elemental technologies developed. This paper introduces current development in tools for welding and cutting branch pipes and other tools for welding and cutting the main pipe. (author)

  10. Multilayer composition coatings for cutting tools: formation and performance properties

    Science.gov (United States)

    Tabakov, Vladimir P.; Vereschaka, Anatoly S.; Vereschaka, Alexey A.

    2018-03-01

    The paper considers the concept of a multi-layer architecture of the coating in which each layer has a predetermined functionality. Latest generation of coatings with multi-layered architecture for cutting tools secure a dual nature of the coating, in which coatings should not only improve the mechanical and physical characteristics of the cutting tool material, but also reduce the thermo-mechanical effect on the cutting tool determining wear intensity. Here are presented the results of the development of combined methods of forming multi-layer coatings with improved properties. Combined method of forming coatings using a pulsed laser allowed reducing excessively high levels of compressive residual stress and increasing micro hardness of the multilayered coatings. The results in testing coated HSS tools showed that the use of additional pulse of laser processing increases tool life up to 3 times. Using filtered cathodic vacuum arc deposition for the generation of multilayer coatings based on TiAlN compound has increased the wear-resistance of carbide tools by 2 fold compared with tool life of cutting tool with commercial TiN coatings. The aim of this study was to develop an innovative methodological approach to the deposition of multilayer coatings for cutting tools with functional architectural selection, properties and parameters of the coating based on sound knowledge of coating failure in machining process.

  11. Materials Comparison of Cutting Tools Functional Parts for Cutting of Electrical Engineering Sheets

    Directory of Open Access Journals (Sweden)

    Jan ZLÁMALÍK

    2012-06-01

    Full Text Available Paper concerns the comparison of functional materials parts of cutting tools used for the production of stator and rotor sheets in the electrical industry from point of view of their life. Alternatives and the properties of metal used for the production of stator and rotor components in electrical rotating machines are analysed. The main factors affecting the life of cutting tools of functional parts are analysed, one of the most important is the cutting tool functional parts material itself. Comparison of three variants of the cuttong tool funkcional parts material – 19 436 tool steel (chrome steel according to the Czech State Standard 41 9436, 19 830 high speed steel according to the Czech State Standard 41 9830 and a special powder metallurgy product – ledeburite tool steel Vanadis 10. Useful lifes of the functional components of individual cutting tools performances can be calculated from the theoretical lifes by their multiplying the coefficients of the tool design and the cutting edges shape complexity.

  12. Study on optimal surface property of WC-Co cutting tool for aluminium alloy cutting

    International Nuclear Information System (INIS)

    Nizar, Mohd; Arimatsu, Naoya; Kawamitsu, Hiroshi; Takai, Kazuteru; Fukumoto, Masahiro

    2016-01-01

    The light weight property as well as high corrosion resistance of aluminium alloy has increased their demand especially in automobile industries. Aluminium alloy as a matter of fact has a low melting point and high ductility that severely adhere to the cutting tool surface and cause deterioration of chip evacuation. This problem often resulting in tools breakage. In this paper, in order to impart functions of anti-adhesion, we propose a technique by controlling the grinding marks micro texture on the tool surface by using the blast polishing treatment without any coating technologies. The results show that the tool which underwent polishing treatment reduces the cutting force as well as the aluminium adherence during the initial cutting process, and become worst as the process cutting continues. These results indicate that grinding mark texture improves the anti-adhesion by reducing the contact area during cutting and provide storage for the lubricant. In addition, too much polishing on the tool surface may remove these textures and resultantly worsen the tool performance. (paper)

  13. Study on optimal surface property of WC-Co cutting tool for aluminium alloy cutting

    Science.gov (United States)

    Nizar, Mohd; Arimatsu, Naoya; Kawamitsu, Hiroshi; Takai, Kazuteru; Fukumoto, Masahiro

    2016-02-01

    The light weight property as well as high corrosion resistance of aluminium alloy has increased their demand especially in automobile industries. Aluminium alloy as a matter of fact has a low melting point and high ductility that severely adhere to the cutting tool surface and cause deterioration of chip evacuation. This problem often resulting in tools breakage. In this paper, in order to impart functions of anti-adhesion, we propose a technique by controlling the grinding marks micro texture on the tool surface by using the blast polishing treatment without any coating technologies. The results show that the tool which underwent polishing treatment reduces the cutting force as well as the aluminium adherence during the initial cutting process, and become worst as the process cutting continues. These results indicate that grinding mark texture improves the anti-adhesion by reducing the contact area during cutting and provide storage for the lubricant. In addition, too much polishing on the tool surface may remove these textures and resultantly worsen the tool performance.

  14. Finite element analyses of tool stresses in metal cutting processes

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, B.L. [Sandia National Labs., Livermore, CA (United States)

    1997-01-01

    In this report, we analytically predict and examine stresses in tool tips used in high speed orthogonal machining operations. Specifically, one analysis was compared to an existing experimental measurement of stresses in a sapphire tool tip cutting 1020 steel at slow speeds. In addition, two analyses were done of a carbide tool tip in a machining process at higher cutting speeds, in order to compare to experimental results produced as part of this study. The metal being cut was simulated using a Sandia developed damage plasticity material model, which allowed the cutting to occur analytically without prespecifying the line of cutting/failure. The latter analyses incorporated temperature effects on the tool tip. Calculated tool forces and peak stresses matched experimental data to within 20%. Stress contours generally agreed between analysis and experiment. This work could be extended to investigate/predict failures in the tool tip, which would be of great interest to machining shops in understanding how to optimize cost/retooling time.

  15. Effect of milling strategy and tool geometry on machining cost when cutting titanium alloys

    Directory of Open Access Journals (Sweden)

    Conradie, Pieter

    2015-11-01

    Full Text Available The growing demands on aerospace manufacturers to cut more difficult-to-machine materials at increasing material removal rates require that manufacturers enhance their machining capability. This requires a better understanding of the effects of milling strategies and tool geometries on cutting performance. Ti6Al4V is the most widely-used titanium alloy in the aerospace industry, due to its unique combination of properties. These properties also make the alloy very challenging to machine. Complex aerospace geometries necessitate large material removal, and are therefore generally associated with high manufacturing costs. To investigate the effect of milling strategy and tool geometry on cutting performance, the new constant engagement milling strategy was firstly compared with a conventional approach. Thereafter, a component was milled with different cutting tool geometries. Cost savings of more than 40% were realised by using a constant engagement angle milling strategy. A reduction of 38% in machining time was achieved by using tools with a land on the rake side of the cutting edge. These incremental improvements made it possible to enhance the overall performance of the cutting process.

  16. Design principles of metal-cutting machine tools

    CERN Document Server

    Koenigsberger, F

    1964-01-01

    Design Principles of Metal-Cutting Machine Tools discusses the fundamentals aspects of machine tool design. The book covers the design consideration of metal-cutting machine, such as static and dynamic stiffness, operational speeds, gearboxes, manual, and automatic control. The text first details the data calculation and the general requirements of the machine tool. Next, the book discusses the design principles, which include stiffness and rigidity of the separate constructional elements and their combined behavior under load, as well as electrical, mechanical, and hydraulic drives for the op

  17. Design of handling tool of the cutting spent fuel

    International Nuclear Information System (INIS)

    Hasibuan, D.

    1999-01-01

    Base on the needs of handling tool, the design of the cutting spen fuel apparatus has been completed in Multipurpose Reactor Center. By the design, the needs of handling tools can be more completed. Based on the calculation and analysis performed, the design of handling tool of the cutting spent fuel proposed was capable to handle of the cutting spen fuel in the fuel storage. For realizing of the mention design a peace of AIMg3F18 pipe of 8m length, by 1,5 inches diameter, schedule 40, and a peace of AIMg3F18 rod of 10 mm diameter and a peace of plat SS304 of 1500 x 20 x 3 mm are needed. As reference the DIN standard was used

  18. Effect of Forefoot Strike on Lower Extremity Muscle Activity and Knee Joint Angle During Cutting in Female Team Handball Players.

    Science.gov (United States)

    Yoshida, Naruto; Kunugi, Shun; Mashimo, Sonoko; Okuma, Yoshihiro; Masunari, Akihiko; Miyazaki, Shogo; Hisajima, Tatsuya; Miyakawa, Shumpei

    2015-06-01

    The purpose of this study is to examine the effects of different strike forms, during cutting, on knee joint angle and lower limb muscle activity. Surface electromyography was used to measure muscle activity in individuals performing cutting manoeuvres involving either rearfoot strikes (RFS) or forefoot strikes (FFS). Three-dimensional motion analysis was used to calculate changes in knee angles, during cutting, and to determine the relationship between muscle activity and knee joint angle. Force plates were synchronized with electromyography measurements to compare muscle activity immediately before and after foot strike. The valgus angle tends to be smaller during FFS cutting than during RFS cutting. Just prior to ground contact, biceps femoris, semitendinosus, and lateral head of the gastrocnemius muscle activities were significantly greater during FFS cutting than during RFS cutting; tibialis anterior muscle activity was greater during RFS cutting. Immediately after ground contact, biceps femoris and lateral head of the gastrocnemius muscle activities were significantly greater during FFS cutting than during RFS cutting; tibialis anterior muscle activity was significantly lower during FFS cutting. The results of the present study suggest that the hamstrings demonstrate greater activity, immediately after foot strike, during FFS cutting than during RFS cutting. Thus, FFS cutting may involve a lower risk of anterior cruciate ligament injury than does RFS cutting.

  19. IMPACT OF DEPTH OF CUT ON CHIP FORMATION IN AZ91HP MAGNESIUM ALLOY MILLING WITH TOOLS OF VARYING CUTTING EDGE GEOMETRY

    Directory of Open Access Journals (Sweden)

    Olga Gziut

    2015-05-01

    Full Text Available Safety of Mg milling processes can be expressed by means of the form and the number of fractions of chips formed during milling. This paper presents the state of the art of magnesium alloys milling technology in the aspect of chip fragmentation. Furthermore, the impact of the depth of cut ap and the rake angle γ on the number of chip fractions was analysed in the study. These were conducted on AZ91HP magnesium cast alloy and milling was performed with carbide tools of varying rake angle values (γ = 5º and γ = 30º. It was observed that less intense chip fragmentation occurs with decreasing depth of cut ap. The number of chip fractions was lower at the tool rake angle of γ = 30º. The test results were formulated as technological recommendations according to the number of generated chip fractions.

  20. Hardening of cutting tool inserts by ion implantation

    International Nuclear Information System (INIS)

    Zlobin, V.N.; Bannikov, M.G.; Draper, P.H.; Zotov, A.V.

    2001-01-01

    Surface hardening has long been recognized as an important method of increasing the integrity and life of cutting tools. In this work we report preliminary investigations of hardening of conventional hard metal tools by ion implantation Three types of mixed carbide tool inserts were treated by bombardment with 40kV ions of Al, Ti, Zr or W in an ambient of Ar or N/sub 2/, with doses of up to 13*10/sup 17/ ions/cm/sup 2/. The samples were monitored by micro-hardness measurements. Complex behaviors as a function of the implantation dose/time have been observed, and are commented on in terms of the lattice disruption caused by the bombardment. Hardness increments of up to 22 % have been obtained using an ion implanter of industrial size, and cutting tests have shown an improvement, by a factor of three, in the life of these treated tools. (author)

  1. A tool for cutting ultra thin slits in metals

    Science.gov (United States)

    Mcmahon, W.

    1972-01-01

    Tool produces slits of 0.0305 mm widths in materials up to RC 50 hardness, minimizes material waste and improves precision. Device may be used for general metal cutting and for producing simulated cracks in metal samples used in fatigue tests.

  2. Selection and Implementation of a Replacement Cutting Tool Selection Application

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Gordon

    2008-10-06

    A new commercial cutting tool software package replaced an internally created legacy system. This report describes the issues that surfaced during the migration and installation of the commercial package and the solutions employed. The primary issues discussed are restructuring the data between two drastically different database schemas and the creation of individual component graphics.

  3. Setting of angles on machine tools speeded by magnetic protractor

    Science.gov (United States)

    Vale, L. B.

    1964-01-01

    An adjustable protractor facilitates transference of angles to remote machine tools. It has a magnetic base incorporating a beam which can be adjusted until its shadow coincides with an image on the screen of a projector.

  4. Performance of Process Damping in Machining Titanium Alloys at Low Cutting Speed with Different Helix Tools

    International Nuclear Information System (INIS)

    Shaharun, M A; Yusoff, A R; Reza, M S; Jalal, K A

    2012-01-01

    Titanium is a strong, lustrous, corrosion-resistant and transition metal with a silver color to produce strong lightweight alloys for industrial process, automotive, medical instruments and other applications. However, it is very difficult to machine the titanium due to its poor machinability. When machining titanium alloys with the conventional tools, the wear rate of the tool is rapidly accelerate and it is generally difficult to achieve at high cutting speed. In order to get better understanding of machining titanium alloy, the interaction between machining structural system and the cutting process which result in machining instability will be studied. Process damping is a useful phenomenon that can be exploited to improve the limited productivity of low speed machining. In this study, experiments are performed to evaluate the performance of process damping of milling under different tool helix geometries. The results showed that the helix of 42° angle is significantly increase process damping performance in machining titanium alloy.

  5. Surface coating metrology of carbides of cutting tools

    Science.gov (United States)

    Parfenov, V. D.; Basova, G. D.

    2017-10-01

    The coatings were studied by their main sign of the micrometric thickness by means of coating destruction and electron microscopical study of cleavage surfaces. Shock stress ruptures of heated carbides of cutting tools were performed. The discovery of the coating technology and creation of the coating structure for nonuniform and nonequilibrium conditions of the cutting process were dealt with. Multifracture microdestruction of nitride coatings, caused by complex external influences, was analysed to reveal the mechanism of interaction of elementary failures. Positive results were obtained in the form of improving the strength and wear resistance of the product, crack resistance increasing.

  6. Robot based deposition of WC-Co HVOF coatings on HSS cutting tools as a substitution for solid cemented carbide cutting tools

    Science.gov (United States)

    Tillmann, W.; Schaak, C.; Biermann, D.; Aßmuth, R.; Goeke, S.

    2017-03-01

    Cemented carbide (hard metal) cutting tools are the first choice to machine hard materials or to conduct high performance cutting processes. Main advantages of cemented carbide cutting tools are their high wear resistance (hardness) and good high temperature strength. In contrast, cemented carbide cutting tools are characterized by a low toughness and generate higher production costs, especially due to limited resources. Usually, cemented carbide cutting tools are produced by means of powder metallurgical processes. Compared to conventional manufacturing routes, these processes are more expensive and only a limited number of geometries can be realized. Furthermore, post-processing and preparing the cutting edges in order to achieve high performance tools is often required. In the present paper, an alternative method to substitute solid cemented carbide cutting tools is presented. Cutting tools made of conventional high speed steels (HSS) were coated with thick WC-Co (88/12) layers by means of thermal spraying (HVOF). The challenge is to obtain a dense, homogenous, and near-net-shape coating on the flanks and the cutting edge. For this purpose, different coating strategies were realized using an industrial robot. The coating properties were subsequently investigated. After this initial step, the surfaces of the cutting tools were ground and selected cutting edges were prepared by means of wet abrasive jet machining to achieve a smooth and round micro shape. Machining tests were conducted with these coated, ground and prepared cutting tools. The occurring wear phenomena were analyzed and compared to conventional HSS cutting tools. Overall, the results of the experiments proved that the coating withstands mechanical stresses during machining. In the conducted experiments, the coated cutting tools showed less wear than conventional HSS cutting tools. With respect to the initial wear resistance, additional benefits can be obtained by preparing the cutting edge by means

  7. Analyzing the effect of cutting parameters on surface roughness and tool wear when machining nickel based hastelloy - 276

    International Nuclear Information System (INIS)

    Khidhir, Basim A; Mohamed, Bashir

    2011-01-01

    Machining parameters has an important factor on tool wear and surface finish, for that the manufacturers need to obtain optimal operating parameters with a minimum set of experiments as well as minimizing the simulations in order to reduce machining set up costs. The cutting speed is one of the most important cutting parameter to evaluate, it clearly most influences on one hand, tool life, tool stability, and cutting process quality, and on the other hand controls production flow. Due to more demanding manufacturing systems, the requirements for reliable technological information have increased. For a reliable analysis in cutting, the cutting zone (tip insert-workpiece-chip system) as the mechanics of cutting in this area are very complicated, the chip is formed in the shear plane (entrance the shear zone) and is shape in the sliding plane. The temperature contributed in the primary shear, chamfer and sticking, sliding zones are expressed as a function of unknown shear angle on the rake face and temperature modified flow stress in each zone. The experiments were carried out on a CNC lathe and surface finish and tool tip wear are measured in process. Machining experiments are conducted. Reasonable agreement is observed under turning with high depth of cut. Results of this research help to guide the design of new cutting tool materials and the studies on evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy - 276 machining.

  8. Analyzing the effect of cutting parameters on surface roughness and tool wear when machining nickel based hastelloy - 276

    Energy Technology Data Exchange (ETDEWEB)

    Khidhir, Basim A; Mohamed, Bashir, E-mail: Basim@student.uniten.edu.my [Department of Mechanical Engineering, College of Engineering, University Tenaga Nasional, 43009 Kajang, Selangor (Malaysia)

    2011-02-15

    Machining parameters has an important factor on tool wear and surface finish, for that the manufacturers need to obtain optimal operating parameters with a minimum set of experiments as well as minimizing the simulations in order to reduce machining set up costs. The cutting speed is one of the most important cutting parameter to evaluate, it clearly most influences on one hand, tool life, tool stability, and cutting process quality, and on the other hand controls production flow. Due to more demanding manufacturing systems, the requirements for reliable technological information have increased. For a reliable analysis in cutting, the cutting zone (tip insert-workpiece-chip system) as the mechanics of cutting in this area are very complicated, the chip is formed in the shear plane (entrance the shear zone) and is shape in the sliding plane. The temperature contributed in the primary shear, chamfer and sticking, sliding zones are expressed as a function of unknown shear angle on the rake face and temperature modified flow stress in each zone. The experiments were carried out on a CNC lathe and surface finish and tool tip wear are measured in process. Machining experiments are conducted. Reasonable agreement is observed under turning with high depth of cut. Results of this research help to guide the design of new cutting tool materials and the studies on evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy - 276 machining.

  9. Investigation of the effect of tool edge geometry upon cutting variables, tool wear and burr formation using finite element simulation - A progress report

    International Nuclear Information System (INIS)

    Sartkulvanich, Partchapol; Al-Zkeri, Ibrahim; Yen Yungchang; Altan, Taylan

    2004-01-01

    This paper summarizes some of the progress made on FEM simulations of metal cutting processes conducted at the Engineering Research Center (ERC/NSM). Presented research focuses on the performance of various cutting edge geometries (hone and chamfer edges) for different tool materials and specifically on: 1) the effect of round and chamfer edge geometries on the cutting variables in machining carbon steels and 2) the effect of the edge hone size upon the flank wear and burr formation behavior in face milling of A356-T6 aluminum alloy. In the second task, an innovative design of edge preparation with varying hone size around the tool nose is also explored using FEM.In order to model three-dimensional conventional turning and face milling with two-dimensional orthogonal cutting simulations, 2D simulation cross-sections consisting of the cutting speed direction and chip flow direction are selected at different locations along the tool nose radius. Then the geometries of the hone and chamfer edges and their associated tool angles as well as uncut chip thickness are determined on these planes and employed in cutting simulations. The chip flow direction on the tool rake face are obtained by examining the wear grooves on the experimental inserts or estimated by using Oxley's approximation theory of oblique cutting. Simulation results are compared with the available experimental results (e.g. cutting forces) both qualitatively and quantitatively

  10. Investigation of tool engagement and cutting performance in machining a pocket

    Science.gov (United States)

    Adesta, E. Y. T.; Hamidon, R.; Riza, M.; Alrashidi, R. F. F. A.; Alazemi, A. F. F. S.

    2018-01-01

    This study investigates the variation of tool engagement for different profile of cutting. In addition, behavior of cutting force and cutting temperature for different tool engagements for machining a pocket also been explored. Initially, simple tool engagement models were developed for peripheral and slot cutting for different types of corner. Based on these models, the tool engagements for contour and zig zag tool path strategies for a rectangular shape pocket with dimension 80 mm x 60 mm were analyzed. Experiments were conducted to investigate the effect of tool engagements on cutting force and cutting temperature for the machining of a pocket of AISI H13 material. The cutting parameters used were 150m/min cutting speed, 0.05mm/tooth feed, and 0.1mm depth of cut. Based on the results obtained, the changes of cutting force and cutting temperature performance there exist a relationship between cutting force, cutting temperature and tool engagement. A higher cutting force and cutting temperature is obtained when the cutting tool goes through up milling and when the cutting tool makes a full engagement with the workpiece.

  11. Implementation Analysis of Cutting Tool Carbide with Cast Iron Material S45 C on Universal Lathe

    Science.gov (United States)

    Junaidi; hestukoro, Soni; yanie, Ahmad; Jumadi; Eddy

    2017-12-01

    Cutting tool is the tools lathe. Cutting process tool CARBIDE with Cast Iron Material Universal Lathe which is commonly found at Analysiscutting Process by some aspects numely Cutting force, Cutting Speed, Cutting Power, Cutting Indication Power, Temperature Zone 1 and Temperatur Zone 2. Purpose of this Study was to determine how big the cutting Speed, Cutting Power, electromotor Power,Temperatur Zone 1 and Temperatur Zone 2 that drives the chisel cutting CARBIDE in the Process of tur ning Cast Iron Material. Cutting force obtained from image analysis relationship between the recommended Component Cuting Force with plane of the cut and Cutting Speed obtained from image analysis of relationships between the recommended Cutting Speed Feed rate.

  12. Automatic NC-Data generation method for 5-axis cutting of turbine-blades by finding Safe heel-angles and adaptive path-intervals

    International Nuclear Information System (INIS)

    Piao, Cheng Dao; Lee, Cheol Soo; Cho, Kyu Zong; Park, Gwang Ryeol

    2004-01-01

    In this paper, an efficient method for generating 5-axis cutting data for a turbine blade is presented. The interference elimination of 5-axis cutting currently is very complicated, and it takes up a lot of time. The proposed method can generate an interference-free tool path, within an allowance range. Generating the cutting data just point to the cutting process and using it to obtain NC data by calculating the feed rate, allows us to maintain the proper feed rate of the 5-axis machine. This paper includes the algorithms for: (1) CL data generation by detecting an interference-free heel angle, (2) finding the optimal tool path interval considering the cusp-height, (3) finding the adaptive feed rate values for each cutter path, and (4) the inverse kinematics depending on the structure of the 5-axis machine, for generating the NC data

  13. Study on the low energy & pollution manufacturing of micro cutting tools by powder injection molding process

    Science.gov (United States)

    Heo, Young-Moo; Kim, Gun-Hee; Chang, Sung-Ho; Lee, Geun-An

    2012-08-01

    In this paper, micro cutting tools were manufactured by the powder injection molding process. Most of cutting tools are manufactured by bulk-molding and grinding methods but, the fabrication of micro cutting tools is very difficult because of their minute flute shapes and cutting edges. Therefore, a powder injection molding (PIM) process was used to fabricate the green part of a micro cutting tool with zirconia mixer feedstock and the de-binding and sintering processes were performed. Besides, the grinding processes can be dropped by PIM. Finally, the micro cutting experiment using the newly manufactured tool by PIM was executed for verifying the utility of manufactured tool.

  14. Study on the tool wear of 3-D elliptical vibration cutting

    OpenAIRE

    J. Lin; X. Jing; M. Lu; Y. Gu; J. Han

    2017-01-01

    As always, the rapid wear of tools was one of the key factors limiting the precise turning of difficult-to-machine materials with diamond tool. 3-D elliptical vibration cutting has inherited many advantages of elliptical vibration cutting, such as the intermittent cutting property and friction reverse property. However, studies on the tool wear of three-dimensional elliptical vibration cutting has not been reported yet. The formation principle of 3-D cutting elliptical traje...

  15. MECHANISMS OF CUTTING BLADE WEAR AND THEIR INFLUENCE ON CUTTING ABILITY OF THE TOOL DURING MACHINING OF SPECIAL ALLOYS

    Directory of Open Access Journals (Sweden)

    Tomáš Zlámal

    2016-09-01

    Full Text Available With increased requirements for quality and shelf life of machined parts there is also a higher share of the use of material with specific properties that are identified by the term “superalloys”. These materials differ from common steels by mechanical and physical properties that cause their worse machinability. During machining of “superalloys” worse machinability has negative influence primarily on the amount of cutting edge wear, which shortens durability of the cutting tool. The goal of experimental activity shown in this contribution is to determine individual mechanisms of the cutting edge wear and their effects on the cutting ability during high speed machining of nickel superalloy. A specific exchangeable cutting insert made from cubic boric nitride was used for machining of the 625 material according to ASM 5666F. The criteria to evaluate cutting ability and durability of the cutting tool became selected parameters of surface integrity and quality of the machined surface.

  16. EXPERIMENTAL INVESTIGATION OF THE TOOL-CHIP INTERFACE TMPERATURES ON UNCOATED CEMENTIDE CARBIDE CUTTING TOOLS

    Directory of Open Access Journals (Sweden)

    Kasım HABALI

    2005-01-01

    Full Text Available It is known that the temperature as the result of the heat developed during machining at the tool-chip interface has an influence on the tool life and workpiece surface guality and the methods for measuring this temperature are constantly under investigation. In this study, the measurement of tool-chip interface temperature using toolworkpiece termocouple method was investigated. The test were carried out on a AISI 1040 steel and the toolchip interface temperature variation was examined depending on the cutting speed and feed rate. The obtained groups show that cutting speed has more influence on the temperature than feedrate has.

  17. The Effect of Tool Dimension, Tool Overhang and Cutting Parameters Towards Tool Vibration and Surface Roughness on Turning Process

    Directory of Open Access Journals (Sweden)

    Zuingli Santo Bandaso

    2017-03-01

    Full Text Available Turning process is the removal of metal from the outer diameter of a rotating cylindrical workpiece. Turning is used to reduce the diameter of the workpiece, usually to a specified dimension, and to produce a smooth finish on the metal. This research investigates the effect of feed rate, spindle speed, tool overhang and tool dimensions toward vibration amplitude and surface roughness on turning process. This study uses both statistical and graphical analysis of the data collected. The experimentation was carried out on conventional lathe machine with straight turning operation. Material used as workpiece was St.60 carbon steel which was turned with HSS tool bit with the dimension of 3/8 Inches and ½ Inches. Cutting parameters varied by spindle speed, feed rate, and tool overhang, while the depth of cut is maintained at a depth of 0.5 mm. The vibration data of cutting tool obtained from a transducer (vibrometer mounted at a distance of 10 mm from the tip of the cutting tool during the cutting process takes place, whereas the surface roughness data obtained from measurements of surface roughness apparatus after turning process. The results showed that, The effect of feed rate, spindle speed, tool overhang, and tool dimension simultaneously towards vibration amplitude and surface roughness has a grater effects on the use of 3/8 inches cutting tool than ½ inches cutting tool. With the use of the same tool dimensions obtained that, The most influential parameters on the vibration amplitude is tool overhang while the most influential parameter on surface roughness value is feed rate.

  18. Using internally cooled cutting tools in the machining of difficult-to-cut materials based on Waspaloy

    Directory of Open Access Journals (Sweden)

    Yahya Isik

    2016-05-01

    Full Text Available Nickel-based superalloys such as Waspaloy are used for engine components and in the nuclear industry, where considerable strength and corrosion resistance at high operating temperatures are called for. These characteristics of such alloys cause increases in cutting temperature and resultant tool damage, even at low cutting speeds and low feed rates. Thus, they are classified as difficult-to-cut materials. This article presents a cooling method to be used in metal cutting based on a tool holder with a closed internal cooling system with cooling fluid circulating inside. Hence, a green cooling method that does not harm the environment and is efficient in removing heat from the cutting zone was developed. A series of cutting experiments were conducted to investigate the practicality and effectiveness of the internally cooled tool model. The developed system achieved up to 13% better surface quality than with dry machining, and tool life was extended by 12%. The results clearly showed that with the reduced cutting temperature of the internal cooling, it was possible to control the temperature and thus prevent reaching the critical cutting temperature during the turning process, which is vitally important in extending tool life during the processing of Waspaloy.

  19. Effect of cutting fluids and cutting conditions on surface integrity and tool wear in turning of Inconel 713C

    Science.gov (United States)

    Hikiji, R.

    2018-01-01

    The trend toward downsizing of engines helps to increase the number of turbochargers around Europe. As for the turbocharger, the temperature of the exhaust gas is so high that the parts made of nickel base super alloy Inconel 713C are used as high temperature strength metals. External turning of Inconel 713C which is used as the actual automotive parts was carried out. The effect of the cutting fluids and cutting conditions on the surface integrity and tool wear was investigated, considering global environment and cost performance. As a result, in the range of the cutting conditions used this time, when the depth of cut was small, the good surface integrity and tool life were obtained. However, in the case of the large corner radius, it was found that the more the cutting length increased, the more the tool wear increased. When the cutting length is so large, the surface integrity and tool life got worse. As for the cutting fluids, it was found that the synthetic type showed better performance in the surface integrity and tool life than the conventional emulsion. However, it was clear that the large corner radius made the surface roughness and tool life good, but it affected the size error etc. in machining the workpiece held in a cantilever style.

  20. Preparation and Cutting Performance of Boron-Doped Diamond Coating on Cemented Carbide Cutting Tools with High Cobalt Content

    OpenAIRE

    Zhaozhi Liu; Feng Xu; Junhua Xu; Xiaolong Tang; Ying Liu; Dunwen Zuo

    2015-01-01

    Chemical vapor deposition (CVD) diamond coated cutting tool has excellent cutting performance, it is the most ideal tool for the processing of nonferrous metals and alloys, composites, nonmetallic materials and other difficult-to-machine materials efficiently and accurately. Depositing CVD diamond coating on the cemented carbide with high cobalt content can improve its toughness and strength, therefore, it is very important to research on the preparation technology and cu...

  1. Defining the effect of sweep tillage tool cutting edge geometry on tillage forces using 3D discrete element modelling

    Directory of Open Access Journals (Sweden)

    Mustafa Ucgul

    2015-09-01

    Full Text Available The energy required for tillage processes accounts for a significant proportion of total energy used in crop production. In many tillage processes decreasing the draft and upward vertical forces is often desired for reduced fuel use and improved penetration, respectively. Recent studies have proved that the discrete element modelling (DEM can effectively be used to model the soil–tool interaction. In his study, Fielke (1994 [1] examined the effect of the various tool cutting edge geometries, namely; cutting edge height, length of underside rub, angle of underside clearance, on draft and vertical forces. In this paper the experimental parameters of Fielke (1994 [1] were simulated using 3D discrete element modelling techniques. In the simulations a hysteretic spring contact model integrated with a linear cohesion model that considers the plastic deformation behaviour of the soil hence provides better vertical force prediction was employed. DEM parameters were determined by comparing the experimental and simulation results of angle of repose and penetration tests. The results of the study showed that the simulation results of the soil-various tool cutting edge geometries agreed well with the experimental results of Fielke (1994 [1]. The modelling was then used to simulate a further range of cutting edge geometries to better define the effect of sweep tool cutting edge geometry parameters on tillage forces. The extra simulations were able to show that by using a sharper cutting edge with zero vertical cutting edge height the draft and upward vertical force were further reduced indicating there is benefit from having a really sharp cutting edge. The extra simulations also confirmed that the interpolated trends for angle of underside clearance as suggested by Fielke (1994 [1] where correct with a linear reduction in draft and upward vertical force for angle of underside clearance between the ranges of −25 and −5°, and between −5 and 0°. The

  2. Prediction and Control of Cutting Tool Vibration in Cnc Lathe with Anova and Ann

    Directory of Open Access Journals (Sweden)

    S. S. Abuthakeer

    2011-06-01

    Full Text Available Machining is a complex process in which many variables can deleterious the desired results. Among them, cutting tool vibration is the most critical phenomenon which influences dimensional precision of the components machined, functional behavior of the machine tools and life of the cutting tool. In a machining operation, the cutting tool vibrations are mainly influenced by cutting parameters like cutting speed, depth of cut and tool feed rate. In this work, the cutting tool vibrations are controlled using a damping pad made of Neoprene. Experiments were conducted in a CNC lathe where the tool holder is supported with and without damping pad. The cutting tool vibration signals were collected through a data acquisition system supported by LabVIEW software. To increase the buoyancy and reliability of the experiments, a full factorial experimental design was used. Experimental data collected were tested with analysis of variance (ANOVA to understand the influences of the cutting parameters. Empirical models have been developed using analysis of variance (ANOVA. Experimental studies and data analysis have been performed to validate the proposed damping system. Multilayer perceptron neural network model has been constructed with feed forward back-propagation algorithm using the acquired data. On the completion of the experimental test ANN is used to validate the results obtained and also to predict the behavior of the system under any cutting condition within the operating range. The onsite tests show that the proposed system reduces the vibration of cutting tool to a greater extend.

  3. STRESS ANALYSIS IN CUTTING TOOLS COATED TiN AND EFFECT OF THE FRICTION COEFFICIENT IN TOOL-CHIP INTERFACE

    Directory of Open Access Journals (Sweden)

    Kubilay ASLANTAŞ

    2003-02-01

    Full Text Available The coated tools are regularly used in today's metal cutting industry. Because, it is well known that thin and hard coatings can reduce tool wear, improve tool life and productivity. Such coatings have significantly contributed to the improvements cutting economies and cutting tool performance through lower tool wear and reduced cutting forces. TiN coatings have especially high strength and low friction coefficients. During the cutting process, low friction coefficient reduce damage in cutting tool. In addition, maximum stress values between coating and substrate also decrease as the friction coefficient decreases. In the present study, stress analysis is carried out for HSS (High Speed Steel cutting tool coated with TiN. The effect of the friction coefficient between tool and chip on the stresses developed at the cutting tool surface and interface of coating and HSS is investigated. Damage zones during cutting process was also attempted to determine. Finite elements method is used for the solution of the problem and FRANC2D finite element program is selected for numerical solutions.

  4. Research of a smart cutting tool based on MEMS strain gauge

    Science.gov (United States)

    Zhao, Y.; Zhao, Y. L.; Shao, YW; Hu, T. J.; Zhang, Q.; Ge, X. H.

    2018-03-01

    Cutting force is an important factor that affects machining accuracy, cutting vibration and tool wear. Machining condition monitoring by cutting force measurement is a key technology for intelligent manufacture. Current cutting force sensors exist problems of large volume, complex structure and poor compatibility in practical application, for these problems, a smart cutting tool is proposed in this paper for cutting force measurement. Commercial MEMS (Micro-Electro-Mechanical System) strain gauges with high sensitivity and small size are adopted as transducing element of the smart tool, and a structure optimized cutting tool is fabricated for MEMS strain gauge bonding. Static calibration results show that the developed smart cutting tool is able to measure cutting forces in both X and Y directions, and the cross-interference error is within 3%. Its general accuracy is 3.35% and 3.27% in X and Y directions, and sensitivity is 0.1 mV/N, which is very suitable for measuring small cutting forces in high speed and precision machining. The smart cutting tool is portable and reliable for practical application in CNC machine tool.

  5. Short-cut diagnostic tool in cystinosis: Bone marrow aspiration.

    Science.gov (United States)

    Sürmeli Döven, Serra; Delibaş, Ali; Kayacan, Uğur Raşit; Ünal, Selma

    2017-11-01

    Cystinosis is a rare metabolic genetic disorder caused by a mutation in cystinosin lysosomal cystine transporter (CTNS). The diagnosis of nephropathic cystinosis (NC) is made by observing corneal cystine crystals and/or measuring the cystine content of leukocytes. CTNS mutation analysis confirms the diagnosis of cystinosis, but leukocyte cystine measurement and CTNS analysis have not been widely available, and cystine crystals in the cornea may not be apparent in the first months of life. Cystine crystal deposition can be seen in the bone marrow earlier than corneal deposition, in patients with NC. Ten patients with cystinosis diagnosis were enrolled in the study. Medical records were reviewed retrospectively to collect demographic and clinical data such as age at diagnosis, disease presentation, parental consanguinity, family history, corneal cystine deposition, leukocyte cystine level, bone marrow cystine deposition, presence of renal failure, follow-up time and prognosis. Cystine crystals were seen in all of the patients' fresh bone marrow aspiration samples. Eight patients had corneal cystine deposition. Leukocyte cystine measurement could have been performed in four patients who had come from another center. Complications such as pulmonary hypertension and idiopathic intracranial hypertension (IIH) were observed in two patients. Bone marrow aspiration might be an easy and short-cut diagnostic tool for NC especially when it is not possible to measure fibroblast cystine content. Additionally some rare complications such as pulmonary hypertension and IIH can be encountered during the course of NC. © 2017 Japan Pediatric Society.

  6. High power laser downhole cutting tools and systems

    Science.gov (United States)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-01-20

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  7. Influence of the cutting edge angle of a titanium instrument on chip formation in the machining of trabecular and cortical bone.

    Science.gov (United States)

    von See, Constantin; Stoetzer, Marcus; Ruecker, Martin; Wagner, Max; Schumann, Paul; Gellrich, Nils-Claudius

    2014-01-01

    The placement of self-tapping implants is associated with microfractures and the formation of bone chips along the cutting flutes. This study was conducted to investigate the effect of different cutting edge angles on chip formation during the machining of trabecular and cortical bone using instruments with a rough titanium surface. Mandibular cortical and trabecular bone specimens were obtained from freshly slaughtered domestic pigs. A predefined thrust force was applied to the specimens. Four specially designed cutting instruments that simulated dental implants and had a rough titanium surface were allowed to complete one full revolution at cutting edge angles of 55, 65, 75, and 85 degrees, respectively. Torque and thrust were measured during the cutting process. Bone chips were measured and weighed under a microscope. Different cutting edge angles did not lead to significant differences in torque. The lowest torque values were measured when the cutting edges were positioned at 65 degrees in trabecular bone and at 85 degrees in cortical bone. Bone chips were significantly larger and heavier at angles of 55 and 65 degrees than at angles of 75 and 85 degrees in trabecular bone. Instruments with a rough titanium surface show considerable angle-dependent differences in chip formation. In addition to bone density, the angle of the cutting edges should be taken into consideration during the placement of dental implants. Good results were obtained when the cutting edges were positioned at an angle of 65 degrees. This angle can have positive effects on osseointegration.

  8. Study on the tool wear of 3-D elliptical vibration cutting

    Directory of Open Access Journals (Sweden)

    J. Lin

    2017-07-01

    Full Text Available As always, the rapid wear of tools was one of the key factors limiting the precise turning of difficult-to-machine materials with diamond tool. 3-D elliptical vibration cutting has inherited many advantages of elliptical vibration cutting, such as the intermittent cutting property and friction reverse property. However, studies on the tool wear of three-dimensional elliptical vibration cutting has not been reported yet. The formation principle of 3-D cutting elliptical trajectory was analysed and a prediction model of tool wear was established in the present work. Besides, a self-developed three-dimensional elliptical vibration device was employed to conduct turning experiment. Compared with the proposed model, the experimental results showed a great agreement with the proposed prediction model. This work may provide a reference for the further optimization of the 3-D elliptical vibration cutting parameters.

  9. Investigation of Coated Cutting Tool Performance during Machining of Super Duplex Stainless Steels through 3D Wear Evaluations

    Directory of Open Access Journals (Sweden)

    Yassmin Seid Ahmed

    2017-08-01

    Full Text Available In this study, the wear mechanisms and tribological performance of uncoated and coated carbide tools were investigated during the turning of super duplex stainless steel (SDSS—Grade UNS S32750, known commercially as SAF 2507. The tool wear was evaluated throughout the cutting tests and the wear mechanisms were investigated using an Alicona Infinite Focus microscope and a scanning electron microscope (SEM equipped with energy dispersive spectroscopy (EDS. Tribo-film formation on the worn rake surface of the tool was analyzed using X-ray Photoelectron Spectroscopy (XPS. In addition, tribological performance was evaluated by studying chip characteristics such as thickness, compression ratio, shear angle, and undersurface morphology. Finally, surface integrity of the machined surface was investigated using the Alicona microscope to measure surface roughness and SEM to reveal the surface distortions created during the cutting process, combined with cutting force analyses. The results obtained showed that the predominant wear mechanisms are adhesion and chipping for all tools investigated and that the AlTiN coating system exhibited better performance in all aspects when compared with CVD TiCN + Al2O3 coated cutting insert and uncoated carbide insert; in particular, built-up edge formation was significantly reduced.

  10. Effect of cutting speed and feed in turning hardened stainless steel using coated carbide cutting tool under minimum quantity lubrication using castor oil

    Directory of Open Access Journals (Sweden)

    Mohamed Handawi Saad Elmunafi

    2015-08-01

    Full Text Available Minimum quantity lubrication is a technique to have the advantages that cutting fluids bring yet keeping their use at minimum. For the cutting fluids, inedible vegetable oils are potential for minimum quantity lubrication machining. Castor oil was selected in this study as the cutting fluid for turning of hardened stainless steel (hardness of 47–48 HRC. The hard turning was with minimum quantity lubrication (50 mL/h flow rate and 5 bar air pressure at various cutting speeds (100, 135, and 170 m/min and feeds (0.16, 0.20, and 0.24 mm/rev. The machining responses were tool life, surface roughness, and cutting forces. Design of experiments was applied to quantify the effects of cutting parameters to the machining responses. Empirical models for tool life, surface roughness, and cutting forces were developed within the range of cutting parameters selected. All machining responses are significantly influenced by the cutting speed and feed. Tool life is inversely proportional to cutting speed and feed. Surface roughness is inversely proportional to cutting speed yet is proportional to feed. Cutting forces are more influenced by feed than by cutting speed. A combination of low cutting speed and feed was the optimum cutting parameters to achieve long tool life, low surface roughness, and low cutting forces.

  11. Decrease of FIB-induced lateral damage for diamond tool used in nano cutting

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Xu, Zongwei, E-mail: zongweixu@163.com [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Fang, Fengzhou, E-mail: fzfang@gmail.com [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Liu, Bing; Xiao, Yinjing; Chen, Jinping [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Wang, Xibin [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Liu, Hongzhong [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China)

    2014-07-01

    Highlights: • We mainly aim to characterize and decrease the FIB-induced damage on diamond tool. • Raman and XPS methods were used to characterize the nanoscale FIB-induced damage. • Lower energy FIB can effectively lessen the FIB-induced damage on diamond tool. • The diamond tools’ performance was greatly improved after FIB process optimization. • 6 nm chip thickness of copper was achieved by diamond tool with 22 nm edge radius. - Abstract: Diamond cutting tools with nanometric edge radius used in ultra-precision machining can be fabricated by focused ion beam (FIB) technology. However, due to the nanoscale effects, the diamond tools performance and the cutting edge lifetime in nano cutting would be degraded because of the FIB-induced nanoscale lateral damage. In this study, the methods of how to effectively characterize and decrease the FIB-induced lateral damage for diamond tool are intensively studied. Based on the performance optimization diamond machining tools, the controllable chip thickness of less than 10 nm was achieved on a single-crystal copper in nano cutting. In addition, the ratio of minimum thickness of chip (MTC) to tool edge radius of around 0.3–0.4 in nano cutting is achieved. Methods for decreasing the FIB-induced damage on diamond tools and adding coolant during the nano cutting are very beneficial in improving the research of nano cutting and MTC. The nano cutting experiments based on the sharp and high performance of diamond tools would validate the nano cutting mechanisms that many molecular dynamic simulation studies have put forward and provide new findings for nano cutting.

  12. The influence of machining condition and cutting tool wear on surface roughness of AISI 4340 steel

    Science.gov (United States)

    Natasha, A. R.; Ghani, J. A.; Che Haron, C. H.; Syarif, J.

    2018-01-01

    Sustainable machining by using cryogenic coolant as the cutting fluid has been proven to enhance some machining outputs. The main objective of the current work was to investigate the influence of machining conditions; dry and cryogenic, as well as the cutting tool wear on the machined surface roughness of AISI 4340 steel. The experimental tests were performed using chemical vapor deposition (CVD) coated carbide inserts. The value of machined surface roughness were measured at 3 cutting intervals; beginning, middle, and end of the cutting based on the readings of the tool flank wear. The results revealed that cryogenic turning had the greatest influence on surface roughness when machined at lower cutting speed and higher feed rate. Meanwhile, the cutting tool wear was also found to influence the surface roughness, either improving it or deteriorating it, based on the severity and the mechanism of the flank wear.

  13. Effect of Cutting Parameters on Microhardness in 2 mm Slot Milling Hardened Tool Steel

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2004-01-01

    This paper presents an experimental study on the dependency of surface integrity on cutting parameters in slot milling of hardened tool steel. A series of 2 mm slot milling tests have been performed with different cutting parameters. Microhardness was chosen for evaluation of subsurface integrity....... The process was found to be sensitive to cutting parameters. An increase of feed per tooth or depth of cut produced a reduction of the microhardness of the slot surface. An optimal combination of machining parameters was found to be 80-110 m/min in cutting speed, 0.005 mm in feed per tooth and 0.1 mm in axial...

  14. Development of Cutting Tool Through Superplastic Boronizing of Duplex Stainless Steel

    Science.gov (United States)

    Jauhari, Iswadi; Harun, Sunita; Jamlus, Siti Aida; Sabri, Mohd Faizul Mohd

    2017-03-01

    In this study, a cutting tool is developed from duplex stainless steel (DSS) using the superplastic boronizing technique. The feasibility of the development process is studied, and the cutting performances of the cutting tool are evaluated and compared with commercially available carbide and high-speed steel (HSS) tools. The superplastically boronized (SPB) cutting tool yielded a dense boronized layer of 50.5 µm with a surface hardness of 3956 HV. A coefficient of friction value of 0.62 is obtained, which is lower than 1.02 and 0.8 of the carbide and HSS tools. When tested on an aluminum 6061 surface under dry condition, the SPB cutting tool is also able to produce turning finishing below 0.4 µm, beyond the travel distance of 3000 m, which is comparable to the carbide tool, but produces much better results than HSS tool. Through superplastic boronizing of DSS, it is possible to produce a high-quality metal-based cutting tool that is comparable to the conventional carbide tool.

  15. Carbon nanotube reinforced metal binder for diamond cutting tools

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Mishnaevsky, Leon; Levashov, Evgeny

    2015-01-01

    The potential of carbon nanotube reinforcement of metallic binders for the improvement of quality and efficiency of diamond cutting wheels is studied. The effect of multi-walled carbon nanotube (MWCNT) reinforcement on the mechanical properties i.e. hardness, Young modulus, strength and deformation...... of grain size of the structural constituents of the binder, what in turn leads to the improved simultaneously hardness, Young modulus, plastic extension, bending strength and performances of the metallic binders. Comparing service properties of diamond end-cutting drill bits with and without MWCNT one...

  16. Influence of Cooling Lubricants on the Surface Roughness and Energy Efficiency of the Cutting Machine Tools

    Science.gov (United States)

    Jersák, J.; Simon, S.

    2017-08-01

    The Technical University of Liberec and Brandenburg University of Technology Cottbus-Senftenberg investigated the influence of cooling lubricants on the surface roughness and energy efficiency of cutting machine tools. After summarizing the achieved experimental results, the authors conclude that cooling lubricants extensively influence the cutting temperature, cutting forces and energy consumption. Also, it is recognizable that cooling lubricants affect the cutting tools lifetime and the workpiece surface quality as well. Furthermore, costs of these cooling lubricants and the related environmental burden need to be considered. A current trend is to reduce the amount of lubricants that are used, e.g., when the Minimum Quantity Lubrication (MQL) technique is applied. The lubricant or process liquid is thereby transported by the compressed air in the form of an aerosol to the contact area between the tool and workpiece. The cutting process was monitored during testing by the three following techniques: lubricant-free cutting, cutting with the use of a lubricant with the MQL technique, and only utilizing finish-turning and finish-face milling. The research allowed the authors to monitor the cutting power and mark the achieved surface quality in relation to the electrical power consumption of the cutting machine. In conclusions, the coherence between energy efficiency of the cutting machine and the workpiece surface quality regarding the used cooling lubricant is described.

  17. Influence of Cooling Lubricants on the Surface Roughness and Energy Efficiency of the Cutting Machine Tools

    Directory of Open Access Journals (Sweden)

    Jersák J.

    2017-08-01

    Full Text Available The Technical University of Liberec and Brandenburg University of Technology Cottbus-Senftenberg investigated the influence of cooling lubricants on the surface roughness and energy efficiency of cutting machine tools. After summarizing the achieved experimental results, the authors conclude that cooling lubricants extensively influence the cutting temperature, cutting forces and energy consumption. Also, it is recognizable that cooling lubricants affect the cutting tools lifetime and the workpiece surface quality as well. Furthermore, costs of these cooling lubricants and the related environmental burden need to be considered. A current trend is to reduce the amount of lubricants that are used, e.g., when the Minimum Quantity Lubrication (MQL technique is applied. The lubricant or process liquid is thereby transported by the compressed air in the form of an aerosol to the contact area between the tool and workpiece. The cutting process was monitored during testing by the three following techniques: lubricant-free cutting, cutting with the use of a lubricant with the MQL technique, and only utilizing finish-turning and finish-face milling. The research allowed the authors to monitor the cutting power and mark the achieved surface quality in relation to the electrical power consumption of the cutting machine. In conclusions, the coherence between energy efficiency of the cutting machine and the workpiece surface quality regarding the used cooling lubricant is described.

  18. Laboratory versus industrial cutting force sensor in tool condition monitoring system

    International Nuclear Information System (INIS)

    Szwajka, K

    2005-01-01

    Research works concerning the utilisation of cutting force measures in tool condition monitoring usually present results and deliberations based on laboratory sensors. These sensors are too fragile to be used in industrial practice. Industrial sensors employed on the factory floor are less accurate, and this must be taken into account when creating a tool condition monitoring strategy. Another drawback of most of these works is that constant cutting parameters are used for the entire tool life. This does not reflect industrial practice where the same tool is used at different feeds and depths of cut in sequential passes. This paper presents a comparison of signals originating from laboratory and industrial cutting force sensors. The usability of the sensor output was studied during a laboratory simulation of industrial cutting conditions. Instead of building mathematical models for the correlation between tool wear and cutting force, an FFBP artificial neural network was used to find which combination of input data would provide an acceptable estimation of tool wear. The results obtained proved that cross talk between channels has an important influence on cutting force measurements, however this input configuration can be used for a tool condition monitoring system

  19. Smart Cutting Tools and Smart Machining: Development Approaches, and Their Implementation and Application Perspectives

    Science.gov (United States)

    Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard

    2017-09-01

    Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.

  20. Faulting at Mormon Point, Death Valley, California: A low-angle normal fault cut by high-angle faults

    Science.gov (United States)

    Keener, Charles; Serpa, Laura; Pavlis, Terry L.

    1993-04-01

    New geophysical and fault kinematic studies indicate that late Cenozoic basin development in the Mormon Point area of Death Valley, California, was accommodated by fault rotations. Three of six fault segments recognized at Mormon Point are now inactive and have been rotated to low dips during extension. The remaining three segments are now active and moderately to steeply dipping. From the geophysical data, one active segment appears to offset the low-angle faults in the subsurface of Death Valley.

  1. LASER CUTTING AS AN INNOVATIVE CREATIVITY TOOL IN TEXTILE DESIGN

    Directory of Open Access Journals (Sweden)

    Banu Hatice Gurcum

    2016-12-01

    Full Text Available Innovative technologies have become the most widespread rapid and flexible technique of cutting, welding, printing and coloring in fashion and textile sectors in a very short time. Laser systems as the most common used innovative technology engrave, cut, form, print, shade appropriated formatted drawings and sketches as well as they provide reliable placements for the lay out plans and precision cutting and the production sector rapid and qualified. The practical applications and conveniences that innovative Technologies employ, influence design process, designers can design in a more creative, rapid, precise and effective manner. Although design is a context where technology is effective, the style, mood and the background of the designer is still important. Designers while making innovative studies should take the advantage of the developing technologies in experimental processes and should combine technological opportunities with aesthetics. Textile designer as in all other domains of design, should harmonise with the change and should define his/her style with the innovative Technologies in an innovative manner and renew him/herself all the time. This study aims to classify laser cutting technology applications available in textile and fashion sector as well as to present the laser technology as a means of process, product, material innovation and explains the contributions of laser systems to creativity.

  2. Reducing bending stress in external spur gears by redesign of the standard cutting tool

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2009-01-01

    . In this work the bending stress of involute teeth is minimized by shape optimizing the tip of the standard cutting tool. By redesign of the tip of the standard cutting tool we achieve that the functional part of the teeth stays the same while at the same time the root shape is changed so that a reduction....... The parameterization includes the standard ISO tooth. Practical simple changes in the design of the tool tip is shown to result in large reduction of the bending stress, keeping at the same time the engage part of the tooth unchanged. This leads to gears that have unchanged functionality based on the involute design...... of the stresses results. The tool tip shape is described by different parameterizations that use the super ellipse as the central shape. For shape optimization it is important that the shape is given analytically. The shape of the cut tooth that is the envelope of the cutting tool is found analytically...

  3. Machine tool

    International Nuclear Information System (INIS)

    Kang, Myeong Sun

    1981-01-01

    This book indicates machine tool, which includes cutting process and processing by cutting process, theory of cutting like tool angle and chip molding, cutting tool such as milling cutter and drill, summary and introduction of following machine ; spindle drive and feed drive, pivot and pivot bearing, frame, guide way and table, drilling machine, boring machine, shaper and planer, milling machine, machine tool for precision finishing like lapping machine and super finishing machine gear cutter.

  4. Investigation of wear land and rate of locally made HSS cutting tool

    Science.gov (United States)

    Afolalu, S. A.; Abioye, A. A.; Dirisu, J. O.; Okokpujie, I. P.; Ajayi, O. O.; Adetunji, O. R.

