WorldWideScience

Sample records for angle cutting tools

  1. Effect of Rake Angle on Stress, Strain and Temperature on the Edge of Carbide Cutting Tool in Orthogonal Cutting Using FEM Simulation

    Directory of Open Access Journals (Sweden)

    Hendri Yanda

    2010-11-01

    Full Text Available Demand for higher productivity and good quality for machining parts has encourage many researchers to study the effects of machining parameters using FEM simulation using either two or three dimensions version. These are due to advantages such as software package and computational times are required. Experimental work is very costly, time consuming and labor intensive. The present work aims to simulate a three-dimensional orthogonal cutting operations using FEM software (Deform-3D to study the effects of rake angle on the cutting force, effective stress, strain and temperature on the edge of carbide cutting tool. There were seven runs of simulations. All simulations were performed for various rake angles of -15 deg, -10 deg, -5 deg, 0 deg, +5 deg, +10 deg, and +15 deg. The cutting speed, feed rate and depth of cut (DOC were kept constant at 100 m/min, 0.35 mm/rev and 0.3 mm respectively. The work piece used was ductile cast iron FCD500 grade and the cutting tool was DNMA432 series (tungsten, uncoated carbide tool, SCEA = 0; and radius angle 55 deg. The analysis of results show that, the increase in the rake angle from negative to positive angle, causing the decrease in cutting force, effective stress and total Von Misses strain. The minimum of the cutting force, effective stress and total Von Misses strain were obtained at rake angle of +15 deg. Increasing the rake caused higher temperature generated on the edge of carbide cutting tool and resulted in bigger contact area between the clearance face and the workpiece, consequently caused more friction and wear. The biggest deformation was occurred in the primary deformation zone, followed by the secondary deformation zone. The highest stress was also occurred in the primary deformation zone. But the highest temperature on the chip usually occurs in secondary deformation zone, especially in the sliding region, because the heat that was generated in the sticking region increased as the workpiece was

  2. Development of an artificial vision system for the automatic evaluation of the cutting angles of worn tools

    Directory of Open Access Journals (Sweden)

    Gianni Campatelli

    2016-03-01

    Full Text Available This article presents a new method to evaluate the geometry of dull cutting tools in order to verify the necessity of tool re-sharpening and to decrease the tool grinding machine setup time, based on a laser scanning approach. The developed method consists of the definition of a system architecture and the programming of all the algorithms needed to analyze the data and provide, as output, the cutting angles of the worn tool. These angles are usually difficult to be measured and are needed to set up the grinding machine. The main challenges that have been dealt with in this application are related to the treatment of data acquired by the system’s cameras, which must be specific for the milling tools, usually characterized by the presence of undercuts and sharp edges. Starting from the architecture of the system, an industrial product has been designed, with the support of a grinding machine manufacturer. The basic idea has been to develop a low-cost system that could be integrated on a tool sharpening machine and interfaced with its numeric control. The article reports the developed algorithms and an example of application.

  3. Manual bamboo cutting tool.

    Science.gov (United States)

    Bezerra, Mariana Pereira; Correia, Walter Franklin Marques; da Costa Campos, Fabio Ferreira

    2012-01-01

    The paper presents the development of a cutting tool guide, specifically for the harvest of bamboo. The development was made based on precepts of eco-design and ergonomics, for prioritizing the physical health of the operator and the maintenance of the environment, as well as meet specific requirements of bamboo. The main goal is to spread the use of bamboo as construction material, handicrafts, among others, from a handy, easy assembly and material available tool.

  4. BILL MUNDY THEORY, EFFECTIVE RAKE ANGLE CUTTING TOOLS IN COPPER ALLOYS TEORIA DE BILL MUNDY Y EL ANGULO EFECTIVO DE ATAQUE DE HERRAMIENTAS DE CORTE EN ALEACIONES DE COBRE

    Directory of Open Access Journals (Sweden)

    Juan Miguel Godoy R

    2007-08-01

    Full Text Available Magazines like American Machinist and Manufacturing Engineering, have explained the Bill Mundy theory about the effective rake angle of cutting tools. These articles show the effective rake angle of cutting tools for carbon steel, steel , alloys, cast iron, aluminium and stainless steel. In the present work the theory is applied to cutting tools used in brass and bronze. The effective rake angle for these materials was obtained with the tensile stress test. The rake angles in the cutting tools were made in a Universal Grinding Machine Heiler. Finally, the power consumption was measured in a CNC Lathe. Tools with commercial rake angles from bibliography were compared with tools with the experimental effective rake angle obtained from the Bill Mundy Theory. The results show that the power consumption is about 10% lower for tools with the experimental effective rake angle.Revistas como American Machinist y Manufacturing Engineering, han explicado la Teoría de Bill Mundy y el ángulo efectivo de ataque en herramientas de corte utilizadas en aceros al carbono, aceros aleados, hierro fundido, aluminio y acero inoxidable. En este trabajo, esta teoría es aplicada a herramientas de corte usadas para latón y bronce y sus resultados son comparados con los ángulos de ataque recomendados por los fabricantes de herramientas de corte. El ángulo de ataque efectivo se obtiene del ensayo de tracción del material a ser mecanizado. Los ángulos de las herramientas fueron hechos en una máquina universal de afilar Heiler. El consumo de potencia fue medido en un torno CNC. El consumo de potencia con herramientas de corte comerciales con ángulos de corte recomendados por la bibliografía existente, fue comparado con las herramientas afiladas con el ángulo de corte efectivo obtenido a través de la teoría de Bill Mundy. Los resultados indican que el consumo de potencia es un 10% menor para las herramientas afiladas con el ángulo efectivo recomendado por la

  5. Refrigerated cutting tools improve machining of superalloys

    Science.gov (United States)

    Dudley, G. M.

    1971-01-01

    Freon-12 applied to tool cutting edge evaporates quickly, leaves no residue, and permits higher cutting rate than with conventional coolants. This technique increases cutting rate on Rene-41 threefold and improves finish of machined surface.

  6. Analysis of load variations on drums with three to four rows of cutting tools

    Energy Technology Data Exchange (ETDEWEB)

    Krauze, K. (Akademia Gorniczo-Hutnicza, Cracow (Poland). Instytut Maszyn Gorniczych Przerobczych i Automatyki)

    1989-11-01

    Comparatively evaluates types of shearer loaders used for longwall mining of black coal in Poland. The following data are discussed: type, web size, rated power of motors, cutter motors, haulage speed, diameter of the cutting drums, revolution rate, cutting rate. Eleven types of shearer loaders with one or two cutting drums are reviewed. Factors that influence load variations on the cutting drums are analyzed: number and arrangement of rows of cutting tools, number of cutting tools in one row, angle of cutting tool attack, cutting tool design and geometry. Curves that describe load variations and factors that influence them are plotted. 1 ref.

  7. Ion implantation of superhard ceramic cutting tools

    Science.gov (United States)

    Chou, Y. Kevin; Liu, Jie

    2004-08-01

    Despite numerous reports of tool life increase by ion implantation in machining operations, ion implantation applications of cutting tools remain limited, especially for ceramic tools. Mechanisms of tool-life improvement by implantation are not clearly established due to complexity of both implantation and tool-wear processes. In an attempt to improve performance of cubic boron nitride (CBN) tools for hard machining by ion implantation, a literature survey of ion-implanted cutting tools was carried out with a focus on mechanisms of tool-wear reduction by ion implantation. Implantation and machining experiments were then conducted to investigate implantation effects on CBN tools in hard machining. A batch of CBN tools was implanted with nitrogen ions at 150 keV and 2.5×1017 ions/cm2 and further used to cut 61 HRc AISI 52100 steel at different conditions. Results show that ion implantation has strong effects on partsurface finish, moderate effect on cutting forces, but an insignificant impact on tool wear. Friction coefficients, estimated from measured cutting forces, are possibly reduced by ion implantation, which may improve surface finish. However, surprisingly, 2-D orthogonal cutting to evaluate tribological loading in hard machining showed no difference on contact stresses and friction coefficients between implanted and nonimplanted CBN tools.

  8. COMPUTER AIDED DESIGN OF CUTTING TOOLS

    Directory of Open Access Journals (Sweden)

    Jakub Matuszak

    2015-11-01

    Full Text Available Correct and stable machining process requires an appropriate cutting tool. In most cases the tool can be selected by using special tool catalogs often available in online version. But in some cases there is a need to design unusual tools, for special treatment, which are not available in tool manufacturers’ catalogs. Proper tool design requires strength and geometric calculations. Moreover, in many cases specific technical documentation is required. By using Computer Aided Design of cutting tools this task can be carried out quickly and with high accuracy. Cutting tool visualization in CAD programs gives a clear overview of the design process. Besides, these programs provide the ability to simulate real machining process. Nowadays, 3D modeling in CAD programs is a fundamental tool for engineers. Therefore, it is important to use them in the education process.

  9. Cutting tool form compensation system and method

    Science.gov (United States)

    Barkman, W.E.; Babelay, E.F. Jr.; Klages, E.J.

    1993-10-19

    A compensation system for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along a preprogrammed path during a machining operation utilizes a camera and a vision computer for gathering information at a preselected stage of a machining operation relating to the actual shape and size of the cutting edge of the cutting tool and for altering the preprogrammed path in accordance with detected variations between the actual size and shape of the cutting edge and an assumed size and shape of the cutting edge. The camera obtains an image of the cutting tool against a background so that the cutting tool and background possess contrasting light intensities, and the vision computer utilizes the contrasting light intensities of the image to locate points therein which correspond to points along the actual cutting edge. Following a series of computations involving the determining of a tool center from the points identified along the tool edge, the results of the computations are fed to the controller where the preprogrammed path is altered as aforedescribed. 9 figures.

  10. Cutting tool form compensaton system and method

    Science.gov (United States)

    Barkman, William E.; Babelay, Jr., Edwin F.; Klages, Edward J.

    1993-01-01

    A compensation system for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along a preprogrammed path during a machining operation utilizes a camera and a vision computer for gathering information at a preselected stage of a machining operation relating to the actual shape and size of the cutting edge of the cutting tool and for altering the preprogrammed path in accordance with detected variations between the actual size and shape of the cutting edge and an assumed size and shape of the cutting edge. The camera obtains an image of the cutting tool against a background so that the cutting tool and background possess contrasting light intensities, and the vision computer utilizes the contrasting light intensities of the image to locate points therein which correspond to points along the actual cutting edge. Following a series of computations involving the determining of a tool center from the points identified along the tool edge, the results of the computations are fed to the controller where the preprogrammed path is altered as aforedescribed.

  11. Micromachining with Nanostructured Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    The purpose of the brief is to explain how nanostructured tools can be used to machine materials at the microscale.  The aims of the brief are to explain to readers how to apply nanostructured tools to micromachining applications. This book describes the application of nanostructured tools to machining engineering materials and includes methods for calculating basic features of micromachining. It explains the nature of contact between tools and work pieces to build a solid understanding of how nanostructured tools are made.

  12. An FMS Dynamic Production Scheduling Algorithm Considering Cutting Tool Failure and Cutting Tool Life

    Science.gov (United States)

    Setiawan, A.; Wangsaputra, R.; Martawirya, Y. Y.; Halim, A. H.

    2016-02-01

    This paper deals with Flexible Manufacturing System (FMS) production rescheduling due to unavailability of cutting tools caused either of cutting tool failure or life time limit. The FMS consists of parallel identical machines integrated with an automatic material handling system and it runs fully automatically. Each machine has a same cutting tool configuration that consists of different geometrical cutting tool types on each tool magazine. The job usually takes two stages. Each stage has sequential operations allocated to machines considering the cutting tool life. In the real situation, the cutting tool can fail before the cutting tool life is reached. The objective in this paper is to develop a dynamic scheduling algorithm when a cutting tool is broken during unmanned and a rescheduling needed. The algorithm consists of four steps. The first step is generating initial schedule, the second step is determination the cutting tool failure time, the third step is determination of system status at cutting tool failure time and the fourth step is the rescheduling for unfinished jobs. The approaches to solve the problem are complete-reactive scheduling and robust-proactive scheduling. The new schedules result differences starting time and completion time of each operations from the initial schedule.

  13. New Tool Coatings for Light Metal Cutting

    Institute of Scientific and Technical Information of China (English)

    DaveDoerwald; ThomasKrug; RoelTietema; Wei-MingSim; QuanshunLuo; PapkenHovsepian

    2004-01-01

    New carbon based coatings have been developed for cutting of light metals such as aluminum. These coatings can be used either directly on the tool or as topcoating combined with another hard base coating. Cutting tests show that the coating gives good performance for materials that tend to stick to the cutting tools, such as aluminium alloys, because of the substantial reduction of appearance of the so-called built-up edge (BUE). This results in a longer life time of the tool and smoother surface finish of the cut made in the work-piece material. Especially in dry machining and deep hole drilling this coating performed very well. An overview of the properties and initial cutting results of this coating will be presented. This paper will also present results from recent industrial field tests carried out by a leading European aerospace manufacturer. Cutting forces, BUE formation and surface roughness data will be presented to explain the cutting process during dry machining.

  14. New Tool Coatings for Light Metal Cutting

    Institute of Scientific and Technical Information of China (English)

    Dave Doerwald; Thomas Krug; Roel Tietema; Wei-Ming Sim; Quanshun Luo; Papken Hovsepian

    2004-01-01

    New carbon based coatings have been developed for cutting of light metals such as aluminum. These coatings can be used either directly on the tool or as topcoating combined with another hard base coating. Cutting tests show that the coating gives good performance for materials that tend to stick to the cutting tools, such as aluminium alloys, because of the substantial reduction of appearance of the so-called built-up edge (BUE). This results in a longer life time of the tool and smoother surface finish of the cut made in the work-piece material. Especially in dry machining and deep hole drilling this coating performed very well. An overview of the properties and initial cutting results of this coating will be presented. This paper will also present results from recent industrial field tests carried out by a leading European aerospace manufacturer.Cutting forces, BUE formation and surface roughness data will be presented to explain the cutting process during dry machining.

  15. Influence of the Magnetic High-speed Steel Cutting Tool on Cutting Capability

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The high-speed steel cutting tool has advantaged i n modern cutting tool for its preferable synthetical performance, especially, in a pplication of complicated cutting tools. Therefore, the study of the high-speed steel cutting tools that occupied half of cutting tools has become an importa nt way of studying on modern cutting technology. The cutting performance of hi gh speed-steel cutting tools will be improved by magnetization treating method. Microstructure of high-speed steel will be changed as a ...

  16. High Performance Grinding and Advanced Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    High Performance Grinding and Advanced Cutting Tools discusses the fundamentals and advances in high performance grinding processes, and provides a complete overview of newly-developing areas in the field. Topics covered are grinding tool formulation and structure, grinding wheel design and conditioning and applications using high performance grinding wheels. Also included are heat treatment strategies for grinding tools, using grinding tools for high speed applications, laser-based and diamond dressing techniques, high-efficiency deep grinding, VIPER grinding, and new grinding wheels.

  17. Cutting tool materials for high speed machining

    Institute of Scientific and Technical Information of China (English)

    LIU Zhanqiang; AI Xing

    2005-01-01

    High speed machining (HSM) is one of the emerging cutting processes, which is machining at a speed significantlyhigher than the speed commonly in use on the shop floor. In the last twenty years, high speed machining has received great attentions as a technological solution for high productivity in manufacturing. This article reviews the developments of tool materials in high speed machining operations, and the properties, applications and prospective developments of tool materials in HSM are also presented.

  18. Testing Of Choiced Ceramics Cutting Tools At Irregular Interrupted Cut

    Science.gov (United States)

    Kyncl, Ladislav; Malotová, Šárka; Nováček, Pavel; Nicielnik, Henryk; Šoková, Dagmar; Hemžský, Pavel; Pitela, David; Holubjak, Jozef

    2015-12-01

    This article discusses the test of removable ceramic cutting inserts during machining irregular interrupted cut. Tests were performed on a lathe, with the preparation which simulated us the interrupted cut. By changing the number of plates mounted in a preparation it simulate us a regular or irregular interrupted cut. When with four plates it was regular interrupted cut, the remaining three variants were already irregular cut. It was examined whether it will have the irregular interrupted cutting effect on the insert and possibly how it will change life of inserts during irregular interrupted cut (variable delay between shocks).

  19. Effects of knife edge angle and speed on peak force and specific energy when cutting vegetables of diverse texture

    Directory of Open Access Journals (Sweden)

    Vishal Singh

    2016-04-01

    Full Text Available Cutting tool parameters such as edge-sharpness and speed of cut directly influence the shape of final samples and the required cutting force and specific energy for slicing or cutting operations. Cutting force and specific energy studies on different vegetables help to design the appropriate slicing or cutting devices. Peak cutting force and specific energy requirements for the transverse cutting of nine vegetables, differing in their textural characteristics of rind and flesh, were determined at cutting speeds of 20, 30, 40 mm min-1 and single-cut knife-edge angles of 15, 20 and 25° using a Universal Testing Machine. Low speed (20 mm min-1 cutting with a sharper knife-edge angle (15° required less peak force and specific energy than that of high-speed cutting (40 mm min-1 with a wider knife-edge angle (25°. The vegetables with the maximum and minimum variation in the average peak cutting force were aubergine, at 79.05 (for knife speed 20 mm min-1 and edge angle 150 to 285.1 N (40 mm min-1 and 250, and cucumber, at 11.61 (20 mm min-1 and 150 to 21.41 N (40 mm min-1 and 250, respectively. High speed (40 mm min-1, with a large knife-edge angle (25°, required the highest force and specific energy to cut the vegetables, however, low speed (20 mm min-1, with a small knife-edge angle (150, is preferred. Effects of cutting speed and knife-edge angle on peak force and specific energy responses were found significant (p<0.05. Linear or quadratic regressions gave a good fit of these variables. 

  20. Chip-ejection interference in cutting processes of modern cutting tools

    Institute of Scientific and Technical Information of China (English)

    师汉民

    1999-01-01

    Based on the “principle of minimum energy”, the basic characteristics of non-free cutting are studied; the phenomenon and the nature of chip-ejection interference commonly existing in the cutting process of modem cutting tools are explored. A "synthesis method of elementary cutting tools" is suggested for modeling the cutting process of modem complex cutting tools. The general equation governing the chip-ejection motion is deduced. Real examples of non-free cutting are analyzed and the theoretically predicted results are supported by the experimental data or facts. The sufficient and necessary conditions for eliminating chip-ejection interference and for realizing free cutting are given; the idea and the technical approach of "the principle of free cutting" are also discussed, and a feasible way for improving or optimizing the cutting performance of modem cutting tools is, therefore, found.

  1. A Forced Jet System for the Cooling of Cutting Tools.

    Science.gov (United States)

    Cutting tools , *Coolant pumps, *Machine tools, *Metals, Machine shop practice, High pressure, Force(Mechanics), Centrifugal pumps, Mist, Jet streams, Lubricants, Machining, Friction, Surface finishing, Safety

  2. Laser Cutting of Leather: Tool for Industry or Designers?

    Science.gov (United States)

    Stepanov, Alexander; Manninen, Matti; Pärnänen, Inni; Hirvimäki, Marika; Salminen, Antti

    Currently technologies which are applied for leather cutting include slitting knifes, die press techniques and manual cutting. Use of laser technology has grown significantly during recent years due to number of advantages over conventional cutting methods; flexibility, high production speed, possibility to cut complex geometries, easier cutting of customized parts, and less leftovers of leather makes laser cutting more and more economically attractive to apply for leather cutting. Laser technology provides advantages in cutting complex geometries, stable cutting quality and possibility to utilize leather material in economically best way. Constant quality is important in industrial processes and laser technology fulfills this requirement: properly chosen laser cutting parameters provides identical cuts. Additionally, laser technology is very flexible in terms of geometries: complex geometries, individual designs, prototypes and small scale products can be manufactured by laser cutting. Variety of products, which needed to be cut in small volumes, is also the application where laser cutting can be more beneficial due to possibility to change production from one product to another only by changing geometry without a need to change cutting tool. Disadvantages of laser processing include high initial investment costs and some running costs due to maintenance and required gas supply for the laser. Higher level of operator's expertise is required due to more complicated machinery in case of laser cutting. This study investigates advantages and disadvantages of laser cutting in different areas of application and provides comparison between laser cutting and mechanical cutting of leather.

  3. THE MACHINING OF HARDENED CARBON STEELS BY COATED CUTTING TOOLS

    Directory of Open Access Journals (Sweden)

    Yusuf ŞAHİN

    2001-02-01

    Full Text Available The investigation of machining AISI 1050 carbon steels hardened to the 60 HRC hardness was carried out to determine the tool life and wear behaviour of the various cutting tools under different conditions. These experiments were conducted at using coated ceramic cutting tools and carbide cutting tools. The experimental results showed that the coated ceramic tools exhibited better performance than those of the coated carbide tools when machining the hardened steels. Moreover, wear behaviour of cutting tools were investigated in a scanning electron microscope. Electron microscopic examination also indicated that flank wear, thermal cracks on the tool nose combined with the nose deformation on the tools were responsible for the wear behaviour of the ceramic tools. For the carbide tools, however, removal of coated material from the substrate tool and combined with the crater wear were effective for the machining the hardened steel.

  4. Gear cutting tools fundamentals of design and computation

    CERN Document Server

    Radzevich, Stephen P

    2010-01-01

    Presents the DG/K-based method of surface generation, a novel and practical mathematical method for designing gear cutting tools with optimal parameters. This book proposes a scientific classification for the various kinds of the gear machining meshes, discussing optimal designs of gear cutting tools.

  5. EXPERIMENTAL ESTIMATION OF TOOL WEAR AND CUTTING TEMPERATURES IN MQL USING CUTTING FLUIDS WITH CNT INCLUSION

    Directory of Open Access Journals (Sweden)

    S.NARAYANA RAO,

    2011-04-01

    Full Text Available Machining often witnesses frequent interruption caused by friction and heat. Cutting fluids are being used in machining for centuries to counter the effects of friction and temperatures. However, because of many disadvantages, MQL has emerged. MQL demands fluids with high performance. This work tries to estimate tool wear and cutting temperatures while using cutting fluids, prepared with carbon nano tube (CNT inclusion.

  6. Doctors' Decision-Making Tool Could Cut Unnecessary Antibiotic Use

    Science.gov (United States)

    ... html Doctors' Decision-Making Tool Could Cut Unnecessary Antibiotic Use A drop of about 10 percent is ... for doctors may help reduce unnecessary use of antibiotics in children with respiratory tract infections and cough, ...

  7. CUTTING TEMPERATURE OF CBN TOOLS WHEN MACHINING STEEL OF MEDIUM HARDNESS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The cutting temperature of CBN tools when machining hardened steel was investigated at different cutting regime and cutting tool geometry. An unusual phenomenon that the depth of cut influenced the temperature more significantly than the feed rate was analysed via partial differentiation. A chamfered cutting edge generally raised the cutting temperature and the significance of the temperature increase was associated with the cutting speed.

  8. Materials Comparison of Cutting Tools Functional Parts for Cutting of Electrical Engineering Sheets

    Directory of Open Access Journals (Sweden)

    Jan ZLÁMALÍK

    2012-06-01

    Full Text Available Paper concerns the comparison of functional materials parts of cutting tools used for the production of stator and rotor sheets in the electrical industry from point of view of their life. Alternatives and the properties of metal used for the production of stator and rotor components in electrical rotating machines are analysed. The main factors affecting the life of cutting tools of functional parts are analysed, one of the most important is the cutting tool functional parts material itself. Comparison of three variants of the cuttong tool funkcional parts material – 19 436 tool steel (chrome steel according to the Czech State Standard 41 9436, 19 830 high speed steel according to the Czech State Standard 41 9830 and a special powder metallurgy product – ledeburite tool steel Vanadis 10. Useful lifes of the functional components of individual cutting tools performances can be calculated from the theoretical lifes by their multiplying the coefficients of the tool design and the cutting edges shape complexity.

  9. PERFORMANCE OF COATED CUTTING TOOLS IN MACHINING HARDENED STEEL

    Directory of Open Access Journals (Sweden)

    K.Subramanyam,

    2010-10-01

    Full Text Available This paper deals with the study of the performance of coated tools in machining hardening steel under dry conditions. This paper involves of machining AISI 4340 hardened steel using coated carbide tools is studied using full factorial experiments. Many parameters influence the quality of the products in hard turning process. The objective of this study is on the effect of the cutting conditions such as cutting velocity, feed, and depth of cut on the surface finish in machining AISI 4340 hardened steel. Machining of hardened steels has become an important manufacturing process, particularly in the automotive and bearing industries.

  10. Modeling of tool path for the CNC sheet cutting machines

    Science.gov (United States)

    Petunin, Aleksandr A.

    2015-11-01

    In the paper the problem of tool path optimization for CNC (Computer Numerical Control) cutting machines is considered. The classification of the cutting techniques is offered. We also propose a new classification of toll path problems. The tasks of cost minimization and time minimization for standard cutting technique (Continuous Cutting Problem, CCP) and for one of non-standard cutting techniques (Segment Continuous Cutting Problem, SCCP) are formalized. We show that the optimization tasks can be interpreted as discrete optimization problem (generalized travel salesman problem with additional constraints, GTSP). Formalization of some constraints for these tasks is described. For the solution GTSP we offer to use mathematical model of Prof. Chentsov based on concept of a megalopolis and dynamic programming.

  11. Optimum angle-cut of collimator for dense objects in high-energy proton radiography

    Science.gov (United States)

    Xu, Hai-Bo; Zheng, Na

    2016-02-01

    The use of minus identity lenses with an angle-cut collimator can achieve high contrast images in high-energy proton radiography. This article presents the principles of choosing the angle-cut aperture of the collimator for different energies and objects. Numerical simulation using the Monte Carlo code Geant4 has been implemented to investigate the entire radiography for the French test object. The optimum angle-cut apertures of the collimators are also obtained for different energies. Supported by NSAF (11176001) and Science and Technology Developing Foundation of China Academy of Engineering Physics (2012A0202006)

  12. ASSESSMENT OF INFLUENCE OF CUTTING TOOL BREAKAGE ON DRIVE LIFE TIME OF CUTTING UNIT OF HEADING MACHINE

    Directory of Open Access Journals (Sweden)

    О.Е. SHABAEV

    2014-01-01

    Full Text Available In this work a necessity to develop means of technical diagnostics of cutter's performance without stopping heading machine was grounded. There was theoretically demonstrated the possibility of essential decrease in life time of transmission elements of cutting unit during prolonged work of heading machine with broken cutting tool. It was defined that influence of cutting tool breakage on life time of transmission elements depends on cutting tool position on cutting head according to the assembly drawing.

  13. Design principles of metal-cutting machine tools

    CERN Document Server

    Koenigsberger, F

    1964-01-01

    Design Principles of Metal-Cutting Machine Tools discusses the fundamentals aspects of machine tool design. The book covers the design consideration of metal-cutting machine, such as static and dynamic stiffness, operational speeds, gearboxes, manual, and automatic control. The text first details the data calculation and the general requirements of the machine tool. Next, the book discusses the design principles, which include stiffness and rigidity of the separate constructional elements and their combined behavior under load, as well as electrical, mechanical, and hydraulic drives for the op

  14. Effect of milling strategy and tool geometry on machining cost when cutting titanium alloys

    Directory of Open Access Journals (Sweden)

    Conradie, Pieter

    2015-11-01

    Full Text Available The growing demands on aerospace manufacturers to cut more difficult-to-machine materials at increasing material removal rates require that manufacturers enhance their machining capability. This requires a better understanding of the effects of milling strategies and tool geometries on cutting performance. Ti6Al4V is the most widely-used titanium alloy in the aerospace industry, due to its unique combination of properties. These properties also make the alloy very challenging to machine. Complex aerospace geometries necessitate large material removal, and are therefore generally associated with high manufacturing costs. To investigate the effect of milling strategy and tool geometry on cutting performance, the new constant engagement milling strategy was firstly compared with a conventional approach. Thereafter, a component was milled with different cutting tool geometries. Cost savings of more than 40% were realised by using a constant engagement angle milling strategy. A reduction of 38% in machining time was achieved by using tools with a land on the rake side of the cutting edge. These incremental improvements made it possible to enhance the overall performance of the cutting process.

  15. The Investigation of Coated Tools Tribological Characteristics Influence on the Cutting Process and the Quality Parameters of the Parts Surface Layer

    Directory of Open Access Journals (Sweden)

    V.F. Bezjazychnyj

    2013-09-01

    Full Text Available The influence of cutting tools nanostructured coatings on the parameters of machined parts surface layer has been researched. The interaction between friction characteristics of coated tools and shear plane angle during machining has been determined. The results of different materials cutting with coated carbide-tipped tools have been shown.

  16. IN TURNING ON-LINE DETERMINATION OF CUTTING TOOL WEAR RATE BY MEASURING CUTTING TEMPERATURE

    Directory of Open Access Journals (Sweden)

    Murat KIYAK

    1999-01-01

    Full Text Available The improvements of adaptive control and computer aided manufacturing need to be sensitively determined tool wear rate during machining. Reserarchers working on this topic have developed direct and indirect methods. To determine tool wear rate during machining by measuring of cutting temperature is an indirect method. In this study, two measuring techniques, work-tool thermocouple technique and a method that is realized by using a thermocouple assambed by embeding in the tool have been used. Both of them have been tested by obtaining tool wear using hard metal insert and turning mild steel and compared one with the other using different point of views.

  17. 3D cutting tool-wear monitoring in the process

    Energy Technology Data Exchange (ETDEWEB)

    Cerce, Luka; Pusavec, Franci; Kopac Janez [University of Ljubljana, Askerceva (Slovenia)

    2015-09-15

    The tool-wear of cutting tools has a very strong impact on the product quality as well as efficiency of the machining processes. Therefore, it in-the process characterization is crucial. This paper presents an innovative and reliable direct measuring procedure for measuring spatial cutting tool-wear with usage of laser profile sensor. The technique provides possibility for determination of 3D wear profiles, as advantage to currently used 2D techniques. The influence of the orientation of measurement head on the accuracy and the amount of captured reliable data was examined and the optimal setup of the measuring system was defined. Further, a special clamping system was designed to mount the measurement device on the machine tool turret. To test the measurement system, tool-life experiment was performed. Additionally, a new tool-life criterion was developed, including spatial characteristics of the tool-wear. The results showed that novel tool-wear and tool-life diagnostic represent objective and robust estimator of the machining process. Additionally, such automation of tool-wear diagnostics on machine tool provides higher productivity and quality of the machining process.

  18. Thermal properties of cutting tool coatings at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Martan, J., E-mail: jmartan@ntc.zcu.cz [Department of Physics, University of West Bohemia, Univerzitni 22, 30614 Plzen (Czech Republic); New Technologies Research Centre, University of West Bohemia, Univerzitni 8, 30614 Plzen (Czech Republic); Benes, P. [Department of Material Science and Technology, University of West Bohemia, Univerzitni 22, 30614 Plzen (Czech Republic)

    2012-07-10

    Highlights: Black-Right-Pointing-Pointer Thermal properties of coatings for cutting tools measured in range from 20 to 500 Degree-Sign C. Black-Right-Pointing-Pointer Coatings were based on nitrides of Ti, Al, Cr and Si. Black-Right-Pointing-Pointer Thermal conductivity varies from 2.8 to 25 W m{sup -1} K{sup -1} and grows with temperature. Black-Right-Pointing-Pointer Lowest thermal conductivity was observed for CrAlSiN coating. - Abstract: Cutting tools with coated inserts are widely used in high-speed cutting and in the cutting of hard-to-machine materials. The thermal properties of the coatings (or thin films) have a major impact on the cutting process and tool life. As there is a lack of data for high temperatures, we are presenting an experimental study of thermal conductivity and volumetric specific heat of different coatings in the range from room temperature to 500 Degree-Sign C. The coatings under investigation were TiN, TiAlCN, TiAlN, AlTiN, TiAlSiN and CrAlSiN. The thermal properties were measured using the pulsed photothermal radiometry method. The thermal conductivity of the coatings under investigation varied from 2.8 to 25 W m{sup -1} K{sup -1} and increased with the rise in temperature. The lowest thermal conductivity was observed for the CrAlSiN coating.

  19. Cutting Tools. Youth Training Scheme. Core Exemplar Work Based Project.

    Science.gov (United States)

    Further Education Staff Coll., Blagdon (England).

    This trainer's guide is intended to assist supervisors of work-based career training projects in teaching students to compare the performance of two different types of engineering cutting tools and to determine their cost-effectiveness and efficiency. The guide is one in a series of core curriculum modules that is intended for use in combination…

  20. Selection and Implementation of a Replacement Cutting Tool Selection Application

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Gordon

    2008-10-06

    A new commercial cutting tool software package replaced an internally created legacy system. This report describes the issues that surfaced during the migration and installation of the commercial package and the solutions employed. The primary issues discussed are restructuring the data between two drastically different database schemas and the creation of individual component graphics.

  1. IMPACT OF DEPTH OF CUT ON CHIP FORMATION IN AZ91HP MAGNESIUM ALLOY MILLING WITH TOOLS OF VARYING CUTTING EDGE GEOMETRY

    Directory of Open Access Journals (Sweden)

    Olga Gziut

    2015-05-01

    Full Text Available Safety of Mg milling processes can be expressed by means of the form and the number of fractions of chips formed during milling. This paper presents the state of the art of magnesium alloys milling technology in the aspect of chip fragmentation. Furthermore, the impact of the depth of cut ap and the rake angle γ on the number of chip fractions was analysed in the study. These were conducted on AZ91HP magnesium cast alloy and milling was performed with carbide tools of varying rake angle values (γ = 5º and γ = 30º. It was observed that less intense chip fragmentation occurs with decreasing depth of cut ap. The number of chip fractions was lower at the tool rake angle of γ = 30º. The test results were formulated as technological recommendations according to the number of generated chip fractions.

  2. Robot based deposition of WC-Co HVOF coatings on HSS cutting tools as a substitution for solid cemented carbide cutting tools

    Science.gov (United States)

    Tillmann, W.; Schaak, C.; Biermann, D.; Aßmuth, R.; Goeke, S.

    2017-03-01

    Cemented carbide (hard metal) cutting tools are the first choice to machine hard materials or to conduct high performance cutting processes. Main advantages of cemented carbide cutting tools are their high wear resistance (hardness) and good high temperature strength. In contrast, cemented carbide cutting tools are characterized by a low toughness and generate higher production costs, especially due to limited resources. Usually, cemented carbide cutting tools are produced by means of powder metallurgical processes. Compared to conventional manufacturing routes, these processes are more expensive and only a limited number of geometries can be realized. Furthermore, post-processing and preparing the cutting edges in order to achieve high performance tools is often required. In the present paper, an alternative method to substitute solid cemented carbide cutting tools is presented. Cutting tools made of conventional high speed steels (HSS) were coated with thick WC-Co (88/12) layers by means of thermal spraying (HVOF). The challenge is to obtain a dense, homogenous, and near-net-shape coating on the flanks and the cutting edge. For this purpose, different coating strategies were realized using an industrial robot. The coating properties were subsequently investigated. After this initial step, the surfaces of the cutting tools were ground and selected cutting edges were prepared by means of wet abrasive jet machining to achieve a smooth and round micro shape. Machining tests were conducted with these coated, ground and prepared cutting tools. The occurring wear phenomena were analyzed and compared to conventional HSS cutting tools. Overall, the results of the experiments proved that the coating withstands mechanical stresses during machining. In the conducted experiments, the coated cutting tools showed less wear than conventional HSS cutting tools. With respect to the initial wear resistance, additional benefits can be obtained by preparing the cutting edge by means

  3. Setting of angles on machine tools speeded by magnetic protractor

    Science.gov (United States)

    Vale, L. B.

    1964-01-01

    An adjustable protractor facilitates transference of angles to remote machine tools. It has a magnetic base incorporating a beam which can be adjusted until its shadow coincides with an image on the screen of a projector.

  4. Effect of tool geometry and cutting parameters on delamination and thrust forces in drilling CFRP/Al-Li

    Science.gov (United States)

    El Bouami, Souhail; Habak, Malek; Franz, Gérald; Velasco, Raphaël; Vantomme, Pascal

    2016-10-01

    Composite materials are increasingly used for structural parts in the aeronautic industries. Carbon Fiber-Reinforced Plastics (CFRP) are often used in combination with metallic materials, mostly aluminium alloys. This raises new problems in aircraft assembly. Delamination is one of these problems. In this study, CFRP/Al-Li stacks is used as experimental material for investigation effect of interaction of cutting parameters (cutting speed and feed rate) and tool geometry on delamination and thrust forces in drilling operation. A plan of experiments, based on Taguchi design method, was employed to investigate the influence of tool geometry and in particular the point angle and cutting parameters on delamination and axial effort. The experimental results demonstrate that the feed rate is the major parameter and the importance of tool point angle in delamination and thrust forces in the stacks were shown.

  5. EXPERIMENTAL INVESTIGATION OF THE TOOL-CHIP INTERFACE TMPERATURES ON UNCOATED CEMENTIDE CARBIDE CUTTING TOOLS

    Directory of Open Access Journals (Sweden)

    Kasım HABALI

    2005-01-01

    Full Text Available It is known that the temperature as the result of the heat developed during machining at the tool-chip interface has an influence on the tool life and workpiece surface guality and the methods for measuring this temperature are constantly under investigation. In this study, the measurement of tool-chip interface temperature using toolworkpiece termocouple method was investigated. The test were carried out on a AISI 1040 steel and the toolchip interface temperature variation was examined depending on the cutting speed and feed rate. The obtained groups show that cutting speed has more influence on the temperature than feedrate has.

  6. MECHANISMS OF CUTTING BLADE WEAR AND THEIR INFLUENCE ON CUTTING ABILITY OF THE TOOL DURING MACHINING OF SPECIAL ALLOYS

    Directory of Open Access Journals (Sweden)

    Tomáš Zlámal

    2016-09-01

    Full Text Available With increased requirements for quality and shelf life of machined parts there is also a higher share of the use of material with specific properties that are identified by the term “superalloys”. These materials differ from common steels by mechanical and physical properties that cause their worse machinability. During machining of “superalloys” worse machinability has negative influence primarily on the amount of cutting edge wear, which shortens durability of the cutting tool. The goal of experimental activity shown in this contribution is to determine individual mechanisms of the cutting edge wear and their effects on the cutting ability during high speed machining of nickel superalloy. A specific exchangeable cutting insert made from cubic boric nitride was used for machining of the 625 material according to ASM 5666F. The criteria to evaluate cutting ability and durability of the cutting tool became selected parameters of surface integrity and quality of the machined surface.

  7. Using internally cooled cutting tools in the machining of difficult-to-cut materials based on Waspaloy

    Directory of Open Access Journals (Sweden)

    Yahya Isik

    2016-05-01

    Full Text Available Nickel-based superalloys such as Waspaloy are used for engine components and in the nuclear industry, where considerable strength and corrosion resistance at high operating temperatures are called for. These characteristics of such alloys cause increases in cutting temperature and resultant tool damage, even at low cutting speeds and low feed rates. Thus, they are classified as difficult-to-cut materials. This article presents a cooling method to be used in metal cutting based on a tool holder with a closed internal cooling system with cooling fluid circulating inside. Hence, a green cooling method that does not harm the environment and is efficient in removing heat from the cutting zone was developed. A series of cutting experiments were conducted to investigate the practicality and effectiveness of the internally cooled tool model. The developed system achieved up to 13% better surface quality than with dry machining, and tool life was extended by 12%. The results clearly showed that with the reduced cutting temperature of the internal cooling, it was possible to control the temperature and thus prevent reaching the critical cutting temperature during the turning process, which is vitally important in extending tool life during the processing of Waspaloy.

  8. Effects of tool flank wear on orthogonal cutting process of aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    YUAN Ping; KE Ying-lin

    2006-01-01

    The tool flank begins to wear out as soon as cutting process proceeds. Cutting parameters such as cutting forces and cutting temperature will vary with increasing degree of flank wear. In order to reveal the relationship between them, the theoretical situations of cutting process were analyzed considering the tool flank wear effect. The variation rules of cutting force, residual stress and temperature distributions along with the tool flank wear were analyzed comparing with the sharp tool tip. Through FEM simulation method, affections of the tool flank wear value VB on cutting forces, residual stress and temperature distributions were analyzed. A special result in this simulation is that the thrust force is more sensitive to tool flank wear, which can be used as a recognition method of tool condition monitoring. The FEM simulation analysis result agrees well with the experimental measuring data in public literatures and some experiments made also by the authors.

  9. Prediction and Control of Cutting Tool Vibration in Cnc Lathe with Anova and Ann

    Directory of Open Access Journals (Sweden)

    S. S. Abuthakeer

    2011-06-01

    Full Text Available Machining is a complex process in which many variables can deleterious the desired results. Among them, cutting tool vibration is the most critical phenomenon which influences dimensional precision of the components machined, functional behavior of the machine tools and life of the cutting tool. In a machining operation, the cutting tool vibrations are mainly influenced by cutting parameters like cutting speed, depth of cut and tool feed rate. In this work, the cutting tool vibrations are controlled using a damping pad made of Neoprene. Experiments were conducted in a CNC lathe where the tool holder is supported with and without damping pad. The cutting tool vibration signals were collected through a data acquisition system supported by LabVIEW software. To increase the buoyancy and reliability of the experiments, a full factorial experimental design was used. Experimental data collected were tested with analysis of variance (ANOVA to understand the influences of the cutting parameters. Empirical models have been developed using analysis of variance (ANOVA. Experimental studies and data analysis have been performed to validate the proposed damping system. Multilayer perceptron neural network model has been constructed with feed forward back-propagation algorithm using the acquired data. On the completion of the experimental test ANN is used to validate the results obtained and also to predict the behavior of the system under any cutting condition within the operating range. The onsite tests show that the proposed system reduces the vibration of cutting tool to a greater extend.

  10. Large cutting tools in the Danjiangkou Reservoir Region, central China.

    Science.gov (United States)

    Kuman, Kathleen; Li, Chaorong; Li, Hao

    2014-11-01

    Handaxe-bearing sites in China are currently known to occur in a number of alluvial basins, the best known being Dingcun, Bose and Luonan. Bose in the south and Luonan in central China on the northern margin of the Qinling Mountains are most familiar to English-speaking researchers. Here we document the Danjiangkou Reservoir Region (DRR) as another major area for large cutting tools (LCTs), located in central China on the southeastern edge of the Qinling Mountains. Large cutting tools are preserved in three terraces of the Han and Dan Rivers in Hubei and Henan Provinces, with dates from ca. 0.8 Ma (millions of years ago) (Terrace 4) to the first half of the Middle Pleistocene (Terrace 3), and possibly to the Late Pleistocene (Terrace 2). This paper reports on LCTs discovered in Terraces 3 and 2, with a majority from the older terrace (and one specimen from Terrace 4). Regional environments during the Middle Pleistocene were relatively warm, humid and stable. Despite the poor quality of raw materials (predominantly quartz phyllite and trachyte for the LCTs), good examples of both handaxes and cleavers are present, plus two types of picks. The LCT technology is compared and contrasted with other Asian industries and with the Acheulean. Overall the DRR LCTs show both technological and morphological similarities with Acheulean LCTs, with some differences that are mainly attributed to raw material properties, subsistence ecology, and 'cultural drift.' The DRR LCTs expand the range of morphological variability of the East Asian material and highlight the need for greater reliance on technological analysis and raw material evaluation for best comparison of Chinese assemblages with the Acheulean tradition.

  11. STRESS ANALYSIS IN CUTTING TOOLS COATED TiN AND EFFECT OF THE FRICTION COEFFICIENT IN TOOL-CHIP INTERFACE

    Directory of Open Access Journals (Sweden)

    Kubilay ASLANTAŞ

    2003-02-01

    Full Text Available The coated tools are regularly used in today's metal cutting industry. Because, it is well known that thin and hard coatings can reduce tool wear, improve tool life and productivity. Such coatings have significantly contributed to the improvements cutting economies and cutting tool performance through lower tool wear and reduced cutting forces. TiN coatings have especially high strength and low friction coefficients. During the cutting process, low friction coefficient reduce damage in cutting tool. In addition, maximum stress values between coating and substrate also decrease as the friction coefficient decreases. In the present study, stress analysis is carried out for HSS (High Speed Steel cutting tool coated with TiN. The effect of the friction coefficient between tool and chip on the stresses developed at the cutting tool surface and interface of coating and HSS is investigated. Damage zones during cutting process was also attempted to determine. Finite elements method is used for the solution of the problem and FRANC2D finite element program is selected for numerical solutions.

  12. Defining the effect of sweep tillage tool cutting edge geometry on tillage forces using 3D discrete element modelling

    Directory of Open Access Journals (Sweden)

    Mustafa Ucgul

    2015-09-01

    Full Text Available The energy required for tillage processes accounts for a significant proportion of total energy used in crop production. In many tillage processes decreasing the draft and upward vertical forces is often desired for reduced fuel use and improved penetration, respectively. Recent studies have proved that the discrete element modelling (DEM can effectively be used to model the soil–tool interaction. In his study, Fielke (1994 [1] examined the effect of the various tool cutting edge geometries, namely; cutting edge height, length of underside rub, angle of underside clearance, on draft and vertical forces. In this paper the experimental parameters of Fielke (1994 [1] were simulated using 3D discrete element modelling techniques. In the simulations a hysteretic spring contact model integrated with a linear cohesion model that considers the plastic deformation behaviour of the soil hence provides better vertical force prediction was employed. DEM parameters were determined by comparing the experimental and simulation results of angle of repose and penetration tests. The results of the study showed that the simulation results of the soil-various tool cutting edge geometries agreed well with the experimental results of Fielke (1994 [1]. The modelling was then used to simulate a further range of cutting edge geometries to better define the effect of sweep tool cutting edge geometry parameters on tillage forces. The extra simulations were able to show that by using a sharper cutting edge with zero vertical cutting edge height the draft and upward vertical force were further reduced indicating there is benefit from having a really sharp cutting edge. The extra simulations also confirmed that the interpolated trends for angle of underside clearance as suggested by Fielke (1994 [1] where correct with a linear reduction in draft and upward vertical force for angle of underside clearance between the ranges of −25 and −5°, and between −5 and 0°. The

  13. THE IMPACT OF AREA AND SHAPE OF TOOL CUT ON CHAIN SAW PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Tomislav Korman

    2016-10-01

    Full Text Available The cutting design of the chain saw is defined by the number, the arrangement and the geometry of the cutting tools. When using chisel cutting tools, the cross sectional area of the cut and the shape of the groove are determined by the width and depth of the cut. The laboratory tests analyzed the impact of the cross sectional area and the shape of the cut on the forces and the specific energy. The testing was performed on a linear cutting machine with tool holders and cutting tools in real-scale size. According to the processed statistical data, increasing the cross sectional area of the cut reduces the specific energy, whereby the width of the cut has a considerably larger impact. The tests have shown that besides the cross sectional area of cut, the shape of the surface also affects the forces and specific energy. Through increasing the width to depth ratio upon a constant cross sectional area of the cut, the value of the specific energy and the cutting forces are reduced. Above the width to depth ratio of 2.5 the cutting forces and the specific energy appear to be constant.

  14. Development of remote pipe cutting tool for divertor cassettes in JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Takao, E-mail: hayashi.takao@jaea.go.jp; Sakurai, Shinji; Shibanuma, Kiyoshi; Sakasai, Akira

    2014-10-15

    Remote pipe cutting tool accessing from inside pipe has been newly developed for JT-60SA. The tool head equips a disk-shaped cutter blade and four rollers which are subjected to the reaction force. The tool pushes out the cutter blade by decreasing the distance between two cams. The tool cuts a cooling pipe by both pushing out the cutter blade and rotating the tool head itself. The roller holder is not pushed out anymore after touching the inner wall of the pipe. In other words, only cutter blade is pushed out after bringing the tool axis into the pipe axis. Outer diameter of the cutting tool head is 44 mm. The cutting tool is able to push out the cutter blade up to 32.5 mm in radius, i.e. 65 mm in diameter, which is enough to cut the pipe having an outer diameter of 59.8 mm. The thickness and material of the cooling pipe are 2.8 mm and SUS316L, respectively. The length of the cutting tool head is about 1 m. The tool is able to cut a pipe locates about 480 mm in depth from the mounting surface on the divertor cassette. The pipe cutting system equips two cutting heads and they are able to cut two pipes at the same time in order to remove the inner target plate. Reproducibility of the cross-sectional shape of the cut pipe is required for re-welding. The degree of reproducibility is inside 0.1 mm except for burr at outside of the pipe, which is enough to re-weld the cut pipe. Some swarf is generated during cutting the double-layered pipe assuming a plug located on the top of the pipe. The swarf is deposited on the bottom of the plug and collected by pulling out the plug in the actual equipment.

  15. Residual Stress Distribution in PVD-Coated Carbide Cutting Tools-Origin of Cohesive Damage

    Directory of Open Access Journals (Sweden)

    B. Breidenstein

    2012-09-01

    Full Text Available PVD-coatings for cutting tools mean a substantial progress for tool lifetime and cutting conditions. Such tools, however, hold the risk of cost intensive sudden process breaks as a result of cohesive damage. This damage mechanism does not consist of a coating adhesion problem, but it can be traced back to the residual stress distribution in coating and substrate. This paper shows how residual stresses develop during the process chain for the manufacturing of PVDcoated carbide cutting tools. By means of different methods for residual stress determination it is shown that the distribution of residual stresses within the tool finally is responsible for the risk of cohesive tool damage.

  16. EFFECT OF TOOL NOSE RADIUS AND CUTTING PARAMETERS ON TOOL LIFE, SURFACE ROUGHNESS IN TURNING OF GREY CAST IRON

    Directory of Open Access Journals (Sweden)

    Prasanna P Kulkarni

    2014-03-01

    Full Text Available In metal cutting industries peoples are trying to reduce the cost of the production by proper selection of inserts, tool geometry, and cutting conditions to obtain economical benefits. Tool nose radius has significant influence on tool life and surface finish. The aim of this research is to investigate the effect of tool nose radius under different cutting conditions and their effect on tool life, surface roughness. The measurement has been carried out by rough boring operation using grey cast iron cylinder liners at three cutting speed (Vc and feed rate (f. Depth of cut (doc is kept constant at 2.5mm.Cutting tool used in this work is multilayer coated tool of nose radius 0.8mm and 1.2mm nose radius. Tool coated with titanium nitride (TiN + titanium carbo nitride (TiCN +Aluminium oxide (Al2O3 coating. The insert is designated with SNMG 120408. Cutting conditions used is speed (Vc 100m/min, 125m/min and 150m/min. Feed rate (f 0.20mm/rev,0.23mm/rev,0.27mm/rev.Finally results of the present work determine the appropriate parameter for increasing the tool life and surface finish for two different nose radius tools.

  17. Wear Characteristics of Multilayer-Coated Cutting Tools in Milling Wood and Wood-Based Composites

    Directory of Open Access Journals (Sweden)

    F. Fahrussiam

    2016-03-01

    Full Text Available This article presents the characteristic of wear on the clearance face of newly multilayer-coated K10 cutting tools when cutting mersawa wood, fiberboard, particleboard, and glass reinforced concrete (GRC. The K10 cutting tools were coated with monolayer titanium aluminum nitride (TiAlN, multilayer TiAlN/titanium silicon nitride (TiSiN, and TiAlN/titanium boron oxide nitride (TiBON. Cutting tests were performed on computer numeric control router at a high cutting speed of 17 m/s and a feed rate of 0.2 mm/rev to investigate the wear characteristics on the clearance face of these coated tools. Experimental results show that the coated tools experienced a smaller amount of clearance wear than the uncoated tool in cutting the mersawa wood, fiberboard, particleboard, and GRC. The GRC compared to the other work materials caused higher amount of clearance wear for both the uncoated and coated cutting tools. High content of silica and density were the reason for this phenomenon. The best coating among other coated cutting tools in this study was multilayer TiAlN/TiBON. The high hardness, low coefficient of friction, high resistance to oxidation, and high resistance to delamination wear of the multilayer-coated TiAlN/TiBON tool indicate a very promising applicability of this coating for high-speed cutting of abrasive woods and wood-based materials.

  18. High power laser downhole cutting tools and systems

    Energy Technology Data Exchange (ETDEWEB)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-01-20

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  19. EVALUATION OF THE ROCKWELL ’C’ 70 HIGH SPEED STEEL CUTTING TOOLS.

    Science.gov (United States)

    TOOL STEEL, CUTTING TOOLS , HARDNESS, CHROMIUM ALLOYS, MOLYBDENUM ALLOYS, VANADIUM ALLOYS, HOT WORKING, PERFORMANCE(ENGINEERING), MACHINING, LIFE EXPECTANCY(SERVICE LIFE), WEAR RESISTANCE, HEAT RESISTANT ALLOYS, COBALT ALLOYS.

  20. Effect of laser incidence angle on cut quality of 4 mm thick stainless steel sheet using fiber laser

    Science.gov (United States)

    Mullick, Suvradip; Agrawal, Arpit Kumar; Nath, Ashish Kumar

    2016-07-01

    Fiber laser has potential to outperform the more traditionally used CO2 lasers in sheet metal cutting applications due to its higher efficiency, better beam quality, reliability and ease of beam delivery through optical fiber. It has been however, reported that the higher focusability and shorter wavelength are advantageous for cutting thin metal sheets up to about 2 mm only. Better focasability results in narrower kerf-width, which leads to an earlier flow separation in the flow of assist gas within the kerf, resulting in uncontrolled material removal and poor cut quality. However, the advarse effect of tight focusability can be taken care by shifting the focal point position towards the bottom surface of work-piece, which results in a wider kerf size. This results in a more stable flow within the kerf for a longer depth, which improves the cut quality. It has also been reported that fiber laser has an unfavourable angle of incidence during cutting of thick sections, resulting in poor absorption at the metal surface. Therefore, the effect of laser incidence angle, along with other process parameters, viz. cutting speed and assist gas pressure on the cut quality of 4 mm thick steel sheet has been investigated. The change in laser incidence angle has been incorporated by inclining the beam towards and away from the cut front, and the quality factors are taken as the ratio of kerf width and the striation depth. Besides the absorption of laser radiation, beam inclination is also expected to influence the gas flow characteristics inside the kerf, shear force phenomena on the molten pool, laser beam coupling and laser power distribution at the inclined cut surface. Design of experiment has been used by implementing response surface methodology (RSM) to study the parametric dependence of cut quality, as well as to find out the optimum cut quality. An improvement in quality has been observed for both the inclination due to the combined effect of multiple phenomena.

  1. Communication research between working capacity of hard- alloy cutting tools and fractal dimension of their wear

    Science.gov (United States)

    Arefiev, K.; Nesterenko, V.; Daneykina, N.

    2016-06-01

    The results of communication research between the wear resistance of the K applicability hard-alloy cutting tools and the fractal dimension of the wear surface, which is formed on a back side of the cutting edge when processing the materials showing high adhesive activity are presented in the paper. It has been established that the wear resistance of tested cutting tools samples increases according to a fractal dimension increase of their wear surface.

  2. Development of Software for Analyzing Breakage Cutting ToolsBased on Image Processing

    Institute of Scientific and Technical Information of China (English)

    赵彦玲; 刘献礼; 王鹏; 王波; 王红运

    2004-01-01

    As the present day digital microsystems do not provide specialized microscopes that can detect cutting-tool, analysis software has been developed using VC++. A module for verge test and image segmentation is designed specifically for cutting-tools. Known calibration relations and given postulates are used in scale measurements. Practical operations show that the software can perform accurate detection.

  3. Reliable tool life measurements in turning - an application to cutting fluid efficiency evaluation

    DEFF Research Database (Denmark)

    Axinte, Dragos A.; Belluco, Walter; De Chiffre, Leonardo

    2001-01-01

    ) provides efficiency evaluation. Six cutting oils, five of which formulated from vegetable basestock, were evaluated in turning. Experiments were run in a range of cutting parameters. according to a 2, 3-1 factorial design, machining AISI 316L stainless steel with coated carbide tools. Tool life...

  4. Effect of cutting speed and feed in turning hardened stainless steel using coated carbide cutting tool under minimum quantity lubrication using castor oil

    Directory of Open Access Journals (Sweden)

    Mohamed Handawi Saad Elmunafi

    2015-08-01

    Full Text Available Minimum quantity lubrication is a technique to have the advantages that cutting fluids bring yet keeping their use at minimum. For the cutting fluids, inedible vegetable oils are potential for minimum quantity lubrication machining. Castor oil was selected in this study as the cutting fluid for turning of hardened stainless steel (hardness of 47–48 HRC. The hard turning was with minimum quantity lubrication (50 mL/h flow rate and 5 bar air pressure at various cutting speeds (100, 135, and 170 m/min and feeds (0.16, 0.20, and 0.24 mm/rev. The machining responses were tool life, surface roughness, and cutting forces. Design of experiments was applied to quantify the effects of cutting parameters to the machining responses. Empirical models for tool life, surface roughness, and cutting forces were developed within the range of cutting parameters selected. All machining responses are significantly influenced by the cutting speed and feed. Tool life is inversely proportional to cutting speed and feed. Surface roughness is inversely proportional to cutting speed yet is proportional to feed. Cutting forces are more influenced by feed than by cutting speed. A combination of low cutting speed and feed was the optimum cutting parameters to achieve long tool life, low surface roughness, and low cutting forces.

  5. Decrease of FIB-induced lateral damage for diamond tool used in nano cutting

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Xu, Zongwei, E-mail: zongweixu@163.com [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Fang, Fengzhou, E-mail: fzfang@gmail.com [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Liu, Bing; Xiao, Yinjing; Chen, Jinping [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Wang, Xibin [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Liu, Hongzhong [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China)

    2014-07-01

    Highlights: • We mainly aim to characterize and decrease the FIB-induced damage on diamond tool. • Raman and XPS methods were used to characterize the nanoscale FIB-induced damage. • Lower energy FIB can effectively lessen the FIB-induced damage on diamond tool. • The diamond tools’ performance was greatly improved after FIB process optimization. • 6 nm chip thickness of copper was achieved by diamond tool with 22 nm edge radius. - Abstract: Diamond cutting tools with nanometric edge radius used in ultra-precision machining can be fabricated by focused ion beam (FIB) technology. However, due to the nanoscale effects, the diamond tools performance and the cutting edge lifetime in nano cutting would be degraded because of the FIB-induced nanoscale lateral damage. In this study, the methods of how to effectively characterize and decrease the FIB-induced lateral damage for diamond tool are intensively studied. Based on the performance optimization diamond machining tools, the controllable chip thickness of less than 10 nm was achieved on a single-crystal copper in nano cutting. In addition, the ratio of minimum thickness of chip (MTC) to tool edge radius of around 0.3–0.4 in nano cutting is achieved. Methods for decreasing the FIB-induced damage on diamond tools and adding coolant during the nano cutting are very beneficial in improving the research of nano cutting and MTC. The nano cutting experiments based on the sharp and high performance of diamond tools would validate the nano cutting mechanisms that many molecular dynamic simulation studies have put forward and provide new findings for nano cutting.

  6. Forces in Hard Turning of 51CrV4 with Wiper Cutting Tool

    Institute of Scientific and Technical Information of China (English)

    HE Xinfeng; WU Su; Hubert Kratz

    2006-01-01

    For precision machining, the hard turning process is becoming an important alternative to some of the existing grinding processes. This paper presents an analytical model for predicting cutting forces in hard turning of 51CrV4 with hardness of 68 HRC. The cutting tool used is made from cubic boron nitride (CBN) with a wiper cutting edge. Formulas for differential chip loads are derived for three different situations, depending on the radial depth of cut. The cutting forces are determined by integrating the differential cutting forces over the tool-workpiece engagement domain. For validation, cutting forces predicted by the model were compared with experimental measurements, and most of the results agree quite well.

  7. SOFTWARE TOOL FOR LASER CUTTING PROCESS CONTROL – SOLVING REAL INDUSTRIAL CASE STUDIES

    Directory of Open Access Journals (Sweden)

    Miloš Madić

    2016-08-01

    Full Text Available Laser cutting is one of the leading non-conventional machining technologies with a wide spectrum of application in modern industry. It order to exploit a number of advantages that this technology offers for contour cutting of materials, it is necessary to carefully select laser cutting conditions for each given workpiece material, thickness and desired cut qualities. In other words, there is a need for process control of laser cutting. After a comprehensive analysis of the main laser cutting parameters and process performance characteristics, the application of the developed software tool “BRUTOMIZER” for off-line control of CO2 laser cutting process of three different workpiece materials (mild steel, stainless steel and aluminum is illustrated. Advantages and abilities of the developed software tool are also illustrated.

  8. Producing Fe-W-Co-Cr-C Alloy Cutting Tool Material Through Powder Metallurgy Route

    Science.gov (United States)

    Datta Banik, Bibhas; Dutta, Debasish; Ray, Siddhartha

    2016-06-01

    High speed steel tools can withstand high impact forces as they are tough in nature. But they cannot retain their hardness at elevated temperature i.e. their hot hardness is low. Therefore permissible cutting speed is low and tools wear out easily. Use of lubricants is essential for HSS cutting tools. On the other hand cemented carbide tools can withstand greater compressive force, but due to lower toughness the tool can break easily. Moreover the cost of the tool is comparatively high. To achieve a better machining economy, Fe-W-Co-Cr-C alloys are being used nowadays. Their toughness is as good as HSS tools and hardness is very near to carbide tools. Even, at moderate cutting speeds they can be safely used in old machines having vibration. Moreover it is much cheaper than carbide tools. This paper highlights the Manufacturing Technology of the alloy and studies the comparative tribological properties of the alloy and tungsten mono carbide.

  9. Development of Cutting Tool Through Superplastic Boronizing of Duplex Stainless Steel

    Science.gov (United States)

    Jauhari, Iswadi; Harun, Sunita; Jamlus, Siti Aida; Sabri, Mohd Faizul Mohd

    2017-01-01

    In this study, a cutting tool is developed from duplex stainless steel (DSS) using the superplastic boronizing technique. The feasibility of the development process is studied, and the cutting performances of the cutting tool are evaluated and compared with commercially available carbide and high-speed steel (HSS) tools. The superplastically boronized (SPB) cutting tool yielded a dense boronized layer of 50.5 µm with a surface hardness of 3956 HV. A coefficient of friction value of 0.62 is obtained, which is lower than 1.02 and 0.8 of the carbide and HSS tools. When tested on an aluminum 6061 surface under dry condition, the SPB cutting tool is also able to produce turning finishing below 0.4 µm, beyond the travel distance of 3000 m, which is comparable to the carbide tool, but produces much better results than HSS tool. Through superplastic boronizing of DSS, it is possible to produce a high-quality metal-based cutting tool that is comparable to the conventional carbide tool.

  10. Development of Cutting Tool Through Superplastic Boronizing of Duplex Stainless Steel

    Science.gov (United States)

    Jauhari, Iswadi; Harun, Sunita; Jamlus, Siti Aida; Sabri, Mohd Faizul Mohd

    2017-03-01

    In this study, a cutting tool is developed from duplex stainless steel (DSS) using the superplastic boronizing technique. The feasibility of the development process is studied, and the cutting performances of the cutting tool are evaluated and compared with commercially available carbide and high-speed steel (HSS) tools. The superplastically boronized (SPB) cutting tool yielded a dense boronized layer of 50.5 µm with a surface hardness of 3956 HV. A coefficient of friction value of 0.62 is obtained, which is lower than 1.02 and 0.8 of the carbide and HSS tools. When tested on an aluminum 6061 surface under dry condition, the SPB cutting tool is also able to produce turning finishing below 0.4 µm, beyond the travel distance of 3000 m, which is comparable to the carbide tool, but produces much better results than HSS tool. Through superplastic boronizing of DSS, it is possible to produce a high-quality metal-based cutting tool that is comparable to the conventional carbide tool.

  11. NC flame pipe cutting machine tool based on open architecture CNC system

    Institute of Scientific and Technical Information of China (English)

    Xiaogen NIE; Yanbing LIU

    2009-01-01

    Based on the analysis of the principle and flame movement of a pipe cutting machine tool, a retrofit NC flame pipe cutting machine tool (NFPCM) that can meet the demands of cutting various pipes is proposed. The paper deals with the design and implementation of an open architecture CNC system for the NFPCM, many of whose aspects are similar to milling machines; however, different from their machining processes and control strategies. The paper emphasizes on the NC system structure and the method for directly creating the NC file according to the cutting type and parameters. Further, the paper develops the program and sets up the open and module NC system.

  12. STUDY ON COATING MECHANISM OF DIAMOND FILM ON CUTTING TOOL AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The deposition mechanism of diamond film on cutting tools and the state of the interface between film and substrate are studied theoretically and experimentally. Methods for controlling diamond crystalline state and improving adhesion of diamond films to substrates are proposed to improve the quality of diamond-coated tools.Experiments are performed by cutting Al-Sil8% alloy and SiCp/Al composite with diamond coated tool. The results indicate that the life of coated tools is 90 times higher than that of non-coated tools. Wear mechanism of diamond-coated tools is also studied.

  13. Ultrasonic excitation affects friction interactions between food materials and cutting tools.

    Science.gov (United States)

    Schneider, Yvonne; Zahn, Susann; Schindler, Claudia; Rohm, Harald

    2009-06-01

    In the food industry, ultrasonic cutting is used to improve separation by a reduction of the cutting force. This reduction can be attributed to the modification of tool-workpiece interactions at the cutting edge and along the tool flanks because of the superposition of the cutting movement with ultrasonic vibration of the cutting tool. In this study, model experiments were used to analyze friction between the flanks of a cutting tool and the material to be cut. Friction force at a commercial cutting sonotrode was quantified using combined cutting-friction experiments, and sliding friction tests were carried out by adapting a standard draw-off assembly and using an ultrasonic welding sonotrode as sliding surface. The impact of material parameters, ultrasonic amplitude, and the texture of the contacting food surface on friction force was investigated. The results show that ultrasonic vibration significantly reduces the sliding friction force. While the amplitude showed no influence within the tested range, the texture of the contact surface of the food affects the intensity of ultrasonic transportation effects. These effects are a result of mechanical interactions and of changes in material properties of the contact layer, which are induced by the deformation of contact points, friction heating and absorption heating because of the dissipation of mechanical vibration energy.

  14. Carbon nanotube reinforced metal binder for diamond cutting tools

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Mishnaevsky, Leon; Levashov, Evgeny;

    2015-01-01

    The potential of carbon nanotube reinforcement of metallic binders for the improvement of quality and efficiency of diamond cutting wheels is studied. The effect of multi-walled carbon nanotube (MWCNT) reinforcement on the mechanical properties i.e. hardness, Young modulus, strength and deformation...... behavior of copper and iron based binder for diamond cutting wheels is investigated experimentally and numerically. Computational micromechanical studies were carried out to clarify the mechanisms of the MWCNT material strengthening. It is demonstrated that the adding of MWCNTs leads to the decrease...... of grain size of the structural constituents of the binder, what in turn leads to the improved simultaneously hardness, Young modulus, plastic extension, bending strength and performances of the metallic binders. Comparing service properties of diamond end-cutting drill bits with and without MWCNT one...

  15. The generalized mathematical model of the failure of the cutting tool

    Science.gov (United States)

    Pasko, N. I.; Antsev, A. V.; Antseva, N. V.; Fyodorov, V. P.

    2017-02-01

    We offer a mathematical model which takes into account the following factors: the spread of the cutting properties of the tool, parameters spread of gear blanks and consideration of the factor of a possible fracture of the cutting wedge tool. The reliability function, taking into account the above-mentioned factors, has five parameters for which assessment we propose a method according to our experience. A numerical illustration of the method is shown in the article. We suggest using the model in the optimization mode of the cutting tool preventive measures.

  16. LASER CUTTING AS AN INNOVATIVE CREATIVITY TOOL IN TEXTILE DESIGN

    Directory of Open Access Journals (Sweden)

    Banu Hatice Gurcum

    2016-12-01

    Full Text Available Innovative technologies have become the most widespread rapid and flexible technique of cutting, welding, printing and coloring in fashion and textile sectors in a very short time. Laser systems as the most common used innovative technology engrave, cut, form, print, shade appropriated formatted drawings and sketches as well as they provide reliable placements for the lay out plans and precision cutting and the production sector rapid and qualified. The practical applications and conveniences that innovative Technologies employ, influence design process, designers can design in a more creative, rapid, precise and effective manner. Although design is a context where technology is effective, the style, mood and the background of the designer is still important. Designers while making innovative studies should take the advantage of the developing technologies in experimental processes and should combine technological opportunities with aesthetics. Textile designer as in all other domains of design, should harmonise with the change and should define his/her style with the innovative Technologies in an innovative manner and renew him/herself all the time. This study aims to classify laser cutting technology applications available in textile and fashion sector as well as to present the laser technology as a means of process, product, material innovation and explains the contributions of laser systems to creativity.

  17. Effects of machining parameters on tool life and its optimization in turning mild steel with brazed carbide cutting tool

    Science.gov (United States)

    Dasgupta, S.; Mukherjee, S.

    2016-09-01

    One of the most significant factors in metal cutting is tool life. In this research work, the effects of machining parameters on tool under wet machining environment were studied. Tool life characteristics of brazed carbide cutting tool machined against mild steel and optimization of machining parameters based on Taguchi design of experiments were examined. The experiments were conducted using three factors, spindle speed, feed rate and depth of cut each having three levels. Nine experiments were performed on a high speed semi-automatic precision central lathe. ANOVA was used to determine the level of importance of the machining parameters on tool life. The optimum machining parameter combination was obtained by the analysis of S/N ratio. A mathematical model based on multiple regression analysis was developed to predict the tool life. Taguchi's orthogonal array analysis revealed the optimal combination of parameters at lower levels of spindle speed, feed rate and depth of cut which are 550 rpm, 0.2 mm/rev and 0.5mm respectively. The Main Effects plot reiterated the same. The variation of tool life with different process parameters has been plotted. Feed rate has the most significant effect on tool life followed by spindle speed and depth of cut.

  18. Influence of machining parameters on cutting tool life while machining aluminum alloy fly ash composite

    Science.gov (United States)

    Rao, C. R. Prakash; chandra, Poorna; Kiran, R.; Asha, P. B.

    2016-09-01

    Metal matrix composites containing fly ash as reinforcement are primarily preferred because these materials possess lower density and higher strength to weight ratio. The metal matrix composites possess hetrogeneous microstructure which is due to the presence of hard ceramic particles. While turning composites, the catastrophic failure of cutting tools is attributed to the presence of hard particles. Selection of optimal cutting conditions for a given machining process and grade of cutting tools are of utmost importance to enhance the tool life during turning operation. Thus the research work was aimed at the experimental investigation of the cutting tool life while machining aluminum alloy composite containing 0-15% fly-ash. The experiments carried out following ISO3685 standards. The carbide inserts of grade K10 and style CGGN120304 were the turning tools. The cutting speed selected was between 200m/min to 500m/min in step of 100m/min, feed of 0.08 & 0.16 mm/revolution and constant depth of cut of 1.0 mm. The experimental results revealed that the performance of K10 grade carbide insert found better while machining composite containing 5% filler, at all cutting speeds and 0.08mm/revolution feed. The failures of carbide tools are mainly due to notch wear followed by built up edge and edge chipping.

  19. Effect of Cutting Parameters on Microhardness in 2 mm Slot Milling Hardened Tool Steel

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2004-01-01

    This paper presents an experimental study on the dependency of surface integrity on cutting parameters in slot milling of hardened tool steel. A series of 2 mm slot milling tests have been performed with different cutting parameters. Microhardness was chosen for evaluation of subsurface integrity...

  20. Hardening Effect on Machined Surface for Precise Hard Cutting Process with Consideration of Tool Wear

    Institute of Scientific and Technical Information of China (English)

    YANG Yongheng

    2014-01-01

    During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transformation mechanism of heat treatment in cutting process is different from the one in traditional process, which leads to changes of the formation mechanism of damaged layer on machined workpiece surface. This paper researches on the generation mechanism of damaged layer on machined surface in the process of PCBN tool hard cutting hardened steel Cr12MoV. Rules of temperature change on machined surface and subsurface are got by means of finite element simulation. In phase transformation temperature experiments rapid transformation instrument is employed, and the effect of quenching under cutting conditions on generation of damaged layer is revealed. Based on that, the phase transformation points of temperature under cutting conditions are determined. By experiment, the effects of cutting speed and tool wear on white layer thickness in damaged layer are revealed. The temperature distribution law of third deformation zone is got by establishing the numerical prediction model, and thickness of white layer in damaged layer is predicted, taking the tool wear effect into consideration. The experimental results show that the model prediction is accurate, and the establishment of prediction model provides a reference for wise selection of parameters in precise hard cutting process. For the machining process with high demanding on surface integrity, the generation of damaged layer on machined surface can be controlled precisely by using the prediction model.

  1. Reducing bending stress in external spur gears by redesign of the standard cutting tool

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2009-01-01

    . In this work the bending stress of involute teeth is minimized by shape optimizing the tip of the standard cutting tool. By redesign of the tip of the standard cutting tool we achieve that the functional part of the teeth stays the same while at the same time the root shape is changed so that a reduction......For the design of gears the stress due to bending plays a significant role. The stress from bending is largest in the root of the gear teeth, and the magnitude of the maximum stress is controlled by the nominal bending stress and stress concentration due to the geometric shape of the tooth...... of the stresses results. The tool tip shape is described by different parameterizations that use the super ellipse as the central shape. For shape optimization it is important that the shape is given analytically. The shape of the cut tooth that is the envelope of the cutting tool is found analytically...

  2. Increasing of tool resistance to high-speed machining by cutting

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ One of the most popular task of modern science of materials is searching of the such structural states that provide a high level of design strength, including wear resistance, thermal resistance and impact elasticity for cutting tool.

  3. Increasing of tool resistance to high-speed machining by cutting

    Institute of Scientific and Technical Information of China (English)

    Chernobay; Sergey; P.

    2005-01-01

    One of the most popular task of modern science of materials is searching of the such structural states that provide a high level of design strength, including wear resistance, thermal resistance and impact elasticity for cutting tool.……

  4. [Present-day metal-cutting tools and working conditions].

    Science.gov (United States)

    Kondratiuk, V P

    1990-01-01

    Polyfunctional machine-tools of a processing centre type are characterized by a set of hygienic advantages as compared to universal machine-tools. But low degree of mechanization and automation of some auxiliary processes, and constructional defects which decrease the ergonomic characteristics of the tools, involve labour intensity in multi-machine processing. The article specifies techniques of allowable noise level assessment, and proposes hygienic recommendations, some of which have been introduced into practice.

  5. Modelling and Optimization of Technological Process for Magnetron Synthesis of Altin Nanocomposite Films on Cutting Tools

    Science.gov (United States)

    Kozhina, T. D.

    2016-04-01

    The paper highlights the results of the research on developing the mechanism to model the technological process for magnetron synthesis of nanocomposite films on cutting tools, which provides their specified physical and mechanical characteristics by controlling pulsed plasma parameters. The paper presents optimal conditions for AlTiN coating deposition on cutting tools according to the ion energy of sputtered atoms in order to provide their specified physical and mechanical characteristics.

  6. Cutting-tool Engineering and Localization%刀具技术与国产化

    Institute of Scientific and Technical Information of China (English)

    李扶民; 孙韶辉; 胡长锁; 洪冰

    2013-01-01

    The article analyzes the structure features of advanced cutting-tools in foreign, and investigates development direction and focus of domestic-made cutting-tool.%分析国外先进刀具结构特点,结合国内刀具现状,探讨刀具国产化发展方向及发展重点。

  7. Cutting

    Science.gov (United States)

    ... a traumatic experience, such as living through abuse , violence, or a disaster. Self-injury may feel like ... embarrassed." Sometimes self-injury affects a person's body image. Jen says, "I actually liked how the cuts ...

  8. About a Routing Problem of the Tool Motion on Sheet Cutting

    Directory of Open Access Journals (Sweden)

    A. A. Petunin

    2015-01-01

    Full Text Available For the routing problem of tool permutations under the thermal cutting of parts from sheet material realized on CNC machines, questions connected with constructing precise (optimal and heuristic algorithms used on the stage of mathematical simulation of route elements under sequential megalopolises circuit are investigated. Cutting points and points of tool cut-off are items (cities of the above-mentioned megalopolises. In each megalopolis, interior works are provided. These works are connected with motion to the equidistant curve of the cut contour of a part from the cutting point and (with cutting completed with motion from the equidistant curve to the tool cut-off (we keep in mind a working run. The problem about the time-optimal process of cutting which is a special variant of the generalized courier problem is investigated (the problem of the routing on the megalopolises with precedence conditions. An optimal procedure based on the dynamic programming and an effective heuristic algorithm realized on a multicore computer are proposed. A dynamic programming based procedure uses a special extension of the main problem. This extension provides the replacement of admissibility by precedence with the admissibility by deletion (from the list of tasks. Precedence conditions are used for decreasing computational complexity: it excludes the building of the whole array of the Bellman function values (this function is replaced by the layers system.