    2018-04-01

    Production technology and machining are inseparable with cutting operation playing important roles. Investigation of wear land and rate of cutting tool developed locally (C=0.56%) with an HSS cutting tool (C=0.65%) as a control was carried out. Wear rate test was carried out using Rotopol -V and Impact tester. The samples (12) of locally made cutting tools and one (1) sample of a control HSS cutting tool were weighed to get the initial weight and grit was fixed at a point for the sample to revolve at a specific time of 10 mins interval. Approach of macro transfer particles that involved mechanism of abrasion and adhesion which was termed as mechanical wear to handle abrasion adhesion processes was used in developing equation for growth wear at flank. It was observed from the wear test that best minimum wear rate of 1.09 × 10-8 and 2.053 × 10-8 for the tools developed and control were measured. MATLAB was used to simulate the wear land and rate under different conditions. Validated results of both the experimental and modeling showed that cutting speed has effect on wear rate while cutting time has predicted measure on wear land. Both experimental and modeling result showed best performances of tools developed over the control.

  5. METHODS FOR CUTTING FEED STABILIZATION OF POWER-PRODUCING BED PLATE OF MACHINE TOOLS

    Directory of Open Access Journals (Sweden)

    A. A. Zhuk

    2008-01-01

    Full Text Available Analysis of factors that influence on cutting feed stabilization of horizontal power-producing bed plate of machine tools has been made in the paper. Circuit diagrams and design for better cutting feed stabilization of power-producing bed plates are given in the paper

  6. Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method

    OpenAIRE

    Mohammed T. Hayajneh

    2016-01-01

    Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very ...

  7. Reliability of cut mark analysis in human costal cartilage: the effects of blade penetration angle and intra- and inter-individual differences.

    Science.gov (United States)

    Puentes, K; Cardoso, H F V

    2013-09-10

    Identification of tool class characteristics from cut marks in either bone or cartilage is a valuable source of data for the forensic scientist. Various animal models have been used in experimental studies for the analysis of individual and class characteristics. However, human tissue has seldom been used and it is likely to differ from that of non-humans in key aspects. This study wishes to assess how the knife's blade angle, and both intra- and inter-individual variation in cartilage samples affect the ability of costal cartilage to retain the original class characteristics of the knife, as measured microscopically by the distance between consecutive striations. The 120 cartilaginous samples used in this study originated from the ribcage of 6 male cadavers which were submitted to autopsy at the North Branch of the National Institute of Legal Medicine, in Portugal. Three different serrated knives were purchased from a large department store, and were used in the experimental cuts. Samples of costal cartilage from 2 individuals were assigned to each knife. Each individual provided 20 cartilage samples. Cartilage samples were manually cut using each of the three knives, following two motions: one straight up-and-down cutting motion and parallel and one perpendicular to the blade's teeth long axis forward cutting motion. Casts of the samples were made with Mikrosil(®). Image capture and processing were performed with an Olympus stereomicroscope and its software. The blade's penetration angle and inter-individual variation were shown to affect the identification of the tool class characteristics from the striation pattern observed in a kerf wall, although this seems to be related only to the degree of calcification of the costal cartilage. Intra-individual variation does not seem to significantly affect the identification of the tool class characteristics from the striation pattern observed in a kerf wall, for the same knife following the same motion. Although this

  8. Wear monitoring of single point cutting tool using acoustic emission ...

    Indian Academy of Sciences (India)

    This paper examines the flank and crater wear characteristics of coated carbide tool inserts during dry turning of steel workpieces. A brief review of tool wear mechanisms is presented together with new evidence showing that wear of the TiC layer on both flank and rake faces is dominated by discrete plastic deformation, ...

  9. Impalement oral injury: Ultrasonic scalpel is the best tool to cut off a toothbrush.

    Science.gov (United States)

    Yamaguchi, Yoshikazu; Miyashita, Tetsuya; Toki, Keiko; Takaki, Shunsuke; Goto, Takahisa

    2015-01-01

    Penetrating injuries to the oral cavity involving a toothbrush are relatively common among children. Sometimes general anesthesia is recommended. Although the handle prevents adequate mask ventilation in the induction of anesthesia, it is unknown what is the best tool to cut it preventing complications. The aim of this study was to evaluate the optimal tool to cut off the toothbrush handle. Six anesthesiologists participated in this study. We attached a triaxial acceleration sensor to the tip of the toothbrush to virtually measure force toward the wound. Each participant cut off the handle of the toothbrush using 3 tools: Gluck rib shears (GRS: cutting horizonal); Sklar Coryllos rib shears (SCRS: cutting vertical); and an ultrasonic scalpel (USS). Acceleration and time required to cut the toothbrush were measured. Each anesthesiologist evaluated the usability of each tool on a 5-point scale. The USS showed the longest mean time (GRS, 1.78 ± 1.01 s; SCRS, 7.30 ± 4.58 s; USS, 28.13 ± 13.41 s), lowest 3-dimensional acceleration (GRS, 2.15 ± 0.69 G; SCRS, 2.13 ± 0.57 G; USS, 1.01 ± 1.07 G), and highest mean score for usability. The USS appeared preferable to rib shears for cutting off toothbrush handles, even though it takes longer.

  10. Wear monitoring of single point cutting tool using acoustic emission ...

    Indian Academy of Sciences (India)

    It clearly indicates that the three stages of wear viz., Stage I, where the rate of wear is low, Stage II, where the rate of wear is moderate and. Stage III, where the rate of wear is faster and leading to the termination of tool life. In stage I, 0 to 8.5 min of the machining operation the tool wear is in the range of 0–8.3 μm only.

  11. Development and characterization of AlCrN coated Si3N4 ceramic cutting tool

    International Nuclear Information System (INIS)

    Souza, J.V.C.; Nono, M.C.A.; Machado, J.P.B.; Silva, O.M.M.; Sa, F.C.L.

    2010-01-01

    Ceramic cutting tools are showing a growing market perspective in terms of application on machining operations due to their high hardness, wear resistance, and machining without a cutting fluid, therefore are good candidates for cast iron and Nickel superalloys machining. The objective of the present paper was the development of Si 3 N 4 based ceramic cutting insert, characterization of its physical and mechanical properties, and subsequent coating with AlCrN using a PVD method. The characterization of the coating was made using an optical profiler, XRD, AFM and microhardness tester. The results showed that the tool presented a fracture toughness of 6,43 MPa.m 1/2 and hardness of 16 GPa. The hardness reached 31 GPa after coating. The machining tests showed an improvement on work piece roughness when machining with coated insert, in comparison with the uncoated cutting tool. Probably this fact is related to hardness, roughness and topography of AlCrN. (author)

  12. Development and characterization of Si3N4 coated AlCrN ceramic cutting tool

    International Nuclear Information System (INIS)

    Souza, J.V.C.; Nono, M.C.A.; Martins, G.V.; Machado, J.P.B.; Silva, O.M.M.

    2009-01-01

    Nowadays, silicon nitride based cutting tools are used to machine cast iron from the automotive industry and nickel superalloys from the aero industries. Advances in manufacturing technologies (increased cutting speeds, dry machining, etc.) induced the fast commercial growth of physical vapor deposition (PVD) coatings for cutting tools, in order to increase their life time. In this work, a new composition of the Si 3 N 4 ceramic cutting tool was developed, characterized and subsequently coated, using a PVD process, with aluminum chromium nitride (AlCrN). The Si 3 N 4 substrate properties were analyzed by XRD, AFM, hardness and fracture toughness. The AlCrN coating was analyzed by AFM, grazing incidence X-ray diffraction (GIXRD) and hardness. The results showed that this PVD coating could be formed homogeneously, without cracks and promoted a higher surface hardness to the insert and consequently it can produce a better wear resistance during its application on high speed machining. (author)

  13. Wear mechanism of CBN cutting tool during high-speed machining of mold steel

    International Nuclear Information System (INIS)

    Farhat, Z.N.

    2003-01-01

    Wear behavior of cubic boron nitride (CBN) cutting tool when cutting P20 tool steel was investigated. Oblique cutting tests were performed on a CNC lathe using five speeds, namely, 240, 600 and 1000 m min -1 . The CBN cutting tools were found to be superior to tungsten carbide (WC) tools. Fourfold increase in productivity and significant reduction in chipping and cratering was achieved for CBN as compared to WC. Wear, as the width of the wear land (VB), was monitored at selected time intervals; furthermore, topography of worn surfaces was performed, using a profilometer. Wear characterization of the rake and the flank surfaces as well as of the collected chips was conducted using a scanning electron microscopy (SEM), backscattered electron imaging and energy depressive X-ray (EDX). It was found that deformation in the chips occurs by localized shear deformation and the dominant wear mechanism at all speeds used was identified to be diffusive wear. At a 1000 m min -1 cutting speed, a secondary wear mechanism was identified, which is melt wear, i.e., formation of low melting point Cr and Mn compounds with the tool material and the subsequent ejection from the cutting zone

  14. Development and testing of an integrated smart tool holder for four-component cutting force measurement

    Science.gov (United States)

    Xie, Zhengyou; Lu, Yong; Li, Jianguang

    2017-09-01

    Cutting force measurement is a significant requirement for monitoring and controlling the machining processes. Hence, various methods of measuring the cutting force have been proposed by many researchers. In this study, an innovative integrated smart tool holder system based on capacitive sensors is designed, constructed and tested, which is capable of measuring triaxial cutting force and a torque simultaneously in a wireless environment system. A standard commercial tool holder is modified to make itself be the force sensing element that has advantages of simple structure and easy machining. Deformable beams are created in the tool holder, and the tiny deformations of which used to calculate the four-component cutting force are detected by six high precision capacitive sensors. All the sensors and other electronics, like data acquisition and transmitting unit, and wireless power unit, are incorporated into the tool holder as a whole system. The device is intended to be used in a rotating spindle such as in milling and drilling processes. Eventually, the static and dynamic characteristics of the smart tool holder have been determined by a series of tests. Cutting tests have also been carried out and the results show it is stable and practical to measure the cutting force in milling and drilling processes.

  15. Cutting force and wear evaluation in peripheral milling by CVD diamond dental tools

    International Nuclear Information System (INIS)

    Polini, R.; Allegri, A.; Guarino, S.; Quadrini, F.; Sein, H.; Ahmed, W.

    2004-01-01

    Co-cemented tungsten carbide (WC-Co) tools are currently employed in dental application for prosthesis fabrication. The deposition of a diamond coating onto WC-Co tools could allow both to increase the tool life and tool performance at higher speeds. However, at present it is very difficult to quantify the effective advantage of the application of a diamond coating onto dental tools compared to traditional uncoated tools. Therefore, in this work, we have deposited diamond coatings onto WC-Co dental tools having different geometries by Hot Filament Chemical Vapour Deposition (HFCVD). Prior to deposition, the WC-Co tools were pre-treated in order to roughen the surface and to modify the chemical surface composition. The use of the HFCVD process enabled the deposition of a uniform coating despite the complex geometries of the dental mills. For the first time, in accordance to the knowledge of the authors, we have studied and compared the cutting behaviour of both virgin and diamond-coated dental tools by measuring both wear and cutting force time evolution under milling a very hard Co-Cr-Mo dental alloy. To ensure constant cutting rate (20,000-r.p.m. cutting rate, 0.01-m/min feed rate and 0.5-mm depth of cut), a proper experimental apparatus was used. Three different mill geometries were considered in both coated and uncoated conditions. The results showed that, under the high-speed conditions employed, uncoated tools underwent to catastrophic failure within a few seconds of machining. Diamond-coated tools exhibited much longer tool lives. Lower forces were measured when the coated tool was employed due to the much lower material-mill friction. The best behaviour was observed for coated mills with the presence of a chip-breaker

  16. Influence of water-miscible cutting fluid on tool wear behavior of various coated high-speed steel tools in hobbing

    Science.gov (United States)

    Sato, Yuta; Matsuoka, Hironori; Kubo, Akio; Ono, Hajime; Ryu, Takahiro; Qiu, Hua; Nakae, Takashi; Shuto, Shuichi; Watanabe, Suguru; Anan, Ruito

    2017-04-01

    This paper deals with the influence of water-miscible cutting fluid on tool life (flank wear) compared with that with dry cutting and water-insoluble cutting oil in hobbing. Experiments were conducted by simulating hobbing by fly tool cutting on a milling machine. The following results were clarified. (1) The water-miscible cutting fluid used in the test prolongs the tool life for TiN-, TiAlN-, TiSiN- and AlCrSiN-coated tools in comparison with that obtained by dry cutting and water-insoluble cutting oil. (2) It was presumed that the tool wear decreases and the tool life is improved by the lubrication effect of the synthetic lubrication additive, mineral oil and sulfuric EP additive contained in the water-miscible cutting fluid, and also by the cooling effect.

  17. Performance improvement studies for cutting tools with perforated surface in turning of titanium alloy

    Directory of Open Access Journals (Sweden)

    Charitha Rao

    2018-01-01

    Full Text Available In turning process, the cutting tool is essential for shaping materials. The cutting tools with various perforated surfaces help to increase the cutting tool life. Also, advances in CNC machining technologies have enhanced the productivity of machining process. One of the best or futuristic approaches in modern manufacturing engineering is the use of FEM Simulation for the metal cutting process. FEM simulation helps in understanding the metal deformation process and also helps in the reduction of experiments. The simulation helps the researchers to predict the major influencing cutting variable values without carrying out any experiment which is time-consuming and expensive. This research presents the simulation study of the performance of micro-hole patterned Polycrystalline Diamond cutting insert in machining Titanium alloy (Ti-6Al-4V. Micro-holes are drilled using Electrical Discharge Wire Drilling machine on the rake face of Polycrystalline Diamond (PCD cutting inserts. FEM analysis is carried out to evaluate the effect of perforations on the mechanical integrity of insert. The micro-hole patterned insert is modeled in PRO-E modeler and simulated using DEFORM-3D software. The effective stress, strain, and temperature distribution are analyzed and the results are compared with the normal insert.

  18. Metal Cutting Theory and Friction Stir Welding Tool Design

    Science.gov (United States)

    Payton, Lewis N.

    2003-01-01

    Friction Stir Welding (FSW) is a relatively new industrial process that was invented at The Weld Institute (TWI, United Kingdom) and patented in 1992 under research funded by in part by the National Aeronautics and Space Administration (NASA). Often quoted advantages of the process include good strength and ductility along with minimization of residual stress and distortion. Less well advertised are the beneficial effects of this solid state welding process in the field of occupational and environmental safety. It produces superior weld products in difficult to weld materials without producing any toxic fumes or solid waste that must be controlled as hazardous waste. In fact, it reduces noise pollution in the workspace as well. In the early days of FSW, most welding was performed on modified machine tools, in particular on milling machines with modified milling cutters. In spite of the obvious milling heritage of the process, the techniques and lessons learned from almost 250 years of successful metalworking with milling machines have not been applied in the field of modern Friction Stir Welding. The goal of the current research was to study currently successful FSW tools and parameterize the process in such a way that the design of new tools for new materials could be accelerated. Along the way, several successful new tooling designs were developed for current issues at the Marshall Space Flight Center with accompanying patent disclosures

  19. EXAMINATION OF THE CUTTING FORCES OF AISI 304 AUSTENITIC STAINLESS STEEL IN THE TURNING PROCESS WITH TITANIUM CARBIDE COATED CUTTING TOOLS

    Directory of Open Access Journals (Sweden)

    Özgür TEKASLAN

    2007-02-01

    Full Text Available In this study, cutting forces occurring in the machining process of AISI 304 austenitic stainless steel specimen using titanium coated cutting tools are investigated experimentally and the results are compared to theoretical calculations. In the experimental study, various cutting speeds, feed rates and cutting depths are considered. Cutting forces are measured by 3-dimensional Kistler dynamometer. In the theoretically study, cutting forces are determined by Kienzle formulation. Consequently, it is found that the calculation of cutting forces in the theoretical method doesn't yield the exact results because of various factors and there is a % 25 average differences in accordance with the experimental results. Hence it is evaluated that the experimental technique in the determination of cutting forces yields more accurate results.

  20. How to Train a Cell?Cutting-Edge Molecular Tools

    OpenAIRE

    Czapi?ski, Jakub; Kie?bus, Micha?; Ka?afut, Joanna; Kos, Micha?; Stepulak, Andrzej; Rivero-M?ller, Adolfo

    2017-01-01

    In biological systems, the formation of molecular complexes is the currency for all cellular processes. Traditionally, functional experimentation was targeted to single molecular players in order to understand its effects in a cell or animal phenotype. In the last few years, we have been experiencing rapid progress in the development of ground-breaking molecular biology tools that affect the metabolic, structural, morphological, and (epi)genetic instructions of cells by chemical, optical (opt...

  1. KINECT, A NOVEL CUTTING EDGE TOOL IN PAVEMENT DATA COLLECTION

    Directory of Open Access Journals (Sweden)

    A. Mahmoudzadeh

    2015-12-01

    Full Text Available Pavement roughness and surface distress detection is of interest of decision makers due to vehicle safety, user satisfaction, and cost saving. Data collection, as a core of pavement management systems, is required for these detections. There are two major types of data collection: traditional/manual data collection and automated/semi-automated data collection. This paper study different non-destructive tools in detecting cracks and potholes. For this purpose, automated data collection tools, which have been utilized recently are discussed and their applications are criticized. The main issue is the significant amount of money as a capital investment needed to buy the vehicle. The main scope of this paper is to study the approach and related tools that not only are cost-effective but also precise and accurate. The new sensor called Kinect has all of these specifications. It can capture both RGB images and depth which are of significant use in measuring cracks and potholes. This sensor is able to take image of surfaces with adequate resolution to detect cracks along with measurement of distance between sensor and obstacles in front of it which results in depth of defects. This technology has been very recently studied by few researchers in different fields of studies such as project management, biomedical engineering, etc. Pavement management has not paid enough attention to use of Kinect in monitoring and detecting distresses. This paper is aimed at providing a thorough literature review on usage of Kinect in pavement management and finally proposing the best approach which is cost-effective and precise.

  2. Kinect, a Novel Cutting Edge Tool in Pavement Data Collection

    Science.gov (United States)

    Mahmoudzadeh, A.; Firoozi Yeganeh, S.; Golroo, A.

    2015-12-01

    Pavement roughness and surface distress detection is of interest of decision makers due to vehicle safety, user satisfaction, and cost saving. Data collection, as a core of pavement management systems, is required for these detections. There are two major types of data collection: traditional/manual data collection and automated/semi-automated data collection. This paper study different non-destructive tools in detecting cracks and potholes. For this purpose, automated data collection tools, which have been utilized recently are discussed and their applications are criticized. The main issue is the significant amount of money as a capital investment needed to buy the vehicle. The main scope of this paper is to study the approach and related tools that not only are cost-effective but also precise and accurate. The new sensor called Kinect has all of these specifications. It can capture both RGB images and depth which are of significant use in measuring cracks and potholes. This sensor is able to take image of surfaces with adequate resolution to detect cracks along with measurement of distance between sensor and obstacles in front of it which results in depth of defects. This technology has been very recently studied by few researchers in different fields of studies such as project management, biomedical engineering, etc. Pavement management has not paid enough attention to use of Kinect in monitoring and detecting distresses. This paper is aimed at providing a thorough literature review on usage of Kinect in pavement management and finally proposing the best approach which is cost-effective and precise.

  3. Cemented carbide cutting tool: Laser processing and thermal stress analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S. [Mechanical Engineering Department, KFUPM, Box 1913, Dhahran 31261 (Saudi Arabia)]. E-mail: bsyilbas@kfupm.edu.sa; Arif, A.F.M. [Mechanical Engineering Department, KFUPM, Box 1913, Dhahran 31261 (Saudi Arabia); Karatas, C. [Engineering Faculty, Hacettepe University, Ankara (Turkey); Ahsan, M. [Mechanical Engineering Department, KFUPM, Box 1913, Dhahran 31261 (Saudi Arabia)

    2007-04-15

    Laser treatment of cemented carbide tool surface consisting of W, C, TiC, TaC is examined and thermal stress developed due to temperature gradients in the laser treated region is predicted numerically. Temperature rise in the substrate material is computed numerically using the Fourier heating model. Experiment is carried out to treat the tool surfaces using a CO{sub 2} laser while SEM, XRD and EDS are carried out for morphological and structural characterization of the treated surface. Laser parameters were selected include the laser output power, duty cycle, assisting gas pressure, scanning speed, and nominal focus setting of the focusing lens. It is found that temperature gradient attains significantly high values below the surface particularly for titanium and tantalum carbides, which in turn, results in high thermal stress generation in this region. SEM examination of laser treated surface and its cross section reveals that crack initiation below the surface occurs and crack extends over the depth of the laser treated region.

  4. The Performance Evalution of Ceramic And Carbide Cutting Tools In Machining of Austemepered Ductile Irons

    Directory of Open Access Journals (Sweden)

    Yahya IŞIK

    2014-12-01

    Full Text Available The aim of this research is to compare TiN (PVD coated Al2O3+Ti[C,N] mixed alumina-based (KY4400 ceramic and CVD coated carbide TiC+AI2O3+TiN (ISO P25 cutting tools in turning austempered ductile irons. Ductile cast iron samples were austenitized at 927°C and subsequently austempered for 1 hour at 400°C. The hardness of the workpiece material was measured and found to be 43.5 HRC. In the present work a series of tests were conducted in order to evaluate the tool performances by adopting tool life. In all experiments cutting forces, flank wear and surface roughness values were measured throughout the tool life. No cutting fluid was used during the turning operations. Study of the tool life and failure modes shows that tool life was determined by the flank wear and surface roughness generated on the workpiece. The main conclusion is that tool life of ceramic insert was longer than the coated carbide insert although much higher cutting speeds were used. 

  5. PIXE as a characterization technique in the cutting tool industry

    Energy Technology Data Exchange (ETDEWEB)

    Freemantle, C.S., E-mail: chris@freemantle.co.za [School of Chemical and Metallurgical Engineering and DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, P/Bag 3, Wits 2050 (South Africa); Pilot Tools (Pty) (Ltd.), P.O. Box 27559, Benrose 2011 (South Africa); Sacks, N. [School of Chemical and Metallurgical Engineering and DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, P/Bag 3, Wits 2050 (South Africa); Topic, M. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Pineda-Vargas, C.A. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Faculty of Health and Wellness Sciences, CPUT, Bellville (South Africa)

    2014-01-01

    Two WC–Co powders have been analyzed using micro-PIXE to identify elemental concentration and distribution. A powder recycled primarily from used mining components and a powder produced exclusively from fresh raw materials was studied. Elemental mapping of major elements as well as impurities, within powder granule cross sections, was performed. Contaminants (e.g. Fe and Ni) from manufacturing processes, as well as trace impurities (e.g. Cr, Cl, Ca and S) from recycling were detected, quantified and compared. The extent of increased concentrations of impurities resulting from recycling were observed, demonstrating the potential for PIXE as a characterization tool for detecting trace elements in cemented carbides, allowing for future improvements in the manufacturing and recycling processes.

  6. PIXE as a characterization technique in the cutting tool industry

    Science.gov (United States)

    Freemantle, C. S.; Sacks, N.; Topic, M.; Pineda-Vargas, C. A.

    2014-01-01

    Two WC-Co powders have been analyzed using micro-PIXE to identify elemental concentration and distribution. A powder recycled primarily from used mining components and a powder produced exclusively from fresh raw materials was studied. Elemental mapping of major elements as well as impurities, within powder granule cross sections, was performed. Contaminants (e.g. Fe and Ni) from manufacturing processes, as well as trace impurities (e.g. Cr, Cl, Ca and S) from recycling were detected, quantified and compared. The extent of increased concentrations of impurities resulting from recycling were observed, demonstrating the potential for PIXE as a characterization tool for detecting trace elements in cemented carbides, allowing for future improvements in the manufacturing and recycling processes.

  7. Influence of Thickness of Multilayered Nano-Structured Coatings Ti-TiN-(TiCrAlN and Zr-ZrN-(ZrCrNbAlN on Tool Life of Metal Cutting Tools at Various Cutting Speeds

    Directory of Open Access Journals (Sweden)

    Alexey Vereschaka

    2018-01-01

    Full Text Available This paper considers the influence of thickness of multilayered nano-structured coatings Ti-TiN-(TiCrAlN and Zr-ZrN-(ZrCrNbAlN on tool life of metal cutting tools at various cutting speeds (vc = 250, 300, 350 and 400 m·min−1. The paper investigates the basic mechanical parameters of coatings and the mechanism of coating failure in scratch testing depending on thickness of coating. Cutting tests were conducted in longitudinal turning of steel C45 with tools with the coatings under study of various thicknesses (3, 5, and 7 µm, with an uncoated tool and with a tool with a “reference” coating of TiAlN. The relationship of “cutting speed vc—tool life T” was built and investigated; and the mechanisms were found to determine the selection of the optimum coating thickness at various cutting speeds. Advantages of cutting tools with these coatings are especially obvious at high cutting speeds (in particular, vc = 400 m·min−1. If at lower cutting speeds, the longest tool life is shown by tools with thicker coatings (of about 7 μm, then with an increase in cutting speed (especially at vc = 400 m·min−1 the longest tool life is shown by tools with thinner coating (of about 3 μm.

  8. Wear of Cutting Tool with Excel Geometry in Turning Process of Hardened Steel

    Directory of Open Access Journals (Sweden)

    Samardžiová Michaela

    2016-09-01

    Full Text Available This paper deals with hard turning using a cutting tool with Xcel geometry. This is one of the new geometries, and there is not any information about Xcel wear in comparison to the conventional geometry. It is already known from cutting tools producers that using the Xcel geometry leads to higher quality of machined surface, perticularly surface roughness. It is possible to achieve more than 4 times lower Ra and Rz values after turning than after using conventional geometry with radius. The workpiece material was 100Cr6 hardened steel with hardness of 60 ± 1 HRC. The machine used for the experiment was a lathe with counter spindle DMG CTX alpha 500, which is located in the Centre of Excellence of 5–axis Machining at the Faculty of Materials Science and Technology in Trnava. The cutting tools made by CBN were obtained from Sandvik COROMANT Company.

  9. Chemical vapour deposition diamond coating on tungsten carbide dental cutting tools

    International Nuclear Information System (INIS)

    Sein, H; Ahmed, W; Rego, C A; Jones, A N; Amar, M; Jackson, M; Polini, R

    2003-01-01

    Diamond coatings on Co cemented tungsten carbide (WC-Co) hard metal tools are widely used for cutting non-ferrous metals. It is difficult to deposit diamond onto cutting tools, which generally have a complex geometry, using a single step growth process. This paper focuses on the deposition of polycrystalline diamond films onto dental tools, which possess 3D complex or cylindrical shape, employing a novel single step chemical vapour deposition (CVD) growth process. The diamond deposition is carried out in a hot filament chemical vapour deposition (HFCVD) reactor with a modified filament arrangement. The filament is mounted vertically with the drill held concentrically in between the filament coils, as opposed to the commonly used horizontal arrangement. This is a simple and inexpensive filament arrangement. In addition, the problems associated with adhesion of diamond films on WC-Co substrates are amplified in dental tools due to the very sharp edges and unpredictable cutting forces. The presence of Co, used as a binder in hard metals, generally causes poor adhesion. The amount of metallic Co on the surface can be reduced using a two step pre-treatment employing Murakami etching followed by an acid treatment. Diamond films are examined in terms of their growth rate, morphology, adhesion and cutting efficiency. We found that in the diamond coated dental tool the wear rate was reduced by a factor of three as compared to the uncoated tool

  10. On the Physics of Machining Titanium Alloys: Interactions between Cutting Parameters, Microstructure and Tool Wear

    Directory of Open Access Journals (Sweden)

    Mohammed Nouari

    2014-07-01

    Full Text Available The current work deals with the analysis of mechanisms involved during the machining process of titanium alloys. Two different materials were chosen for the study: Ti-6Al-4V and Ti-55531. The objective was to understand the effect of all cutting parameters on the tool wear behavior and stability of the cutting process. The investigations were focused on the mechanisms of the chip formation process and their interaction with tool wear. At the microstructure scale, the analysis confirms the intense deformation of the machined surface and shows a texture modification. As the cutting speed increases, cutting forces and temperature show different progressions depending on the considered microstructure (Ti-6Al-4V or Ti-55531 alloy. Results show for both materials that the wear process is facilitated by the high cutting temperature and the generation of high stresses. The analysis at the chip-tool interface of friction and contact nature (sliding or sticking contact shows that machining Ti55531 often exhibits an abrasion wear process on the tool surface, while the adhesion and diffusion modes followed by the coating delamination process are the main wear modes when machining the usual Ti-6Al-4V alloy.

  11. Identifying the cause of cutting tool failure by using simulation software

    Directory of Open Access Journals (Sweden)

    Zrak Andrej

    2018-01-01

    Full Text Available The article is focused on the construction problems of cutting tools designed for manufacturing components in high numbers. Analysis of the tool with low lifetime is provided with the use of simulation software to detect the causes of the tool failure. Parameters of the simulation are close to the real conditions of the tool in production. The results from the simulation indicate that the bending moment occurs in the tool because of forces which have opposite direction on different areas. On these basis technological adjustments are made. These adjustments are also analysed by using simulation software.

  12. Determination of the cleat angle distribution of the RECOPOL coal seams, using CT-scans and image analysis on drilling cuttings and coal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Karl-Heinz A.A.; Ephraim, Rudy [Delft University of Technology, Department of Geotechnology, Stevinweg 1, 2628 CN, Delft (Netherlands); van Bergen, Frank; Pagnier, Henk [TNO, Princetonlaan 6, 3584 CB, Utrecht (Netherlands)

    2008-02-01

    Cleat orientation, cleat frequency and cleat angle distribution of deep coal seams are only available by the use of drilling cores and from coal mine samples. Coal drilling cuttings are a cheap and fast alternative to measure cleat angle distributions with the use of image analysis techniques. In this study oriented coal samples and drilling cuttings of the RECOPOL field experiment are compared and used to explain and validate the proposed method. In other words, cleat angle distributions from drilling cuttings are measured by image analysis. The geological framework of the polish coals is described. The image analysis methodologies for the measurement of fracture faces of cuttings and from CT-scan images, derived from these coals, are explained. The results of the methods on the cuttings are compared with cleat orientation distributions from CT-scans and artificial fragments from coal blocks of the same seams. These evaluations show high agreements between the methods. The cleat angle distributions of drilling cuttings of four seams are compared with the cleat orientation distributions of a regional structural geological study. The high correlation in this study shows that cleat angle distributions of coal seams can be used as input parameters for reservoir modelling. (author)

  13. Artificial Intelligence Based Selection of Optimal Cutting Tool and Process Parameters for Effective Turning and Milling Operations

    Science.gov (United States)

    Saranya, Kunaparaju; John Rozario Jegaraj, J.; Ramesh Kumar, Katta; Venkateshwara Rao, Ghanta

    2016-06-01

    With the increased trend in automation of modern manufacturing industry, the human intervention in routine, repetitive and data specific activities of manufacturing is greatly reduced. In this paper, an attempt has been made to reduce the human intervention in selection of optimal cutting tool and process parameters for metal cutting applications, using Artificial Intelligence techniques. Generally, the selection of appropriate cutting tool and parameters in metal cutting is carried out by experienced technician/cutting tool expert based on his knowledge base or extensive search from huge cutting tool database. The present proposed approach replaces the existing practice of physical search for tools from the databooks/tool catalogues with intelligent knowledge-based selection system. This system employs artificial intelligence based techniques such as artificial neural networks, fuzzy logic and genetic algorithm for decision making and optimization. This intelligence based optimal tool selection strategy is developed using Mathworks Matlab Version 7.11.0 and implemented. The cutting tool database was obtained from the tool catalogues of different tool manufacturers. This paper discusses in detail, the methodology and strategies employed for selection of appropriate cutting tool and optimization of process parameters based on multi-objective optimization criteria considering material removal rate, tool life and tool cost.

  14. Machining of high performance workpiece materials with CBN coated cutting tools

    International Nuclear Information System (INIS)

    Uhlmann, E.; Fuentes, J.A. Oyanedel; Keunecke, M.

    2009-01-01

    The machining of high performance workpiece materials requires significantly harder cutting materials. In hard machining, the early tool wear occurs due to high process forces and temperatures. The hardest known material is the diamond, but steel materials cannot be machined with diamond tools because of the reactivity of iron with carbon. Cubic boron nitride (cBN) is the second hardest of all known materials. The supply of such PcBN indexable inserts, which are only geometrically simple and available, requires several work procedures and is cost-intensive. The development of a cBN coating for cutting tools, combine the advantages of a thin film system and of cBN. Flexible cemented carbide tools, in respect to the geometry can be coated. The cBN films with a thickness of up to 2 μm on cemented carbide substrates show excellent mechanical and physical properties. This paper describes the results of the machining of various workpiece materials in turning and milling operations regarding the tool life, resultant cutting force components and workpiece surface roughness. In turning tests of Inconel 718 and milling tests of chrome steel the high potential of cBN coatings for dry machining was proven. The results of the experiments were compared with common used tool coatings for the hard machining. Additionally, the wear mechanisms adhesion, abrasion, surface fatigue and tribo-oxidation were researched in model wear experiments.

  15. Development of pipe welding, cutting and inspection tools for the ITER blanket

    International Nuclear Information System (INIS)

    Oka, Kiyoshi; Ito, Akira; Taguchi, Kou; Takiguchi, Yuji; Takahashi, Hiroyuki; Tada, Eisuke

    1999-07-01

    In D-T burning reactors such as International Thermonuclear Experimental Reactor (ITER), an internal access welding/cutting of blanket cooling pipe with bend sections is inevitably required because of spatial constraint due to nuclear shield and available port opening space. For this purpose, internal access pipe welding/cutting/inspection tools for manifolds and branch pipes are being developed according to the agreement of the ITER R and D task (T329). A design concept of welding/cutting processing head with a flexible optical fiber has been developed and the basic feasibility studies on welding, cutting and rewelding are performed using stainless steel plate (SS316L). In the same way, a design concept of inspection head with a non-destructive inspection probe (including a leak-testing probe) has been developed and the basic characteristic tests are performed using welded stainless steel pipes. In this report, the details of welding/cutting/inspection heads for manifolds and branch pipes are described, together with the basic experiment results relating to the welding/cutting and inspection. In addition, details of a composite type optical fiber, which can transmit both the high-power YAG laser and visible rays, is described. (author)

  16. Influence of minimum quantity of lubricant (MQL on tool life of carbide cutting tools during milling process of steel AISI 1018

    Directory of Open Access Journals (Sweden)

    Diego Núñez

    2017-03-01

    Full Text Available Nowadays, high productivity of machining is an important issue to obtain economic benefits in the industry. This purpose could be reached with high cutting velocity and feed rate. However, the inherently behavior produce high temperatures in the interface of couple cutting tool/workpiece. Many cutting fluids have been developed to control temperature in process and increase tool life. The objective of this paper is to compare the carbide milling tool wear using different systems cutting fluids: flood and minimum quantity of lubrication (MQL. The values of carbide milling cutting tool wear was evaluate according with the standard ISO 8688-1 1989. The experimental results showed that using MQL reduces significantly (about 40% tool wear in milling AISI 1018 steel at industrial cutting conditions.

  17. Investigation of wear and tool life of coated carbide and cubic boron nitride cutting tools in high speed milling

    Directory of Open Access Journals (Sweden)

    Pawel Twardowski

    2015-06-01

    Full Text Available The objective of the investigation was analysis of the wear of milling cutters made of sintered carbide and of boron nitride. The article presents the life period of the cutting edges and describes industrial conditions of the applicability of tools made of the materials under investigation. Tests have been performed on modern toroidal and ball-end mill cutters. The study has been performed within a production facility in the technology of high speed machining of 55NiCrMoV6 and X153CrMoV12 hardened steel. The analysed cutting speed is a parameter which significantly influences the intensity of heat generated in the cutting zone. Due to the wear characteristics, two areas of applicability of the analysed tools have been distinguished. For vc  ≤ 300 m/min, sintered carbide edges are recommended; for vc  > 500 m/min, boron nitride edges. For 300 ≤ vc  ≤ 500 m/min, a transition area has been observed. It has been proved that the application of sintered carbide edges is not economically justified above certain cutting speed.

  18. Quantitative analysis of inclusions in low carbon free cutting steel using small-angle X-ray and neutron scattering

    International Nuclear Information System (INIS)

    Oba, Yojiro; Koppoju, Suresh; Ohnuma, Masato; Kinjo, Yuki; Tomota, Yo; Morooka, Satoshi; Suzuki, Jun-ichi; Yamaguchi, Daisuke; Koizumi, Satoshi; Sato, Masugu; Shiraga, Tetsuo

    2012-01-01

    The microstructure of inclusions in low carbon free cutting steel without lead addition was investigated using small-angle X-ray scattering (SAXS) coupled with small-angle neutron scattering (SANS). The two-dimensional (2D) SAXS pattern shows clear scattering due to inclusions composed of large elongated particles aligned along the rolling direction, and small isotropic particles. From a comparison of the simulated and experimental 2D SAXS patterns, the shapes of the inclusions are regarded as ellipsoid for the larger inclusions and spherical for the smaller inclusions. The length of the minor axis in the large inclusion is 6.9 μm, while the diameter of the small inclusion is 0.50 μm. The aspect ratio of the large inclusion is estimated to be 3.8 in the lower q region, and is reduced slightly to 3.5 in the higher q region from the azimuthal plots. The results of an alloy contrast variation (ACV) analysis using both the SAXS and SANS data indicate that the chemical composition of the inclusions is almost NaCl-type manganese sulfide, and that the amount of iron sulfide is low. The volume fractions are 1.4% for the large inclusions and 0.2% for the small inclusions. This is consistent with the area fraction estimated using an optical microscope, and indicates that nearly all of the sulfur in the steel sample forms the manganese sulfide inclusions. (author)

  19. BACK CHIP TEMPERATURE IN ENVIRONMENTALLY CONSCIOUS TURNING WITH CONVENTIONAL AND INTERNALLY COOLED CUTTING TOOLS

    Directory of Open Access Journals (Sweden)

    Saiful Anwar Che Ghani

    2013-06-01

    Full Text Available Central to machining processes is the interaction between the tool insert and the chip of material removed from the blank. Chip-insert interaction occurs when the chip slides on the rake face of the insert. Heat is generated by the friction inherent to this sliding process. The temperature in the cutting zone of both the insert and the chip rises, usually facilitating adhesion, diffusion, and more complex chemical and physical phenomena between the insert and the chip. These effects accelerate the insert wear, ultimately undermining the tool life. Thus, a number of methods have been developed to control heat generation. Most typically, metal working fluids are conveyed onto the rake face in the cutting zone. However, this solution may be not ideal from the point of view of cost, the environment, and contamination of the part, which may be unacceptable, for example, in healthcare and optical applications. In this study, microfluidic structures internal to the insert are examined as a means of controlling the heat generation.Conventional and internallycooled tools were compared in dry turning of AA6082-T6 aluminum alloy in two 3  3 factorial experiments of different machining conditions. Statistical analyses support the conclusion that chip temperature depends only on the depth of cut,and not on the feed rate or cutting speed. They also show that the benefit of cooling the insert internally increases as the depth of cut increases. Therefore, internallycooled tools can be particularly advantageous in roughing operations.

  20. Statistical analysis of surface roughness in turning based on cutting parameters and tool vibrations with response surface methodology (RSM)

    Science.gov (United States)

    Touati, Soufiane; Mekhilef, Slimane

    2018-03-01

    In this paper, we present an experimental study to determine the effect of the cutting conditions and tool vibration on the surface roughness in finish turning of 32CrMoV12-28 steel, using carbide cutting tool YT15. For these purposes, a linear quadratic model in interaction of connecting surface roughness (Ra, Rz) with different combinations of cutting parameters such as cutting speed, feed rate, depth of cut and tool vibration, in radial and in tangential cutting force directions (Vy) and (Vz) is elaborated. In order to express the degree of interaction of cutting parameters and tool vibration, a multiple linear regression and response surface methodology are adopted. The application of this statistical technique for predicting the surface roughness shows that the feed rate is the most dominant factor followed by the cutting speed. However, the depth of the cut and tool vibrations have secondary effect. The presented models have some interest since they are used in the cutting process optimization.

  1. Method for Friction Force Estimation on the Flank of Cutting Tools

    Directory of Open Access Journals (Sweden)

    Luis Huerta

    2017-01-01

    Full Text Available Friction forces are present in any machining process. These forces could play an important role in the dynamics of the system. In the cutting process, friction is mainly present in the rake face and the flank of the tool. Although the one that acts on the rake face has a major influence, the other one can become also important and could take part in the stability of the system. In this work, experimental identification of the friction on the flank is presented. The experimental determination was carried out by machining aluminum samples in a CNC lathe. As a result, two friction functions were obtained as a function of the cutting speed and the relative motion of the contact elements. Experiments using a worn and a new insert were carried out. Force and acceleration were recorded simultaneously and, from these results, different friction levels were observed depending on the cutting parameters, such as cutting speed, feed rate, and tool condition. Finally, a friction model for the flank friction is presented.

  2. Self propagating high temperature synthesis of mixed carbide and boride powder systems for cutting tools manufacturing

    International Nuclear Information System (INIS)

    Vallauri, D.; Cola, P.L. de; Piscone, F.; Amato, I.

    2001-01-01

    TiC-TiB 2 composites have been produced via SHS technique starting from low cost raw materials like TiO 2 , B 4 C, Mg. The influence of the diluent phase (Mg, TiC) content on combustion temperature has been investigated. The use of magnesium as the reductant phase allowed acid leaching of the undesired oxide product (MgO), leaving pure hard materials with fine particle size suitable to be employed in cutting tools manufacturing through cold pressing and sintering route. The densification has shown to be strongly dependent on the wetting additions. The influence of the metal binder and wetting additions on the sintering process has been investigated. A characterization of the obtained materials was performed by the point of view of cutting tools life (hardness, toughness, strength). (author)

  3. Correction method for the error of diamond tool's radius in ultra-precision cutting

    Science.gov (United States)

    Wang, Yi; Yu, Jing-chi

    2010-10-01

    The compensation method for the error of diamond tool's cutting edge is a bottle-neck technology to hinder the high accuracy aspheric surface's directly formation after single diamond turning. Traditional compensation was done according to the measurement result from profile meter, which took long measurement time and caused low processing efficiency. A new compensation method was firstly put forward in the article, in which the correction of the error of diamond tool's cutting edge was done according to measurement result from digital interferometer. First, detailed theoretical calculation related with compensation method was deduced. Then, the effect after compensation was simulated by computer. Finally, φ50 mm work piece finished its diamond turning and new correction turning under Nanotech 250. Testing surface achieved high shape accuracy pv 0.137λ and rms=0.011λ, which approved the new compensation method agreed with predictive analysis, high accuracy and fast speed of error convergence.

  4. Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas

    DEFF Research Database (Denmark)

    Leipold, Frank; Kusano, Yukihiro; Hansen, F.

    2010-01-01

    The decontamination of a rotating cutting tool used for slicing in the meat industry by means of atmospheric pressure plasmas is investigated. The target is Listeria monocytogenes, a bacterium which causes listeriosis and can be found in plants and food. The non-pathogenic species, Listeria innocua......, is used for the experiments. A rotating knife was inoculated with L. innocua. The surface of the rotating knife was partly exposed to an atmospheric pressure dielectric barrier discharge operated in air, where the knife itself served as a ground electrode. The rotation of the knife ensures a treatment...... of the whole cutting tool. A log 5 reduction of L. innocua is obtained after 340 s of plasma operation. The temperature of the knife after treatment was found to be below 30 °C. The design of the setup allows a decontamination during slicing operation....

  5. The behavior of tillage tools with acute and obtuse lift angles

    Energy Technology Data Exchange (ETDEWEB)

    Abbaspour-Fard, M. H.; Hoseini, S. A.; Agkhani, M. H.; Sharifi, A.

    2014-06-01

    An experimental investigation was conducted to study the trend of draft force against forward speed and working depth for a range of lift angles beyond acute angles for a simple plane tillage tool. The experiments were performed in an indoor soil bin facility equipped with a tool carriage and a soil preparation unit propelled by an integrated hydraulic power system. The system was also equipped with electronic instrumentation including an Extended Octagonal Ring Transducer (EORT) and a data logger. The factorial experiment (4 × 3 × 3) with three replications was used based on Randomized Complete Block Design (RCBD). The independent variables were lift angle of the blade (45, 70, 90 and 120 degree centigrade), forward speed (2, 4 and 6 km h{sup -}1) and working depth (10, 25 and 40 cm). The variance analysis for the draft force shows that all independent variables affect the draft force at 1% level of significance. The trend of the draft force against working depth and forward speed had almost a linear increase. However, the trend of the draft force against the lift angle is reversed for lift angles > 90 degree centigrade. This finding, conflicts with the results of analytical and numerical studies which extrapolate the results achieved for acute lift angles to obtuse lift angles and have not been reported experimentally. (Author)

  6. Geometric Parameters of Cutting Tools that Can be Used for Forming Sided Surfaces with Variable Profile

    Directory of Open Access Journals (Sweden)

    Razumov M.

    2017-03-01

    Full Text Available This article describes machining technology of polyhedral surfaces with varying profile, which is provided by planetary motion of multiblade block tools. The features of the technology and urgency of the problem is indicated. The purpose of the study is to determine the minimum value of the clearance angle of the tool. Also, the study is carried out about changing the value of the front and rear corners during the formation of polygonal surface using a planetary gear. The scheme of calculating the impact of various factors on the value of the minimum clearance angle of the tool and kinematic front and rear corners of the instrument is provided. The mathematical formula for calculating the minimum clearance angle of the tool is given. Also, given the formula for determining the front and rear corners of the tool during driving. This study can be used in the calculation of the design operations forming multifaceted external surfaces with a variable profile by using the planetary gear.

  7. The optimization study on the tool wear of carbide cutting tool during milling Carbon Fibre Reinforced (CFRP) using Response Surface Methodology (RSM)

    Science.gov (United States)

    Nor Khairusshima, M. K.; Hafiz Zakwan, B. Muhammad; Suhaily, M.; Sharifah, I. S. S.; Shaffiar, N. M.; Rashid, M. A. N.

    2018-01-01

    Carbon Fibre Reinforced Plastic (CFRP) composite has become one of famous materials in industry, such as automotive, aeronautics, aerospace and aircraft. CFRP is attractive due to its properties, which promising better strength and high specification of mechanical properties other than its high resistance to corrosion. Other than being abrasive material due to the carbon nature, CFRP is an anisotropic material, which the knowledge of machining metal and steel cannot be applied during machining CFRP. The improper technique and parameters used to machine CFRP may result in high tool wear. This paper is to study the tool wear of 8 mm diameter carbide cutting tool during milling CFRP. To predict the suitable cutting parameters within range of 3500-6220 (rev/min), 200-245 (mm/min), and 0.4-1.8 (mm) for cutting speed, speed, feed rate and depth of cut respectively, which produce optimized result (less tool wear), Response Surface Methodology (RSM) has been used. Based on the developed mathematical model, feed rate was identified as the primary significant item that influenced tool wear. The optimized cutting parameters are cutting speed, feed and depth of cut of 3500 rev/min, 200 mm/min and 0.5 mm, respectively, with tool wear of 0.0267 mm. It is also can be observed that as the cutting speed and feed rate increased the tool wear is increasing.

  8. Influence of Cutting Fluid Flow Rate and Cutting Parameters on the Surface Roughness and Flank Wear of TiAlN Coated Tool In Turning AISI 1015 Steel Using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Moganapriya C.

    2017-09-01

    Full Text Available This paper presents the influence of cutting parameters (Depth of cut, feed rate, spindle speed and cutting fluid flow rate on the surface roughness and flank wear of physical vapor deposition (PVD Cathodic arc evaporation coated TiAlN tungsten carbide cutting tool insert during CNC turning of AISI 1015 mild steel. Analysis of Variance has been applied to determine the critical influence of cutting parameters. Taguchi orthogonal test design has been employed to optimize the process parameters affecting surface roughness and tool wear. Depth of cut was found to be the most dominant factor contributing to high surface roughness (67.5% of the inserts. However, cutting speed, feed rate and flow rate of cutting fluid showed minimal contribution to surface roughness. On the other hand, cutting speed (45.6% and flow rate of cutting fluid (23% were the dominant factors influencing tool wear. The optimum cutting conditions for desired surface roughness constitutes the following parameters such as medium cutting speed, low feed rate, low depth of cut and high cutting fluid flow rate. Minimal tool wear was achieved for the following process parameters such as low cutting speed, low feed rate, medium depth of cut and high cutting fluid flow rate.

  9. Study on Surface Integrity of AISI 1045 Carbon Steel when machined by Carbide Cutting Tool under wet conditions

    Directory of Open Access Journals (Sweden)

    Tamin N. Fauzi

    2017-01-01

    Full Text Available This paper presents the evaluation of surface roughness and roughness profiles when machining carbon steel under wet conditions with low and high cutting speeds. The workpiece materials and cutting tools selected in this research were AISI 1045 carbon steel and canela carbide inserts graded PM25, respectively. The cutting tools undergo machining tests by CNC turning operations and their performances were evaluated by their surface roughness value and observation of the surface roughness profile. The machining tests were held at varied cutting speeds of 35 to 53 m/min, feed rate of 0.15 to 0.50 mm/rev and a constant depth of cut of 1 mm. From the analysis, it was found that surface roughness increased as the feed rate increased. Varian of surface roughness was suspected due to interaction between cutting speeds and feed rates as well as nose radius conditions; whether from tool wear or the formation of a built-up edge. This study helps us understand the effect of cutting speed and feed rate on surface integrity, when machining AISI 1045 carbon steel using carbide cutting tools, under wet cutting conditions.

  10. ASPECTS REGARDING THE OPTIMUM CUTTING TOOL PATH IN PROCESSING FREE-FORM

    Directory of Open Access Journals (Sweden)

    Florin CHIFAN

    2014-11-01

    Full Text Available This paper describes an approach on tool paths optimization in CAM-type software for milling free forms, with the goal to improve efficiency in processing using CNC machine tools. The methodology proposed in this paper, tackles the problem of mechanical processing in 3 axes using ball nose milling cutters of small diameters, which follows a free form profile. I will consider two cases: the first one considers the ball nose end mill route on a free form with an angle of less than 30°, the second one with a tool path greater than 30°. The main objective of this paper is to determine the optimum angle in order to obtain a better surface roughness, a shorter time of processing and also a higher tool-life, all these by considering all other factors that occurs in the manufacturing process. This will be done by indicating and editing the tool path so that the tools will the minimum entries and exits on the surface of the piece. This will lead to a 10% decrease of the working time.

  11. Vibration suppression in cutting tools using collocated piezoelectric sensors/actuators with an adaptive control algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Radecki, Peter P [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Bement, Matthew T [Los Alamos National Laboratory

    2008-01-01

    The machining process is very important in many engineering applications. In high precision machining, surface finish is strongly correlated with vibrations and the dynamic interactions between the part and the cutting tool. Parameters affecting these vibrations and dynamic interactions, such as spindle speed, cut depth, feed rate, and the part's material properties can vary in real-time, resulting in unexpected or undesirable effects on the surface finish of the machining product. The focus of this research is the development of an improved machining process through the use of active vibration damping. The tool holder employs a high bandwidth piezoelectric actuator with an adaptive positive position feedback control algorithm for vibration and chatter suppression. In addition, instead of using external sensors, the proposed approach investigates the use of a collocated piezoelectric sensor for measuring the dynamic responses from machining processes. The performance of this method is evaluated by comparing the surface finishes obtained with active vibration control versus baseline uncontrolled cuts. Considerable improvement in surface finish (up to 50%) was observed for applications in modern day machining.

  12. The Effects of Approach Angle and Rake Angle Due to Chatter Vibrations on Surface Roughness in Turning

    OpenAIRE

    NEŞELİ, Süleyman; YALDIZ, Süleyman

    2007-01-01

    In this study, the effect of the chatter vibrations depend on tool geometry on surface roughness in turning has been investigated. Machining process in universal lathe is carried out on AISI 1040 steel in dry cutting condition using various approaching/entering angles (60°, 75°, 90°) and rake angles (-3°,-6°,-9°) at depth of cut of 0.5 mm. During cutting processes, tool nose radius and tool overhang (tool noise of kept point distance) and cutting speed, feed rate and spindle speed as cutting ...

  13. Optimization of cutting parameters in CNC turning of stainless steel 304 with TiAlN nano coated carbide cutting tool

    Science.gov (United States)

    Durga Prasada Rao, V.; Harsha, N.; Raghu Ram, N. S.; Navya Geethika, V.

    2018-02-01

    In this work, turning was performed to optimize the surface finish or roughness (Ra) of stainless steel 304 with uncoated and coated carbide tools under dry conditions. The carbide tools were coated with Titanium Aluminium Nitride (TiAlN) nano coating using Physical Vapour Deposition (PVD) method. The machining parameters, viz., cutting speed, depth of cut and feed rate which show major impact on Ra are considered during turning. The experiments are designed as per Taguchi orthogonal array and machining process is done accordingly. Then second-order regression equations have been developed on the basis of experimental results for Ra in terms of machining parameters used. Regarding the effect of machining parameters, an upward trend is observed in Ra with respect to feed rate, and as cutting speed increases the Ra value increased slightly due to chatter and vibrations. The adequacy of response variable (Ra) is tested by conducting additional experiments. The predicted Ra values are found to be a close match of their corresponding experimental values of uncoated and coated tools. The corresponding average % errors are found to be within the acceptable limits. Then the surface roughness equations of uncoated and coated tools are set as the objectives of optimization problem and are solved by using Differential Evolution (DE) algorithm. Also the tool lives of uncoated and coated tools are predicted by using Taylor’s tool life equation.

  14. Effects of surface treatment on the diamond deposition and performance of ceramic cutting tools

    International Nuclear Information System (INIS)

    Chang, C.L.; Guidoboni, M.P.

    1991-01-01

    Silicon nitride cutting tool inserts with tool geometry TPGN 433 were pre-treated ultrasonically with different procedures before diamond deposition by microwave plasma chemical vapor deposition. The nucleation densities and deposition rates were compared with those of untreated inserts and inserts polished with diamond paste. An increase in diamond nucleation density was observed for samples with different pre-treatments relative to untreated substrates. A continuous diamond coating was obtained after deposition for 1 h for the sample polished with diamond paste before deposition while only discrete diamond crystals were obtained for samples without any pre-treatment. However, no significant differences in diamond crystal size, morphology and deposition rates were observed for different pre-treatments after long periods of deposition time. No significant difference in tool life was observed for the diamond-coated inserts with and without pre-treatment when tested with an Al-Si alloy. (orig.)

  15. Knowledge base technology for CT-DIMS: Report 1. [CT-DIMS (Cutting Tool - Database and Information Management System)

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, E.E.

    1993-05-01

    This report discusses progress on the Cutting Tool-Database and Information Management System (CT-DIMS) project being conducted by the University of Illinois Urbana-Champaign (UIUC) under contract to the Department of Energy. This project was initiated in October 1991 by UIUC. The Knowledge-Based Engineering Systems Research Laboratory (KBESRL) at UIUC is developing knowledge base technology and prototype software for the presentation and manipulation of the cutting tool databases at Allied-Signal Inc., Kansas City Division (KCD). The graphical tool selection capability being developed for CT-DIMS in the Intelligent Design Environment for Engineering Automation (IDEEA) will provide a concurrent environment for simultaneous access to tool databases, tool standard libraries, and cutting tool knowledge.

  16. Tool for washing over, cutting and retrieving a portion of a pipe within a well bore

    Energy Technology Data Exchange (ETDEWEB)

    Parra, E.P.; Haughton, B.L.

    1987-05-05

    A tool is described for washing over, cutting and retrieving a portion of a pipe within a well bore, comprising an outer tubular body adapted to be connected to the lower end of a rotary pipe string for lowering into the well bore and over the upper end of the pipe; at least one knife each mounted on the outer body for movement between an outer position in which its cutting edge is free to move downwardly over the pipe and an inner position in which its cutting edge is adapted to engage the pipe; an inner tubular body vertically reciprocable within the outer body; a lower coil spring extending between the lower end of the inner body and an upwardly facing shoulder in the bore of the outer body; an upper coil spring supported on the upper end of the inner body; and means supported on the upper end of the upper spring for lowering over and then gripping the pipe as the outer body is raised with the pipe string.

  17. TECHNOLOGICAL ADVANCEMENT OF DEPOSIT WELDING AND GAS LASER CUTTING TO INCREASE THE EFFICIENCY OF THE BIMETALLIC TOOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Burlachenko Oleg Vasil’evich

    2017-08-01

    Full Text Available Deposit welding is the application of a layer of metal on the surface of a product using fusion welding. In this paper, we consider the method of improving the technology of gas laser cutting, which makes it possible to achieve a high productivity of manufacturing a bimetallic tool. The present paper is concerned with the advantages of gas laser cutting which allows to consider this particular process of separating materials as highly-productive, low-waste, and advanced method of removing allowances of weld-deposit high-speed steel on the working surfaces of bimetallic tool. Urgency of the use of deposit welding and gas laser cutting to improve the efficiency of production of bimetallic tool is shown. The comparative analysis of gas-laser cutting and other cutting methods is given according to the geometrical parameters of cutting and surface quality. Analysis of the results of experimental studies has confirmed the high technological attractiveness and economic efficiency of manufacturing composite structures of punches and matrices when applying deposit welding of cutting parts with high-speed steels. The cost of dimensional processing of the welded cutting part is reduced by 4 to 6 times, while the manufacturing time is reduced by 6 to 12 times.

  18. Fundamentals of cutting.

    Science.gov (United States)

    Williams, J G; Patel, Y

    2016-06-06

    The process of cutting is analysed in fracture mechanics terms with a view to quantifying the various parameters involved. The model used is that of orthogonal cutting with a wedge removing a layer of material or chip. The behaviour of the chip is governed by its thickness and for large radii of curvature the chip is elastic and smooth cutting occurs. For smaller thicknesses, there is a transition, first to plastic bending and then to plastic shear for small thicknesses and smooth chips are formed. The governing parameters are tool geometry, which is principally the wedge angle, and the material properties of elastic modulus, yield stress and fracture toughness. Friction can also be important. It is demonstrated that the cutting process may be quantified via these parameters, which could be useful in the study of cutting in biology.

  19. The leaf angle distribution of natural plant populations: assessing the canopy with a novel software tool.

    Science.gov (United States)

    Müller-Linow, Mark; Pinto-Espinosa, Francisco; Scharr, Hanno; Rascher, Uwe

    2015-01-01

    Three-dimensional canopies form complex architectures with temporally and spatially changing leaf orientations. Variations in canopy structure are linked to canopy function and they occur within the scope of genetic variability as well as a reaction to environmental factors like light, water and nutrient supply, and stress. An important key measure to characterize these structural properties is the leaf angle distribution, which in turn requires knowledge on the 3-dimensional single leaf surface. Despite a large number of 3-d sensors and methods only a few systems are applicable for fast and routine measurements in plants and natural canopies. A suitable approach is stereo imaging, which combines depth and color information that allows for easy segmentation of green leaf material and the extraction of plant traits, such as leaf angle distribution. We developed a software package, which provides tools for the quantification of leaf surface properties within natural canopies via 3-d reconstruction from stereo images. Our approach includes a semi-automatic selection process of single leaves and different modes of surface characterization via polygon smoothing or surface model fitting. Based on the resulting surface meshes leaf angle statistics are computed on the whole-leaf level or from local derivations. We include a case study to demonstrate the functionality of our software. 48 images of small sugar beet populations (4 varieties) have been analyzed on the base of their leaf angle distribution in order to investigate seasonal, genotypic and fertilization effects on leaf angle distributions. We could show that leaf angle distributions change during the course of the season with all varieties having a comparable development. Additionally, different varieties had different leaf angle orientation that could be separated in principle component analysis. In contrast nitrogen treatment had no effect on leaf angles. We show that a stereo imaging setup together with the

  20. Scanning laser reflection tool for alignment and period measurement of critical-angle transmission gratings

    Science.gov (United States)

    Song, Jungki; Heilmann, Ralf K.; Bruccoleri, Alexander R.; Hertz, Edward; Schatternburg, Mark L.

    2017-08-01

    We report progress toward developing a scanning laser reflection (LR) tool for alignment and period measurement of critical-angle transmission (CAT) gratings. It operates on a similar measurement principle as a tool built in 1994 which characterized period variations of grating facets for the Chandra X-ray Observatory. A specularly reflected beam and a first-order diffracted beam were used to record local period variations, surface slope variations, and grating line orientation. In this work, a normal-incidence beam was added to measure slope variations (instead of the angled-incidence beam). Since normal incidence reflection is not coupled with surface height change, it enables measurement of slope variations more accurately and, along with the angled-incidence beam, helps to reconstruct the surface figure (or tilt) map. The measurement capability of in-grating period variations was demonstrated by measuring test reflection grating (RG) samples that show only intrinsic period variations of the interference lithography process. Experimental demonstration for angular alignment of CAT gratings is also presented along with a custom-designed grating alignment assembly (GAA) testbed. All three angles were aligned to satisfy requirements for the proposed Arcus mission. The final measurement of roll misalignment agrees with the roll measurements performed at the PANTER x-ray test facility.

  1. The Effect of Tool Dimension, Tool Overhang and Cutting Parameters Towards Tool Vibration and Surface Roughness on Turning Process

    OpenAIRE

    Zuingli Santo Bandaso; Johannes Leonard

    2017-01-01

    Turning process is the removal of metal from the outer diameter of a rotating cylindrical workpiece. Turning is used to reduce the diameter of the workpiece, usually to a specified dimension, and to produce a smooth finish on the metal. This research investigates the effect of feed rate, spindle speed, tool overhang and tool dimensions toward vibration amplitude and surface roughness on turning process. This study uses both statistical and graphical analysis of the data collected. The experim...

  2. Hydrothermal Upflow, Serpentinization and Talc Alteration Associated with a High Angle Normal Fault Cutting an Oceanic Detachment, Northern Apennines, Italy

    Science.gov (United States)

    Alt, J.; Crispini, L.; Gaggero, L.; Shanks, W. C., III; Gulbransen, C.; Lavagnino, G.

    2017-12-01

    Normal faults cutting oceanic core complexes are observed at the seafloor and through geophysics, and may act as flow pathways for hydrothermal fluids, but we know little about such faults in the subsurface. We present bulk rock geochemistry and stable isotope data for a fault that acted as a hydrothermal upflow zone in a seafloor ultramafic-hosted hydrothermal system in the northern Apennines, Italy. Peridotites were exposed on the seafloor by detachment faulting, intruded by MORB gabbros, and are overlain by MORB lavas and pelagic sediments. North of the village of Reppia are fault shear zones in serpentinite, oriented at a high angle to the detachment surface and extending 300 m below the paleo-seafloor. The paleo-seafloor strikes roughly east-west, dipping 30˚ to the north. At depth the fault zone occurs as an anticlinal form plunging 40˚ to the west. A second fault strikes approximately north-south, with a near vertical dip. The fault rock outcrops as reddish weathered talc + sulfide in 0.1-2 m wide anastomosing bands, with numerous splays. Talc replaces serpentinite in the fault rocks, and the talc rocks are enriched in Si, metals (Fe, Cu, Pb), Light Rare Earth Elements (LREE), have variable Eu anomalies, and have low Mg, Cr and Ni contents. In some cases gabbro dikes are associated with talc-alteration and may have enhanced fluid flow. Sulfide from a fault rock has d34S=5.7‰. The mineralogy and chemistry of the fault rocks indicate that the fault acted as the upflow pathway for high-T black-smoker type fluids. Traverses away from the fault (up to 1 km) and with depth below the seafloor (up to 500 m) reveal variable influences of hydrothermal fluids, but there are no consistent trends with distance. Background serpentinites 500 m beneath the paleoseafloor have LREE depleted trends. Other serpentinites exhibit correlations of LREE with HFSE as the result of melt percolation, but there is significant scatter, and hydrothermal effects include LREE enrichment

  3. The perfection of the construction of a combined cutting tool on the basis of the results of mathematical modelling of working cutting processes in RecurDyn

    Directory of Open Access Journals (Sweden)

    Poddubny Vladimir

    2017-01-01

    Full Text Available As the title implies the article describes how to optimize the construction of a combined cutting tool on the example of developed design of the face milling cutter with regulable rigidity of damping elements in order to improve the vibration resistance of the cutting process. RecurDyn is proposed, which is widely used for creating models of different mechanical systems, their analysis and optimization of construction, uses the ideology of visual object-oriented programming and computer research of volume solid-state models. Much attention is given to the description of the mechanical and mathematical model of the face milling cutter in RecurDyn and the results of mathematical modeling of the face milling cutter with damping elements, consisting of individual elements, with the possibility of program controlling its operation in the process of cutting. The applying of RecurDyn made it possible to carry out a complex assessment of influence of separate elements of a design of the combined cutting tool on quantitative and qualitative parameters of milling process and to define optimal values of the input and output parameters of technological process of machining for various damping elements.

  4. Deposition of hard and adherent TiBCN films for cutting tools applications

    Energy Technology Data Exchange (ETDEWEB)

    Tillmann, Wolfgang; Hoffmann, Fabian [Institute of Materials Engineering, Technische Universitaet Dortmund (Germany); Bejarano, Gilberto [Institute of Materials Engineering, Technische Universitaet Dortmund (Germany); Department of Materials Engineering, Universidad de Antioquia, Group for Corrosion and Protection-CIDEMAT, Calle 67 No. 53-108, Medellin (Colombia)

    2012-08-15

    Metal cutting tools having wear resistant and chemically stable ceramic coatings are in many applications superior in performance to uncoated tools. Titanium boron carbon nitride (TiBCN) is a hard material particularly suitable as a protective coating for cutting tools due to its excellent properties, such as a high hardness and high wear and corrosion resistance, among other. TiBCN films were grown on Si (100) and high speed steel substrates by means of reactively pulsed DC magnetron sputtering technique. Two B{sub 4}C- and two Ti-targets, to which a pulsed DC voltage of middle frequency was applied, were used for the deposition of TiBCN. A chromium layer was first deposited to obtain a better adhesion of TiBCN to the substrates. The mechanical properties of these coatings deposited under different N{sub 2} contents were investigated. The substrates were biased through a medium frequency power supply. The bias voltage value was -90 V for all coatings. The total film thickness was maintained at approximately 2 {mu}m. The hardness of the coatings increased with reduced nitrogen content, while the adhesion decreased from 40.8 to 24.2 N, and the wear rate increased from 0.154 to 0.744 x 10{sup -16} m{sup 3}/N.m, the latter probably caused by the low content of the self-lubricating amorphous matrix of our coatings. However, the sample deposited by a nitrogen gas flow of 60 sccm presented a wear rate of four orders of magnitude smaller than the uncoated sample. The deposition method presented in this work seems very promising for the manufacture of TiBCN coatings. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. An approach based on tool mode control for surface roughness reduction in high-frequency vibration cutting

    Science.gov (United States)

    Ostasevicius, V.; Gaidys, R.; Rimkeviciene, J.; Dauksevicius, R.

    2010-11-01

    The presented research work, aimed at deeper understanding of vibrational process during high-frequency vibration cutting, is accomplished by treating cutting tool as an elastic structure which is characterized by several modes of natural vibrations. An approach for surface quality improvement is proposed in this paper by taking into account that quality of machined surface is related to the intensity of tool-tip (cutting edge) vibrations. It is based on the excitation of a particular higher vibration mode of a turning tool, which leads to the reduction of deleterious vibrations in the machine-tool-workpiece system through intensification of internal energy dissipation in the tool material. The combined application of numerical analysis with accurate finite element model as well as different experimental methods during investigation of the vibration turning process allowed to determine that the most favorable is the second flexural vibration mode of the tool in the direction of vertical cutting force component. This mode is excited by means of piezoelectric transducer vibrating in axial tool direction at the corresponding natural frequency, thereby enabling minimization of surface roughness and tool wear.

  6. Cut It Up and Put It Back Together: Cut-up and Collage as Tools to Overcome Academic Deadlock

    DEFF Research Database (Denmark)

    Bager-Elsborg, Anna; Loads, Daphne

    2016-01-01

    This ‘On the Horizon’ paper concerns creativity in the research process as a way to overcome unhelpful pre-understandings and ‘false clarity’. This paper gives an idea of how we can allow research to be as complex and messy as reality. Cut-up and collage are introduced and suggested as a way of l...... of letting go of rational analysis and allowing subconscious observations to come forward. The research example is from a project examining the disciplinary characteristics of academic law in a research intensive university...

  7. Precision cut lung slices as an efficient tool for in vitro lung physio-pharmacotoxicology studies.

    Science.gov (United States)

    Morin, Jean-Paul; Baste, Jean-Marc; Gay, Arnaud; Crochemore, Clément; Corbière, Cécile; Monteil, Christelle

    2013-01-01

    1.We review the specific approaches for lung tissue slices preparation and incubation systems and the research application fields in which lung slices proved to be a very efficient alternative to animal experimentation for biomechanical, physiological, pharmacological and toxicological approaches. 2.Focus is made on air-liquid interface dynamic organ culture systems that allow direct tissue exposure to complex aerosol and that best mimic in vivo lung tissue physiology. 3.A compilation of research applications in the fields of vascular and airway reactivity, mucociliary transport, polyamine transport, xenobiotic biotransformation, chemicals toxicology and complex aerosols supports the concept that precision cut lung slices are a very efficient tool maintaining highly differentiated functions similar to in vivo lung organ when kept under dynamic organ culture. They also have been successfully used for lung gene transfer efficiency assessment, for lung viral infection efficiency assessment, for studies of tissue preservation media and tissue post-conditioning to optimize lung tissue viability before grafting. 4.Taken all together, the reviewed studies point to a great interest for precision cut lung slices as an efficient and valuable alternative to in vivo lung organ experimentation.

  8. Evaluation of Tool Path Strategy and Cooling Condition Effects on the Cutting Force and Surface Quality in Micromilling Operations

    Directory of Open Access Journals (Sweden)

    Ugur Koklu

    2017-10-01

    Full Text Available Compared to milling on a macro scale, the micromilling process has several cumbersome points that need to be addressed. Rapid tool wear and fracture, severe burr formation, and poor surface quality are the major problems encountered in the micromilling process. This study aimed to reveal the effect of cutting path strategies on the cutting force and surface quality in the micromilling of a pocket. The hatch zigzag tool path strategy and the contour climb tool path strategy under different cooling conditions (e.g., dry, air blow, and flood coolant at fixed cutting parameters. The micromilling tests revealed that better results were obtained with the use of the contour tool path strategy in terms of cutting forces (by up to ~43% compared to the dry condition and surface quality (by up to ~44% compared to the air blow condition when compared to the hatch tool path strategy. In addition, the flood coolant reduces the cutting temperature and eliminates chips to significantly enhance the quality of the micro milled surface.

  9. Using 3D Microscopy to Analyze Experimental Cut Marks on Animal Bones Produced with Different Stone Tools

    Directory of Open Access Journals (Sweden)

    Erika Moretti

    2015-12-01

    Full Text Available This study uses a combination of digital microscopic analysis and experimental archaeology to assess stone tool cut marks on animal bones. We used two un-retouched flint flakes and two burins to inflict cut marks on fresh, boiled, and dry ungulate  bones. The experiment produced three series of three engravings on each bone with each of the experimental tools. The first series involved one single stroke; the second, two strokes in the same direction; and the third, multiple strokes using a to-and-fro movement. We analyzed the striations using a Hirox 3D digital microscope (KH-7700 and collected metric and profile data on the morphology of the cut marks. In order to describe the shape of each cross section, we calculated the ratio between the breadth at the top and the breadth at the floor of cut marks. Preliminary results show that both the tool type and the method of creating the cut mark influence the shape of the resulting groove. In our experiment, morphological parameters can be used to differentiate between marks produced using un-retouched flint flakes and those produced using burins. However, neither morphological nor morphometric analysis allows us to identify the mechanical motion used to produce the cuts, nor the state of the bone (fresh, boiled, or dry at the moment of marking. 

  10. Angles measuring on radiographic images as a tool for the diagnosis of Blount disease

    International Nuclear Information System (INIS)

    Mora Rojas, Raul

    2010-01-01

    The etiology of Blount disease has followed unknown at the present; although are described factors that could be related to the appearance of the same. Even, to make the diagnosis of this disease remains a challenge, due to it difficult to predict the behavior of the tibia varus in young children. Some measures were described in the radiographs of patients with tibia vara (the most currently used has been the Tibial Proximal Diaphyseal Goal Angle) to try to provide another tool in the diagnosis, but without be able to establish a free relationship between disruption of these measures with the pathological development of tibial varus. A new measurement (Tibial Proximal Fibular Mechanic Angle) established in the radiographs has been the purpose, taking into account the structures and concepts that are altered in patients with Blount diseases. The proximal tibial physis and the mechanical axis of the tibia are performed without to take into account in some of the measurements described above. (author) [es

  11. Tool Forces and Chip Formation In Orthogonal Cutting Of Loblolly Pine

    Science.gov (United States)

    George E. Woodson; Peter Koch

    1970-01-01

    Specimens of earlywood and latewood of Pinus taeda L. were excised so that length along the grain was 3 inches and thickness was 0.1 inch. These specimens were cut orthogonally-as with a carpenter's plane-in the three major directions. Cutting velocity was 2 inches per minute. When cutting was in the planing (90-O) direction, thin chips,...

  12. Using 3D Microscopy to Analyze Experimental Cut Marks on Animal Bones Produced with Different Stone Tools

    OpenAIRE

    Erika Moretti; Simona Arrighi; Francesco Boschin; Jacopo Crezzini; Daniele Aureli; Annamaria Ronchitelli

    2015-01-01

    This study uses a combination of digital microscopic analysis and experimental archaeology to assess stone tool cut marks on animal bones. We used two un-retouched flint flakes and two burins to inflict cut marks on fresh, boiled, and dry ungulate  bones. The experiment produced three series of three engravings on each bone with each of the experimental tools. The first series involved one single stroke; the second, two strokes in the same direction; and the third, multiple strokes using a to...

  13. On-line Tool Wear Detection on DCMT070204 Carbide Tool Tip Based on Noise Cutting Audio Signal using Artificial Neural Network

    Science.gov (United States)

    Prasetyo, T.; Amar, S.; Arendra, A.; Zam Zami, M. K.

    2018-01-01

    This study develops an on-line detection system to predict the wear of DCMT070204 tool tip during the cutting process of the workpiece. The machine used in this research is CNC ProTurn 9000 to cut ST42 steel cylinder. The audio signal has been captured using the microphone placed in the tool post and recorded in Matlab. The signal is recorded at the sampling rate of 44.1 kHz, and the sampling size of 1024. The recorded signal is 110 data derived from the audio signal while cutting using a normal chisel and a worn chisel. And then perform signal feature extraction in the frequency domain using Fast Fourier Transform. Feature selection is done based on correlation analysis. And tool wear classification was performed using artificial neural networks with 33 input features selected. This artificial neural network is trained with back propagation method. Classification performance testing yields an accuracy of 74%.

  14. Mathematical Modelling and Optimization of Cutting Force, Tool Wear and Surface Roughness by Using Artificial Neural Network and Response Surface Methodology in Milling of Ti-6242S

    Directory of Open Access Journals (Sweden)

    Erol Kilickap

    2017-10-01

    Full Text Available In this paper, an experimental study was conducted to determine the effect of different cutting parameters such as cutting speed, feed rate, and depth of cut on cutting force, surface roughness, and tool wear in the milling of Ti-6242S alloy using the cemented carbide (WC end mills with a 10 mm diameter. Data obtained from experiments were defined both Artificial Neural Network (ANN and Response Surface Methodology (RSM. ANN trained network using Levenberg-Marquardt (LM and weights were trained. On the other hand, the mathematical models in RSM were created applying Box Behnken design. Values obtained from the ANN and the RSM was found to be very close to the data obtained from experimental studies. The lowest cutting force and surface roughness were obtained at high cutting speeds and low feed rate and depth of cut. The minimum tool wear was obtained at low cutting speed, feed rate, and depth of cut.

  15. Effect of cutting parameters on machinability characteristics in milling of magnesium alloy with carbide tool

    Directory of Open Access Journals (Sweden)

    Kaining Shi

    2016-01-01

    Full Text Available Magnesium alloy has attracted more attentions due to its excellent mechanical properties. However, in process of dry cutting operation, many problems restrict its further development. In this article, the effect of cutting parameters on machinabilities of magnesium alloy is explored under dry milling condition. This research is an attempt to investigate the impact of cutting speed at multiple feed rates on cutting force and surface roughness, while a statistical analysis is adopted to determine the influential intensities accurately. The results showed that cutting force is affected by the positively constant intensity from feed rate and the increasingly negative intensity from cutting speed. In contrast, surface roughness is determined by the gradually increasing negative tendency from feed rate and the positive effect with constant intensity from cutting speed. Within the range of the experiments, feed rate is the leading contribution for cutting force while the cutting speed is the dominant factor for surface roughness according to the absolute intensity values. Meanwhile, the trends of influencing intensities between cutting force and surface roughness are opposite. Besides, it is also found that in milling magnesium alloy, chip morphology is highly sensitive to cutting speed while the chip quality mainly depends on feed rate.

  16. Cutting forces optimization in the turning of UD-GFRP composites ...

    African Journals Online (AJOL)

    This paper presents an effective approach for the optimization of turning parameters based on the Taugchi's method with regression analysis. Second order predictive model covering tool nose radius, tool rake angle, feed rate, cutting speed, cutting environment (dry, wet and cooled) and depth of cut has been developed at ...

  17. Study of PVD AlCrN Coating for Reducing Carbide Cutting Tool Deterioration in the Machining of Titanium Alloys

    Directory of Open Access Journals (Sweden)

    Carlos I. Rivera-Solorio

    2013-05-01

    Full Text Available The manufacture of medical and aerospace components made of titanium alloys and other difficult-to-cut materials requires the parallel development of high performance cutting tools coated with materials capable of enhanced tribological and resistance properties. In this matter, a thin nanocomposite film made out of AlCrN (aluminum–chromium–nitride was studied in this research, showing experimental work in the deposition process and its characterization. A heat-treated monolayer coating, competitive with other coatings in the machining of titanium alloys, was analyzed. Different analysis and characterizations were performed on the manufactured coating by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDXS, and X-ray diffraction (XRD. Furthermore, the mechanical behavior of the coating was evaluated through hardness test and tribology with pin-on-disk to quantify friction coefficient and wear rate. Finally, machinability tests using coated tungsten carbide cutting tools were executed in order to determine its performance through wear resistance, which is a key issue of cutting tools in high-end cutting at elevated temperatures. It was demonstrated that the specimen (with lower friction coefficient than previous research is more efficient in machinability tests in Ti6Al4V alloys. Furthermore, the heat-treated monolayer coating presented better performance in comparison with a conventional monolayer of AlCrN coating.

  18. Study of PVD AlCrN Coating for Reducing Carbide Cutting Tool Deterioration in the Machining of Titanium Alloys.

    Science.gov (United States)

    Cadena, Natalia L; Cue-Sampedro, Rodrigo; Siller, Héctor R; Arizmendi-Morquecho, Ana M; Rivera-Solorio, Carlos I; Di-Nardo, Santiago

    2013-05-24

    The manufacture of medical and aerospace components made of titanium alloys and other difficult-to-cut materials requires the parallel development of high performance cutting tools coated with materials capable of enhanced tribological and resistance properties. In this matter, a thin nanocomposite film made out of AlCrN (aluminum-chromium-nitride) was studied in this research, showing experimental work in the deposition process and its characterization. A heat-treated monolayer coating, competitive with other coatings in the machining of titanium alloys, was analyzed. Different analysis and characterizations were performed on the manufactured coating by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDXS), and X-ray diffraction (XRD). Furthermore, the mechanical behavior of the coating was evaluated through hardness test and tribology with pin-on-disk to quantify friction coefficient and wear rate. Finally, machinability tests using coated tungsten carbide cutting tools were executed in order to determine its performance through wear resistance, which is a key issue of cutting tools in high-end cutting at elevated temperatures. It was demonstrated that the specimen (with lower friction coefficient than previous research) is more efficient in machinability tests in Ti6Al4V alloys. Furthermore, the heat-treated monolayer coating presented better performance in comparison with a conventional monolayer of AlCrN coating.

  19. Reliability of a computer software angle tool for measuring spine and pelvic flexibility during the sit-and-reach test.

    Science.gov (United States)

    Mier, Constance M; Shapiro, Belinda S

    2013-02-01

    The purpose of this study was to determine the reliability of a computer software angle tool that measures thoracic (T), lumbar (L), and pelvic (P) angles as a means of evaluating spine and pelvic flexibility during the sit-and-reach (SR) test. Thirty adults performed the SR twice on separate days. The SR test was captured on video and later analyzed for T, L, and P angles using the computer software angle tool. During the test, 3 markers were placed over T1, T12, and L5 vertebrae to identify T, L, and P angles. Intraclass correlation coefficient (ICC) indicated a very high internal consistency (between trials) for T, L, and P angles (0.95-0.99); thus, the average of trials was used for test-retest (between days) reliability. Mean (±SD) values did not differ between days for T (51.0 ± 14.3 vs. 52.3 ± 16.2°), L (23.9 ± 7.1 vs. 23.0 ± 6.9°), or P (98.4 ± 15.6 vs. 98.3 ± 14.7°) angles. Test-retest reliability (ICC) was high for T (0.96) and P (0.97) angles and moderate for L angle (0.84). Both intrarater and interrater reliabilities were high for T (0.95, 0.94) and P (0.97, 0.97) angles and moderate for L angle (0.87, 0.82). Thus, the computer software angle tool is a highly objective method for assessing spine and pelvic flexibility during a video-captured SR test.

  20. Optimization of arc evaporated (Ti,Al)N film composition for cutting tool applications

    Energy Technology Data Exchange (ETDEWEB)

    Coll, B.F.; Sathrum, P.; Fontana, R. (Multi-Arc Scientific Coatings, Rockaway, NJ (United States)); Peyre, J.P.; Duchateau, D. (CETIM, 60 - Senlis (France)); Benmalek, M. (CRV S.A., Pechiney Group, 38 - Voreppe (France))

    1992-03-15

    The arc evaporation process is commonly used to deposit TiN coatings for protection against wear and friction. The suitability of this established process for depositing ternary compound films of (Ti{sub x}Al{sub 1-x})N by using alloyed Ti-Al cathodes of various compositions is presented. The influence of the coating parameters on the final composition of the (Ti,Al)N films has been investigated. The bias voltage appears to be the main parameter controlling the final composition. Graded films with three different Al:Ti ratios (0.2, 0.3 and 0.8) have been prepared and comparative four-point-bending tests show a ductility of around 1.2%-1.5% for the (Ti,Al)N coatings. Comparative cutting tool experiments show the superior performance of (Ti,Al)N films for milling difficult-to-machine materials such as titanium alloys, stainless steels and nickel-based superalloys. (orig.).

  1. Tribological and wear behavior of HfN/VN nanomultilayer coated cutting tools

    Directory of Open Access Journals (Sweden)

    Willian Aperador Chaparro

    2014-01-01

    Full Text Available Wear and tribological behavior of [HfN/VN]n multinanolayers deposited via magnetron sputtering has been exhaustively studied in this work. Enhancement of both hardness and elastic modulus up to 37 GPa and 351 GPa, respectively, was observed as bilayer periods in the coatings were decreased. The sample with a bilayer period (Λ of 15 nm and bilayer number n = 80, showed the lowest friction coefficient (∼0.15 and the highest critical load (72 N, corresponding to 2.2 and 1.38 times better than those values for the coating deposited with n = 1, respectively. Taking into account the latest results of tungsten carbide (WC inserts were used as substrates to improve the mechanical and tribological properties of [HfN/VN]n coatings as a function of increased interface number and to manage higher efficiency of these coatings in different industrial applications, like machining and extrusion. Their physical, mechanical, and tribological characteristics were investigated, including cutting tests with AISI 1020 steel (workpiece to assess wear as a function of the bilayer number and bilayer period. A comparison of the tribological properties revealed a decrease of flank wear (approximately 24% for WC inserts coated with [HfN/VN]80 (Λ =15 nm, when compared to uncoated tungsten carbide inserts. These results demonstrate the possibility of using [HfN/VN] multilayers as new coatings for tool machining with excellent industrial performance.

  2. Diamond and cBN hybrid and nanomodified cutting tools with enhanced performance: Development, testing and modelling

    DEFF Research Database (Denmark)

    Loginov, Pavel; Mishnaevsky, Leon; Levashov, Evgeny

    2015-01-01

    with 25% of diamond replaced by cBN grains demonstrate 20% increased performance as compared with pure diamond machining tools, and more than two times higher performance as compared with pure cBN tools. Further, cast iron machining efficiency of the wheels modified by hBN particles was 80% more efficient......The potential of enhancement of superhard steel and cast iron cutting tool performance on the basis of microstuctural modifications of the tool materials is studied. Hybrid machining tools with mixed diamond and cBN grains, as well as machining tool with composite nanomodified metallic binder...... are developed, and tested experimentally and numerically. It is demonstrated that both combination of diamond and cBN (hybrid structure) and nanomodification of metallic binder (with hexagonal boron nitride/hBN platelets) lead to sufficient improvement of the cast iron machining performance. The superhard tools...

  3. Performance and characterisation of CVD diamond coated, sintered diamond and WC-Co cutting tools for dental and micromachining applications

    International Nuclear Information System (INIS)

    Sein, Htet; Ahmed, Waqar; Jackson, Mark; Woodwards, Robert; Polini, Riccardo

    2004-01-01

    Diamond coatings are attractive for cutting processes due to their high hardness, low friction coefficient, excellent wear resistance and chemical inertness. The application of diamond coatings on cemented tungsten carbide (WC-Co) tools was the subject of much attention in recent years in order to improve cutting performance and tool life. WC-Co tools containing 6% Co and 94% WC substrate with an average grain size 1-3 μm were used in this study. In order to improve the adhesion between diamond and WC substrates, it is necessary to etch away the surface Co and prepare the surface for subsequent diamond growth. Hot filament chemical vapour deposition with a modified vertical filament arrangement has been employed for the deposition of diamond films. Diamond film quality and purity have been characterised using scanning electron microscopy and micro-Raman spectroscopy. The performance of diamond coated WC-Co bur, uncoated WC-Co bur, and diamond embedded (sintered) bur have been compared by drilling a series of holes into various materials such as human teeth, borosilicate glass and porcelain teeth. Flank wear has been used to assess the wear rates of the tools. The materials subjected to cutting processes have been examined to assess the quality of the finish. Diamond coated WC-Co microdrills and uncoated microdrills were also tested on aluminium alloys. Results show that there was a 300% improvement when the drills were coated with diamond compared to the uncoated tools

  4. Design and simulation of thermal residual stresses of coatings on WC-Co cemented carbide cutting tool substrate

    International Nuclear Information System (INIS)

    Li, Anhai; Zhao, Jun; Zang, Jian; Zheng, Wei

    2016-01-01

    Large thermal residual stresses in coatings during the coating deposition process may easily lead to coating delamination of coated carbide tools in machining. In order to reduce the possibility of coating delamination during the tool failure process, a theoretical method was proposed and a numerical method was constructed for the coating design of WC-Co cemented carbide cutting tools. The thermal residual stresses of multi-layered coatings were analytically modeled based on equivalent parameters of coating properties, and the stress distribution of coatings are simulated by Finite element method (FEM). The theoretically calculated results and the FEM simulated results were verified and in good agreement with the experimental test results. The effects of coating thickness, tool substrate, coating type and interlayer were investigated by the proposed geometric and FEM model. Based on the evaluations of matchability of tool substrate and tool coatings, the basic principles of tool coating design were proposed. This provides theoretical basis for the selection and design of coatings of cutting tools in high-speed machining

  5. Design and simulation of thermal residual stresses of coatings on WC-Co cemented carbide cutting tool substrate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Anhai; Zhao, Jun; Zang, Jian; Zheng, Wei [Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical EngineeringShandong University, Jinan (China)

    2016-08-15

    Large thermal residual stresses in coatings during the coating deposition process may easily lead to coating delamination of coated carbide tools in machining. In order to reduce the possibility of coating delamination during the tool failure process, a theoretical method was proposed and a numerical method was constructed for the coating design of WC-Co cemented carbide cutting tools. The thermal residual stresses of multi-layered coatings were analytically modeled based on equivalent parameters of coating properties, and the stress distribution of coatings are simulated by Finite element method (FEM). The theoretically calculated results and the FEM simulated results were verified and in good agreement with the experimental test results. The effects of coating thickness, tool substrate, coating type and interlayer were investigated by the proposed geometric and FEM model. Based on the evaluations of matchability of tool substrate and tool coatings, the basic principles of tool coating design were proposed. This provides theoretical basis for the selection and design of coatings of cutting tools in high-speed machining.

  6. SCLERAL BUCKLING WITH WIDE-ANGLED ENDOILLUMINATION AS A SURGICAL EDUCATIONAL TOOL.

    Science.gov (United States)

    Narayanan, Raja; Tyagi, Mudit; Hussein, Abdullah; Chhablani, Jay; Apte, Rajendra S

    2016-04-01

    To describe a technique of wide-angle viewing as an educational tool in scleral buckling for rhegmatogenous retinal detachment. Retrospective comparative study of the reported technique was performed. Fourteen consecutive patients each who underwent Chandelier-assisted scleral buckling (CSB) or standard scleral buckling (SSB) using indirect ophthalmoscope were included. The primary outcome measure was the proportion of eyes that had successful reattachment of retina. Mean study eye baseline visual acuity was 20/160 in the CSB group and 20/320 in SSB group. The primary reattachment rate was similar, with 13 of 14 eyes (92.85%) successfully attached in the CSB group and 12 of 14 eyes (85.71%) in the SSB group. The mean visual acuity improved from 20 of 160 to 20 of 80 in the CSB group, and 20 of 320 to 20 of 160 in the SSB group. The surgical time was significantly less in the CSB group (77.85 ± 16.37 minutes) compared with the SSB group (95.71 ± 26.59 minutes, P = 0.037). Chandelier-assisted buckling had similar outcomes compared with standard buckling. It could be used as a valuable educational tool for teaching fellows by allowing them to simultaneously view the operative steps along with the surgeon.

  7. Cutting force analysis as a tool for evaluating the surface quality of machined parts

    International Nuclear Information System (INIS)

    Sanchez-Carrilero, M.; Marcos, M.; Alvarez-Alcon, M.; Sanchez-Corbacho, V.M.

    1998-01-01

    Surface quality is one of the most important criteria for establishing the optimum cutting parameters needed to perform a machining process. Usually, the evaluation of the degree of the surface finishing requires to apply metrological techniques which involve times out in the production. As a consequence of this, a loss in both the economy of the process and the fiability of the tests reproducibility can be produced. In this work a relation between cutting force and surface roughness has been studied for the turning process of an Al-Cu alloy. From this relation, the surface quality of the machined samples can be evaluated by using the cutting forces values acquired during the cutting process. (Author) 8 refs

  8. Microstructural characterization of WC-TiC-Co cutting tools during high-speed machining of P20 mold steel

    International Nuclear Information System (INIS)

    Farhat, Z.N.

    2003-01-01

    The wear behavior of tungsten carbide (WC)-TiC-Co cutting tools during cutting P20 tool steel was investigated. Orthogonal cutting tests were performed on a CNC lathe using five speeds, namely, 60, 120, 240, 380 and 600 m/min. Wear, as the width of the wear land, was monitored at five time intervals. Wear characterization of the rake and the flank surfaces as well as the collected chips was performed using scanning electron microscopy (SEM), backscattered electron imaging and energy-dispersive X-ray analysis (EDX). Microhardness of collected chips was also performed to monitor strain hardening effects during cutting. Two dominant wear mechanisms were identified: at high speed (380-600 m/min), wear was found to occur by a melt wear mechanism; at low speed (60-120 m/min), adhesion (built-up edge) followed by delamination was found to be the cause of wear damage. It was also found that deformation in the chips occurred by localized shear deformation

  9. PERFORMANCE STUDY ON AISI316 AND AISI410 USING DIFFERENT LAYERED COATED CUTTING TOOLS IN CNC TURNING

    Directory of Open Access Journals (Sweden)

    K. RAJA

    2015-01-01

    Full Text Available Stainless steel (SS is used for many commercial and industrial applications owing to its high resistance to corrosion. It is too hard to machine due to its high strength and high work hardening property. A surface property such as surface roughness (SR is critical to the function-ability of machined components. SS is generally regarded as more difficult to machine material and poor SR is obtained during machining. In this paper an attempt has been made to investigate the SR produced by CNC turning on austenitic stainless steel (AISI316 and martensitic stainless steel (AISI410 by different cases of coated cutting tool used at dry conditions. Multilayered coated with TiCN/Al2O3, multilayered coated with Ti(C, N, B and single layered coated with TiAlN coated cutting tools are used. Experiments were carried out by using Taguchi’s L27 orthogonal array. The effect of cutting parameters on SR is evaluated and optimum cutting conditions for minimizing the SR are determined. Analysis of variance (ANOVA is used for identifying the significant parameters affecting the responses. Confirmation experiments are conducted to validate the results obtained from optimization.

  10. Dimensional accuracy of internal cooling channel made by selective laser melting (SLM And direct metal laser sintering (DMLS processes in fabrication of internally cooled cutting tools

    Directory of Open Access Journals (Sweden)

    Ghani S. A. C.

    2017-01-01

    Full Text Available Selective laser melting(SLM and direct metal laser sintering(DMLS are preferred additive manufacturing processes in producing complex physical products directly from CAD computer data, nowadays. The advancement of additive manufacturing promotes the design of internally cooled cutting tool for effectively used in removing generated heat in metal machining. Despite the utilisation of SLM and DMLS in a fabrication of internally cooled cutting tool, the level of accuracy of the parts produced remains uncertain. This paper aims at comparing the dimensional accuracy of SLM and DMLS in machining internally cooled cutting tool with a special focus on geometrical dimensions such as hole diameter. The surface roughness produced by the two processes are measured with contact perthometer. To achieve the objectives, geometrical dimensions of identical tool holders for internally cooled cutting tools fabricated by SLM and DMLS have been determined by using digital vernier calliper and various magnification of a portable microscope. In the current study, comparing internally cooled cutting tools made of SLM and DMLS showed that generally the higher degree of accuracy could be obtained with DMLS process. However, the observed differences in surface roughness between SLM and DMLS in this study were not significant. The most obvious finding to emerge from this study is that the additive manufacturing processes selected for fabricating the tool holders for internally cooled cutting tool in this research are capable of producing the desired internal channel shape of internally cooled cutting tool.

  11. Effects of heat on cut mark characteristics.

    Science.gov (United States)

    Waltenberger, Lukas; Schutkowski, Holger

    2017-02-01

    Cut marks on bones provide crucial information about tools used and their mode of application, both in archaeological and forensic contexts. Despite a substantial amount of research on cut mark analysis and the influence of fire on bones (shrinkage, fracture pattern, recrystallisation), there is still a lack of knowledge in cut mark analysis on burnt remains. This study provides information about heat alteration of cut marks and whether consistent features can be observed that allow direct interpretation of the implemented tools used. In a controlled experiment, cut marks (n=25) were inflicted on pig ribs (n=7) with a kitchen knife and examined using micro-CT and digital microscopy. The methods were compared in terms of their efficacy in recording cut marks on native and heat-treated bones. Statistical analysis demonstrates that floor angles and the maximum slope height of cuts undergo significant alteration, whereas width, depth, floor radius, slope, and opening angle remain stable. Micro-CT and digital microscopy are both suitable methods for cut mark analysis. However, significant differences in measurements were detected between both methods, as micro-CT is less accurate due to the lower resolution. Moreover, stabbing led to micro-fissures surrounding the cuts, which might also influence the alteration of cut marks. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Effect of cutting parameters on workpiece and tool properties during drilling of Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Yahya Hisman; Yildiz, Hakan [Batman Univ. (Turkey). Dept. of Mechanical Engineering; Oezek, Cebeli [Firat Univ., Elazig (Turkey)

    2016-08-01

    The main aim of machining is to provide the dimensional preciseness together with surface and geometric quality of the workpiece to be manufactured within the desired limits. Today, it is quite hard to drill widely utilized Ti-6Al-4 V alloys owing to their superior features. Therefore, in this study, the effects of temperature, chip formation, thrust forces, surface roughness, burr heights, hole diameter deviations and tool wears on the drilling of Ti-6Al-4 V were investigated under dry cutting conditions with different cutting speeds and feed rates by using tungsten carbide (WC) and high speed steel (HSS) drills. Moreover, the mathematical modeling of thrust force, surface roughness, burr height and tool wear were formed using Matlab. It was found that the feed rate, cutting speed and type of drill have a major effect on the thrust forces, surface roughness, burr heights, hole diameter deviations and tool wears. Optimum results in the Ti-6Al-4 V alloy drilling process were obtained using the WC drill.

  13. The DSM-5 Self-Rated Level 1 Cross-Cutting Symptom Measure as a Screening Tool.

    Science.gov (United States)

    Bastiaens, Leo; Galus, James

    2018-03-01

    The DSM-5 Self-Rated Level 1 Cross-Cutting Symptom Measure was developed to aid clinicians with a dimensional assessment of psychopathology; however, this measure resembles a screening tool for several symptomatic domains. The objective of the current study was to examine the basic parameters of sensitivity, specificity, positive and negative predictive power of the measure as a screening tool. One hundred and fifty patients in a correctional community center filled out the measure prior to a psychiatric evaluation, including the Mini International Neuropsychiatric Interview screen. The above parameters were calculated for the domains of depression, mania, anxiety, and psychosis. The results showed that the sensitivity and positive predictive power of the studied domains was poor because of a high rate of false positive answers on the measure. However, when the lowest threshold on the Cross-Cutting Symptom Measure was used, the sensitivity of the anxiety and psychosis domains and the negative predictive values for mania, anxiety and psychosis were good. In conclusion, while it is foreseeable that some clinicians may use the DSM-5 Self-Rated Level 1 Cross-Cutting Symptom Measure as a screening tool, it should not be relied on to identify positive findings. It functioned well in the negative prediction of mania, anxiety and psychosis symptoms.

  14. The damage of the cutting tools out of carbide metallic during the turning of a soaked and not hardened steel XC38

    International Nuclear Information System (INIS)

    Seghouani, M; Tafraoui, A; Lebaili, S

    2012-01-01

    The purpose of this study widened knowledge on the use of the cutting tools out of metal carbide and to define of it the influence of the elements of the mode of cut on the behaviour of these tools during the machining of treated steel XC38 and untreated. This work aims at evolution determined in experiments of the wear of a cutting tool out of metal carbide with plate reported of P30 nuance for an operation of slide-lathing in turning on soaked and not hardened steel XC38 test-tubes. This research is based on the model of Taylor to determine the lifespan of the cutting tool according to the various parameters of cut, like the cutting speed Vc, the advance of cut a, the depth of cutting P. In order to express the operational limits of the tool for slide-lathing in a preventive way. The model makes it possible to determine the time of change of the tool and to regard it as constraint for the respect of the roughness of the work piece during a work of series in conventional machining.

  15. Investigation of wear and tool life of coated carbide and cubic boron nitride cutting tools in high speed milling

    Czech Academy of Sciences Publication Activity Database

    Twardowski, P.; Legutko, S.; Krolczyk, G.; Hloch, Sergej

    2015-01-01

    Roč. 7, č. 6 (2015), s. 1-9 ISSN 1687-8132 Institutional support: RVO:68145535 Keywords : hardened steels * milling tools * high speed machining * tool life * wear Subject RIV: JQ - Machines ; Tools Impact factor: 0.640, year: 2015 http://ade.sagepub.com/content/7/6/1687814015590216.full.pdf+html

  16. Side Flow Effect on Surface Generation in Nano Cutting.

    Science.gov (United States)

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong

    2017-12-01

    The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} , {110} , and {110}  are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.

  17. Surface Layer States of Worn Uncoated and TiN-Coated WC/Co-Cemented Carbide Cutting Tools after Dry Plain Turning of Carbon Steel

    Directory of Open Access Journals (Sweden)

    Johannes Kümmel

    2013-01-01

    Full Text Available Analyzing wear mechanisms and developments of surface layers in WC/Co-cemented carbide cutting inserts is of great importance for metal-cutting manufacturing. By knowing relevant processes within the surface layers of cutting tools during machining the choice of machining parameters can be influenced to get less wear and high tool life of the cutting tool. Tool wear obviously influences tool life and surface integrity of the workpiece (residual stresses, surface quality, work hardening, etc., so the choice of optimised process parameters is of great relevance. Vapour-deposited coatings on WC/Co-cemented carbide cutting inserts are known to improve machining performance and tool life, but the mechanisms behind these improvements are not fully understood. The interaction between commercial TiN-coated and uncoated WC/Co-cemented carbide cutting inserts and a normalised SAE 1045 steel workpiece was investigated during a dry plain turning operation with constant material removal under varied machining parameters. Tool wear was assessed by light-optical microscopy, scanning electron microscopy (SEM, and EDX analysis. The state of surface layer was investigated by metallographic sectioning. Microstructural changes and material transfer due to tribological processes in the cutting zone were examined by SEM and EDX analyses.

  18. Response Surface Methodology Approach on Effect of Cutting Parameter on Tool Wear during End Milling of High Thermal Conductivity Steel -150 (HTCS-150)

    Science.gov (United States)

    Mohd Hadzley, A. B.; Mohd Azahar, W. M. Y. Wan; Izamshah, R.; Mohd Shahir, K.; Mohd Amran, A.; Anis Afuza, A.

    2016-02-01

    This paper presents a study of development the tool life's mathematical model during the milling process on High Thermal Conductivity Steel 150 (HTCS-150) 56 HRC. Using response surface methodology, the mathematical models for tool life have been developed in terms of cutting speed, feed rate and depth of cut. Box-Behnken techniques is a part of Response Surface Methodology (RSM) has been used to carry out the work plan to predict, the tool wear and generate the numerical equation in relation to independent variable parameters by Design Expert software. Dry milling experiments were conducted by using two levels of cutting speed, feed rate and depth of cut. In this study, the variable for the cutting speed, feed rate and depth of cut were in the range of 484-553 m/min, 0.31-0.36 mm/tooth, and 0.1-0.5 mm, width of cut is constantly 0.01mm per passes. The tool wear was measured using tool maker microscope. The effect of input factors that on the responds were identified by using mean of ANOVA. The responds of tool wear then simultaneously optimized. The validation of the test reveals the model accuracy 5% and low tool wear under same experimental condition.

  19. Effects of Increasing Feed Rate on Tool Deterioration and Cutting Force during End Milling of 718Plus Superalloy Using Cemented Tungsten Carbide Tool

    Directory of Open Access Journals (Sweden)

    Nurul H. Razak

    2017-10-01

    Full Text Available Understanding how feed rate (ft affects tool deterioration during milling of Ni-based superalloys is practically important, but this understanding is currently insufficient. In the present study using a 718Plus Ni-based alloy and cemented tungsten carbide tool inserts, milling experiments were conducted with ft = 0.10 mm/tooth under either dry or wet (with coolant conditions. The results are compared to those based on using ft = 0.05 mm/tooth from previous studies. The milling force (F was monitored, the cutting tool edge was examined and the flank wear (VBmax was measured. As would be expected, an increase in ft increased F. It was found that F correlated well with VBmax for the high ft (0.1 mm/tooth experiments, as opposed to the previously observed poor F-VBmax relationship for the lower ft (0.05 mm/tooth value. This is explained, supported by detailed failure analysis of the cutting tool edges, by the deterioration mode to be dominantly edge chipping with a low occurrence of fracturing along the flank face when the high ft was used. This dominancy of the deterioration mode means that the tool edge and workpiece contact was consistent and thus resulted in a clear F-VBmax relationship. A clear F-VBmax relationship should then mean monitoring VBmax through monitoring F is possible.

  20. Development of a Metal Cutting Tool Fase in Order to Create the Conditions of Ringed Chips Wrapping

    Science.gov (United States)

    Korchuganova, M.; Syrbakov, A.; Chernysheva, T.; Ivanov, G.; Korchuganov, M.

    2016-08-01

    When processing ductile metals with high cutting speed, there is a need to take additional measures for a comfortable and safe formation and removal of chips. In the conditions of large-scale manufacture, it is recommended to produce flow chips in the form of short fragments, while in the conditions of small-lot and single-piece manufacture, it is reasonable to wrap the chips spirally with a rather small turn radius. Such way of chips formation reduces the time of its removal from the working area as well as facilitates its transportation and processing. In order to solve the problem of chip wrapping and breakage, almost all modern manufacturers of tools with replaceable many-sided plates (RMSP) followed the way of complication of tool faces and determination of the areas of effective chip breaking. On the one hand, the suggested solution turns out to be effective; however, as showed the analysis of recommended cutting modes for complex forms of RMSP made by leading manufacturers, they all correspond to the definite cross section of the cut-layer S/t=0.1.

  1. Applying the self-organization feature map (SOM) algorithm to AE-based tool wear monitoring in micro-cutting

    Science.gov (United States)

    Yen, Chia-Liang; Lu, Ming-Chyuan; Chen, Jau-Liang

    2013-01-01

    This study applies a self-organization feature map (SOM) neural network to acoustic emission (AE) signal-based tool wear monitoring for a micro-milling process. An experiment was set up to collect the signal during cutting for the system development and performance analysis. The AE signal generated on the workpiece was first transformed to the frequency domain by Fast Fourier transformation (FFT), followed by feature extraction processing using the SOM algorithm. The performance verification in this study adopts a learning vector quantification (LVQ) network to evaluate the effects of the SOM algorithm on the classification performance for tool wear monitoring. To investigate the improvement achieved by the SOM algorithms, this study also investigates cases applying only the LVQ classifier and based on the class mean scatter feature selection (CMSFS) criterion and LVQ. Results show that accurate classification of the tool wear can be obtained by properly selecting features closely related to the tool wear based on the CMSFS and frequency resolution of spectral features. However, the SOM algorithms provide a more reliable methodology of reducing the effect on the system performance contributed by noise or variations in the cutting system.

  2. Cutting tool performance enhancement by using a B{sub 4}C/BCN/C-BN multilayer system

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano Gaitan, G. [Technological Development Center ASTIN-SENA, Cali (Colombia); Group of Corrosion and Protection, University of Antioquia, Medellin (Colombia); Caicedo, J.C. [Technological Development Center ASTIN-SENA, Cali (Colombia); Excellence Center for Novel Materials, Universidad del Valle, Cali (Colombia); Prieto, P. [Excellence Center for Novel Materials, Universidad del Valle, Cali (Colombia); Balogh, Adam G. [Institute of Materials Science, Darmstadt University of Technology (Germany)

    2007-07-01

    Thin films of B{sub 4}C/BCN/c-BN multilayers were deposited on to AISI M2 high speed steel substrates by rf. (13.56 MHz) multi-target magnetron sputtering from high purity (99.99%) h-BN and a (99.5%)B{sub 4}C target, in Ar(90%)/N{sub 2}(10%) gasmixture. For their deposition we varied the bias voltage of the B{sub 4}C films between -50 and -250 V and, for the BCN coatings the nitrogen gas flow from 3% to 12%. A 300-nm thick TiN buffer layer was first deposited to improve the adhesion of all samples. Mechanical properties like hardness, elastic Young modulus, and adhesion were determined by nanoindentation and scratch measurements. Finally, cutting tools were carried out. Tool performance was registered as functions of bilayer numbers showed enhancement between 60% and 107% and a surface roughness reduction of 60% for cutting tools coated with 16 bilayers, compared to uncoated tools. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Sub-millimeter measurement of finite strains at cutting tool tip vicinity

    OpenAIRE

    POTTIER, Thomas; GERMAIN, Guénaël; CALAMAZ, Madalina; MOREL, Anne; COUPARD, Dominique

    2014-01-01

    Lien vers la version éditeur: http://link.springer.com/article/10.1007%2Fs11340-014-9868-0; International audience; The present paper details a simple and effective experimental procedure dedicated to strain measurement during orthogonal cutting operations. It relies on the use of high frame-rate camera and optical microscopy. A numerical post-procedure is also proposed in order to allow particle tracking from Digital Image Correlation (DIC). Therefore strain accumulation within finite strain...