  9. Worms with additional cutting tools on the side of the coal body

    Energy Technology Data Exchange (ETDEWEB)

    Krauze, K.; Hankus, R. (Akademia Gorniczo-Hutnicza, Cracow (Poland). Instytut Maszyn Gorniczych)

    1988-10-01

    Evaluates operation of the KWB-3RDU shearer loader with 2 shearer drums each with a diameter of 1,600 mm and a cutting depth of 630 mm in the Niwka-Modrzejow coal mine. Actual cutting depth, about 455 mm, was less than the designed depth. This was caused by forces perpendicular to the longwall face. Increasing the number of radial cutting tools on the shearer drums and modifying their arrangement improved shearer loader operation. Actual cutting depth increased to 580-630 mm. Increasing cutting depth from 0 to 630 mm at a face end before modifications was achieved after 30 m. After modifications the full cutting depth was achieved after 15-20 m. Power consumption of the shearer loader did not increase; coal output per face increased. 1 ref.

  10. Surface Roughness Prediction Model in Machining of Carbon Steel by PVD Coated Cutting Tools

    Directory of Open Access Journals (Sweden)

    Yusuf Sahin

    2004-01-01

    Full Text Available The surface roughness model in the turning of AISI 1040 carbon steel was developed in terms of cutting speed, feed rate and depth of cut using response surface methodology. Machining tests were carried out using PVD-coated tools under different cutting conditions. The surface roughness equations of cutting tools when machining the carbon steels were achieved by using the experimental data. The results are presented in terms of mean values and confidence levels. The established equation shows that the feed rate was found to be a main influencing factor on the surface roughness. It increased with increasing the feed rate, but decreased with increasing the cutting speed and the depth of cut, respectively. The variance analysis for the second-order model shows that the interaction terms and the square terms were statically insignificant. However, it could be seen that the first-order effect of feed rate was significant while cutting speed and depth of cut was insignificant. The predicted surface roughness of the samples was found to lie close to that of the experimentally observed ones with 95% confident intervals.

  11. Research on the Cutting Performance of Cubic Boron Nitride Tools

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    There were only two kinds of superhard tool material at the past, i.e. diamond and cubic boron nitride (CBN). Manmade diamond and CBN are manufactured by the middle of 20th century. Various manufacturing methods and manmade superhard materials were developed later. They were widely used in different industry and science areas. Recently, a new kind of superhard tool material, C 3N 4 coating film, had been developed. American physical scientists, A. M. Liu and M. L. Cohen, designed a new kind of inorganic c...

  12. Metal Cutting Theory and Friction Stir Welding Tool Design

    Science.gov (United States)

    Payton, Lewis N.

    2003-01-01

    Friction Stir Welding (FSW) is a relatively new industrial process that was invented at The Weld Institute (TWI, United Kingdom) and patented in 1992 under research funded by in part by the National Aeronautics and Space Administration (NASA). Often quoted advantages of the process include good strength and ductility along with minimization of residual stress and distortion. Less well advertised are the beneficial effects of this solid state welding process in the field of occupational and environmental safety. It produces superior weld products in difficult to weld materials without producing any toxic fumes or solid waste that must be controlled as hazardous waste. In fact, it reduces noise pollution in the workspace as well. In the early days of FSW, most welding was performed on modified machine tools, in particular on milling machines with modified milling cutters. In spite of the obvious milling heritage of the process, the techniques and lessons learned from almost 250 years of successful metalworking with milling machines have not been applied in the field of modern Friction Stir Welding. The goal of the current research was to study currently successful FSW tools and parameterize the process in such a way that the design of new tools for new materials could be accelerated. Along the way, several successful new tooling designs were developed for current issues at the Marshall Space Flight Center with accompanying patent disclosures

  13. Tribofilm Formation As a Result of Complex Interaction at the Tool/Chip Interface during Cutting

    Directory of Open Access Journals (Sweden)

    German S. Fox-Rabinovich

    2014-07-01

    Full Text Available Tribofilms are dynamic structures that form at the interface during frictional sliding. These films play a significant role in friction control, particularly under heavy loaded/high temperature conditions, such as those found at the cutting tool/chip interface. The thermodynamic aspects of tribofilm formation are discussed here. Thermodynamic analysis of entropy production during friction shows that there are two types of tribofilms that affect the wear behavior of a cutting tool: (1 tribofilms forming as a result of the surface modification of the cutting tools with further tribo-oxidation; and (2 tribofilms that form as a result of material transfer from the contacting frictional body (the workpiece during the tool/chip interaction. Experimental examples are presented, outlining the beneficial role of both types of tribofilms.

  14. How to Train a Cell–Cutting-Edge Molecular Tools

    Science.gov (United States)

    Czapiński, Jakub; Kiełbus, Michał; Kałafut, Joanna; Kos, Michał; Stepulak, Andrzej; Rivero-Müller, Adolfo

    2017-01-01

    In biological systems, the formation of molecular complexes is the currency for all cellular processes. Traditionally, functional experimentation was targeted to single molecular players in order to understand its effects in a cell or animal phenotype. In the last few years, we have been experiencing rapid progress in the development of ground-breaking molecular biology tools that affect the metabolic, structural, morphological, and (epi)genetic instructions of cells by chemical, optical (optogenetic) and mechanical inputs. Such precise dissection of cellular processes is not only essential for a better understanding of biological systems, but will also allow us to better diagnose and fix common dysfunctions. Here, we present several of these emerging and innovative techniques by providing the reader with elegant examples on how these tools have been implemented in cells, and, in some cases, organisms, to unravel molecular processes in minute detail. We also discuss their advantages and disadvantages with particular focus on their translation to multicellular organisms for in vivo spatiotemporal regulation. We envision that further developments of these tools will not only help solve the processes of life, but will give rise to novel clinical and industrial applications. PMID:28344971

  15. Effects of cutting parameters on tool insert wear in end milling of titanium alloy Ti6Al4V

    Science.gov (United States)

    Luo, Ming; Wang, Jing; Wu, Baohai; Zhang, Dinghua

    2016-06-01

    Titanium alloy is a kind of typical hard-to-cut material due to its low thermal conductivity and high strength at elevated temperatures, this contributes to the fast tool wear in the milling of titanium alloys. The influence of cutting conditions on tool wear has been focused on the turning process, and their influence on tool wear in milling process as well as the influence of tool wear on cutting force coefficients has not been investigated comprehensively. To fully understand the tool wear behavior in milling process with inserts, the influence of cutting parameters on tool wear in the milling of titanium alloys Ti6Al4V by using indexable cutters is investigated. The tool wear rate and trends under different feed per tooth, cutting speed, axial depth of cut and radial depth of cut are analyzed. The results show that the feed rate per tooth and the radial depth of cut have a large influence on tool wear in milling Ti6Al4V with coated insert. To reduce tool wear, cutting parameters for coated inserts under experimental cutting conditions are set as: feed rate per tooth less than 0.07 mm, radial depth of cut less than 1.0 mm, and cutting speed sets between 60 and 150 m/min. Investigation on the relationship between tool wear and cutting force coefficients shows that tangential edge constant increases with tool wear and cutter edge chipping can lead to a great variety of tangential cutting force coefficient. The proposed research provides the basic data for evaluating the machinability of milling Ti6Al4V alloy with coated inserts, and the recommend cutting parameters can be immediately applied in practical production.

  16. EXAMINATION OF THE CUTTING FORCES OF AISI 304 AUSTENITIC STAINLESS STEEL IN THE TURNING PROCESS WITH TITANIUM CARBIDE COATED CUTTING TOOLS

    Directory of Open Access Journals (Sweden)

    Özgür TEKASLAN

    2007-02-01

    Full Text Available In this study, cutting forces occurring in the machining process of AISI 304 austenitic stainless steel specimen using titanium coated cutting tools are investigated experimentally and the results are compared to theoretical calculations. In the experimental study, various cutting speeds, feed rates and cutting depths are considered. Cutting forces are measured by 3-dimensional Kistler dynamometer. In the theoretically study, cutting forces are determined by Kienzle formulation. Consequently, it is found that the calculation of cutting forces in the theoretical method doesn't yield the exact results because of various factors and there is a % 25 average differences in accordance with the experimental results. Hence it is evaluated that the experimental technique in the determination of cutting forces yields more accurate results.

  17. Thermal modelling of cooling tool cutting when milling by electrical analogy

    Science.gov (United States)

    Benabid, F.; Arrouf, M.; Assas, M.; Benmoussa, H.

    2010-06-01

    Measurement temperatures by (some devises) are applied immediately after shut-down and may be corrected for the temperature drop that occurs in the interval between shut-down and measurement. This paper presents a new procedure for thermal modelling of the tool cutting used just after machining; when the tool is out off the chip in order to extrapolate the cutting temperature from the temperature measured when the tool is at stand still. A fin approximation is made in enhancing heat loss (by conduction and convection) to air stream is used. In the modelling we introduce an equivalent thermal network to estimate the cutting temperature as a function of specific energy. In another hand, a local modified element lumped conduction equation is used to predict the temperature gradient with time when the tool is being cooled, with initial and boundary conditions. These predictions provide a detailed view of the global heat transfer coefficient as a function of cutting speed because the heat loss for the tool in air stream is an order of magnitude larger than in normal environment. Finally we deduct the cutting temperature by inverse method.

  18. Operation reliability assessment for cutting tools by applying a proportional covariate model to condition monitoring information.

    Science.gov (United States)

    Cai, Gaigai; Chen, Xuefeng; Li, Bing; Chen, Baojia; He, Zhengjia

    2012-09-25

    The reliability of cutting tools is critical to machining precision and production efficiency. The conventional statistic-based reliability assessment method aims at providing a general and overall estimation of reliability for a large population of identical units under given and fixed conditions. However, it has limited effectiveness in depicting the operational characteristics of a cutting tool. To overcome this limitation, this paper proposes an approach to assess the operation reliability of cutting tools. A proportional covariate model is introduced to construct the relationship between operation reliability and condition monitoring information. The wavelet packet transform and an improved distance evaluation technique are used to extract sensitive features from vibration signals, and a covariate function is constructed based on the proportional covariate model. Ultimately, the failure rate function of the cutting tool being assessed is calculated using the baseline covariate function obtained from a small sample of historical data. Experimental results and a comparative study show that the proposed method is effective for assessing the operation reliability of cutting tools.

  19. The Performance Evalution of Ceramic And Carbide Cutting Tools In Machining of Austemepered Ductile Irons

    Directory of Open Access Journals (Sweden)

    Yahya IŞIK

    2014-12-01

    Full Text Available The aim of this research is to compare TiN (PVD coated Al2O3+Ti[C,N] mixed alumina-based (KY4400 ceramic and CVD coated carbide TiC+AI2O3+TiN (ISO P25 cutting tools in turning austempered ductile irons. Ductile cast iron samples were austenitized at 927°C and subsequently austempered for 1 hour at 400°C. The hardness of the workpiece material was measured and found to be 43.5 HRC. In the present work a series of tests were conducted in order to evaluate the tool performances by adopting tool life. In all experiments cutting forces, flank wear and surface roughness values were measured throughout the tool life. No cutting fluid was used during the turning operations. Study of the tool life and failure modes shows that tool life was determined by the flank wear and surface roughness generated on the workpiece. The main conclusion is that tool life of ceramic insert was longer than the coated carbide insert although much higher cutting speeds were used. 

  20. SIMULATION SYSTEM FOR FIVE-AXIS NC MACHINING USING GENERAL CUTTING TOOL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A simulation system for five-axis NC machining using general cutting tools is presented. This system differs from other simulation system in that it not only focuses on the geometric simulation but also focuses on the collision detection which is usually not included in NC machining simulation. Besides all of these, estimating cutting forces is also discussed. In order to obtain high efficiency, all algorithms use swept volume modeling technique, so the simulation system is compact and can be performed efficiently.

  1. Cutting force and its frequency spectrum characteristics in high speed milling of titanium alloy with a polycrystalline diamond tool

    Institute of Scientific and Technical Information of China (English)

    Peng LIU; Jiu-hua XU; Yu-can FU

    2011-01-01

    In this paper, a series of experiments were performed by high speed milling of Ti-6.5Al-2Zr-1Mo-1V(TA15)by use of polycrystalline diamond(PCD)tools. The characteristics of high speed machining(HSM)dynamic milling forces were investigated. The effects of the parameters of the process, I.e., cutting speed, feed per tooth, and depth of axial cut, on cutting forces were studied. The cutting force signals under different cutting speed conditions and different cutting tool wear stages were analyzed by frequency spectrum analysis. The trend and frequency domain aspects of the dynamic forces were evaluated and discussed. The results indicate that a characteristic frequency in cutting force power spectrum does in fact exist. The amplitudes increase with the increase of cutting speed and tool wear level, which could be applied to the monitoring of the cutting process.

  2. Kinect, a Novel Cutting Edge Tool in Pavement Data Collection

    Science.gov (United States)

    Mahmoudzadeh, A.; Firoozi Yeganeh, S.; Golroo, A.

    2015-12-01

    Pavement roughness and surface distress detection is of interest of decision makers due to vehicle safety, user satisfaction, and cost saving. Data collection, as a core of pavement management systems, is required for these detections. There are two major types of data collection: traditional/manual data collection and automated/semi-automated data collection. This paper study different non-destructive tools in detecting cracks and potholes. For this purpose, automated data collection tools, which have been utilized recently are discussed and their applications are criticized. The main issue is the significant amount of money as a capital investment needed to buy the vehicle. The main scope of this paper is to study the approach and related tools that not only are cost-effective but also precise and accurate. The new sensor called Kinect has all of these specifications. It can capture both RGB images and depth which are of significant use in measuring cracks and potholes. This sensor is able to take image of surfaces with adequate resolution to detect cracks along with measurement of distance between sensor and obstacles in front of it which results in depth of defects. This technology has been very recently studied by few researchers in different fields of studies such as project management, biomedical engineering, etc. Pavement management has not paid enough attention to use of Kinect in monitoring and detecting distresses. This paper is aimed at providing a thorough literature review on usage of Kinect in pavement management and finally proposing the best approach which is cost-effective and precise.

  3. Reliability of cut mark analysis in human costal cartilage: the effects of blade penetration angle and intra- and inter-individual differences.

    Science.gov (United States)

    Puentes, K; Cardoso, H F V

    2013-09-10

    Identification of tool class characteristics from cut marks in either bone or cartilage is a valuable source of data for the forensic scientist. Various animal models have been used in experimental studies for the analysis of individual and class characteristics. However, human tissue has seldom been used and it is likely to differ from that of non-humans in key aspects. This study wishes to assess how the knife's blade angle, and both intra- and inter-individual variation in cartilage samples affect the ability of costal cartilage to retain the original class characteristics of the knife, as measured microscopically by the distance between consecutive striations. The 120 cartilaginous samples used in this study originated from the ribcage of 6 male cadavers which were submitted to autopsy at the North Branch of the National Institute of Legal Medicine, in Portugal. Three different serrated knives were purchased from a large department store, and were used in the experimental cuts. Samples of costal cartilage from 2 individuals were assigned to each knife. Each individual provided 20 cartilage samples. Cartilage samples were manually cut using each of the three knives, following two motions: one straight up-and-down cutting motion and parallel and one perpendicular to the blade's teeth long axis forward cutting motion. Casts of the samples were made with Mikrosil(®). Image capture and processing were performed with an Olympus stereomicroscope and its software. The blade's penetration angle and inter-individual variation were shown to affect the identification of the tool class characteristics from the striation pattern observed in a kerf wall, although this seems to be related only to the degree of calcification of the costal cartilage. Intra-individual variation does not seem to significantly affect the identification of the tool class characteristics from the striation pattern observed in a kerf wall, for the same knife following the same motion. Although this

  4. PIXE as a characterization technique in the cutting tool industry

    Energy Technology Data Exchange (ETDEWEB)

    Freemantle, C.S., E-mail: chris@freemantle.co.za [School of Chemical and Metallurgical Engineering and DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, P/Bag 3, Wits 2050 (South Africa); Pilot Tools (Pty) (Ltd.), P.O. Box 27559, Benrose 2011 (South Africa); Sacks, N. [School of Chemical and Metallurgical Engineering and DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, P/Bag 3, Wits 2050 (South Africa); Topic, M. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Pineda-Vargas, C.A. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Faculty of Health and Wellness Sciences, CPUT, Bellville (South Africa)

    2014-01-01

    Two WC–Co powders have been analyzed using micro-PIXE to identify elemental concentration and distribution. A powder recycled primarily from used mining components and a powder produced exclusively from fresh raw materials was studied. Elemental mapping of major elements as well as impurities, within powder granule cross sections, was performed. Contaminants (e.g. Fe and Ni) from manufacturing processes, as well as trace impurities (e.g. Cr, Cl, Ca and S) from recycling were detected, quantified and compared. The extent of increased concentrations of impurities resulting from recycling were observed, demonstrating the potential for PIXE as a characterization tool for detecting trace elements in cemented carbides, allowing for future improvements in the manufacturing and recycling processes.

  5. On the Physics of Machining Titanium Alloys: Interactions between Cutting Parameters, Microstructure and Tool Wear

    Directory of Open Access Journals (Sweden)

    Mohammed Nouari

    2014-07-01

    Full Text Available The current work deals with the analysis of mechanisms involved during the machining process of titanium alloys. Two different materials were chosen for the study: Ti-6Al-4V and Ti-55531. The objective was to understand the effect of all cutting parameters on the tool wear behavior and stability of the cutting process. The investigations were focused on the mechanisms of the chip formation process and their interaction with tool wear. At the microstructure scale, the analysis confirms the intense deformation of the machined surface and shows a texture modification. As the cutting speed increases, cutting forces and temperature show different progressions depending on the considered microstructure (Ti-6Al-4V or Ti-55531 alloy. Results show for both materials that the wear process is facilitated by the high cutting temperature and the generation of high stresses. The analysis at the chip-tool interface of friction and contact nature (sliding or sticking contact shows that machining Ti55531 often exhibits an abrasion wear process on the tool surface, while the adhesion and diffusion modes followed by the coating delamination process are the main wear modes when machining the usual Ti-6Al-4V alloy.

  6. Artificial Intelligence Based Selection of Optimal Cutting Tool and Process Parameters for Effective Turning and Milling Operations

    Science.gov (United States)

    Saranya, Kunaparaju; John Rozario Jegaraj, J.; Ramesh Kumar, Katta; Venkateshwara Rao, Ghanta

    2016-06-01

    With the increased trend in automation of modern manufacturing industry, the human intervention in routine, repetitive and data specific activities of manufacturing is greatly reduced. In this paper, an attempt has been made to reduce the human intervention in selection of optimal cutting tool and process parameters for metal cutting applications, using Artificial Intelligence techniques. Generally, the selection of appropriate cutting tool and parameters in metal cutting is carried out by experienced technician/cutting tool expert based on his knowledge base or extensive search from huge cutting tool database. The present proposed approach replaces the existing practice of physical search for tools from the databooks/tool catalogues with intelligent knowledge-based selection system. This system employs artificial intelligence based techniques such as artificial neural networks, fuzzy logic and genetic algorithm for decision making and optimization. This intelligence based optimal tool selection strategy is developed using Mathworks Matlab Version 7.11.0 and implemented. The cutting tool database was obtained from the tool catalogues of different tool manufacturers. This paper discusses in detail, the methodology and strategies employed for selection of appropriate cutting tool and optimization of process parameters based on multi-objective optimization criteria considering material removal rate, tool life and tool cost.

  7. Cutting Temperature and Tool Wear of Hard Turning Hardened Bearing Steel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A study was undertaken to investigate the performan ce of PCBN tool in the finish turning GCr15 bearing steel with different hardness between 30~64 HRC. The natural thermocouple was used to measure the cutting tem p erature, tool life and cutting temperature were investigated and compared. The m aterial can be heated by this instrument which using low voltage and high elec trical current, while PCBN can't be heated by electrifying directly, so the ke ntanium layer coating over the PCBN is heated, so th...

  8. Parameter estimation of cutting tool temperature nonlinear model using PSO algorithm

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In cutting tool temperature experiment, a large number of related data could be available. In order to define the relationship among the experiment data, the nonlinear regressive curve of cutting tool temperature must be constructed based on the data. This paper proposes the Particle Swarm Optimization (PSO) algorithm for estimating the parameters such a curve. The PSO algorithm is an evolutional method based on a very simple concept. Comparison of PSO results with those of GA and LS methods showed that the PSO algorithm is more effective for estimating the parameters of the above curve.

  9. Study on the Predicting System of Breaking Chip When PCD Tool Cutting Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In the field of automobile manufacture, during the aluminum alloy cutting, chip forming and breaking process are very complicated. It is affected by many facto rs. Automatic machining process can not be carried through if the chip enlaces t he workpiece or the tool. So the chip control and breaking are key technology. P CD tool has many traits, such as high cutting efficiency, machining precision an d wearability. It is desired that it be used for machining coloured metals.The p aper present the study of p...

  10. The Influence of Tool Geometry towards Cutting Performance in Machining Aluminium 7075

    Directory of Open Access Journals (Sweden)

    Muhammad Syafik Jumali

    2017-01-01

    Full Text Available Aerospace industries often use Computer Numerical Control (CNC machining in manufacturing aerospace parts. Aluminium 7075 is the most common material used as aircraft components. This research aims to produce end mill with optimum geometry in terms of the helix angle, primary radial relief angle and secondary relief angle. End mills with different geometry parameters are tested on Aluminium 7075 and data on surface roughness and tool wear were collected. The results were then analysed to determine which parameters brought the optimum result with regards to surface roughness and tool wear.

  11. Cutting performance and wear mechanisms of PVD coated carbide tools during dry drilling of newly produced ADI

    Science.gov (United States)

    Meena, Anil; El Mansori, Mohamed

    2016-10-01

    The austempered ductile iron (ADI) material is widely used for automotive and structural applications. However, it is considered a difficult to machine material due to its strain hardening behavior and low thermal conductivity characteristics; thus delivering higher mechanical and thermal loads at the tool-chip interface, which significantly affects the tool wear and surface quality. The paper thus overviews the cutting performance and wear behavior of different cutting tools during dry drilling of newly produced ADI material. Cutting performance was evaluated in terms of specific cutting energy, workpiece surface integrity and tool wear behavior. Tool wear behavior shows crater wear mode and workpiece adhesion. The surface alteration at the machined subsurface was confirmed from the hardness variation. Multilayer (Ti,Al,Cr)N coated tool shows improved cutting performance and wear behavior due to its enhanced tribological adaptability as compared to another PVD coating leading to the reduction in specific cutting energy by 25%.

  12. Motion and Virtual Cutting Simulation System for a Five-Axis Virtual Machine Tool

    Directory of Open Access Journals (Sweden)

    Rong-Shean Lee

    2011-09-01

    Full Text Available Since five-axis machine tools are very costly and their use requires a high level of knowledge and expertise, a virtual machine tool must be used to simulate five-axis machine tool operation. Configuration code or a mechanism topology matrix must be used to describe a machine tool, and can be used as the framework for design of a virtual machine tool system. The first step is to isolate the basic motions of each element of a virtual machine tool and then establish their coordinate systems. The establishment of a node tree allows coordinate transformation matrices for virtual motion components to be derived, which are then used to simulate movements. The simulation of virtual cutting must take into consideration both accuracy and efficiency. While either a GPU or CPU can be used to perform calculations, there are currently restrictions on GPU memory use which results in relatively lower accuracy. In contrast, a CPU can perform calculations using an adaptive octree with voxels and multithreading to yield sufficient accuracy and efficiency. A five-axis virtual machine tool motion and virtual cutting simulation system was written in C/C++ with OpenGL and OpenMP, and can perform real-time cutting simulations.

  13. Tool Wear Monitoring in Drilling Using Multiple Feature Fusion of the Cutting Force

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents a tool wear monitoring method in drilling process using cutting force signal. The kurtosis coefficient and the energy of a special frequency band of cutting force signals were taken as the signal features of tool wear as well as the mean value and the standard deviation from the time and frequency domain. The relationships between the signal feature andtool wear were discussed, then the vectors constituted of the signal features were input to the artificial neural network for fusion in order to realize intelligent identification of tool wear. The experimental results show that the artificial neural network can realize fusion of multiple features effectively, but the identification precision and the extending ability are not ideal owing to the relationship between the features and the tool wear being fuzzy and not certain. ``

  14. Physical Modeling of Contact Processes on the Cutting Tools Surfaces of STM When Turning

    Science.gov (United States)

    Belozerov, V. A.; Uteshev, M. H.

    2016-08-01

    This article describes how to create an optimization model of the process of fine turning of superalloys and steel tools from STM on CNC machines, flexible manufacturing units (GPM), machining centers. Creation of the optimization model allows you to link (unite) contact processes simultaneously on the front and back surfaces of the tool from STM to manage contact processes and the dynamic strength of the cutting tool at the top of the STM. Established optimization model of management of the dynamic strength of the incisors of the STM in the process of fine turning is based on a previously developed thermomechanical (physical, heat) model, which allows the system thermomechanical approach to choosing brands STM (domestic and foreign) for cutting tools from STM designed for fine turning of heat resistant alloys and steels.

  15. Method of Monitoring Wearing and Breakage States of Cutting Tools Based on Mahalanobis Distance Features

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The Mahalanobis distance features proposed by P.C.Mahalanobis, an Indian statistician, can be used in an automatic on-line cutting tool condition monitoring process based on digital image processing. In this paper, a new method of obtaining Mahalanobis distance features from a tool image is proposed. The key of calculating Mahalanobis distance is appropriately dividing the object into several component sets. Firstly, a technique is proposed that can automatically divide the component groups for calculati...

  16. The importance of extractives and abrasives in wood materials on the wearing of cutting tools

    Directory of Open Access Journals (Sweden)

    Wayan Darmawan

    2012-11-01

    Full Text Available For many wood cutting processes, the interest of high-speed tool steels and tungsten carbides remains very important because of their good tool edge accuracy and easy grinding. The wear of high-speed steel and tungsten carbide is an important economic parameter. Wood extractives and silica have a potential adverse effect on tool wear. Rapid chemical wearing due to corrosion and mechanical wearing has been attributed to the presence of extractives and silica in wood and wood composites. This paper presents the wear characteristics of SKH51 high-speed steel and K10 tungsten carbide caused by extractive and abrasive materials present in the lesser-known Tapi-Tapi wood and wood composites of wood cement board, particleboard, MDF, and oriented strand board (OSB. Experimental results showed that wearing of the cutting tools tested was determined by extractives and silica contained in the wood and wood composites. Wood cement board, which is high in silica content, caused severe damage to the cutting edge of the high-speed steel. A corrosion/oxidation mechanism was found to contribute to the wear of SKH51 and K10 when cutting the Tapi-Tapi wood, MDF, particleboard, wood cement board, and OSB. The silica and extractives determined the abrasion and corrosion wear mechanism to a varying degree.

  17. Cutting Tools, Files and Abrasives. Pre-Apprenticeship Phase 1 Training.

    Science.gov (United States)

    Lane Community Coll., Eugene, OR.

    This self-paced student training module on cutting tools, files, and abrasives is one of a number of modules developed for Pre-apprenticeship Phase 1 Training. Purpose of the module is to enable students to identify and explain the proper use and care of various knives, saws, snips, chisels, and abrasives. The module may contain some or all of the…

  18. Influence of minimum quantity of lubricant (MQL on tool life of carbide cutting tools during milling process of steel AISI 1018

    Directory of Open Access Journals (Sweden)

    Diego Núñez

    2017-03-01

    Full Text Available Nowadays, high productivity of machining is an important issue to obtain economic benefits in the industry. This purpose could be reached with high cutting velocity and feed rate. However, the inherently behavior produce high temperatures in the interface of couple cutting tool/workpiece. Many cutting fluids have been developed to control temperature in process and increase tool life. The objective of this paper is to compare the carbide milling tool wear using different systems cutting fluids: flood and minimum quantity of lubrication (MQL. The values of carbide milling cutting tool wear was evaluate according with the standard ISO 8688-1 1989. The experimental results showed that using MQL reduces significantly (about 40% tool wear in milling AISI 1018 steel at industrial cutting conditions.

  19. Ductile cutting of silicon microstructures with surface inclination measurement and compensation by using a force sensor integrated single point diamond tool

    Science.gov (United States)

    Chen, Yuan-Liu; Cai, Yindi; Shimizu, Yuki; Ito, So; Gao, Wei; Ju, Bing-Feng

    2016-02-01

    This paper presents a measurement and compensation method of surface inclination for ductile cutting of silicon microstructures by using a diamond tool with a force sensor based on a four-axis ultra-precision lathe. The X- and Y-directional inclinations of a single crystal silicon workpiece with respect to the X- and Y-motion axes of the lathe slides were measured respectively by employing the diamond tool as a touch-trigger probe, in which the tool-workpiece contact is sensitively detected by monitoring the force sensor output. Based on the measurement results, fabrication of silicon microstructures can be thus carried out directly along the tilted silicon workpiece by compensating the cutting motion axis to be parallel to the silicon surface without time-consuming pre-adjustment of the surface inclination or turning of a flat surface. A diamond tool with a negative rake angle was used in the experiment for superior ductile cutting performance. The measurement precision by using the diamond tool as a touch-trigger probe was investigated. Experiments of surface inclination measurement and ultra-precision ductile cutting of a micro-pillar array and a micro-pyramid array with inclination compensation were carried out respectively to demonstrate the feasibility of the proposed method.

  20. Development of pipe welding, cutting and inspection tools for the ITER blanket

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Ito, Akira; Taguchi, Kou; Takiguchi, Yuji; Takahashi, Hiroyuki; Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-07-01

    In D-T burning reactors such as International Thermonuclear Experimental Reactor (ITER), an internal access welding/cutting of blanket cooling pipe with bend sections is inevitably required because of spatial constraint due to nuclear shield and available port opening space. For this purpose, internal access pipe welding/cutting/inspection tools for manifolds and branch pipes are being developed according to the agreement of the ITER R and D task (T329). A design concept of welding/cutting processing head with a flexible optical fiber has been developed and the basic feasibility studies on welding, cutting and rewelding are performed using stainless steel plate (SS316L). In the same way, a design concept of inspection head with a non-destructive inspection probe (including a leak-testing probe) has been developed and the basic characteristic tests are performed using welded stainless steel pipes. In this report, the details of welding/cutting/inspection heads for manifolds and branch pipes are described, together with the basic experiment results relating to the welding/cutting and inspection. In addition, details of a composite type optical fiber, which can transmit both the high-power YAG laser and visible rays, is described. (author)

  1. Investigation of wear and tool life of coated carbide and cubic boron nitride cutting tools in high speed milling

    Directory of Open Access Journals (Sweden)

    Pawel Twardowski

    2015-06-01

    Full Text Available The objective of the investigation was analysis of the wear of milling cutters made of sintered carbide and of boron nitride. The article presents the life period of the cutting edges and describes industrial conditions of the applicability of tools made of the materials under investigation. Tests have been performed on modern toroidal and ball-end mill cutters. The study has been performed within a production facility in the technology of high speed machining of 55NiCrMoV6 and X153CrMoV12 hardened steel. The analysed cutting speed is a parameter which significantly influences the intensity of heat generated in the cutting zone. Due to the wear characteristics, two areas of applicability of the analysed tools have been distinguished. For vc  ≤ 300 m/min, sintered carbide edges are recommended; for vc  > 500 m/min, boron nitride edges. For 300 ≤ vc  ≤ 500 m/min, a transition area has been observed. It has been proved that the application of sintered carbide edges is not economically justified above certain cutting speed.

  2. Modelling of tunnelling processes and rock cutting tool wear with the particle finite element method

    Science.gov (United States)

    Carbonell, Josep Maria; Oñate, Eugenio; Suárez, Benjamín

    2013-09-01

    Underground construction involves all sort of challenges in analysis, design, project and execution phases. The dimension of tunnels and their structural requirements are growing, and so safety and security demands do. New engineering tools are needed to perform a safer planning and design. This work presents the advances in the particle finite element method (PFEM) for the modelling and the analysis of tunneling processes including the wear of the cutting tools. The PFEM has its foundation on the Lagrangian description of the motion of a continuum built from a set of particles with known physical properties. The method uses a remeshing process combined with the alpha-shape technique to detect the contacting surfaces and a finite element method for the mechanical computations. A contact procedure has been developed for the PFEM which is combined with a constitutive model for predicting the excavation front and the wear of cutting tools. The material parameters govern the coupling of frictional contact and wear between the interacting domains at the excavation front. The PFEM allows predicting several parameters which are relevant for estimating the performance of a tunnelling boring machine such as wear in the cutting tools, the pressure distribution on the face of the boring machine and the vibrations produced in the machinery and the adjacent soil/rock. The final aim is to help in the design of the excavating tools and in the planning of the tunnelling operations. The applications presented show that the PFEM is a promising technique for the analysis of tunnelling problems.

  3. Application of CBR method for adding the process of cutting tools and parameters selection

    Science.gov (United States)

    Ociepka, P.; Herbus, K.

    2015-11-01

    Modem enterprises must face with the dynamically changing market demand what influences the designing process. It is possible by linking computer tools with information gathered by experienced designers teams. The article describes the method basing on engineering knowledge and experience to adding the process of tools selection and cutting parameters determination for a turning operation. The method, proposed by the authors, is based on the CBR (Case Based Reasoning) method. CBR is a method of problem solving that involves searching for an analogy (similarity) between the current task to be solved, and the earlier cases that properly described, are stored in a computer memory. This article presents an algorithm and a formalized description of the developed method. It was discussed the range of its utilization, as well as it was illustrated the method of its functioning on the example of the tools and cutting parameters selection with respect to the turning process.

  4. Heuristic algorithms for solving of the tool routing problem for CNC cutting machines

    Science.gov (United States)

    Chentsov, P. A.; Petunin, A. A.; Sesekin, A. N.; Shipacheva, E. N.; Sholohov, A. E.

    2015-11-01

    The article is devoted to the problem of minimizing the path of the cutting tool to shape cutting machines began. This problem can be interpreted as a generalized traveling salesman problem. Earlier version of the dynamic programming method to solve this problem was developed. Unfortunately, this method allows to process an amount not exceeding thirty circuits. In this regard, the task of constructing quasi-optimal route becomes relevant. In this paper we propose options for quasi-optimal greedy algorithms. Comparison of the results of exact and approximate algorithms is given.

  5. Development and Application of Ceramic Cutting Tools%陶瓷刀具的发展与应用

    Institute of Scientific and Technical Information of China (English)

    王宝友; 崔丽华; 黄传真; 艾兴

    2001-01-01

    综述了氧化铝系和氮化硅系两类陶瓷刀具的发展现状,阐述了这两类陶瓷刀具的力学性能与切削性能,讨论了它们的特点、加工范围以及适合的切削加工用量,提出了刀具选择及使用要点。%The current development situation of Al2O3 and Si3N4 matrix ceramic cutting tools is summarized. The mechanical property and cutting performance of the two kinds of cutting tools are represented. The characteristics,cutting ranges and suitable machining values of Al2O3 and Si3N4 matrix ceramic cutting tools are discussed emphatically. Some gists of selecting and using ceramic cutting tools are also presented.

  6. Relationship Between Thermal Shock Behavior and Cutting Performance of a Functionally Gradient Ceramic Tool

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the deep understanding of the requirements of cutting conditions on ceramic tools, a design model for functionally gradient ceramic tool materials with symmetrical composition distribution was presented in this paper, according to which an Al 2O 3-TiC functionally gradient ceramic tool material FG-1 was synthesized by powder-laminating and uniaxially hot-pressing technique. The thermal shock resistance of the Al 2O 3-TiC functionally gradient ceramics FG-1 was evaluated by water quenching and s...

  7. Calculation of the Intensity of Adhesive-Fatigue Wear of Cutting Tools

    Science.gov (United States)

    Bibik, V.; Ivushkina, N.; Arhipova, D.

    2016-08-01

    On the base of kinetic equation of strength the authors suggest the method carbide tools wear intensity calculation allowing comparing wear resistance basing on tool material thermal diffusivity coefficient. The authors obtain equations of tool wear resistance dependences upon its thermal diffusivity which show close correlation between these parameters. The results of wear intensity calculations correspond well to the experimental results under the cutting rates corresponding to the region of adhesive-fatigue wear. The inserts with low thermal diffusivity coefficient are characterized by lower wear rate at the inial and normal stages of wear.

  8. Measurement of surface roughness and flank wear on hard martensitic stainless steel by CBN and PCBN cutting tools

    Directory of Open Access Journals (Sweden)

    S. Thamizhmanii

    2008-12-01

    Full Text Available Purpose: The experiments with different operating parameters using CBN and PCBN tools on hard AISI 440 C material were investigated in this paper.Design/methodology/approach: In this research AISI 440 C stainless was used under hard condition. The cutting tools are having three cutting edges and each edge repeated for 5 times. The test conducted by each cutting edge was termed as trail 1, 2, 3, 4 & 5. The length of cutting was 150 mm and each trail. The surface roughness and flank wear, crater wear and BUE were measured by SEM.Findings: The surface roughness was low by CBN at high turning cutting speed and the flank wear was high. The surface roughness was high by PCBN tool than CBN tool and flank wear recorded was low for PCBN tool than CBN tool. The chips produced were saw tooth in all operating parameters. The CBN tool was unable to withstand heat at cutting zone and hence more flank wear occurred. The PCBN tool sustained the temperature and less tool wear occurred. More crater wear formed on PCBN tools where as CBN tool produced less crater wear. The formation of crater wear on the rake face was due to rough surface of the saw tooth chips.Practical implications: The investigation results will provide useful information to applying CBN and PCBN cutting tools in hard turning stainless steels.Originality/value: Hard turning is a latest technology and possible to turn all hard materials. The hard turning produce net shaped products and reduces machining time, low cost per products, etc. The difficult to cut materials like stainless steels was turned by super hard cutting tools like CBN and PCBN to achieve good surface roughness, dimensional control and reduced tool wear.