  4. The influence of tool path strategies on cutting force and surface texture during ball end milling of low curvature convex surfaces.

    Science.gov (United States)

    Shajari, Shaghayegh; Sadeghi, Mohammad Hossein; Hassanpour, Hamed

    2014-01-01

    Advancement in machining technology of curved surfaces for various engineering applications is increasing. Various methodologies and computer tools have been developed by the manufacturers to improve efficiency of freeform surface machining. Selection of the right sets of cutter path strategies and appropriate cutting conditions is extremely important in ensuring high productivity rate, meeting the better quality level, and lower cutting forces. In this paper, cutting force as a new decision criterion for the best selection of tool paths on convex surfaces is presented. Therefore, this work aims at studying and analyzing different finishing strategies to assess their influence on surface texture, cutting forces, and machining time. Design and analysis of experiments are performed by means of Taguchi technique and analysis of variance. In addition, the significant parameters affecting the cutting force in each strategy are introduced. Machining strategies employed include raster, 3D-offset, radial, and spiral. The cutting parameters were feed rate, cutting speed, and step over. The experiments were carried out on low curvature convex surfaces of stainless steel 1.4903. The conclusion is that radial strategy provokes the best surface texture and the lowest cutting forces and spiral strategy signifies the worst surface texture and the highest cutting forces.

  5. Technics Research on Polycrystalline Cubic Boron Nitride Cutting Tools Dry Turning Ti-6AL-4V Alloy Based on Orthogonal Experimental Design

    Directory of Open Access Journals (Sweden)

    Jia Yunhai

    2018-01-01

    Full Text Available Ti-6Al-4V components are the most widely used titanium alloy products not only in the aerospace industry, but also for bio-medical applications. The machine-ability of titanium alloys is impaired by their high temperature chemical reactivity, low thermal conductivity and low modulus of elasticity. Polycrystalline cubic boron nitride represents a substitute tool material for turning titanium alloys due to its high hardness, wear resistance, thermal stability and hot red hardness. For determination of suitable cutting parameters in dry turning Ti-6AL-4V alloy by Polycrystalline cubic boron nitride cutting tools, the samples, 300mm in length and 100mm in diameter, were dry machined in a lathe. The turning suitable parameters, such as cutting speed, feed rate and cut depth were determined according to workpieces surface roughness and tools flank wear based on orthogonal experimental design. The experiment showed that the cutting speed in the range of 160~180 m/min, the feed rate is 0.15 mm/rev and the depth of cut is 0.20mm, ideal workpiece surface roughness and little cutting tools flank wear can be obtained.

  6. First evidence of an extensive Acheulean large cutting tool accumulation in Europe from Porto Maior (Galicia, Spain).

    Science.gov (United States)

    Méndez-Quintas, E; Santonja, M; Pérez-González, A; Duval, M; Demuro, M; Arnold, L J

    2018-02-15

    We describe a European Acheulean site characterised by an extensive accumulation of large cutting tools (LCT). This type of Lower Paleolithic assemblage, with dense LCT accumulations, has only been found on the African continent and in the Near East until now. The identification of a site with large accumulations of LCTs favours the hypothesis of an African origin for the Acheulean of Southwest Europe. The lithic tool-bearing deposits date back to 293-205 thousand years ago. Our chronological findings confirm temporal overlap between sites with clear "African" Acheulean affinities and Early Middle Paleolithic sites found elsewhere in the region. These complex technological patterns could be consistent with the potential coexistence of different human species in south-western Europe during the Middle Pleistocene.

  7. Disk Rock Cutting Tool for the Implementation of Resource-Saving Technologies of Mining of Solid Minerals

    Science.gov (United States)

    Manietyev, Leonid; Khoreshok, Aleksey; Tsekhin, Alexander; Borisov, Andrey

    2017-11-01

    The directions of a resource and energy saving when creating a boom-type effectors of roadheaders of selective action with disc rock cutting tools on a multi-faceted prisms for the destruction of formation of minerals and rocks pricemax are presented. Justified reversing the modes of the crowns and booms to improve the efficiency of mining works. Parameters of destruction of coal and rock faces by the disk tool of a biconical design with the unified fastening knots to many-sided prisms on effectors of extraction mining machines are determined. Parameters of tension of the interfaced elements of knots of fastening of the disk tool at static interaction with the destroyed face of rocks are set. The technical solutions containing the constructive and kinematic communications realizing counter and reverse mode of rotation of two radial crowns with the disk tool on trihedral prisms and cases of booms with the disk tool on tetrahedral prisms in internal space between two axial crowns with the cutter are proposed. Reserves of expansion of the front of loading outside a table of a feeder of the roadheader of selective action, including side zones in which loading corridors by blades of trihedral prisms in internal space between two radial crowns are created are revealed.

  8. Si3N4 ceramic cutting tool sintered with CeO2 and Al2O3 additives with AlCrN coating

    Directory of Open Access Journals (Sweden)

    José Vitor Candido Souza

    2011-12-01

    Full Text Available Ceramic cutting tools are showing a growing market perspective in terms of application on machining operations due to their high hardness, wear resistance, and machining without a cutting fluid, therefore are good candidates for cast iron and Nickel superalloys machining. The objective of the present paper was the development of Si3N4 based ceramic cutting insert, characterization of its physical and mechanical properties, and subsequent coating with AlCrN using a PVD method. The characterization of the coating was made using an optical profiler, XRD, AFM and microhardness tester. The results showed that the tool presented a fracture toughness of 6.43 MPa.m½ and hardness of 16 GPa. The hardness reached 31 GPa after coating. The machining tests showed a decrease on workpiece roughness when machining with coated insert, in comparison with the uncoated cutting tool. Probably this fact is related to hardness, roughness and topography of AlCrN.

  9. STATISTICAL ANALYSIS OF ENERGY CONSUMPTION DURING THE CUTTING OF FROZEN MEAT BLOCKS USING MULTIPLE EDGE TOOL

    Directory of Open Access Journals (Sweden)

    A. B. Lisitsyn

    2016-01-01

    Full Text Available Abstract Currently, frozen meat blocks are widely used in meat processing for production of sausages and other meat products. Efficient grinding of frozen raw meat is an urgent task for meat industry professionals. The V.M.  Gorbatov All-Russian Meat Research Institute has developed energy- and resource-saving process for grinding of frozen meat blocks by milling. Determination of energy consumption for grinding of raw materials by multiple edge tools (milling tools is the most important step in the creating of new type mincing machine.

  10. An Experimental Investigation of Cutting Temperature and Tool Wear in 2 Dimensional Ultrasonic Vibrations Assisted Micro-Milling

    Directory of Open Access Journals (Sweden)

    Ibrahim Mohd Rasidi

    2017-01-01

    Full Text Available Two dimensional Ultrasonic vibration assisted milling (2D UVAM well knows process that involved in high tech system to generate ultra range of frequency applied to the milling process. More industries nowadays become aware taking this opportunity to improve their productivity without decreasing their product accuracies. This paper investigate a comparative machining between UVAM and conventional machining (CM in tool wear and cutting temperature in milling process. Micro amplitude and sine wave frequency will be generate into the workpiece jig by piezo-actuator. Thus, creating a micro gap that allow heat remove effectively with the chip produces. A more complex tool trajectory mechanics of 2D UVAM has been found during this research. The approaching the tool tip into the workpiece surfaces is affected by the amplitude displacement along the frequency applied. It is found that the tool wear was reduce and surface roughness improvement by applying the 2D UVAM compared to the CM when choosing the optimum amplitude and appropriate frequency.

  11. Reliable tool life measurements in turning - an application to cutting fluid efficiency evaluation

    DEFF Research Database (Denmark)

    Axinte, Dragos A.; Belluco, Walter; De Chiffre, Leonardo

    2001-01-01

    The paper proposes a method to obtain reliable measurements of tool life in turning, discussing some aspects related to experimental procedure and measurement accuracy. The method (i) allows and experimental determination of the extended Taylor's equation, with a limited set of experiments and (i...

  12. Small-angle neutron scattering: a tool for microstructural investigation of high-temperature materials

    Czech Academy of Sciences Publication Activity Database

    Strunz, Pavel; Mukherji, D.; Gilles, R.; Rösler, J.; Wiedenmann, A.

    2003-01-01

    Roč. 426, č. 4 (2003), s. 755-760 ISSN 0255-5476 R&D Projects: GA AV ČR KSK1010104 Keywords : small-angle neutron scattering * superalloys Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.602, year: 2003

  13. Cutting zone area and chip morphology in high-speed cutting of titanium alloy Ti-6Al-4V

    International Nuclear Information System (INIS)

    Ke, Qing Chan; Xu, Daochun; Xiong, Dan Ping

    2017-01-01

    The titanium alloy Ti-6Al-4V has superior properties but poor machinability, yet is widely used in aerospace and biomedical industries. Chip formation and cutting zone area are important factors that have received limited attention. Thus, we propose a high-speed orthogonal cutting model for serrated chip formation. The high speed orthogonal cutting of Ti-6Al-4V was studied with a cutting speed of 10-160 m/min and a feed of 0.07-0.11 mm/r. Using theoretical models and experimental results, parameters such as chip shape, serration level, slip angle, and shear slip distance were investigated. Cutting zone boundaries (tool-chip contact length, length of shear plane, and critical slip plane) and cutting zone area were obtained. The results showed that discontinuous, long-curling, and continuous chips were formed at low, medium, and high speeds, respectively. Serration level, shear slip distance, and slip angle rose with increasing cutting speed. The length of shear plane, tool-chip contact, and critical slip plane varied subtly with increased cutting speed, and rose noticeably with increased feed. Cutting zone area grew weakly with increased cutting speed, levelling off at high cutting speed; however, it rose noticeably with increased feed. This study furthers our understanding of the shear slip phenomenon and the mechanism of serrated chip formation

  14. Cutting zone area and chip morphology in high-speed cutting of titanium alloy Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Qing Chan; Xu, Daochun; Xiong, Dan Ping [School of Technology, Beijing Forestry University, Beijing (China)

    2017-01-15

    The titanium alloy Ti-6Al-4V has superior properties but poor machinability, yet is widely used in aerospace and biomedical industries. Chip formation and cutting zone area are important factors that have received limited attention. Thus, we propose a high-speed orthogonal cutting model for serrated chip formation. The high speed orthogonal cutting of Ti-6Al-4V was studied with a cutting speed of 10-160 m/min and a feed of 0.07-0.11 mm/r. Using theoretical models and experimental results, parameters such as chip shape, serration level, slip angle, and shear slip distance were investigated. Cutting zone boundaries (tool-chip contact length, length of shear plane, and critical slip plane) and cutting zone area were obtained. The results showed that discontinuous, long-curling, and continuous chips were formed at low, medium, and high speeds, respectively. Serration level, shear slip distance, and slip angle rose with increasing cutting speed. The length of shear plane, tool-chip contact, and critical slip plane varied subtly with increased cutting speed, and rose noticeably with increased feed. Cutting zone area grew weakly with increased cutting speed, levelling off at high cutting speed; however, it rose noticeably with increased feed. This study furthers our understanding of the shear slip phenomenon and the mechanism of serrated chip formation.

  15. Aplicaciones extraorales del bisturí piezoeléctrico Extraoral uses of a piezoelectric surgical cutting tool

    Directory of Open Access Journals (Sweden)

    J. González Lagunas

    2009-02-01

    Full Text Available Presentamos nuestra experiencia con el empleo de un bisturí piezoeleéctrico con el fin de efectuar diferentes osteotomias extraorales, Estas indicaciones no se han presentado previamente en la literatura. En los últimos 6 meses hemos utilizado este intrumento para efectuar osteotomías en el cóndilo y en la eminencia articular, para tomar injerto de calota craneal y para realizar las osteotomias de la rinoplastia. Este instrumento permite una inea de osteotomia precisa sin el riesgo de lesionar los tejidos blandos vecinos. Se discuten las ventajas e inconvenientes del instrumento según el procedimiento realizado.We report our experience with the use of a piezoelectric surgical cutting tool in performing extraoral osteotomies. These indications have not been reported previously in the literature. In the last 6 months we have used this instrument to perform osteotomy on the temporomandibular condyle and articular eminence, to obtain grafts from the skull, and to perform osteotomy for rhinoplasty. This instrument can be used to makes an osteotomy cut without risk of injuring adjacent soft tissues. Its advantages and disadvantages are discussed in accordance with the procedure performed.

  16. Supercritical angle fluorescence as a tool to study the interaction between lipid bilayer and peptides

    Science.gov (United States)

    Dubois, Valentin; Serrano, Diana; Seeger, Stefan

    2017-06-01

    The understanding of processes occurring at the interface between two media are of prior importance in various fields of research, from material sciences to biology. A custom-made microscope objective based on the supercritical angle technique was developed in our group, allowing to probe these interfacial events by carrying out surface-sensitive and low invasive spectroscopy of aqueous samples. A biological example of particular interest is the comprehension of neurodegenerative diseases which seem caused by the interaction of specific peptides with the membrane of the neurons. Taking advantage of our optical setup, we used supercritical angle fluorescence spectroscopy to specifically monitor the interaction between a supported lipid bilayer (SLB) and the Amyloid β peptide, notably responsible of the Alzheimer disease. Different forms of the peptide (40 and 42 amino acids composition) were tested and the interfacial fluorescence measured to get information about the lipid integrity and mobility. The adsorption of the peptide was also characterized in terms of kinetic and affinity.

  17. Framework for utilizing angling as a tourism development tool in rural areas

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Josef; Martinát, Stanislav; Kallabová, Eva

    2009-01-01

    Roč. 55, č. 10 (2009), s. 508-518 ISSN 0139-570X R&D Projects: GA AV ČR KJB300860902 Institutional research plan: CEZ:AV0Z30860518 Keywords : rural areas * development * angling Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.716, year: 2009 http://www.scopus.com/record/display.url?eid=2-s2.0-72349089553&origin=resultslist&sort

  18. THE INFLUENCE OF THE TOOL POINT ANGLE AND FEED RATE ON THE DYNAMIC PARAMETERS AT DRILLING COATED PARTICLEBOARD

    Directory of Open Access Journals (Sweden)

    Mihai ISPAS

    2015-12-01

    Full Text Available Pre-laminated (coated particleboards (PB are wood-based composites intensively used in the furniture industry. In order to prepare the PB for joining, drilling is the most commonly applied machining process. The surface quality and the dynamic parameters (thrust force and torque are significantly influenced by the tools characteristics and the machining parameters. The point/tip angle of the drill bit and the feed speed during drilling play a major role in gaining a good surface quality and minimizing the dynamic parameters. The objective of this study was to measure and analyze the influence of both the geometric and cinematic parameters on the dynamic parameters at drilling with twist (helical drills. The experiments were performed based on a factorial design. The results show that, a low feed rate generally minimizes both the drilling torque and the thrust force, while a small tip angle increases the drilling torque and minimizes the thrust force.

  19. Progressive tool flank wear and surface roughness when turning AISI 1017 mild steel using reduced thickness inserts in finishing cutting conditions

    Science.gov (United States)

    Ghani, Saiful Anwar Che; Zakaria, Mohd Hafizu; Harun, Wan Sharuzi Wan; Ghazalli, Zakri

    2017-12-01

    Tool wear is a major aspect in metal cutting, especially during steel machining. This studies the capability of 1 mm thick uncoated tungsten carbide insert during the turning of AISI 1017 mild steel. The reduction of insert thickness will lead to a more economical and efficient use of material and energy during fabrication, operation, and disposal of the cutting insert. Axial machining trials have been performed using the finishing cutting conditions. Tool flank wear and workpiece surface roughness were analysed using an optical microscope and contact perthometer device, respectively. The data of flank wear and surface roughness achieved were used to analyse the capability of replacing 4 mm thick cutting inserts with 1 mm thick cutting inserts. The results showed that the flank wear and the surface roughness of conventional inserts performed better as compared to the 1 mm thick insert with a significant difference of 5.74 % and 1.57 %. Thus, the experimental study shows that the 1 mm thick insert performed as good as a conventional cutting insert in terms of tool life and surface roughness quality.

  20. Corneal hysteresis: a useful tool in the diagnosis and management of primary open angle glaucoma.

    Science.gov (United States)

    Molinari, Joseph F; Dance, Donnie D

    2009-09-01

    To describe a case of primary open angle glaucoma (POAG) and to illustrate a new principle in detecting and managing the disease using intraocular pressure (IOP) corneal hysteresis as a clinical guide. A case report is reviewed of a white 87-year-old male who was detected with ocular hypertension (OHTN) with bilateral asymmetrical corneal stiffness and POAG. A new indicator and alternative approach to determine and manage POAG is presented using evidence-based technology for clinical care and facilitating positive outcomes for one of the leading causes of blindness in the world.

  1. Comparison of tool life and surface roughness with MQL, flood cooling, and dry cutting conditions with P20 and D2 steel

    Science.gov (United States)

    Senevirathne, S. W. M. A. I.; Punchihewa, H. K. G.

    2017-09-01

    Minimum quantity lubrication (MQL) is a cutting fluid (CF) application method that has given promising results in improving machining performances. It has shown that, the performance of cutting systems, depends on the work and tool materials used. AISI P20, and D2 are popular in tool making industry. However, the applicability of MQL in machining these two steels has not been studied previously. This experimental study is focused on evaluating performances of MQL compared to dry cutting, and conventional flood cooling method. Trials were carried out with P20, and D2 steels, using coated carbides as tool material, emulsion cutting oil as the CF. Tool nose wear, and arithmetic average surface roughness (Ra) were taken as response variables. Results were statistically analysed for differences in response variables. Although many past literature has suggested that MQL causes improvements in tool wear, and surface finish, this study has found contradicting results. MQL has caused nearly 200% increase in tool nose wear, and nearly 11-13% increase in surface roughness compared flood cooling method with both P20 and D2. Therefore, this study concludes that MQL affects adversely in machining P20, and D2 steels.

  2. SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions.

    Science.gov (United States)

    Breßler, Ingo; Kohlbrecher, Joachim; Thünemann, Andreas F

    2015-10-01

    SASfit is one of the mature programs for small-angle scattering data analysis and has been available for many years. This article describes the basic data processing and analysis workflow along with recent developments in the SASfit program package (version 0.94.6). They include (i) advanced algorithms for reduction of oversampled data sets, (ii) improved confidence assessment in the optimized model parameters and (iii) a flexible plug-in system for custom user-provided models. A scattering function of a mass fractal model of branched polymers in solution is provided as an example for implementing a plug-in. The new SASfit release is available for major platforms such as Windows, Linux and MacOS. To facilitate usage, it includes comprehensive indexed documentation as well as a web-based wiki for peer collaboration and online videos demonstrating basic usage. The use of SASfit is illustrated by interpretation of the small-angle X-ray scattering curves of monomodal gold nanoparticles (NIST reference material 8011) and bimodal silica nanoparticles (EU reference material ERM-FD-102).

  3. Mechanisms, Prediction, and Prevention of ACL Injuries: Cut Risk With Three Sharpened and Validated Tools

    Science.gov (United States)

    Hewett, Timothy E.; Myer, Gregory D.; Ford, Kevin R.; Paterno, Mark V.; Quatman, Carmen E.

    2017-01-01

    Economic and societal pressures influence modern medical practice to develop and implement prevention strategies. Anterior cruciate ligament (ACL) injury devastates the knee joint leading to short term disability and long term sequelae. Due to the high risk of long term osteoarthritis in all treatment populations following ACL injury, prevention is the only effective intervention for this life-altering disruption in knee health. The “Sequence of Prevention” Model provides a framework to monitor progress towards the ultimate goal of preventing ACL injuries. Utilizing this model, our multidisciplinary collaborative research team has spent the last decade working to delineate injury mechanisms, identify injury risk factors, predict which athletes are at-risk for injury, and develop ACL injury prevention programs. Within this model of injury prevention, modifiable factors (biomechanical and neuromuscular) related to injury mechanisms likely provide the best opportunity for intervention strategies aimed to decrease the risk of ACL injury, particularly in female athletes. Knowledge advancements have led to the development of potential solutions that allow athletes to compete with lowered risk of ACL injury. Design and integration of personalized clinical assessment tools and targeted prevention strategies for athletes at high risk for ACL injury may transform current prevention practices and ultimately significantly reduce ACL injury incidence. This 2016 OREF Clinical Research Award focuses on the authors' work and contributions to the field. The author's acknowledge the many research groups who have contributed to the current state of knowledge in the fields of ACL injury mechanisms, injury risk screening and injury prevention strategies. PMID:27612195

  4. Method and device for determining the position of a cutting tool relative to the rotational axis of a spindle-mounted workpiece

    Science.gov (United States)

    Williams, R.R.

    1980-09-03

    The present invention is directed to a method and device for determining the location of a cutting tool with respect to the rotational axis of a spindle-mounted workpiece. A vacuum cup supporting a machinable sacrificial pin is secured to the workpiece at a location where the pin will project along and encompass the rotational axis of the workpiece. The pin is then machined into a cylinder. The position of the surface of the cutting tool contacting the machine cylinder is spaced from the rotational axis of the workpiece a distance equal to the radius of the cylinder.

  5. Geometry of single-point turning tools and drills

    CERN Document Server

    Astakhov, Viktor P

    2010-01-01

    Tools for metal cutting have many shapes and features, each of which is described by its angles or geometries. The selection of the right cutting tool geometry is critical because it directly affects the integrity of the machined surface, tool life, power needed for machining, and thus the overall machining efficiency. ""Geometry of Single-Point Turning Tools and Drills"" outlines clear objectives of cutting tool geometry selection and optimization, using multiple examples to provide a thorough explanation. The establishment of clear bridges between cutting theory, tool geometry, and shop prac

  6. 3D Simulations of Deep Directional Electromagnetic Tools in High-angle and Horizontal Wells

    OpenAIRE

    Puzyrev, Vladimir; Torres-Verdin, Carlos

    2016-01-01

    The first author acknowledges the RISE Horizon 2020 European Project GEAGAM (644202) for the travel support and the Repsol-BSC Research Center for funding. All numerical tests were performed on the MareNostrum supercomputer of the Barcelona Supercomputing Center. We also acknowledge the University of Texas at Austin’s Research Consortium on Formation Evaluation. A new generation of deep directional electromagnetic imaging tools is being adopted by the industry to enhance the efficiency ...

  7. Apatite metaprism twist angle ( φ) as a tool for crystallochemical diagnosis

    Science.gov (United States)

    Lim, S. C.; Baikie, Tom; Pramana, Stevin S.; Smith, Ron; White, T. J.

    2011-11-01

    [ AI] 4[ AII] 6( BO 4) 6X2 apatites can flexibly accommodate numerous cationic, metalloid and anionic substitutions. Using a combination of new refinements and published structures, this paper reviews correlations between substituent type and framework adaptation through adjustment of the AIO 6 metaprism twist angle, φ. These systematics are illustrated through powder neutron diffraction refinement of the crystal chemistry of A10(PO 4) 6F 2 ( A=Ca, Sr) fluorapatites. Variations in φ reflect changes in the relative size of the AI4( BO 4) 6 framework and AII6X2 tunnel content and can be used to quantitatively assess the reliability of AI/ AII cation partitioning coefficients determined by Rietveld analysis. In the simplest cases of bi-ionic substitution, the metaprism twist systematics conform to three principle trends For A-type divalent substitution, the larger A2 + species preferentially enters the channel before partitioning to the framework. This leads to parabolic modification in φ across the compositional series; For B-type pentavalent compounds, the φ variation will be linear in accord with the relative B5+ ionic size; and For X-type substitution of halide anions, φ will be reduced as the average size increases. Departures from these trends may indicate polymorphism, compositional anomalies, AI/AII order disequilibrium, or poor structure refinement, and may be extended to chemically complex apatites with simultaneous substitutions over the A, B and X sites.

  8. 1H magic-angle spinning NMR evolves as a powerful new tool for membrane proteins

    Science.gov (United States)

    Schubeis, Tobias; Le Marchand, Tanguy; Andreas, Loren B.; Pintacuda, Guido

    2018-02-01

    Building on a decade of continuous advances of the community, the recent development of very fast (60 kHz and above) magic-angle spinning (MAS) probes has revolutionised the field of solid-state NMR. This new spinning regime reduces the 1H-1H dipolar couplings, so that direct detection of the larger magnetic moment available from 1H is now possible at high resolution, not only in deuterated molecules but also in fully-protonated substrates. Such capabilities allow rapid "fingerprinting" of samples with a ten-fold reduction of the required sample amounts with respect to conventional approaches, and permit extensive, robust and expeditious assignment of small-to-medium sized proteins (up to ca. 300 residues), and the determination of inter-nuclear proximities, relative orientations of secondary structural elements, protein-cofactor interactions, local and global dynamics. Fast MAS and 1H detection techniques have nowadays been shown to be applicable to membrane-bound systems. This paper reviews the strategies underlying this recent leap forward in sensitivity and resolution, describing its potential for the detailed characterization of membrane proteins.

  9. Experimental Analysis for the Use of Sodium Dodecyl Sulfate as a Soluble Metal Cutting Fluid for Micromachining with Electroless-Plated Micropencil Grinding Tools

    Directory of Open Access Journals (Sweden)

    Peter A. Arrabiyeh

    2017-11-01

    Full Text Available Microgrinding with micropencil grinding tools (MPGTs is a flexible and economic process to machine microstructures in hard and brittle materials. In macrogrinding, cooling and lubrication are done with metal cutting fluids; their application and influence is well researched. Although it can be expected that metal cutting fluids also play a decisive role in microgrinding, systematic investigations can hardly be found. A metal cutting fluid capable of wetting the machining process, containing quantities as small as 0.02% of the water-soluble fluid sodium dodecyl sulfate was tested in microgrinding experiments with MPGTs (diameter ~50 µm; abrasive grit size 2–4 µm. The workpiece material was hardened 16MnCr5.

  10. Morphology of TiAlN Thin Film onto HSS as Cutting Tools by Using Mosaic-Styled Target RF Sputtering Method

    Directory of Open Access Journals (Sweden)

    Sigit Tri Wicaksono

    2016-05-01

    Full Text Available High Speed Steel (HSS has been widely used in manufacturing industry as cutting tools. Several methods have been used to improve the cutting performance of HSS in dry cutting. One of them was by growing a thin layer of hard coating on the contact surface of the cutting tool material. In this research, Titanium Aluminum Nitride (TiAlN layer were deposited on AISI M41 HSS substrate by using Radio Frequency (RF sputtering method with mosaic styled of target materials. The aluminum surface area ratios on the Titanium target are 10, 20, 30, and 40 % respectively. The deposition time are 15, 30, and 45 minutes respectively. The formation of TiAlN and AlN crystalline compounds were observed by X-Ray Diffraction method. The morphology of thin film layer with a thickness range from 1.4 to 5.2 µm was observed by using a Scanning Electron Microscopy. It was known that the deposition time affect to the thickness and also the roughness of the layer. The topography images by Atomic Force Microscopy showed that the deposition time of 45 minutes produce the finest layer with the surface roughness of 10.8 nm.

  11. CONTROL DE CALIDAD DE HERRAMIENTAS DE CORTE CON REMOCIÓN MÍNIMA DE MATERIAL QUALITY CONTROL OF CUTTING TOOLS WITH MINIMUM MATERIAL REMOVAL

    Directory of Open Access Journals (Sweden)

    Jandrey Maldaner

    2007-04-01

    Full Text Available Debido a la mejora de las tecnologías de mecanizado, es necesario que las herramientas satisfagan las demandas requeridas. Una condición especial, para poder describir con seguridad el corte con remoción mínima de material, es el conocimiento de los valores característicos de la superficie y de la geometría. Las herramientas poseen una influencia substancial en la calidad de las piezas producidas, así como en la estabilidad y en la seguridad del proceso de mecanizado. Aunque hay una gran cantidad de herramientas para el corte con remoción mínima de material, se presenta como ejemplo la investigación con medición óptica y la obtención de los valores característicos para dientes de sierras de cinta.Due to improved machine cutting technologies it is necessary that tools fulfil the required performance. A special condition, for minimal machine cutting removal, is the knowledge of surface and geometry characteristic values. These tools represent both a substantial influence on the quality of the manufactured pieces and on stability and working safety of the cutting process. Since there is a large number of tools for minimal removal of material, examples of optical measurement and examination of characteristic values by the belt saw teeth are presented.

  12. Corrosion resistance appraisal of TiN, TiCN and TiAlN coatings deposited by CAE-PVD method on WC-Co cutting tools exposed to artificial sea water

    Science.gov (United States)

    Matei, A. A.; Pencea, I.; Branzei, M.; Trancă, D. E.; Ţepeş, G.; Sfăt, C. E.; Ciovica (Coman), E.; Gherghilescu, A. I.; Stanciu, G. A.

    2015-12-01

    A new advanced sintered composite cutting tool has been developed based on tungsten carbide matrix ligated with cobalt (WC-Co) additivated with tantalum carbide (TaC), titanium carbide (TiC) and niobium carbide (NbC) as grain growth inhibitors. Titanium nitride (TiN), titanium carbonitride (TiCN) and titanium aluminium nitride (TiAlN) coatings were deposited on these tools by CAE-PVD technique to find out the best solution to improve the corrosion resistance of this tool in marine environment. The electrochemical behaviours of the specimens in 3.5% NaCl water solution were estimated by potentiodynamic polarization measurements i.e. the open circuit potential (Eoc), corrosion potential (Ecorr) and corrosion current density (icorr). Wide angle X-ray diffraction (WAXD), optical microscopy (OM) and atomic force microscopy (AFM) investigations have been carried on tested and untested specimens to substantiate the corrosion resistance of the tested specimens. Based on the open circuit potential (Eoc) and corrosion potential (Ecorr) results, the tested specimens were ranked as TiN, TiAlN, TiCN and WC-Co while on corrosion current density (icorr) and protective efficiency (P) values they have been ranked as TiN, TiAlN, WC-Co and TiCN. The WAXD, MO and AFM results unambiguously show that the corrosion resistance depends on the nature and morphology of the coating.

  13. Influence of Fiber Orientation on Single-Point Cutting Fracture Behavior of Carbon-Fiber/Epoxy Prepreg Sheets

    Directory of Open Access Journals (Sweden)

    Yingying Wei

    2015-10-01

    Full Text Available The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond tool, CVD (chemical vapor deposition diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE signals.

  14. Ultrasonic Cutting of Foods

    Science.gov (United States)

    Schneider, Yvonne; Zahn, Susann; Rohm, Harald

    In the field of food engineering, cutting is usually classified as a mechanical unit operation dealing with size reduction by applying external forces on a bulk product. Ultrasonic cutting is realized by superpositioning the macroscopic feed motion of the cutting device or of the product with a microscopic vibration of the cutting tool. The excited tool interacts with the product and generates a number of effects. Primary energy concentration in the separation zone and the modification of contact friction along the tool flanks arise from the cyclic loading and are responsible for benefits such as reduced cutting force, smooth cut surface, and reduced product deformation. Secondary effects such as absorption and cavitation originate from the propagation of the sound field in the product and are closely related to chemical and physical properties of the material to be cut. This chapter analyzes interactions between food products and ultrasonic cutting tools and relates these interactions with physical and chemical product properties as well as with processing parameters like cutting velocity, ultrasonic amplitude and frequency, and tool design.

  15. The relationships between ceramic tool life and different machining parameters

    International Nuclear Information System (INIS)

    El-Axir, M.H.; El-Masry, A.A.; Mashal, Y.A.H.

    2001-01-01

    With the increasing use of ceramic tool materials in applications, has come an increasing need for experimental data to assign the behavior of the life of these tool materials. Experimental results during turning operation show that it is possible to increase cutting tool life substantially by a proper variation of the cutting parameters used in this work. The tool lives (tool flank wear land length) of three different ceramic materials, namely; Silicon carbide (SiC), Alumina (Al/sub 2/O/sub 3/) and partially stabilized zirconia (PSZ) in addition to, Titanium carbide and high speed steel tools are investigated in this work. Also, The effect of varying the cutting speed, feed rate and tool rake angle on tool life of each tool material is studied. The experimental work was carried out utilizing one of the experimental design techniques based on response surface methodology. It was found that the SiC cutting tool showed the highest tool life among all materials tested in this work. It was also noticed that increasing the cutting speed has led to an increase in tool life for ceramic tools only. However, increasing the feed rate and tool rake angle resulted in a reduction in tool life in all materials examined in the present study. Further analysis conducted on SiC tool material to examine the effect of the interaction of cutting parameters on the tool life. (author)

  16. The effects of cutting parameters on cutting forces and heat generation when drilling animal bone and biomechanical test materials.

    Science.gov (United States)

    Cseke, Akos; Heinemann, Robert

    2018-01-01

    The research presented in this paper investigated the effects of spindle speed and feed rate on the resultant cutting forces (thrust force and torque) and temperatures while drilling SawBones ® biomechanical test materials and cadaveric cortical bone (bovine and porcine femur) specimens. It also investigated cortical bone anisotropy on the cutting forces, when drilling in axial and radial directions. The cutting forces are only affected by the feed rate, whereas the cutting temperature in contrast is affected by both spindle speed and feed rate. The temperature distribution indicates friction as the primary heat source, which is caused by the rubbing of the tool margins and the already cut chips over the borehole wall. Cutting forces were considerably higher when drilling animal cortical bone, in comparison to cortical test material. Drilling direction, and therewith anisotropy, appears to have a negligible effect on the cutting forces. The results suggest that this can be attributed to the osteons being cut at an angle rather than in purely axial or radial direction, as a result of a twist drill's point angle. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Determining the cut-off point of osteoporosis based on the osteoporosis self-assessment tool, body mass index and weight in Taiwanese young adult women.

    Science.gov (United States)

    Chang, Shu Fang; Yang, Rong Sen

    2014-09-01

    To examine the cut-off point of the osteoporosis self-assessment tool, age, weight and body mass index for osteoporosis among young adult Taiwanese women, using a large-scale health examination database containing bone mineral density tests. The cut-off points of osteoporosis risk factors identified earlier focus on menopausal or senior Caucasian and Asian women. However, young adult Asian women have seldom been identified. A retrospective historical cohort study. Using the 2009-2011 health examination database of a large-scale medical centre in northern Taiwan, this study investigated young adult Asian women (i.e. range in age from 30-49 years) in Taiwan who had received dual-energy X-ray absorptiometry test. This study also explored the cut-off point, sensitivity, specificity and diagnostic accuracy of receiver operating characteristics of osteoporosis among young adult females in Taiwan. This study collected 2454 young adult Asian women in Taiwan. Cochran-Armitage analysis results indicated that the prevalence of osteoporosis increased with decreasing weight, body mass index and osteoporosis self-assessment method quartiles. According to the results of receiver operating characteristics, weight, body mass index and osteoporosis self-assessment tool approaches can generally be used as indicators to predict osteoporosis among young adult Asian women. Results of this study demonstrate that Taiwanese women contracting osteoporosis tend to be young and underweight, as well as having a low body mass index and osteoporosis self-assessment scores. Those results further suggest that the assessment indicators for cut-off points are appropriately suitable for young adult women in Taiwan. Early detection is the only available means of preventing osteoporosis. Professional nurses should apply convenient and accurate assessment procedures to help young adult women to adopt preventive strategies against osteoporosis early, thus eliminating the probability of osteoporotic

  18. INFLUENCE OF THE STRUCTURE OF BIMETAL BLANKS OF END-CUTTING TOOL, PRODUCED BY HOT EXTRUSION, ON THEIR STRENGTH PROPERTIES

    Directory of Open Access Journals (Sweden)

    A. V. Alifanov

    2010-01-01

    Full Text Available It is shown that as a result of hot extrusion of bimetalic ingot consisting of steels P6M5 (working, cutting part and 40X (tail, texture is formed in these steels though profile die due to drawing of grains along the deforming direction. It is discovered that in the central part of ingot (steel 40X there is formed fine-grained homogenous structure, which enables increase of solidity of bimetallic tap against bend.

  19. Corrosion resistance appraisal of TiN, TiCN and TiAlN coatings deposited by CAE-PVD method on WC–Co cutting tools exposed to artificial sea water

    Energy Technology Data Exchange (ETDEWEB)

    Matei, A.A. [Center for Microscopy-Microanalysis and Information Processing, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Sector 6, Bucharest (Romania); Pencea, I., E-mail: ion.pencea@upb.ro [Materials Science and Engineering Faculty, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Sector 6, Bucharest (Romania); Branzei, M. [Materials Science and Engineering Faculty, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Sector 6, Bucharest (Romania); Trancă, D.E. [Center for Microscopy-Microanalysis and Information Processing, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Sector 6, Bucharest (Romania); Ţepeş, G.; Sfăt, C.E. [Materials Science and Engineering Faculty, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Sector 6, Bucharest (Romania); Ciovica, E. [Materials Engineering, University Valahia Targoviste, Calea Calarasilor 189, Sector 3, Bucharest (Romania); Gherghilescu, A.I. [Materials Science and Engineering Faculty, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Sector 6, Bucharest (Romania); Stanciu, G.A. [Center for Microscopy-Microanalysis and Information Processing, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Sector 6, Bucharest (Romania)

    2015-12-15

    Highlights: • A new composite WC–Co cutting tool was coated with TiN, TiCN, TiAlN by CAE-PVD. • Corrosion resistance in 3.5% NaCl solution of TiN, TiCN, TiAlN coatings were measured. • Structural changes induced by corrosion test upon TiN, TiCN, TiAlN were investigated. • Corrosion resistance of TiN, TiCN, TiAlN was ranked based on E{sub oc}, i{sub corr}, P parameters. • TiN coating is the best solution for new tool designed to work in marine environment. - Abstract: A new advanced sintered composite cutting tool has been developed based on tungsten carbide matrix ligated with cobalt (WC–Co) additivated with tantalum carbide (TaC), titanium carbide (TiC) and niobium carbide (NbC) as grain growth inhibitors. Titanium nitride (TiN), titanium carbonitride (TiCN) and titanium aluminium nitride (TiAlN) coatings were deposited on these tools by CAE-PVD technique to find out the best solution to improve the corrosion resistance of this tool in marine environment. The electrochemical behaviours of the specimens in 3.5% NaCl water solution were estimated by potentiodynamic polarization measurements i.e. the open circuit potential (E{sub oc}), corrosion potential (E{sub corr}) and corrosion current density (i{sub corr}). Wide angle X-ray diffraction (WAXD), optical microscopy (OM) and atomic force microscopy (AFM) investigations have been carried on tested and untested specimens to substantiate the corrosion resistance of the tested specimens. Based on the open circuit potential (E{sub oc}) and corrosion potential (E{sub corr}) results, the tested specimens were ranked as TiN, TiAlN, TiCN and WC–Co while on corrosion current density (i{sub corr}) and protective efficiency (P) values they have been ranked as TiN, TiAlN, WC–Co and TiCN. The WAXD, MO and AFM results unambiguously show that the corrosion resistance depends on the nature and morphology of the coating.

  20. Subjectivity Inherent In By-Eye Symmetry Judgements and the Large Cutting Tools at the Cave of Hearths, Limpopo Province, South Africa

    Directory of Open Access Journals (Sweden)

    Dave Underhill

    2007-11-01

    Full Text Available The Stone Age of South Africa is an area of study due for a renaissance, and there is a real need for unification of the extant evidence. As a beginning to this, new methodologies have been proposed. This paper tackles the issue of symmetry, specifically the subjectivity involved in by-eye judgements. Assumptions of subjectivity, however, are not proof: presented here is a critical analysis of the inherent bias of by-eye symmetry judgements. Ultimately it is clear that the method contains a level of subjectivity which strips it of any analytical value. The by-eye judgement of symmetry is replaced by the more robust Flip Test computer program, and a brief study is made of the Large Cutting Tools (LCT at a vitally important, yet often overlooked, site dating from the Pleistocene in South Africa, the Cave of Hearths, Limpopo province. The corollary is that the symmetry present in the Cave of Hearths Large Cutting Tools can be studied with some measure of confidence: suggestions are made regarding the nature of tool typologies and the knappers’ ultimate focus on tip shape and utility.

  1. Development of a Metal Cutting Tool Fase in Order to Create the Conditions of Ringed Chips Wrapping

    OpenAIRE

    Korchuganova, Mariya Anatolievna; Syrbakov, Andrey Pavlovich; Chernysheva, Tatiana Yurievna; Ivanov, G.; Korchuganov, Maksim Anatolievich

    2016-01-01

    When processing ductile metals with high cutting speed, there is a need to take additional measures for a comfortable and safe formation and removal of chips. In the conditions of large-scale manufacture, it is recommended to produce flow chips in the form of short fragments, while in the conditions of small-lot and single-piece manufacture, it is reasonable to wrap the chips spirally with a rather small turn radius. Such way of chips formation reduces the time of its removal from the working...

  2. Influence of the microstructure of a diamond-containing composite material on the tool cutting ability when grinding a diamond single crystal

    Directory of Open Access Journals (Sweden)

    A.M. Kuzei

    2017-12-01

    Full Text Available Using the methods of electronic scanning microstructure and X-ray analysis, the influence of the structure of diamond-containing composite materials on the cutting ability of the tool for circular grinding of diamond single crystals has been studied. It is shown that the use of an oxide-hydroxide glass with a spreading temperature of 570–590 K as a precursor of the binder leads to the formation of melt films on the surface of silicon carbide and diamond particles at 600–630 K and the glass content in the batch is 10 vol. %. The conversion of oxidehydroxide glass films to oxide films proceeds at 700–775 K during the sintering of the composite material. Depending on the volume content of the glass in the charge, the porosity of the compact, three types of structure of composite materials are distinguished: a volumetric skeleton of glass-clad diamond particles and silicon carbide with pores at the sites of multiple compounds; a frame made of glass-clad diamond particles and silicon carbide with glass pores in places of multiple connections; a matrix of glass and the particles of diamond, silicon carbide and pores located in it. The maximum cutting ability of the tool for circular grinding of diamond is provided by a composite material with a structure of the first type.

  3. Drilling High Precision Holes in Ti6Al4V Using Rotary Ultrasonic Machining and Uncertainties Underlying Cutting Force, Tool Wear, and Production Inaccuracies.

    Science.gov (United States)

    Chowdhury, M A K; Sharif Ullah, A M M; Anwar, Saqib

    2017-09-12

    Ti6Al4V alloys are difficult-to-cut materials that have extensive applications in the automotive and aerospace industry. A great deal of effort has been made to develop and improve the machining operations of Ti6Al4V alloys. This paper presents an experimental study that systematically analyzes the effects of the machining conditions (ultrasonic power, feed rate, spindle speed, and tool diameter) on the performance parameters (cutting force, tool wear, overcut error, and cylindricity error), while drilling high precision holes on the workpiece made of Ti6Al4V alloys using rotary ultrasonic machining (RUM). Numerical results were obtained by conducting experiments following the design of an experiment procedure. The effects of the machining conditions on each performance parameter have been determined by constructing a set of possibility distributions (i.e., trapezoidal fuzzy numbers) from the experimental data. A possibility distribution is a probability-distribution-neural representation of uncertainty, and is effective in quantifying the uncertainty underlying physical quantities when there is a limited number of data points which is the case here. Lastly, the optimal machining conditions have been identified using these possibility distributions.

  4. Effect of micro/nano-scale textures on anti-adhesive wear properties of WC/Co-based TiAlN coated tools in AISI 316 austenitic stainless steel cutting

    Science.gov (United States)

    Zhang, Kedong; Deng, Jianxin; Sun, Jialin; Jiang, Chao; Liu, Yayun; Chen, Shuai

    2015-11-01

    In cutting of stainless steel with coated tool, the steel chip adhering to tool surface is usually severe and consequently causes serious adhesive and frictional problems, which is the major reason for the failure of coated tool. To solve the problem, a surface engineering approach, namely, a highly functionalization of tool surfaces by textures may be of great importance. Thus, the effect of micro/nano-scale textures on anti-adhesive wear properties of TiAlN coated tools in AISI 316 austenitic stainless steel cutting was investigated. For this purpose, two types of surface textures were fabricated on the rake faces of WC/Co carbide tools: (i) micro-scale textures fabricated by Nd:YAG laser, (ii) micro/nano-scales textures fabricated by Nd:YAG laser and femtosecond laser. Then, these textured tools were deposited with TiAlN coatings using cathode arc-evaporation technique. Wet cutting experiments were carried out with the micro-scale textured coated tool (MCT), micro/nano-scale textured coated tool (MNCT), and the conventional coated tool (CCT). Results obtained in this work demonstrated the feasibility of fabricating micro- or micro/nano-scale textures on tools substrate surfaces to improve the anti-adhesive wear properties of TiAlN coated tool. The rake face micro/nano-scale textured tool was the most effective. Moreover, mechanisms for the anti-adhesive properties enhancement were proposed.

  5. Modelling the cutting edge radius size effect for force prediction in micro milling

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; Jan, Slunsky

    2008-01-01

    This paper presents a theoretical model for cutting force prediction in micro milling, taking into account the cutting edge radius size effect, the tool run out and the deviation of the chip flow angle from the inclination angle. A parameterization according to the uncut chip thickness to cutting...... edge radius ratio is used for the parameters involved in the force calculation. The model was verified by means of cutting force measurements in micro milling. The results show good agreement between predicted and measured forces. It is also demonstrated that the use of the Stabler's rule...... is a reasonable approximation and that micro end mill run out is effectively compensated by the deflections induced by the cutting forces....

  6. Impact resistance of materials for guards on cutting machine tools--requirements in future European safety standards.

    Science.gov (United States)

    Mewes, D; Trapp, R P

    2000-01-01

    Guards on machine tools are meant to protect operators from injuries caused by tools, workpieces, and fragments hurled out of the machine's working zone. This article presents the impact resistance requirements, which guards according to European safety standards for machine tools must satisfy. Based upon these standards the impact resistance of different guard materials was determined using cylindrical steel projectiles. Polycarbonate proves to be a suitable material for vision panels because of its high energy absorption capacity. The impact resistance of 8-mm thick polycarbonate is roughly equal to that of a 3-mm thick steel sheet Fe P01. The limited ageing stability, however, makes it necessary to protect polycarbonate against cooling lubricants by means of additional panes on both sides.

  7. Cutting forces during turning with variable depth of cut

    Directory of Open Access Journals (Sweden)

    M. Sadílek

    2016-03-01

    The proposed research for the paper is an experimental work – measuring cutting forces and monitoring of the tool wear on the cutting edge. It compares the turning where standard roughing cycle is used and the turning where the proposed roughing cycle with variable depth of cut is applied.

  8. Cut-loading: a useful tool for examining the extent of gap junction tracer coupling between retinal neurons.

    Science.gov (United States)

    Choi, Hee Joo; Ribelayga, Christophe P; Mangel, Stuart C

    2012-01-12

    neurons with small somata in intact neural retinal tissue, but it can be difficult to adequately control the illumination conditions during the electrophysiological study of single retinal neurons to avoid light-induced changes in gap junction conductance. Here, we present a straightforward method of determining the extent of gap junction tracer coupling between retinal neurons under different illumination conditions and at different times of the day and night. This cut-loading technique is a modification of scrape loading(9-12), which is based on dye loading and diffusion through open gap junction channels. Scrape loading works well in cultured cells, but not in thick slices such as intact retinas. The cut-loading technique has been used to study photoreceptor coupling in intact fish and mammalian retinas(7, 8,13), and can be used to study coupling between other retinal neurons, as described here.

  9. Drilling of metal matrix composites: cutting forces and chip formation

    International Nuclear Information System (INIS)

    Songmene, V.; Balout, B.; Masounave, J.

    2002-01-01

    Particulate metal matrix composites (MMCs) are known for their low weight and their high wear resistance, but also for the difficulties encountered during their machining. New aluminium MMCs containing with both soft lubricating graphite particles and hard particles (silicon carbide or alumina) with improved machinability were developed. This study investigates the drilling of these composites as compared to non-reinforced aluminium. The microstructure of chip, the cutting forces, the shear angles and the friction at tool-chip interface are used to compare the machinability of these composites. It was found that, during drilling of this new family of composites, the feed rate, and the nature of reinforcing particles govern the cutting forces. The mathematical models established by previous researchers for predicting the cutting forces when drilling metals were validated for these composites. The reinforcing particles within the composite help for chip segmentation, making the composite more brittle and easy to shear during the cutting process. (author)

  10. Optimization of Wet or Dry Micro-blasting on PVD Films by Various Al2O3 Grain Sizes for Improving the Coated Tools' Cutting Performance

    Directory of Open Access Journals (Sweden)

    K. -D. Bouzakis

    2011-06-01

    Full Text Available Micro-blasting on PVD coated tools is an effective technology for improving their cutting performance. Through micro-blasting, compressive stresses are induced into the film, thus increasing the coating hardness, but its brittleness too. Simultaneously, abrasion phenomena are activated, which may lead to roughness augmentation, film thickness decrease and substrate revelation. In this way, for a successful process conduct, it is pivotal to adapt, among others, the applied micro-blasting pressure to the employed medium, air or water. The paper deals with the optimization of wet or dry micro-blasting pressure by various Al2O3 grain sizes for improving the coated tool’s wear resistance. The wear behaviour of coated and variously dry or wet micro-blasted tools was investigated in milling. Considering the grains’ penetration kinematics into the coated tool surface and the film deformation mechanisms during dry or wet microblasting by fine or coarse sharp–edged Al2O3 grains, optimum process pressures can be determined.

  11. The Intense Pulsed Ion Beam Treatment and the Titanium Nitride Coating of Hard Alloy for Cutting Tool

    Science.gov (United States)

    Remnev, Gennady E.; Tarbokov, Vladislav A.

    The aim of this work was to investigate adhesion increasing of titanium nitride coating deposited at hard alloy tool’s surface pretreated by intense pulsed ion beam of different energy density. Two alloys were treated by high-power pulsed ion beam of 1÷3.75 J/cm2 energy density. Analyzing the data obtained from tunnel microscopy, X-ray spectrum and measurements of surface relief geometry characteristics, such as roughness and profile length, we came to the following conclusion. First, the value of energy density of ion beam plays the key role in the formation of the relief and phase structure of the surface. Second, these two characteristics are almost independent of the initial characteristics of the irradiated alloys. Also, the article touches the results of scratch-test of the titanium nitride coating. The results demonstrate changes in wearing and destruction mode of the coating deposited at the tool treated by ion beam.

  12. Improved method for the cutting coefficients calculation in micromilling force modeling

    NARCIS (Netherlands)

    Li, P.; Oosterling, J.A.J.; Hoogstrate, A.M.; Langen, H.H.

    2008-01-01

    This paper discusses the influence of runout on the calculation of the coefficients of mechanistic force models in micromilling. A runout mode is used to study the change of chip thickness, tool angles, and immersion period of two cutting edges of micro endmills due to runout. A new method to find

  13. Effect of Rake Angle During Machining of Micro Grooves on Electroless Nickel Plated Die Materials

    International Nuclear Information System (INIS)

    Rezaur Rahman, K.M.; Rahman, M.

    2005-01-01

    This study attempts to evaluate the performance of two single crystal diamond tools with different rake angle (0 0 and -15 0 ) during micro grooving on electroless nickel plated die materials. It was found that the 0 0 rake diamond tool has superior performance compared to the -15 0 rake angle tool. The negative rake tool experienced very high thrust force, and severe chipping on the flank face was evident after a short cutting distance of 3.13 km. On the other hand, the 0 0 rake tool machined satisfactorily up to 50 km without any significant tool wear. While machining with the -15 0 rake tool, significant change in surface roughness with spindle speed was observed compared to the 0 0 rake tool. With increasing infeed rate variation in surface roughness was evident only with the -15 0 rake tool. Steep change in roughness with machining distance was also observed while machining with the negative rake tool. (authors)

  14. search.bioPreprint: a discovery tool for cutting edge, preprint biomedical research articles [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Carrie L. Iwema

    2016-07-01

    Full Text Available The time it takes for a completed manuscript to be published traditionally can be extremely lengthy. Article publication delay, which occurs in part due to constraints associated with peer review, can prevent the timely dissemination of critical and actionable data associated with new information on rare diseases or developing health concerns such as Zika virus. Preprint servers are open access online repositories housing preprint research articles that enable authors (1 to make their research immediately and freely available and (2 to receive commentary and peer review prior to journal submission. There is a growing movement of preprint advocates aiming to change the current journal publication and peer review system, proposing that preprints catalyze biomedical discovery, support career advancement, and improve scientific communication. While the number of articles submitted to and hosted by preprint servers are gradually increasing, there has been no simple way to identify biomedical research published in a preprint format, as they are not typically indexed and are only discoverable by directly searching the specific preprint server websites. To address this issue, we created a search engine that quickly compiles preprints from disparate host repositories and provides a one-stop search solution. Additionally, we developed a web application that bolsters the discovery of preprints by enabling each and every word or phrase appearing on any web site to be integrated with articles from preprint servers. This tool, search.bioPreprint, is publicly available at http://www.hsls.pitt.edu/resources/preprint.

  15. Remote Laser Cutting of CFRP: Improvements in the Cut Surface

    Science.gov (United States)

    Stock, Johannes; Zaeh, Michael F.; Conrad, Markus

    In the automotive industry carbon fibre reinforced plastics (CFRP) are considered as a future key material to reduce the weight of the vehicle. Therefore, capable production techniques are required to process this material in mass industry. E.g., state of the art methods for cutting are limited by the high tool wear or the feasible feed rate. Laser cutting processes are still under investigation. This paper presents detailed new studies on remote laser cutting of CFRP focusing on the influence of the material properties and the quality of the cut surface. By adding light absorbing soot particles to the resin of the matrix, the cutting process is improved and fewer defects emerge.

  16. Performance Testing of Cutting Fluids

    DEFF Research Database (Denmark)

    Belluco, Walter

    The importance of cutting fluid performance testing has increased with documentation requirements of new cutting fluid formulations based on more sustainable products, as well as cutting with minimum quantity of lubrication and dry cutting. Two sub-problems have to be solved: i) which machining...... tests feature repeatability, reproducibility and sensitivity to cutting fluids, and ii) to what extent results of one test ensure relevance to a wider set of machining situations. The present work is aimed at assessing the range of validity of the different testing methods, investigating correlation...... within the whole range of operations, materials, cutting fluids, operating conditions, etc. Cutting fluid performance was evaluated in turning, drilling, reaming and tapping, and with respect to tool life, cutting forces, chip formation and product quality (dimensional accuracy and surface integrity...

  17. Ultra small angle neutron scattering : a tool to study packing of relatively monodisperse small polymer spheres and their binary mixtures

    International Nuclear Information System (INIS)

    Reynolds, Philip A.; McGillivray, Duncan J.; White, John W.; Jackson, Andrew J.; University of Maryland, College Paerk, Maryland, USA

    2009-01-01

    Full text: We measured ultra small angle neutron scattering (USANS) from polymethylmethacrylate spheres tamped down in air. Two slightly polydisperse pure sphere sizes (1.5/-lm and 7.5/-lm diameter) and five mixtures of these were used. All were loose packed (packing fractions 0.3 to 0.6) with nongravitational forces (e.g., friction) important, preventing close packing. The USANS data is rich in information on powder packing. A modified Percus-Yevick fluid model was used to parametrise the data - adequately but not well. The modifications required introduction of small voids, less than the sphere size, and a parameter reflecting substantial deviation from the Percus-Yevick prediction of the sphere-sphere correlation function. The mixed samples fitted less well, and two further modifying factors were necessary. These were local inhomogeneities, where the concentration of same-size spheres, both large and small, deviated from the mean packing, and a factor accounting for the presence within these 'clusters' of self avoidance of the large spheres (that is large spheres coated with more small spheres than Percus-Yevick would predict). The overall deviations from the hardsphere Percus-Yevick model that we find here suggests fluid models of loose packed powders are unlikely to be successful, but lay the groundwork for future theoretical and computational work.

  18. Small Angle X-ray and Neutron Scattering: Powerful Tools for Studying the Structure of Drug-Loaded Liposomes

    Science.gov (United States)

    Di Cola, Emanuela; Grillo, Isabelle; Ristori, Sandra

    2016-01-01

    Nanovectors, such as liposomes, micelles and lipid nanoparticles, are recognized as efficient platforms for delivering therapeutic agents, especially those with low solubility in water. Besides being safe and non-toxic, drug carriers with improved performance should meet the requirements of (i) appropriate size and shape and (ii) cargo upload/release with unmodified properties. Structural issues are of primary importance to control the mechanism of action of loaded vectors. Overall properties, such as mean diameter and surface charge, can be obtained using bench instruments (Dynamic Light Scattering and Zeta potential). However, techniques with higher space and time resolution are needed for in-depth structural characterization. Small-angle X-ray (SAXS) and neutron (SANS) scattering techniques provide information at the nanoscale and have therefore been largely used to investigate nanovectors loaded with drugs or other biologically relevant molecules. Here we revise recent applications of these complementary scattering techniques in the field of drug delivery in pharmaceutics and medicine with a focus to liposomal carriers. In particular, we highlight those aspects that can be more commonly accessed by the interested users. PMID:27043614

  19. Small Angle X-ray and Neutron Scattering: Powerful Tools for Studying the Structure of Drug-Loaded Liposomes

    Directory of Open Access Journals (Sweden)

    Emanuela Di Cola

    2016-03-01

    Full Text Available Nanovectors, such as liposomes, micelles and lipid nanoparticles, are recognized as efficient platforms for delivering therapeutic agents, especially those with low solubility in water. Besides being safe and non-toxic, drug carriers with improved performance should meet the requirements of (i appropriate size and shape and (ii cargo upload/release with unmodified properties. Structural issues are of primary importance to control the mechanism of action of loaded vectors. Overall properties, such as mean diameter and surface charge, can be obtained using bench instruments (Dynamic Light Scattering and Zeta potential. However, techniques with higher space and time resolution are needed for in-depth structural characterization. Small-angle X-ray (SAXS and neutron (SANS scattering techniques provide information at the nanoscale and have therefore been largely used to investigate nanovectors loaded with drugs or other biologically relevant molecules. Here we revise recent applications of these complementary scattering techniques in the field of drug delivery in pharmaceutics and medicine with a focus to liposomal carriers. In particular, we highlight those aspects that can be more commonly accessed by the interested users.

  20. Small Angle X-ray and Neutron Scattering: Powerful Tools for Studying the Structure of Drug-Loaded Liposomes.

    Science.gov (United States)

    Di Cola, Emanuela; Grillo, Isabelle; Ristori, Sandra

    2016-03-28

    Nanovectors, such as liposomes, micelles and lipid nanoparticles, are recognized as efficient platforms for delivering therapeutic agents, especially those with low solubility in water. Besides being safe and non-toxic, drug carriers with improved performance should meet the requirements of (i) appropriate size and shape and (ii) cargo upload/release with unmodified properties. Structural issues are of primary importance to control the mechanism of action of loaded vectors. Overall properties, such as mean diameter and surface charge, can be obtained using bench instruments (Dynamic Light Scattering and Zeta potential). However, techniques with higher space and time resolution are needed for in-depth structural characterization. Small-angle X-ray (SAXS) and neutron (SANS) scattering techniques provide information at the nanoscale and have therefore been largely used to investigate nanovectors loaded with drugs or other biologically relevant molecules. Here we revise recent applications of these complementary scattering techniques in the field of drug delivery in pharmaceutics and medicine with a focus to liposomal carriers. In particular, we highlight those aspects that can be more commonly accessed by the interested users.

  1. Computer-aided analysis of cutting processes for brittle materials

    Science.gov (United States)

    Ogorodnikov, A. I.; Tikhonov, I. N.

    2017-12-01

    This paper is focused on 3D computer simulation of cutting processes for brittle materials and silicon wafers. Computer-aided analysis of wafer scribing and dicing is carried out with the use of the ANSYS CAE (computer-aided engineering) software, and a parametric model of the processes is created by means of the internal ANSYS APDL programming language. Different types of tool tip geometry are analyzed to obtain internal stresses, such as a four-sided pyramid with an included angle of 120° and a tool inclination angle to the normal axis of 15°. The quality of the workpieces after cutting is studied by optical microscopy to verify the FE (finite-element) model. The disruption of the material structure during scribing occurs near the scratch and propagates into the wafer or over its surface at a short range. The deformation area along the scratch looks like a ragged band, but the stress width is rather low. The theory of cutting brittle semiconductor and optical materials is developed on the basis of the advanced theory of metal turning. The fall of stress intensity along the normal on the way from the tip point to the scribe line can be predicted using the developed theory and with the verified FE model. The crystal quality and dimensions of defects are determined by the mechanics of scratching, which depends on the shape of the diamond tip, the scratching direction, the velocity of the cutting tool and applied force loads. The disunity is a rate-sensitive process, and it depends on the cutting thickness. The application of numerical techniques, such as FE analysis, to cutting problems enhances understanding and promotes the further development of existing machining technologies.

  2. Cutting assembly

    Science.gov (United States)

    Racki, Daniel J.; Swenson, Clark E.; Bencloski, William A.; Wineman, Arthur L.

    1984-01-01

    A cutting apparatus includes a support table mounted for movement toward and away from a workpiece and carrying a mirror which directs a cutting laser beam onto the workpiece. A carrier is rotatably and pivotally mounted on the support table between the mirror and workpiece and supports a conduit discharging gas toward the point of impingement of the laser beam on the workpiece. Means are provided for rotating the carrier relative to the support table to place the gas discharging conduit in the proper positions for cuts made in different directions on the workpiece.

  3. Force Relations and Dynamics of Cutting Knife in a Vertical Disc Mobile Wood Chipper

    Directory of Open Access Journals (Sweden)

    Segun R. BELLO

    2011-06-01

    Full Text Available The force relations and dynamics of cutting knife in a vertical disc wood chipper were investigated. The tool geometry determined include: rake angle (20 deg C; Shear angle, (fi= 52.15 deg C; the mean frictional angle, (t = 5.71 deg C. The analysis and comparison of the cutting forces has shown that the chips separated from the wood are being formed by off cutting, since normal applied force N is compressive in nature, the magnitude of the forces used by the knife on the wood is expected to increase as the cutting edge of the knife goes deeper into the wood until the value of the resisting force acting against the cut wood Ff is reached and exceeded. The evaluated forces acting on the knife and the chip are: F = 3.63Nmm^-1; N = 34.7 Nmm^-1; Fs= 27.45Nmm^-1; Fn =31.92 Nmm^-1; Ft = -8.46Nmm^-1; Fc = 33.85Nmm^-1. The resultant force acting on the tool face, Pr = 34.89Nmm^-1. The specific cutting pressure, Pc and cutting force needed to cut the timber, Fc, are 1.79 × 10^6 N/m2 and 644.84N respectively. The energy consumed in removing a unit volume of material is 69.96kJ/mm^-3 and the maximum power developed in cutting the chip is 3591.77W (4.82hp. The chipper efficiency (86.6% was evaluated by the highest percentage of accepted chip sizes.

  4. The cutting edge - Micro-CT for quantitative toolmark analysis of sharp force trauma to bone

    OpenAIRE

    Norman, D. G.; Watson, Derrick G.; Burnett, B.; Fenne, P. M.; Williams, M. A. (Mark A.)

    2018-01-01

    Toolmark analysis involves examining marks created on an object to identify the likely tool responsible for creating those marks (e.g., a knife). Although a potentially powerful forensic tool, knife mark analysis is still in its infancy and the validation of imaging techniques as well as quantitative approaches is ongoing. This study builds on previous work by simulating real-world stabbings experimentally and statistically exploring quantitative toolmark properties, such as cut mark angle ca...

  5. Solution small-angle x-ray scattering as a screening and predictive tool in the fabrication of asymmetric block copolymer membranes

    KAUST Repository

    Dorin, Rachel Mika

    2012-05-15

    Small-angle X-ray scattering (SAXS) analysis of the diblock copolymer poly(styrene-b-(4-vinyl)pyridine) in a ternary solvent system of 1,4-dioxane, tetrahydrofuran, and N,N-dimethylformamide, and the triblock terpolymer poly(isoprene-b-styrene-b-(4-vinyl)-pyridine) in a binary solvent system of 1,4-dioxane and tetrahydrofuran, reveals a concentration-dependent onset of ordered structure formation. Asymmetric membranes fabricated from casting solutions with polymer concentrations at or slightly below this ordering concentration possess selective layers with the desired nanostructure. In addition to rapidly screening possible polymer solution concentrations, solution SAXS analysis also predicts hexagonal and square pore lattices of the final membrane surface structure. These results suggest solution SAXS as a powerful tool for screening casting solution concentrations and predicting surface structure in the fabrication of asymmetric ultrafiltration membranes from self-assembled block copolymers. (Figure presented) © 2012 American Chemical Society.

  6. Wavelet-based feature extraction applied to small-angle x-ray scattering patterns from breast tissue: a tool for differentiating between tissue types

    International Nuclear Information System (INIS)

    Falzon, G; Pearson, S; Murison, R; Hall, C; Siu, K; Evans, A; Rogers, K; Lewis, R

    2006-01-01

    This paper reports on the application of wavelet decomposition to small-angle x-ray scattering (SAXS) patterns from human breast tissue produced by a synchrotron source. The pixel intensities of SAXS patterns of normal, benign and malignant tissue types were transformed into wavelet coefficients. Statistical analysis found significant differences between the wavelet coefficients describing the patterns produced by different tissue types. These differences were then correlated with position in the image and have been linked to the supra-molecular structural changes that occur in breast tissue in the presence of disease. Specifically, results indicate that there are significant differences between healthy and diseased tissues in the wavelet coefficients that describe the peaks produced by the axial d-spacing of collagen. These differences suggest that a useful classification tool could be based upon the spectral information within the axial peaks

  7. Angle performance on optima MDxt

    Energy Technology Data Exchange (ETDEWEB)

    David, Jonathan; Kamenitsa, Dennis [Axcelis Technologies, Inc., 108 Cherry Hill Dr, Beverly, MA 01915 (United States)

    2012-11-06

    Angle control on medium current implanters is important due to the high angle-sensitivity of typical medium current implants, such as halo implants. On the Optima MDxt, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through six narrow slits, and any angle adjustment is made by electrostatically steering the beam, while cross-wafer beam parallelism is adjusted by changing the focus of the electrostatic parallelizing lens (P-lens). In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen prior to implant. A variety of tests were run to measure the accuracy and repeatability of Optima MDxt's angle control. SIMS profiles of a high energy, channeling sensitive condition show both the cross-wafer angle uniformity, along with the small-angle resolution of the system. Angle repeatability was quantified by running a channeling sensitive implant as a regular monitor over a seven month period and measuring the sheet resistance-to-angle sensitivity. Even though crystal cut error was not controlled for in this case, when attributing all Rs variation to angle changes, the overall angle repeatability was measured as 0.16 Degree-Sign (1{sigma}). A separate angle repeatability test involved running a series of V-curves tests over a four month period using low crystal cut wafers selected from the same boule. The results of this test showed the angle repeatability to be <0.1 Degree-Sign (1{sigma}).

  8. Cutting Cosmos

    DEFF Research Database (Denmark)

    Mikkelsen, Henrik Hvenegaard

    around which Bugkalot society revolves, but also a reflection on anthropological theory and writing. Focusing on the transgressive acts through which masculinity is performed, this book explores the idea of the cosmic cut, the ritual act that enables the Bugkalot man to momentarily hold still the chaotic......For the first time in over 30 years, a new ethnographic study emerges on the Bugkalot tribe, more widely known as the Ilongot of the northern Philippines. Exploring the notion of masculinity among the Bugkalot, Cutting Cosmos is not only an experimental, anthropological study of the paradoxes...

  9. Cutting method and cutting device for spent fuel rod of nuclear reactor

    International Nuclear Information System (INIS)

    Komatsu, Masahiko; Ose, Toshihiko.

    1996-01-01

    A control rod transferred under water in a vertically suspended state is postured horizontally at such a water depth that radiations can be shielded, and then it is cut to a dropping speed limiting portion and a cross-like main body. The separated cross-like main body portion is further cut in the longitudinal direction and separated into a pair of cut pieces each having an L-shaped cross section. A disk like metal saw is used as a cutting tool. Alternatively, a plasma jet cutter or a melting-type water jet cutter is used as a cutting tool. Then, since the spent control rod to be cut is postured horizontally under water, the water depth for the cutting position can be reduced. As a result, the cutting state using the cutting tool can be observed by naked eyes from the position above the water surface thereby enabling to perform the cutting operation reliably. (N.H.)

  10. Cutting temperature measurement and material machinability

    Directory of Open Access Journals (Sweden)

    Nedić Bogdan P.

    2014-01-01

    Full Text Available Cutting temperature is very important parameter of cutting process. Around 90% of heat generated during cutting process is then away by sawdust, and the rest is transferred to the tool and workpiece. In this research cutting temperature was measured with artificial thermocouples and question of investigation of metal machinability from aspect of cutting temperature was analyzed. For investigation of material machinability during turning artificial thermocouple was placed just below the cutting top of insert, and for drilling thermocouples were placed through screw holes on the face surface. In this way was obtained simple, reliable, economic and accurate method for investigation of cutting machinability.

  11. PHYSICAL-MATEMATICALSCIENCE MECHANICS SIMULATION CHALLENGES IN OPTIMISING THEORETICAL METAL CUTTING TASKS

    Directory of Open Access Journals (Sweden)

    Rasul V. Guseynov

    2017-01-01

    Full Text Available Abstract. Objectives In the article, problems in the optimising of machining operations, which provide end-unit production of the required quality with a minimum processing cost, are addressed. Methods Increasing the effectiveness of experimental research was achieved through the use of mathematical methods for planning experiments for optimising metal cutting tasks. The minimal processing cost model, in which the objective function is polynomial, is adopted as a criterion for the selection of optimal parameters. Results Polynomial models of the influence of angles φ, α, γ on the torque applied when cutting threads in various steels are constructed. Optimum values of the geometrical tool parameters were obtained using the criterion of minimum cutting forces during processing. The high stability of tools having optimal geometric parameters is determined. It is shown that the use of experimental planning methods allows the optimisation of cutting parameters. In optimising solutions to metal cutting problems, it is found to be expedient to use multifactor experimental planning methods and to select the cutting force as the optimisation parameter when determining tool geometry. Conclusion The joint use of geometric programming and experiment planning methods in order to optimise the parameters of cutting significantly increases the efficiency of technological metal processing approaches. 

  12. Research on the Effect of Cutting Parameters on Chip Formation and Cutting Force in Elliptical Vibration Cutting Process

    Science.gov (United States)

    Lin, Jieqiong; Guan, Liang; Lu, Mingming; Han, Jinguo; Feng, Da

    2017-12-01

    Elliptical vibration cutting (EVC) has been widely concerned since it was proposed, and its unique characteristics such as friction reversal and intermittent cutting can effectively extend the tool life, improve the machined surface roughness and so on. The objective of this paper was to predict the behavior of cutting force. A method of predicting the behavior of cutting force based on the chip thickness under various cutting conditions is proposed. Based on the established tool motion model, the chip model was founded. By numerical simulation, the effects of cutting parameters on cutting force under various cutting conditions were studied. The results show that the chip thickness can be used to predict the behavior of cutting force.

  13. Combination of Ultrasonic Vibration and Cryogenic Cooling for Cutting Performance Improvement of Inconel 718 Turning

    Science.gov (United States)

    Lin, S. Y.; Chung, C. T.; Cheng, Y. Y.

    2011-01-01

    The main objective of this study is to develop a thermo-elastic-plastic coupling model, based on a combination skill of ultrasonically assisted cutting and cryogenic cooling, under large deformation for Inconel 718 alloy machining process. The improvement extent on cutting performance and tool life promotion may be examined from this investigation. The critical value of the strain energy density of the workpiece will be utilized as the chip separation and the discontinuous chip segmentation criteria. The forced convection cooling and a hydrodynamic lubrication model will be considered and formulated in the model. Finite element method will be applied to create a complete numerical solution for this ultrasonic vibration cutting model. During the analysis, the cutting tool is incrementally advanced forward with superimposed ultrasonic vibration in a back and forth step-by-step manner, from an incipient stage of tool-workpiece engagement to a steady state of chip formation, a whole simulation of orthogonal cutting process under plane strain deformation is thus undertaken. High shear strength induces a fluctuation phenomenon of shear angle, high shear strain rate, variation of chip types and chip morphology, tool-chip contact length variation, the temperature distributions within the workpiece, chip and tool, periodic fluctuation in cutting forces can be determined from the developed model. A complete comparison of machining characteristics between some different combinations of ultrasonically assisted cutting and cryogenic cooling with conventional cutting operation can be acquired. Finally, the high-speed turning experiment for Inconel 718 alloy will be taken in the laboratory to validate the accuracy of the model, and the progressive flank wear, crater wear, notching and chipping of the tool edge can also be measured in the experiments.

  14. Petrographic drill cutting analysis

    Energy Technology Data Exchange (ETDEWEB)

    Thom, R. [Core Laboratories Canada Ltd., Calgary, AB (Canada)

    1999-11-01

    Some of the diagnostic tools which are available to determine valuable reservoir rock information from drill cuttings were described. For example, valuable information can be obtained from drill cuttings and petrographic thin sections regarding mineralogy, facies, pore systems, reservoir quality and fluid sensitivity. This paper described the best ways to pick representative drill cuttings from vials. Colour and texture are among the most important determining factors. New guidelines from the Alberta Energy and Utilities Board have made it possible to obtain thin sections from drill cuttings from a competitor`s wells. Up to 12 chips from each vial can be removed for thin section scanning electron microscopy (SEM) analysis. X-ray diffraction (XRD) analysis of drill chips is not recommended because it is usually not possible to obtain enough sample material. Another powerful tool to investigate and characterize pore systems is the Mercury Injection Capillary Pressure technique. This technique makes it possible to characterize the pore system and to determine pore throat size distribution, permeability/porosity, producible reserves, capillary pressure, effective versus non-effective porosity, irreducible water saturation, and height above free water. The most reliable and valuable information is obtained from sandstone and carbonate aggregate chips in which the pore system is preserved. It was also noted that core porosity can be empirically derived if a trend line is constructed using sections prepared from an equivalent cored zone. Permeability can be derived in much the same way. 9 figs.

  15. Analytical Modelling Of Milling For Tool Design And Selection

    Science.gov (United States)

    Fontaine, M.; Devillez, A.; Dudzinski, D.

    2007-05-01

    This paper presents an efficient analytical model which allows to simulate a large panel of milling operations. A geometrical description of common end mills and of their engagement in the workpiece material is proposed. The internal radius of the rounded part of the tool envelope is used to define the considered type of mill. The cutting edge position is described for a constant lead helix and for a constant local helix angle. A thermomechanical approach of oblique cutting is applied to predict forces acting on the tool and these results are compared with experimental data obtained from milling tests on a 42CrMo4 steel for three classical types of mills. The influence of some tool's geometrical parameters on predicted cutting forces is presented in order to propose optimisation criteria for design and selection of cutting tools.

  16. Analytical Modelling Of Milling For Tool Design And Selection

    International Nuclear Information System (INIS)

    Fontaine, M.; Devillez, A.; Dudzinski, D.

    2007-01-01

    This paper presents an efficient analytical model which allows to simulate a large panel of milling operations. A geometrical description of common end mills and of their engagement in the workpiece material is proposed. The internal radius of the rounded part of the tool envelope is used to define the considered type of mill. The cutting edge position is described for a constant lead helix and for a constant local helix angle. A thermomechanical approach of oblique cutting is applied to predict forces acting on the tool and these results are compared with experimental data obtained from milling tests on a 42CrMo4 steel for three classical types of mills. The influence of some tool's geometrical parameters on predicted cutting forces is presented in order to propose optimisation criteria for design and selection of cutting tools

  17. Cutting to the chase

    International Nuclear Information System (INIS)

    Snieckus, D.

    2001-01-01

    This article reports on the development of the cost effective abrasive cutting Sabre system which came as a result of UWG's work on the decommissioning of the Phillips' Maureen wells and adds to UWG's 'total severance solution' tools. The advantages of the system are highlighted and include the ability to operate from a platform or diving support vessel, to cut internal cases, and to eliminate the use of environmentally damaging explosives and the need to operate from a rig. The new Mark II version of the Sabre designed to work at greater depths of water, the range of the severance tools, UWG's well abandonment hole assembly system, and its aim to enter the Gulf of Mexico market are discussed. Details are given of the decommissioning of the Schwedeneck-See platforms in Kiel Bay off Germany and the Phillips' UK decommissioning plans for the Maureen platform

  18. Scoliosis angle

    International Nuclear Information System (INIS)

    Marklund, T.

    1978-01-01

    The most commonly used methods of assessing the scoliotic deviation measure angles that are not clearly defined in relation to the anatomy of the patient. In order to give an anatomic basis for such measurements it is proposed to define the scoliotic deviation as the deviation the vertebral column makes with the sagittal plane. Both the Cobb and the Ferguson angles may be based on this definition. The present methods of measurement are then attempts to measure these angles. If the plane of these angles is parallel to the film, the measurement will be correct. Errors in the measurements may be incurred by the projection. A hypothetical projection, called a 'rectified orthogonal projection', is presented, which correctly represents all scoliotic angles in accordance with these principles. It can be constructed in practice with the aid of a computer and by performing measurements on two projections of the vertebral column; a scoliotic curve can be represented independent of the kyphosis and lordosis. (Auth.)

  19. Machinability study of steels in precision orthogonal cutting

    Directory of Open Access Journals (Sweden)

    Leonardo Roberto Silva

    2012-08-01

    Full Text Available The miniaturization of components and systems is advancing steadily in many areas of engineering. Consequently, micro-machining is becoming an important manufacture technology due to the increasing demand for miniaturized products in recent years. Precision machining aims the production of advanced components with high dimensional accuracy and acceptable surface integrity. This work presents an experimental study based on Merchant and Lee & Shaffer theories applied to precision radial turning of AISI D2 cold work tool and AISI 1045 medium carbon steels with uncoated carbide tools ISO grade K15. The aim of this study is to evaluate the influence of feed rate on chip compression ratio (Rc, chip deformation (ε, friction angle (ρ, shear angle (Φ, normal stress (σ and shear stress (• for both work materials. The results indicated that the shear angle decreased and chip deformation increased as the chip compression ratio was elevated without significant differences between both materials. Additionally, higher cutting and thrust forces and normal and shear stresses were observed for the tool steel. Finally, the Lee & Shaffer model gave shear plane angle values closer to the experimental data.

  20. AN Fitting Reconditioning Tool

    Science.gov (United States)

    Lopez, Jason

    2011-01-01

    A tool was developed to repair or replace AN fittings on the shuttle external tank (ET). (The AN thread is a type of fitting used to connect flexible hoses and rigid metal tubing that carry fluid. It is a U.S. military-derived specification agreed upon by the Army and Navy, hence AN.) The tool is used on a drill and is guided by a pilot shaft that follows the inside bore. The cutting edge of the tool is a standard-size replaceable insert. In the typical Post Launch Maintenance/Repair process for the AN fittings, the six fittings are removed from the ET's GUCP (ground umbilical carrier plate) for reconditioning. The fittings are inspected for damage to the sealing surface per standard operations maintenance instructions. When damage is found on the sealing surface, the condition is documented. A new AN reconditioning tool is set up to cut and remove the surface damage. It is then inspected to verify the fitting still meets drawing requirements. The tool features a cone-shaped interior at 36.5 , and may be adjusted at a precise angle with go-no-go gauges to insure that the cutting edge could be adjusted as it wore down. One tool, one setting block, and one go-no-go gauge were fabricated. At the time of this reporting, the tool has reconditioned/returned to spec 36 AN fittings with 100-percent success of no leakage. This tool provides a quick solution to repair a leaky AN fitting. The tool could easily be modified with different-sized pilot shafts to different-sized fittings.

  1. Comportamiento del acabado superficial de la pieza y el desgaste de la herramienta al fresar aluminio con altas velocidades de corte en fresadoras cnc convencionales. // Superficial finish behavior and tool wear in aluminium milling with high cutting spee

    Directory of Open Access Journals (Sweden)

    F. Martínez Aneiro

    2006-05-01

    mechanical components of high quality and great accuracy for systems of high performance isincreasing considerably in the last years at world level. This fact has caused the development of new appliedtechnologies in cutting processes.The development of machine tools (control, high-speed spindle, the cutting tools (new materials, substrata and layers andthe technology of machining, facilitated the application of cut with high cutting speed (High speed Cutting HSC. Theincrease of cutting speeds increases the efficiency of the productive processes through the reduction of the manufacturingtimes. The reduction in several times of the manufacturing process, is not achieved alone for the time of machining but alsofor the substitution of other elaboration processes that are part of the productive chain that are relatively slow in occasionsas the electroerosion (spark erosion, the manual finishing in molds and dies production as well as the changes of spareoperations. Being a relatively new process introduced starting from the decade of the 90’s; many technological questionsare still without answer. This paper presents the benefit of the high cutting speeds HSC on the tool useful life and thesuperficial finishing in spares, working in conventional milling machines of CNC. The results stated, that within the studiedparameters, that the durability of the tool and the surface roughness improve and that the behavior of the machine is stablein spite of not being conceived for high speeds.Keywords: High speed cutting, HSC, HSM, Wear, surface roughness.

  2. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a

  3. Nicotine cut-off value in human hair as a tool to distinguish active from passive smokers: A cross-sectional study in Japanese men.

    Science.gov (United States)

    Tsuji, Masayoshi; Kanda, Hideyuki; Hayakawa, Takehito; Mori, Yayoi; Ito, Teruna; Hidaka, Tomoo; Kakamu, Takeyasu; Kumagai, Tomohiro; Osaki, Yoneatsu; Kawazoe, Miki; Sato, Sei; Fukushima, Tetsuhito

    2017-07-19

    Nicotine concentration in hair is a useful marker of tobacco exposure. Detection of nicotine in the hair of non-smokers indicates passive smoking. Accurate measurement of nicotine among active and passive smokers can help in smoking cessation programs or programs designed to prevent secondhand smoke exposure. To establish, using high-performance liquid chromatography-ultraviolet detection (HPLC/UV), a hair nicotine cut-off value to distinguish active from passive smokers. Hair samples were collected from randomly chosen Japanese men (n= 192) between 2009 and 2011. Nicotine and cotinine levels in hair were measured using HPLC/UV with column-switching. T-tests and chi-square tests were performed to compare active and passive smokers, while receiver operating characteristic curves were used to evaluate the effectiveness of the cut-off value. There were 69 active smokers and 123 passive smokers. The nicotine and cotinine concentrations in hair were significantly higher in active than in passive smokers (pnicotine was 0.92. A hair nicotine cut-off value of 5.68 ng/mg, with a sensitivity of 94.2% and specificity of 87.0%, was identified as the optimal cut-off value for separating active from passive smokers. Nicotine and cotinine concentrations in hair clearly distinguished active from passive smokers.

  4. Sanitation Can Be A Foundation Disease Management Tool: Potential Of Spreading Binucleate Rhizoctonia from Nursery Propagation Floors To Trays Containing Azalea Stem Cuttings

    Science.gov (United States)

    Binucelate Rhizoctonia spp. (BNR), the cause of web blight, are present all year on container-grown azaleas in the southern U.S. BNR can be eliminated during vegetative propagation by submerging stem cuttings in 50°C water for 21 minutes. The objective was to evaluate risk of rooting trays being con...

  5. Vortex cutting in superconductors

    Science.gov (United States)

    Vlasko-Vlasov, Vitalii K.; Koshelev, Alexei E.; Glatz, Andreas; Welp, Ulrich; Kwok, Wai-K.

    2015-03-01

    Unlike illusive magnetic field lines in vacuum, magnetic vortices in superconductors are real physical strings, which interact with the sample surface, crystal structure defects, and with each other. We address the complex and poorly understood process of vortex cutting via a comprehensive set of magneto-optic experiments which allow us to visualize vortex patterns at magnetization of a nearly twin-free YBCO crystal by crossing magnetic fields of different orientations. We observe a pronounced anisotropy in the flux dynamics under crossing fields and the filamentation of induced supercurrents associated with the staircase vortex structure expected in layered cuprates, flux cutting effects, and angular vortex instabilities predicted for anisotropic superconductors. At some field angles, we find formation of the vortex domains following a type-I phase transition in the vortex state accompanied by an abrupt change in the vortex orientation. To clarify the vortex cutting scenario we performed time-dependent Ginzburg-Landau simulations, which confirmed formation of sharp vortex fronts observed in the experiment and revealed a left-handed helical instability responsible for the rotation of vortices. This work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division.

  6. Effects of heat on cut mark characteristics.

    OpenAIRE

    Waltenberger, L.; Schutkowski, Holger

    2017-01-01

    Cut marks on bones provide crucial information about tools used and their mode of application, both in archaeological and forensic contexts. Despite a substantial amount of research on cut mark analysis and the influence of fire on bones (shrinkage, fracture pattern, recrystallisation), there is still a lack of knowledge in cut mark analysis on burnt remains. This study provides information about heat alteration of cut marks and whether consistent features can be observed that allow direct in...

  7. Inner tubes cutting method by electrical arc saw

    International Nuclear Information System (INIS)

    Thome, P.

    1990-01-01

    The research program deals on the definition of tools used for dismantling steam generator tubes bundle of PWR and on tool used for cutting pipes of great diameter by using the process of cutting by electrical arc saw. The remote tools are used for cutting by the interior pipes of contamined circuits [fr

  8. Interactive cutting path analysis programs

    Science.gov (United States)

    Weiner, J. M.; Williams, D. S.; Colley, S. R.

    1975-01-01

    The operation of numerically controlled machine tools is interactively simulated. Four programs were developed to graphically display the cutting paths for a Monarch lathe, Cintimatic mill, Strippit sheet metal punch, and the wiring path for a Standard wire wrap machine. These programs are run on a IMLAC PDS-ID graphic display system under the DOS-3 disk operating system. The cutting path analysis programs accept input via both paper tape and disk file.

  9. The effect of beam angle in abrasive-waterjet machining

    International Nuclear Information System (INIS)

    Hashish, M.

    1989-01-01

    In the machining of materials, abrasive-waterjets are typically applied at a 90-degree angle to the surface of the workpiece. This paper presents results and observations on machining with abrasive-waterjets at angles other than 90 degrees. Previous visualization studies of the cutting process in transparent materials has shown that there are optimal angles for maximum depth of cut and kerf depth uniformity. Here, observations on the effect of angle in machining applications, such as turning, milling. linear cutting, and drilling, are addressed. The effects of variations in both the impact angle and the rake angle are investigated. Results indicate that the volume removal rate is significantly affected by these angles and that surface finish can be improved by angling the jet. However, shallow angle drilling of small holes in laminated or ceramic-coated materials requires further investigation

  10. Angle Performance on Optima XE

    International Nuclear Information System (INIS)

    David, Jonathan; Satoh, Shu

    2011-01-01

    Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were able to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1σ). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.

  11. The cutting edge - Micro-CT for quantitative toolmark analysis of sharp force trauma to bone.

    Science.gov (United States)

    Norman, D G; Watson, D G; Burnett, B; Fenne, P M; Williams, M A

    2018-02-01

    Toolmark analysis involves examining marks created on an object to identify the likely tool responsible for creating those marks (e.g., a knife). Although a potentially powerful forensic tool, knife mark analysis is still in its infancy and the validation of imaging techniques as well as quantitative approaches is ongoing. This study builds on previous work by simulating real-world stabbings experimentally and statistically exploring quantitative toolmark properties, such as cut mark angle captured by micro-CT imaging, to predict the knife responsible. In Experiment 1 a mechanical stab rig and two knives were used to create 14 knife cut marks on dry pig ribs. The toolmarks were laser and micro-CT scanned to allow for quantitative measurements of numerous toolmark properties. The findings from Experiment 1 demonstrated that both knives produced statistically different cut mark widths, wall angle and shapes. Experiment 2 examined knife marks created on fleshed pig torsos with conditions designed to better simulate real-world stabbings. Eight knives were used to generate 64 incision cut marks that were also micro-CT scanned. Statistical exploration of these cut marks suggested that knife type, serrated or plain, can be predicted from cut mark width and wall angle. Preliminary results suggest that knives type can be predicted from cut mark width, and that knife edge thickness correlates with cut mark width. An additional 16 cut marks walls were imaged for striation marks using scanning electron microscopy with results suggesting that this approach might not be useful for knife mark analysis. Results also indicated that observer judgements of cut mark shape were more consistent when rated from micro-CT images than light microscopy images. The potential to combine micro-CT data, medical grade CT data and photographs to develop highly realistic virtual models for visualisation and 3D printing is also demonstrated. This is the first study to statistically explore simulated

  12. Performances of cutting fluids in turning. Formulated oil - E

    DEFF Research Database (Denmark)

    Axinte, Dragos A.; Steffanato, Simone

    Tool life is a parameter closely connected to the lubricating effect of a cutting fluid. Long tool life in turning corresponds to good lubrication and a process with good lubrication is preferred, since it normally results in lower tool wear and better surface quality. Cutting forces are mainly...... important for understanding the mechanism of the cutting process itself and to perform in this way data about the influence of the cutting fluids....

  13. Application of the fracture risk assessment tool (FRAX(®)) and determination of suitable cut-off values during primary screening in specific health check-ups in Japan.

    Science.gov (United States)

    Nakatoh, Shinichi; Takemaru, Yuki

    2013-11-01

    Specific health check-ups, which do not include osteoporosis screening, are conducted more frequently than periodic osteoporosis screening in Japan. In this study, we investigated the usefulness of the fracture risk assessment tool (FRAX(®)) during specific health check-ups, evaluated the variations in its usefulness for 2 consecutive years, and determined FRAX(®) cut-off values for osteoporosis screening. FRAX(®) questionnaires were distributed to subjects who underwent specific health check-ups in 2009 and 2010 at Asahi-machi. Subjects who exhibited FRAX(®) cut-off values of ≥10 % were advised to be screened at a medical institution. Bone mineral densities (BMDs) were measured in 201 subjects in 2009 and 105 subjects in 2010 after specific health check-ups, and treatment was initiated for 79 subjects in 2009 and 24 subjects in 2010. The number of subjects examined and the rate of treatment initiation following specific health check-ups were higher than those in subjects following periodic osteoporosis screening in 2009. However, the number and the rate following specific health check-ups dropped in 2010. According to receiver operating characteristic curves analyses, the sensitivity and specificity of FRAX(®) to determine osteoporosis treatment were highest when the cut-off values were 8 % for men and 10.5 % for women. In conclusion, the combination of FRAX(®) and specific health check-ups was more useful than periodic osteoporosis screening to narrow down the subjects and to motivate them to seek follow-up. Cut-off values for specific health check-up using FRAX(®) should be approximately 8 % for men and 10.5 % for women.

  14. Material testing of copper by extrusion-cutting

    DEFF Research Database (Denmark)

    Segalina, F.; De Chiffre, Leonardo

    2017-01-01

    was developed and implemented on a CNC lathe. An investigation was carried out extrusion-cutting copper discs using high-speed-steel cutting tools at 100 m/min cutting speed. Flow stress values for copper under machining-relevant conditions were obtained from measurement of the extrusion-cutting force...

  15. Influence of cutting conditions on chip side curl

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    2004-01-01

    The paper describes the influence of local variations of contact length, cutting speed and material constraint, showing the effect of lubrication, on the side curl of the chip. The following examples are illustrated by experiments: cutting of a tube vs. cutting of a bar; cutting using a tool...

  16. Machining Challenges: Macro to Micro Cutting

    Science.gov (United States)

    Shunmugam, M. S.

    2016-04-01

    Metal cutting is an important machining operation in the manufacture of almost all engineering components. Cutting technology has undergone several changes with the development of machine tools and cutting tools to meet challenges posed by newer materials, complex shapes, product miniaturization and competitive environments. In this paper, challenges in macro and micro cutting are brought out. Conventional and micro end-milling are included as illustrative examples and details are presented along with discussion. Lengthy equations are avoided to the extent possible, as the emphasis is on the basic concepts.

  17. Precision Machining When Cutting with Leading Plastic Deformation

    Directory of Open Access Journals (Sweden)

    N. A. Yaroslavtseva

    2017-01-01

    Full Text Available Keeping up the product competitiveness continually requires solving the problems of reducing time for product creation and material costs for its production and ensuring the maximum conformity of the product quality with the individual requirements of a particular consumer. It is especially difficult to implement these tasks in product manufacturing from the hard-to-machine steels and alloys with extremely low production rate in machining (often 10-20 times lower than when cutting the ordinary structural steels.Currently, one of the promising ways to improve the cutting process of hard-to-machine materials and quality of parts made from these materials is development and application of combined processing methods, which use additional energy sources to act on the machined material in the cutting zone. A BMSTU-developed cutting method with leading plastic deformation (LPD, which acts to raise the production rate, gain the cutting tool-life, reduce the surface roughness, improve the accuracy of processing and the performance characteristics of products, ensure the reliable flow chip control, and improve the labor conditions, belongs to such sort of methods.One of the most important indicators of processing quality that has a great impact on the operation and cost characteristics of the product and on the machining rate as well is the accuracy of processing. In cutting, the processing errors largely arise from the elastic deformations of a technological system when the cutting force, and, in particular, the radial component of the cutting force, acts on it.The deforming devices, used in cutting with LPD, being located as a rule, on the diametrically opposite side with respect to the cutting zone, act on the technological system as vibration dampers. In addition, as studies have shown, the choice of a rational direction for applying LPD load helps to compensate partially or completely the cutting force radial component effect on the technological

  18. Self Harm - Cutting

    Science.gov (United States)

    ... a sign that your child has thoughts of suicide. If you are concerned your child is cutting, learn the warning signs, methods of ... your child’s risk of cutting. While thoughts of suicide aren’t common with cutting, your child could accidentally cut deep enough or cut an ...

  19. Plasma arc cutting: speed and cut quality

    International Nuclear Information System (INIS)

    Nemchinsky, V A; Severance, W S

    2009-01-01

    When cutting metal with plasma arc cutting, the walls of the cut are narrower at the bottom than at the top. This lack of squareness increases as the cutting speed increases. A model of this phenomenon, affecting cut quality, is suggested. A thin liquid layer, which separates the plasma from the solid metal to be melted, plays a key role in the suggested model. This layer decreases heat transfer from the plasma to the solid metal; the decrease is more pronounced the higher the speed and the thicker the liquid metal layer. Since the layer is thicker at the bottom of the cut, the heat transfer effectiveness is lower at the bottom. The decrease in heat transfer effectiveness is compensated by the narrowness of the cut. The suggested model allows one to calculate the profile of the cut. The result of the calculations of the cutting speeds for plates of various thicknesses, at which the squareness of the cut is acceptable, agrees well with the speeds recommended by manufacturers. The second effect considered in the paper is the deflection of the plasma jet from the vertical at a high cutting speed. A qualitative explanation of this phenomenon is given. We believe the considerations of this paper are pertinent to other types of cutting with moving heat sources.

  20. Hollow needle used to cut metal honeycomb structures

    Science.gov (United States)

    Gregg, E. A.

    1966-01-01

    Hollow needle tool cuts metal honeycomb structures without damaging adjacent material. The hollow needle combines an electrostatic discharge and a stream of oxygen at a common point to effect rapid, accurate metal cutting. The tool design can be varied to use the hollow needle principle for cutting a variety of shapes.

  1. FORMATION OF CLOSED REVOLUTION SURFACE MICRORELIEF UNDER CONDITIONS OF KINEMATIC INSTABILITY OF CUTTING PROCESS AT NUMERICALLY AND PROGRAM CONTROLLED MACHINE TOOLS

    Directory of Open Access Journals (Sweden)

    I. A. Kashtalyan

    2006-01-01

    Full Text Available The paper considers peculiar features concerning a microrelief formation of grooves, turnings and chutes while executing «in widening» machining at numerically and program controlled machine tools. Some results of the experimental research are presented in the paper.

  2. Experimental test of theory for the stability of partially saturated vertical cut slopes

    Science.gov (United States)

    Morse, Michael M.; Lu, N.; Wayllace, Alexandra; Godt, Jonathan W.; Take, W.A.

    2014-01-01

    This paper extends Culmann's vertical-cut analysis to unsaturated soils. To test the extended theory, unsaturated sand was compacted to a uniform porosity and moisture content in a laboratory apparatus. A sliding door that extended the height of the free face of the slope was lowered until the vertical cut failed. Digital images of the slope cross section and upper surface were acquired concurrently. A recently developed particle image velocimetry (PIV) tool was used to quantify soil displacement. The PIV analysis showed strain localization at varying distances from the sliding door prior to failure. The areas of localized strain were coincident with the location of the slope crest after failure. Shear-strength and soil-water-characteristic parameters of the sand were independently tested for use in extended analyses of the vertical-cut stability and of the failure plane angle. Experimental failure heights were within 22.3% of the heights predicted using the extended theory.

  3. Development of a tuneable channel cut crystal

    Science.gov (United States)

    Treimer, W.; Strobl, M.; Hilger, A.

    2001-10-01

    We have developed the first tuneable channel cut crystal for ultra small angle neutron scattering and neutron optical experiments. The Darwin range of a perfect crystal can be reduced down to a fraction of its natural width. This “Darwin reduction” was realised without any change of the beam geometry which yields an intensity gain relative to conventional asymmetric Bragg diffraction. With such tuneable channel cut crystal peaks nearly δ-peaks can experimentally be realised.

  4. Relationship between glycated hemoglobin and glucose concentrations in the adult Galician population: selection of optimal glycated hemoglobin cut-off points as a diagnostic tool of diabetes mellitus.

    Science.gov (United States)

    Botana López, Manuel Antonio; López Ratón, Mónica; Tomé, María Ausencia; Fernández Mariño, Alexis; Mato Mato, José Antonio; Rego Iraeta, Antonia; Pérez Fernández, Román; Cadarso Suárez, Carmen

    2012-10-01

    To analyze the relationship between glucose and glycated hemoglobin (HbA(1c)) in the adult Galician population, evaluate the use of HbA(1c) for the screening and diagnosis of diabetes, and calculate the diagnostic threshold required for this purpose. We analyzed data on 2848 subjects (aged 18-85 years) drawn from a study undertaken in 2004 to assess the prevalence of diabetes in Galicia. For study purposes, diabetes was defined using the criteria recommended in 2002. Participants were classified into four glucose-based groups. The relationship between glucose and HbA(1c) was described using linear regression models, generalized additive models and Spearman's correlation. Diagnostic capacity was assessed, and optimal HbA(1c) cut-off points were calculated as a diabetes marker using the receiver operating characteristic curve. Prevalence of pre-diabetes, unknown diabetes and known diabetes was 20.86, 3.37 and 4.39%, respectively. The correlations between HbA(1c) and fasting glucose were higher than those obtained for HbA(1c) and glycemia at 2h of the oral glucose overload (0.344 and 0.270, respectively). Taking glucose levels as the gold standard, a greater discriminatory capacity was obtained for HbA(1c) (area under de cruve: 0.839, 95% confidence intervals: 0.788-0.890). Based on the study criteria, the optimal minimum and maximum HbA(1c) values were 5.9% and 6.7%, respectively. HbA(1c) did not prove superior to glycemia for diagnosis of diabetes in the adult Galician population, and cannot therefore be used to replace the oral glucose tolerance test for screening and diagnosis purposes. Indeed, determination of glucose is essential to verify the diagnosis in the majority of cases. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  5. Performance analysis of cutting graphite-epoxy composite using a 90,000psi abrasive waterjet

    Science.gov (United States)

    Choppali, Aiswarya

    Graphite-epoxy composites are being widely used in many aerospace and structural applications because of their properties: which include lighter weight, higher strength to weight ratio and a greater flexibility in design. However, the inherent anisotropy of these composites makes it difficult to machine them using conventional methods. To overcome the major issues that develop with conventional machining such as fiber pull out, delamination, heat generation and high tooling costs, an effort is herein made to study abrasive waterjet machining of composites. An abrasive waterjet is used to cut 1" thick graphite epoxy composites based on baseline data obtained from the cutting of ¼" thick material. The objective of this project is to study the surface roughness of the cut surface with a focus on demonstrating the benefits of using higher pressures for cutting composites. The effects of major cutting parameters: jet pressure, traverse speed, abrasive feed rate and cutting head size are studied at different levels. Statistical analysis of the experimental data provides an understanding of the effect of the process parameters on surface roughness. Additionally, the effect of these parameters on the taper angle of the cut is studied. The data is analyzed to obtain a set of process parameters that optimize the cutting of 1" thick graphite-epoxy composite. The statistical analysis is used to validate the experimental data. Costs involved in the cutting process are investigated in term of abrasive consumed to better understand and illustrate the practical benefits of using higher pressures. It is demonstrated that, as pressure increased, ultra-high pressure waterjets produced a better surface quality at a faster traverse rate with lower costs.

  6. Experimental investigation of cutting parameters influence on ...

    Indian Academy of Sciences (India)

    This experimental investigation was conducted to determine the effects of cutting conditions on surface roughness and cutting forces in hard turning of X38CrMoV5-1. This steel was hardened at 50 HRC and machined with CBN tool. This is employed for the manufacture of helicopter rotor blades and forging dies. Combined ...

  7. Laser cutting - trends in the development,

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    2002-01-01

    Since the laser was invented in 1960, the industrial applications of this tool has grown and grown. And - since the beginning of the 1980'ies, the major industrial application of lasers in production has been laser cutting. In this paper a short review of the development of the laser cutting...

  8. Experimental investigation of cutting parameters influence on ...

    Indian Academy of Sciences (India)

    Abstract. This experimental investigation was conducted to determine the effects of cutting conditions on surface roughness and cutting forces in hard turning of. X38CrMoV5-1. This steel was hardened at 50 HRC and machined with CBN tool. This is employed for the manufacture of helicopter rotor blades and forging dies.

  9. Flexible Laser Metal Cutting

    DEFF Research Database (Denmark)

    Villumsen, Sigurd; Jørgensen, Steffen Nordahl; Kristiansen, Morten

    2014-01-01

    This paper describes a new flexible and fast approach to laser cutting called ROBOCUT. Combined with CAD/CAM technology, laser cutting of metal provides the flexibility to perform one-of-a-kind cutting and hereby realises mass production of customised products. Today’s laser cutting techniques...

  10. Identifying Key Features, Cutting Edge Cloud Resources, and Artificial Intelligence Tools to Achieve User-Friendly Water Science in the Cloud

    Science.gov (United States)

    Pierce, S. A.

    2017-12-01

    Decision making for groundwater systems is becoming increasingly important, as shifting water demands increasingly impact aquifers. As buffer systems, aquifers provide room for resilient responses and augment the actual timeframe for hydrological response. Yet the pace impacts, climate shifts, and degradation of water resources is accelerating. To meet these new drivers, groundwater science is transitioning toward the emerging field of Integrated Water Resources Management, or IWRM. IWRM incorporates a broad array of dimensions, methods, and tools to address problems that tend to be complex. Computational tools and accessible cyberinfrastructure (CI) are needed to cross the chasm between science and society. Fortunately cloud computing environments, such as the new Jetstream system, are evolving rapidly. While still targeting scientific user groups systems such as, Jetstream, offer configurable cyberinfrastructure to enable interactive computing and data analysis resources on demand. The web-based interfaces allow researchers to rapidly customize virtual machines, modify computing architecture and increase the usability and access for broader audiences to advanced compute environments. The result enables dexterous configurations and opening up opportunities for IWRM modelers to expand the reach of analyses, number of case studies, and quality of engagement with stakeholders and decision makers. The acute need to identify improved IWRM solutions paired with advanced computational resources refocuses the attention of IWRM researchers on applications, workflows, and intelligent systems that are capable of accelerating progress. IWRM must address key drivers of community concern, implement transdisciplinary methodologies, adapt and apply decision support tools in order to effectively support decisions about groundwater resource management. This presentation will provide an overview of advanced computing services in the cloud using integrated groundwater management case

  11. ANALYSIS OF CUTTING FORCES ON CNC LATHES EXPERIMENTAL APPROACH

    Directory of Open Access Journals (Sweden)

    Erdem Koç

    1996-01-01

    Full Text Available Objective of this study is to make use easy programming of CNC lathes and to achieve the optimization of part program prepared considering the limiting parameters of the machine. In the present study, a BOXFORD 250 B CNC lathe has been used for experiment and optimization process. The measurement of cutting forces exerted on the cutting tool of CNC lathe has been performed. The cutting forces occurring during the turning operation have been determined for different depth of" cut, feed rate and cutting speed as well as different cutting tools and related data base has been obtained.

  12. Multibeam Fibre Laser Cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    -laser cutting have until now limited its application in metal cutting. In this paper the first results of proof-of-principle studies applying a new approach (patent pending) for laser cutting with high brightness short wavelength lasers will be presented. In the approach, multi beam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from 2 single mode fibre lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W of single......The appearance of the high power high brilliance fibre laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating cutting laser, the CO2-laser. However, quality problems in fibre...

  13. Load modeling for sharp V-cutter cutting litchi ( Litchi chinensis Sonn ...

    African Journals Online (AJOL)

    harvesting. Cutting load is a key parameter for 'hand-held auto-picker' operation. However, there is still no suitable model for cutting load setting. Hence, a model describing the relationship among cutting load, blade angle and friction coefficient was developed for cutting operation by sharp V-cutters. The model was based ...

  14. CO2 laser cutting

    CERN Document Server

    Powell, John

    1998-01-01

    The laser has given manufacturing industry a new tool. When the laser beam is focused it can generate one of the world's most intense energy sources, more intense than flames and arcs, though similar to an electron beam. In fact the intensity is such that it can vaporise most known materials. The laser material processing industry has been growing swiftly as the quality, speed and new manufacturing possibilities become better understood. In the fore of these new technologies is the process of laser cutting. Laser cutting leads because it is a direct process substitu­ tion and the laser can usually do the job with greater flexibility, speed and quality than its competitors. However, to achieve these high speeds with high quality con­ siderable know how and experience is required. This information is usually carefully guarded by the businesses concerned and has to be gained by hard experience and technical understanding. Yet in this book John Powell explains in lucid and almost non­ technical language many o...

  15. Ann modeling of kerf transfer in Co2 laser cutting and optimization of cutting parameters using monte carlo method

    Directory of Open Access Journals (Sweden)

    Miloš Madić

    2015-01-01

    Full Text Available In this paper, an attempt has been made to develop a mathematical model in order to study the relationship between laser cutting parameters such as laser power, cutting speed, assist gas pressure and focus position, and kerf taper angle obtained in CO2 laser cutting of AISI 304 stainless steel. To this aim, a single hidden layer artificial neural network (ANN trained with gradient descent with momentum algorithm was used. To obtain an experimental database for the ANN training, laser cutting experiment was planned as per Taguchi’s L27 orthogonal array with three levels for each of the cutting parameters. Statistically assessed as adequate, ANN model was then used to investigate the effect of the laser cutting parameters on the kerf taper angle by generating 2D and 3D plots. It was observed that the kerf taper angle was highly sensitive to the selected laser cutting parameters, as well as their interactions. In addition to modeling, by applying the Monte Carlo method on the developed kerf taper angle ANN model, the near optimal laser cutting parameter settings, which minimize kerf taper angle, were determined.

  16. Multibeam fiber laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Hansen, Klaus Schütt; Nielsen, Jakob Skov

    2009-01-01

    of single mode fiber laser power. Burr free cuts in 1 mm steel and aluminum and in 1 and 2 mm AISI 304 stainless steel is demonstrated over a wide range of cutting rates. The industrial realization of this approach is foreseen to be performed by either beam patterning by diffractive optical elements......The appearance of the high power high brilliance fiber laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating Cutting laser, the CO2 laser. However, quality problems in fiber...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from two single mode fiber lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W...

  17. Laser circular cutting of Kevlar sheets: Analysis of thermal stress filed and assessment of cutting geometry

    Science.gov (United States)

    Yilbas, B. S.; Akhtar, S. S.; Karatas, C.