  9. BACK CHIP TEMPERATURE IN ENVIRONMENTALLY CONSCIOUS TURNING WITH CONVENTIONAL AND INTERNALLY COOLED CUTTING TOOLS

    Directory of Open Access Journals (Sweden)

    Saiful Anwar Che Ghani

    2013-06-01

    Full Text Available Central to machining processes is the interaction between the tool insert and the chip of material removed from the blank. Chip-insert interaction occurs when the chip slides on the rake face of the insert. Heat is generated by the friction inherent to this sliding process. The temperature in the cutting zone of both the insert and the chip rises, usually facilitating adhesion, diffusion, and more complex chemical and physical phenomena between the insert and the chip. These effects accelerate the insert wear, ultimately undermining the tool life. Thus, a number of methods have been developed to control heat generation. Most typically, metal working fluids are conveyed onto the rake face in the cutting zone. However, this solution may be not ideal from the point of view of cost, the environment, and contamination of the part, which may be unacceptable, for example, in healthcare and optical applications. In this study, microfluidic structures internal to the insert are examined as a means of controlling the heat generation.Conventional and internallycooled tools were compared in dry turning of AA6082-T6 aluminum alloy in two 3  3 factorial experiments of different machining conditions. Statistical analyses support the conclusion that chip temperature depends only on the depth of cut,and not on the feed rate or cutting speed. They also show that the benefit of cooling the insert internally increases as the depth of cut increases. Therefore, internallycooled tools can be particularly advantageous in roughing operations.

  10. Development of Al2O3/TiN Ceramic Cutting Tool Materials by Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    Ning FAN; Xiangbo ZE; Zihui GAO

    2004-01-01

    The artificial neural networks (ANN) which have broad application were proposed to develop multiphase ceramic cutting tool materials. Based on the back propagation algorithm of the forward multilayer perceptron, the models to predict volume content of composition in particle reinforced ceramics are established. The Al2O3/TiNl ceramic cutting tool material was developed by ANN, whose mechanical properties fully satisfy the cutting requirements.

  11. Influence of Cutting Parameters and Tool Wear on the Surface Integrity of Cobalt-Based Stellite 6 Alloy When Machined Under a Dry Cutting Environment

    Science.gov (United States)

    Yingfei, Ge; de Escalona, Patricia Muñoz; Galloway, Alexander

    2016-11-01

    The efficiency of a machining process can be measured by evaluating the quality of the machined surface and the tool wear rate. The research reported herein is mainly focused on the effect of cutting parameters and tool wear on the machined surface defects, surface roughness, deformation layer and residual stresses when dry milling Stellite 6, deposited by overlay on a carbon steel surface. The results showed that under the selected cutting conditions, abrasion, diffusion, peeling, chipping and breakage were the main tool wear mechanisms presented. Also the feed rate was the primary factor affecting the tool wear with an influence of 83%. With regard to the influence of cutting parameters on the surface roughness, the primary factors were feed rate and cutting speed with 57 and 38%, respectively. In addition, in general, as tool wear increased, the surface roughness increased and the deformation layer was found to be influenced more by the cutting parameters rather than the tool wear. Compressive residual stresses were observed in the un-machined surface, and when machining longer than 5 min, residual stress changed 100% from compression to tension. Finally, results showed that micro-crack initiation was the main mechanism for chip formation.

  12. MULTI-SCALE AND MULTI-PHASE NANOCOMPOSITE CERAMIC TOOLS AND CUTTING PERFORMANCE

    Institute of Scientific and Technical Information of China (English)

    HUANG Chuanzhen; LIU Hanlian; WANG Jun; WANG Hui

    2007-01-01

    An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and fabricating technology, this multi-scale and multi-phase nanocomposite ceramic tool material can get both higher flexural strength and fracture toughness than that of Al2O3/TiC (LT) ceramic tool material without nano-scale TiN particle, especially the fracture toughness can reach to 7.8 MPa·m0.5. The nano-scale TiN can lead to the grain fining effect and promote the sintering process to get a higher density. The coexisting transgranular and intergranular fracture mode induced by micro-scale TiC and nano-scale TiN, and the homogeneous and densified microstructure can result in a remarkable strengthening and toughening effect. The cutting performance and wear mechanisms of the advanced multi-scale and multi-phase nanocomposite ceramic cutting tool are researched.

  13. Wear monitoring of single point cutting tool using acoustic emission techniques

    Indian Academy of Sciences (India)

    P Kulandaivelu; P Senthil Kumar; S Sundaram

    2013-04-01

    This paper examines the flank and crater wear characteristics of coated carbide tool inserts during dry turning of steel workpieces. A brief review of tool wear mechanisms is presented together with new evidence showing that wear of the TiC layer on both flank and rake faces is dominated by discrete plastic deformation, which causes the coating to be worn through to the underlying carbide substrate when machining at high cutting speeds and feed rates. Wear also occurs as a result of abrasion, as well as cracking and attrition, with the latter leading to the wearing through the coating on the rake face under low speed conditions. When moderate speeds and feeds are used, the coating remains intact throughout the duration of testing. Wear mechanism maps linking the observed wear mechanisms to machining conditions are presented for the first time. These maps demonstrate clearly that transitions from one dominant wear mechanism to another may be related to variations in measured tool wear rates. Comparisons of the present wear maps with similar maps for uncoated carbide tools show that TiC coatings dramatically expand the range of machining conditions under which acceptable rates of tool wear might be experienced. However, the extent of improvement brought about by the coatings depends strongly on the cutting conditions, with the greatest benefits being seen at higher cutting speeds and feed rates. Among these methods, tool condition monitoring using Acoustic Techniques (AET) is an emerging one. Hence, the present work was carried out to study the stability, applicability and relative sensitivity of AET in tool condition monitoring in turning.

  14. Application of response surface methodology for determining cutting force model in turning hardened AISI H11 hot work tool steel

    Indian Academy of Sciences (India)

    B Fnides; M A Yallese; T Mabrouki; J-F Rigal

    2011-02-01

    This experimental study is conducted to determine statistical models of cutting forces in hard turning of AISI H11 hot work tool steel (∼ 50 HRC). This steel is free from tungsten on Cr–Mo–V basis, insensitive to temperature changes and having a high wear resistance. It is employed for the manufacture of highly stressed diecasting moulds and inserts with high tool life expectancy, plastic moulds subject to high stress, helicopter rotor blades and forging dies. The workpiece is machined by a mixed ceramic tool (insert CC650 of chemical composition 70%Al23+30%TiC) under dry conditions. Based on 33 full factorial design, a total of 27 tests were carried out. The range of each parameter is set at three different levels, namely low, medium and high. Mathematical models were deduced by software Minitab (multiple linear regression and response surface methodology) in order to express the influence degree of the main cutting variables such as cutting speed, feed rate and depth of cut on cutting force components. These models would be helpful in selecting cutting variables for optimization of hard cutting process. The results indicate that the depth of cut is the dominant factor affecting cutting force components. The feed rate influences tangential cutting force more than radial and axial forces. The cutting speed affects radial force more than tangential and axial forces.

  15. Cutting forces in orthogonal cutting of unidirectional GFRP composites

    Energy Technology Data Exchange (ETDEWEB)

    Caprino, G.; Nele, L. [Univ. of Naples Federico II (Italy). Dept. of Materials and Production Engineering

    1996-07-01

    The results of orthogonal cutting tests carried out on unidirectional glass fiber reinforced plastic composites, using HSS tools, are presented and discussed. During the tests, performed on a milling machine at very low cutting speed to avoid thermal effects, the cutting speed was held constant and parallel to the fiber direction. Three parameters, namely the tool rake angle {alpha}, the tool relief angle {gamma}, and the depth of cut t, were varied. According to the experimental results, the horizontal force per unit width, F{sub hu}, undergoes a dramatic decrease, never verified for metals, with increasing {alpha}. Besides, F{sub hu} is only negligibly affected by the relief angle, and linearly increases with t. Similarly to metals, an effect of the depth of cut on the specific energy (size effect) is found also for composites. However, the presented results indicate that the size effect can be analytically modeled in a simple way in the case of composites. The vertical force per unit width, F{sub vu}, exhibits a marked reduction when the relief angle is increased. F{sub vu} is also very sensitive to the rake angle: the lower {alpha}, the higher is F{sub vu}. It is shown that this behavior probably reflects a strong influence of the rake angle on the forces developing at the flank. A linear dependence of the vertical force on the depth of cut is also demonstrated. Finally, the experimental data are utilized to obtain empirical formulae, allowing an approximate evaluation of cutting forces.

  16. Research concerning optimum cutting parameters according with tool path strategy for finishing procedures

    Science.gov (United States)

    Pena, A. E.; Anania, F. D.; Zapciu, M.

    2015-11-01

    Optimization of cutting parameters in NC milling needs to be studied because of its influence on machining time and cost. Today, any CAM software offers many tool path strategies to milling free form geometries. However, the users must have the know-how to choose the strategies according to geometry complexity, cutting tool geometry and its contact on the machined surface. Choosing the right strategy with the right cutting parameter is a rather difficult task to do on the machine tool. In this paper we try to take into account the influence of the toolpath over the surface quality for finishing operation. The main goal is to establish a direct link between machining parameters and toolpath in order to obtain the same surface quality for different trajectories. The first step consist in making a series of experiments for standards toolpaths (which can be found in any CAM software) like one-way, zig-zag, spiral from outside to inside, zig-zag at 45 dgr on a milling center. Based on the results, a correction coefficient for the feed rate was established.

  17. An optimal inventory policy under certainty distributed demand for cutting tools with stochastically distributed lifespan

    Directory of Open Access Journals (Sweden)

    Cun Rong Li

    2015-12-01

    Full Text Available Traditional inventory policy was deeply investigated for various kinds of demand in different industrial sectors. More extensive explorations on inventory policy, including the combination with manufacturing process, detailed attributes of the purchased products, etc. was conducted by many researchers. During manufacturing process, lifespan of cutting tools have significant impact on both the quantity of inventory and production cost. In this paper, the impact of maximum allowable stopping time for cutting tools on production-inventory policy under general production demands was investigated. An optimal inventory policy with general demand (OIPGD was developed with which the allowable stopping time for tools, order-up-to-level inventory, and order cycle can be optimally determined by an exhaustive searching algorithm. Examples with different distributions on tool lifespan and production demand is presented to show the implementation of the OIPGD model. The results and the sensitivity analysis about the parameters show that optimized combination of selection for tool allowable stopping time, order-up-to-level, and order cycle time can dramatically minimize the total cost of the whole inventory activity.

  18. WEAR ANALYSIS OF CERAMIC CUTTING TOOLS IN FINISH TURNING OF INCONEL 718

    Directory of Open Access Journals (Sweden)

    M. ARUNA,

    2010-09-01

    Full Text Available The demand for heat resistant Nickel based super alloys are increasing because of their excellent mechanical properties. Nickel based alloy, Inconel 718 is useful in aerospace applications. In this work, finish turning of Inconel 718 using ceramic tools is carried out under high pressure coolant supply. The approach is based on Taguchi’s method and the analysis of variance (ANOVA. A series of experiments are conducted by varying the process parameters and their effects on surface finish and tool wear are measured. It is found that the surface roughness is well below the rejection criteria. The experimental results indicate that the cutting speed is the most significant factor to the overall performance. The correlation etween cutting speed and feed with the tool wear and surface roughness are obtained by multi-variable linear regression and is compared with the experimental results. In addition, SEM analysis is carried out to study the wear of ceramic tools under varying processparameters. The results of the work provide recommendations to give the best quality surface combined with less tool wear.

  19. Impact of focused gamma ray beam angle on the response of density logging tool.

    Science.gov (United States)

    Wu, He; Zhang, Feng; Guo, Hongbo; Xin, Yi; Han, Zhongyue

    2017-05-01

    The response of the gamma-gamma density logging tool with different focused gamma ray beam angle is investigated by using the MCNP code. This work focuses on the four aspects of spatial distribution and energy spectrum of scattered gamma rays, measurement uncertainty, the depth of investigation, and vertical resolution of the logging tool. The results show that the density measurement accuracy can be improved when a relative larger collimator angle is employed, and the vertical resolution of the tool would not get worse.

  20. Study on the influence of fluid application parameters on tool vibration and cutting performance during turning of hardened steel

    Directory of Open Access Journals (Sweden)

    P. Sam Paul

    2016-03-01

    Full Text Available Recently the concept of hard turning has gained much attention in the metal cutting industry. In hard turning, multiple operations can be performed in single step, thereby it replaces the traditional process cycle. But it involves very large quantities of cutting fluid. Procurement, storage and disposal of cutting fluid involve expenses and environmental problem. Pure dry turning is a solution to this problem as it does not require any cutting fluid at all. But pure dry turning requires ultra hard cutting tools and extremely rigid machine tools, and also it is difficult to implement in the existing shop floor as the machine tool may not be rigid enough to support hard turning. In this context, turning with minimal fluid application is a viable alternative wherein, extremely small quantities of cutting fluid are introduced at critical contact zones as high velocity pulsing slugs, so that for all practical purposes it resembles pure dry turning and at the same time free from all the problems related to large scale use of cutting fluid as in conventional wet turning. In this study, fluid application parameters that characterize the minimal fluid application scheme were optimized and its effect on cutting performance and tool vibration was studied. From the results, it was observed that minimal fluid application in the optimized mode brought forth low vibration levels and better cutting performance.

  1. Study on Surface Integrity of AISI 1045 Carbon Steel when machined by Carbide Cutting Tool under wet conditions

    Directory of Open Access Journals (Sweden)

    Tamin N. Fauzi

    2017-01-01

    Full Text Available This paper presents the evaluation of surface roughness and roughness profiles when machining carbon steel under wet conditions with low and high cutting speeds. The workpiece materials and cutting tools selected in this research were AISI 1045 carbon steel and canela carbide inserts graded PM25, respectively. The cutting tools undergo machining tests by CNC turning operations and their performances were evaluated by their surface roughness value and observation of the surface roughness profile. The machining tests were held at varied cutting speeds of 35 to 53 m/min, feed rate of 0.15 to 0.50 mm/rev and a constant depth of cut of 1 mm. From the analysis, it was found that surface roughness increased as the feed rate increased. Varian of surface roughness was suspected due to interaction between cutting speeds and feed rates as well as nose radius conditions; whether from tool wear or the formation of a built-up edge. This study helps us understand the effect of cutting speed and feed rate on surface integrity, when machining AISI 1045 carbon steel using carbide cutting tools, under wet cutting conditions.

  2. An Experiment to Explain Depth of Cut Notch Wear of Ceramic Tools in Ni- based Super-alloy Machining

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Inconel 718, a high temperature alloy, is extensive ly used in aircraft, gas engines and nuclear-power plants. It is generally known that the life of ceramic cutting tools in machining Inconel 718 is often restric ted by depth-of-cut (DOC) notch wear. In view of the number of various factors involved and the variety of tool materi als and cutting conditions available, the analysis of the DOC notch wear is very difficult. According to previous work concerning the DOC notch wear of ceramics tools, some A...

  3. Vibration suppression in cutting tools using collocated piezoelectric sensors/actuators with an adaptive control algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Radecki, Peter P [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Bement, Matthew T [Los Alamos National Laboratory

    2008-01-01

    The machining process is very important in many engineering applications. In high precision machining, surface finish is strongly correlated with vibrations and the dynamic interactions between the part and the cutting tool. Parameters affecting these vibrations and dynamic interactions, such as spindle speed, cut depth, feed rate, and the part's material properties can vary in real-time, resulting in unexpected or undesirable effects on the surface finish of the machining product. The focus of this research is the development of an improved machining process through the use of active vibration damping. The tool holder employs a high bandwidth piezoelectric actuator with an adaptive positive position feedback control algorithm for vibration and chatter suppression. In addition, instead of using external sensors, the proposed approach investigates the use of a collocated piezoelectric sensor for measuring the dynamic responses from machining processes. The performance of this method is evaluated by comparing the surface finishes obtained with active vibration control versus baseline uncontrolled cuts. Considerable improvement in surface finish (up to 50%) was observed for applications in modern day machining.

  4. Nanostructured Multilayer Composite Coatings on Ceramic Cutting Tools for Finishing Treatment of High-Hardness Quenched Steels

    Science.gov (United States)

    Vereshchaka, A. A.; Batako, A. D.; Sotova, E. S.; Vereshchaka, A. S.

    2016-01-01

    The functional role of nanostructured multilayer composite coatings (NMCC) deposited on the operating surfaces of replaceable faceted cutting inserts (CI) from cutting ceramics based on aluminum oxides with additives of titanium carbides is studied. It is shown that the developed NMCC not only raise substantially the endurance of the ceramic tools under high-speed dry treatment of quenched steels but also improve the quality and accuracy of processing of the parts and the ecological parameters of the cutting process.

  5. Regression Modeling Of Cutting Parameters' Effect To Cutting Forces And Hole Surface Qualities In Drilling Of Dievar Hot Work Tool Steel

    Directory of Open Access Journals (Sweden)

    İskender Özkul

    2013-01-01

    Full Text Available In this study, cutting moments, surface roughness, dimensional accuracy and circularity deviation values were investigated during drilling on Dievar degree of hot work tool steels with various drill bits. The experiments, was completed with Ø16 mm diameter uncoated carbide drill bits and TiAlN coated self-reamed carbide drill bits using coolant fluid on vertical machining center. In experiments, feed rate 0,16 mm/rev and the cutting speed 36, 40, 44, 48 m/min rates were used. The results were modeled by the method of linear regression and polynomial regression curve. Then they were compared with values equal significance. At the same time by analysis of variance, the cutting speed and drill type were investigated on the results of axial feed force, cutting torque, surface roughness, dimensional accuracy and circularity the deviation.

  6. Studies of the frictional heating of polycrystalline diamond compact drag tools during rock cutting

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, A.; Glowka, D.A.

    1982-06-01

    A numerical-analytical model is developed to analyze temperatures in polycrystalline diamond compact (PDC) drag tools subject to localized frictional heating at a worn flat area and convective cooling at exposed lateral surfaces. Experimental measurements of convective heat transfer coefficients of PDC cutters in a uniform crossflow are presented and used in the model to predict temperatures under typical drilling conditions with fluid flow. The analysis compares favorably with measurements of frictional temperatures in controlled cutting tests on Tennessee marble. It is found that average temperatures at the wearflat contact zone vary directly with frictional force per unit area and are proportional to the one-half power of the cutting speed at the velocities investigated. Temperatures are found to be much more sensitive to decreases in the dynamic friction by lubrication than to increases in convective cooling rates beyond currently achievable levels with water or drilling fluids. It is shown that use of weighted drilling fluids may actually decrease cooling rates compared to those achieved with pure water. It is doubtful that tool temperatures can be kept below critical levels (750/sup 0/C) if air is employed as the drilling fluid. The degree of tool wear is found to have a major influence on the thermal response of the friction contact zone, so that for equal heating per contact area, a worn tool will run much hotter than a sharp tool. It is concluded that tool temperatures may be kept below critical levels with conventional water or mud cooling as long as the fluid provides good cutter-rock lubrication.

  7. The behavior of tillage tools with acute and obtuse lift angles

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Abbaspour-Fard

    2014-01-01

    Full Text Available An experimental investigation was conducted to study the trend of draft force against forward speed and working depth for a range of lift angles beyond acute angles for a simple plane tillage tool. The experiments were performed in an indoor soil bin facility equipped with a tool carriage and a soil preparation unit propelled by an integrated hydraulic power system. The system was also equipped with electronic instrumentation including an Extended Octagonal Ring Transducer (EORT and a data logger. The factorial experiment (4×3×3 with three replications was used based on Randomized Complete Block Design (RCBD. The independent variables were lift angle of the blade (45, 70, 90 and 120°, forward speed (2, 4 and 6 km h-1 and working depth (10, 25 and 40 cm. The variance analysis for the draft force shows that all independent variables affect the draft force at 1% level of significance. The trend of the draft force against working depth and forward speed had almost a linear increase. However, the trend of the draft force against the lift angle is reversed for lift angles >90. This finding, conflicts with the results of analytical and numerical studies which extrapolate the results achieved for acute lift angles to obtuse lift angles and have not been reported experimentally.

  8. The behavior of tillage tools with acute and obtuse lift angles

    Energy Technology Data Exchange (ETDEWEB)

    Abbaspour-Fard, M. H.; Hoseini, S. A.; Agkhani, M. H.; Sharifi, A.

    2014-06-01

    An experimental investigation was conducted to study the trend of draft force against forward speed and working depth for a range of lift angles beyond acute angles for a simple plane tillage tool. The experiments were performed in an indoor soil bin facility equipped with a tool carriage and a soil preparation unit propelled by an integrated hydraulic power system. The system was also equipped with electronic instrumentation including an Extended Octagonal Ring Transducer (EORT) and a data logger. The factorial experiment (4 × 3 × 3) with three replications was used based on Randomized Complete Block Design (RCBD). The independent variables were lift angle of the blade (45, 70, 90 and 120 degree centigrade), forward speed (2, 4 and 6 km h{sup -}1) and working depth (10, 25 and 40 cm). The variance analysis for the draft force shows that all independent variables affect the draft force at 1% level of significance. The trend of the draft force against working depth and forward speed had almost a linear increase. However, the trend of the draft force against the lift angle is reversed for lift angles > 90 degree centigrade. This finding, conflicts with the results of analytical and numerical studies which extrapolate the results achieved for acute lift angles to obtuse lift angles and have not been reported experimentally. (Author)

  9. A measurement method of cutting tool position for relay fabrication of microstructured surface

    Science.gov (United States)

    Chen, Yuan-Liu; Gao, Wei; Ju, Bing-Feng; Shimizu, Yuki; Ito, So

    2014-06-01

    By using the secondary function of a force sensor integrated fast tool servo (FTS) for surface profile measurement, the three-dimensional tip position of a micro-cutting tool in the FTS with respect to the fabricated microstructures was measured without using any additional instrument for realizing the concept of relay fabrication of microstructured surface. It was verified from the experiments for testing the basic performances of tool tip position measurement that the delay of the force feedback control loop of the FTS was a big factor influencing the position measurement accuracy. A bidirectional scanning strategy was then employed to reduce the position measurement error due to the delay of the feedback control loop. Tool tip position measurement experiments by using micro-tools with a nose radius of 100 µm for relay fabrications with sub-micrometer accuracies, including stitching fabrication of a micro-groove line array and filling fabrication of a microlens lattice pattern, were carried out to demonstrate the feasibility of the tool position measurement method.

  10. Knowledge base technology for CT-DIMS: Report 1. [CT-DIMS (Cutting Tool - Database and Information Management System)

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, E.E.

    1993-05-01

    This report discusses progress on the Cutting Tool-Database and Information Management System (CT-DIMS) project being conducted by the University of Illinois Urbana-Champaign (UIUC) under contract to the Department of Energy. This project was initiated in October 1991 by UIUC. The Knowledge-Based Engineering Systems Research Laboratory (KBESRL) at UIUC is developing knowledge base technology and prototype software for the presentation and manipulation of the cutting tool databases at Allied-Signal Inc., Kansas City Division (KCD). The graphical tool selection capability being developed for CT-DIMS in the Intelligent Design Environment for Engineering Automation (IDEEA) will provide a concurrent environment for simultaneous access to tool databases, tool standard libraries, and cutting tool knowledge.

  11. Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas

    DEFF Research Database (Denmark)

    Leipold, Frank; Kusano, Yukihiro; Hansen, F.

    2010-01-01

    The decontamination of a rotating cutting tool used for slicing in the meat industry by means of atmospheric pressure plasmas is investigated. The target is Listeria monocytogenes, a bacterium which causes listeriosis and can be found in plants and food. The non-pathogenic species, Listeria innocua......, is used for the experiments. A rotating knife was inoculated with L. innocua. The surface of the rotating knife was partly exposed to an atmospheric pressure dielectric barrier discharge operated in air, where the knife itself served as a ground electrode. The rotation of the knife ensures a treatment...

  12. Design of AlCrSiN multilayers and nanocomposite coating for HSS cutting tools

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weiwei [School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan City, Anhui Province 243002 (China); Material Processing Research Department, Korea Institute of Materials Science (KIMS), 66 Sangnam-dong, Changwon, Kyungnam 641-010 (Korea, Republic of); Chen, Wanglin; Yang, Shubao; Lin, Yue [School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan City, Anhui Province 243002 (China); Zhang, Shihong, E-mail: shzhang@ahut.edu.cn [School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan City, Anhui Province 243002 (China); Cho, Tong-Yul [Institute of Industrial Technology, Changwon National University, Changwon, Kyungnam 641-773 (Korea, Republic of); Lee, G.H. [Material Processing Research Department, Korea Institute of Materials Science (KIMS), 66 Sangnam-dong, Changwon, Kyungnam 641-010 (Korea, Republic of); Kwon, Sik-Chol [School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan City, Anhui Province 243002 (China)

    2015-10-01

    Highlights: • Design of the AlCrSiN multilayer and composite coating. • Tribological/mechanical properties of the coatings. • AlCrSiN coating with the special structures presented lowest F.C. • AlCrSiN coating possessed best service life and cutting performance for the application of high-speed steel (HSS) tools. - Abstract: In the present work, AlCrN coating and AlCrSiN multilayer and nanocomposite coating were designed and deposited on the surface of high speed steel (HSS) cutters. The microstructures of these coatings were investigated systematically by means of grazing incidence X-ray diffraction (GIXRD), X-ray photoelectron spectroscope (XPS), electron probe X-ray microanalysis (EPMA), scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM), in association with mechanical property measurement and corresponding cutting test. The results showed that the AlCrN coating mainly composed of nanocrystalline fcc-CrN, hcp-AlN and fcc-(Cr,Al)N solid-solution. In addition to these nanocrystalline phases, a few amorphous Si{sub 3}N{sub 4} phases were observed for the AlCrSiN multilayers and nanocomposite coating with a stronger {2 0 0} preferred orientation. The modulation period (6 nm) of the AlCrSiN coating was much smaller than that of the AlCrN coating (18 nm). The service life of the AlCrSiN coated tool increased approximately 40% longer in comparison with the AlCrN coated tool because of its more excellent mechanical properties (48 GPa hardness, 1123 MPa toughness, 52 N LC2 adhesion strength and 0.25 average friction coefficient). During the cutting process, the wear mechanisms of coated tools at the early stage and mid-stage were abrasion wear and adhesion wear, respectively. And the worn loss of AlCrSiN coated tool was less than that of AlCrN coated tool.

  13. Machinability of Hastelloy C-276 Using Hot-pressed Sintered Ti(C7N3)-based Cermet Cutting Tools

    Institute of Scientific and Technical Information of China (English)

    XU Kaitao; ZOU Bin; HUANG Chuanzhen; YAO Yang; ZHOU Huijun; LIU Zhanqiang

    2015-01-01

    C-276 nickel-based alloy is a difficult-to-cut material. In high-speed machining of Hastelloy C-276, notching is a prominent fallure mode due to high mechanical properties of work piece, which results in the short tool life and low productivity. In this paper, a newly developed Ti(C7N3)-based cermet insert manufactured by a hot-pressing method is used to machine the C-276 nickel-based alloy, and its cutting performances are studied. Based on orthogonal experiment method, the influence of cutting parameters on tool life, material removal rates and surface roughness are investigated. Experimental research results indicate that the optimal cutting condition is a cutting speed of 50 m/min, depth of cut of 0.4 mm and feed rate of 0.15 mm/r if the tool life and material removal rates are considered comprehensively. In this case, the tool life is 32 min and material removal rates are 3000 mm3/min, which is appropriate to the rough machining. If the tool life and surface roughness are considered, the better cutting condition is a cutting speed of 75 m/min, depth of cut of 0.6 mm and feed rate of 0.1 mm/r. In this case, the surface roughness is 0.59mm. Notch wear, flank wear, chipping at the tool nose, built-up edge(BUE) and micro-cracks are found when Ti(C7N3)-based cermet insert turned Hastelloy C-276. Oxidation, adhesive, abrasive and diffusion are the wear mechanisms, which can be investigated by the observations of scanning electron microscope and energy-dispersive spectroscopy. This research will help to guide studies on the evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy C-276 machining.

  14. Investigation on SS316, SS440C, and Titanium Alloy Grade-5 used as Single Point Cutting Tool

    Directory of Open Access Journals (Sweden)

    Mr.Kothakota Suresh Kumar

    2015-01-01

    Full Text Available The main objective of this work is to find alternative materials for the cutting tools used in turning operations. The conventional materials like tungsten carbide(WC, titanium carbide(TiC, cubic boron nitride (CBN and diamond used as cutting tools for turning operations on lathe are expensive. Titanium grade 5 (Ti-6Al-4V, SS440C/AISI440C and SS316 are some of the materials which satisfy the necessary requirements for turning metals and polymer materials. These materials are machined as per the standard tool signature of high-speed steel tool (HSS and are subjected to necessary heat treatment for hardening and then finish ground. The machined tools thus prepared were used to turn mild steel and aluminium workpieces. The cutting forces at play are determined using lathe tool dynamometer and plotted on a MCD (Merchant’s Circle Diagram. The cutting tools are also subjected to tests to determine tool life, wear and work hardening. It is found that the performance and tool life of SS440C is better and cost effective compared to existing tools. Even though Ti-6Al-4V is comparatively costly it could be used for obtaining good surface finish.

  15. Experimental investigation of cutting parameters influence on surface roughness and cutting forces in hard turning of X38CrMoV5-1 with CBN tool

    Indian Academy of Sciences (India)

    H Aouici; M A Yallese; A Belbah; M F Ameur; M Elbah

    2013-06-01

    This experimental investigation was conducted to determine the effects of cutting conditions on surface roughness and cutting forces in hard turning of X38CrMoV5-1. This steel was hardened at 50 HRC and machined with CBN tool. This is employed for the manufacture of helicopter rotor blades and forging dies. Combined effects of three cutting parameters, namely cutting speed, feed rate and depth of cut, on the six performance outputs-surface roughness parameters and cutting force components, are explored by analysis of variance (ANOVA). Optimal cutting conditions for each performance level are established. The relationship between the variables and the technological parameters is determined through the response surface methodology (RSM), using a quadratic regression model. Results show how much surface roughness is mainly influenced by feed rate and cutting speed. The depth of cut exhibits maximum influence on cutting force components as compared to the feed rate and cutting speed.

  16. Cut It Up and Put It Back Together: Cut-up and Collage as Tools to Overcome Academic Deadlock

    DEFF Research Database (Denmark)

    Bager-Elsborg, Anna; Loads, Daphne

    2016-01-01

    This ‘On the Horizon’ paper concerns creativity in the research process as a way to overcome unhelpful pre-understandings and ‘false clarity’. This paper gives an idea of how we can allow research to be as complex and messy as reality. Cut-up and collage are introduced and suggested as a way of l...

  17. Phase Angle, an Alternative Physiological Tool to Assess Wound Treatment in Chronic Nonhealing Wounds

    Science.gov (United States)

    Moore, Michael F.; Dobson, Nanci; Castelllino, Lisa; Kapp, Susan

    2011-01-01

    Background This exploratory study was conducted in an effort to demonstrate that bioelectrical impedance analysis (BIA) phase angle measurement is a novel tool for monitoring the effectiveness of a wound care regimen at a regional level and is valuable in comparing that status with the overall metabolic health of the patient. Isolating and measuring the extent to which nutritional supplementation contributes to the healing process is difficult and confounded by the many treatment modalities patients undergo. Objective The authors conducted a limited exploratory study to determine whether regional phase angle measurements accurately reflected the status of chronic nonhealing wounds. This information would potentially provide the ability to quantitatively evaluate of the role of nutritional supplementation in wounds of varying etiologies by comparing regional BIA phase angle measurement with overall BIA phase angle measurement. Methods Eleven patients with wounds of varying etiologies were selected to participate. Each patient underwent a treatment regimen specific to his or her condition, and all patients were given JUVEN® nutritional supplement. Results and Conclusion In all patients, the BIA phase angle measurement mirrored the health of the wound and provided an accurate tool for assessing the regional tissue health, a valuable insight in measuring the effectiveness of a systemic treatment. PMID:24527159

  18. Deposition of hard and adherent TiBCN films for cutting tools applications

    Energy Technology Data Exchange (ETDEWEB)

    Tillmann, Wolfgang; Hoffmann, Fabian [Institute of Materials Engineering, Technische Universitaet Dortmund (Germany); Bejarano, Gilberto [Institute of Materials Engineering, Technische Universitaet Dortmund (Germany); Department of Materials Engineering, Universidad de Antioquia, Group for Corrosion and Protection-CIDEMAT, Calle 67 No. 53-108, Medellin (Colombia)

    2012-08-15

    Metal cutting tools having wear resistant and chemically stable ceramic coatings are in many applications superior in performance to uncoated tools. Titanium boron carbon nitride (TiBCN) is a hard material particularly suitable as a protective coating for cutting tools due to its excellent properties, such as a high hardness and high wear and corrosion resistance, among other. TiBCN films were grown on Si (100) and high speed steel substrates by means of reactively pulsed DC magnetron sputtering technique. Two B{sub 4}C- and two Ti-targets, to which a pulsed DC voltage of middle frequency was applied, were used for the deposition of TiBCN. A chromium layer was first deposited to obtain a better adhesion of TiBCN to the substrates. The mechanical properties of these coatings deposited under different N{sub 2} contents were investigated. The substrates were biased through a medium frequency power supply. The bias voltage value was -90 V for all coatings. The total film thickness was maintained at approximately 2 {mu}m. The hardness of the coatings increased with reduced nitrogen content, while the adhesion decreased from 40.8 to 24.2 N, and the wear rate increased from 0.154 to 0.744 x 10{sup -16} m{sup 3}/N.m, the latter probably caused by the low content of the self-lubricating amorphous matrix of our coatings. However, the sample deposited by a nitrogen gas flow of 60 sccm presented a wear rate of four orders of magnitude smaller than the uncoated sample. The deposition method presented in this work seems very promising for the manufacture of TiBCN coatings. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Analysis of methods for determining cutting resistance of tools on the shearer drum of a shearer loader

    Energy Technology Data Exchange (ETDEWEB)

    Krauze, K. (Akademia Gorniczo-Hutnicza, Cracow (Poland). Instytut Maszyn Gorniczych, Przerobczych i Automatyki)

    1989-01-01

    Comparatively evaluates methods for determining resistance of coal cut by a single radial or tangential tool on the shearer of a shearer loader. Methods developed by Bieron, Ewans, Nishimatsu and Merchants as well as empirical methods used in Poland are analyzed. Evaluations show that none of the methods is a universal method. The method of empirical formulae should be used for optimization of shearer loader drive systems. Ewans' method should be used for determining cutting resistance of brittle rocks when tangential tools are used. Bieron's and Nishimatsu's methods are used for radial tools and firm coal with plastic properties. Merchants' and Bieron's methods for determining coal resistance to cutting by tangential tools produce inaccurate results. 14 refs.

  20. The Dynamic Model Based on PFC of Asphalt Concrete Cutting Process and Optimization of Tools Installation%基于PFC的沥青混凝土铣削仿真及刀具安装优化

    Institute of Scientific and Technical Information of China (English)

    周里群; 李军; 邢国

    2012-01-01

    In this paper, based on the superiority of the simulation of the discrete element method with the rheological properties on asphalt concrete, it simulates milling machine cutting process of asphalt concrete , overcome the limitations of the macro continuity hypothesis based on traditional continuum mechanics model, and can make this cutting process visible from microcosmic angle. The research results indicated that the model checked by uniaxial compression test, gets change rule of cutting force and friction force in different cutting angle on cutting knife surface of cutting tools, and gets the conclusion that 5~20 degrees cutting angle in installation tools is good to tools' life.%基于离散元对沥青混凝土流变特性模拟的优越性,对其切削过程进行动态仿真,克服了传统连续介质力学模型的宏观连续性假设的局限性,可以从徽观角度对切削过程进行可视化的数值模拟.研究结果表明:通过单轴压缩试验校正后的模型,得到在不同切削角下切削过程中刀具前刀面受力变化规律,并得出刀具在安装工程中优先选择5~20°切削角的结论,为工程实际提供了参考.

  1. 刀具仿生技术的研究进展%Development of cutting tool bionic technology

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      仿生学可以为提高刀具的耐磨性和工作效率提供良好的借鉴思路。从形态仿生、构形仿生和材料仿生3个方面总结仿生技术在各类刀具设计中的应用,介绍各种仿生刀具的生物体原型、仿生特征以及仿生刀具的应用领域和效果。刀具的仿生设计涉及刀具的几何形状、涂层以及刀具的表面结构,刀具的应用领域包括机械加工、地质与空间勘探以及与人们生活相关的轻工机械等领域。讨论仿生刀具的特征,分析存在的问题,并展望了刀具仿生技术的研究方向。%Bionics can provide better design thoughts to improve wear resistance and cutting efficiency of cutting tool. The applications of bionic technology in the design of various types of cutting tool are summarized from three aspects of structure, form and material. The biological prototype,bionic characteristics,application area and effect of bionic cutting tools are introduced. The bionic designs of cutting tools involve tool geometry,coating and surface structure. The application fields of bionic tools concern with machining,geology,space exploration and light industry machinery associated with daily life. Finally, the characteristics of bionic tools are discussed. The existing problems and development trend of cutting tool bionic technology are also given.

  2. Fundamentals of cutting.

    Science.gov (United States)

    Williams, J G; Patel, Y

    2016-06-06

    The process of cutting is analysed in fracture mechanics terms with a view to quantifying the various parameters involved. The model used is that of orthogonal cutting with a wedge removing a layer of material or chip. The behaviour of the chip is governed by its thickness and for large radii of curvature the chip is elastic and smooth cutting occurs. For smaller thicknesses, there is a transition, first to plastic bending and then to plastic shear for small thicknesses and smooth chips are formed. The governing parameters are tool geometry, which is principally the wedge angle, and the material properties of elastic modulus, yield stress and fracture toughness. Friction can also be important. It is demonstrated that the cutting process may be quantified via these parameters, which could be useful in the study of cutting in biology.