    2017-11-01

    A Kevlar laminate has negative thermal expansion coefficient, which makes it difficult to machine at room temperaures using the conventional cutting tools. Contararily, laser machining of a Kevlar laminate provides advantages over the conventional methods because of the non-mechanical contact between the cutting tool and the workpiece. In the present study, laser circular cutting of Kevlar laminate is considered. The experiment is carried out to examine and evaluate the cutting sections. Temperature and stress fields formed in the cutting section are simulated in line with the experimental study. The influence of hole diameters on temperature and stress fields are investigated incorporating two different hole diameters. It is found that the Kevlar laminate cutting section is free from large size asperities such as large scale sideways burnings and attachemnt of charred residues. The maximum temperature along the cutting circumference remains higher for the large diameter hole than that of the small diameter hole. Temperature decay is sharp around the cutting section in the region where the cutting terminates. This, in turn, results in high temperature gradients and the thermal strain in the cutting region. von Mises stress remains high in the region where temperature gradients are high. von Mises stress follows similar to the trend of temperature decay around the cutting edges.

  18. Modeling and analysis of the chip formation and transient cutting force during elliptical vibration cutting process

    Science.gov (United States)

    Lin, Jieqiong; Guan, Liang; Lu, Mingming; Han, Jinguo; Kan, Yudi

    2017-12-01

    In traditional diamond cutting, the cutting force is usually large and it will affect tool life and machining quality. Elliptical vibration cutting (EVC) as one of the ultra-precision machining technologies has a lot of advantages, such as reduces cutting force, extend tool life and so on. It's difficult to predict the transient cutting force of EVC due to its unique elliptical motion trajectory. Study on chip formation will helpfully to predict cutting force. The geometric feature of chip has important effects on cutting force, however, few scholars have studied the chip formation. In order to investigate the time-varying cutting force of EVC, the geometric feature model of chip is established based on analysis of chip formation, and the effects of cutting parameters on the geometric feature of chip are analyzed. To predict transient force quickly and effectively, the geometric feature of chip is introduced into the cutting force model. The calculated results show that the error between the predicted cutting force in this paper and that in the literature is less than 2%, which proves its feasibility.

  19. Modeling and analysis of the chip formation and transient cutting force during elliptical vibration cutting process

    Directory of Open Access Journals (Sweden)

    Jieqiong Lin

    2017-12-01

    Full Text Available In traditional diamond cutting, the cutting force is usually large and it will affect tool life and machining quality. Elliptical vibration cutting (EVC as one of the ultra-precision machining technologies has a lot of advantages, such as reduces cutting force, extend tool life and so on. It’s difficult to predict the transient cutting force of EVC due to its unique elliptical motion trajectory. Study on chip formation will helpfully to predict cutting force. The geometric feature of chip has important effects on cutting force, however, few scholars have studied the chip formation. In order to investigate the time-varying cutting force of EVC, the geometric feature model of chip is established based on analysis of chip formation, and the effects of cutting parameters on the geometric feature of chip are analyzed. To predict transient force quickly and effectively, the geometric feature of chip is introduced into the cutting force model. The calculated results show that the error between the predicted cutting force in this paper and that in the literature is less than 2%, which proves its feasibility.

  20. Modeling soft-tissue deformation prior to cutting for surgical simulation: finite element analysis and study of cutting parameters.

    Science.gov (United States)

    Chanthasopeephan, Teeranoot; Desai, Jaydev P; Lau, Alan C W

    2007-03-01

    This paper presents an experimental study to understand the localized soft-tissue deformation phase immediately preceding crack growth as observed during the cutting of soft tissue. Such understanding serves as a building block to enable realistic haptic display in simulation of soft tissue cutting for surgical training. Experiments were conducted for soft tissue cutting with a scalpel blade while monitoring the cutting forces and blade displacement for various cutting speeds and cutting angles. The measured force-displacement curves in all the experiments of scalpel cutting of pig liver sample having a natural bulge in thickness exhibited a characteristic pattern: repeating units formed by a segment of linear loading (deformation) followed by a segment of sudden unloading (localized crack extension in the tissue). During the deformation phase immediately preceding crack extension in the tissue, the deformation resistance of the soft tissue was characterized with the local effective modulus (LEM). By iteratively solving an inverse problem formulated with the experimental data and finite element models, this measure of effective deformation resistance was determined. Then computational experiments of model order reduction were conducted to seek the most computationally efficient model that still retained fidelity. Starting with a 3-D finite element model of the liver specimen, three levels of model order reduction were carried out with computational effort in the ratio of 1.000:0.103:0.038. We also conducted parametric studies to understand the effect of cutting speed and cutting angle on LEM. Results showed that for a given cutting speed, the deformation resistance decreased as the cutting angle was varied from 90 degrees to 45 degrees. For a given cutting angle, the deformation resistance decreased with increase in cutting speed.

  1. Welding and cutting

    International Nuclear Information System (INIS)

    Drews, P.; Schulze Frielinghaus, W.

    1978-01-01

    This is a survey, with 198 literature references, of the papers published in the fields of welding and cutting within the last three years. The subjects dealt with are: weldability of the materials - Welding methods - Thermal cutting - Shaping and calculation of welded joints - Environmental protection in welding and cutting. (orig.) [de

  2. An Experimental Study of the Cutting Forces in Metal Turning

    Directory of Open Access Journals (Sweden)

    Zoltan Iosif Korka

    2013-09-01

    Full Text Available Cutting forces are classified among the most important technological parameters in machining process. Cutting forces are the background for the evaluation of the necessary machining power, as well as for dimensioning of the tools. Cutting forces are also having a major influence on the deformation of the work piece machined, its dimensional accuracy, and machining system stability.

  3. Study of Effect of Impacting Direction on Abrasive Nanometric Cutting Process with Molecular Dynamics

    Science.gov (United States)

    Li, Junye; Meng, Wenqing; Dong, Kun; Zhang, Xinming; Zhao, Weihong

    2018-01-01

    Abrasive flow polishing plays an important part in modern ultra-precision machining. Ultrafine particles suspended in the medium of abrasive flow removes the material in nanoscale. In this paper, three-dimensional molecular dynamics (MD) simulations are performed to investigate the effect of impacting direction on abrasive cutting process during abrasive flow polishing. The molecular dynamics simulation software Lammps was used to simulate the cutting of single crystal copper with SiC abrasive grains at different cutting angles (0o-45o). At a constant friction coefficient, we found a direct relation between cutting angle and cutting force, which ultimately increases the number of dislocation during abrasive flow machining. Our theoretical study reveal that a small cutting angle is beneficial for improving surface quality and reducing internal defects in the workpiece. However, there is no obvious relationship between cutting angle and friction coefficient.

  4. Study of Effect of Impacting Direction on Abrasive Nanometric Cutting Process with Molecular Dynamics.

    Science.gov (United States)

    Li, Junye; Meng, Wenqing; Dong, Kun; Zhang, Xinming; Zhao, Weihong

    2018-01-11

    Abrasive flow polishing plays an important part in modern ultra-precision machining. Ultrafine particles suspended in the medium of abrasive flow removes the material in nanoscale. In this paper, three-dimensional molecular dynamics (MD) simulations are performed to investigate the effect of impacting direction on abrasive cutting process during abrasive flow polishing. The molecular dynamics simulation software Lammps was used to simulate the cutting of single crystal copper with SiC abrasive grains at different cutting angles (0 o -45 o ). At a constant friction coefficient, we found a direct relation between cutting angle and cutting force, which ultimately increases the number of dislocation during abrasive flow machining. Our theoretical study reveal that a small cutting angle is beneficial for improving surface quality and reducing internal defects in the workpiece. However, there is no obvious relationship between cutting angle and friction coefficient.

  5. HIGH PERFORMANCE TAPS FOR CUTTING THREADS IN DIFFICULT TO MACHINE MATERIALS

    Directory of Open Access Journals (Sweden)

    M. R. Akhmedova

    2016-01-01

    Full Text Available Objectives. This article explores in detail questions of instrument operation function of tapping internal threads in hard materials. The existing relationship between vibration system amplitude and tool durability is indicated; on this basis, it is determined that the best course for improving the durability performance is increasing vibratory resistance. Based on a critical analysis of existing designs with consideration of their flaws, the development of new technological designs of taps is tasked with ensuring stable operation when handling hard materials. Methods. It is noteworthy that one of the main vibration resistance improvement methods of the tool is to reduce the contact area of the tool with the work piece in the cutting zone. Methods are proposed for improving the vibration resistance of taps, considering the correlation adjustment of tap teeth in order to completely eliminate friction at the sides of the thread cutting surface and uneven implementation flute cutting steps. Results. The idea of increasing vibration resistance has seen the new development of vibration-proof tap designs, heralded as innovations due to the accuracy of thread cutting and durability achieved by reducing the thread contact area with the work piece in the cutting zone. Increased vibration resistance is achieved in the modified taps through high correction by means of thread side downgrading of the coarse tap cone by an additional angle of 30º. In another design, the stylus provided with uneven angular spacing. Test results of designed taps machined in corrosion-resistant 1Kh18N9T steel. A manifold increase in tool durability was achieved due to its high vibration resistance. Conclusions. The redesigned taps have a number of advantages, characterised by a high resistance when processing difficult materials and an insignificant increase in the complexity of their manufacture compared with standard taps. Therefore they can be recommended for large

  6. Improved tool grinding machine

    Science.gov (United States)

    Dial, C.E. Sr.

    The present invention relates to an improved tool grinding mechanism for grinding single point diamond cutting tools to precise roundness and radius specifications. The present invention utilizes a tool holder which is longitudinally displaced with respect to the remainder of the grinding system due to contact of the tool with the grinding surface with this displacement being monitored so that any variation in the grinding of the cutting surface such as caused by crystal orientation or tool thicknesses may be compensated for during the grinding operation to assure the attainment of the desired cutting tool face specifications.

  7. Device for cutting protrusions

    Science.gov (United States)

    Bzorgi, Fariborz M [Knoxville, TN

    2011-07-05

    An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade. The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.

  8. Advances in Cross-Cutting Ideas for Computational Climate Science

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Evans, Katherine J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Caldwell, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hoffman, Forrest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Charles [Univ. of Texas, Austin, TX (United States); Kerstin, Van Dam [Brookhaven National Lab. (BNL), Upton, NY (United States); Leung, Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martin, Daniel F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ostrouchov, George [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tuminaro, Raymond [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ullrich, Paul [Univ. of California, Davis, CA (United States); Wild, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-01-01

    enabling breakthrough climate simulation advancements also need the "glue" of outreach and learning across the scientific domains to be successful. The workshop identified several strategies to allow productive, continuous engagement across those who have a broad knowledge of the various angles of the problem. Specific ideas to foster education and tools to make material progress were discussed. Examples include follow-on cross-cutting meetings that enable unstructured discussions of the types this workshop fostered. A concerted effort to recruit undergraduate and graduate students from all relevant domains and provide them experience, training, and networking across their immediate expertise is needed. This will broaden and expand their exposure to the future needs and solutions, and provide a pipeline of scientists with a diversity of knowledge and know-how. Providing real-world experience with subject matter experts from multiple angles may also motivate the students to attack these problems and even come up with the missing solutions.

  9. Advances in Cross-Cutting Ideas for Computational Climate Science

    Energy Technology Data Exchange (ETDEWEB)

    Ng, E.; Evans, K.; Caldwell, P.; Hoffman, F.; Jackson, C.; Van Dam, K.; Leung, R.; Martin, D.; Ostrouchov, G.; Tuminaro, R.; Ullrich, P.; Wild, S.; Williams, S.

    2017-01-01

    breakthrough climate simulation advancements also need the "glue" of outreach and learning across the scientific domains to be successful. The workshop identified several strategies to allow productive, continuous engagement across those who have a broad knowledge of the various angles of the problem. Specific ideas to foster education and tools to make material progress were discussed. Examples include follow-on cross-cutting meetings that enable unstructured discussions of the types this workshop fostered. A concerted effort to recruit undergraduate and graduate students from all relevant domains and provide them experience, training, and networking across their immediate expertise is needed. This will broaden and expand their exposure to the future needs and solutions, and provide a pipeline of scientists with a diversity of knowledge and know-how. Providing real-world experience with subject matter experts from multiple angles may also motivate the students to attack these problems and even come up with the missing solutions.

  10. Experimental Investigation on Cutting Characteristics in Nanometric Plunge-Cutting of BK7 and Fused Silica Glasses.

    Science.gov (United States)

    An, Qinglong; Ming, Weiwei; Chen, Ming

    2015-03-27

    Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of BK7 and fused silica glasses, including machined surface morphology, surface roughness, cutting force and specific cutting energy, were investigated with nanometric plunge-cutting experiments. The same cutting speed of 300 mm/min was used in the experiments with single-crystal diamond tool. CUCT was determined according to the mentioned cutting characteristics. The results revealed that 320 nm was found as the CUCT in BK7 cutting and 50 nm was determined as the size effect of undeformed chip thickness. A high-quality machined surface could be obtained with the undeformed chip thickness between 50 and 320 nm at ductile cutting stage. Moreover, no CUCT was identified in fused silica cutting with the current cutting conditions, and brittle-fracture mechanism was confirmed as the predominant chip-separation mode throughout the nanometric cutting operation.

  11. Experimental investigation of cutting parameters influence on ...

    Indian Academy of Sciences (India)

    38, Part 3, June 2013, pp. 429–445. c Indian Academy of Sciences. Experimental investigation of cutting parameters influence on surface roughness and cutting forces in hard turning of X38CrMoV5-1 with CBN tool. H AOUICI1,2,∗. , M A YALLESE2, A BELBAH2, M F AMEUR1 and M ELBAH2. 1ENST-ex CT siège DG. SNVI ...

  12. Underwater cutting techniques developments

    International Nuclear Information System (INIS)

    Bach, F.-W.

    1990-01-01

    The primary circuit structures of different nuclear powerplants are constructed out of stainless steels, ferritic steels, plated ferritic steels and alloys of aluminium. According to the level of the specific radiation of these structures, it is necessary for dismantling to work with remote controlled cutting techniques. The most successful way to protect the working crew against exposure of radiation is to operate underwater in different depths. The following thermal cutting processes are more or less developed to work under water: For ferritic steels only - flame cutting; For ferritic steels, stainless steels, cladded steels and aluminium alloys - oxy-arc-cutting, arc-waterjet-cutting with a consumable electrode, arc-saw-cutting, plasma-arc-cutting and plasma-arc-saw. The flame cutting is a burning process, all the other processes are melt-cutting processes. This paper explains the different techniques, giving a short introduction of the theory, a discussion of the possibilities with the advantages and disadvantages of these processes giving a view into the further research work in this interesting field. (author)

  13. Development and characterization of AlCrN coated Si{sub 3}N{sub 4} ceramic cutting tool; Desenvolvimento e caracterizacao de ferramentas ceramicas de Si{sub 3}N{sub 4} revestidas com AlCrN

    Energy Technology Data Exchange (ETDEWEB)

    Souza, J.V.C.; Nono, M.C.A.; Machado, J.P.B., E-mail: vitor@las.inpe.b [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Silva, O.M.M. [Centro Tecnico de Aeronautica (CTA-IAE/AMR), Sao Jose dos Campos, SP (Brazil). Inst. de Aeronautica e Espaco. Div. de Materiais; Pimenta, M. [Balzers, Jundiai, SP (Brazil); Sa, F.C.L. [Centro Universitario de Volta Redonda (UNIFOA), RJ (Brazil)

    2010-07-01

    Ceramic cutting tools are showing a growing market perspective in terms of application on machining operations due to their high hardness, wear resistance, and machining without a cutting fluid, therefore are good candidates for cast iron and Nickel superalloys machining. The objective of the present paper was the development of Si{sub 3}N{sub 4} based ceramic cutting insert, characterization of its physical and mechanical properties, and subsequent coating with AlCrN using a PVD method. The characterization of the coating was made using an optical profiler, XRD, AFM and microhardness tester. The results showed that the tool presented a fracture toughness of 6,43 MPa.m{sup 1/2} and hardness of 16 GPa. The hardness reached 31 GPa after coating. The machining tests showed an improvement on work piece roughness when machining with coated insert, in comparison with the uncoated cutting tool. Probably this fact is related to hardness, roughness and topography of AlCrN. (author)

  14. MONITORING OF CUTTING CONDITIONS WITH THE EMPIRICAL MODE DECOMPOSITION

    Directory of Open Access Journals (Sweden)

    Piotr Krzysztof Wolszczak

    2017-03-01

    Full Text Available In this paper we apply empirical mode decomposition by Huang and Hilbert transform to signals recorded during a milling process. Vibroacoustic sensors recorded vibrations of a tool-workpiece system while milling with the end mill of a special shape of "Hi-Feed." The results of Huang-Hilbert analysis provides the information about amplitudes and frequencies of the empirical modal components. Application of Huang-Hilbert transform to cutting conditions monitoring allows the separation of various vibration components caused by the phenomena associated the drive system and the machine components. Therefore, the analysis highlights the vibrations caused by known sources of vibration, such as spindle speed, the number of teeth of the cutting tool or the frequency of vibration tools. Furthermore, signal components generated in the cutting zone were identified. The resulting information helps to assess the working conditions of cutting tools, selection of cutting parameters and tool wear monitoring.

  15. DESIGN AND DEVELOPMENT OF SPECIAL CUTTING SYSTEM FOR SWEET SORGHUM HARVESTER

    Directory of Open Access Journals (Sweden)

    OMID GHAHRAE

    2009-03-01

    Full Text Available Sweet Sorghum is similar to racemose maize with about 3m height and 0.5-3cm thickness of stalk. Sweet Sorghum has sweet flavor stalk, which is used for sugar production. Developed cutting mechanism in this research has a rotary disk with 50 cm diameter and four cutting blades that spin clockwise. The stalks are cut with the impact and inertia forces at the linear velocity of 27 m/s, by cutting blades. This system has a simple bar mechanism guiding the whole-stalk to one side. The cutting quality tests were achieved by two series of blades with 30°and 45° blade angles on the stalk. The results showed that the stalk cutting surface with 30° blade angle was smooth and without fracture on filaments and vasculums, compared to that of 45° blade angle. Blade penetration was accomplished very well with 30° blade angle.

  16. Investigating the Effect of Approach Angle and Nose Radius on Surface Quality of Inconel 718

    Science.gov (United States)

    Kumar, Sunil; Singh, Dilbag; Kalsi, Nirmal S.

    2017-11-01

    This experimental work presents a surface quality evaluation of a Nickel-Cr-Fe based Inconel 718 superalloy, which has many applications in the aero engine and turbine components. However, during machining, the early wear of tool leads to decrease in surface quality. The coating on cutting tool plays a significant role in increasing the wear resistance and life of the tool. In this work, the aim is to study the surface quality of Inconel 718 with TiAlN-coated carbide tools. Influence of various geometrical parameters (tool nose radius, approach angle) and machining variables (cutting velocity, feed rate) on the quality of machined surface (surface roughness) was determined by using central composite design (CCD) matrix. The mathematical model of the same was developed. Analysis of variance was used to find the significance of the parameters. Results showed that the tool nose radius and feed were the main active factors. The present experiment accomplished that TiAlN-coated carbide inserts result in better surface quality as compared with uncoated carbide inserts.

  17. Nanometric mechanical cutting of metallic glass investigated using atomistic simulation

    International Nuclear Information System (INIS)

    Wu, Cheng-Da; Fang, Te-Hua; Su, Jih-Kai

    2017-01-01

    Highlights: • A nanoscale chip with a shear plane of 135° is extruded by the tool. • Tangential force and normal force increase with increasing tool nose radius. • Resistance factor increases with increasing cutting depth and temperature. - Abstract: The effects of cutting depth, tool nose radius, and temperature on the cutting mechanism and mechanics of amorphous NiAl workpieces are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. These effects are investigated in terms of atomic trajectories and flow field, shear strain, cutting force, resistance factor, cutting ratio, and pile-up characteristics. The simulation results show that a nanoscale chip with a shear plane of 135° is extruded by the tool from a workpiece surface during the cutting process. The workpiece atoms underneath the tool flow upward due to the adhesion force and elastic recovery. The required tangential force and normal force increase with increasing cutting depth and tool nose radius; both forces also increase with decreasing temperature. The resistance factor increases with increasing cutting depth and temperature, and decreases with increasing tool nose radius.

  18. Cutting Class Harms Grades

    Science.gov (United States)

    Taylor, Lewis A., III

    2012-01-01

    An accessible business school population of undergraduate students was investigated in three independent, but related studies to determine effects on grades due to cutting class and failing to take advantage of optional reviews and study quizzes. It was hypothesized that cutting classes harms exam scores, attending preexam reviews helps exam…

  19. Small angle neutron scattering

    International Nuclear Information System (INIS)

    Dasannacharya, B.A.; Goyal, P.S.

    1997-01-01

    Small angle neutron scattering (SANS) is one of the most popular neutron scattering technique both for the basic research and as a tool in the hands of applied scientist. SANS is used for studying the structure of a material on a length scale of 10 - 1000 A. SANS is a diffraction experiment that involves scattering of a monocromatic beam of neutrons in order to obtain structural information about macromolecules and heterogeneities. This paper will discuss the design of SANS spectrometers with a special emphasis on the instruments which are better suited for medium flux reactors. The design of several different types of SANS spectrometers will be given. The optimization procedures and appropriate modifications to suit the budget and the space will be discussed. As an example, the design of a SANS spectrometer at CIRUS reactor Trombay will be given. (author)

  20. Influence of vegetable based cutting fluids on cutting force and vibration signature during milling of aluminium metal matrix composites

    Directory of Open Access Journals (Sweden)

    S. Shankar

    2017-03-01

    Full Text Available Due to the environmental and health issues, there is an enormous requirement for developing the novel cutting fluids (CFs. The vegetable based cutting fluid (VBCFs doesn’t affect the environment, diminish the harmful effects to the operator and also enhance the machining performances such as surface roughness, tool life, minimum vibration and cutting forces. In this work, the performances of four different VBCFs like palm, coconut, sunflower, soya bean oils, and a commercial type of CFs were considered to analyze the influence of cutting fluids while measuring the cutting force and vibration signatures during milling of 7075–T6 hybrid aluminium metal matrix composite with carbide insert tool. The experiments were conducted in CNC L-MILL 55 vertical machining center, with milling tool dynamometer to measure the cutting force and a tri-axial accelerometer to measure the vibration signals. The flow rate of the VBCFs were maintained at a constant rate and the results were compared with a commercial cutting fluid. The obtained result shows that palm oil suits better than the other vegetable based cutting fluids in terms of minimum cutting force requirement and minimum vibration. Also, the experimental result shows that the cutting fluid was one of the important parameter needs to be considered which influences the cutting force and vibration signals.

  1. Cutting work in thick section cryomicrotomy.

    Science.gov (United States)

    Saubermann, A J; Riley, W D; Beeuwkes, R

    1977-09-01

    The forces during cryosectioning were measured using miniature strain gauges attached to a load cell fitted to the drive arm of the Porter-Blum MT-2 cryomicrotome. Work was calculated and the data normalized to a standard (1 mm X 1 mm X 0.5 micrometer) section. Thermal energy generated was also calculated. Five parameters were studied: cutting angle, thickness, temperature, hardness, and block shape. Force patterns could be divided into three major groups thought to represent cutting (Type I), large fracture planes greater than 10 micrometer in length (Type II), and small fracture planes less than 10 micrometer in length (Type III). Type I and Type II produced satisfactory sections. Work in cutting ranged from an average of 78.4 muJ to 568.8 muJ. Cutting angle and temperature had the greatest effect on sectioning. Heat generated would be sufficient to cause through-section melting for 0.5 micrometer thick sections assuming the worst possible case, namely that all heat went into the section without loss. Presence of a Type II pattern (large fracture pattern) is thought to be presumptive evidence against thawing.

  2. Evaluation of Cutting Fluids in Multiple Reaming of Stainless Steel

    DEFF Research Database (Denmark)

    Belluco, Walter; Zeng, Z.; De Chiffre, Leonardo

    2001-01-01

    An investigation on the effect of different cutting fluids in reaming is presented. The performance of three water based cutting fluids and one cutting oil was compared to that of a reference water based commercial product by measurement of cutting forces, surface roughness and part accuracy. Three...... subsequent reaming operations were carried out on austenitic stainless steel using high-speed-steel and solid carbide tools. The tested fluids were all significantly different from the reference fluid in at least some of the tested conditions. Significant differences down to 2 percent in cutting forces and 6...

  3. Superficial hardened layer of cut surface by turning

    Directory of Open Access Journals (Sweden)

    Croitoru Sorin Mihai

    2017-01-01

    Full Text Available One of research methods in metal cutting process is to measure hardness in the contact zone between cutting tool and workpiece. The objective of the performed research was to determine thickness and hardness of the superficial layer of cut surface due to cutting process, both orthogonal and complex cutting. The most important finding was that thickness of the superficial hardened layer is very thin under considered conditions, less than 0.01 … 0.02 mm. This research should be continued.

  4. Advanced cutting techniques: laser and fissuration cutting

    International Nuclear Information System (INIS)

    Perrin, J.; Tanis, G.

    1984-01-01

    The aim of this study is to develop a new method for cutting metal components of nuclear power plants, which produces virtually no secondary waste. In this method, a controlled intergranular fissure is produced in a heated area of the component by the addition of a molten material which gives rise to the formation of brittle compounds. With the presence of molten metal, the material or alloys in which we have tension stresses can have a brittle intergranular failure. Generally the failure occurs in a defined temperature range. The tension stresses are created by the thermal gradient induced during the local heating. At the same time, the molten metal is added. Our work has been developed in two directions: Study on the maximum thickness (presently it is potentially possible to cut thick sheets up to 100 mm); dismantling of nuclear parts as tubes, cans, hot cell walls (we are on the beginning of the development in this field of work). (author)

  5. Laser cutting of various materials: Kerf width size analysis and life cycle assessment of cutting process

    Science.gov (United States)

    Yilbas, Bekir Sami; Shaukat, Mian Mobeen; Ashraf, Farhan

    2017-08-01

    Laser cutting of various materials including Ti-6Al-4V alloy, steel 304, Inconel 625, and alumina is carried out to assess the kerf width size variation along the cut section. The life cycle assessment is carried out to determine the environmental impact of the laser cutting in terms of the material waste during the cutting process. The kerf width size is formulated and predicted using the lump parameter analysis and it is measured from the experiments. The influence of laser output power and laser cutting speed on the kerf width size variation is analyzed using the analytical tools including scanning electron and optical microscopes. In the experiments, high pressure nitrogen assisting gas is used to prevent oxidation reactions in the cutting section. It is found that the kerf width size predicted from the lump parameter analysis agrees well with the experimental data. The kerf width size variation increases with increasing laser output power. However, this behavior reverses with increasing laser cutting speed. The life cycle assessment reveals that material selection for laser cutting is critical for the environmental protection point of view. Inconel 625 contributes the most to the environmental damages; however, recycling of the waste of the laser cutting reduces this contribution.

  6. Cutting hospital costs without cutting staff.

    Science.gov (United States)

    Ortiz, John P

    2011-10-01

    A hospital that is seeking ways to cut costs without compromising care should resist the temptation to lay off staff and instead make it a priority to improve efficiencies. This approach requires a formal program to identify and analyze all of the hospital's processes. The focus of the analysis should be to determine which activities are being performed efficiently, which are being performed inefficiently, and which are unnecessary. This effort will achieve the greatest success if it is customer-centric.

  7. Advanced cutting techniques: laser and fissuration cutting

    International Nuclear Information System (INIS)

    Migliorati, B.; Gay, P.

    1984-01-01

    Experimental tests have been performed using CO 2 laser with output power 1 to 15 kW to evaluate the effect of varying the following parameters: material (carbon steel Fe 42 C, stainless steel AISI 304, concrete), laser power, beam characteristics, work piece velocity, gas type and distribution on the laser interaction zone. In the case of concrete, drilling depths of 80 mm were obtained in a few seconds using a 10 kW laser beam. Moreover pieces of 160 mm were cut at 0.01 meters per minute. Results with carbon steel indicated maximum thicknesses of 110 mm, cut at 0.01 meters per minute with 10 kW, depths about 20% lower were obtained with the AISI 304 stainless steel. A parallel investigation was aimed at characterizing particulate emission during the laser cutting process. At the end of the research it was possible to elaborate a preliminary proposal concerning a laser based dismantling system for the application to a typical Nuclear Power Station. (author)

  8. The results of cutting disks testing for rock destruction

    Directory of Open Access Journals (Sweden)

    Khoreshok Aleksey

    2017-01-01

    Full Text Available To determine the rational order of disk tools placement on the working body is necessary to know the maximum amount of rock, destroyed by the disk tool in benching cutting mode depending on the tool geometry parameters, physical and mechanical parameters of rocks. The article contains the definition of rational parameters of cutting disk tools as well as power and energy parameters of the destruction process by cutting disks and by executive body of the coal cutter. The rational geometric parameters of cutting discs are specified. It was found that each step of cutting with a minimum depth of penetration has its own maximum height of bench outcrop. The dependence of the volumes of large items destroyed by the disk tool on the cutting step height was determined. The existence of the cyclic alternation of destruction phases, regardless the fracture parameters, the height of the ledge outcrop, and tools like free cutting geometry were found. In contrast to the free cutting in benching mode of destruction two large fragments of rocks in one cycle were observed. Consequently, the cyclical nature of the destruction process in the benching mode will be characterized by two chips and crushing, and this cycling repeats throughout the destruction process with the same parameters of destruction.

  9. Laser Cutting, Development Trends

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    1999-01-01

    In this paper a short review of the development trends in laser cutting will be given.The technology, which is the fastest expanding industrial production technology will develop in both its core market segment: Flat bed cutting of sheet metal, as it will expand in heavy industry and in cutting...... of 3-dimensional shapes.The CO2-laser will also in the near future be the dominating laser source in the market, although the new developments in ND-YAG-lasers opens for new possibilities for this laser type....

  10. Cutting metals with a water jet

    International Nuclear Information System (INIS)

    Ehlbeck, U.; Corin, C.O.

    1986-01-01

    By the use of solid matter as additives in cutting tooths it is now also possible to cut metals (steel, high-alloy steel, titanium, aluminium, lead). The same standard high-pressure elements for the generation of a water jet are used to cut metals, glass, and ceramics. But within the tool the water jet first of all enters a mixer chamber where it takes in a predosed abrasive by the action of an injector. At the exit end of the mixer chamber, the jet is concentrated again. New applications of this 'Paser' system (particle-stream-erosion cutting process, a registered trade mark), which is also called abrasive jet process, are in aviation and space travel, nuclear technology and so forth. (orig./HP) [de

  11. Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper.

    Science.gov (United States)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun

    2015-12-01

    Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.

  12. Experimental testing of exchangeable cutting inserts cutting ability

    OpenAIRE

    Čep, Robert; Janásek, Adam; Čepová, Lenka; Petrů, Jana; Hlavatý, Ivo; Car, Zlatan; Hatala, Michal

    2013-01-01

    The article deals with experimental testing of the cutting ability of exchangeable cutting inserts. Eleven types of exchangeable cutting inserts from five different manufacturers were tested. The tested cutting inserts were of the same shape and were different especially in material and coating types. The main aim was both to select a suitable test for determination of the cutting ability of exchangeable cutting inserts and to design such testing procedure that could make it possible...

  13. Impact of a diamond coating on tool wear behaviour during dry machining of a multidirectional composite materials

    Science.gov (United States)

    Iliescu, D.; Géhin, D.; Nouari, M.; Girot, F.

    2006-08-01

    High mechanical performances and lightweight are the principal characteristics of composite materials. However, the main problems encountered when machining these materials are their poor machinability and the short timelife of the tools. Hard diamond coatings are attractive for cutting processes due to their high hardness, low friction coefficient, excellent wear resistance and chemical inertness. In the current study, damage mechanisms of the uncoated tungsten carbide are compared to the coated one. Tool wear behaviour was investigated at different cutting conditions when dry machining the multidirectional carbon/epoxy composite T300/914. The purpose is to determine the effect of the cutting parameters (cutting conditions, forces, temperature, etc.) on the tool-workpiece interface (surface integrity, roughness). The experiments have been carried out under orthogonal cutting configuration for both tools: uncoated and coated cemented carbide WC-Co. Different coatings have been tested: diamond coating (thin and thick diamond layer), and Diamond-Like Carbon (DLC coating). Three rake angles of 0circ, 15circ and 30circ, two cutting speeds of 6 and 60 m/min and three feeds rates of 0.05, 0.1, 0.2 mm were tested. The tool surface topography was analyzed using complementary techniques such as white light interferometry, scanning electron microscopy (SEM) and Auger electron spectroscopy (AES).

  14. A Study on Ultrasonic Elliptical Vibration Cutting of Inconel 718

    Directory of Open Access Journals (Sweden)

    Zhao Haidong

    2016-01-01

    Full Text Available Inconel 718 is a kind of nickel-based alloys that are widely used in the aerospace and nuclear industry owing to their high temperature mechanical properties. Cutting of Inconel 718 in conventional cutting (CC is a big challenge in modern industry. Few researches have been studied on cutting of Inconel 718 using single point diamond tool applying the UEVC method. This paper shows an experimental study on UEVC of Inconel 718 by using polycrystalline diamond (PCD coated tools. Firstly, cutting tests have been carried out to study the effect of machining parameters in the UEVC in terms of surface finish and flank wear during machining of Inconel 718. The tests have clearly shown that the PCD coated tools in cutting of Inconel 718 by the UEVC have better performance at 0.1 mm depth of cut as compared to the lower 0.05 mm depth of cut and the higher 0.12 or 0.15 mm depth of cut. Secondly, like CC method, the cutting performance in UEVC increases with the decrease of the feed rate and cutting speed. The CC tests have also been carried out to compare performance of CC with UEVC method.

  15. Apparatus and method for variable angle slant hole collimator

    Science.gov (United States)

    Lee, Seung Joon; Kross, Brian J.; McKisson, John E.

    2017-07-18

    A variable angle slant hole (VASH) collimator for providing collimation of high energy photons such as gamma rays during radiological imaging of humans. The VASH collimator includes a stack of multiple collimator leaves and a means of quickly aligning each leaf to provide various projection angles. Rather than rotate the detector around the subject, the VASH collimator enables the detector to remain stationary while the projection angle of the collimator is varied for tomographic acquisition. High collimator efficiency is achieved by maintaining the leaves in accurate alignment through the various projection angles. Individual leaves include unique angled cuts to maintain a precise target collimation angle. Matching wedge blocks driven by two actuators with twin-lead screws accurately position each leaf in the stack resulting in the precise target collimation angle. A computer interface with the actuators enables precise control of the projection angle of the collimator.

  16. Augmented Endoscopic Images Overlaying Shape Changes in Bone Cutting Procedures.

    Science.gov (United States)

    Nakao, Megumi; Endo, Shota; Nakao, Shinichi; Yoshida, Munehito; Matsuda, Tetsuya

    2016-01-01

    In microendoscopic discectomy for spinal disorders, bone cutting procedures are performed in tight spaces while observing a small portion of the target structures. Although optical tracking systems are able to measure the tip of the surgical tool during surgery, the poor shape information available during surgery makes accurate cutting difficult, even if preoperative computed tomography and magnetic resonance images are used for reference. Shape estimation and visualization of the target structures are essential for accurate cutting. However, time-varying shape changes during cutting procedures are still challenging issues for intraoperative navigation. This paper introduces a concept of endoscopic image augmentation that overlays shape changes to support bone cutting procedures. This framework handles the history of the location of the measured drill tip as a volume label and visualizes the remains to be cut overlaid on the endoscopic image in real time. A cutting experiment was performed with volunteers, and the feasibility of this concept was examined using a clinical navigation system. The efficacy of the cutting aid was evaluated with respect to the shape similarity, total moved distance of a cutting tool, and required cutting time. The results of the experiments showed that cutting performance was significantly improved by the proposed framework.

  17. Short-cut math

    CERN Document Server

    Kelly, Gerard W

    1984-01-01

    Clear, concise compendium of about 150 time-saving math short-cuts features faster, easier ways to add, subtract, multiply, and divide. Each problem includes an explanation of the method. No special math ability needed.

  18. Laser cutting system

    Science.gov (United States)

    Dougherty, Thomas J

    2015-03-03

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  19. Cutting and Self-Harm

    Science.gov (United States)

    ... Your feelings Feeling sad Cutting and self-harm Cutting and self-harm Self-harm, sometimes called self- ... There are many types of self-injury, and cutting is one type that you may have heard ...

  20. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Affonso Lourenco; Evren Ozbayoglu; Lei Zhou

    2002-01-30

    This is the second quarterly progress report for Year 3 of the ACTS project. It includes a review of progress made in: (1) Flow Loop development and (2) research tasks during the period of time between Oct 1, 2001 and Dec. 31, 2001. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 3: Addition of a Cuttings Injection/Collection System), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (e) Research on instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), and Foam properties while transporting cuttings. (Task 12), (f) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  1. Taping torque test for cutting fluid evaluation: test method and procedure

    DEFF Research Database (Denmark)

    Belluco, Walter; De Chiffre, Leonardo

    Tapping torque is a parameter closely connected to the lubricating effect of a cutting fluid. Tapping involves many small cutting edges in continuous contact with the work throughout the cut. The design of the tools and the nature of this operation shield the edges of the tool from the flow of th...

  2. Analyses of Effects of Cutting Parameters on Cutting Edge Temperature Using Inverse Heat Conduction Technique

    Directory of Open Access Journals (Sweden)

    Marcelo Ribeiro dos Santos

    2014-01-01

    Full Text Available During machining energy is transformed into heat due to plastic deformation of the workpiece surface and friction between tool and workpiece. High temperatures are generated in the region of the cutting edge, which have a very important influence on wear rate of the cutting tool and on tool life. This work proposes the estimation of heat flux at the chip-tool interface using inverse techniques. Factors which influence the temperature distribution at the AISI M32C high speed steel tool rake face during machining of a ABNT 12L14 steel workpiece were also investigated. The temperature distribution was predicted using finite volume elements. A transient 3D numerical code using irregular and nonstaggered mesh was developed to solve the nonlinear heat diffusion equation. To validate the software, experimental tests were made. The inverse problem was solved using the function specification method. Heat fluxes at the tool-workpiece interface were estimated using inverse problems techniques and experimental temperatures. Tests were performed to study the effect of cutting parameters on cutting edge temperature. The results were compared with those of the tool-work thermocouple technique and a fair agreement was obtained.

  3. Selection Of Cutting Inserts For Aluminum Alloys Machining By Using MCDM Method

    Science.gov (United States)

    Madić, Miloš; Radovanović, Miroslav; Petković, Dušan; Nedić, Bogdan

    2015-07-01

    Machining of aluminum and its alloys requires the use of cutting tools with special geometry and material. Since there exists a number of cutting tools for aluminum machining, each with unique characteristics, selection of the most appropriate cutting tool for a given application is very complex task which can be viewed as a multi-criteria decision making (MCDM) problem. This paper is focused on multi-criteria analysis of VCGT cutting inserts for aluminum alloys turning by applying recently developed MCDM method, i.e. weighted aggregated sum product assessment (WASPAS) method. The MCDM model was defined using the available catalogue data from cutting tool manufacturers.

  4. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  5. Force Modelling in Orthogonal Cutting Considering Flank Wear Effect

    Science.gov (United States)

    Rathod, Kanti Bhikhubhai; Lalwani, Devdas I.

    2017-05-01

    In the present work, an attempt has been made to provide a predictive cutting force model during orthogonal cutting by combining two different force models, that is, a force model for a perfectly sharp tool plus considering the effect of edge radius and a force model for a worn tool. The first force model is for a perfectly sharp tool that is based on Oxley's predictive machining theory for orthogonal cutting as the Oxley's model is for perfectly sharp tool, the effect of cutting edge radius (hone radius) is added and improve model is presented. The second force model is based on worn tool (flank wear) that was proposed by Waldorf. Further, the developed combined force model is also used to predict flank wear width using inverse approach. The performance of the developed combined total force model is compared with the previously published results for AISI 1045 and AISI 4142 materials and found reasonably good agreement.

  6. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mengjiao Yu; Ramadan Ahmed; Mark Pickell; Len Volk; Lei Zhou; Zhu Chen; Aimee Washington; Crystal Redden

    2003-09-30

    The Quarter began with installing the new drill pipe, hooking up the new hydraulic power unit, completing the pipe rotation system (Task 4 has been completed), and making the SWACO choke operational. Detailed design and procurement work is proceeding on a system to elevate the drill-string section. The prototype Foam Generator Cell has been completed by Temco and delivered. Work is currently underway to calibrate the system. Literature review and preliminary model development for cuttings transportation with polymer foam under EPET conditions are in progress. Preparations for preliminary cuttings transport experiments with polymer foam have been completed. Two nuclear densitometers were re-calibrated. Drill pipe rotation system was tested up to 250 RPM. Water flow tests were conducted while rotating the drill pipe up to 100 RPM. The accuracy of weight measurements for cuttings in the annulus was evaluated. Additional modifications of the cuttings collection system are being considered in order to obtain the desired accurate measurement of cuttings weight in the annular test section. Cutting transport experiments with aerated fluids are being conducted at EPET, and analyses of the collected data are in progress. The printed circuit board is functioning with acceptable noise level to measure cuttings concentration at static condition using ultrasonic method. We were able to conduct several tests using a standard low pass filter to eliminate high frequency noise. We tested to verify that we can distinguish between different depths of sand in a static bed of sand. We tested with water, air and a mix of the two mediums. Major modifications to the DTF have almost been completed. A stop-flow cell is being designed for the DTF, the ACTF and Foam Generator/Viscometer which will allow us to capture bubble images without the need for ultra fast shutter speeds or microsecond flash system.

  7. Investigation of cutting temperature and chip formation during rotational turning by multifaceted cutters

    Science.gov (United States)

    Indakov, N. S.; Binchurov, A. S.; Gordeev, Y. I.; Yasinski, V. B.; Lepeshev, A. A.

    2017-01-01

    The influences of conditions of rotational turning by multifaceted cutters (RTMC) on the cutting point temperature under the intermittent cutting operation are examined. By employing a different geometry of the tool and selecting an appropriate tool peripheral speed so as to reduce the tool-workpiece contact time and frictions, tool temperatures and failures are suppressed. The morphology of the different types of chips generated during RTMC confirms the theoretical position of the intense fragmentation and removal of chips from the cutting zone.

  8. Improved cutting performance in high power laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    2003-01-01

    Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described.......Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described....

  9. Tool geometry and damage mechanisms influencing CNC turning efficiency of Ti6Al4V

    Science.gov (United States)

    Suresh, Sangeeth; Hamid, Darulihsan Abdul; Yazid, M. Z. A.; Nasuha, Nurdiyanah; Ain, Siti Nurul

    2017-12-01

    Ti6Al4V or Grade 5 titanium alloy is widely used in the aerospace, medical, automotive and fabrication industries, due to its distinctive combination of mechanical and physical properties. Ti6Al4V has always been perverse during its machining, strangely due to the same mix of properties mentioned earlier. Ti6Al4V machining has resulted in shorter cutting tool life which has led to objectionable surface integrity and rapid failure of the parts machined. However, the proven functional relevance of this material has prompted extensive research in the optimization of machine parameters and cutting tool characteristics. Cutting tool geometry plays a vital role in ensuring dimensional and geometric accuracy in machined parts. In this study, an experimental investigation is actualized to optimize the nose radius and relief angles of the cutting tools and their interaction to different levels of machining parameters. Low elastic modulus and thermal conductivity of Ti6Al4V contribute to the rapid tool damage. The impact of these properties over the tool tips damage is studied. An experimental design approach is utilized in the CNC turning process of Ti6Al4V to statistically analyze and propose optimum levels of input parameters to lengthen the tool life and enhance surface characteristics of the machined parts. A greater tool nose radius with a straight flank, combined with low feed rates have resulted in a desirable surface integrity. The presence of relief angle has proven to aggravate tool damage and also dimensional instability in the CNC turning of Ti6Al4V.

  10. Underwater plasma arc cutting

    International Nuclear Information System (INIS)

    Leautier, R.; Pilot, G.

    1991-01-01

    This report describes the work done to develop underwater plasma arc cutting techniques, to characterise aerosols from cutting operations on radioactive and non-radioactive work-pieces, and to develop suitable ventilation and filtration techniques. The work has been carried out in the framework of a contract between CEA-CEN Cadarache and the Commission of European Communities. Furthermore, this work has been carried out in close cooperation with CEA-CEN Saclay mainly for secondary emissions and radioactive analysis. The contract started in May 1986 and was completed in December 1988 by a supplementary agreement. This report has been compiled from several progress reports submitted during the work period, contains the main findings of the work and encloses the results of comparative tests on plasma arc cutting

  11. modelling of responses from orthogonal metal cutting of mild steel

    African Journals Online (AJOL)

    user

    and Delta Steel Companies show that the level of technology transfer from ... Armor 35' was used to measure the total cutting length a tool will cut ... surface roughness parameter has been the focus of experimental investigations. The surface profile parameters have only been theoretically modelled by. [11, 12].The need to ...

  12. Investigation and validation of optimal cutting parameters for least ...

    African Journals Online (AJOL)

    user

    machining the hard martensite stainless steel and indicated that the surface roughness is a critical parameter to the functionality of machined components and ... Turning is carried on lathe that provides the power to turn the work piece at a given rotational speed and feed to the cutting tool at specified rate and depth of cut.

  13. Cutting Edge Localisation in an Edge Profile Milling Head

    NARCIS (Netherlands)

    Fernandez Robles, Laura; Azzopardi, George; Alegre, Enrique; Petkov, Nicolai

    2015-01-01

    Wear evaluation of cutting tools is a key issue for prolonging their lifetime and ensuring high quality of products. In this paper, we present a method for the effective localisation of cutting edges of inserts in digital images of an edge profile milling head. We introduce a new image data set of

  14. Theoretical Models for Orthogonal Cutting

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This review of simple models for orthogonal cutting was extracted from: “L. De Chiffre: Metal Cutting Mechanics and Applications, D.Sc. Thesis, Technical University of Denmark, 1990.”......This review of simple models for orthogonal cutting was extracted from: “L. De Chiffre: Metal Cutting Mechanics and Applications, D.Sc. Thesis, Technical University of Denmark, 1990.”...

  15. Radial cutting torch

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, M.C.

    1997-01-08

    The project`s aim is to complete development of the Radial Cutting Torch, a pyrotechnic cutter, for use in all downhole tubular cutting operations in the petroleum industry. Project objectives are to redesign and pressure test nozzle seals to increase product quality, reliability, and manufacturability; improve the mechanical anchor to increase its temperature tolerance and its ability to function in a wider variety of wellbore fluids; and redesign and pressure test the RCT nozzle for operation at pressures from 10 to 20 ksi. The proposal work statement is included in the statement of work for the grant via this reference.

  16. Researches on evaluation of smooth entrance in cutting using electrical current. A case study

    Directory of Open Access Journals (Sweden)

    Diţu Valentin

    2017-01-01

    Full Text Available At metal drilling, at the beginning of the process, the cutting tool in the chisel edge zone, frictions and plastically deforms the material, and then enters in cutting. If the drill is entered smoothly in cutting with a special device, its life is increased. The paper presents how the electrical current at cutting is used for the evaluation of smooth entrance in cutting in comparison with classical cutting. These are demonstrated for 41MoC11 steel drilled with a set of 30 tools having 8 mm diameter.

  17. Designing for hot-blade cutting

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Clausen, Kenn

    2016-01-01

    by authors of the paper, which facilitates high-speed production of doubly-curved foam moulds. Complementary to design rationalisation, in which arbitrary surfaces are translated to hot-blade-cuttable geometries, the presented method enables architects and designers to design directly with the non......-trivial constraints of blade-cutting in a bottom-up fashion, enabling an exploration of the unique architectural potential of this fabrication approach. The method is implemented as prototype design tools in MatLAB, C++, GhPython, and Python and demonstrated through cutting of expanded polystyrene foam design...

  18. Modern laser technologies used for cutting textile materials

    Science.gov (United States)

    Isarie, Claudiu; Dragan, Anca; Isarie, Laura; Nastase, Dan

    2006-02-01

    With modern laser technologies we can cut multiple layers at once, yielding high production levels and short setup times between cutting runs. One example could be the operation of cutting the material named Nylon 66, used to manufacture automobile airbags. With laser, up to seven layers of Nylon 66 can be cut in one pass, that means high production rates on a single machine. Airbags must be precisely crafted piece of critical safety equipment that is built to very high levels of precision in a mass production environment. Of course, synthetic material, used for airbags, can be cut also by a conventional fixed blade system, but for a high production rates and a long term low-maintenance, laser cutting is most suitable. Most systems, are equipped with two material handling systems, which can cut on one half of he table while the finished product is being removed from the other half and the new stock material laid out. The laser system is reliable and adaptable to any flatbed-cutting task. Computer controlled industrial cutting and plotting machines are the latest offerings from a well established and experienced industrial engineering company that is dedicated to reduce cutting costs and boosting productivity in today's competitive industrial machine tool market. In this way, just one machine can carry out a multitude of production tasks. Authors have studied the cutting parameters for different textile materials, to reach the maximum output of the process.

  19. The use of cutting temperature to evaluate the machinability of titanium alloys.

    Science.gov (United States)

    Kikuchi, Masafumi

    2009-02-01

    This study investigated the machinability of titanium, two commercial titanium alloys (Ti-6Al-4V and Ti-6Al-7Nb) and free-cutting brass using the cutting temperature. The cutting temperature was estimated by measuring the thermal electromotive force of the tool-workpiece thermocouple during cutting. The thermoelectric power of each metal relative to the tool had previously been determined. The metals were slotted using a milling machine and carbide square end mills under four cutting conditions. The cutting temperatures of Ti-6Al-4V and Ti-6Al-7Nb were significantly higher than that of the titanium, while that of the free-cutting brass was lower. This result coincided with the relationship of the magnitude of the cutting forces measured in a previous study. For each metal, the cutting temperature became higher when the depth of cut or the cutting speed and feed increased. The increase in the cutting speed and feed was more influential on the value than the increase in the depth of cut when two cutting conditions with the same removal rates were compared. The results demonstrated that cutting temperature measurement can be utilized to develop a new material for dental CAD/CAM applications and to optimize the cutting conditions.

  20. Cutting Cakes Carefully

    Science.gov (United States)

    Hill, Theodore P.; Morrison, Kent E.

    2010-01-01

    This paper surveys the fascinating mathematics of fair division, and provides a suite of examples using basic ideas from algebra, calculus, and probability which can be used to examine and test new and sometimes complex mathematical theories and claims involving fair division. Conversely, the classical cut-and-choose and moving-knife algorithms…

  1. Cuts, Scratches, and Scrapes

    Science.gov (United States)

    ... Body Mind Sexual Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Cuts, Scratches, and ... Infection Signs of Infection Print en español Cortes, rasguños ...

  2. Simultaneous Cake Cutting

    DEFF Research Database (Denmark)

    Balkanski, Eric; Branzei, Simina; Kurokawa, David

    2014-01-01

    We introduce the simultaneous model for cake cutting (the fair allocation of a divisible good), in which agents simultaneously send messages containing a sketch of their preferences over the cake. We show that this model enables the computation of divisions that satisfy proportionality — a popular...

  3. A study on the edge chipping according to spindle speed and inclination angle of workpiece in laser-assisted milling of silicon nitride

    Science.gov (United States)

    Woo, Wan-Sik; Lee, Choon-Man

    2018-02-01

    Ceramics are difficult to machine due to their high hardness and brittleness. As an effective method for machining ceramics, laser-assisted machining (LAM) has been studied by many researchers. In particular, many studies of methods to improve the machinability of silicon nitride using LAM have been performed. However, there is little research on the effect of the inclination angle of the workpiece, because varying the angle increases the difficulty of controlling the laser preheating and tool path. This paper investigates the effect of preheating temperature, spindle speed and inclination angle of the workpiece on edge chipping of silicon nitride in an effort to obtain an enhanced surface finish using laser-assisted milling (LAMill). The machining conditions were determined by considering the parameters that can reduce edge chipping using related theory. Experimental results showed a reduction in edge chipping based on increases in preheating temperature, spindle speed and inclination angle of the workpiece. Also, by increasing the spindle speed and the inclination angle of the workpiece, surface roughness was decreased due to reduction in the cutting force. The energy efficiency of LAMill by comparing the specific cutting energy according to the machining conditions is analyzed.

  4. Investigations in high speed blanking: cutting forces and microscopic observations

    Directory of Open Access Journals (Sweden)

    Larue A.

    2010-06-01

    Full Text Available A new hopefull technique, called high speed blanking, has been investigated since few years. To understand the cutting process and how the tools have to be designed, this study is interrested in the cutting force measurement. A new cutting force measurement device has to be designed consider the industrial interest of such a study. The designed test bench induces a calibration process in order to stucy the cutting forces evolution. The paper is discussing the result that the peack load seems to decrease when the punch speed increases. Finally microscopic observations are made in order to find Adiabatic Shear Bands.

  5. Tools and their uses

    CERN Document Server

    1973-01-01

    Teaches names, general uses, and correct operation of all basic hand and power tools, fasteners, and measuring devices you are likely to need. Also, grinding, metal cutting, soldering, and more. 329 illustrations.

  6. The HBN Angle

    Directory of Open Access Journals (Sweden)

    Harsh Bhagvatiprasad Dave

    2015-01-01

    Full Text Available Aim: The purpose of this study was to establish a new cephalometric measurement, named the Harsh Bhagvatiprasad Nita angle (HBN, to assess the sagittal jaw relationship with accuracy and reproducibility. Materials and Methods: Three hundred pretreatment lateral cephalograms (100 each of Class I, II, and III were taken from the Department of Orthodontics and Dentofacial Orthopedics of Rajasthan Dental College and Hospital, Jaipur (Rajasthan and were subdivided into skeletal Class I, II, and III based on ANB, Wits appraisal, and Beta angle. This angle uses 3 skeletal landmarks the "C" (apparent axis of the condyle, "M" (midpoint of the premaxilla, and "G" (center of the largest circle that is tangent to the internal inferior, anterior, and posterior surfaces of the mandibular symphysis. Results: The result of the mean and standard deviation for the HBN angle were calculated in all three skeletal groups. After using one-way analysis of variance and post-hoc multiple comparisons by using Tukey′s honestly significant difference, homogeneous subsets, receiver operating characteristics (ROC curve - to differentiate Class II with Class I, ROC curve - to differentiate Class III with Class I, Reliability analysis with interclass correlation of HBN angle with other angles, we obtained results that showed that a patient with a HBN angle 40° and 46° can be considered to have a Class I skeletal pattern. Conclusions: A new angle, the HBN angle, was developed as a diagnostic aid to evaluate the sagittal jaw relationship more consistently. HBN angle 40° and 46° can be considered to have a Class I skeletal pattern, a more acute HBN angle indicates a Class II skeletal pattern, and a more obtuse HBN angle indicates a Class III skeletal pattern.

  7. Comparative assessment of coated and uncoated ceramic tools on ...

    Indian Academy of Sciences (India)

    H Aouici

    2017-11-20

    Nov 20, 2017 ... icant impact on the cutting force, cutting pressure and cutting power. In another recent work, Meddour et al [20] applied the RSM to investigate the effect of cutting parameters on cutting forces and surface roughness in hard turning of AISI 52100 steel with a ceramic tool. The study indicated that the depth of ...

  8. Core Cutting Test with Vertical Rock Cutting Rig (VRCR)

    Science.gov (United States)

    Yasar, Serdar; Osman Yilmaz, Ali

    2017-12-01

    Roadheaders are frequently used machines in mining and tunnelling, and performance prediction of roadheaders is important for project economics and stability. Several methods were proposed so far for this purpose and, rock cutting tests are the best choice. Rock cutting tests are generally divided into two groups which are namely, full scale rock cutting tests and small scale rock cutting tests. These two tests have some superiorities and deficiencies over themselves. However, in many cases, where rock sampling becomes problematic, small scale rock cutting test (core cutting test) is preferred for performance prediction, since small block samples and core samples can be conducted to rock cutting testing. Common problem for rock cutting tests are that they can be found in very limited research centres. In this study, a new mobile rock cutting testing equipment, vertical rock cutting rig (VRCR) was introduced. Standard testing procedure was conducted on seven rock samples which were the part of a former study on cutting rocks with another small scale rock cutting test. Results showed that core cutting test can be realized successfully with VRCR with the validation of paired samples t-test.

  9. Dredging Processes I : The Cutting of Sand, Clay & Rock - Theory

    NARCIS (Netherlands)

    Miedema, S.A.

    2013-01-01

    This book gives an overview of cutting theories. It starts with a generic model, which is valid for all types of soil (sand, clay and rock) after which the specifics of dry sand, water saturated sand, clay, rock and hyperbaric rock are covered. For each soil type small blade angles and large blade

  10. Influence of minimum quantity lubrication parameters on tool wear and surface roughness in milling of forged steel

    Science.gov (United States)

    Yan, Lutao; Yuan, Songmei; Liu, Qiang

    2012-05-01

    The minimum quantity of lubrication (MQL) technique is becoming increasingly more popular due to the safety of environment. Moreover, MQL technique not only leads to economical benefits by way of saving lubricant costs but also presents better machinability. However, the effect of MQL parameters on machining is still not clear, which needs to be overcome. In this paper, the effect of different modes of lubrication, i.e., conventional way using flushing, dry cutting and using the minimum quantity lubrication (MQL) technique on the machinability in end milling of a forged steel (50CrMnMo), is investigated. The influence of MQL parameters on tool wear and surface roughness is also discussed. MQL parameters include nozzle direction in relation to feed direction, nozzle elevation angle, distance from the nozzle tip to the cutting zone, lubricant flow rate and air pressure. The investigation results show that MQL technique lowers the tool wear and surface roughness values compared with that of conventional flood cutting fluid supply and dry cutting conditions. Based on the investigations of chip morphology and color, MQL technique reduces the cutting temperature to some extent. The relative nozzle-feed position at 120°, the angle elevation of 60° and distance from nozzle tip to cutting zone at 20 mm provide the prolonged tool life and reduced surface roughness values. This fact is due to the oil mists can penetrate in the inner zones of the tool edges in a very efficient way. Improvement in tool life and surface finish could be achieved utilizing higher oil flow rate and higher compressed air pressure. Moreover, oil flow rate increased from 43.8 mL/h to 58.4 mL/h leads to a small decrease of flank wear, but it is not very significant. The results obtained in this paper can be used to determine optimal conditions for milling of forged steel under MQL conditions.

  11. Small-angle scattering on soft materials

    International Nuclear Information System (INIS)

    Mortensen, K.

    1994-01-01

    Small angle x-ray and neutron scattering provides tools for investigation of structures on the length scale 10 to 1000 A. This is the length scale which is relevant for many topics within soft materials, like biological macromolecules, polymers, colloids, etc. The very large difference between the scattering amplitude of neutrons by regular hydrogen and deuterium makes neutron scattering a very important technique within soft condensed matter. The basic theory for small angle scattering is reviewed. Experimental results obtained by small angle scattering are shown, with emphasis on soft materials. (author). 33 refs, 6 figs, 1 tab

  12. Characterisation of aerosols produced by laser cutting

    International Nuclear Information System (INIS)

    Fauvel, S.; Pilot, G.; Dinechin, G. de; Gosse, X.; Arnaud, P.

    2007-01-01

    Powerful lasers represent a promising alternative solution to traditional cutting processes used in dismantling nuclear equipments. The use of optical fibers has an unquestionable advantage when dealing with airtight workshops. A study funded by COGEMA Marcoule was undertaken by IRSN/SERAC in collaboration with GIP/GERAILP in order to characterise the aerosols emitted by the cutting of evaporators elements with a 4 kW continuous wave Nd:YAG laser. For this study, laser cutting has been carried out in a tight room of 35 m 3 connected to a particle sampling pipe. Iso-kinetic samplers allowed the measurement of the aerosol concentration. A diffusional and inertial spectrometer (SDI 2001) - an Andersen impinger coupled to a diffusion battery - provided the size distribution. An electrostatic filter used upstream a HEPA filter, itself placed before the extractor fan, collected the majority of the emitted aerosol. Its efficiency was measured and controlled throughout the experiments. The results show the influence of the cutting conditions on the characteristics of the aerosol, and allow a comparison with other cutting tools. (authors)

  13. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Neelima Godugu

    2000-07-30

    ACTS flow loop is now operational under elevated pressure and temperature. Currently, experiments with synthetic based drilling fluids under pressure and temperature are being conducted. Based on the analysis of Fann 70 data, empirical correlations defining the shear stress as a function of temperature, pressure and the shear rate have been developed for Petrobras synthetic drilling fluids. PVT equipment has been modified for testing Synthetic oil base drilling fluids. PVT tests with Petrobras Synthetic base mud have been conducted and results are being analyzed Foam flow experiments have been conducted and the analysis of the data has been carried out to characterize the rheology of the foam. Comparison of pressure loss prediction from the available foam hydraulic models and the test results has been made. Cuttings transport experiments in horizontal annulus section have been conducted using air, water and cuttings. Currently, cuttings transport tests in inclined test section are being conducted. Foam PVT analysis tests have been conducted. Foam stability experiments have also been conducted. Effects of salt and oil concentration on the foam stability have been investigated. Design of ACTS flow loop modification for foam and aerated mud flow has been completed. A flow loop operation procedure for conducting foam flow experiments under EPET conditions has been prepared Design of the lab-scale flow loop for dynamic foam characterization and cuttings monitoring instrumentation tests has been completed. The construction of the test loop is underway. As part of the technology transport efforts, Advisory Board Meeting with ACTS-JIP industry members has been organized on May 13, 2000.

  14. Reading Angles in Maps

    Science.gov (United States)

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…

  15. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2003-07-30

    This Quarter has been divided between running experiments and the installation of the drill-pipe rotation system. In addition, valves and piping were relocated, and three viewports were installed. Detailed design work is proceeding on a system to elevate the drill-string section. Design of the first prototype version of a Foam Generator has been finalized, and fabrication is underway. This will be used to determine the relationship between surface roughness and ''slip'' of foams at solid boundaries. Additional cups and rotors are being machined with different surface roughness. Some experiments on cuttings transport with aerated fluids have been conducted at EPET. Theoretical modeling of cuttings transport with aerated fluids is proceeding. The development of theoretical models to predict frictional pressure losses of flowing foam is in progress. The new board design for instrumentation to measure cuttings concentration is now functioning with an acceptable noise level. The ultrasonic sensors are stable up to 190 F. Static tests with sand in an annulus indicate that the system is able to distinguish between different sand concentrations. Viscometer tests with foam, generated by the Dynamic Test Facility (DTF), are continuing.

  16. Optimal reconstruction angles

    International Nuclear Information System (INIS)

    Cook, G.O. Jr.; Knight, L.

    1979-07-01

    The question of optimal projection angles has recently become of interest in the field of reconstruction from projections. Here, studies are concentrated on the n x n pixel space, where literative algorithms such as ART and direct matrix techniques due to Katz are considered. The best angles are determined in a Gauss--Markov statistical sense as well as with respect to a function-theoretical error bound. The possibility of making photon intensity a function of angle is also examined. Finally, the best angles to use in an ART-like algorithm are studied. A certain set of unequally spaced angles was found to be preferred in several contexts. 15 figures, 6 tables

  17. COMPARATIVE PERFORMANCE OF COATED AND UNCOATED INSERTS DURING INTERMITTENT CUT MILLING OF AISI 4340 STEEL

    Directory of Open Access Journals (Sweden)

    SARAVANAN L.

    2015-05-01

    Full Text Available Machining behaviour of TiN coated and uncoated cemented carbide tools were studied during intermittent milling operation of AISI 4340 steel. Series of orthogonal intermittent milling tests were performed subsequently to investigate the role of the selected tools and cutting parameters. Three cutting parameters namely cutting speed, feed and depth of cut with three different levels and two types of cutting tools (coated and uncoated were considered for conducting the experimental trials. Intermittent face milling was employed to study the wear behaviour of the tools and the resulting surface roughness. The cyclic load induced during the entry and exit of the tool, leads to unstable temperature at cutting zone. This unstable temperature affects the tool life badly during intermittent milling. Tool wear increases considerably with an increase in frequency of the interruption. The experimental results indicated that the coated tool out performed uncoated tool in terms of tool life and surface finish. The other interesting observation was the uncoated tool performed better than coated tool at moderate cutting parameters. Results also indicated that the fracture and chipping were the dominant tool failure modes in uncoated tool. The chipping of uncoated tool causes the surface quality to deteriorate. TiN coating ensures the toughness of the cutting tool, which leads to good surface quality during the machining process. A detailed analysis of tool wear and surface roughness was done and the results are employed to create a linear regression model. This model established the relation between the cutting parameters and the response variables. ANOVA was used to identify the influential parameters which affect the tool wear and surface roughness.

  18. Riemannian and Lorentzian flow-cut theorems

    Science.gov (United States)

    Headrick, Matthew; Hubeny, Veronika E.

    2018-05-01

    We prove several geometric theorems using tools from the theory of convex optimization. In the Riemannian setting, we prove the max flow-min cut (MFMC) theorem for boundary regions, applied recently to develop a ‘bit-thread’ interpretation of holographic entanglement entropies. We also prove various properties of the max flow and min cut, including respective nesting properties. In the Lorentzian setting, we prove the analogous MFMC theorem, which states that the volume of a maximal slice equals the flux of a minimal flow, where a flow is defined as a divergenceless timelike vector field with norm at least 1. This theorem includes as a special case a continuum version of Dilworth’s theorem from the theory of partially ordered sets. We include a brief review of the necessary tools from the theory of convex optimization, in particular Lagrangian duality and convex relaxation.

  19. Knee joint kinematics and kinetics during the hop and cut after soft tissue artifact suppression: Time to reconsider ACL injury mechanisms?

    Science.gov (United States)

    Smale, Kenneth B; Potvin, Brigitte M; Shourijeh, Mohammad S; Benoit, Daniel L

    2017-09-06

    The recent development of a soft tissue artifact (STA) suppression method allows us to re-evaluate the tibiofemoral kinematics currently linked to non-contact knee injuries. The purpose of this study was therefore to evaluate knee joint kinematics and kinetics in six degrees of freedom (DoF) during the loading phases of a jump lunge and side cut using this in silico method. Thirty-five healthy adults completed these movements and their surface marker trajectories were then scaled and processed with OpenSim's inverse kinematics (IK) and inverse dynamics tools. Knee flexion angle-dependent kinematic constraints defined based on previous bone pin (BP) marker trajectories were then applied to the OpenSim model during IK and these constrained results were then processed with the standard inverse dynamics tool. Significant differences for all hip, knee, and ankle DoF were observed after STA suppression for both the jump lunge and side cut. Using clinically relevant effect size estimates, we conclude that STA contamination had led to misclassifications in hip transverse plane angles, knee frontal and transverse plane angles, medial/lateral and distractive/compressive knee translations, and knee frontal plane moments between the NoBP and the BP IK solutions. Our results have substantial clinical implications since past research has used joint kinematics and kinetics contaminated by STA to identify risk factors for musculoskeletal injuries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of Cutting Fluids on the Flank Wear of High Speed and ...

    African Journals Online (AJOL)

    The effect of some cutting fluids namely: Mentholated spirit, paraffin, and soluble oil on the flank wear of High-speed steel and carbide tipped tools by orthogonal cutting has been studied. Cente lathe was used for cylindrical turning operated at a speed of 370rpm and depth of cut of 1mm to machine aluminum, brass, mild ...

  1. Photoelectric angle converter

    Science.gov (United States)

    Podzharenko, Volodymyr A.; Kulakov, Pavlo I.

    2001-06-01

    The photo-electric angle transmitter of rotation is offered, at which the output voltage is linear function of entering magnitude. In a transmitter the linear phototransducer is used on the basis of pair photo diode -- operating amplifier, which output voltage is linear function of the area of an illuminated photosensitive stratum, and modulator of a light stream of the special shape, which ensures a linear dependence of this area from an angle of rotation. The transmitter has good frequent properties and can be used for dynamic measurements of an angular velocity and angle of rotation, in systems of exact drives and systems of autocontrol.

  2. Metal Cutting for Large Component Removal

    International Nuclear Information System (INIS)

    Hulick, Robert M.

    2008-01-01

    been employed for cutting the reactor nozzles at San Onofre Unit 1 and at Connecticut Yankee. These carbon steel nozzles ranged up to 54 inch diameter with a 15 inch thick wall and an interior stainless cladding. Diamond wire sawing using traditional water cooling has been used to segment the reactor head at Rancho Seco and for cutting reactor nozzles and control rod drive tubes at Dairyland Power's Lacrosse BWR project. Advantages: - ALARA: All cutting is preformed remotely significantly reducing dose. Stringing of wires is accomplished using long handle tools. - Secondary waste is reduced to just the volume of material cut with the diamond wire. - The potential for airborne contamination is eliminated. Due to the flexibility of the wire, any access restrictions and interferences can be accommodated using pulleys and long handle tools. - The operation is quiet. Disadvantages: - With Liquid Carbon Dioxide cooling and cleaning, delivery of the material must be carefully planned. The longer the distance from the source to the cut area, the greater the chance for pressure drop and subsequent problems with line freezing. - Proper shrouding and ventilation are required for environmental reasons. In each case, the metal structures were cut at a precise location. Radiation dose was reduced significantly by operating the equipment from a remote location. The cuts were very smooth and completed on schedule. Each project must be analyzed individually and take into account many factors including access, radiological conditions, environmental conditions, schedule requirements, packaging requirements and size of cuts

  3. Photochemical cutting of fabrics

    Science.gov (United States)

    Piltch, Martin S.

    1994-01-01

    Apparatus for the cutting of garment patterns from one or more layers of fabric. A laser capable of producing laser light at an ultraviolet wavelength is utilized to shine light through a pattern, such as a holographic phase filter, and through a lens onto the one or more layers of fabric. The ultraviolet laser light causes rapid photochemical decomposition of the one or more layers of fabric, but only along the pattern. The balance of the fabric of the one or more layers of fabric is undamaged.

  4. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi

    2004-07-31

    We have tested the loop elevation system. We raised the mast to approximately 25 to 30 degrees from horizontal. All went well. However, while lowering the mast, it moved laterally a couple of degrees. Upon visual inspection, severe spalling of the concrete on the face of the support pillar, and deformation of the steel support structure was observed. At this time, the facility is ready for testing in the horizontal position. A new air compressor has been received and set in place for the ACTS test loop. A new laboratory has been built near the ACTS test loop Roughened cups and rotors for the viscometer (RS300) were obtained. Rheologies of aqueous foams were measured using three different cup-rotor assemblies that have different surface roughness. The relationship between surface roughness and foam rheology was investigated. Re-calibration of nuclear densitometers has been finished. The re-calibration was also performed with 1% surfactant foam. A new cuttings injection system was installed at the bottom of the injection tower. It replaced the previous injection auger. A mechanistic model for cuttings transport with aerated mud has been developed. Cuttings transport mechanisms with aerated water at various conditions were experimentally investigated. A total of 39 tests were performed. Comparisons between the model predictions and experimental measurements show a satisfactory agreement. Results from the ultrasonic monitoring system indicated that we could distinguish between different sand levels. We also have devised ways to achieve consistency of performance by securing the sensors in the caps in exactly the same manner as long as the sensors are not removed from the caps. A preliminary test was conducted on the main flow loop at 100 gpm flow rate and 20 lb/min cuttings injection rate. The measured bed thickness using the ultrasonic method showed a satisfactory agreement with nuclear densitometer readings. Thirty different data points were collected after the test

  5. Cutting the Cord-2

    Science.gov (United States)

    2004-01-01

    This animation shows the view from the rear hazard avoidance cameras on the Mars Exploration Rover Spirit as the rover turns 45 degrees clockwise. This maneuver is the first step in a 3-point turn that will rotate the rover 115 degrees to face west. The rover must make this turn before rolling off the lander because airbags are blocking it from exiting from the front lander petal. Before this crucial turn took place, engineers instructed the rover to cut the final cord linking it to the lander. The turn took around 30 minutes to complete.

  6. Cutting the Cord

    Science.gov (United States)

    2004-01-01

    This animation shows the view from the front hazard avoidance cameras on the Mars Exploration Rover Spirit as the rover turns 45 degrees clockwise. This maneuver is the first step in a 3-point turn that will rotate the rover 115 degrees to face west. The rover must make this turn before rolling off the lander because airbags are blocking it from exiting off the front lander petal. Before this crucial turn could take place, engineers instructed the rover to cut the final cord linking it to the lander. The turn took around 30 minutes to complete.

  7. Can You Cut It?

    DEFF Research Database (Denmark)

    Kjær, Tina; Lillelund, Christoffer Bredo; Moth-Poulsen, Mie

    2017-01-01

    The advent of affordable virtual reality (VR) displays and 360◦ video cameras has sparked an interest in bringing cinematic experiences from the screen and into VR. However, it remains uncertain whether traditional approaches to filmmaking can be directly applied to cinematic VR. Historically......’ sense of disorientation and their ability to follow the story, during exposure to fictional 360◦ films experienced using a head-mounted display. The results revealed no effects of increased cut frequency which leads us to conclude that editing need not pose a problem in relation to cinematic VR, as long...

  8. A Surgery Issue: Cutting through the Architectural Fabric

    Directory of Open Access Journals (Sweden)

    Athina Angelopoulou

    2017-12-01

    Full Text Available This essay examines the material ontologies of surgical trans-modifications. Focusing on incisions and subsequent scars, the essay argues for the queering of architecture and design as an act of cutting through structures and processes. I start by rereading a topological body plan, used by surgeons as a guide for performing incisions. I suggest that this plan constitutes a variation within topological representations. It is thus reconceptualised as an internally contradictory representation, calling for dis/continuous cutting acts upon the represented body; that is an amphi-topological representation. The notion of the cut is further approached from the point of view of queer theory and ‘agential realism’. This perspective offers affirmative ways of discussing about acts of cutting. When performed into self-organizing fabrics, cuts appear to act as ‘agents of dis/continuity’. Then, the discussion passes through the genealogy of the architectural section and the building cuts of Gordon Matta Clark, so as to show that the production of buildings by ‘cutting through them to come to matter’ is deep-rooted in the architectural discipline. Next, the philosophical origins of the idea of cutting through the material fabric of the world are sought. It is argued that the latter, beginning as a gnosiological tool, was transformed into a fabricating tool and then into a tool of smoothing the striated. The essay concludes with the presentation of SCARchiCAD; a computational design tool which takes the skin’s wound healing process as a model, offering an interpretation of what the ‘cutting through a virtual form’ could suggest for the design of architectural bodies and the queering of architecture.

  9. ITER lip seal welding and cutting developments

    Energy Technology Data Exchange (ETDEWEB)

    Levesy, B.; Cordier, J.J.; Jokinen, T. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Kujanpää, V.; Karhu, M. [VTT Technical Research Centre of Finland (Finland); Le Barbier, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Määttä, T. [VTT Technical Research Centre of Finland (Finland); Martins, J.P.; Utin, Y. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-10-15

    Highlights: • Different TIG and Laser welding techniques are tested. • Twin spot laser welding techniques is the best. • Limited heat input gives a stable weld pool in all positions. • Penetrations is achieved. • Lip seal welding and cutting with a robotic arm is successfully performed on a representative mock-up. - Abstract: The welded lip seals form part of the torus primary vacuum boundary in between the port plugs and the vacuum vessel, and are classified as Protection Important Component. In order to refurbish the port plugs or the in-vessel components, port plugs have to be removed from the machine. The lip seal design must enable up to ten opening of the vacuum vessel during the life time operation of the ITER machine. Therefore proven, remote reliable cutting and re-welding are essential, as these operations need to be performed in the port cells in a nuclear environment, where human presence will be restricted. Moreover, the combination of size of the components to be welded (∼10 m long vacuum compatible thin welds) and the congested environment close to the core of the machine constraint the type and size of tools to be used. This paper describes the lip seal cutting and welding development programme performed at the VTT Technical Research Centre, Finland. Potential cutting and welding techniques are analyzed and compared. The development of the cutting, TIG and laser welding techniques on samples are presented. Effects of lip seal misalignments and optimization of the 2 welding processes are discussed. Finally, the manufacturing and test of the two 1.2 m × 1 m representative mock-ups are presented. The set-up and use of a robotic arm for the mock-up cutting and welding operations are also described.

  10. Angles in hyperbolic lattices

    DEFF Research Database (Denmark)

    Risager, Morten S.; Södergren, Carl Anders

    2017-01-01

    It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den......It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior...... of the density function in both the small and large variable limits. This extends earlier results by Boca, Pasol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension n . Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead...

  11. Surface roughness and cutting force estimation in the CNC turning using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Mohammad Ramezani

    2015-04-01

    Full Text Available Surface roughness and cutting forces are considered as important factors to determine machinability rate and the quality of product. A number of factors like cutting speed, feed rate, depth of cutting and tool noise radius influence the surface roughness and cutting forces in turning process. In this paper, an Artificial Neural Network (ANN model was used to forecast surface roughness and cutting forces with related inputs, including cutting speed, feed rate, depth of cut and tool noise radius. The machined surface roughness and cutting force parameters related to input parameters are the outputs of the ANN model. In this work, 24 samples of experimental data were used to train the network. Moreover, eight other experimental tests were implemented to test the network. The study concludes that ANN was a reliable and accurate method for predicting machining parameters in CNC turning operation.

  12. Leptogenesis: The other cuts

    International Nuclear Information System (INIS)

    Garbrecht, Bjoern

    2011-01-01

    For standard leptogenesis from the decay of singlet right-handed neutrinos, we derive source terms for the lepton asymmetry that are present in a finite density background but absent in the vacuum. These arise from cuts through the vertex correction to the decay asymmetry, where in the loop either the Higgs boson and the right-handed neutrino or the left-handed lepton and the right-handed neutrino are simultaneously on-shell. We evaluate the source terms numerically and use them to calculate the lepton asymmetry for illustrative points in parameter space, where we consider only two right-handed neutrinos for simplicity. Compared to calculations where only the standard cut through the propagators of left-handed lepton and Higgs boson is included, sizable corrections arise when the masses of the right-handed neutrinos are of the same order, but the new sources are found to be most relevant when the decaying right-handed neutrino is heavier than the one in the loop. In that situation, they can yield the dominant contribution to the lepton asymmetry.

  13. Ultra-small angle X-ray diffraction from muscle

    Energy Technology Data Exchange (ETDEWEB)

    Nave, C.; Diakun, G.P.; Bordas, J.

    1986-05-15

    An ultra-small angle X-ray scattering instrument is described. It uses two channel cut crystals, one to monochromatise and collimate the beam and the other to analyse the scattered radiation. It has been used to collect diffraction data from muscle, in which the physiological unit cell, the sarcomere, has a repeat of 2000 nm or more.

  14. Improving axial depth of cut accuracy in micromilling

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2004-01-01

    In order to maintain an optimum cutting speed, the reduction of mill diameters requires machine tools with high rotational speed capabilities. A solution to update existing machine tools is the use of high speed attached spindles. Major drawbacks of these attachments are the high thermal expansion...

  15. Application of response surface methodology for determining cutting ...

    Indian Academy of Sciences (India)

    Cutting force is classified among the most important technological parameter to control in machining process. It is the background for the evaluation of the necessary power machining. (choice of the electric motor). It is also used for dimensioning of machine tool components and the tool body. It influences machining system ...

  16. Investigation of Physical Phenomena and Cutting Efficiency for Laser Cutting on Anode for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Dongkyoung Lee

    2018-02-01

    Full Text Available Lithium-ion batteries have a higher energy density than other secondary batteries. Among the lithium-ion battery manufacturing process, electrode cutting is one of the most important processes since poor cut quality leads to performance degradation, separator protrusion, and local electric stress concentration. This may, eventually, lead to malfunction of lithium-ion batteries or explosion. The current mechanical cutting technology uses a contact process and this may lead to process instability. Furthermore, there are additional costs if the tools and cell design are changed. To solve these issues, laser cutting has been used. Conventional dependent parameters have limitations in investigating and explaining many physical phenomena during the laser cutting of electrodes. Therefore, this study proposes specific widths such as melting, top, and kerf width. Moreover, the relationship between laser parameters and multiphysical phenomena with the proposed widths are investigated. Five types of classification with regard to physical phenomena are presented and explained with SEM images. Cutting efficiency is estimated with the proposed widths. The proposed specific cutting widths, five types of geometrical classification, and cutting efficiency can be used as standardized parameters to evaluate the cutting quality.

  17. Automatic Generation of Minimal Cut Sets

    Directory of Open Access Journals (Sweden)

    Sentot Kromodimoeljo

    2015-06-01

    Full Text Available A cut set is a collection of component failure modes that could lead to a system failure. Cut Set Analysis (CSA is applied to critical systems to identify and rank system vulnerabilities at design time. Model checking tools have been used to automate the generation of minimal cut sets but are generally based on checking reachability of system failure states. This paper describes a new approach to CSA using a Linear Temporal Logic (LTL model checker called BT Analyser that supports the generation of multiple counterexamples. The approach enables a broader class of system failures to be analysed, by generalising from failure state formulae to failure behaviours expressed in LTL. The traditional approach to CSA using model checking requires the model or system failure to be modified, usually by hand, to eliminate already-discovered cut sets, and the model checker to be rerun, at each step. By contrast, the new approach works incrementally and fully automatically, thereby removing the tedious and error-prone manual process and resulting in significantly reduced computation time. This in turn enables larger models to be checked. Two different strategies for using BT Analyser for CSA are presented. There is generally no single best strategy for model checking: their relative efficiency depends on the model and property being analysed. Comparative results are given for the A320 hydraulics case study in the Behavior Tree modelling language.

  18. The relationship between bioelectrical impedance phase angle and subjective global assessment in advanced colorectal cancer

    Directory of Open Access Journals (Sweden)

    Grutsch James F

    2008-06-01

    Full Text Available Abstract Background Bioelectrical Impedance (BIA derived phase angle is increasingly being used as an objective indicator of nutritional status in advanced cancer. Subjective Global Assessment (SGA is a subjective method of nutritional status. The objective of this study was to investigate the association between BIA derived phase angle and SGA in advanced colorectal cancer. Methods We evaluated a case series of 73 stages III and IV colorectal cancer patients. Patients were classified as either well-nourished or malnourished using the SGA. BIA was conducted on all patients and phase angle was calculated. The correlation between phase angle and SGA was studied using Spearman correlation coefficient. Receiver Operating Characteristic curves were estimated using the non-parametric method to determine the optimal cut-off levels of phase angle. Results Well-nourished patients had a statistically significantly higher (p = 0.005 median phase angle score (6.12 as compared to those who were malnourished (5.18. The Spearman rank correlation coefficient between phase angle and SGA was found to be 0.33 (p = 0.004, suggesting better nutritional status with higher phase angle scores. A phase angle cut-off of 5.2 was 51.7% sensitive and 79.5% specific whereas a cut-off of 6.0 was 82.8% sensitive and 54.5% specific in detecting malnutrition. Interestingly, a phase angle cut-off of 5.9 demonstrated high diagnostic accuracy in males who had failed primary treatment for advanced colorectal cancer. Conclusion Our study suggests that bioimpedance phase angle is a potential nutritional indicator in advanced colorectal cancer. Further research is needed to elucidate the optimal cut-off levels of phase angle that can be incorporated into the oncology clinic for better nutritional evaluation and management.

  19. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining.

    Science.gov (United States)

    Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin

    2016-11-16

    Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.

  20. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining

    Directory of Open Access Journals (Sweden)

    Qiaokang Liang

    2016-11-01

    Full Text Available Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.

  1. A study on the mechanical behavior of soil during frat edge cutting

    International Nuclear Information System (INIS)

    Ichiba, Satoru; Hyodo, Kazuya; Ooishi, Yoshihiro.

    1987-02-01

    For the development of efficient earthmoving machinery, it is necessary to clarify the soil cutting mechanism, but there is no usual analytical or experimental technique for large deformation problems like soil cutting. Therefore, we have tried to apply the X-ray radiography method, which is a soil experiment method for the visualization and the quantitative analysis of soil deformation, to the flat edge cutting problem. Firstly we have confirmed that the X-ray radiography method is applicable to large deformations, and have examined by this method the cutting mechanism of soils under various cutting conditions. As a result, the behavior of shear failure lines, which have not been studied in detail before, are clarified, and the differences in the cutting mechanism with the cutting angle and the nature of soils are discussed through the quantitative estimation of the strain distribution. (author)

  2. After the Ribbon Cutting

    DEFF Research Database (Denmark)

    Hodge, Graeme A.; Boulot, Emille; Duffield, Colin

    2017-01-01

    - to long-term governance arrangements. It finds that although industry interviewees agreed PPP governance had improved significantly, they had differing views on how capable Australian states were in governing PPP and how well this task was being undertaken. They were also split on the adequacy......Much attention has gone towards ‘up-front’ processes when delivering infrastructure public–private partnerships (PPPs), but less on how to best govern after the ribbon is cut and the infrastructure built. This paper identifies the primary contractual and institutional governance challenges arising...... in the medium to long term of PPP concession contracts and explores these governance challenges through interviews with high-level PPP industry insiders. The paper presents new findings on the importance of good public administration for successful PPP operation, and on the interesting evolution of medium...

  3. Characterization of vibratory turning in cutting zone using a pneumatic quick-stop device

    Directory of Open Access Journals (Sweden)

    Saeid Amini

    2017-04-01

    Full Text Available Shear angle and sticking length are two crucial parameters in mechanics of metal cutting. These two parameters directly influence machinability factors such as cutting forces. Thus, shear angle and sticking length were investigated in vibratory turning process by using a pneumatic quick-stop device which was designed and fabricated, in this study. After preparation of ultrasonic assisted turning set-up, experimental tests have been carried out on two types of steel: AISI-1060 and AISI 304. Accordingly, the process of chip formation in each particular cutting test was quickly stopped when deformed chip was still in contact with workpiece. As a result, it was revealed that added linear vibration leads the turning operation to be improved by increase of shear angle and decrease of sticking length. Moreover, the effect of ultrasonic vibration on cutting force and chip micro-hardness is evaluated.

  4. The diffuse cut-off

    International Nuclear Information System (INIS)

    2014-09-01

    After having recalled the interest of cut-off practices when consumption is higher than production (a cut-off operator turns out some sources of consumption), this publication more particularly addresses the practice of cut-off in the residential sector, also called diffused cut-off. This practice is based on a temporary reduction of electricity consumption in a great number of small sites (for example, a brief interruption of the electricity supply of radiators, hot water tanks, air conditioning devices in dwellings to reduce the total demand of an area). The three main modalities of valorisation of this cut-off power by the operator are presented. Advantages and drawbacks are discussed, and more particularly the impact of cut-off on thermal comfort

  5. Development of a technological system for manufacturing diamond cutting disks by laser welding procedure

    Science.gov (United States)

    Gheorghe, Gh. I.; Beca, P.; Marinescu, C.; Farcaş, I.; Fenic, c.

    2008-03-01

    Preliminary results for joining by laser welding of diamonded segments onto the support body of cutting tools are presented in the paper. Such tools are mainly used for cutting hard materials in construction industry. A new mechatronic equipment able to perform the complex displacement movements required by the new tehnology is also presented.

  6. Tungsten monocrystal cutting without distortion

    International Nuclear Information System (INIS)

    Dudkin, A.Yu.; Matveev, I.V.; Cheremisin, S.M.

    1982-01-01

    Electrolyte with high electric current localization, containing 1-3 % KOH and 2-10 % NH 3 , is suggested to use for electrochemical cutting of tungsten. A cutting device is described which includes a cathode feed mechanism based on electric heating and a circuit of automatic control of an interelectrode gap. Laue patterns obtained from a cut surface are practically the same as ones from the initial monocrystal

  7. Laser Cutting of Different Materials

    Directory of Open Access Journals (Sweden)

    Kadir ÇAVDAR

    2013-08-01

    Full Text Available In this paper; in general potential developments and trends of a particular machining field by extensively evaluating present studies of laser beam machining have been discussed. As it is indicated below, technical literatures have been subsumed under five major headlines: Experimental studies, reviews, optimization researches of the cutting parameters, theoretical modelling studies of laser beam cutting and academic studies relating to laser cutting

  8. A finite-element-analysis of orthogonal metal cutting processes

    International Nuclear Information System (INIS)

    Oh, Joon-Dong; Aurich, Jan C.

    2004-01-01

    A 2-D finite-element-model for simulation of the chip formation process in metal cutting is presented. In order to consider the reciprocal interaction between mechanical and thermal loads during cutting a coupled-filed finite-element-analysis is carried out. The complex flow behavior of workpiece material which depends on local strain, strain rate and temperature is described by a thermo-viscoplastic workpiece model. The different frictional behavior in sticking and sliding regions is expressed by a nonlinear stress relationship between normal and frictional stresses at the tool-chip interface. To analyze the large deformation in the cutting zone more accurately a new technique of dynamic remeshing is developed. As the employed general purpose FEM-software Ansys does not support this feature, an additional preprocessor is developed and integrated into the program. With the aid of this remeshing technique the chip formation process can be simulated more closely to reality, i. e. the modeled tool is not assumed to be ideal sharp, but possesses nose radius and chip breaker. Simulations are carried out for conventional cutting conditions and the effects of cutting conditions, tool geometry and wear progress are examined. Furthermore, the segmented chip formation process during high speed cutting and/or during machining of hardened steel is also analyzed

  9. Prototype arc saw design and cutting trials

    International Nuclear Information System (INIS)

    Allison, G.S.

    1980-09-01

    A program was initiated to develop the arc saw as a tool capable of removing the end fittings from spent nuclear fuel bundles. A special arc saw for this purpose was designed, installed at the Pacific Northwest Laboratory and satisfactorily operated to remove end fittings from simulated, nonradioactive fuel bundles. The design of the arc saw included consideration of the cutting environment, power supply size, control equipment, and work piece size. Several simulated fuel bundles were cut to demonstrate that the arc saw met design specifications. Although the arc saw development program was curtailed before significant performance data could be collected, tests indicate that the arc saw is a good means of cropping spent fuel bundles and is well suited to remote operation and maintenance

  10. Cutting the cornea with a waterjet keratome.

    Science.gov (United States)

    Lipshitz, I; Bass, R; Loewenstein, A

    1996-01-01

    Waterjet cutting is an advanced technology. It consists of a cutting tool that uses a very thin stream of ultra-high-pressure water forced at high velocity through a very small nozzle, creating a very sharp knife. We report on the first experimental use of waterjet technology to reshape the cornea. The system was used in vitro on 10 bovine eyes, and in vivo on 10 albino rabbit eyes. Using the waterjet keratome (Lipshitz-Bass knife, LBK) lamellar corneal incisions were performed. Histological examinations were performed. A waterjet stream was found to be capable of incising corneas at relatively low energy levels (4000 PSI). Good surface quality could be obtained, and there was no collateral damage to the remaining portion of the cornea, lens, or retina. In the in vivo experiments, the epithelium healed within 48 hours. These preliminary experiments suggest that waterjet technology can be an effective instrument for reshaping the cornea.

  11. Fundamental Research on Hobbing with Minimal Quantity Lubrication of Cutting Oil

    Science.gov (United States)

    Matsuoka, Hironori; Tsuda, Yoshihiro; Suda, Satoshi; Yokota, Hideo

    In this paper, we investigate the effect of cutting speed on flank wear, crater wear and finished surface roughness during hobbing using an uncoated tool, and TiN- and (Al, Ti)N- coated tools with a minimal quantity lubrication (MQL) system. The experiments were conducted by simulating hobbing by fly tool cutting on a milling machine. The results helped clarify the following points. (1) With the uncoated tool and the TiN-coated tool, the flank wear increases upon increasing in the cutting speed from 47m/min to 86m/min. Conversely, flank wear decreases at the higher speed of 117m/min. It was impossible to cut at 159m/min owing to the failure of the cutting edge. With the (Al, Ti)N-coated tool, the flank wear showed nearly the same small value, irrespective of cutting speed. (2) The cutting speed also has a large effect on crater wear, particularly for the TiN-and (Al, Ti)N-coated tools. The cutting speed of 117m/min is suitable for decreasing crater wear. (3) The finished surface roughness is small for all the tools used in this test for cutting speeds less than 86m/min, after which it becomes large because of the adhesion of deposited metal at cutting speeds more than 117m/min. When using the TiN- and (Al, Ti)N-coated tools, there is a critical cutting groove length, at which the surface roughness decreases rapidly.

  12. Manifold tool guide

    Science.gov (United States)

    Djordjevic, A.

    1982-07-08

    A tool guide that makes possible the insertion of cleaning and/or inspection tools into a manifold pipe that will dislocate and extract the accumulated sediment in such manifold pipes. The tool guide basically comprises a right angled tube (or other angled tube as required) which can be inserted in a large tube and locked into a radially extending cross pipe by adjustable spacer rods and a spring-loaded cone, whereby appropriate cleaning tools can be inserted into to cross pipe for cleaning, inspection, etc.

  13. Registration strategy using occlusal splint based on augmented reality for mandibular angle oblique split osteotomy.

    Science.gov (United States)

    Zhu, Ming; Chai, Gang; Zhang, Yan; Ma, Xiaofei; Gan, Jiliang

    2011-09-01

    An augmented reality tool allows for visual tracking of real anatomic structures in superposition with volume-rendered computed tomographic or magnetic resonance imaging scans and thus can be used for navigated translocation of important structures during operation. In this feasibility study, ARToolKit was used in mandibular angle oblique split osteotomy to define the cutting planes according to an operative plan. We overlay the operative plan on the model of a mandible made by rapid prototyping technology, and the technology was successfully used in 15 patients. Before the operation, all patients underwent computed tomographic scan, and dental casts were prepared by surgeons. Then, surgeons make the occlusal splint according to a dental cast to fix the marker, which can be recognized by the ARToolKit. The occlusal splint and marker were transformed to three-dimensional data using a laser scanner, and a programmer that runs on a personal computer named Rapidform matches the marker and the mandible image to generate the virtual image. By this step, the virtual image describing the marker, occlusal splint, and the mandible image of the patient are integrated. During the operation, the operative plan was overlaid on the rapid prototyping model of the mandible as soon as the ARToolKit recognized the marker. The technology was successfully used in 15 patients; the virtual image of the mandible and the cutting-plane both overlaid the real model of the mandible. This study has reported a new and effective way for mandibular angle oblique split osteotomy, and using occlusal splint might be a powerful option for the registration of augmented reality. Augmented reality tools like ARToolKit may be helpful for control of maxillary translocation in orthognathic surgery.

  14. open angle glaucoma (poag)?

    African Journals Online (AJOL)

    there is a build up of pressure due to poor outflow of aqueous humor. The outflow obstruction could occur at the trabecular meshwork of the anterior chamber angle or subsequently in the episcleral vein due to raised venous pressure. Such build up of pressure results in glaucoma . Elevated intraocular pressure remains the ...

  15. The quadriceps angle

    DEFF Research Database (Denmark)

    Miles, James Edward; Frederiksen, Jane V.; Jensen, Bente Rona

    2012-01-01

    : Pelvic limbs from red foxes (Vulpes vulpes). METHODS: Q angles were measured on hip dysplasia (HD) and whole limb (WL) view radiographs of each limb between the acetabular rim, mid-point (Q1: patellar center, Q2: femoral trochlea), and tibial tuberosity. Errors of 0.5-2.0 mm at measurement landmarks...

  16. At Right Angles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. At Right Angles. Shailesh A Shirali. Information and Announcements Volume 17 Issue 9 September 2012 pp 920-920. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/017/09/0920-0920 ...

  17. The lateral angle revisited

    DEFF Research Database (Denmark)

    Morgan, Jeannie; Lynnerup, Niels; Hoppa, R.D.

    2013-01-01

    This article presents the results of a validation study of a previously published method of sex determination from the temporal bone. The purpose of this study was to evaluate the lateral angle method for the internal acoustic canal for accurately determining the sex of human skeletal remains usi...... method appears to be of minimal practical use in forensic anthropology and archeology....

  18. Small angle neutron scattering

    International Nuclear Information System (INIS)

    Gupta, Sanjay

    1982-01-01

    The technique of small angle neutron scattering was first used in Germany less than two decades ago. Since then it has developed very rapidly, and today it is regarded as one of the most powerful techniques in materials, chemical and biological research. During the last decade the combination of high flux reactors and sophisticated instrumentation has revolutionized the technique. This paper endeavours to present a brief but comprehensive review of small angle scattering of neutrons and its applications in solid state research. The domain in which small angle neutron scattering is particularly useful is delineated and some of the methods used in the analysis of data are discussed with special emphasis on recent developments. Typical small angle neutron scattering cameras are described. Finally some experimental results on heterogeneities in metallic systems (both static and dynamic studies), radiation damage in materials, superconductivity, magnetic materials and the technologically very important area of non-destructive testing are reviewed in order to illustrate the wide range of applicability of this technique to problems in solid state research. (author)

  19. Neutron small angle scattering

    International Nuclear Information System (INIS)

    Ibel, K.

    1975-01-01

    The neutron small-angle scattering system at the High-Flux Reactor in Grenoble consists of three major parts: the supply of cold neutrons via bent neutron guides; the small angle camera D11; and the data handling facilities. The camera D11 has an overall length of 80 m. The effective length of the camera is variable. The length of the collimator before the fixed sample position can be reduced by movable neutron guides; the secondary flight path of 40 m full length contains detector sites in various positions. Thus, a large domain of momentum transfers can be exploited. Scattering angles between 5.10 -4 and 0.5 rad and neutron wavelengths from 0.2 to 2.0 nm are available with the same instrument and the same relative resolution. A large-area position-sensitive detector is used which allows simultaneous recording of intensities scattered into different angles; it is a multiwire proportional chamber. 3808 elements of 1 cm 2 are arranged in a two-dimensional matrix. Future development comprises an increase of the limit in the count rate due to the electronic interface between the detector and on-line computer, actually at 5.10 4 per sec. by one order of magnitude

  20. At Right Angles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. At Right Angles. Shailesh A Shirali. Information and Announcements Volume 17 Issue 9 September 2012 pp 920-920. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/017/09/0920-0920 ...

  1. A new concept for the targeted cutting of concrete structures

    International Nuclear Information System (INIS)

    Reinhardt, Steffen; Gentes, Sascha; Weidemann, Roman; Geimer, Marcus

    2011-01-01

    The decontamination and crushing of reinforced concrete is a main part during deconstruction of nuclear facilities. The selective treatment of contaminated or activated material is of special interest, since the non-contaminated material can be transferred into the normal reprocessing cycle. In the frame of a project concerning the innovative cutting of massive reinforced concrete structures an all-purpose system for spatially restricted and defined cutting of strongly reinforced concrete including packaging suitable for final disposal was developed. Due to the remote handling of the machine the dose rate for personnel can be reduced significantly. Main part of the system is the tool that can cut highly reinforced concrete without system or component replacement. The authors describe preliminary tests of these tools, further experiments and process optimization are necessary before the tools can be integrated into the new system.

  2. ANALYSIS OF PARAMETERS AFFECTING THE QUALITY OF A CUTTING MACHINE

    Directory of Open Access Journals (Sweden)

    Iveta Onderová

    2014-02-01

    Full Text Available The quality of cutting machines is affected by several factors that can be directly or indirectly influenced by manufacturers, technicians and users of machine tools. The most critical qualitative evaluation parameters of machine tools include accuracy and stability. Investigations of accuracy and repeatable positioning accuracy were essential for the research presented in this paper. The aim was to develop and experimentally verify the design of a methodology for cutting centers aimed at achieving the desired working precision. Before working on the topic described here, it was necessary to make several scientific analyses, which are summarized in this paper. We can build on the initial working hypothesis that by improving the technological parameters (e.g. by increasing the working speed of the machine, or by improving the precision of the positioning the quality of the cutting machine will also be improved. For the purposes of our study, several investigated parameters were set affecting positioning accuracy, such as rigidity, positioning speed, etc. First, the stiffness of the portal structure of the cutting machine was analyzed. FEM analysis was used to investigate several alternative structures of the cutting machine, and also an innovative solution for beam mounting. The second step was to integrate two types of drives into the design of the cutting machine. The first drive is a classic rack and pinion drive for cutting machines. To increase (improve the working speed of the machine, linear motors were designed as an alternative drive. The portal of the cutting machine was designed for a working speed of 260mmin−1 and acceleration of 25 m. s−2. The third step was based on the results of the analysis. In collaboration with Microstep, an experimental cutting machine in a portal version was produced using linear synchronous motors driving the portal on both sides, and with direct linear metering of its position. In the fourth step, an

  3. Study on Burr Formation at the Top Edge in Rectangular Groove Cutting

    Directory of Open Access Journals (Sweden)

    Wen Jun Deng

    2012-01-01

    Full Text Available Previous research on burr formation in machining operations has usually been limited to the study of the rollover burr in the cutting direction. In this paper, a 3D finite element model to simulate rectangular groove cutting operation has been developed using commercial finite element software, employing experimentally determined mechanical properties at elevated strain rates and temperatures. The plastic deformation behavior and three-dimensional burr formation during rectangular groove cutting is investigated. The simulated burr profile and cutting force prove that the developed model can capture the thermo-mechanical mechanisms in rectangular groove cutting and can simulate burr development with considerable accuracy. The study concentrates on the influence of cutting parameters on burr formation which are also conducted. The results show that the feed rate and rake angle are the cutting parameters which have a major influence on burr size in the groove cutting operation. And the effect of cutting velocity and minor clearance angle in the traditional range on burr size are quite limited.

  4. Analysis of the influence of the cutting edge geometry on parameters of the perforation process for conveyor and transmission belts

    Directory of Open Access Journals (Sweden)

    Wojtkowiak Dominik

    2018-01-01

    Full Text Available Perforated belts, which are used in vacuum conveyor belts, can have significantly different mechanical properties like strength and elasticity due to a variety of used materials and can have different thickness from very thin (0,7 mm to thick belts (6 mm. In order to design a complex machine for mechanical perforation, which can perforate whole range of belts, it is necessary to research the influence of the cutting edge geometry on the parameters of the perforation process. Three most important parameters, which describe the perforation process are the cutting force, the velocity and the temperature of the piercing punch. The results presented in this paper consider two different types of punching (a piercing punch with the punching die or with the reducer plate and different cutting edge directions, angles, diameters and material properties. Test were made for different groups of composites belts – with polyurethane and polyester fabric, polyamide core or aramid-fibre reinforced polymers. The main goal of this research is to specify effective tools and parameters of the perforation process for each group of composites belts.

  5. Cutting concrete with abrasion jet

    International Nuclear Information System (INIS)

    Yie, G.G.

    1982-01-01

    Fluidyne Corporation has developed a unique process and apparatus that allow selected abrasives to be introduced into high-speed waterjet to produce abrasive-entrained waterjet that has high material-cutting capabilities, which is termed by Fluidyne as the Abrasion Jet. Such Abrasion Jet has demonstrated capability in cutting hard rock and concrete at a modest pressure of less than 1360 bars (20,000 psi) and a power input of less than 45 kW (60 horsepower). Abrasion Jet cutting of concrete is characterized by its high rate of cutting, flexible operation, good cut quality, and relatively low costs. This paper presents a general description of this technology together with discussions of recent test results and how it could be applied to nuclear decontamination and decommissioning work. 8 references

  6. Characteristics of elliptical vibration cutting in micro-V grooving with variations in the elliptical cutting locus and excitation frequency

    International Nuclear Information System (INIS)

    Kim, Gi Dae; Loh, Byoung Gook

    2008-01-01

    The characteristics of elliptical vibration cutting (EVC) in micro-V grooving in connection with variations of the elliptical cutting locus and the excitation frequency have been investigated with a cutting device consisting of orthogonally connected dual piezoelectric actuators. The elliptical cutting locus was modulated by changing the magnitude and phase difference of harmonic voltages supplied to the piezoelectric actuators, and the maximum excitation frequency used for EVC was 19 kHz. It was found that cyclic breaking of the contact between the tool and the workpiece is a pre-requisite for the merits of the EVC process to be realized. An index termed non-contact index (NCI) involving the vibration amplitude of the elliptical locus, the feed speed and the excitation frequency was defined to determine the existence of cyclic breaking of the contact under a given EVC condition. The surface roughness in the feed direction showed a tendency to increase with the vibration amplitude in the thrust direction and the square of the feed speed, and to decrease with the square of the vibration amplitude in the cutting direction and the square of the excitation frequency. The variation in the cutting resistance was in good agreement with the CR trend curve representing the contact ratio between the tool and the workpiece in EVC; in the EVC process involving breaking of the contact, marked decrease in the cutting force occurred at higher values of CR at which either slight increase in the excitation frequency or in the vibration amplitude results in significant decrease in the cutting force. Reduction in the cutting force preferably contributed to the improvement of machining quality of the micro features by inhibiting burr formation

  7. Machinability baja AISI 1040 pada proses bubut dengan variasi cutting speed dan feed rate

    Directory of Open Access Journals (Sweden)

    AAIA Sri Komaladewi

    2012-11-01

    Full Text Available In order to obtain desired results of machining process (turning, parameter of process and material characteristic to be machined should be well known. This is due to different machining conditions and material yield different material machinability as well. It is needed to investigate of material machinability (AISI 1040 such as force, power and shear angle under different cutting speed (80, 160 and 240 m/min and feed rate (0.1, 0.2, and 0.3 mm/rev. The results of investigation show that; at the same cutting speed the higher feed rate the higher cutting force needed; the higher cutting speed and feed rate, the higher power needed; at feed rate 0.1 mm./rev and 0.3 mm/rev, the higher cutting speed the shear angles has a trend to incline; at feed rate 0.2 mm/rev, cutting speed from 80 to 160 m/min yield increasing of shear angle, however, from 160 to 240 m/min shear angle declines.

  8. Machine tool structures

    CERN Document Server

    Koenigsberger, F

    1970-01-01

    Machine Tool Structures, Volume 1 deals with fundamental theories and calculation methods for machine tool structures. Experimental investigations into stiffness are discussed, along with the application of the results to the design of machine tool structures. Topics covered range from static and dynamic stiffness to chatter in metal cutting, stability in machine tools, and deformations of machine tool structures. This volume is divided into three sections and opens with a discussion on stiffness specifications and the effect of stiffness on the behavior of the machine under forced vibration c

  9. Cutting Forces Parametric Model for the Dry High Speed Contour Milling of Aerospace Aluminium Alloys

    OpenAIRE

    SALGUERO , JORGE; BATISTA , MOISES; CALAMAZ , Madalia; GIROT , Franck; MARCOS , MARIANO

    2013-01-01

    International audience; Cutting forces is one of the most important outputs in material removal machining processes. Their values depend on a large number of parameters, such as the cutting tool material and geometry, the workpiece material or the cutting parameters, among others. In this paper, cutting forces behavior have been analyzed as a function of feedrate and cutting speed, for the high-speed peripheral milling of UNS A92024-T3 (Al-Cu) stacks. This alloy is widely used in the manufact...

  10. A combination method of the theory and experiment in determination of cutting force coefficients in ball-end mill processes

    Directory of Open Access Journals (Sweden)

    Yung-Chou Kao

    2015-10-01

    Full Text Available In this paper, the cutting force calculation of ball-end mill processing was modeled mathematically. All derivations of cutting forces were directly based on the tangential, radial, and axial cutting force components. In the developed mathematical model of cutting forces, the relationship of average cutting force and the feed per flute was characterized as a linear function. The cutting force coefficient model was formulated by a function of average cutting force and other parameters such as cutter geometry, cutting conditions, and so on. An experimental method was proposed based on the stable milling condition to estimate the cutting force coefficients for ball-end mill. This method could be applied for each pair of tool and workpiece. The developed cutting force model has been successfully verified experimentally with very promising results.

  11. Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting.

    Science.gov (United States)

    Kus, Abdil; Isik, Yahya; Cakir, M Cemal; Coşkun, Salih; Özdemir, Kadir

    2015-01-12

    In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.

  12. Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting

    Directory of Open Access Journals (Sweden)

    Abdil Kus

    2015-01-01

    Full Text Available In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.