  3. Analysis of Roughness and Flank Wear in Turning Gray Cast Iron Using Cryogenically Treated Cutting Tools

    Directory of Open Access Journals (Sweden)

    B.R. Ramji

    2010-08-01

    Full Text Available The purpose of this research was to examine the flank wear and surface roughness in turning gray cast iron using cryogenically treated carbide inserts. Turning experiments were conducted with cutting velocities: 53, 85, 99, 149 m/sec, feeds: 0.12, 0.16, 0.2, 0.24 mm/rev and a constant depth of cut: 1.5 mm. The specimens were turned using cryogenically treated and non-treated carbide inserts. The cryogenic treatment cycle consisted of cooling the test samples from room temperature to cryogenic temperature of -178.9 C in 3 h, soaking at cryogenic tem perature around 24 h and warming to room temperature in about 5 h. The surface roughness (Ra, R z, Rq and Rt :m of the turned specimens was measured using talysurf and flank wear of the tool was measured using toolm akers microscope. The experimental layout was designed based on the Taguchi’s Orthogonal Array technique and ANOVA was performed to identify the effect of the parameters on the response variables. Cryogenically treated inserts proved superior to the non-treated in all the test conditions in terms of lesser flank wear of the inserts and reduced surface roughness of the specimens. The after turned inserts w ere examined using Scanning Electron Microscopy for studying the flank wear mechanism.

  4. A study of the influence of cutting parameters on micromilling of steel with cubic boron nitride (CBN) tools

    Science.gov (United States)

    Klocke, Fritz; Quito, Fernando; Arntz, Kristian; Souza, Alexandre

    2009-02-01

    It has been concluded in previous studies that Cubic Boron Nitride (CBN) tools have greater wear resistance and superior tool life than other tool materials used in conventional milling, due to chemically stability at high temperatures, high abrasive wear resistance and high degree of hardness; however no research has been conducted about its performance on micro milling. Burr formation has a direct negative effect on product quality and assembly automation in micro milling, therefore adoption of machining strategies and influencing factors were investigated intending to reduce burr formation. This paper also aims at analyzing the interference of cutting parameters on micro milling with CBN tools, such as the influence of cutting speed and feed per tooth on the surface quality and tool life. These outcomes enable us to know which parameters and strategies must be used to achieve better results when micro milling steel with CBN tools.

  5. DIAGNOSTICS OF WORKPIECE SURFACE CONDITION BASED ON CUTTING TOOL VIBRATIONS DURING MACHINING

    Directory of Open Access Journals (Sweden)

    Jerzy Józwik

    2015-05-01

    Full Text Available The paper presents functional relationships between surface geometry parameters, feed and vibrations level in the radial direction of the workpiece. Time characteristics of the acceleration of cutting tool vibration registered during C45 steel and stainless steel machining for separate axes (X, Y, Z were presented as a function of feedrate f. During the tests surface geometric accuracy assessment was performed and 3D surface roughness parameters were determined. The Sz parameter was selected for the analysis, which was then collated with RMS vibration acceleration and feedrate f. The Sz parameter indirectly provides information on peak to valley height and is characterised by high generalising potential i.e. it is highly correlated to other surface and volume parameters of surface roughness. Test results presented in this paper may constitute a valuable source of information considering the influence of vibrations on geometric accuracy of elements for engineers designing technological processes.

  6. Novel Pretreatment of Hard Metal Substrate for Better Performance of Diamond Coated Cutting Tools

    Institute of Scientific and Technical Information of China (English)

    LU Fan-xiu; TANG Wei-zhong; MIAO Jin-qi; HE Li-fu; LI Cheng-ming; CHEN Guang-chao

    2004-01-01

    A surface engineering approach for a novel pre-treatment of hard metal tool substrate for optimum adhesion of diamond coatings is presented. Firstly, an alkaline solution was used to etch the WC grains to generate a rough surface for better mechanical interlocking. Subsequently, surface Co was removed by etching in acid solution. Then the hard metal substrate was boronized to form a compound interlayer which acted as an efficient diffusion barrier to prevent the outward diffusion of Co. Novel nano-microcrystalline composite diamond film coatings with a very smooth surface was deposited on the surface engineering pre-treated hard metal surface. Promising results of measurement in adhesion strength as well as field cutting tests have been obtained.

  7. The Cutting Front Side Geometry in The Applications of D3 Cold Work Tool Steel Material Via Abrasive Water Jet

    OpenAIRE

    Adnan AKKURT

    2013-01-01

    Abrasive water jet cutting that is used as cold cutting technology in industrial applications is preferred as most productive method when especially metallurgic and mechanic specialties of materials are taken into consideration. When the surface quality, speed of processing period and part cost are taken into consideration, which are targeted in D3 cold work tool steel materials used frequently in especially metal industry, it appears that the most appropriate method is ab...

  8. Research and application of fixed cutting angle threading technology%定起点车螺纹工艺研究及应用

    Institute of Scientific and Technical Information of China (English)

    姜源; 张阳; 常文涛; 李全会

    2013-01-01

      一种实现液压支架立柱螺纹定角度车削工艺,该工艺利用数控车螺纹时工件圆周上起刀点相对于主轴卡盘角度位置固定及可调原理,从而实现立柱上特征点(如上下腔接头)与螺纹起刀点位置角度相对固定,并最终得到在外导向套组装预紧后外导向套上腔接头与缸体特征点(如下腔接头)相对位置角度满足图纸设计要求。%This turning process cuts the hydraulic support column at a relatively fixed angle from feature points ,such as upper and lower chamber joints, against thread start-cutting point, by use of a mechanism that exist a fixed and adjustable angle of the start-cutting points at the Circumference of working pieces against the thread cutting-start point. The result is that, after the outer bush assembly pre-tightening, the relative position angle of outer bush upper chamber against cylinder feature points (such as the lower chamber joint) meets the design require-ments.

  9. Using 3D Microscopy to Analyze Experimental Cut Marks on Animal Bones Produced with Different Stone Tools

    Directory of Open Access Journals (Sweden)

    Erika Moretti

    2015-12-01

    Full Text Available This study uses a combination of digital microscopic analysis and experimental archaeology to assess stone tool cut marks on animal bones. We used two un-retouched flint flakes and two burins to inflict cut marks on fresh, boiled, and dry ungulate  bones. The experiment produced three series of three engravings on each bone with each of the experimental tools. The first series involved one single stroke; the second, two strokes in the same direction; and the third, multiple strokes using a to-and-fro movement. We analyzed the striations using a Hirox 3D digital microscope (KH-7700 and collected metric and profile data on the morphology of the cut marks. In order to describe the shape of each cross section, we calculated the ratio between the breadth at the top and the breadth at the floor of cut marks. Preliminary results show that both the tool type and the method of creating the cut mark influence the shape of the resulting groove. In our experiment, morphological parameters can be used to differentiate between marks produced using un-retouched flint flakes and those produced using burins. However, neither morphological nor morphometric analysis allows us to identify the mechanical motion used to produce the cuts, nor the state of the bone (fresh, boiled, or dry at the moment of marking. 

  10. The role of the implementation angle of cuttings of Phyllanthus sellowianus as a reference for a soil protection measure against surface erosion

    Science.gov (United States)

    Rauch, H. P.; Sutili, F. J.; Aschbacher, M.; Müller, B.

    2009-04-01

    Cutting plantation is a very common method of soil bioengineering techniques. The potential of vegetative reproduction is used to install a vegetation cover on eroded slopes to prevent surface erosion. The development of above and below biomass from parts of the stock plant in a very short time and the fast and easy propagation are one of the most important advantages of this soil bioengineering type. Several handbooks (Schiechtl, 1992; Florineth, 2004 and Zeh, 2007) suggest potential plants for vegetative reproduction and describe the procedure of plantation in detail. It is recommended that the cuttings are not driven vertically into the ground. A flat implementation angle guarantees a more uniform rooting of the cutting part driven into the soil, however there are no systematically investigations of the impact of the implementation angle on the biomass performance and consequently on the performance as a surface erosion protection measure. This paper shows results from field investigations focusing on the problem of the impact of the implementation angle of cuttings. In sum 75 specimens of the species of Phyllanthus sellowianus. The plant species was recommended as a native potential soil bioengineering plant by Sutili (s. Sutili, 2006). The cuttings were planted with an average length of 50 cm and diameter of 2 cm. The implementation angle differences between 90 (vertical) 45 and 10 degree. Two months after plantation all plants were excavated and the relevant plant data sets were collected in order to analyse the biomass performance. The field investigations are part of an integrated research project of the University of Natural Resources and Applied Life Sciences, Vienna and the Federal University of Santa Maria, Rio Grande do Sul - Brazil.

  11. Study on Platinum Coating Depth in Focused Ion Beam Diamond Cutting Tool Milling and Methods for Removing Platinum Layer

    Directory of Open Access Journals (Sweden)

    Woong Kirl Choi

    2015-09-01

    Full Text Available In recent years, nanomachining has attracted increasing attention in advanced manufacturing science and technologies as a value-added processes to control material structures, components, devices, and nanoscale systems. To make sub-micro patterns on these products, micro/nanoscale single-crystal diamond cutting tools are essential. Popular non-contact methods for the macro/micro processing of diamond composites are pulsed laser ablation (PLA and electric discharge machining (EDM. However, for manufacturing nanoscale diamond tools, these machining methods are not appropriate. Despite diamond’s extreme physical properties, diamond can be micro/nano machined relatively easily using a focused ion beam (FIB technique. In the FIB milling process, the surface properties of the diamond cutting tool is affected by the amorphous damage layer caused by the FIB gallium ion collision and implantation and these influence the diamond cutting tool edge sharpness and increase the processing procedures. To protect the diamond substrate, a protection layer—platinum (Pt coating is essential in diamond FIB milling. In this study, the depth of Pt coating layer which could decrease process-induced damage during FIB fabrication is investigated, along with methods for removing the Pt coating layer on diamond tools. The optimum Pt coating depth has been confirmed, which is very important for maintaining cutting tool edge sharpness and decreasing processing procedures. The ultra-precision grinding method and etching with aqua regia method have been investigated for removing the Pt coating layer. Experimental results show that when the diamond cutting tool width is bigger than 500 nm, ultra-precision grinding method is appropriate for removing Pt coating layer on diamond tool. However, the ultra-precision grinding method is not recommended for removing the Pt coating layer when the cutting tool width is smaller than 500 nm, because the possibility that the diamond

  12. Modelling the cutting edge radius size effect for force prediction in micro milling

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; Jan, Slunsky

    2008-01-01

    This paper presents a theoretical model for cutting force prediction in micro milling, taking into account the cutting edge radius size effect, the tool run out and the deviation of the chip flow angle from the inclination angle. A parameterization according to the uncut chip thickness to cutting...

  13. Results of investigations into coal cutting by asymmetric disks

    Energy Technology Data Exchange (ETDEWEB)

    Krauze, K.

    1985-02-01

    Effects are analyzed of design and specifications of asymmetric disk cutters on coal cutting by a shearer loader with disk cutters on helical cutting drums. Effects of disk diameter, wedge angle, cutting depth and chip thickness on cutting resistance were analyzed under operational conditions (a coal seam was cut by asymmetric disk cutters). On the basis of analysis of coal resistance to cutting by asymmetric cutting disks, regression equations were derived which describe coal cutting. Effects of disk parameters and cutting conditions on cutting resistance were determined. Analyses show that replacing radial cutting tools with asymmetric disk cutters would cause an increase in energy consumption of cutting and increase coal resistance to cutting. 1 reference.

  14. Adjustable-Viewing-Angle Endoscopic Tool for Skull Base and Brain Surgery

    Science.gov (United States)

    Bae, Youngsam; Liao, Anna; Manohara, Harish; Shahinian, Hrayr

    2008-01-01

    The term Multi-Angle and Rear Viewing Endoscopic tooL (MARVEL) denotes an auxiliary endoscope, now undergoing development, that a surgeon would use in conjunction with a conventional endoscope to obtain additional perspective. The role of the MARVEL in endoscopic brain surgery would be similar to the role of a mouth mirror in dentistry. Such a tool is potentially useful for in-situ planetary geology applications for the close-up imaging of unexposed rock surfaces in cracks or those not in the direct line of sight. A conventional endoscope provides mostly a frontal view that is, a view along its longitudinal axis and, hence, along a straight line extending from an opening through which it is inserted. The MARVEL could be inserted through the same opening as that of the conventional endoscope, but could be adjusted to provide a view from almost any desired angle. The MARVEL camera image would be displayed, on the same monitor as that of the conventional endoscopic image, as an inset within the conventional endoscopic image. For example, while viewing a tumor from the front in the conventional endoscopic image, the surgeon could simultaneously view the tumor from the side or the rear in the MARVEL image, and could thereby gain additional visual cues that would aid in precise three-dimensional positioning of surgical tools to excise the tumor. Indeed, a side or rear view through the MARVEL could be essential in a case in which the object of surgical interest was not visible from the front. The conceptual design of the MARVEL exploits the surgeon s familiarity with endoscopic surgical tools. The MARVEL would include a miniature electronic camera and miniature radio transmitter mounted on the tip of a surgical tool derived from an endo-scissor (see figure). The inclusion of the radio transmitter would eliminate the need for wires, which could interfere with manipulation of this and other surgical tools. The handgrip of the tool would be connected to a linkage similar to

  15. 切削淬硬合金钢42CrMo的PCBN刀具磨损机理研究%Research on Cutting Speed and Cutting Temperature of Cutting Hardened Steel 42CrMo with PCBN Tool

    Institute of Scientific and Technical Information of China (English)

    朱振国; 李旗号

    2011-01-01

    进行了PCBN刀具切削淬硬合金钢42CrMo的实验.通过JSM649OLV型扫描电子显微镜(SEM)观察PCBN刀具的磨损,利用INCA能量分散光谱仪(EDS)分析了刀具磨损面的金属元素成分,对刀具磨损的机理进行分析和探讨.通过对比几种切削速度下刀具的磨损量,获得切削速度的最佳值.%This paper deals with the experiment of hardened steel 42CrMo with PCBN cutting tool, using JSM6490LV type scanning electron microscopy (SEM) to observe PCBN tool wear and using scattered INCA energy spectrometer (EDS) to analyze the metal elements in tool wear, and tool wear mechanism was analysised and discussed. Through comparing with tool wear quantity under several cutting speeds, the optimal cutting speed was obtained.

  16. Performance evaluation of minimum quantity lubrication by vegetable oil in terms of cutting force, cutting zone temperature,tool wear, job dimension and surface finish in turning AISI-1060 steel

    Institute of Scientific and Technical Information of China (English)

    KHAN M.M.A.; DHAR N.R.

    2006-01-01

    In all machining processes, tool wear is a natural phenomenon and it leads to tool failure. The growing demands for high productivity of machining need use of high cutting velocity and feed rate. Such machining inherently produces high cutting temperature, which not only reduces tool life but also impairs the product quality. Metal cutting fluid changes the performance of machining operations because of their lubrication, cooling and chip flushing functions, but the use of cutting fluid has become more problematic in terms of both employee health and environmental pollution. The minimization of cutting fluid also leads to economical benefits by way of saving lubricant costs and workpiece/tool/machine cleaning cycle time. The concept of minimum quantity lubrication (MQL) has been suggested since a decade ago as a means of addressing the issues of environmental intrusiveness and occupational hazards associated with the airborne cutting fluid particles on factory shop floors. This paper deals with experimental investigation on the role of MQL by vegetable oil on cutting temperature, tool wear, surface roughness and dimensional deviation in turning AISI-1060 steel at industrial speed-feed combinations by uncoated carbide insert. The encouraging results include significant reduction in tool wear rate, dimensional inaccuracy and surface roughness by MQL mainly through reduction in the cutting zone temperature and favorable change in the chip-tool and work-tool interaction.

  17. TO DETERMINATION OF INFLUENCE FOR VARIATIONS IN LASER TREATMENT MODES ON TRIBOLOGICAL CHARACTERISTICS OF CUTTING TOOL

    Directory of Open Access Journals (Sweden)

    O. V. Diachenko

    2016-01-01

    Full Text Available The paper considers problems pertaining to higher durability and reliability of a cutting tool for cutting gastronomic products while using laser processing that leads to resistance increase of material operating surfaces against impact forces. Influence of laser fusion with additional doping on structure, microhardness, wear resistance for adhesive coatings of Fe–B–Cr–Si system has been studied in the paper. In order to solve a problem for selection of optimal qualitative and subsequently quantitative composition of a multi-component coating a mathematical modeling method using Scheffe’s simplex lattices has been used in the paper. Similar tendency for measuring micro-structure of all adhesive coatings fused by laser beams has been established in the paper. Increase in beam speed has caused the following microstructure changes: cast equilibrium, dendrite, supersaturated boride, carbide and boride. Response surface models have been found and they provide the possibility to assess influence quantity of laser processing parameters on microhardness of adhesive coatings obtained by laser doping and intensity of their wear under various conditions for all investigated compositions.It has been ascertained that there is no strict correlation between hardness and intensity of coating wear after laser doping used for adhesive coatings. This testifies to the fact that hardening has taken place not only due to an increase of carbide-boride phase, but also due to matrix hardening.In addition, a regression model for coating composition effect on tribological characteristics of the adhesive coatings has revealed that an optimal composition of a multicomponent coating ensuring maximum wear resistance of coatings constitutes B4C is 2/3 and 1/3 TaB. It has been determined that hardening of the adhesive coating after laser doping while using multicomponent coating occurs not only due to increase of carbide-boridnoy phase, but also due to matrix hardening.

  18. Diamond and cBN hybrid and nanomodified cutting tools with enhanced performance: Development, testing and modelling

    DEFF Research Database (Denmark)

    Loginov, Pavel; Mishnaevsky, Leon; Levashov, Evgeny

    2015-01-01

    The potential of enhancement of superhard steel and cast iron cutting tool performance on the basis of microstuctural modifications of the tool materials is studied. Hybrid machining tools with mixed diamond and cBN grains, as well as machining tool with composite nanomodified metallic binder...... are developed, and tested experimentally and numerically. It is demonstrated that both combination of diamond and cBN (hybrid structure) and nanomodification of metallic binder (with hexagonal boron nitride/hBN platelets) lead to sufficient improvement of the cast iron machining performance. The superhard tools...... compared to the tool with the original binder. Computational model of hybrid superhard tools is developed, and applied to the analysis of structure-performance relationships of the tools....

  19. Effect of cutting parameters on machinability characteristics in milling of magnesium alloy with carbide tool

    Directory of Open Access Journals (Sweden)

    Kaining Shi

    2016-01-01

    Full Text Available Magnesium alloy has attracted more attentions due to its excellent mechanical properties. However, in process of dry cutting operation, many problems restrict its further development. In this article, the effect of cutting parameters on machinabilities of magnesium alloy is explored under dry milling condition. This research is an attempt to investigate the impact of cutting speed at multiple feed rates on cutting force and surface roughness, while a statistical analysis is adopted to determine the influential intensities accurately. The results showed that cutting force is affected by the positively constant intensity from feed rate and the increasingly negative intensity from cutting speed. In contrast, surface roughness is determined by the gradually increasing negative tendency from feed rate and the positive effect with constant intensity from cutting speed. Within the range of the experiments, feed rate is the leading contribution for cutting force while the cutting speed is the dominant factor for surface roughness according to the absolute intensity values. Meanwhile, the trends of influencing intensities between cutting force and surface roughness are opposite. Besides, it is also found that in milling magnesium alloy, chip morphology is highly sensitive to cutting speed while the chip quality mainly depends on feed rate.

  20. Research on Vibration Cutting Performance of Particle Reinforced Metallic Matrix Composites SiC_p/Al

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The cutting performance of particle reinforced meta ll ic matrix composites (PRMMCs) SiC p/Al in ultrasonic vibration cutting and comm on cutting with carbide tools and PCD tools was experimentally researched in the paper. The changing rules of chip shape, deformation coefficient, shear angle a nd surface residual stress were presented by ultrasonic vibration cutting. Resul ts show: when adopting common cutting, spiral chip with smaller curl radius will be obtained. The chip with zigzag contour is short ...

  1. The wear of the carbide cutting tools coated with TiN during the milling of Inconel 738

    Science.gov (United States)

    Sebhi, A.; Douib, N.

    2017-02-01

    The machining of superalloy parts still an area not very clear in mechanical manufacturing. It is found to be used in particular areas such as gas turbine, rocket engine, space ships, nuclear reactors, and pumps. The machining of Inconel 738 superalloy has been studied in this context, with the aim to understand the wear behavior with carbide inserts coated with TiN and in order to optimize the cutting parameters before starting the production. The wear behavior of the inserts during the machining process of a very tough austenitic superalloy is unclear, and requires a series of well determined tests. The life of the insert under high stress such as pressure, cutting speed, high temperature, in a hostile zone and in contact with a very tough and harder material is determined. The generated process of wear is very complex, because it is followed by physico-chemical phenomenon appearing on the contact surfaces between the active part of the tool and workpiece.The lifetime of machine tools often depends on the tribological characteristics of the material couples (cutting tool / material to be machined). It has been shown that the most influential parameter is the coating, then comes the sliding speed. A relationship between the wear VB and the roughness Ra is proposed to collect information on the cutting edge and the quality of the tool by measuring the roughness. For wear measurement, an indirect method is used in coupling a Touptek photonics camera to capture and Ttoupview analysis software.

  2. Tribological and wear behavior of HfN/VN nanomultilayer coated cutting tools

    Directory of Open Access Journals (Sweden)

    Willian Aperador Chaparro

    2014-03-01

    Full Text Available Wear and tribological behavior of [HfN/VN]n multinanolayers deposited via magnetron sputtering has been exhaustively studied in this work. Enhancement of both hardness and elastic modulus up to 37 GPa and 351 GPa, respectively, was observed as bilayer periods in the coatings were decreased. The sample with a bilayer period (Λ of 15 nm and bilayer number n = 80, showed the lowest friction coefficient (∼0.15 and the highest critical load (72 N, corresponding to 2.2 and 1.38 times better than those values for the coating deposited with n = 1, respectively. Taking into account the latest results of tungsten carbide (WC inserts were used as substrates to improve the mechanical and tribological properties of [HfN/VN]n coatings as a function of increased interface number and to manage higher efficiency of these coatings in different industrial applications, like machining and extrusion. Their physical, mechanical, and tribological characteristics were investigated, including cutting tests with AISI 1020 steel (workpiece to assess wear as a function of the bilayer number and bilayer period. A comparison of the tribological properties revealed a decrease of flank wear (approximately 24% for WC inserts coated with [HfN/VN]80 (Λ =15 nm, when compared to uncoated tungsten carbide inserts. These results demonstrate the possibility of using [HfN/VN] multilayers as new coatings for tool machining with excellent industrial performance.

  3. An Approach to the Classification of Cutting Vibration on Machine Tools

    OpenAIRE

    Jeng-Fung Chen; Shih-Kuei Lo; Quang Hung Do

    2016-01-01

    Predictions of cutting vibrations are necessary for improving the operational efficiency, product quality, and safety in the machining process, since the vibration is the main factor for resulting in machine faults. “Cutting vibration” may be caused by setting incorrect parameters before machining is commenced and may affect the precision of the machined work piece. This raises the need to have an effective model that can be used to predict cutting vibrations. In this study, an artificial neu...

  4. Simulation and Experimental Research on Cutting Force of Turning Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Zheng Qingchun

    2015-01-01

    Full Text Available This paper mainly establishes a two-dimensional model about the YG8 carbide tool turning TC4 titanium alloy on the basis of ABAQUS. The cutting force of the simulation model was verified by the turning experiment, and the relationships of cutting force with cutting speed, feed rate and rake angle of cutting edge in the model were studied. A prediction model of main cutting force related to cutting speed, feed rate and rake angle was obtained by central composite experiment. Studies have shown that the difference between the cutting force acquired by simulation and by experiment was less than 10%; in a certain range, the cutting force increased with the feed rate, the cutting force decreased with the increase of cutting speed and rake angle, and the influence of feed rate to cutting force was most significant.

  5. Development and characterization of Si{sub 3}N{sub 4} coated AlCrN ceramic cutting tool

    Energy Technology Data Exchange (ETDEWEB)

    Souza, J.V.C.; Nono, M.C.A.; Martins, G.V.; Machado, J.P.B., E-mail: vitor@las.inpe.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Silva, O.M.M. [Instituto de Aeronautica e Espacao (CTA/IAE/AMR), Sao Jose dos Campos, SP (Brazil). Centro Tecnico Aeroespacial; Pimenta, M. [Oerlikon Balzers R. Mealicos Ltda, Jundiai, SP (Brazil)

    2009-07-01

    Nowadays, silicon nitride based cutting tools are used to machine cast iron from the automotive industry and nickel superalloys from the aero industries. Advances in manufacturing technologies (increased cutting speeds, dry machining, etc.) induced the fast commercial growth of physical vapor deposition (PVD) coatings for cutting tools, in order to increase their life time. In this work, a new composition of the Si{sub 3}N{sub 4} ceramic cutting tool was developed, characterized and subsequently coated, using a PVD process, with aluminum chromium nitride (AlCrN). The Si{sub 3}N{sub 4} substrate properties were analyzed by XRD, AFM, hardness and fracture toughness. The AlCrN coating was analyzed by AFM, grazing incidence X-ray diffraction (GIXRD) and hardness. The results showed that this PVD coating could be formed homogeneously, without cracks and promoted a higher surface hardness to the insert and consequently it can produce a better wear resistance during its application on high speed machining. (author)

  6. Precision-cut tissue slices as a tool to predict metabolism of novel drugs

    NARCIS (Netherlands)

    de Graaf, Inge A. M.; Groothuis, Geny M. M.; Olinga, Peter

    2007-01-01

    Precision-cut tissue slices have been applied by many researchers because they represent an organ mini-model that closely resembles the organ from which it is prepared, with all cell types present in their original tissue-matrix configuration. Preparation and incubation methods of precision-cut tiss

  7. Bone cutting.

    Science.gov (United States)

    Giraud, J Y; Villemin, S; Darmana, R; Cahuzac, J P; Autefage, A; Morucci, J P

    1991-02-01

    Bone cutting has always been a problem for surgeons because bone is a hard living material, and many osteotomes are still very crude tools. Technical improvement of these surgical tools has first been their motorization. Studies of the bone cutting process have indicated better features for conventional tools. Several non-conventional osteotomes, particularly ultrasonic osteotomes are described. Some studies on the possible use of lasers for bone cutting are also reported. Use of a pressurised water jet is also briefly examined. Despite their advantages, non-conventional tools still require improvement if they are to be used by surgeons.

  8. Dimensional accuracy of internal cooling channel made by selective laser melting (SLM And direct metal laser sintering (DMLS processes in fabrication of internally cooled cutting tools

    Directory of Open Access Journals (Sweden)

    Ghani S. A. C.

    2017-01-01

    Full Text Available Selective laser melting(SLM and direct metal laser sintering(DMLS are preferred additive manufacturing processes in producing complex physical products directly from CAD computer data, nowadays. The advancement of additive manufacturing promotes the design of internally cooled cutting tool for effectively used in removing generated heat in metal machining. Despite the utilisation of SLM and DMLS in a fabrication of internally cooled cutting tool, the level of accuracy of the parts produced remains uncertain. This paper aims at comparing the dimensional accuracy of SLM and DMLS in machining internally cooled cutting tool with a special focus on geometrical dimensions such as hole diameter. The surface roughness produced by the two processes are measured with contact perthometer. To achieve the objectives, geometrical dimensions of identical tool holders for internally cooled cutting tools fabricated by SLM and DMLS have been determined by using digital vernier calliper and various magnification of a portable microscope. In the current study, comparing internally cooled cutting tools made of SLM and DMLS showed that generally the higher degree of accuracy could be obtained with DMLS process. However, the observed differences in surface roughness between SLM and DMLS in this study were not significant. The most obvious finding to emerge from this study is that the additive manufacturing processes selected for fabricating the tool holders for internally cooled cutting tool in this research are capable of producing the desired internal channel shape of internally cooled cutting tool.

  9. PERFORMANCE STUDY ON AISI316 AND AISI410 USING DIFFERENT LAYERED COATED CUTTING TOOLS IN CNC TURNING

    Directory of Open Access Journals (Sweden)

    K. RAJA

    2015-01-01

    Full Text Available Stainless steel (SS is used for many commercial and industrial applications owing to its high resistance to corrosion. It is too hard to machine due to its high strength and high work hardening property. A surface property such as surface roughness (SR is critical to the function-ability of machined components. SS is generally regarded as more difficult to machine material and poor SR is obtained during machining. In this paper an attempt has been made to investigate the SR produced by CNC turning on austenitic stainless steel (AISI316 and martensitic stainless steel (AISI410 by different cases of coated cutting tool used at dry conditions. Multilayered coated with TiCN/Al2O3, multilayered coated with Ti(C, N, B and single layered coated with TiAlN coated cutting tools are used. Experiments were carried out by using Taguchi’s L27 orthogonal array. The effect of cutting parameters on SR is evaluated and optimum cutting conditions for minimizing the SR are determined. Analysis of variance (ANOVA is used for identifying the significant parameters affecting the responses. Confirmation experiments are conducted to validate the results obtained from optimization.

  10. Observation of Built-up Edge Formation on a Carbide Cutting Tool with Machining Aluminium Alloy under Dry and Wet Conditions

    Directory of Open Access Journals (Sweden)

    Azlan U.A.A.

    2017-01-01

    Full Text Available This paper presents the morphology of built-up edge (BUE formation under wet and dry conditions with low and high cutting speeds. The workpiece materials and cutting tools selected for this work were aluminium alloy and canela carbide inserts graded PM25. The cutting tools underwent turning operation machining tests and their performance was evaluated by the flank wear and observation of the tool wear area. The machining tests were conducted at different spindle speeds and feed rates while the cut depth was kept constant. The analysis showed that formation of the BUE was dominant at low cutting speeds in dry conditions, but in wet conditions at high cutting speeds, a better performance was exhibited in terms of wear analysis.

  11. 先进CNC复合加工刀具和复合切削技术%Summarization of Advanced CNC Composite Cutting Tools and Composite Cutting Technology

    Institute of Scientific and Technical Information of China (English)

    张平亮

    2012-01-01

    The characteristics and application area of advanced CNC composite machining tools in Germany, Japan, Italy and other countries were introduced. The essential hardware, software and expected result of CNC composite cutting technology were expounded. Development of the new CNC composite processing technology in future was proposed.%介绍了德国、日本、意大利等国生产的先进的CNC复合加工刀具的特点与应用范围,阐明了CNC复合切削技术必要的硬软件及期望达到的效果,并提出今后CNC复合加工技术发展方向.

  12. SASfit: A comprehensive tool for small-angle scattering data analysis

    CERN Document Server

    Breßler, Ingo; Thünemann, Andreas F

    2015-01-01

    Small-angle X-ray and neutron scattering experiments are used in many fields of the life sciences and condensed matter research to obtain answers to questions about the shape and size of nano-sized structures, typically in the range of 1 to 100 nm. It provides good statistics for large numbers of structural units for short measurement times. With the ever-increasing quantity and quality of data acquisition, the value of appropriate tools that are able to extract valuable information is steadily increasing. SASfit has been one of the mature programs for small-angle scattering data analysis available for many years. We describe the basic data processing and analysis work-flow along with recent developments in the SASfit program package (version 0.94.6). They include (i) advanced algorithms for reduction of oversampled data sets (ii) improved confidence assessment in the optimized model parameters and (iii) a flexible plug-in system for custom user-provided models. A scattering function of a mass fractal model o...

  13. Effect of cutting parameters on workpiece and tool properties during drilling of Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Yahya Hisman; Yildiz, Hakan [Batman Univ. (Turkey). Dept. of Mechanical Engineering; Oezek, Cebeli [Firat Univ., Elazig (Turkey)

    2016-08-01

    The main aim of machining is to provide the dimensional preciseness together with surface and geometric quality of the workpiece to be manufactured within the desired limits. Today, it is quite hard to drill widely utilized Ti-6Al-4 V alloys owing to their superior features. Therefore, in this study, the effects of temperature, chip formation, thrust forces, surface roughness, burr heights, hole diameter deviations and tool wears on the drilling of Ti-6Al-4 V were investigated under dry cutting conditions with different cutting speeds and feed rates by using tungsten carbide (WC) and high speed steel (HSS) drills. Moreover, the mathematical modeling of thrust force, surface roughness, burr height and tool wear were formed using Matlab. It was found that the feed rate, cutting speed and type of drill have a major effect on the thrust forces, surface roughness, burr heights, hole diameter deviations and tool wears. Optimum results in the Ti-6Al-4 V alloy drilling process were obtained using the WC drill.

  14. 硬质合金孔加工刀具的技术进展%Technical Development of Cemented Carbide Cutting Tools for Hole Machining

    Institute of Scientific and Technical Information of China (English)

    王弢; 柯亚仕; 周一丹

    2011-01-01

    The types of cutting tools for hole machining commonly used in modem manufacturing techniques, carbide cutting tool materials and preparations were introduced briefly. Taking drill as an example, the influences of tool parameters design, edge grinding and cutting edge preparation technology on cutting performance were analyzed. The developing trends of cemented carbide cutting tools for hole machining were summarized.%简要介绍了现代制造技术中常用孔加工刀具的种类、硬质合金刀具的材料与制备.以钻头为例,分析了刀具参数、刃磨、刃口钝化技术对切削性能的影响,综述了硬质合金孔加工刀具技术的发展趋势.

  15. Removal Tools are Faster and Produce Less Force and Torque on the Helmet Than Cutting Tools During Face-Mask Retraction.

    Science.gov (United States)

    Jenkins, Heather L; Valovich, Tamara C; Arnold, Brent L; Gansneder, Bruce M

    2002-09-01

    OBJECTIVE: To investigate the retraction time, forces, and torques applied to the football helmet during removal of the face mask with different face-mask removal tools. DESIGN AND SETTING: Subjects retracted the face mask of a football helmet mounted to a force platform in a laboratory setting. They removed a standard face mask by cutting or removing (or both) the lateral plastic loop straps using 4 different tools: the Trainer's Angel (TA), FM Extractor (FM), power screwdriver (SD), and Quick Release System (QR) in a counterbalanced fashion. SUBJECTS: Eighteen certified athletic trainers participated in this study. MEASUREMENTS: We started measuring time when the subject picked up the tool and ended when the face mask was in a fully retracted position. Maximum forces and torques were measured from the force platform during the retraction process. RESULTS: The SD and QR retracted the face mask significantly faster than the TA and FM. Forces producing superior-inferior translation were least with the SD. The SD and QR produced less lateral translation and rotation and lateral flexion moment than the TA and FM. The FM produced less torque in the lateral flexion moment than the TA. CONCLUSIONS: Tools that removed the loop straps (SD, QR) were faster and produced less force and torque on the helmet than the tools that cut through the loop straps (TA, FM).

  16. Surface Layer States of Worn Uncoated and TiN-Coated WC/Co-Cemented Carbide Cutting Tools after Dry Plain Turning of Carbon Steel

    Directory of Open Access Journals (Sweden)

    Johannes Kümmel

    2013-01-01

    Full Text Available Analyzing wear mechanisms and developments of surface layers in WC/Co-cemented carbide cutting inserts is of great importance for metal-cutting manufacturing. By knowing relevant processes within the surface layers of cutting tools during machining the choice of machining parameters can be influenced to get less wear and high tool life of the cutting tool. Tool wear obviously influences tool life and surface integrity of the workpiece (residual stresses, surface quality, work hardening, etc., so the choice of optimised process parameters is of great relevance. Vapour-deposited coatings on WC/Co-cemented carbide cutting inserts are known to improve machining performance and tool life, but the mechanisms behind these improvements are not fully understood. The interaction between commercial TiN-coated and uncoated WC/Co-cemented carbide cutting inserts and a normalised SAE 1045 steel workpiece was investigated during a dry plain turning operation with constant material removal under varied machining parameters. Tool wear was assessed by light-optical microscopy, scanning electron microscopy (SEM, and EDX analysis. The state of surface layer was investigated by metallographic sectioning. Microstructural changes and material transfer due to tribological processes in the cutting zone were examined by SEM and EDX analyses.

  17. Effects of heat on cut mark characteristics.

    Science.gov (United States)

    Waltenberger, Lukas; Schutkowski, Holger

    2017-02-01

    Cut marks on bones provide crucial information about tools used and their mode of application, both in archaeological and forensic contexts. Despite a substantial amount of research on cut mark analysis and the influence of fire on bones (shrinkage, fracture pattern, recrystallisation), there is still a lack of knowledge in cut mark analysis on burnt remains. This study provides information about heat alteration of cut marks and whether consistent features can be observed that allow direct interpretation of the implemented tools used. In a controlled experiment, cut marks (n=25) were inflicted on pig ribs (n=7) with a kitchen knife and examined using micro-CT and digital microscopy. The methods were compared in terms of their efficacy in recording cut marks on native and heat-treated bones. Statistical analysis demonstrates that floor angles and the maximum slope height of cuts undergo significant alteration, whereas width, depth, floor radius, slope, and opening angle remain stable. Micro-CT and digital microscopy are both suitable methods for cut mark analysis. However, significant differences in measurements were detected between both methods, as micro-CT is less accurate due to the lower resolution. Moreover, stabbing led to micro-fissures surrounding the cuts, which might also influence the alteration of cut marks.

  18. 硬质合金刀具钎焊后性能变化的研究%Changes in properties of carbide cutting tools after being brazed

    Institute of Scientific and Technical Information of China (English)

    赵丽杰; 王贵成; 王冬

    2001-01-01

    对硬质合金刀具钎焊前后的硬度、裂纹形成及变化、焊缝质量和切削性能等进行了大量的试验研究.结果表明:硬质合金刀具钎焊后硬度下降范围在HRA1以内;采用延长钎焊后保温时间和增加补偿垫片均可以减少或避免刀具表面裂纹的产生;对18CrMnTi渗碳淬火齿轮(HRC55~58)单齿侧刃铣削中钎焊刀具的切削性能同机夹刀具相比无明显差异.它为硬质合金钎焊刀具在精密切削FMS和其他自动化加工中的广泛应用提供了实验和理论依据.%Presents the experimental tests run on hardness of carbide cutting tools before and after being brazed, initiation and propagation of cracks in them, quality of weld and cutting performance of these cutting tools, and the experimental test results which show that the reduction in hardness of carbide cutting tools after being brazed is within HRA1, the initiation of cracks in the surface of cutting tools can be reduced or eliminated by prolonging the holding time for the cutting tools after being brazed and adding shims, and the cutting performance of brazed cutting tools with single cutting edge made of 18CrMnTi is similar to that of fixed machining cutting tool.