  13. Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting

    Science.gov (United States)

    Kus, Abdil; Isik, Yahya; Cakir, M. Cemal; Coşkun, Salih; Özdemir, Kadir

    2015-01-01

    In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining. PMID:25587976

  14. Preferences of cut flowers consumers

    Directory of Open Access Journals (Sweden)

    Sylwia Kierczyńska

    2010-01-01

    Full Text Available The results of interviews suggest that majority of the cut flowers’ consumers has favourite kind of flower, among which most frequently pointed one was the rose. More than half of the interviewed favour the uniform colour of cut flowers and red colour was the most favourite one. The subtle smell of flowers was the most preferable one but the intensive fragrance was favoured for more consumers than odourless flowers. The data from selected florists’ confirm the information from interviews – in spite of the occasion, roses were the most demanded cut flowers.

  15. Laser cutting of Kevlar laminates

    Energy Technology Data Exchange (ETDEWEB)

    VanCleave, R.A.

    1977-09-01

    An investigation has been conducted of the use of laser energy for cutting contours, diameters, and holes in flat and shaped Kevlar 49 fiber-reinforced epoxy laminates as an alternate to conventional machining. The investigation has shown that flat laminates 6.35 mm thick may be cut without backup by using a high-powered (1000-watt) continuous wave CO/sub 2/ laser at high feedrates (33.87 mm per second). The cut produced was free of the burrs and delaminations resulting from conventional machining methods without intimate contact backup. In addition, the process cycle time was greatly reduced.

  16. Regge cuts in inclusive reactions

    International Nuclear Information System (INIS)

    Paige, F.E.; Trueman, T.L.

    1975-01-01

    The contribution of Regge cuts to single-particle inclusive processes is analyzed using the techniques of Gribov. The dependence of these contributions on the polarization state of the target is emphasized. A general formula is obtained and certain contributions to it are calculated. It is not possible, however, to reduce this to a simple, powerful formula expressing the total cut contribution in terms of other measurable quantities, as can be done for the cut contribution to the total cross section. The reasons for this are discussed in detail. The single-particle intermediate states, analogous to the absorption model for elastic scattering, are explicitly calculated as an illustration

  17. Erosion Behaviour of API X100 Pipeline Steel at Various Impact Angles and Particle Speeds

    Directory of Open Access Journals (Sweden)

    Paul C. Okonkwo

    2016-09-01

    Full Text Available Erosion is the gradual removal of material due to solid particle impingement and results in a failure of pipeline materials. In this study, a series of erosion tests were carried out to investigate the influence of particle speed and impact angle on the erosion mechanism of API X100 pipeline steel. A dry erosion machine was used as the test equipment, while the particle speed ranged from 20 to 80 m/s and impact angles of 30° and 90° were used as test parameters. The eroded API X100 steel surface was characterized using scanning electron microscope (SEM and X-ray photoelectron spectroscopy (XPS. The weight loss and erosion rate were also investigated. The results showed that at a 90° impact angle, a ploughing mechanism was occurring on the tested specimens, while material removal through low-angle cutting was the dominant mechanism at lower impact angles. Embedment of alumina particles on the target steel surface, micro-cutting, and low-angle cutting were observed at low impact angles. Therefore, the scratches, cuttings, and severe ploughings observed on some failed oil and gas pipelines could be attributed to the erosion mechanism.

  18. Sensitive analysis of a finite element model of orthogonal cutting

    Science.gov (United States)

    Brocail, J.; Watremez, M.; Dubar, L.

    2011-01-01

    This paper presents a two-dimensional finite element model of orthogonal cutting. The proposed model has been developed with Abaqus/explicit software. An Arbitrary Lagrangian-Eulerian (ALE) formulation is used to predict chip formation, temperature, chip-tool contact length, chip thickness, and cutting forces. This numerical model of orthogonal cutting will be validated by comparing these process variables to experimental and numerical results obtained by Filice et al. [1]. This model can be considered to be reliable enough to make qualitative analysis of entry parameters related to cutting process and frictional models. A sensitivity analysis is conducted on the main entry parameters (coefficients of the Johnson-Cook law, and contact parameters) with the finite element model. This analysis is performed with two levels for each factor. The sensitivity analysis realised with the numerical model on the entry parameters has allowed the identification of significant parameters and the margin identification of parameters.

  19. Experimental Research Using of MQL in Metal Cutting

    Directory of Open Access Journals (Sweden)

    G. Globočki Lakić

    2013-12-01

    Full Text Available In this paper an effect of using of minimal quantity lubrication (MQL technique in turning operations is presented. Experimental research was performed on carbon steel C45E. Technological parameters: depth of cut, feed rate and cutting speed were adjusted to semi-machining and roughing. Higher values ​​of feed and cutting speed were used, than recommended from literature and different types of cooling and lubrication in turning conditions were applied. As a conventional procedure and technology, lubrication with flooding was applied. As special lubrication the MQL technique was used. During research, monitoring of the cutting force, chip shape, tool wear and surface roughness was performed. Relations between parameters, material machinability and economy of process were analyzed.

  20. Smart Tooling for Manufacturing Composites, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — CRG's shape memory polymer (SMP) tooling technologies, Smart Tooling, offer cutting-edge manufacturing solutions that can meet the construction needs of all future...

  1. Relationship between the angle of repose and angle of internal ...

    African Journals Online (AJOL)

    Abstract. Click on the link to view the abstract. Keywords: Angle of repose, angle of internal friction, granular materials, triaxial compression machine, moisture content. Tanzania J. Agric. Sc. (1998) Vol.1 No.2, 187-194 ...

  2. Impact of novel shift handle laparoscopic tool on wrist ergonomics and task performance

    Science.gov (United States)

    Yu, Denny; Lowndes, Bethany; Morrow, Missy; Kaufman, Kenton; Bingener, Juliane; Hallbeck, Susan

    2015-01-01

    Background Laparoscopic tool handles causing wrist flexion and extension more than 15° from neutral are considered “at-risk” for musculoskeletal strain. Therefore this study measured the impact of laparoscopic tool handle angles on wrist postures and task performance. Methods Eight surgeons performed standard and modified Fundamentals of Laparoscopic Surgery (FLS) tasks with laparoscopic tools. Tool A had three adjustable handle angle configurations, i.e., in-line 0° (A0), 30° (A30), and pistol-grip 70° (A70). Tool B was a fixed pistol-grip grasper. Participants performed FLS peg transfer, inverted peg transfer, and inverted circle-cut with each tool and handle angle. Inverted tasks were adapted from standard FLS tasks to simulate advanced tasks observed during abdominal wall surgeries, e.g., ventral hernia. Motion tracking, video-analysis, and modified NASA-TLX workload questionnaires were used to measure postures, performance (e.g., completion time and errors), and workload. Results Task performance did not differ among tools. For FLS peg transfer, self-reported physical workload was lower for B than A70, and mean wrist postures showed significantly higher flexion for in-line than pistol-grip tools (B and A70). For inverted peg transfer, workload was higher for all configurations. However, less time was spent in at-risk wrist postures for in-line (47%) than pistol-grip (93-94%), and most participants preferred Tool A. For inverted circle cut, workload did not vary across configurations, mean wrist posture was 10° closer to neutral for A0 than B, and median time in at-risk wrist postures was significantly less for A0 (43%) than B (87%). Conclusion The best ergonomic wrist positions for FLS (floor) tasks are provided by pistol-grip tools and for tasks on the abdominal wall (ventral surface) by in-line handles. Adjustable handle angle laparoscopic tools can reduce ergonomic risks for musculoskeletal strain and allow versatility for tasks alternating between

  3. Cutting Temperature Investigation of AISI H13 in High Speed End Milling

    Directory of Open Access Journals (Sweden)

    Muhammad Riza

    2016-10-01

    Full Text Available Heat produced at the tool-chip interface during high speed milling operations have been known as a significant factor that affect to tool life and workpiece geometry or properties. This paper aims to investigate cutting temperature behaviours of AISI H13 (48 HRC under high speed machining circumstances during pocketing. The experiments were conducted on CNC vertical machining centre by using PVD coated carbide insert. Milling processes were done at cutting speeds 150, 200 and 250 m/min and feed rate were 0.05, 0.1 and 0.15 mm/tooth. Depths of cut applied were 0.1, 0.15 and 0.2 mm. Tool path method applied in this experiment was contour in. Results presented in this paper indicate that by increasing cutting speed the cutting temperature is lower than low cutting speed. However, by decreasing feed rate leads to cutting temperature low. Cutting temperature phenomena at the corner of pocket milling were also investigated. The phenomena showed that cutting temperature tends to decrease a moment when cutter comes to the corner of pocket and turning point of tool path and increase extremely a moment before leaving the corner and turning point.

  4. Self-contained pipe cutting shear. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-11-01

    The US Department of Energy (DO) is in the process of decontaminating and decommissioning (D and D) many of its nuclear facilities throughout the country. Facilities have to be dismantled and demolition waste must be sized into manageable pieces for handling and disposal. Typically, the facilities undergoing D and D are contaminated, either chemically, radiologically, or both. In its D and D work, the DOE was in need of a tool capable of cutting steel and stainless steel pipe up to 6.4 cm in diameter. The self-contained pipe cutting shear was developed by Lukas Hydraulic GmbH and Co. KG to cut pipes up to 6.4 cm (2.5 in.) in diameter. This tool is a portable, hand-held hydraulic shear that is powered by a built-in rechargeable battery or a portable auxiliary rechargeable battery. Adding to its portability, it contains no hydraulic fluid lines or electrical cords, making it useful in congested areas or in areas with no power. Both curved and straight blades can be attached, making it adaptable to a variety of conditions. This tool is easy to set up, operates quietly, and cuts through pipes quickly. It is especially useful on contaminated pipes, as it crimps the ends while cutting and produces no residual cuttings. This shear is a valuable alternative to baseline technologies such as portable band saws, electric hacksaws, and other hydraulic shears. Costs using the innovative shear for cutting 2.5 cm (1-in.) pipe, for example, are comparable to costs using a conventional shear, approximately 80% of portable bandsaw costs and half of electric hacksaw costs

  5. Critical angle laser refractometer

    International Nuclear Information System (INIS)

    Castrejon-Pita, J.R.; Morales, A.; Castrejon-Garcia, R.

    2006-01-01

    A simple laser refractometer based on the detection of the critical angle for liquids is presented. The calibrated refractometer presents up to 0.000 11 of uncertainty when the refractive index is in the range between 1.300 00 and 1.340 00. The experimental setup is easy to construct and the material needed is available at most optics laboratories. The calibration method is simple and can be used in other devices. The refractive index measurements in aqueous solutions of sodium chloride were carried out to test the device and a linear dependence between the refractive index and the salt concentration was found

  6. Preferences of cut flowers consumers

    OpenAIRE

    Sylwia Kierczyńska

    2010-01-01

    The results of interviews suggest that majority of the cut flowers’ consumers has favourite kind of flower, among which most frequently pointed one was the rose. More than half of the interviewed favour the uniform colour of cut flowers and red colour was the most favourite one. The subtle smell of flowers was the most preferable one but the intensive fragrance was favoured for more consumers than odourless flowers. The data from selected florists’ confirm the information from interviews – in...

  7. Economic technology of laser cutting

    Science.gov (United States)

    Fedin, Alexander V.; Shilov, Igor V.; Vassiliev, Vladimir V.; Malov, Dmitri V.; Peskov, Vladimir N.

    2000-02-01

    The laser cutting of color metals and alloys by a thickness more than 2 mm has significant difficulties due to high reflective ability and large thermal conduction. We made it possible to raise energy efficiency and quality of laser cutting by using a laser processing system (LPS) consisting both of the YAG:Nd laser with passive Q-switching on base of LiF:F2- crystals and the CO2 laser. A distinctive feature of the LPS is that the radiation of different lasers incorporated in a coaxial beam has simultaneously high level of peak power (more than 400 kW in a TEM00 mode) and significant level of average power (up to 800 W in a TEM01 mode of the CO2 laser). The application of combined radiation for cutting of an aluminum alloy of D16 type made it possible to decrease the cutting energy threshold in 1.7 times, to increase depth of treatment from 2 up to 4 mm, and velocity from 0.015 up to 0.7 m/min, and also to eliminate application of absorptive coatings. At cutting of steels the velocity of treatment was doubled, and also an oxygen flow was eliminated from the technological process and replaced by the air. The obtained raise of energy efficiency and quality of cutting is explained by an essential size reducing of a formed penetration channel and by the shifting of a thermal cutting mode from melting to evaporation. The evaluation of interaction efficiency of a combined radiation was produced on the basis of non-stationary thermal-hydrodynamic model of a heating source moving as in the cutting direction, and also into the depth of material.

  8. Flux-line-cutting losses in type-II superconductors

    International Nuclear Information System (INIS)

    Clem, J.R.

    1982-01-01

    Energy dissipation associated with flux-line cutting (intersection and cross-joining of adjacent nonparallel vortices) is considered theoretically. The flux-line-cutting contribution to the dissipation per unit volume, arising from mutual annihilation of transverse magnetic flux, is identified as J/sub parallel/xE/sub parallel/, where J/sub parallel/ and E/sub parallel/ are the components of the current density and the electric field parallel to the magnetic induction. The dynamical behavior of the magnetic structure at the flux-line-cutting threshold is shown to be governed by a special critical-state model similar to that proposed by previous authors. The resulting flux-line-cutting critical-state model, characterized in planar geometry by a parallel critical current density J/sub c/parallel or a critical angle gradient k/sub c/, is used to calculate predicted hysteretic ac flux-line-cutting losses in type-II superconductors in which the flux pinning is weak. The relation of the theory to previous experiments is discussed

  9. Scaling of misorientation angle distributions

    DEFF Research Database (Denmark)

    Hughes, D.A.; Chrzan, D.C.; Liu, Q.

    1998-01-01

    The measurement of misorientation angle distributions following different amounts of deformation in cold-rolled aluminum and nickel and compressed stainless steel is reported. The sealing of the dislocation cell boundary misorientation angle distributions is studied. Surprisingly, the distributio...

  10. Cutting insert and work piece materials for minimum quantity lubrication

    Science.gov (United States)

    Kurgin, Sheri; Barber, Gary; Zou, Qian

    2011-05-01

    There is considerable interest in utilizing either dry or minimum quantity lubrication (MQL) as an alternative to flood cooling due to environmental concerns with flood coolant such as excessive misting and disposal of the used coolant. Dry machining can result in high tool wear and also built up edge problems on the cutting tool. The objective of this research was to study the effect of work piece material and tool material on the machining characteristics, in this case reaming, of aluminum using MQL. In particular, a high tin casting and three different tool materials: carbide, DLC and PCD were studied. The high tin casting was found to produce lower cutting temperature and lower spindle power. The PCD coated insert performed the best in terms of lowest temperature rise, lowest spindle power and highest part quality.

  11. INFLUENCE OF CUTTING ZONE COOLING METHOD ON CHIP FORMING CONDITIONS

    Directory of Open Access Journals (Sweden)

    E. E. Feldshtein

    2014-01-01

    Full Text Available The paper considers an influence of a cutting zone cooling method on the chip shape and thickening ratio while turning R35 steel with the hardness of НВ 1250 МРа. Cutting with various types of cooling - dry, compressed air and emulsion fog has been investigated in the paper. OPORTET RG-2 emulsol with emulsion concentration of 4% has been used as an active substation. Cutting tool is a turning cutter with a changeable square plate SNUN120408 made of Р25 hard alloy with multilayer wear-resistant coating, upper titanium nitride layer. Front plate surface is flat. Range of cutting speeds - 80-450 m/min, motions - 0,1-0,5 mm/rev, emulsion flow - 1,5-3,5 g/min and compressed air - 4,5-7,0 m3/h, cutting depth - 1,0 mm. In order to reduce a number of single investigations it is possible to use plans based on ЛПх-sequences.It has been shown that the method for cutting zone cooling exerts significant influence on conditions for chip formation. Regression equation describing influence of machining conditions on Ка-chip thickening ratio has been obtained in the paper. The range of cutting modes is extended while using emulsion fog for cooling. In the process of these modes chip is formed in the shape of short spiral fragments or elements. Favourable form of chips is ensured while using the following rate of emulsion - not more than 2 g/min. The investigations have made it possible to determine conditions required for cooling emulsion fog. In this case it has been observed minimum values in chip thickening ratio and chip shape that ensures its easy removal from cutting zone. While making dry turning values of Ка is higher not less than 15 % in comparison with other methods for cutting zone cooling.

  12. Less-invasive non-embedded cell cutting by nanomanipulation and vibrating nanoknife

    Science.gov (United States)

    Shang, Wanfeng; Li, Dengfeng; Lu, Haojian; Fukuda, Toshio; Shen, Yajing

    2017-01-01

    The less-invasive non-embedded cell cutting or slicing technique provides opportunities for a bio-study at subcellular scale, but there are few effective solutions available at the current stage. This paper reports a robot-aided vibrating system for less-invasive non-embedded cell cutting and investigates the role of key vibrating parameters in the cell cutting process. First, a nanoknife with sharp angle 5° is fabricated from a commercial atomic force microscope cantilever by focused ion beam etching and a vibrating system is constructed from a piezo actuator. Then, they are integrated with a self-developed nanorobotic manipulation system inside an environment scanning electron microscope. After that, we choose yeast cells as the sample to implement the vibrating cutting and investigate the effect of vibrating parameters (frequency and amplitude) on cell cutting quality. The results clearly indicate that the vibrating nanoknife is able to reduce the cutting force and improve the cutting quality. It is also suggested that the repeated load-unload (impact) cycle is the main reason for the better performance of vibrating cutting. The effect of vibrating parameters at small scale benefits our fundamental understanding on cell mechanics, and this research paves a way for the low-destructive non-embedded cell cutting and promotes the practical cell cutting techniques.

  13. Deformation of products cut on AWJ x-y tables and its suppression

    Science.gov (United States)

    Hlaváč, L. M.; Hlaváčová, I. M.; Plančár, Š.; Krenický, T.; Geryk, V.

    2018-02-01

    The aim of this study is namely investigation of the abrasive water jet (AWJ) cutting of column pieces on commercial x-y cutting machines with AWJ. The shape deformation in curved and/or stepped parts of cutting trajectories caused by both the trailback (declination angle) and the taper (inclination of cut walls) can be calculated from submitted analytical model. Some of the results were compared with data measured on samples cut on two types of commercial tables. The main motivation of this investigation is determination of the percentage difference between predicted and real distortion of cutting product, i.e. accuracy of prepared analytical model. Subsequently, the possibility of reduction of the distortion can be studied through implementation of the theoretical model into the control systems of the cutting machines with the system for cutting head tilting. Despite some limitations of the used AWJ machines the comparison of calculated dimensions with the real ones shows very good correlation of model and experimental data lying within the range of measurement uncertainty. Results on special device demonstrated that the shape deformation in curved parts of the cutting trajectory can be substantially reduced through tilting of the cutting head.

  14. Simulation of Oscillatory Working Tool

    Directory of Open Access Journals (Sweden)

    Carmen Debeleac

    2010-01-01

    Full Text Available The paper presents a study of the resistance forces in soils cutting, with emphasis on their dependence on working tool motion during the loading process and dynamic regimes. The periodic process of cutting of soil by a tool (blade has described. Different intervals in the cycle of steady-state motion of the tool, and several interaction regimes were considered. The analysis has based on a non-linear approximation of the dependence of the soil resistance force on tool motion. Finally, the influence of frequency on the laws governing the interaction in the cyclic process was established.

  15. Variable angle correlation spectroscopy

    International Nuclear Information System (INIS)

    Lee, Y.K.; Lawrence Berkeley Lab., CA

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13 C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system

  16. Variable angle correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Kyo [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.

  17. Twice cutting method reduces tibial cutting error in unicompartmental knee arthroplasty.

    Science.gov (United States)

    Inui, Hiroshi; Taketomi, Shuji; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae

    2016-01-01

    Bone cutting error can be one of the causes of malalignment in unicompartmental knee arthroplasty (UKA). The amount of cutting error in total knee arthroplasty has been reported. However, none have investigated cutting error in UKA. The purpose of this study was to reveal the amount of cutting error in UKA when open cutting guide was used and clarify whether cutting the tibia horizontally twice using the same cutting guide reduced the cutting errors in UKA. We measured the alignment of the tibial cutting guides, the first-cut cutting surfaces and the second cut cutting surfaces using the navigation system in 50 UKAs. Cutting error was defined as the angular difference between the cutting guide and cutting surface. The mean absolute first-cut cutting error was 1.9° (1.1° varus) in the coronal plane and 1.1° (0.6° anterior slope) in the sagittal plane, whereas the mean absolute second-cut cutting error was 1.1° (0.6° varus) in the coronal plane and 1.1° (0.4° anterior slope) in the sagittal plane. Cutting the tibia horizontally twice reduced the cutting errors in the coronal plane significantly (Pcutting the tibia horizontally twice using the same cutting guide reduced cutting error in the coronal plane. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. New developments in laser sintering of diamond cutting disks

    NARCIS (Netherlands)

    Kovalenko, V.; Golovko, L.; Meijer, J.; Anyakin, M.

    2007-01-01

    The analysis of techniques and problems in the fabrication of cutting tools based on super hard composites results in a solution by the application of lasers. The results of systematic study of diamond composites sintering with laser radiation are discussed. A mathematical modeling of the heat

  19. Predictors of Frontal Plane Knee Moments During Side-Step Cutting to 45 and 110 Degrees in Men and Women: Implications for Anterior Cruciate Ligament Injury.

    Science.gov (United States)

    Sigward, Susan M; Cesar, Guilherme M; Havens, Kathryn L

    2015-11-01

    To compare frontal plane knee moments, and kinematics and kinetics associated with knee valgus moments between cutting to 45 and 110 degrees, and to determine the predictive value of kinematics and ground reaction forces (GRFs) on knee valgus moments when cutting to these angles. Also, to determine whether sex differences exist in kinematics and kinetics when cutting to 45 and 110 degrees. Cross-sectional study. Laboratory setting. Forty-five (20 females) healthy young adult soccer athletes aged 16 to 23 years. Kinematic and kinetic variables were compared between randomly cued side-step cutting maneuvers to 45 and 110 degrees. Predictors of knee valgus moment were determined for each task. Kinematic variables: knee valgus angle, hip abduction, and internal rotation angles. Kinetic variables: vertical, posterior, and lateral GRFs, and knee valgus moment. Knee valgus moments were greater when cutting to 110 degrees compared with 45 degrees, and females exhibited greater moments than males. Vertical and lateral GRFs, hip internal rotation angle, and knee valgus angle explained 63% of the variance in knee valgus moment during cutting to 45 degrees. During cutting to 110 degrees, posterior GRF, hip internal rotation angle, and knee valgus angle explained 41% of the variance in knee valgus moment. Cutting tasks with larger redirection demands result in greater knee valgus moments. Similar factors, including shear GRFs, hip internal rotation, and knee valgus position contribute to knee valgus loading during cuts performed to smaller (45 degrees) and larger (110 degrees) angles. Reducing vertical and shear GRFs during cutting maneuvers may reduce knee valgus moments and thereby potentially reduce risk for anterior cruciate ligament injury.

  20. Laser cutting: industrial relevance, process optimization, and laser safety

    Science.gov (United States)

    Haferkamp, Heinz; Goede, Martin; von Busse, Alexander; Thuerk, Oliver

    1998-09-01

    the angle between the normal of the cutting front and the laser beam axis. Beneath process optimization and control further work is focused on the characterization of particulate and gaseous laser generated air contaminants and adequate safety precautions like exhaust and filter systems.

  1. Accuracy of axial depth of cut in micromilling operations - Simplified procedure and uncertainty model

    DEFF Research Database (Denmark)

    Bissacco, Giuliano

    2005-01-01

    In order to maintain an optimum cutting speed, the reduction of mill diameters requires machine tools with high rotational speed capabilities. A solution to update existing machine tools is the use of high speed attached spindles. Major drawbacks of these attachments are the high thermal expansion...... and their rapid warming and cooling, which prevent the achievement of a steady state. Several other factors, independent on the tool-workpiece interaction, influence the machining accuracy. The cutting parameter most heavily affected is the axial depth of cut which is the most critical when using micro end mills......, due to the easy breakage particularly when milling on hard materials [1]. Typical values for the errors on the control of the axial depth of cut are in the order of 50 microns, while the aimed depth of cut can be as low as 5 microns. The author has developed a machining procedure for optimal control...

  2. Extensions of cutting problems: setups

    Directory of Open Access Journals (Sweden)

    Sebastian Henn

    2013-08-01

    Full Text Available Even though the body of literature in the area of cutting and packing is growing rapidly, research seems to focus on standard problems in the first place, while practical aspects are less frequently dealt with. This is particularly true for setup processes which arise in industrial cutting processes whenever a new cutting pattern is started (i.e. a pattern is different from its predecessor and the cutting equipment has to be prepared in order to meet the technological requirements of the new pattern. Setups involve the consumption of resources and the loss of production time capacity. Therefore, consequences of this kind must explicitly be taken into account for the planning and control of industrial cutting processes. This results in extensions to traditional models which will be reviewed here. We show how setups can be represented in such models, and we report on the algorithms which have been suggested for the determination of solutions of the respective models. We discuss the value of these approaches and finally point out potential directions of future research.

  3. Cutting inlays with a laser

    Science.gov (United States)

    Swaczyna, Irena; Grabczewski, Zbigniew

    1995-03-01

    To cut inlay from a stack of glued veneer a CO2 HEBAR-1A laser was used. For setting optimal working parameters of the set used in industrial production of inlay the following elements were defined: the shape and dimensions of the cutting fissure, the dependence between the width of the cutting fissure and the speed with which the laser beam moves and the total thickness of the stack of veneer sheets, the application of the laser for cutting various patterns. Computer aided designing and computer steering of the laser beam enables fast and precise production of large numbers of inlay elements not only from wood but also from other materials like glass, stone, metal, etc. Taking into consideration the high running cost of such a laser set and its very big production only few factories or even one factory in the given area could produce inlay ready for gluing. Further investigation should be carried out on this field particularly considering the lowering of costs not only in inlay production but generally where cutting of wood is concerned.

  4. Hard particle effect on surface generation in nano-cutting

    Science.gov (United States)

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong

    2017-12-01

    The influence of the hard particle on the surface generation, plastic deformation and processing forces in nano-cutting of aluminum is investigated by means of molecular dynamics simulations. In this investigation, a hard particle which is simplified as a diamond ball is embedded under the free surface of workpiece with different depths. The influence of the position of the hard ball on the surface generation and other material removal mechanism, such as the movement of the ball under the action of cutting tool edge, is revealed. The results show that when the hard particle is removed, only a small shallow pit is left on the machined surface. Otherwise, it is pressed down to the subsurface of the workpiece left larger and deeper pit on the generated surface. Besides that, the hard particle in the workpiece would increase the processing force when the cutting tool edge or the plastic carriers interact with the hard particle. It is helpful to optimize the cutting parameters and material properties for obtaining better surface quality in nano-cutting of composites or other materials with micro/nanoscale hard particles in it.

  5. Cutting Zone Temperature Identification During Machining of Nickel Alloy Inconel 718

    Science.gov (United States)

    Czán, Andrej; Daniš, Igor; Holubják, Jozef; Zaušková, Lucia; Czánová, Tatiana; Mikloš, Matej; Martikáň, Pavol

    2017-12-01

    Quality of machined surface is affected by quality of cutting process. There are many parameters, which influence on the quality of the cutting process. The cutting temperature is one of most important parameters that influence the tool life and the quality of machined surfaces. Its identification and determination is key objective in specialized machining processes such as dry machining of hard-to-machine materials. It is well known that maximum temperature is obtained in the tool rake face at the vicinity of the cutting edge. A moderate level of cutting edge temperature and a low thermal shock reduce the tool wear phenomena, and a low temperature gradient in the machined sublayer reduces the risk of high tensile residual stresses. The thermocouple method was used to measure the temperature directly in the cutting zone. An original thermocouple was specially developed for measuring of temperature in the cutting zone, surface and subsurface layers of machined surface. This paper deals with identification of temperature and temperature gradient during dry peripheral milling of Inconel 718. The measurements were used to identification the temperature gradients and to reconstruct the thermal distribution in cutting zone with various cutting conditions.

  6. Modelling high strain rate phenomena in metal cutting simulation

    International Nuclear Information System (INIS)

    Wedberg, Dan; Svoboda, Ales; Lindgren, Lars-Erik

    2012-01-01

    Chip formation in metal cutting is associated with large strains and high strain rates, concentrated locally to deformation zones in front of the tool and beneath the cutting edge. Furthermore, dissipative plastic work and friction work generate high local temperatures. These phenomena together with numerical complications make modelling of metal cutting difficult. Material models, which are crucial in metal cutting simulations, are usually calibrated based on data from material testing. Nevertheless, the magnitude of strains and strain rates involved in metal cutting are several orders higher than those generated from conventional material testing. A highly desirable feature is therefore a material model that can be extrapolated outside the calibration range. In this study, two variants of a flow stress model based on dislocation density and vacancy concentration are used to simulate orthogonal metal cutting of AISI 316L stainless steel. It is found that the addition of phonon drag improves the results somewhat but the addition of this phenomenon still does not make it possible to extrapolate the constitutive model reliably outside its calibration range. (paper)

  7. OPTIMIZATION OF CARBIDE BALL NOSE END MILL PROFILE ANGLES IN MACHINING INCONEL 718

    OpenAIRE

    Ghasem Esmati, Behrooz Arezoo*

    2017-01-01

    Cutting tools nearly make up 30% of all the manufacturing cost. Modeling and simulation of machining is essential for improving and increasing efficiency of the process. Inconel 718 alloy which is an iron-nickel based superalloy is widely used in rocket engines, turbine blades, molds and extrusion containers. The flute profile is the main part in the milling cutting tool body and has an important effect on the tool life and machining quality in milling processes. The flute profile includes ra...

  8. Cut marks on the Bodo cranium: a case of prehistoric defleshing.

    Science.gov (United States)

    White, T D

    1986-04-01

    Cut marks were discovered on the Middle Pleistocene Bodo cranium from Ethiopia. The cut marks most closely resemble experimental damage caused by the application of stone tools to fresh bone. This discovery constitutes the earliest solid evidence for intentional defleshing of a human ancestor and offers new research avenues for the investigation of early hominid mortuary practices.

  9. A Quality Function Deployment-Based Model for Cutting Fluid Selection

    Directory of Open Access Journals (Sweden)

    Kanika Prasad

    2016-01-01

    Full Text Available Cutting fluid is applied for numerous reasons while machining a workpiece, like increasing tool life, minimizing workpiece thermal deformation, enhancing surface finish, flushing away chips from cutting surface, and so on. Hence, choosing a proper cutting fluid for a specific machining application becomes important for enhanced efficiency and effectiveness of a manufacturing process. Cutting fluid selection is a complex procedure as the decision depends on many complicated interactions, including work material’s machinability, rigorousness of operation, cutting tool material, metallurgical, chemical, and human compatibility, reliability and stability of fluid, and cost. In this paper, a decision making model is developed based on quality function deployment technique with a view to respond to the complex character of cutting fluid selection problem and facilitate judicious selection of cutting fluid from a comprehensive list of available alternatives. In the first example, HD-CUTSOL is recognized as the most suitable cutting fluid for drilling holes in titanium alloy with tungsten carbide tool and in the second example, for performing honing operation on stainless steel alloy with cubic boron nitride tool, CF5 emerges out as the best honing fluid. Implementation of this model would result in cost reduction through decreased manpower requirement, enhanced workforce efficiency, and efficient information exploitation.

  10. The Cutting Process, Chips and Cutting Forces in Machining CFRP

    DEFF Research Database (Denmark)

    Koplev, A.; Lystrup, Aage; Vorm, T.

    1983-01-01

    The cutting of unidirectional CFRP, perpendicular as well as parallel to the fibre orientation, is examined. Shaping experiments, ‘quick-stop’ experiments, and a new chip preparation technique are used for the investigation. The formation of the chips, and the quality of the machined surface...

  11. Equilibrium Analysis in Cake Cutting

    DEFF Research Database (Denmark)

    Branzei, Simina; Miltersen, Peter Bro

    2013-01-01

    Cake cutting is a fundamental model in fair division; it represents the problem of fairly allocating a heterogeneous divisible good among agents with different preferences. The central criteria of fairness are proportionality and envy-freeness, and many of the existing protocols are designed...... of the simplest and most elegant continuous algorithms -- the Dubins-Spanier procedure, which guarantees a proportional allocation of the cake -- and study its equilibria when the agents use simple threshold strategies. We show that given a cake cutting instance with strictly positive value density functions...

  12. Slope angle studies from multibeam sonar data on three seamounts in Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Kodagali, V.N.

    Slope angles are powerful morphometric tools. Slope angle studies in manganese nodule areas using the Multi Beam Sonar (MBS) data is useful to the mining geologist. A technique to convert depth grid generated from MBS data to slope angle values data...

  13. Sidestep cutting technique and knee abduction loading: implications for ACL prevention exercises.

    Science.gov (United States)

    Kristianslund, Eirik; Faul, Oliver; Bahr, Roald; Myklebust, Grethe; Krosshaug, Tron

    2014-05-01

    Sidestep cutting technique is essential in programmes to prevent anterior cruciate ligament (ACL) injury. A better understanding of how technique affects potentially harmful joint loading may improve prevention programmes. The purpose of this study was to investigate the effect of sidestep cutting technique on maximum knee abduction moments. Cross-sectional study. Whole-body kinematics and knee joint kinetics were calculated in 123 female handball players (mean±SD, 22.5±7.0 years, 171±7 cm, 67±7 kg) performing sidestep cutting. Three cuts from each side were analysed. Linear regression was applied between selected technique factors and maximum knee abduction moment during the first 100 ms of the contact phase. Furthermore, we investigated to what degree the abduction moment originated from the magnitude of the ground reaction force (GRF) or the knee abduction moment arm of the GRF. Technique factors explained 62% of the variance in knee abduction moments. Cut width, knee valgus, toe landing, approach speed and cutting angle were the most significant predictors. An increase in one of these factors of 1 SD increased the knee abduction moment from 12% to 19%. The effect of the moment arm of the GRF was more important than the force magnitude for maximum knee abduction moments. Lower knee abduction loads during sidestep cutting may be achieved if cuts are performed as narrow cuts with low knee valgus and toe landings. These factors may be targeted in ACL injury prevention programmes.

  14. Application of YAG laser processing in underwater welding and cutting

    International Nuclear Information System (INIS)

    Ohwaki, Katsura; Morita, Ichiro; Kojima, Toshio; Sato, Shuichi

    2002-01-01

    The high-power YAG laser is a new fabrication tool. The laser torch is easy to combine with complex with complex mechanics because of beam delivery through optical fiber. A direct underwater laser welding technology has been developed and applied to the preservation, maintenance and removal of nuclear power plants. For subdividing or removing operations for retirement of plants, the laser cutting properties were confirmed to allow a maximum cutting thickness of 80 mm. For repairing inner surface of stainless steel tanks, an underwater laser welding system using a remote-controlled robot was developed and the high quality of underwater laser welding was confirmed. (author)

  15. The investigation of the chip behaviour during the end milling cutting process

    Directory of Open Access Journals (Sweden)

    Vereş Ovidiu Virgil

    2017-01-01

    Full Text Available Generally the study, evaluation and general understanding of end milling cutters are complicated by the complexity of the cutting process and of the cutting tool. The main performance factor of the end milling cutters is given by the durability of the tool. In practice the sound analysis of the tool engaged in the cutting process is used as a simple predictability mean to forecast the future durability of the tool. An alternative or complementary tool to predict future durability is the investigation of the chip behaviour. Chip behaviour investigations can also give clues concerning the possible improvement of the cutting tools. The current article presents a detailed chip behaviour investigation for 5-fluted end milling cutters with different performances and various geometries when approaching different types of metal cutting operations in 42CrMo4 alloy steel. Current study can be applied in future researches regarding the evaluation and the development of end milling cutters. Furthermore the current approach can be used on other types of cutting tools.

  16. Experimental investigation and modelling of surface roughness and resultant cutting force in hard turning of AISI H13 Steel

    Science.gov (United States)

    Boy, M.; Yaşar, N.; Çiftçi, İ.

    2016-11-01

    In recent years, turning of hardened steels has replaced grinding for finishing operations. This process is compared to grinding operations; hard turning has higher material removal rates, the possibility of greater process flexibility, lower equipment costs, and shorter setup time. CBN or ceramic cutting tools are widely used hard part machining. For successful application of hard turning, selection of suitable cutting parameters for a given cutting tool is an important step. For this purpose, an experimental investigation was conducted to determine the effects of cutting tool edge geometry, feed rate and cutting speed on surface roughness and resultant cutting force in hard turning of AISI H13 steel with ceramic cutting tools. Machining experiments were conducted in a CNC lathe based on Taguchi experimental design (L16) in different levels of cutting parameters. In the experiments, a Kistler 9257 B, three cutting force components (Fc, Ff and Fr) piezoelectric dynamometer was used to measure cutting forces. Surface roughness measurements were performed by using a Mahrsurf PS1 device. For statistical analysis, analysis of variance has been performed and mathematical model have been developed for surface roughness and resultant cutting forces. The analysis of variance results showed that the cutting edge geometry, cutting speed and feed rate were the most significant factors on resultant cutting force while the cutting edge geometry and feed rate were the most significant factor for the surface roughness. The regression analysis was applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Afterwards a confirmation tests were performed to make a comparison between the predicted results and the measured results. According to the confirmation test results, measured values are within the 95% confidence interval.

  17. NOVEL NANOCOATINGS ON CUTTING TOOLS FOR DRY MACHINING. (R825339)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. RESEARCH ON INCREASING ACTIVE LIFE OF CUTTING TOOLS

    Directory of Open Access Journals (Sweden)

    Alin STĂNCIOIU

    2012-05-01

    Full Text Available At the exploitation of dies the defections that occur, due mainly to non operating rules of exploration, the improperly conditions of the machine (press in terms of cinematic precision and the wearing elements in relative motion (ram displacement, wearing guides, etc as the incorrect mounting of dies on the press. When installing dies must consider several aspects. Among the techniques used, especially for restoring the active elements in the work area are rectified frontal surfaces, hard chromating, hardening with electric sparks and charging welding. Were restored active profile and size of the work active elements so after reconditioning they corresponded in terms of dimensional precision and resistance to wear, like initial elements

  19. Wear monitoring of single point cutting tool using acoustic emission ...

    Indian Academy of Sciences (India)

    Blum & Inasaki (1990) have stated in their research investigations that a wide variety of measure- ment s can be carried out according to the type of AE signal, the experimental instrumentation used and the personal preferences of the individual research workers. One of the most signifi- cant methods to analyse AE is the ...

  20. Generalization of the Euler Angles

    Science.gov (United States)

    Bauer, Frank H. (Technical Monitor); Shuster, Malcolm D.; Markley, F. Landis

    2002-01-01

    It is shown that the Euler angles can be generalized to axes other than members of an orthonormal triad. As first shown by Davenport, the three generalized Euler axes, hereafter: Davenport axes, must still satisfy the constraint that the first two and the last two axes be mutually perpendicular if these axes are to define a universal set of attitude parameters. Expressions are given which relate the generalized Euler angles, hereafter: Davenport angles, to the 3-1-3 Euler angles of an associated direction-cosine matrix. The computation of the Davenport angles from the attitude matrix and their kinematic equation are presented. The present work offers a more direct development of the Davenport angles than Davenport's original publication and offers additional results.

  1. EVALUATION OF THE CARBON FOOTPRINT OF INNOVATIVE WATER MAIN REHABILITATION TECHNOLOGIES VS. OPEN CUT METHODS

    Science.gov (United States)

    A major benefit of trenchless rehabilitation technologies touted by many practitioners when comparing their products with tradition open cut construction methods is lower carbon dioxide (CO2) emissions. In an attempt to verify these claims, multiple tools have been dev...

  2. Clustering by Minimum Cut Hyperplanes.

    Science.gov (United States)

    Hofmeyr, David P

    2017-08-01

    Minimum normalised graph cuts are highly effective ways of partitioning unlabeled data, having been made popular by the success of spectral clustering. This work presents a novel method for learning hyperplane separators which minimise this graph cut objective, when data are embedded in Euclidean space. The optimisation problem associated with the proposed method can be formulated as a sequence of univariate subproblems, in which the optimal hyperplane orthogonal to a given vector is determined. These subproblems can be solved in log-linear time, by exploiting the trivial factorisation of the exponential function. Experimentation suggests that the empirical runtime of the overall algorithm is also log-linear in the number of data. Asymptotic properties of the minimum cut hyperplane, both for a finite sample, and for an increasing sample assumed to arise from an underlying probability distribution are discussed. In the finite sample case the minimum cut hyperplane converges to the maximum margin hyperplane as the scaling parameter is reduced to zero. Applying the proposed methodology, both for fixed scaling, and the large margin asymptotes, is shown to produce high quality clustering models in comparison with state-of-the-art clustering algorithms in experiments using a large collection of benchmark datasets.

  3. How Can I Stop Cutting?

    Science.gov (United States)

    ... some relaxing yoga exercises Things to Help You Express the Pain and Deep Emotion Some people cut because the emotions that they ... may be hard for them to recognize these emotions for what they are — like anger, ... songs or poetry to express what you're feeling listen to music that ...

  4. Brazilian science faces swingeing cuts

    Science.gov (United States)

    Ivanissevich, Alicia

    2017-05-01

    A number of “big-science” projects in Brazil could be hit if the government pushes through a 44% cut to the R5bn (£1.28bn) budget of the Ministry of Science, Technology, Innovations and Communications (MCTIC).

  5. The Cutting-Edge Challenge

    Science.gov (United States)

    Share, Joani

    2005-01-01

    In a time of educational budget cuts, the arts seem to take the major brunt of the financial ax. Fine arts programs are often pitted against one another for survival. The music industry and supporting corporations, such as American Express, campaign to have instruments donated or purchased to keep educational programs alive. The visual arts do not…

  6. Why I like power cuts...

    CERN Multimedia

    Computer Security Team

    2012-01-01

    Accidental power cuts - a permanent nuisance when running accelerators or computing services, since it takes a lot of time to recover from them. While I feel very sorry for those who are under pressure to get their service running again and deeply regret the loss of down-time and availability, I must admit that I like power cuts: power cuts make computers reboot! And rebooting computers at CERN means all the pending software patches are automatically applied.   But don’t think I am egotistic enough to endorse power cuts. Not necessarily! I am already happy if you regularly patch your computer(s) yourself, where regularly means at least once a month: · If you run a centrally or locally managed Windows computer, give that small orange blinking “CMF” icon in the taskbar a chance in the evening to apply all the pending patches. Also, let it initiate a reboot at the end! · If you have a personal computer with your own Windows operating system, ...

  7. Geometry of Cuts and Metrics

    NARCIS (Netherlands)

    M. Deza; M. Laurent (Monique)

    1997-01-01

    htmlabstractCuts and metrics are well-known objects that arise - independently, but with many deep and fascinating connections - in diverse fields: in graph theory, combinatorial optimization, geometry of numbers, combinatorial matrix theory, statistical physics, VLSI design etc. This book offers a

  8. Cutting and Preserving Whole Turkey

    OpenAIRE

    Brennand, Charlotte P.

    1995-01-01

    There are more uses for a turkey than roasting it whole for holiday occasions. The least expensive way to have turkey pieces, especially if the turkey is purchased on sale, is to cut it up yourself. The following is to serve as a butchering and processing guide.

  9. Wedge cutting of mild steel by CO 2 laser and cut-quality assessment in relation to normal cutting

    Science.gov (United States)

    Yilbas, B. S.; Karatas, C.; Uslan, I.; Keles, O.; Usta, Y.; Yilbas, Z.; Ahsan, M.

    2008-10-01

    In some applications, laser cutting of wedge surfaces cannot be avoided in sheet metal processing and the quality of the end product defines the applicability of the laser-cutting process in such situations. In the present study, CO 2 laser cutting of the wedge surfaces as well as normal surfaces (normal to laser beam axis) is considered and the end product quality is assessed using the international standards for thermal cutting. The cut surfaces are examined by the optical microscopy and geometric features of the cut edges such as out of flatness and dross height are measured from the micrographs. A neural network is introduced to classify the striation patterns of the cut surfaces. It is found that the dross height and out of flatness are influenced significantly by the laser output power, particularly for wedge-cutting situation. Moreover, the cut quality improves at certain value of the laser power intensity.

  10. Shell side numerical analysis of a shell and tube heat exchanger considering the effects of baffle inclination angle on fluid flow using CFD

    Directory of Open Access Journals (Sweden)

    Raj Karuppa Thundil R.

    2012-01-01

    Full Text Available In this present study, attempts were made to investigate the impacts of various baffle inclination angles on fluid flow and the heat transfer characteristics of a shell-and-tube heat exchanger for three different baffle inclination angles namely 0°,10° and 20°. The simulation results for various shell and tube heat exchangers, one with segmental baffles perpendicular to fluid flow and two with segmental baffles inclined to the direction of fluid flow are compared for their performance. The shell side design has been investigated numerically by modeling a small shell-and-tube heat exchanger. The study is concerned with a single shell and single side pass parallel flow heat exchanger. The flow and temperature fields inside the shell are studied using non-commercial CFD software tool ANSYS CFX 12.1. For a given baffle cut of 36 %, the heat exchanger performance is investigated by varying mass flow rate and baffle inclination angle. From the CFD simulation results, the shell side outlet temperature, pressure drop, recirculation near the baffles, optimal mass flow rate and the optimum baffle inclination angle for the given heat exchanger geometry are determined.

  11. GEOMETRICAL CHARACTERIZATION OF MICRO END MILLING TOOLS

    DEFF Research Database (Denmark)

    Borsetto, Francesca; Bariani, Paolo

    /lubricants, milling strategies and controls. Moreover the accuracy of tool geometry directly affects the performance of the milling process influencing the dimensional tolerances of the machined part, the surface topography, the chip formation, the cutting forces and the tool-life. The dimensions of certain...... report is to develop procedures for the geometrical characterization of micro end milling tools in order to define a method suitable for the quality assurance in the micro cutting field....

  12. Introduction to small-angle scattering

    International Nuclear Information System (INIS)

    Gilbert, E.

    2003-01-01

    Full text: Small angle neutron and X-ray scattering (SANS and SAXS) are ideal tools for studying the structure of materials in the size range between 10 and 1000 Angstrom. While imaging methods such as transmission electron microscopy (TEM) also have this capability, they provide images in real space, for instance individual grains in a nanocrystalline material. SANS and SAXS, on the other hand, provide (generally) a non-destructive method yielding structural information averaged over all grains with high statistical accuracy due to averaging over the whole sample volume. The use of neutrons and X-rays is also implicitly complementary due to their sensitivity to either nuclear or electron density respectively. This provides several further advantages over real-space techniques such as isotopic sensitivity and contrast variation. In this talk, I will provide an introduction to the technique with a minimum number of equations, emphasising what structural information may be obtained from small-angle scattering

  13. Analysis of changes in paper cutting forces during the cutting cycle in single-knife guillotine

    OpenAIRE

    Rusin, Agnieszka; Petriaszwili, Georgij

    2013-01-01

    Paper presents the results of changes in the three components of cutting forces of paper stacks cutting during the cutting cycle in single-knife guillotine. The changes of the three components of cutting force at different stages of cutting cycle were analyzed.

  14. Relationship between the Angle of Repose and Angle of Internal ...

    African Journals Online (AJOL)

    ghum and rice. The angles have a big influence on the design offlow and storage structures of ... the angles of internal friction for the same grains and same moisture contents. The data ob- tained were fed into SAS statistical software for step-wise regression analysis. A model of the ..... tion, Application and Validation of En-.

  15. A cutting-edge solution for 1µm laser metal processing

    Science.gov (United States)

    Baumbach, N.; Kühl, P.; Karam, J.; Jonkers, J.; Villarreal-Saucedo, F.; Reyes, M.

    2017-02-01

    The recent 1μm-laser cutting market is dominated by fiber and disk lasers due to their excellent beam quality of below 4mm*mrad. Teradiode's 4kW direct diode laser source achieves similar beam quality while having a different beam shape and shorter wavelengths which are known for higher absorption rates at the inclined front of the cutting keyhole. Research projects, such as the HALO Project, have additionally shown that polarized radiation and beams with shapes different from the typical LG00 lead to improved cut quality for ferrous and non-ferrous metals. [1] Diode laser have the inherent property of not being sensitive to back reflection which brings advantages in cutting high-reflective materials. The II-VI HIGHYAG laser cutting head BIMO-FSC offers the unique feature of machine controlled and continuous adjustment of both the focus diameter and the focus position. This feature is proven to be beneficial for cutting and piercing with high speed and small hole diameters. In addition, the optics are designed for lowest focus shift. As a leading laser processing head manufacturer, II-VI HIGHYAG qualified its BIMO-FSC MZ (M=magnification, Z=focus position) cutting head for Teradiode's 4kW direct diode laser source to offer a cutting-edge solution for highpower laser cutting. Combining the magnification ability of the cutting head with this laser source, customers experience strong advantages in cutting metals in broad thickness ranges. Thicknesses up to 25mm mild steel can easily be cut with excellent edge quality. Furthermore, a new optical setup equivalent to an axicon with a variable axicon angle is demonstrated which generates variable sized ring spots. The setup provides new degrees of freedom to tailor the energy distribution for even higher productivity and quality.

  16. Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  17. From every angle

    CERN Multimedia

    Anaïs Schaeffer

    2013-01-01

    For nearly 60 years, CERN’s surveyors have measured the Laboratory’s tunnels and caverns both in preparation for the accurate positioning of magnets and detectors, and to plot their shapes, dimensions and other lumps and bumps. Now that they have the very latest 3D laser scanner, nothing will get past them.   A measurement campaign carried out using laser scanners in the ISOLDE Hall. About 15 years ago, the arrival of 3D laser scanners, digital devices which can reconstruct various objects in the form of 3D images, opened the door to a whole host of possibilities in the topography world. These new tools have been used at CERN since 2004 to produce increasingly detailed digital images of the LHC tunnels and experiments. The CERN surveyors’ high-performance laser scanner has become an irreplaceable tool in many instances. It is capable of measuring every 2 millimetres from a distance of 10 metres (and therefore 4 millimetres from a distance of 2...

  18. Supplementary CT temporal lobe cuts confer no worthwhile benefit

    International Nuclear Information System (INIS)

    Straiton, J.A.; Macpherson, P.; Teasdale, E.M.

    1991-01-01

    The value of angled temporal lobe cuts as a supplement to conventional head computed tomography (CT) has been assessed by comparing the diagnostic yield of standard axial and specific temporal lobe images (TLCT) in 62 patients with temporal lobe epilepsy and 87 with Alzheimer-type senile dementia. Fewer than one patient in six had structural abnormality in the temporal lobe most readily demonstrated by axial CT. Five patients with epilepsy and ten with dementia had changes demonstrated only by TLCT, reported on by one or other of a pair of observers. However such changes were of dubious clinical relevance, or arose as a result of artefact. In one patient with epilepsy and underlying neoplasm, axial CT was positive and TLCT false-negative. The routine addition of temporal lobe cuts to a conventional axial examination confers no added benefit to justify the prolonged examination time and increased radiation dose to the lens of the eye. (orig.)

  19. Determination of the Basic Friction Angle of Rock Surfaces by Tilt Tests

    Science.gov (United States)

    Jang, Hyun-Sic; Zhang, Qing-Zhao; Kang, Seong-Seung; Jang, Bo-An

    2018-04-01

    Samples of Hwangdeung granite from Korea and Berea sandstone from USA, both containing sliding planes, were prepared by saw-cutting or polishing using either #100 or #600 grinding powders. Their basic friction angles were measured by direct shear testing, triaxial compression testing, and tilt testing. The direct shear tests and triaxial compression tests on the saw-cut, #100, and #600 surfaces indicated that the most reliable results were obtained from the #100 surface: basic friction angle of 29.4° for granite and 34.1° for sandstone. To examine the effect of surface conditions on the friction angle in tilt tests, the sliding angles were measured 50 times with two surface conditions (surfaces cleaned and not cleaned after each measurement). The initial sliding angles were high regardless of rock type and surface conditions and decreased exponentially as measurements continued. The characteristics of the sliding angles, differences between tilt tests, and dispersion between measurements in each test indicated that #100 surface produced the most reliable basic friction angle measurement. Without cleaning the surfaces, the average angles for granite (32 measurements) and sandstone (23 measurements) were similar to the basic friction angle. When 20-50 measurements without cleaning were averaged, the basic friction angle was within ± 2° for granite and ± 3° for sandstone. Sliding angles using five different tilting speeds were measured but the average was similar, indicating that tilting speed (between 0.2° and 1.6°/s) has little effect on the sliding angle. Sliding angles using four different sample sizes were measured with the best results obtained for samples larger than 8 × 8 cm.

  20. Peculiar features of modeling of thermal processes of the cutting area in the SOLIDWORKS SIMULATION system

    Directory of Open Access Journals (Sweden)

    Stepchin Ya.A.

    2017-04-01

    Full Text Available Management of thermo-physical process of cutting zone by changing certain parameters of the cutting regime, tool geometry or coolant using allows to achieve a higher level of handling performance. The forecasting of thermal processes during metal cutting is characterized by the multifactor of the model and the nonlinearity of the connection between the temperature field of the cutting zone and the processing parameters. Therefore realistic modeling of these processes with regard to the maximum number of influencing factors which will minimize the time and cost of experimental studies is very important. The research investigates the use of computer-aided design SolidWorks Simulation system to analyze the thermal processes occurring in the cutting zone during finishing turning of hardened circular steel cutting blade of superhard material. While modeling, the distribution of heat generated in cut (in the zone of plastic deformation of the workpiece and on the surfaces of friction of the cutting blade with chips and the treated surface is observed by four flows: to the tool, chips, workpiece and the environment. The limiting conditions for the existence of the developed model-geometric, physical and temporal limits are defined. Simulation is performed in steady and transient modes. Control of adequacy of simulation results is made. The conclusions of the analysis of opportunities of CAD SolidWorks Simulation System for research of thermal processes the cutting zone are drawn.