  19. VACUUM BRAZING OF ULTRASONIC CUTTING TOOL%超声切割刀具的真空钎焊

    Institute of Scientific and Technical Information of China (English)

    刘会杰; 顾世鹏; 李广

    2000-01-01

    Vacuum brazing technology of a type of ultrasonic cutting tool is introduced in this paper. The main contents are composed of brazing riller metal, brazing method and brazing procedure. The cutting tool is made of high - speed tool - steel blade and titanium ahoy tool carrier. The brazing filler metal is Ag - Cu eutectic alloy. The brazing parameters are vacuum 7.5 ×Pa,brazing temperature 830 ℃ ,temperature holding time 10 min。%介绍了超声切割刀具的真空钎焊技术,主要内容包括钎焊材料、钎焊方法和钎焊工艺。刀具由高速钢刀片和钛合金刀杆组成,所用钎料为Ag-Cu共晶钎料。钎焊工艺参数为:真空度7.5 xPa,钎焊温度830℃,保温时间10 min。

  20. Development of a Metal Cutting Tool Fase in Order to Create the Conditions of Ringed Chips Wrapping

    Science.gov (United States)

    Korchuganova, M.; Syrbakov, A.; Chernysheva, T.; Ivanov, G.; Korchuganov, M.

    2016-08-01

    When processing ductile metals with high cutting speed, there is a need to take additional measures for a comfortable and safe formation and removal of chips. In the conditions of large-scale manufacture, it is recommended to produce flow chips in the form of short fragments, while in the conditions of small-lot and single-piece manufacture, it is reasonable to wrap the chips spirally with a rather small turn radius. Such way of chips formation reduces the time of its removal from the working area as well as facilitates its transportation and processing. In order to solve the problem of chip wrapping and breakage, almost all modern manufacturers of tools with replaceable many-sided plates (RMSP) followed the way of complication of tool faces and determination of the areas of effective chip breaking. On the one hand, the suggested solution turns out to be effective; however, as showed the analysis of recommended cutting modes for complex forms of RMSP made by leading manufacturers, they all correspond to the definite cross section of the cut-layer S/t=0.1.

  1. Multi-objective optimization of cutting parameters in turning using grey relational analysis

    OpenAIRE

    2013-01-01

    This study presents optimization of performance characteristics in unidirectional glass fiber reinforced plastic composites using Taguchi method and Grey relational analysis. Performance characteristics such as surface roughness and material removal rate are optimized during rough cutting operation. Process parameters including tool nose radius, tool rake angle, feed rate, cutting speed, cutting environment and depth of cut are investigated using mixed L18 orthogonal array. Grey relation anal...

  2. A Hard Sell: Factors Influencing the Interwar Adoption of Tungsten Carbide Cutting Tools in Germany, Britain, and the United States.

    Science.gov (United States)

    Giffard, Hermione

    2015-10-01

    Cemented tungsten carbide cutting tools-virtually unknown to historians-came on the market in the late 1920s. Although existing literature alleges that their adoption was rapid and universal, contemporary data indicate that the rate of adoption in fact took many decades and varied greatly between the world's three leading industrialized economies of the time: Germany, England, and the United States. This article suggests that the explanation lies in differing national environments for innovation in the interwar period. It looks at many features that influence adoption by users and argues that the feature emphasized in the literature, increased cutting speed, was not the primary consideration behind adoption, but rather metal shortages. It thereby casts doubt on what measures of national productivity show. The case raises important questions about the use of production efficiency to make international comparisons and about the role of patent monopolies in introducing production innovations.

  3. Error compensation for tool-tip trace during cutting of laminated paper for rapid prototyping

    Institute of Scientific and Technical Information of China (English)

    Yucheng DING; Changhe LI; Dichen LI; Guoxin YU

    2009-01-01

    Laminated object manufacturing (LOM) is one of the commercialized rapid prototyping (RP) processes,where a focused laser is usually used to cut the crosssection contours of a 3 D part and the grid hatchings of the partexterior region on a sheet paper stackwise. Using a laser beam as a cutter can be costly, and the thermal burning of a sheet paper along a laser scanning path can also cause an environment-polluting smoke. This paper presents a paper laminating RP system using a knife as the paper cutter instead of a laser beam. The knife holder is mounted through a radial bearing on the X-Y positioning mechanism in such a way that the knife tip is eccentric to the bearing axis by a small distance (so-called offset). Therefore, the knife tip, which engages into the sheet paper during cutting, tends to follow the path of the XY-driven bearing axis by the error that depends on the path tangential and the eccentricity of the knife tip. A tractrix model is applied to describe the kinetic motion of the knife tip and a method is formulated to compensate for the tracing error of the eccentric knife tip by modifying the original cross-section contours of the part for each layer based on the tractrix equation. A study has also been performed regarding the effect of the knife tip geometry on the cutting notch of the sheet paper and on the roughness of the finished part.

  4. 绿色刀具设计的概念及关键技术%Concept & Key Technologies of Green Cutting Tool Design

    Institute of Scientific and Technical Information of China (English)

    王跃进

    2001-01-01

    介绍了绿色刀具设计的概念及绿色材料选择技术、面向可拆卸设计技术、面向可回收设计技术、绿色刀具评价方法等关键技术,指出绿色刀具设计与制造技术的应用将引起刀具产业的深刻变革。%The concept of green cutting tool design and its key technologies, including selection technology for green mate- rials, design technology for disassembly, design technology for recovering and evaluation methods for green cutting tools are introduced. It is pointed out that a profound change will be created in the cutting tool industry with increasing applications of the green cutting tool design and manufacturing technologies.

  5. Numerical Simulation and Research for Ceramic Cutting Tools High Speed Dry Cutting Processing%陶瓷刀具高速干切削加工数值仿真研究

    Institute of Scientific and Technical Information of China (English)

    华希俊; 戚洪强; 符永宏; 杜志华; 廖茜

    2012-01-01

    Ceramic cutting tools at high temperature can produce self-lubricating phenomenon, which can play a friction and anti-wear effect role. In this paper, take the A1,O3ceramic cutting tool for an example. In the high temperature situation, the surface of tool can produce the self-lubricating film. With the help of finite element analysis DEFORM-3D,building a HSM cutting AISI-1045 model,for seeking for the speed of the lubrication phenomenon which can produce the self-lubricating phenomenon and researching for cutting the principal cutting force、 stress distribution, the temperature distribution on the rake face and tool wear state, etc. Research shows that; when cutting speed is 270 m/min, the temperature of cutting tool surface is as high as 842 ℃, which can produce self-lubricating phenomenon.%陶瓷刀具在高温作用下会产生自润滑现象,可起到减摩、抗磨作用.论文以Al2O3陶瓷刀具为例,在高温下刀具表面产生自润滑薄膜,利用有限元分析软件DEFORM-3D,建立高速切削AlSI——1045模型,分析Al2O3陶瓷刀具在高速切削加工时,产生自润滑现象所需切削速度,以及在高速切削时,刀具表面的主切削力、应力分布、温度分布和刀具的磨损状态等.研究表明:当切削速度为270m/min,时,刀具表面温度高达842℃,能够产生自润滑现象.

  6. ANALYSIS OF CUTTING FORCE AND CHIP MORPHOLOGY DURING HARD TURNING OF AISI D2 STEEL

    Directory of Open Access Journals (Sweden)

    X. M. ANTHONY

    2015-03-01

    Full Text Available In this research work AISI D2 tool steel at a hardness of 55 HRC is being used for experimental investigation. Cutting speed, feed rate and depth of cut are the cutting parameters considered for the experimentation along with tool geometry namely, nose radius, clearance angle and rake angle. Three different cutting tool materials are used for experimentation namely multicoated carbide, cermet and ceramic inserts. The cutting force generated during the machining process is being measured using Kistler dynamometer and recorded for further evaluation. The chips produced during the machining process for every experimental trail is also collected for understanding the chip morphology. Based on the experimental data collected Analysis of Variance (ANOVA was conducted to understand the influence of all cutting parameters and tool geometry on cutting force.

  7. [Use of individual protection equipment among nursing workers injured by puncture-cutting tools].

    Science.gov (United States)

    Sarquis, L M; Felli, V E

    2000-01-01

    The present study analyzed work related accidents involving nursing personnel from a public hospital in the state of São Paulo. The study population comprised the entire nursing staff. The results obtained showed a high incidence of accidents with puncture-cutting instruments, particularly among the auxilliary nursing staff, which indicates that these workers don't often use individual protection equipment, even when it is made available at the work place. Due to the manipulation of sharp instruments, nursing personnel are especially vulnerable to suffer biological risks and serious diseases. These results indicate the need to prevent the occurrence of such accidents.

  8. Chemical and mechanical properties of silica hybrid films from NaOH catalyzed sols for micromachining with diamond cutting tools

    Energy Technology Data Exchange (ETDEWEB)

    Prenzel, T., E-mail: tprenzel@uni-bremen.de [Stiftung Institut für Werkstofftechnik, Badgasteiner Str. 3, 28359 Bremen (Germany); Mehner, A. [Stiftung Institut für Werkstofftechnik, Badgasteiner Str. 3, 28359 Bremen (Germany); Lucca, D.A.; Qi, Y.; Harriman, T.A. [School of Mechanical and Aerospace Engineering, 218 Engineering North, Oklahoma State University, Stillwater, OK 74078 (United States); Mutlugünes, Y. [Labor für Mikrozerspanung — LFM, Badgasteiner Str. 2, 28359 Bremen (Germany); Shojaee, S.A. [School of Mechanical and Aerospace Engineering, 218 Engineering North, Oklahoma State University, Stillwater, OK 74078 (United States); Wang, Y.Q.; Williams, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Nastasi, M. [Nebraska Center for Energy Sciences Research, University of Nebraska, 230 Whittier Research Center, 2200 Vine Street Lincoln, NE 68583-0857 (United States); Zoch, H.-W. [Stiftung Institut für Werkstofftechnik, Badgasteiner Str. 3, 28359 Bremen (Germany); Swiderek, P. [Institute of Applied and Physical Chemistry, University of Bremen, Leobener Straße, 28359 Bremen (Germany)

    2013-03-01

    Manufacturing of microstructured mold surfaces was realized by the micromachining of thick sol–gel silica hybrid coatings. The films were deposited onto pre-machined steel molds by spin coating using NaOH-catalyzed sols from organosilicate precursors. The effect of the sol synthesis and the heat treatment on the mechanical and chemical properties of these films was studied in order to develop thick and crack-free films with appropriate properties for micromachining with diamond cutting tools. The hardness was measured by nanoindentation as a function of the heat treatment temperature. The transition from soft organic gel films to hard glass-like films due to the thermal treatment was characterized by X-ray photoelectron spectroscopy, elastic recoil detection, and Raman and infrared spectroscopies. The films from NaOH catalyzed sols showed a complex transition from aliphatic carbon originating from hydrocarbon groups to carbonates, carboxylates and disordered carbon clusters. - Highlights: ► Thick silica hybrid films were micromachined with diamond cutting tools. ► The nanoindentation hardness increased with the heat treatment temperature. ► The role of sodium hydroxide in base catalyzed silica sols was studied. ► Formation of carbonates, carboxylates and disordered carbon was observed.

  9. Microstructure and mechanical properties of titanium nitride coatings for cemented carbide cutting tools by pulsed high energy density plasma

    Institute of Scientific and Technical Information of China (English)

    PENG Zhijian; MIAO Hezhuo; QI Longhao; GONG Jianghong; YANG Size; LIU Chizi

    2003-01-01

    Hard, wear-resistant and well-adhesive titanium nitride coatings on cemented carbide cutting tools were prepared by the pulsed high energy density plasma technique at ambient temperature. The results of Auger spectra analysis indicated that the interface between the coating and substrate was more than 250 nm.Under optimized deposition conditions, the highest critical load measured by nanoscratch tester was more than 90 mN, which meant that the TiN film was well adhesive to the substrate; the highest nanohardness and Young's modulus according to nanoindentation tests were near to 27 and 450 GPa. The results of cutting tests evaluated by turning hardened CrWMn steel in industrial conditions indicated that the wear resistance and edge life of the cemented carbide tools were enhanced dramatically because of the deposition of titanium nitride coatings. These improvements were attributed to the three combined effects: the deposition and ion implantation of the pulsed plasma and the becoming finer of the grain sizes.

  10. Si3N4 ceramic cutting tool sintered with CeO2 and Al2O3 additives with AlCrN coating

    Directory of Open Access Journals (Sweden)

    José Vitor Candido Souza

    2011-12-01

    Full Text Available Ceramic cutting tools are showing a growing market perspective in terms of application on machining operations due to their high hardness, wear resistance, and machining without a cutting fluid, therefore are good candidates for cast iron and Nickel superalloys machining. The objective of the present paper was the development of Si3N4 based ceramic cutting insert, characterization of its physical and mechanical properties, and subsequent coating with AlCrN using a PVD method. The characterization of the coating was made using an optical profiler, XRD, AFM and microhardness tester. The results showed that the tool presented a fracture toughness of 6.43 MPa.m½ and hardness of 16 GPa. The hardness reached 31 GPa after coating. The machining tests showed a decrease on workpiece roughness when machining with coated insert, in comparison with the uncoated cutting tool. Probably this fact is related to hardness, roughness and topography of AlCrN.

  11. MALDI mass spectrometry imaging: A cutting-edge tool for fundamental and clinical histopathology.

    Science.gov (United States)

    Longuespée, Rémi; Casadonte, Rita; Kriegsmann, Mark; Pottier, Charles; Picard de Muller, Gaël; Delvenne, Philippe; Kriegsmann, Jörg; De Pauw, Edwin

    2016-07-01

    Histopathological diagnoses have been done in the last century based on hematoxylin and eosin staining. These methods were complemented by histochemistry, electron microscopy, immunohistochemistry (IHC), and molecular techniques. Mass spectrometry (MS) methods allow the thorough examination of various biocompounds in extracts and tissue sections. Today, mass spectrometry imaging (MSI), and especially matrix-assisted laser desorption ionization (MALDI) imaging links classical histology and molecular analyses. Direct mapping is a major advantage of the combination of molecular profiling and imaging. MSI can be considered as a cutting edge approach for molecular detection of proteins, peptides, carbohydrates, lipids, and small molecules in tissues. This review covers the detection of various biomolecules in histopathological sections by MSI. Proteomic methods will be introduced into clinical histopathology within the next few years.

  12. 硬质合金切削刀片优化设计%Optimum Design of Cemented Carbide Cutting Tools

    Institute of Scientific and Technical Information of China (English)

    汪志超; 谢平; 罗煜

    2011-01-01

    In order to reduce the manufacturing costs of cemented carbide cutting blades, various methods can be adopted such as adjusting the tolerance zone of the products, designing the protective straight sets for the sharp edge products with back angle bigger than 0°, and ensuring the mold's accuracy up to M level for the negative angle blades. Combined with modem high precision mold manufacturing technology and precision pressing technology, 1%~3.5% of manufacturing costs in the colligation of material, labor and machine can be saved.%为降低硬质合金切削刀片的制造成本,可以通过控制产品的公差带,为法后角大于0°的产品的锋利刃口设计保护性直台,为负角刀片设计周边尺寸可直接压制达到M级精度等级水平的模具,结合现代高精度模具制造技术和精密压制技术,在物料成本、人工费用、机器费用三方面综合达到节约硬质合金产品制造成本1%~3.5%的目的.

  13. Application of Taguchi Method for Analyzing Factors Affecting the Performance of Coated Carbide Tool When Turning FCD700 in Dry Cutting Condition

    Science.gov (United States)

    Ghani, Jaharah A.; Mohd Rodzi, Mohd Nor Azmi; Zaki Nuawi, Mohd; Othman, Kamal; Rahman, Mohd. Nizam Ab.; Haron, Che Hassan Che; Deros, Baba Md

    2011-01-01

    Machining is one of the most important manufacturing processes in these modern industries especially for finishing an automotive component after the primary manufacturing processes such as casting and forging. In this study the turning parameters of dry cutting environment (without air, normal air and chilled air), various cutting speed, and feed rate are evaluated using a Taguchi optimization methodology. An orthogonal array L27 (313), signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to analyze the effect of these turning parameters on the performance of a coated carbide tool. The results show that the tool life is affected by the cutting speed, feed rate and cutting environment with contribution of 38%, 32% and 27% respectively. Whereas for the surface roughness, the feed rate is significantly controlled the machined surface produced by 77%, followed by the cutting environment of 19%. The cutting speed is found insignificant in controlling the machined surface produced. The study shows that the dry cutting environment factor should be considered in order to produce longer tool life as well as for obtaining a good machined surface.

  14. STATISTICAL ANALYSIS OF ENERGY CONSUMPTION DURING THE CUTTING OF FROZEN MEAT BLOCKS USING MULTIPLE EDGE TOOL

    Directory of Open Access Journals (Sweden)

    A. B. Lisitsyn

    2016-01-01

    Full Text Available Abstract Currently, frozen meat blocks are widely used in meat processing for production of sausages and other meat products. Efficient grinding of frozen raw meat is an urgent task for meat industry professionals. The V.M.  Gorbatov All-Russian Meat Research Institute has developed energy- and resource-saving process for grinding of frozen meat blocks by milling. Determination of energy consumption for grinding of raw materials by multiple edge tools (milling tools is the most important step in the creating of new type mincing machine.

  15. Prediction of Cutting Tool Life Based on Support Vector Regression%基于支持向量回归机的刀具寿命预测

    Institute of Scientific and Technical Information of China (English)

    侍红岩; 吴晓强; 张春友

    2015-01-01

    刀具寿命是制定刀具需求计划、衡量刀具性能和核算成本等的重要依据。针对现有神经网络方法在预测刀具寿命方面存在的不足,提出了一种新的基于支持向量回归机的刀具寿命预测方法。在分析了影响刀具寿命预测主要因素的基础上,建立了基于支持向量回归机的刀具寿命预测模型。应用实例的仿真结果表明,所建立的预测模型具有较强的推广能力和较高的预测精度。%Cutting tool life is an important foundation for setting down cutting tool demand plan,weighing cutting tool capability and accounting cost.Aiming at the deficiencies of existing methods of neural network in prediction of cutting tool life,a new prediction method for cutting tool life was proposed based on support vector regression.Analyzing the major fac-tors which affecting prediction of cutting tool life,based on which the prediction model of cutting tool life based on support vector regression was proposed.The simulation results of application instance show that the prediction model has strong generalization ability and high prediction precision.

  16. Characteristics of machined surface controlled by cutting tools and conditions in machining of brittle material

    Institute of Scientific and Technical Information of China (English)

    Yong-Woo KIM; Soo-Chang CHOI; Jeung-Woo PARK; Deug-Woo LEE

    2009-01-01

    One of the ultra-precision machining methods was adapted for brittle material as well as soft material by using multi-arrayed diamond tips and high speed spindle. Conventional machining method is too hard to control surface roughness and surface texture against brittle material because the particles of grinding tools are irregular size and material can be fragile. Therefore, we were able to design tool paths and machine controlled pattern on surface by multi-arrayed diamond tips with uniform size made in MEMS fabrication and high speed spindle, and the maximum speed was about 3×105 r/min. We defined several parameters that can affect the machining surface. Those were multi-array of diamond tips (n×n), speed of air spindle and feeding rate. The surface roughness and surface texture can be controlled by those parameters for micro machining.

  17. Aplicaciones extraorales del bisturí piezoeléctrico Extraoral uses of a piezoelectric surgical cutting tool

    Directory of Open Access Journals (Sweden)

    J. González Lagunas

    2009-02-01

    Full Text Available Presentamos nuestra experiencia con el empleo de un bisturí piezoeleéctrico con el fin de efectuar diferentes osteotomias extraorales, Estas indicaciones no se han presentado previamente en la literatura. En los últimos 6 meses hemos utilizado este intrumento para efectuar osteotomías en el cóndilo y en la eminencia articular, para tomar injerto de calota craneal y para realizar las osteotomias de la rinoplastia. Este instrumento permite una inea de osteotomia precisa sin el riesgo de lesionar los tejidos blandos vecinos. Se discuten las ventajas e inconvenientes del instrumento según el procedimiento realizado.We report our experience with the use of a piezoelectric surgical cutting tool in performing extraoral osteotomies. These indications have not been reported previously in the literature. In the last 6 months we have used this instrument to perform osteotomy on the temporomandibular condyle and articular eminence, to obtain grafts from the skull, and to perform osteotomy for rhinoplasty. This instrument can be used to makes an osteotomy cut without risk of injuring adjacent soft tissues. Its advantages and disadvantages are discussed in accordance with the procedure performed.

  18. Micro Cutting Tools and Micro Drilling Technology%微细刀具与微钻削关键技术

    Institute of Scientific and Technical Information of China (English)

    李秋玥; 贾晓鸣; 张好强

    2014-01-01

    微小孔加工在小型化、集成化的制造领域得到越来越广泛的应用,人们对微小孔加工尤其是微钻削加工技术的研究逐步深入。对微钻削加工技术及微细刀具进行了综合的介绍,分别从微细钻削刀具、微钻削理论、切屑分析、刀具磨损等方面进行了论述,提出微钻削与常规尺度钻削的差异,并对微钻削技术的发展前景进行展望。%The machining of micro holes is widely used in miniature and integrated manufacturing fields. The machi-ning technology of micro holes especially micro drilling was studied deeply. The technology of micro drilling and mi-cro cutting tools is introduced. The micro drilling tool,micro drilling theory,chip analysis and tool wear,etc is dis-cussed respectively. The difference between micro drilling and conventional drilling is put forward. The development of micro drilling technology is prospected.

  19. Fracture toughness of advanced alumina ceramics and alumina matrix composites used for cutting tool edges

    Directory of Open Access Journals (Sweden)

    M. Szutkowska

    2012-10-01

    Full Text Available Purpose: Specific characteristics in fracture toughness measurements of advanced alumina ceramics and alumina matrix composites with particular reference to α-Al2O3, Al2O3-ZrO2, Al2O3-ZrO2-TiC and Al2O3-Ti(C,N has been presented.Design/methodology/approach: The present study reports fracture toughness obtained by means of the conventional method and direct measurements of the Vickers crack length (DCM method of selected tool ceramics based on alumina: pure alumina, alumina-zirconia composite with unstabilized and stabilized zirconia, alumina–zirconia composite with addition of TiC and alumina–nitride-carbide titanium composite with 2wt% of zirconia. Specimens were prepared from submicro-scale trade powders. Vicker’s hardness (HV1, fracture toughness (KIC at room temperature, the indentation fracture toughness, Young’s modulus and apparent density were also evaluated. The microstructure was observed by means of scanning electron microscopy (SEM.Findings: The lowest value of KIC is revealed by pure alumina ceramics. The addition of (10 wt% unstabilized zirconia to alumina or a small amount (5 wt% of TiC to alumina–zirconia composite improve fracture toughness of these ceramics in comparison to alumina ceramics. Alumina ceramics and alumina-zirconia ceramics reveal the pronounced character of R-curve because of an increasing dependence on crack growth resistance with crack extension as opposed to the titanium carbide-nitride reinforced composite based on alumina. R-curve has not been observed for this composite.Practical implications: The results show the method of fracture toughness improvement of alumina tool ceramics.Originality/value: Taking into account the values of fracture toughness a rational use of existing ceramic tools should be expected.

  20. Study on Cutting Performance with Mocro-texturing Self-lubricated Tools%微织构自润滑刀具的切削性能研究

    Institute of Scientific and Technical Information of China (English)

    吴泽; 邓建新; 亓停; 连云崧; 赵军

    2011-01-01

    Micro-textures were made using laser on the rake face of the cemented carbide tools. Molybdenum disulfide (MoS2) solid lubricants were embedded into the micro-grooves to form micro-texturing self-lubricated cutting tools(MTR-1 and MTR-2). Dry cutting tests on 45 hardened steel were ean-ied out with these self-lubricated cutting tools and conventional cemented carbide tools MTO. As the results, the cutting forces and the rake wear with the micro-texturing self-lubricated cutting tools were greatly reduced compared with that of conventional cemented carbide tools. Meanwhile, the machinability with the self-lubricated cutting tools was effected by the structure of the textures, and it can be improved by the reduction in bonding of the chip with better micro-texturing design.%采用激光加工方法在硬质合金车刀前刀面月牙洼易磨损区域加工微织构并填充固体润滑剂MoS2,制备了微织构自润滑刀具(MTR-1和MTR-2),并与传统硬质合金刀具MTO进行了干切削淬火45钢的对比试验.试验结果发现,与传统硬质合金刀具MTO相比,微织构自润滑刀具能够显著降低切削力、减小刀具前刀面磨损.同时,微织构自润滑刀具的切削性能受微织构结构影响,合理的微织构结构能够减少切屑的粘结,从而提高微织构自润滑刀具的切削性能.

  1. On the cutting tool of coated high speed steel%现代刀具材料系列讲座(三) 涂层高速钢刀具

    Institute of Scientific and Technical Information of China (English)

    于启勋

    2001-01-01

    In this paper, the cutting performance of the cutting tool of coated high speed steel is introduced. Some cutting data of coated and uncoated high speed steel cutting tools are listed.%介绍了涂层高速钢刀具的切削性能,并列出了涂层与未涂层高速钢刀具的对比切削数据。

  2. Application of the CBR method for adding the process of cutting tools and parameters selection

    Science.gov (United States)

    Ociepka, P.; Herbuś, K.

    2016-08-01

    The paper presents a method, basing on engineering knowledge and experience, designated to aid the selection of tools and machining parameters for the processes of turning. In this method, the informatics system is built basing on a Case Based Reasoning (CBR) method. This is a method of problems solving based on experience. It consists in finding analogies between the currently being solved task, and earlier realized tasks that have been stored in the database of the CBR system. The article presents the structure of the developed software, as well as the functioning of the CBR method. It also presents the possibility of integrating the developed method with the CAM module of the SIEMENS PLM NX program.

  3. CutLHCO: A Consumer-Level Tool for Implementing Generic Collider Data Selection Cuts in the Search for New Physics

    CERN Document Server

    Walker, Joel W

    2012-01-01

    A new computer program named CutLHCO is introduced, whose function is the implementation of generic data selection cuts on collider event specification files in the standardized .lhco format. This software is intended to fill an open market niche for a lightweight yet flexible "consumer-level" alternative to the ROOT data analysis framework. The primary envisioned application is as a filter on output produced by the PGS4 and DELPHES detector simulations, which are themselves lightweight alternatives to the GEANT4 based solutions favored by the large LHC experiments. All process control instructions are provided via a compact and powerful card file input syntax that efficiently facilitates the reasonable approximation of most event selection strategies and specialized discovery statistics commonly employed by the CMS and ATLAS collaborations. The structure, function, invocation and usage of the most recent CutLHCO 2.0 program version are documented thoroughly, including a detailed deconstruction of several exa...

  4. The Investigation of Tool Selection in High-speed Cutting Technology%高速切削技术中刀具选用问题探讨

    Institute of Scientific and Technical Information of China (English)

    张艳杰

    2012-01-01

    高速切削技术是20世纪90年代迅速走向实际应用的先进加工技术,高速切削刀具的选用是实现高速切削加工的关键技术之一。生产实践证明,高速切削刀具必须具备可靠的安全性和高的耐用度。文章从刀具材料、刀具结构、刀杆结构、刀具动平衡几个方面介绍了高速切削技术中刀具的选用。%High-speed cutting is a advanced processing technique that sprang into application during tile 1990s, and high-speed cutting tool technique is one of the key techniques to guarantee it. As is proved in practice, high-speed cutting tool must possess reliable security and durabihty. This paper deals with selection of cutting tool in respect of the material and structure of cutting tool, structure of handle, and dynamic equilibrium.

  5. search.bioPreprint: a discovery tool for cutting edge, preprint biomedical research articles.

    Science.gov (United States)

    Iwema, Carrie L; LaDue, John; Zack, Angela; Chattopadhyay, Ansuman

    2016-01-01

    The time it takes for a completed manuscript to be published traditionally can be extremely lengthy. Article publication delay, which occurs in part due to constraints associated with peer review, can prevent the timely dissemination of critical and actionable data associated with new information on rare diseases or developing health concerns such as Zika virus. Preprint servers are open access online repositories housing preprint research articles that enable authors (1) to make their research immediately and freely available and (2) to receive commentary and peer review prior to journal submission. There is a growing movement of preprint advocates aiming to change the current journal publication and peer review system, proposing that preprints catalyze biomedical discovery, support career advancement, and improve scientific communication. While the number of articles submitted to and hosted by preprint servers are gradually increasing, there has been no simple way to identify biomedical research published in a preprint format, as they are not typically indexed and are only discoverable by directly searching the specific preprint server websites. To address this issue, we created a search engine that quickly compiles preprints from disparate host repositories and provides a one-stop search solution. Additionally, we developed a web application that bolsters the discovery of preprints by enabling each and every word or phrase appearing on any web site to be integrated with articles from preprint servers. This tool, search.bioPreprint, is publicly available at http://www.hsls.pitt.edu/resources/preprint.

  6. Geometry of single-point turning tools and drills

    CERN Document Server

    Astakhov, Viktor P

    2010-01-01

    Tools for metal cutting have many shapes and features, each of which is described by its angles or geometries. The selection of the right cutting tool geometry is critical because it directly affects the integrity of the machined surface, tool life, power needed for machining, and thus the overall machining efficiency. ""Geometry of Single-Point Turning Tools and Drills"" outlines clear objectives of cutting tool geometry selection and optimization, using multiple examples to provide a thorough explanation. The establishment of clear bridges between cutting theory, tool geometry, and shop prac

  7. MGDS: Free, on-line, cutting-edge tools to enable the democratisation of geoscience data

    Science.gov (United States)

    Goodwillie, A. M.; Ryan, W. B.; O'Hara, S.; Ferrini, V.; Arko, R. A.; Coplan, J.; Chan, S.; Carbotte, S. M.; Nitsche, F. O.; Bonczkowski, J.; Morton, J. J.; Weissel, R.; Leung, A.

    2010-12-01

    The availability of user-friendly, effective cyber-information resources for accessing and manipulating geoscience data has grown rapidly in recent years. Based at Lamont-Doherty Earth Observatory the MGDS group has developed a number of free tools that have wide application across the geosciences for both educators and researchers. A simple web page (http://www.marine-geo.org/) allows users to search for and download many types of data by key word, geographical region, or published citation. The popular Create Maps and Grids function and the downloadable Google Earth-compatible KML files appeal to a wide user base. MGDS MediaBank galleries (http://media.marine-geo.org/) enable users to view and download compelling images that are purposefully selected for their educational value from NSF-funded field programs. GeoMapApp (http://www.geomapapp.org), a free map-based interactive tool that works on any machine, is increasingly being adopted across a broad suite of users from middle school students to university researchers. GeoMapApp allows users to plot, manipulate and present data in an intuitive geographical reference frame. GeoMapApp offers a convenient way to explore the wide range of built-in data sets, to quickly generate maps and images that aid visualisation and, when importing their own gridded and tabular data sets, to access the same rich built-in functionality. A user guide, short multi-media tutorials, and webinar are available on-line. The regularly-updated Global Multi-Resolution Topography (GMRT) Synthesis is used as the default GeoMapApp base map and is an increasingly popular means to rapidly create location maps. Additionally, the layer manager offers a fast way to overlay and compare multiple data sets and is augmented by the ability to alter layer transparency so that underlying layers become visible. Examples of GeoMapApp built-in data sets include high-resolution land topography and ocean floor bathymetry derived from satellite and multi

  8. Recombinant yeast technology at the cutting edge: robust tools for both designed catalysts and new biologicals.

    Science.gov (United States)

    Kovar, Karin; Looser, Verena; Hyka, Petr; Merseburger, Tobias; Meier, Christian

    2010-01-01

    Health and safety concerns, enhanced quality criteria, and environmental sustainability, have prompted investigations into production using recombinant yeasts as a feasible alternative for isolation of proteins from natural animal or plant sources, as well as for processes utilising either mammalian cell cultures or bacterial systems. An overview of recent research papers and review articles provides readers with a comprehensive insight into the field of next-generation yeast expression systems. Major breakthroughs in recombinant yeast technology linked to Pichia pastoris are (i) the public availability of tools to generate proteins with tailored and highly homogenous N-glycan structures, similar to the forms assembled in humans, (ii) the recent accomplishment of the annotation of its genome sequence, and finally, (iii) the presence of the first few (non-glycosylated) therapeutic proteins in Pichia on the market. The P. pastoris expression platform is now well developed, as proven by multiple products used in human and veterinary medicine and in industry (e.g., enzymes for chemical synthesis and for the modification/synthesis of pharmaceuticals, drug target proteins used for structural analysis or for high throughput screening, proteins for diagnostics, proteinous biomaterials, vaccines, and therapeutic proteins). Nevertheless, the complexity of protein analysis (monitoring) continues to restrict process development for recombinant products. Drawing on combined expertise in molecular biology and process technology, the Institute of Biotechnology (IBT) at the Zurich University of Applied Science (ZHAW) and its international partners have developed solutions which (i) fully eliminate (or partially reduce) the use of methanol, which is undesirable in high-cell-density and high-productivity processes, (ii) match both strain construction and process design with the target protein characteristics to the benefit of the cells' physiological shape, and (iii) allow multi

  9. THE INFLUENCE OF THE TOOL POINT ANGLE AND FEED RATE ON THE DYNAMIC PARAMETERS AT DRILLING COATED PARTICLEBOARD

    Directory of Open Access Journals (Sweden)

    Mihai ISPAS

    2015-12-01

    Full Text Available Pre-laminated (coated particleboards (PB are wood-based composites intensively used in the furniture industry. In order to prepare the PB for joining, drilling is the most commonly applied machining process. The surface quality and the dynamic parameters (thrust force and torque are significantly influenced by the tools characteristics and the machining parameters. The point/tip angle of the drill bit and the feed speed during drilling play a major role in gaining a good surface quality and minimizing the dynamic parameters. The objective of this study was to measure and analyze the influence of both the geometric and cinematic parameters on the dynamic parameters at drilling with twist (helical drills. The experiments were performed based on a factorial design. The results show that, a low feed rate generally minimizes both the drilling torque and the thrust force, while a small tip angle increases the drilling torque and minimizes the thrust force.

  10. Fabrication, characterization and tests on Si{sub 3} N{sub 4} cutting tools; Fabricacao, caracterizacao e testes em ferramentas de corte de Si{sub 3} N{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Oliverio Moreira de Macedo; Silva, Cosme Roberto Moreira da; Piorino Neto, Francisco [Centro Tecnico Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil)

    1997-12-31

    Silicon nitride based ceramic cutting tools were developed in Brazil. Itria and aluminium nitride has been used as sintering aids. The samples evaluations were performed using, specific mass determination, X ray diffraction, microhardness testing, fracture toughness by by indentation method and microstructural examination via scanning electron microscopy. After samples evaluation, some pressureless sintering silicon nitride based ceramic cutting tools were made. A piece of cast iron was machined using these cutting tools. For the purpose of comparison, a commercial hard metal cutting tools have also been used to perform the same machining. (author) 5 refs., 6 figs., 5 tabs.

  11. Development of Software for Analyzing Breakage Cutting Tools Based on Image Processing%基于图像技术分析刀具破损的软件开发

    Institute of Scientific and Technical Information of China (English)

    赵彦玲; 刘献礼; 王鹏; 王波; 王红运

    2004-01-01

    As the present day digital microsystems do not provide specialized microscopes that can detect cutting-tool, analysis software has been developed using VC++. A module for verge test and image segmentation is designed specifically for cutting-tools. Known calibration relations and given postulates are used in scale measurements. Practical operations show that the software can perform accurate detection.

  12. Magnesium and phase angle: a prognostic tool for monitoring cellular integrity in judo athletes.

    Science.gov (United States)

    Matias, Catarina N; Monteiro, Cristina P; Santos, Diana A; Martins, Fátima; Silva, Analiza M; Laires, Maria J; Sardinha, Luís B

    2015-01-01

    Adequate magnesium (Mg) levels play a vital role in membrane excitability, cell contractility and metabolism, being a key nutrient for sustaining appropriate muscular contraction and performance levels in athletes. Phase angle (PhA), assessed by bioimpedance analysis (BIA), has been reported to be positively associated with most nutritional markers and is an indicator of membrane integrity and water distribution between intra- and extracellular spaces. The aim of the present study was to verify the association between Mg status and PhA as a predictor of cellular health, in a sample of judo athletes from a period of weight stability to prior to competition. Judo athletes (n = 20) from the national team were evaluated on two occasions: during a period when body weight was stable (M1), and prior to competition (M2). Changes between these occasions were calculated as M2-M1. PhA was obtained by bioelectrical impedance spectroscopy at a frequency of 50 KHz. Mg was measured in serum and red blood cells (RBC) by atomic absorption spectrophotometry, and Mg in the diet was assessed from a 24-h diet record over a seven-day period, after an assessment of body composition. Mean PhA did not differ from M1 to M2. However, individual changes in PhA were positively associated with individual changes in serum (r = 0.62, p = 0.004) and RBC Mg (r = 0.45, p = 0.048). This association was independent of weight changes between assessments, but when adjusted for Mg intake changes, only the association between PhA and serum Mg remained significant. These results highlight that in elite athletes PhA may be an indirect indicator of muscular function.

  13. Study of Development and Application of High-Speed Cutting Tool Materials%高速切削刀具材料的发展应用研究

    Institute of Scientific and Technical Information of China (English)

    祝溪明

    2012-01-01

    The development of high-speed cutting is an important trend of the modern machining technology, and high-speed cutting tool materials we important factors affect the development of the manu-facturing.The characteristics of high-speed cutting tool materials,and performance characteristics and application of the high-speed tool materials are described,such as hard alloy,ceramies ,diamond and CBN. And the future high-speed cutting tool material development trend is the outlook of future.Fine grain size and surface of coated hard alloy, alumina ceramic materials series as well as cubic boron nitride (CBN )are the future direction of the development of high-speed cutting tool material.According to the characteristics of high-speed cutting tool materials, applications and their development status,some suggestions for its future development are put forward.%发展高速切削是现代切削加工技术的重要趋势,高速切削刀具材料也是影响制造业发展的重要因素.介绍了高速切削刀具材料的特点,具体分析了高速切削加工常见刀具材料硬质合金、陶瓷、金刚石类材料的特性、发展及其应用,并对未来高速切削刀具材料的发展趋势进行了展望.细晶和表面涂层硬质合金材料、氧化铝各系列陶瓷材料以及立方氮化硼(CBN)金刚石类材料是未来高速切削刀具材料发展的方向.根据高速切削刀具材料的特点,应用场合及其发展状态,对其未来的发展提出一些建议.

  14. Effect of machining conditions on MRR and surface roughness during CNC Turning of different Materials Using TiN Coated Cutting Tools – A Taguchi approach

    Directory of Open Access Journals (Sweden)

    H. K. Raval

    2012-10-01

    Full Text Available This paper presents on experimental investigation of the machining characteristics of different grades of EN materials in CNC turning process using TiN coated cutting tools. In machining operation, the quality of surface finish is an important requirement for many turned work pieces. Thus, the choice of optimized cutting parameters is very important for controlling the required surface quality. The purpose of this research paper is focused on the analysis of optimum cutting conditions to get the lowest surface roughness and maximum material removal rate in CNC turning of different grades of EN materials by Taguchi method. Optimal cutting parameters for each performance measure were obtained employing Taguchi techniques. The orthogonal array, signal to noise ratio and analysis of variance were employed to study the performance characteristics in dry turning operation. ANOVA has shown that the depth of cut has significant role to play in producing higher MRR and insert has significant role to play for producing lower surface roughness. Thus, it is possible to increase machine utilization and decrease production cost in an automated manufacturing environment.

  15. Morphology of TiAlN Thin Film onto HSS as Cutting Tools by Using Mosaic-Styled Target RF Sputtering Method

    Directory of Open Access Journals (Sweden)

    Sigit Tri Wicaksono

    2016-05-01

    Full Text Available High Speed Steel (HSS has been widely used in manufacturing industry as cutting tools. Several methods have been used to improve the cutting performance of HSS in dry cutting. One of them was by growing a thin layer of hard coating on the contact surface of the cutting tool material. In this research, Titanium Aluminum Nitride (TiAlN layer were deposited on AISI M41 HSS substrate by using Radio Frequency (RF sputtering method with mosaic styled of target materials. The aluminum surface area ratios on the Titanium target are 10, 20, 30, and 40 % respectively. The deposition time are 15, 30, and 45 minutes respectively. The formation of TiAlN and AlN crystalline compounds were observed by X-Ray Diffraction method. The morphology of thin film layer with a thickness range from 1.4 to 5.2 µm was observed by using a Scanning Electron Microscopy. It was known that the deposition time affect to the thickness and also the roughness of the layer. The topography images by Atomic Force Microscopy showed that the deposition time of 45 minutes produce the finest layer with the surface roughness of 10.8 nm.

  16. Numerical simulation of rock cutting using 2D AUTODYN

    Science.gov (United States)

    Woldemichael, D. E.; Rani, A. M. Abdul; Lemma, T. A.; Altaf, K.

    2015-12-01

    In a drilling process for oil and gas exploration, understanding of the interaction between the cutting tool and the rock is important for optimization of the drilling process using polycrystalline diamond compact (PDC) cutters. In this study the finite element method in ANSYS AUTODYN-2D is used to simulate the dynamics of cutter rock interaction, rock failure, and fragmentation. A two-dimensional single PDC cutter and rock model were used to simulate the orthogonal cutting process and to investigate the effect of different parameters such as depth of cut, and back rake angle on two types of rocks (sandstone and limestone). In the simulation, the cutting tool was dragged against stationary rock at predetermined linear velocity and the depth of cut (1,2, and 3 mm) and the back rake angles(-10°, 0°, and +10°) were varied. The simulation result shows that the +10° back rake angle results in higher rate of penetration (ROP). Increasing depth of cut leads to higher ROP at the cost of higher cutting force.

  17. A New Type Built-in Measuring Device for Cutting Tools%一种新型机内刀具测量装置

    Institute of Scientific and Technical Information of China (English)

    陈海燕; 薛萍

    2001-01-01

    A kind of built-in measuring device for cutting tools in which the linear array CCD is used as a photoelectric sighting device is developed. The auto-sight of cutting tool and the real-time display of measuring results can becarried out by the device. The measuring principle, optical system, circuit design, error analysis and function features of the device are introduced.%研制了一种以线阵CCD作为光电瞄准器件、可实现刀具自动瞄准并实时显示测量结果的机内刀具测量装置。介绍了该装置的测量原理、光学系统、电路设计、精度分析和性能特点。

  18. Synergistically toughening effect of SiC whiskers and nanoparticles in Al2O3-based composite ceramic cutting tool material

    Science.gov (United States)

    Liu, Xuefei; Liu, Hanlian; Huang, Chuanzhen; Wang, Limei; Zou, Bin; Zhao, Bin

    2016-09-01

    In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiCnp advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vol% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730±95 MPa and fracture toughness is 5.6±0.6 MPa·m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.

  19. Synergistically toughening effect of SiC whiskers and nanoparticles in Al2O3-based composite ceramic cutting tool material

    Science.gov (United States)

    Liu, Xuefei; Liu, Hanlian; Huang, Chuanzhen; Wang, Limei; Zou, Bin; Zhao, Bin

    2016-06-01

    In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiCnp advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vol% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730±95 MPa and fracture toughness is 5.6±0.6 MPa·m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.

  20. Flexible Laser Metal Cutting

    DEFF Research Database (Denmark)

    Villumsen, Sigurd; Jørgensen, Steffen Nordahl; Kristiansen, Morten

    2014-01-01

    This paper describes a new flexible and fast approach to laser cutting called ROBOCUT. Combined with CAD/CAM technology, laser cutting of metal provides the flexibility to perform one-of-a-kind cutting and hereby realises mass production of customised products. Today’s laser cutting techniques...... possess, despite their wide use in industry, limitations regarding speed and geometry. Research trends point towards remote laser cutting techniques which can improve speed and geometrical freedom and hereby the competitiveness of laser cutting compared to fixed-tool-based cutting technology...... such as punching. This paper presents the concepts and preliminary test results of the ROBOCUT laser cutting technology, a technology which potentially can revolutionise laser cutting....

  1. CONTROL DE CALIDAD DE HERRAMIENTAS DE CORTE CON REMOCIÓN MÍNIMA DE MATERIAL QUALITY CONTROL OF CUTTING TOOLS WITH MINIMUM MATERIAL REMOVAL

    Directory of Open Access Journals (Sweden)

    Jandrey Maldaner

    2007-04-01

    Full Text Available Debido a la mejora de las tecnologías de mecanizado, es necesario que las herramientas satisfagan las demandas requeridas. Una condición especial, para poder describir con seguridad el corte con remoción mínima de material, es el conocimiento de los valores característicos de la superficie y de la geometría. Las herramientas poseen una influencia substancial en la calidad de las piezas producidas, así como en la estabilidad y en la seguridad del proceso de mecanizado. Aunque hay una gran cantidad de herramientas para el corte con remoción mínima de material, se presenta como ejemplo la investigación con medición óptica y la obtención de los valores característicos para dientes de sierras de cinta.Due to improved machine cutting technologies it is necessary that tools fulfil the required performance. A special condition, for minimal machine cutting removal, is the knowledge of surface and geometry characteristic values. These tools represent both a substantial influence on the quality of the manufactured pieces and on stability and working safety of the cutting process. Since there is a large number of tools for minimal removal of material, examples of optical measurement and examination of characteristic values by the belt saw teeth are presented.

  2. Laser cutting plastic materials

    Energy Technology Data Exchange (ETDEWEB)

    Van Cleave, R.A.

    1980-08-01

    A 1000-watt CO/sub 2/ laser has been demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics have been laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass-reinforced laminates, Kevlar/epoxy composites, fiberglass-reinforced phenolics, nylon/epoxy laminates, ceramics, and disposable tooling made from acrylic.

  3. Corrosion resistance appraisal of TiN, TiCN and TiAlN coatings deposited by CAE-PVD method on WC-Co cutting tools exposed to artificial sea water

    Science.gov (United States)

    Matei, A. A.; Pencea, I.; Branzei, M.; Trancă, D. E.; Ţepeş, G.; Sfăt, C. E.; Ciovica (Coman), E.; Gherghilescu, A. I.; Stanciu, G. A.

    2015-12-01

    A new advanced sintered composite cutting tool has been developed based on tungsten carbide matrix ligated with cobalt (WC-Co) additivated with tantalum carbide (TaC), titanium carbide (TiC) and niobium carbide (NbC) as grain growth inhibitors. Titanium nitride (TiN), titanium carbonitride (TiCN) and titanium aluminium nitride (TiAlN) coatings were deposited on these tools by CAE-PVD technique to find out the best solution to improve the corrosion resistance of this tool in marine environment. The electrochemical behaviours of the specimens in 3.5% NaCl water solution were estimated by potentiodynamic polarization measurements i.e. the open circuit potential (Eoc), corrosion potential (Ecorr) and corrosion current density (icorr). Wide angle X-ray diffraction (WAXD), optical microscopy (OM) and atomic force microscopy (AFM) investigations have been carried on tested and untested specimens to substantiate the corrosion resistance of the tested specimens. Based on the open circuit potential (Eoc) and corrosion potential (Ecorr) results, the tested specimens were ranked as TiN, TiAlN, TiCN and WC-Co while on corrosion current density (icorr) and protective efficiency (P) values they have been ranked as TiN, TiAlN, WC-Co and TiCN. The WAXD, MO and AFM results unambiguously show that the corrosion resistance depends on the nature and morphology of the coating.

  4. Ultrasonic Cutting of Foods

    Science.gov (United States)

    Schneider, Yvonne; Zahn, Susann; Rohm, Harald

    In the field of food engineering, cutting is usually classified as a mechanical unit operation dealing with size reduction by applying external forces on a bulk product. Ultrasonic cutting is realized by superpositioning the macroscopic feed motion of the cutting device or of the product with a microscopic vibration of the cutting tool. The excited tool interacts with the product and generates a number of effects. Primary energy concentration in the separation zone and the modification of contact friction along the tool flanks arise from the cyclic loading and are responsible for benefits such as reduced cutting force, smooth cut surface, and reduced product deformation. Secondary effects such as absorption and cavitation originate from the propagation of the sound field in the product and are closely related to chemical and physical properties of the material to be cut. This chapter analyzes interactions between food products and ultrasonic cutting tools and relates these interactions with physical and chemical product properties as well as with processing parameters like cutting velocity, ultrasonic amplitude and frequency, and tool design.

  5. Application and Research of High Speed Cutting Tool Material, Selection and Process%论高速切削刀具材料、选择及过程中的应用研究

    Institute of Scientific and Technical Information of China (English)

    李凤娇

    2014-01-01

    This paper mainly introduces the basic principle of high speed cutting technology , studies the basic requirements of the high-speed cutting tool material , cutting tool material , and describes common high-speed cutting tool material and its selection , and finally introduces high-speed cutting machine and CNC .%本文主要介绍了高速切削技术的基本原理,研究了高速切削对刀具材料的基本要求,对常见的高速切削刀具材料及其选择进行了阐述,最后简单对高速切削用机床和数控做一介绍。

  6. The Impact of Cutting Tool Advances on Machining Productivity%刀具创新对提高金属切削效率的作用与影响

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Intense global competition is forcing the manufacturing industry to reduce costs so as to maintain profitability. Since a major component of manufacturing cost is machine tool time, attention is focused on cycle time reduction through greater machining productivity. Advances in machine tools, development of stronger workpiece materials, new machining methods, and environmental regulations with regard to safe disposal of cutting fluids are providing additional challenges to the cutting tool industry. In response to these challenges, the industry has made significant innovations in every class of tool materials. This paper discusses the role of tooling advances in enhancing metalcutting productivity.

  7. Development of flank wear model of cutting tool by using adaptive feedback linear control system on machining AISI D2 steel and AISI 4340 steel

    Science.gov (United States)

    Orra, Kashfull; Choudhury, Sounak K.

    2016-12-01

    The purpose of this paper is to build an adaptive feedback linear control system to check the variation of cutting force signal to improve the tool life. The paper discusses the use of transfer function approach in improving the mathematical modelling and adaptively controlling the process dynamics of the turning operation. The experimental results shows to be in agreement with the simulation model and error obtained is less than 3%. The state space approach model used in this paper successfully check the adequacy of the control system through controllability and observability test matrix and can be transferred from one state to another by appropriate input control in a finite time. The proposed system can be implemented to other machining process under varying range of cutting conditions to improve the efficiency and observability of the system.

  8. Influence of Fiber Orientation on Single-Point Cutting Fracture Behavior of Carbon-Fiber/Epoxy Prepreg Sheets

    Directory of Open Access Journals (Sweden)

    Yingying Wei

    2015-10-01

    Full Text Available The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond tool, CVD (chemical vapor deposition diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE signals.

  9. Research on Cutting Parameters Optimization based on Tool Life%基于刀具寿命的切削参数优化研究

    Institute of Scientific and Technical Information of China (English)

    张棉好

    2011-01-01

    Cutting life has direct effects on the cost of manufacture, so it is paid more attention in the modern manufacturing industry. The paper presented a new approach for improving cutting tool life by using optimal values of velocity, feeds, depth and cutting stepover throughout the cutting process. The orthogonal experiment was built by the Taguchi methods, and the Taguchi method was used to obtain the optical milling parameters. The VMC65OE machining center was used to carry out the milling experiment. The experimental results showed an improvement of tool life.%刀具寿命直接影响制造成本,因此在现代制造业中受到越来越多的重视.文中分析了切削用量对刀具寿命的影响,并优化铣削过程的切削速度、进给率、切深及行距等切削用量,以提升刀具寿命.通过切削试验,获取了不同切削用量下的刀具磨损量,建立田口直交表,并利用直交表对试验数据进行分析和优化,获得优化后的切削参数值,最后在加工中心中进行试验验证.试验证明,采用优化后的切削用量进行切削,可有效地控制磨损量,延长刀具寿命.

  10. 技术创新助推新型陶瓷刀具在机加工中的应用优势凸显%Technology Innovation Boost New Types of Ceramic Cutting Tool in Machining Application Advantages Highlighted

    Institute of Scientific and Technical Information of China (English)

    杨忠敏

    2014-01-01

    随着新技术革命的发展,要求不断提高切削加工生产率和降低生产成本,特别是数控机床的发展,要求开发比硬质合金刀具切速更高、更耐磨的新型刀具。针对新型陶瓷切削刀具的应用前景广阔,分析了切削刀具材料的种类及其特点,研究了新型陶瓷切削刀具的性能突显,介绍了新型陶瓷切削刀具运用实例,提出了陶瓷切削刀具材料的研发应用方向。%With the development of new technology revolution ,requirements to improve machi‐ning productivity and reduce production cost ,especially the development of CNC machine tools ,to develop higher than cemented carbide cutting speed ,more new tool wear .Application prospect of the new ceramic cutting tool .Analyzes the types and characteristics of the cutting tool materials ,studies the performance of the new type of ceramic cutting tools highlight ,this paper introduces the new type of ceramic cutting tools using instance ,put forward the direction of development and application of ceramic cutting tool materials .

  11. The Analysis of the Cutting Tool Failure Mode in the Modern Mechanical Manufacturing Industry%现代机械制造业中的刀具失效形式分析

    Institute of Scientific and Technical Information of China (English)

    田育

    2011-01-01

    The condition of cutting tool materials is pointed out, the main failure mode of cutting tools which are made with different materials is summed up. The thorough investigation is made on the cutting tool wear part and wear mechanism. It is very beneficial for putting forward measures to reduce cutting tool failure.%本文分析了机械加工中刀具材料满足的基本条件,通过调查分析总结了不同材料刀具的主要失效形式,最后对刀具磨损的部位和刀具磨损的原因进行了深入的研究,为生产上提出减少刀具失效的措施提供了有利条件.

  12. Design and Implementation of Cutting-tools Database in NC Simulation System%数控加工仿真中刀具数据库的设计与实现

    Institute of Scientific and Technical Information of China (English)

    张霞; 杨岳

    2009-01-01

    This paper introduces a numeral control machining simulation system model. Further, the paper explains the description of cutting-tools, building and management of cutting-tools database and configuration of cutting-tools base in NC simulation system. And the article shows in details the principle of designing cutting-tools database.%首先提出数控加工仿真系统模型,阐述面向数控加工仿真的刀具定义与描述方法,在此基础上构建刀具数据库,并详细叙述刀具数据库的实现原理与方法以及数控机床刀具库配置功能的实现方法.

  13. Subjectivity Inherent In By-Eye Symmetry Judgements and the Large Cutting Tools at the Cave of Hearths, Limpopo Province, South Africa

    Directory of Open Access Journals (Sweden)

    Dave Underhill

    2007-11-01

    Full Text Available The Stone Age of South Africa is an area of study due for a renaissance, and there is a real need for unification of the extant evidence. As a beginning to this, new methodologies have been proposed. This paper tackles the issue of symmetry, specifically the subjectivity involved in by-eye judgements. Assumptions of subjectivity, however, are not proof: presented here is a critical analysis of the inherent bias of by-eye symmetry judgements. Ultimately it is clear that the method contains a level of subjectivity which strips it of any analytical value. The by-eye judgement of symmetry is replaced by the more robust Flip Test computer program, and a brief study is made of the Large Cutting Tools (LCT at a vitally important, yet often overlooked, site dating from the Pleistocene in South Africa, the Cave of Hearths, Limpopo province. The corollary is that the symmetry present in the Cave of Hearths Large Cutting Tools can be studied with some measure of confidence: suggestions are made regarding the nature of tool typologies and the knappers’ ultimate focus on tip shape and utility.

  14. Study on the PcBN cutting tools proprerties during hardened steel machining%PcBN加工淬硬钢刀具材料的研究

    Institute of Scientific and Technical Information of China (English)

    李启泉; 张旺玺

    2011-01-01

    PcBN cutting tool materials were prepared using two kinds of binder and in three different concentrations of cBN . Through cutting experiment on hardened steel , it was found that cBN concentration played a key role on the performances of PcBN. After cutting for the same distance, PcBN tools of low concentration had smaller amount of flank wear. SEM observation revealed that CoAl alloy powder improved the density of the PcBN tool material. Based on the results of wear resistance test , it is suggested that the technical indicators of wear test for PCD is not suitable for PcBN.%介绍了立方氮化硼刀具材料( PcBN)的制备过程,并制备了六种不同配方的样品加工淬硬钢.通过切削实验和性能检测,发现PcBN刀片在加工淬硬钢时cBN浓度起着关键作用,切削同样的路程,低浓度PcBN的后刀面磨损量小.经扫描电镜观察,CoAl合金粉能够提高PcBN烧结刀具材料的致密度.测量耐磨性时,证明用于金刚石复合片PCD性能检测的磨耗比技术指标不适用于PcBN材料的检测.

  15. Inspiration from Victorian times in Ultrasonic Surgical Tool Design

    Science.gov (United States)

    Ganilova, O. A.; Lucas, M.; Pan, Z.; Y Muir, A.; Simpson, H.

    2012-08-01

    This work is devoted to the investigation of performance of surgical tools used in orthopaedics in terms of the occurrence of signs of necrosis, the accuracy of the cut and cutting tool design. For the comparison of the surgical tool performance different types of cutting devices were studied in a series of experiments. A Victorian surgical saw, its copy, a contemporary surgical saw, a surgical scalpel and an ultrasonic blade designed for a surgical application were chosen for the performance assessment. Such geometrical parameters as cutting edge shape, angle of teeth inclination, and sharpness of the cutting tools were analysed in terms of the quality of the cut and signs of necrosis. As a result of the analysis of experimental data obtained and theoretical insight the authors have come up with a creative solution for a novel design for a surgical ultrasonic blade which benefits from the design advantages of each of the analysed surgical tools and eliminates their drawbacks.

  16. Homogeneity improvement of N-polar (000\\bar{1}) InGaN/GaN multiple quantum wells by using c-plane sapphire substrate with off-cut-angle toward a-sapphire plane

    Science.gov (United States)

    Shojiki, Kanako; Hanada, Takashi; Tanikawa, Tomoyuki; Imai, Yasuhiko; Kimura, Shigeru; Nonoda, Ryohei; Kuboya, Shigeyuki; Katayama, Ryuji; Matsuoka, Takashi

    2016-05-01

    To improve the homogeneity of the N-polar (000\\bar{1}) (-c-plane) InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic vapor phase epitaxy (MOVPE), the growth of GaN and MQW on two c-plane sapphire substrates with an off-cut angle of 0.8° toward the a-plane (sub-A) and the m-plane (sub-M) was performed. The effects of the off-cut direction on the structural properties and surface morphologies of -c-plane GaN films were elucidated. It was found that the step bunching and meandering of -c-plane GaN were significantly suppressed on sub-A. The spatial homogeneity of the -c-plane InGaN/GaN MQWs along the off-cut direction was observed in the submicrometer scale using microbeam X-ray diffraction. By inhibiting the step bunching of the GaN template using sub-A, the thickness homogeneity of the MQWs on sub-A has been significantly improved in comparison with that on sub-M.

  17. Theoretical modeling of cutting temperature in high-speed end milling process for die/mold machining

    Institute of Scientific and Technical Information of China (English)

    Ying Tang

    2005-01-01

    A parametric model of cutting temperature generated in end milling process is developed according to the thermal mechanism of end milling as an intermittent operation, which periodically repeats the cycle of heating under cutting and cooling under noncutting. It shows that cutting speed and the tool-workpiece engagement condition are determinative for tool temperature in the operation. The suggested model was investigated by tests of AlTiN coated endmill machining hardened die steel JIS SKD61, where cutting temperature on the flank face of tool was measured with an optical fiber type radiation thermometer. Experimental results show that the tendency of cutting temperature to increase with cutting speed and engagement angle is intensified with the progressing tool wear.

  18. Study on the Optimum Choice of Cutting Tools in NC Machining Based on the Polychromatic Sets Theory%基于多色集合理论的数控加工刀具优化选择研究

    Institute of Scientific and Technical Information of China (English)

    刘恩福; 刘晓阳; 方忆湘

    2012-01-01

    基于建立刀具选择的关系模型并以围道布尔矩阵的形式表示,通过多色集合中着色的逻辑运算,找到满足加工条件的候选刀具集合并对其进行模糊优选;综合考虑换刀时间,加工顺序以及其它相关加工信息对刀具选择的影响,使选择刀具在整体上述到最佳化.%A relational model of cutting tools choice was established, which was shown with a contour Boolean matrix. Through the coloring logical operation, the cutting tools candidate set was calculated to meet machining conditions. With the candidate cutting tools set, the fuzzy optimization was made for every part feature. And with considering the effects of the time of cutting tools exchange, processing sequence and other relevant information for the selection of cutting tools, the choice of cutting tools is optimized as a whole during machining.

  19. Optimal Design of the Rotor Shaft Cutting Trace Used in Power Tools%电动工具用转子轴切痕长优化设计

    Institute of Scientific and Technical Information of China (English)

    韩伟; 张立祥; 宁贻江; 张永娟

    2011-01-01

    Base on analysis of the structure characteristic of the power tool's rotor shaft and the processing principle of gear shaft's tooth, it is deduced that the contradictions of the hob diameter, cutting trace distance and the hob lifespan are existed.By using VB's character of parametric design and Lingo's strong numerical calculation capability, the software to calculate the rotor shaft cutting trace automatically was developed, and the optimal design of the rotor shaft cutting trace's size was achieved.Through the example, it is showed that the software can be used to reduce the designer's working intensity, and to improve the calculation accuracy obviously.%分析电动工具用转子轴的结构特点及齿轮轴轮齿的加工原理,表明滚刀直径、切痕距及滚刀寿命之间存在矛盾.利用VB可进行参数化设计的特点和Lingo强大的数值计算能力,开发转子轴切痕长自动计算软件,实现了转子轴切痕长尺寸的优化设计.计算实例表明:使用该软件能明显降低设计者的劳动强度,并显著提高计算精度.

  20. 基于特征的刀具“形-性-用”一体化设计方法%Feature Based Cutting Tool “Shape-Performance-Application” Integrating Design Approach

    Institute of Scientific and Technical Information of China (English)

    刘献礼; 计伟; 范梦超; 王昌红

    2016-01-01

    Cutting tool is regarded as the tooth of machine tool, and they play a key role in metal cutting. Nowadays, the customization is a develop direction of cutting tool to improve the machining capability of cutting tool. In this case, the flexibility and accuracy of cutting tool design is the main challenges. Towards the issues, a feature based cutting tool “shape-performance-application” integrating design (CTSPAID) approach is presented, which is driven by the machining requirements. It utilizes the basic theories of cutting process, e.g. geometry constraint, cutting force distribution, cutting layer mechanism, cutting tool strength, high temperature material science, high temperature tribology, chemistry relationship. Integrating all of the related theories into cutting tool design feature (TDF), the method can realize the unification of shape, capability and application of cutting tools. The suitable cutting tool can be achieved, as well as the cutting condition, cutting parameters. Also, the architecture of the cutting tool design system is proposed, and also the software platform of this system. The case study is used to show the details of the process of the approach, and demonstrate the feasibility of the method. The CTSPAID method provides a new idea for the customization of cutting tool.%刀具作为机床的“牙齿”,在金属切削中非常重要,目前专用化是刀具发展的一个主要趋势,挑战刀具设计的灵活性和准确性。为了实现这一目标,提出了刀具“形-性-用”一体化设计方法,它以加工需求为驱动,利用切削过程中涉及的理论(几何约束、切削力作用、切削层作用机理、刀具强度理论、高温材料学属性以及化学反应关系等),并通过刀具设计特征,将刀具的形状、性能和使用结合起来,进而实现针对加工需求的专用刀具设计,以及相应的加工条件和切削参数等的确定。然后建立了刀具“形-性-用”

  1. About one algorithm of the broken line approximation and a modeling of tool path for CNC plate cutting machines

    Science.gov (United States)

    Kurennov, D. V.; Petunin, A. A.; Repnitskii, V. B.; Shipacheva, E. N.

    2016-12-01

    The problem of approximating two-dimensional broken line with composite curve consisting of arc and line segments is considered. The resulting curve nodes have to coincide with source broken line nodes. This problem arises in the development of control programs for CNC (computer numerical control) cutting machines, permitting circular interpolation. An original algorithm is proposed minimizing the number of nodes for resulting composite curve. The algorithm is implemented in the environment of the Russian CAD system T-Flex CAD using its API (Application Program Interface). The algorithm optimality is investigated. The result of test calculation along with its geometrical visualization is given.

  2. Specific Energy as an Index to Identify the Critical Failure Mode Transition Depth in Rock Cutting

    Science.gov (United States)

    He, Xianqun; Xu, Chaoshui

    2016-04-01

    Rock cutting typically involves driving a rigid cutter across the rock surface at certain depth of cut and is used to remove rock material in various engineering applications. It has been established that there exist two distinct failure modes in rock cutting, i.e. ductile mode and brittle mode. The ductile mode takes precedence when the cut is shallow and the increase in the depth of cut leads to rock failure gradually shifted to brittle-dominant mode. The threshold depth or the critical transition depth, at which rock failure under cutting changes from the ductile to the brittle mode, is associated with not only the rock properties but also the cutting operational parameters and the understanding of this threshold is important to optimise the tool design and operational parameters. In this study, a new method termed the specific cutting energy transition model is proposed from an energy perspective which is demonstrated to be much more effective in identifying the critical transition depth compared with existing approaches. In the ductile failure cutting mode, the specific cutting energy is found to be independent of the depth of cut; but in the brittle failure cutting mode, the specific cutting energy is found to be dependent on the depth of cut following a power-law relationship. The critical transition depth is identified as the intersection point between these two relationships. Experimental tests on two types of rocks with different combinations of cutting velocity, depth of cut and back rake angle are conducted and the application of the proposed model on these cutting datasets has demonstrated that the model can provide a very effective tool to analyse the cutting mechanism and to identify the critical transition depth.

  3. 电励磁同步电动机转矩角截止负反馈闭环控制%Torque-Angle Cut-Off Negative Feedback Closed-Loop Control Strategy of Electrical Excited Synchronous Motor

    Institute of Scientific and Technical Information of China (English)

    谢慕君; 步伟明; 冯敬芳; 王志乾

    2013-01-01

    针对电励磁同步电动机负载变化易失步的问题,通过对转矩角特性分析,提出了一种基于转矩角截止负反馈的控制策略。阐述了利用转矩角控制防止失步的原理,建立了基于同步电动机磁链观测的转矩角数学模型,并设计了转矩角外环、励磁电流内环的双闭环控制系统。仿真结果表明,该控制策略与常规控制相比,适应负载变化的能力显著提高,有效抑制了电机的失步,为电机的稳定控制开辟了新途径。%Aiming at the problem that the electrical synchronous excited motor will be out of step with the load changes, this paper raised a control strategy based on torque-angle cut-off feedback via the analysis of torque-angle characteristics. Discussion was made to the principle using torque-angle control to prevent out-of-step. The mathematical model of torque-angle was constructed based on the flux linkage observation of synchronous motors and the double closed-loop control system for the outer loop adopting torque-angle and the inner loop adopting field current were designed. The simulation results show that compared with conventional control, this control strategy obviously met the requirements of load changes, effectively restraining out-of-step of motors, which opens up a new way for stable control of motors.

  4. 超精密车削刀具偏置校正方法的研究%Research on Correction Method of Tool Decentration in Ultra Precision Cutting

    Institute of Scientific and Technical Information of China (English)

    王毅; 余景池

    2012-01-01

    刀具偏置的校正是超精密车削的首要任务,对提高超精密车削效率及精度具有非常重要的意义.传统的刀具偏置校正方法由于缺乏理论指导,存在校正效率低、精度低的缺点,即使利用国外进口软件进行辅助校正,也存在一些问题.对超精密车削中金刚石刀具偏置造成的车削误差展开理论分析,在理论分析的基础上,给出提高刀具偏置校正精度及效率的原则,提出一种新的刀具偏置校正方法——泰曼格林干涉仪在线检测法,并用实验证明其准确性.%Correction of tool decentraton is the key task and making important significance for the precision and efficiency of ultra precision cutting. For lacking of theoretical instruction, efficiency and accuracy of the traditional method of tool position correction are not high, even using imported software to help correction, some problems still exist. The cutting errors caused by the position of diamond tool were analyzed theoretically. Based on the theoretical analysis, the principle for enhancing the accuracy and efficiency of correction was given. A new tool position correction method, Twyman-Green interferometer online test method, was put forward. Its veracity is verified by a practical experiment.

  5. Mechanistic identification of cutting force coefficients in bull-nose milling process

    Institute of Scientific and Technical Information of China (English)

    Gao Ge; Wu Baohai; Zhang Dinghua; Luo Ming

    2013-01-01

    An improved method to determine cutting force coefficients for bull-nose cutters is proposed based on the semi-mechanistic cutting force model.Due to variations of cutting speed along the tool axis in bull-nose milling,they affect coefficients significantly and may bring remarkable discrepancies in the prediction of cutting forces.Firstly,the bull-nose cutter is regarded as a finite number of axial discs piled up along the tool axis,and the rigid cutting force model is exerted.Then through discretization along cutting edges,the cutting force related to each element is recalculated,which equals to differential force value between the current and previous elements.In addition,coefficient identification adopts the cubic polynomial fitting method with the slice elevation as its horizontal axis.By calculating relations of cutting speed and cutting depth,the influences of speed variations on cutting force can be derived.Thereby,several tests are conducted to calibrate the coefficients using the improved method,which are applied to later force predictions.Eventually,experimental evaluations are discussed to verify the effectiveness.Compared to the conventional method,the results are more accurate and show satisfactory consistency with the simulations.For further applications,the method is instructive to predict the cutting forces in bull-nose milling with lead or tilt angles and can be extended to the selection of cutting parameters.

  6. Experimental Investigation on Increasing Milling Tool Life by Variable Cutting Depth Manufacturing%利用变切深法提高铣刀耐用度的实验研究

    Institute of Scientific and Technical Information of China (English)

    袁野; 杨后川; 崔季

    2013-01-01

    采用涂层硬质合金刀具对Aer Metl00超高强度钢和TB6钛合金分别进行固定切深和变切深铣削实验,对比分析了固定切深和变切深两种铣削方式对刀具耐用度的影响.结果表明:固定切深产生边界磨损,而变切深产生均匀磨损,采用变切深方法加工Aer Met100钢和TB6钛合金,提高刀具的耐用度可提高50%以上.%Two different milling experiments (fixed cutting depth and variable cutting depth) on Aer Met 100 super high strength steel and TB6 titanium alloy are carried out by using coated cemented carbide tools. The effects on tool life by fixed depth cutting and variable depth cutting are analyzed. The results show that the boundary wear appears when the fixed cutting depth is used, while the u-niform wear appears when the variable cutting depth is used. The variable cutting depth is applied to milling Aer Met 100 steel and TB6 titanium alloy, the tool life can be improved more than 50%.

  7. Research on the Effectiveness of Cleaning Cutting Fluid Used for Machining During Abrasive and Diamond Tools Operations

    Directory of Open Access Journals (Sweden)

    Vykintas Dusevičius

    2012-01-01

    Full Text Available The article presents the problem of cleaning effectively lubricant - coolant fluid using two different metal-working techniques. Compared with lubricant-coolant fluid, the use of steel abrasive tools produces very small steel particles having relative weight. Steel processing with diamond polishing tools does not make chips. The paper considers theoretical cleaning methods and compares them with experimental results cleaning an additional flow of lubrication and cooling with a magnetic separator and hydro-cyclone.Article in Lithuanian

  8. In-situ fabricated TiB2 particle-whisker synergistically toughened Ti(C, N)-based ceramic cutting tool material

    Science.gov (United States)

    Liu, Hanlian; Shi, Qiang; Huang, Chuanzhen; Zou, Bin; Xu, Liang; Wang, Jun

    2015-03-01

    The mechanical properties of ceramic cutting tool materials can be modified by introducing proper content of nanoparticles or whiskers. However, the process of adding whiskers or nanoparticles has the disadvantages of high cost and health hazard as well as the agglomeration; although a new in-situ two-step sintering process can solve the above problems to some extent, yet the problems of low conversion ratio of the raw materials and the abnormal grain growth exist in this process. In this paper, an in-situ one-step synthesis technology is proposed, which means the growth of whiskers or nanoparticles and the sintering of the compact can be accomplished by one time in furnace. A kind of Ti(C, N)-based ceramic cutting tool material synergistically toughened by TiB2 particles and whiskers is fabricated with this new process. The phase compositions, relationships between microstructure and mechanical properties as well as the toughening mechanisms are analyzed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The composite which is sintered under a pressure of 32 MPa at a temperature of 1700°C in vacuum holding for 60 min can get the optimal mechanical properties. Its flexural strength, fracture toughness and Vickers hardness are 540 MPa, 7.81 MPa · m1/2 and 20.42 GPa, respectively. The composite has relatively high density, and the in-situ synthesized TiB2 whiskers have good surface integrity, which is beneficial for the improvement of the fracture toughness. It is concluded that the main toughening mechanisms of the present composite are whiskers pulling-out and crack deflection induced by whiskers, crack bridging by whiskers/particles and multi-scale particles synergistically toughening. This study proposes an in-situ one-step synthesis technology which can be well used for fabricating particles and whiskers synergistically toughened ceramic tool materials.

  9. In-situ Fabricated TiB2 Particle-whisker Synergistically Toughened Ti(C, N)-based Ceramic Cutting Tool Material

    Institute of Scientific and Technical Information of China (English)

    LIU Hanlian; SHI Qiang; HUANG Chuanzhen; ZOU Bin; XU Liang; WANG Jun

    2015-01-01

    The mechanical properties of ceramic cutting tool materials can be modified by introducing proper content of nanoparticles or whiskers. However, the process of adding whiskers or nanoparticles has the disadvantages of high cost and health hazard as well as the agglomeration;although a new in-situ two-step sintering process can solve the above problems to some extent, yet the problems of low conversion ratio of the raw materials and the abnormal grain growth exist in this process. In this paper, an in-situ one-step synthesis technology is proposed, which means the growth of whiskers or nanoparticles and the sintering of the compact can be accomplished by one time in furnace. A kind of Ti(C, N)-based ceramic cutting tool material synergistically toughened by TiB2 particles and whiskers is fabricated with this new process. The phase compositions, relationships between microstructure and mechanical properties as well as the toughening mechanisms are analyzed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The composite which is sintered under a pressure of 32 MPa at a temperature of 1700℃ in vacuum holding for 60 min can get the optimal mechanical properties. Its flexural strength, fracture toughness and Vickers hardness are 540 MPa, 7.81 MPa•m1/2 and 20.42 GPa, respectively. The composite has relatively high density, and the in-situ synthesized TiB2 whiskers have good surface integrity, which is beneficial for the improvement of the fracture toughness. It is concluded that the main toughening mechanisms of the present composite are whiskers pulling-out and crack deflection induced by whiskers, crack bridging by whiskers/particles and multi-scale particles synergistically toughening. This study proposes an in-situ one-step synthesis technology which can be well used for fabricating particles and whiskers synergistically toughened ceramic tool materials.

  10. 精密切削刀具磨损监控系统设计%Designing of test and control system on tools wear in precision cutting

    Institute of Scientific and Technical Information of China (English)

    马廉洁

    2011-01-01

    设计了刀具磨损检测控制系统,采用EPF10K10TC144-4主控芯片、位移传感器,采用分布式算法编制了控制软件并进行了系统仿真.将数据输入到CNC系统,修改刀具参数,并在数控车床上进行了切削实验.对比研究结果表明,该系统避免了人工检测误差、机床频繁停机,减少了换刀次数和重新对刀引入的二次误差,延长了刀具有效使用时间,且加工效率、加工精度、产品合格率都有明显提高.%The test and control system was designed on tools wear, it selected EPF10K10TC144-4 type controlling chip, displacement sensor, the control software was programmed using distributed algorithm, and system simulation was carried out. The data was input into the CNC system, tools parameters were modified. The cutting experiment was carried out in turning machine. The results of comparing study indicate that the manual examination errors and machine tools on-and-off frequently are avoided, the quadric errors introduced by the number of change tools and re-adjust tools are reduced, the effective time of using the tools was extended, in addition , machining efficiency, machining precision and product qualification rate have been obviously improved.

  11. 肉类加工机刀具制造与修复的新方法%New in Manufacturing and Restoration of Meat-Processing Machines Cutting Tool

    Institute of Scientific and Technical Information of China (English)

    Rudt.,FY; Gut.,MSH

    2000-01-01

    @@ Many tools such as boning knives, meat-mincing machine cross knives and grates, cutter knives that are widely used nowadays in meat processing industry have low safety index. In this connection it became necessary to improve cutting tools b y increasing their safety.

  12. 两类陶瓷刀具的现状、性能与应用%THE CURRENT SITUATION, PERFORMANCE AND APPLICATION OF TWO KINDS OF CERAMIC CUTTING TOOLS

    Institute of Scientific and Technical Information of China (English)

    王宝友; 崔丽华; 黄传真; 艾兴

    2001-01-01

    The currently development situation of Al2O3 matrix ceramic and Si3N4 matrix ceramic cutting tools is elaborated in this paper. The physical performance and cutting performance of which are discussed. The characterstics of Al2O3 matrix ceramic and Si3N4 matrix ceramic cutting tools are described. The cutting rields of which and the suitable machining values are discussed emphatically. Some questions in using ceramic cutting tools are also probed. Which has practical meaning for propagating the using of ceramic cutting tools.%综述了氧化铝系和氮化硅系两类陶瓷刀具的发展现状,阐述了两类陶瓷刀具的力学性能与切削性能,论述了两类陶瓷刀具的特点、加工范围以及合适的切削加工用量,提出了刀具使用过程中的一些注意问题。

  13. Experimental investigation of PCBN cutting tool in hard turning of powder metallurgy valve seat%PCBN硬态切削粉末冶金气门座圈的试验研究

    Institute of Scientific and Technical Information of China (English)

    杨海东; 张俊生; 邹玉明; 叶铮; 丁宁; 陈鸿运

    2015-01-01

    In order to improve the surface quality and tool life of hard machining powder metallurgy valve seat with polycrystalline cubic boron nitride (PCBN ) tools ,the influence of cutting parameters on cutting forces should be studied .By the orthogonal experimental design of PCBN cutting tool in hard turning of powder metallurgy valve seat ,empirical formulas of cutting forces were set up and the effect of cutting parameters on cutting forces was studied .The experimental results indicate that the radial force is relatively large because of the tool nose radius and negative chamfer .T he cutting forces are mainly influenced by feed rate and cutting depth ,w hile the cutting speed has less effect .With the increasing of cutting speed ,the main cutting force decreases during the machining of V 581 .Light cut‐ting depth ,low feed rate and high cutting speed should be chosen in practical machining to improve the surface quality and tool life .%为了提高粉末冶金气门座圈实际加工中的加工表面质量和刀具寿命,需要研究聚晶立方氮化硼(PCBN )刀具硬态切削时切削参数对切削力的影响规律。文章通过正交试验设计,建立了PCBN刀具硬态切削粉末冶金气门座圈切削力的经验公式,并研究了切削用量对切削力的影响。试验结果表明:PCBN刀具硬态切削粉末冶金气门座圈时,刀尖圆弧半径和负倒棱导致径向力相对较大;切削参数中切削深度和进给量对切削力的影响较大,切削速度的影响相对较小;切削 V581过程中,主切削力随着切削速度的增加而有所下降;实际加工中应选用较小的切削深度和进给量、较高的切削速度,以提高加工表面质量和刀具寿命。

  14. PCBN刀具断续切削高强度钢的实验研究%The experimental study of interrupted cutting of high strength steel with PCBN tools

    Institute of Scientific and Technical Information of China (English)

    朱坤杰; 黄树涛; 周丽; 许立福

    2012-01-01

    通过整体PCBN刀具硬态切削淬硬钢58SiMn实验,研究了切削速度和进给量对切削力及表面粗糙度的影响.实验结果表明:切削力和表面粗糙度值都随进给量增加而增大;在较低切削速度时切削力随切削速度提高而减小,当切削速度达到一定程度时出现拐点,继续提高切削速度切削力逐渐增大.在实验条件下,切削速度低于569 m/min时刀片以磨损为主;当速度为768 m/min时,以崩刃为主.%The influence of cutting speed and feed rate on cutting force and surface roughness was researched by the experiment of hard machining of 58SiMn with PCBN tools. According to the experimental results, the cutting force and surface roughness increase with the increasing of cutting speed and feed rate; The cutting force decreases with the increasing of cutting speed when the cutting speed is lower, while cutting force increases gradually with the increasing of cutting speed when cutting speed reachs a certain extent. In the experiment, when the cutting speed is lower than 569 m/min, the blade is wear; when the cutting speed is 768 m/min, the blade is tipping.

  15. Disinvestment in the age of cost-cutting sound and fury. Tools for the Spanish National Health System.

    Science.gov (United States)

    García-Armesto, Sandra; Campillo-Artero, Carlos; Bernal-Delgado, Enrique

    2013-05-01

    This paper proposes the framing of disinvestment strategies as the "value for money" approach suitable for the current situation of acute budget restrictions. Building on the experiences from other countries, it first reviews the instruments already available for implementing this approach within the Spanish National Health Service (SNS) named (A) The mandate to do it: regulatory framework.(B) The capacity to identify “low value” interventions and produce guidance on best practice.(C) The capacity to monitor compliance to and effects of “enforced” guidance.These three elements have been in place in the SNS for some years now. However their effective alignment in supporting a disinvestment strategy has met with several hurdles. Components of organisational incentives as well as the "technological fascination" affecting professionals' and public perceptions have played a role in Spain as elsewhere. In addition, some idiosyncratic political factors lead to weak mechanisms for the channelling of available evidence into decision-making and the existing SNS technical bodies capped to issue only non-binding recommendations. Sadly, the "cuts across the board" strategy adopted in facing the financial crisis might have finally triggered the required political clime to overcome these obstacles to disinvestment. In the current context, the SNS stakeholders (professionals and the public) may regard the disinvestment proposal of informed local decisions about how best to spend the shrinking amount of resources, getting rid of low value care, as a shielding rationale, rather than a thread.

  16. Cutting forces during turning with variable depth of cut

    Directory of Open Access Journals (Sweden)

    M. Sadílek

    2016-03-01

    The proposed research for the paper is an experimental work – measuring cutting forces and monitoring of the tool wear on the cutting edge. It compares the turning where standard roughing cycle is used and the turning where the proposed roughing cycle with variable depth of cut is applied.

  17. Optimization of Wet or Dry Micro-blasting on PVD Films by Various Al2O3 Grain Sizes for Improving the Coated Tools' Cutting Performance

    Directory of Open Access Journals (Sweden)

    K. -D. Bouzakis

    2011-06-01

    Full Text Available Micro-blasting on PVD coated tools is an effective technology for improving their cutting performance. Through micro-blasting, compressive stresses are induced into the film, thus increasing the coating hardness, but its brittleness too. Simultaneously, abrasion phenomena are activated, which may lead to roughness augmentation, film thickness decrease and substrate revelation. In this way, for a successful process conduct, it is pivotal to adapt, among others, the applied micro-blasting pressure to the employed medium, air or water. The paper deals with the optimization of wet or dry micro-blasting pressure by various Al2O3 grain sizes for improving the coated tool’s wear resistance. The wear behaviour of coated and variously dry or wet micro-blasted tools was investigated in milling. Considering the grains’ penetration kinematics into the coated tool surface and the film deformation mechanisms during dry or wet microblasting by fine or coarse sharp–edged Al2O3 grains, optimum process pressures can be determined.

  18. Machinery Cutting Technology of Ceramic Parts%陶瓷零件的机械切削加工

    Institute of Scientific and Technical Information of China (English)

    王强; 谢帆

    2013-01-01

    用数据包络分析法评价陶瓷的可加工性,构造数学规划模型,求出决策单元的最优解.结合陶瓷材料的机械加工难点,探讨了陶瓷车削、磨削、钻削等机械切削加工工艺的技术要点.通过切削正交试验,得到刀具的前角、后角、主偏角、副偏角、刃倾角、刀尖圆弧半径及切削速度、吃刀深度、进给量的参考值,优化加工工艺参数,达到较好的加工效果.%The machinability of ceramics is evaluated by data envelopment analysis, and mathematical programming model is constructed, then the optimal solution of decision-making unit is found. These reference values of the tool rake angle, clearance angle, tool cutting edge angle, minor cutting edge angle, tool cutting edge inclination angle, tip ARC radius and cutting speed, back engagement and the range of feeds are obtained through orthogonal cutting test, whose processing parameters are optimized, then better processing results are achieved. Considering the problem of machining of ceramic materials, the techniques of mechanical cutting process, ceramic turning, grinding, drilling, are discussed.

  19. Effect of the cBN content and sintering temperature on the transverse rupture strength and hardness of cBn/diamond cutting tools

    Directory of Open Access Journals (Sweden)

    Kır Durmuş

    2012-01-01

    Full Text Available The aim of this work was to investigate the effect of cBN content and sintering temperature on the transverse rupture strength (TRS of cBN/diamond cutting tools produced by hot pressing. The segments containing different cBN content were manufactured under 35 MPa pressure at 600, 650 and 700°C with a 3 minutes sintering time. The TRS of segments were determined using three-point bending test. Microstructure and phase composition of fracture surface of segments were determined by scanning electron microscopy (SEM, and X-ray diffraction (XRD analysis. The obtained results show that the TRS of the segments with cBN were higher than that of the segments with diamond.

  20. Finite Element Simulation of Surface Micro-pits Texture Cutting Tool Structure Strength%表面微坑织构刀具结构强度的有限元仿真

    Institute of Scientific and Technical Information of China (English)

    王亮; 李亮; 戚宝运

    2011-01-01

    在月具前刀面置入微织构能够改善刀屑间的摩擦状况,提高刀具的切削性能.为了研究表面织构的置入对刀具的应力、变形等产生的影响,本文针对微坑阵列结构,通过有限元软件ABAQUS对表面微坑织构刀具的结构强度进行仿真.结果表明:微坑的置人在一定程度上降低了刀具强度,增大了刀尖变形.在本文的研究范围内,与微坑深度、间距相比,微坑直径对刀具强度影响较大.%Placing micro-texture in rake face can improve the friction condition between the cutting tool and chip, as well as the cutting performance of the tool. To study the effect of surface texture on the stress and deformation of the cutting tool, the structure strength of the surface micro-pits textured cutting tool was simulated through the finite element software ABAQUS in this article. The results showed that micro-pits texture, in a certain extent, reduced thestrength of the cutting tool and increased the deformation of the tool nose. Compared with the depth and distance of the micro-pits, the micro-pits diameter had a greater impact on the cutting tool strength.

  1. Predictive Tool Life Model of Ultra High Speed Turning Inconel 718 and Cutting Parameter Optimization%超高速切削Inconel 718刀具寿命研究及切削参数优化

    Institute of Scientific and Technical Information of China (English)

    赵军; 郑光明; 李安海; 崔晓斌

    2011-01-01

    Inconel 718 is a difficult to machine alloy with low cutting efficiency and server tool wear. A series of orthogonal turning tests with sialon ceramic tools in ultra high speed scale was carried out to study tool life and wear mechanism. At the same time, the cutting parameters were optimized based on tool life-efficiency contour analysis.The experiential functions of tool life were developed. The main wear mechanisms of sialon ceramic tool involve adhesion and abrasion. In the same cutting efficiency, the higher cutting speed and small depth of cut are the better selection. For the selested tool, the optimized cutting parameter are cutting speed 150 ~ 250 m/min, depth of cut 0. 05 ~0.2 mm, feed rate 0. 1 ~ 0.2 mm, and the predietve tool life is about 5 ~ 20 min in this cutting condition.%针对Inconel 718加工时,切削效率低和刀具磨损严重,通过角正交试验对Sialon陶瓷刀具超高速切削Inconel 718的刀具寿命及磨损机理进行了研究,同时利用等效率-等寿命响应曲面法,对切削参数进行了优化,获得了干切削状态下刀具寿命的经验公式,得到陶瓷刀具超高速切削Inconel 718主要的磨损机理是粘结磨损和磨粒磨损,在效率不变的情况下,适当的降低切削速度,增大切削深度,可以提高刀具寿命,试验刀具的切削参数优化结果为:切削速度150~250 m/min、切削深度0.05~0.2 mm、进给量0.1~0.2 mm,在该建议切削参数下刀具寿命约在5~20 min.

  2. Effects of sintering processes on mechanical properties and microstructure of TiB{sub 2}-TiC + 8 wt% nano-Ni composite ceramic cutting tool material

    Energy Technology Data Exchange (ETDEWEB)

    Zou Bin, E-mail: zou20011110@163.com [Centre for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan 250061 (China) and Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education (China); Huang Chuanzhen; Song Jinpeng; Liu Ziye; Liu Lin; Zhao Yan [Centre for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Shandong University), Ministry of Education (China)

    2012-04-01

    Highlights: Black-Right-Pointing-Pointer TiB{sub 2}-TiC + 8 wt% nano-Ni ceramic tool material was sintered by six processes. Black-Right-Pointing-Pointer The properties of material depended mainly on the holding stages and duration. Black-Right-Pointing-Pointer SP1 process was involved with the multiple holding stages and longer duration. Black-Right-Pointing-Pointer SP1 process led to many pores, and coarsening and brittle rupture of grains. Black-Right-Pointing-Pointer Tool material sintered by SP6 process exhibited the optimum mechanical properties. - Abstract: TiB{sub 2}-TiC composite powder was prepared by ball-milled with ethanol and vacuum dry, and TiB{sub 2}-TiC + 8 wt% nano-Ni composite ceramic cutting tool material was sintered using vacuum hot-pressed sintering technique by six processes which included the different holding stages and times. The effects of sintering processes on the mechanical properties and microstructure were investigated. The polished surface and fracture surface of TiB{sub 2}-TiC + 8 wt% nano-Ni ceramics sintered by the different sintering processes were observed by scanning electron microscope (SEM), X-ray diffraction (XRD) and energy-dispersive spectrometry (EDS), and the relationships between mechanical properties and microstructure were discussed. The mechanical properties and microstructure depended mainly on the total holding time and the different holding stages. The longer holding time and multiple holding stages led to coarsening of TiB{sub 2} and TiC grains, formation of pores and the brittle rupture of grains, which deteriorated the mechanical properties of TiB{sub 2}-TiC + 8 wt% nano-Ni ceramic. TiB{sub 2}-TiC + 8 wt% nano-Ni composite ceramic cutting tool material sintered by SP6 process exhibited the optimum resultant mechanical properties because of its finer microstructure and higher relative density, and its flexural strength, fracture toughness and hardness were 916.8 MPa, 7.80 MPa m{sup 1/2} and 22.54 GPa

  3. 汽车钛合金连杆切削加工中的刀具磨损研究%Research on Tool Wear in Cutting Process of Automobile Titanium Alloy Connecting Rod

    Institute of Scientific and Technical Information of China (English)

    孙海波; 姜淑华

    2016-01-01

    以汽车钛合金连杆为研究对象,分析了钛合金连杆在切削加工工艺过程中的刀具磨损量、切削力和刀具寿命随着切削速度、润滑压力的变化规律。试验分析结果表明:刀具磨损量随着切削速度的增加而增加,随着水射流润滑压力的增加先减小后增加;刀具切削力和轴向力均随着水射流压力的增大先减小后增加,但轴向力的变化较切削力更加敏感,变化速率更快;刀具寿命随着切削速度的增加而减小,随着水射流压力的增加先增大后减小,钛合金连杆的最佳工况为切削速度75m/min,润滑压力10MPa。%The automobile titanium alloy connecting rod was regarded as the study object;the effects different cutting speeds and lubrication pressures to the tool wear,cutting forces and tool life of titanium alloy connecting rod were re-searched.The experimental results show that with the increase of cutting speed,the tool wear increases;with the increase of the pressure of the jet water,the tool wear first increases and then decreases;the cutting force and the axial force of the cut-ting tool first decreases and then increases with the increase of the pressure of the jet water,but the change rate of axial force is more sensitive to the cutting force;the tool life decreases with the increase of the cutting speed and increases with the increase of the pressure of the jet water,the best work conditions of titanium alloy connecting rod can get at the cutting speed of 75m/min and the lubrication pressure of 1 0MPa.The experiments prove that the jet water assisted lubrication can increase the tool life and improve the surface properties of the materials,which provides a theoretical basis for titanium ma-terials and automotive components manufacturing.

  4. Grazing-incidence small-angle X-ray scattering: New tool for studying thin film growth

    Energy Technology Data Exchange (ETDEWEB)

    Levine, J.R.; Cohen, J.B.; Chung, Y.W.; Georgopoulos, P. (Northwestern Univ., Evanston, IL (USA). Dept. of Materials Science and Engineering)

    1989-12-01

    Grazing-incidence small-angle X-ray scattering (GISAXS) is introduced as a method of studying discontinuous thin films. In this method, the incident beam is totally externally reflected from the substrate followed by small-angle scattering of the refacted beam by the thin film. The experiment described establishes the ability of GISAXS to provide size information for islands formed in the initial stages of thin film growth. The data presented are for gold films of 7 and 15 A average thicknesses on Corning 7059 glass substrates. The advantages of this technique are that it is non-destructive, can be done in situ, provides excellent sampling statistics, does not necessarily require a synchrotron source, and is not limited to thin or conducting substrates. (orig.).

  5. THE INFLUENCE OF THE TOOL POINT ANGLE AND FEED RATE ON THE DELAMINATION AT DRILLING OF PRE-LAMINATED PARTICLEBOARD

    Directory of Open Access Journals (Sweden)

    Mihai ISPAS

    2015-12-01

    Full Text Available Pre-laminated particleboard is a wood based composite extensively used in the furniture industry. Drilling is the most common machining process which prepares the panels for joining using twist/helical drills in the absolute majority of cases. The point angle of the drill bit and the feed speed during drilling play a major role in gaining a good surface quality and minimizing the delamination tendency of the pre-laminated particleboard. The objective of this study was to measure and analyze the influence of the two above-mentioned factors on the processing quality, evaluated by de size of delaminations, both, at the entrance side and the exit side of the drill bit. To assess the defect, two parameters were used: the delamination factor and the effective area of delamination. The results showed that, in general, the combination of small point angle with low feed rate minimizes the delamination of pre-laminated particleboard panels at drilling.

  6. search.bioPreprint: a discovery tool for cutting edge, preprint biomedical research articles [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Carrie L. Iwema

    2016-07-01

    Full Text Available The time it takes for a completed manuscript to be published traditionally can be extremely lengthy. Article publication delay, which occurs in part due to constraints associated with peer review, can prevent the timely dissemination of critical and actionable data associated with new information on rare diseases or developing health concerns such as Zika virus. Preprint servers are open access online repositories housing preprint research articles that enable authors (1 to make their research immediately and freely available and (2 to receive commentary and peer review prior to journal submission. There is a growing movement of preprint advocates aiming to change the current journal publication and peer review system, proposing that preprints catalyze biomedical discovery, support career advancement, and improve scientific communication. While the number of articles submitted to and hosted by preprint servers are gradually increasing, there has been no simple way to identify biomedical research published in a preprint format, as they are not typically indexed and are only discoverable by directly searching the specific preprint server websites. To address this issue, we created a search engine that quickly compiles preprints from disparate host repositories and provides a one-stop search solution. Additionally, we developed a web application that bolsters the discovery of preprints by enabling each and every word or phrase appearing on any web site to be integrated with articles from preprint servers. This tool, search.bioPreprint, is publicly available at http://www.hsls.pitt.edu/resources/preprint.

  7. The Study of Cutting Conditions Effects on the Damping Process Using the Experimental Taguchi Method

    Directory of Open Access Journals (Sweden)

    Haikel Mejri

    2016-01-01

    Full Text Available This article focuses on determining the effects of cutting conditions and their interactions on the cutting process damping in the case of curvilinear milling. The tests were performed using a numerical model simulation that allows the prediction of cutting forces and damping. The effects and interactions are determined using the Taguchi experimental method. Analysis of variance (ANOVA was performed to know the level of importance of the machining parameters on the cutting damping process. The results revealed that the Depth of cut Ap “C” and cutting speed Vc “B” have the most significant influence on the Cxx and Cxy process damping. The variations of tool diameter D “A” and clearance angle α have remarkable effects on the process damping Cxx. The “BC” interaction has the greatest effect on the process damping Cxx while the “AC” interaction has the greatest effect on the process damping Cxy.

  8. PCBN tool wear mechanism in laser ultrasonically combined cutting cemented carbide%PCBN刀具激光超声复合切削硬质合金的磨损机理

    Institute of Scientific and Technical Information of China (English)

    张昌娟; 焦锋; 牛赢

    2016-01-01

    结合激光加热辅助切削和超声振动切削提出了激光超声复合切削加工工艺。采用PCBN刀具对YG10硬质合金进行普通切削、超声振动切削、激光加热辅助切削和激光超声复合切削对比试验,采用超景深显微镜观测刀具磨损量及磨损形貌,通过扫描电子显微镜(SEM)对刀具磨损区域进行能谱分析,研究激光超声复合切削条件下刀具的磨损规律、磨损形态及磨损原因。研究结果表明:与普通切削、超声振动切削及激光加热辅助切削相比,激光超声复合切削时刀具后刀面磨损量平均值分别降低57.5%、46%、41.3%,刀具使用寿命明显提高;刀具磨损形态主要表现为前刀面磨损、后刀面磨损和崩刃;激光超声复合切削硬质合金时粘接磨损、氧化磨损、相变磨损和微裂解磨损是引起PCBN刀具磨损的主要原因。%Laser ultrasonically combined cutting was proposed based on ultrasonic vibration cutting with laser heating assisted cutting. A series of experiments were conducted in conventional cutting, ultrasonic vibration cutting, laser heating assisted cutting and laser ultrasonically combined cutting YG10 cemented carbide with PCBN tools. The tool wear characteristics and tool wear mechanism were observed by using digital microscope with super depth, the energy spectrum analysis was carried out in worn areas of tools by scanning electron microscopy (SEM). The experimental results indicate that the average flank wear of PCBN tool obtained by laser ultrasonically combined cutting is reduced by almost 57.5%, 46% and 41.3% respectively when compared with that by conventional cutting, ultrasonic vibration cutting and laser heating assisted cutting, therefore the tool life is obviously lengthened. The main wear types are crater wear, flank wear and tipping for PCBN tools in cutting YG10 cemented carbide. And the adhesion, oxidation, phase transformation and micro dissociation are the

  9. Study on Macro-morphology of Hard whirling Chips with PCBN Cutting Tools Coated with Chromium Aluminum Nitride%氮化铬铝涂层PCBN刀具旋风硬铣切屑宏观特征研究

    Institute of Scientific and Technical Information of China (English)

    朱红雨; 李迎

    2011-01-01

    氮化铬铝具有比氮化钛铝更高的硬度和抗氧化性,能否作为PCBN刀具的涂层需要进行试验研究验证.通过对氮化铬铝涂层PCBN刀具在硬态旋风铣削淬硬钢GCr15平均硬度为63.5HRC)加工中,选用不同的切削参数、冷却方式和刀具个数的研究,从而得出氮化铬铝涂层PCBN刀具旋风硬铣加工的特点和应用范围,对涂层刀具的研究和切屑预报研究提供了依据.%Chromium Aluminum Nitride has much more hardness and oxidation resistance than Titanium Aluminum Nitride. This article studied on cutting tool wear, surface processing quality of work piece and macro-morphology of chips during the hard whirling machining on hardened steel GCrl5 with average hardness at 63. 5HRC through PCBN cutting tools coated with Chromium Aluminum Nitride. Through testing with different cutting parameters, different cooling mode and different cutting tool numbers, this article illustrated characters and application scope of hard whirling machining with PCBN cutting tools coated with Chromium Aluminum Nitride and provided a basis for research on cutting tool coating or research on machining forecasting through chips.

  10. 碳纤维复合材料手工制孔刀具和工具的选择方案%Scheme of Choosing Cutting Tool and Tool for Manual Drilling in CFRP

    Institute of Scientific and Technical Information of China (English)

    罗海勇; 郑伟; 涂卿

    2013-01-01

    At present, CFRP is widely applied in aircraft manufacture. Drill is very important process in assembly. So choosing the right cutting tool and tool is very necessary to make sure the quality of drill. Now vari-ous kinds of drills and tools are used in domestic factory. To improve the technology of drill for CFRP, the better scheme should be summarized from practice.%目前,碳纤维复合材料正广泛应用于飞机制造,而装配中制孔是重要的一环,因此,选择合适的刀具和工具是保证制孔质量的前提。国内各公司采用的工具和刀具各不相同,为提高复合材料的制孔技术,应从众多实际应用实例中总结出更优的选择方案。

  11. 车削过程中刀具振动响应测试及分析%Testing and analysis on vibration responses of cutting tool in tuming process

    Institute of Scientific and Technical Information of China (English)

    孟华; 李顺才; 刘玉庆

    2012-01-01

    利用QLVC-ZSA1振动信号分析仪及加速度传感器,对数控车床在不同切削要素的车削过程中刀具的振动响应进行了测试及量化研究,得到了刀具振动加速度信号的时域曲线及自功率谱密度曲线.研究表明:刀具的振动响应是一个随车削进行的时变过程,在同一走刀相同车削要素的车削过程中,随着去除材料的增加,刀具所受的激振能量减少;随着切削深度的增加,刀具振动的最大自功率谱密度并非单调增加,车削深度对于刀具振动的影响存在一个临界值;随着主轴转速及进给速度的提高,刀具振动的自谱密度值随之增大,而相应的振动频率降低.%By means of the QLVC-ZSA1 analysis instrument of vibration signals and acceleration sensor, the vibration responses of the cutting tool are tested and quantitatively studied for the turning process of the numerically controlled lathe under the different cutting elements, and the time series curves and the self-power spectral density curves of the acceleration vibration signals of the cutting tool are obtained. The study indicates that (1) the vibration response of the cutting tool is a time-varying process with the operating of the turning. For the turning period with same turning parameters in a tool moving path, the hammer vibration energy of the cutting tool decreases with the increase of the material removal; (2) with the increase in cutting depth, the maximum of the self-power spectral density of the tool vibration doesn't increase monotonically and the cutting depth has a critical value for the effect on the tool vibration; (3) with the increase in the spindle speed and feeding velocity, the self-power spectral density of the tool vibration also increases, while the corresponding vibration frequency decreases.

  12. M42高速钢刀具的抗弯强度试验及分析%Test & Analysis for Bend Strength of M42 HSS Cutting Tools

    Institute of Scientific and Technical Information of China (English)

    刘玉华

    2001-01-01

    通过抗弯强度试验分析了M42高速钢刀具的热处理硬度与韧性之间的关系,提出采用等温淬火工艺将M42高速钢刀具的硬度控制在65~67.5HRC可获得较佳切削性能。%The relationship between the heat treating hardness and ductility of M42 HSS cutting tool is analyzed through the bend strength test. It is pointed out that the heat treating hardness of M42 HSS cutting tool shall be held in 65~67.5 HRC by the isothermal hardening to acquire the good cutting performance.

  13. Research and Development of Information System of Cutting Tool Based on Web%基于Web切削刀具信息系统的研究与开发

    Institute of Scientific and Technical Information of China (English)

    王怀明; 王春海; 张景峰; 孙中文

    2004-01-01

    The paper studies a information system of cutting tool based on web. The system's function is that it can look out the tool size, model and other technical information of cutting tool producers home and abroad through client browser. It can also provide tool type and cutting parameters based on the work piece materials, precision, procession methods and other cutting conditions. Apart from that, it can offer maintaining function such as user registration, right-rank management, date bank maintenance, etc.%本文研究的是一种基于Web的切削刀具信息系统.这种系统具有用户通过客户端浏览器快速检索到系统中国内外主要刀具生产厂家及企业内部的刀具型号、尺寸及其它技术参数信息的功能.同时也具有可以根据加工零件的材料、加工精度要求、加工工艺方法及其它加工条件,获得推荐的刀具种类及切削用量的功能.另外,系统本身还具有维护功能,可以进行用户的注册、权限管理及数据库的维护等功能.

  14. 金刚石涂层硬质合金阶梯刀具的制备及钻削特性%Preparation and Drilling Characteristics of Diamond Coated Cemented Carbide Step Cutting Tool

    Institute of Scientific and Technical Information of China (English)

    向道辉; 张磊; 张玉龙; 马国峰; 周直昆; 秦强

    2016-01-01

    The diamond coating was prepared on the surface of the cemented carbide step cutting tool by using double-layered hot filament assisted chemical vapor deposition (CVD).Then the drilling characteristics and wear properties of the uncoated and coated cutting tools during drilling the composite fiber brake pad,as well as the surface qualities of the machined hole,were compared and analyzed.The results show that under the high speed drilling condition,the axial force and torque of coated cutting tool were obviously lower than those of uncoated cutting tool,showing a better drilling performance.After drilling 10 holes at the same speed and feed rate,the flank wear height of the coated cutting tool was about 0.025 mm,which was much less than the wear standard (0.2 mm), while that (0.15 mm)of uncoated cutting tool was close to the wear standard,indicating that the wear resistant of the coated cutting tool was better than that of uncoated cutting tool.The hole boundary drilled by the coated cutting tool was smooth and had no burr and tearing.The surface quality was better than that drilled by uncoated cutting tool.%采用双层热丝化学气相沉积(CVD)法在硬质合金阶梯刀具表面制备了金刚石涂层,对比分析了无涂层和涂层刀具钻削复合纤维刹车片的钻削特性和磨损性能以及加工孔的表面质量.结果表明:在高速钻削条件下,涂层刀具的轴向力和扭矩明显小于无涂层刀具的,表现出更好的钻削性能;当以相同的转速和进给量钻削出10个孔后,涂层刀具的后刀面磨损高度约为0.025 mm,远小于磨损标准(0.2 mm),无涂层刀具的后刀面磨损高度(0.15 mm)则接近磨损标准,涂层刀具的耐磨性能优于无涂层刀具的;涂层刀具钻削孔的四周圆滑,没有毛刺及撕裂现象,其表面质量好于无涂层刀具钻削孔的.

  15. The Effect of the Double-Deck Filament Setup on Enhancing the Uniformity of Temperature Field on Long-Flute Cutting Tools

    Science.gov (United States)

    Shen, Bin; Chen, Sulin; Cheng, Lei; Sun, Fanghong

    2014-09-01

    In the present study, a double-deck filament setup is proposed for the hot filament chemical vapor deposition (HFCVD) method and an optimization method is presented to determine its optimal geometry that is able to produce a highly uniform temperature field on the whole flute surface of long-flute cutting tools. The optimization method is based on the finite volume method (FVM) simulation and the Taguchi method. The simulation results show that this double-deck filament setup always produce a highly uniform temperature distribution along the filament direction. Comparatively, for the temperature uniformity along the drill axis, the heights of the two filament decks present virtually significant influence, while the separations between the two filaments in either deck exhibit a relative weak effect. An optimized setup is obtained that can produce a highly uniform temperature field with an average temperature of 834°C, a standard deviation (σ) of 2.59°C and a temperature range (R) of 11.75°C. Finally, the precision of the proposed simulation method is verified by an additional temperature measurement. The measured temperature results show that a highly uniform temperature fields with σ/R = 9.6/35.2°C can be generated by the optimized setup and the deviation of the simulated results from the measured actual temperatures are within 0.5-3.5%, which justifies the correctness of the simulation method proposed in present study.

  16. 过江隧道大型泥水盾构刀具使用与管理%Application and Management of Cutting Tools of Large Slurry Shield in River-crossing Tunnels

    Institute of Scientific and Technical Information of China (English)

    季玉国; 杨荣斌

    2016-01-01

    为了进一步推进和提高我国大型泥水盾构刀具的使用与管理水平,解决其目前存在的突出问题,以南京长江隧道、南京扬子江隧道、南京地铁3号线和10号线过江单洞双线隧道等大型泥水盾构施工为背景,通过对复合地层盾构掘进施工刀具使用的分析总结,提出了刀具管理的前期设计、过程使用管理、刀具检查更换、意外事故的预防和恢复掘进注意事项等刀具使用系统管理理念,以期为今后类似工程盾构施工刀具管理提供指导与借鉴。%The application of cutting tools of shield in complex strata of Nanjing Yangtze River-crossing Tunnels and Nanjing River-crossing Metro Line No.3 and Line No.1 0 is analyzed and summarized.And then the initial design, application and management,cutting tool checking and replacing,incident prevention and boring recovery of cutting tool management are proposed,so as to improve the application and management of cutting tools of large slurry shield in China. The results can provide reference for application and management of cutting tools of shield in similar projects in the future.

  17. Cutting force prediction for circular end milling process

    Institute of Scientific and Technical Information of China (English)

    Wu Baohai; Yan Xue; Luo Ming; Gao Ge

    2013-01-01

    A deduced cutting force prediction model for circular end milling process is presented in this paper.Traditional researches on cutting force model usually focus on linear milling process which does not meet other cutting conditions,especially for circular milling process.This paper presents an improved cutting force model for circular end milling process based on the typical linear milling force model.The curvature effects of tool path on chip thickness as well as entry and exit angles are analyzed,and the cutting force model of linear milling process is then corrected to fit circular end milling processes.Instantaneous cutting forces during circular end milling process are predicted according to the proposed model.The deduced cutting force model can be used for both linear and circular end milling processes.Finally,circular end milling experiments with constant and variable radial depth were carried out to verify the availability of the proposed method.Experiment results show that measured results and simulated results corresponds well with each other.

  18. EFFECT OF DIMPLE GEOMETRIC PARAMETERS OBTAINED ON METAL SURFACE BY ELECTRICAL DISCHARGE ON ITS CUTTING ABILITY

    Directory of Open Access Journals (Sweden)

    M. G. Kiselev

    2016-01-01

    Full Text Available The paper contains an analysis of dimple geometric parameters obtained on wire surface during its in its electrical discharge machining. A photography and description of one of the dimples has been given in the paper. The paper has analyzed a cross-sectional shape of the obtained dimple with due account of the solidified metal flows formed along its edges. The flows in a first approximation can be considered as elements of a cutting wedge. According to cutting theory provisions the paper considers solidified metal flow shapes in a longitudinal section and indicates angles which have been formed by the flows, working planes and edges which can be involved in the cutting process. It has been shown that cutting elements on the dimple surface are arranged symmetrically that makes it possible to carry out cutting process while moving a tool in both directions of reciprocating motion. Parameters of cutting surface influencing on cutting process execution have been specified in the paper. It has been demonstrated that due to changes in energy of electric discharge through voltage or capacity of a power supply storage capacitor it is possible purposefully to influence on the shape and size of metal flows and, respectively, on values of cutting wedge parameters that characterize a tool cutting ability. A conclusion has been made about possibility to obtain the most advantageous values of these parameters while optimizing modes of wire electrical discharge machining.

  19. Análisis por el Método de los Elementos Finitos de las tensiones en la zona de contacto herramienta-viruta. // Stress anallisys by Finite element Method in tool-cutting zone.

    Directory of Open Access Journals (Sweden)

    M. Rodríguez Madrigal

    2002-01-01

    Full Text Available En este trabajo ha sido empleado el método de los elementos finitos para modelar las tensiones en la zona de contactoherramienta-viruta en un proceso de corte ortogonal. Se ha empleado una formulación de Lagrange actualizada parasolucionar la no linealidad del fenómeno. El comportamiento elasto-plástico del material ha sido formulado mediante lasecuaciones de Prandtl-Reuss y la teoría de endurecimiento por deformación para resolver la ecuación constitutiva elastoplásticadel proceso de corte ortogonal. Se han obtenido la tensión normal y la tensión de cizallamiento en la zona decontacto herramienta-viruta, definiéndose las zonas de adherencia y deslizamiento.Palabras claves: corte ortogonal, contacto herramienta-viruta, método de los elementos finitos, proceso decorte de metales._______________________________________________________________________________Abstract:The finite element method has been used to obtain the stress model in the tool-cutting contact zone in an orthogonal cuttingprocess. An updated Lagrange formulation has been used to solve the nonlinearity of the elasto-plastic phenomenonbehavior of the material.This behavior has been formulated by means of the Prandtl-Reuss equations and the theory ofdeformation by hardening, in order to solve the elasto-plastic equation of orthogonal cutting process. The normal and shearstresses in tool-cutting zone has been obtained, defining the adherence and sliding zones.Key words: Orthogonal cut , tool-cutting contact, finite element method, steel cutting process.

  20. Cutting Tool Selection in CFRP and AFRP Machining%碳纤维与芳纶纤维复合材料机械加工刀具选用

    Institute of Scientific and Technical Information of China (English)

    刘汉良; 张加波; 王震; 张佳朋; 李光

    2013-01-01

    Cutting tool plays an significant role in composite machining.In this paper the special property of composite and its machining mechanism is analyzed,the requirement of cutting tool materials,structure and geometrical parameters for composite machining is discussed.Several kinds of drilling and milling tools which are fit for carbon fiber reinforced plastic (CFRP) and aramid fiber reinforced plastic (AFRP) are introduced.%通过对复合材料特性和加工机理的分析,论述了复合材料机械加工对刀具材质、结构和几何参数的要求,介绍了几种适合于碳纤维和芳纶纤维复合材料机械加工的钻削和铣削刀具.

  1. Numerical Value of Cutting Temperature and Tool Wear of Convex Curved Rake Gear Shaper Cutters%凸曲前刀面插齿刀插削温度与刀具磨损关系数值模拟

    Institute of Scientific and Technical Information of China (English)

    陈超; 韩志远

    2011-01-01

    The cutting process of convex curved rake gear shaper cutters was simulate based on DEFORM- 3D software, to analyze the temperature of cutting impacted the tool wear condition. The results show that the temperature gradient is large near the cutting edge. If the temperature is high, the amount of tool wear is big. The distance between the tool flank and cutting blade is equidistant which tends to the same temperature. If the temperature of flank is high, the amount of tool wear is big. Tool wear of flank is more serious than rake. In the chip left place, the temperature gradient is the lowest, there is diversification of temperature, but the diversification is heat conduction, and there is no tool wear happens.%基于DEFORM - 3D软件对凸曲前刀面插齿刀插削过程进行仿真,分析插削温度对刀具磨损影响情况.结果表明,在插削刃附近温度梯度很大,温度高,相应刀具磨损量大;刀具前后刀面距插削刃相等地方的温度趋于一致;后刀面温度梯度大,相应刀具磨损量较大,即后刀面磨损较为前刀面严重;在与切屑分离的地方,温度梯度最小,虽有温度变化,但属于热传导性质,该处刀具没有发生磨损.

  2. The Cutting Process, Chips and Cutting Forces in Machining CFRP

    DEFF Research Database (Denmark)

    Koplev, A.; Lystrup, Aage; Vorm, T.

    1983-01-01

    The cutting of unidirectional CFRP, perpendicular as well as parallel to the fibre orientation, is examined. Shaping experiments, ‘quick-stop’ experiments, and a new chip preparation technique are used for the investigation. The formation of the chips, and the quality of the machined surface...... is discussed. The cutting forces parallel and perpendicular to the cutting direction are measured for various parameters, and the results correlated to the formation of chips and the wear of the tool....

  3. Force Relations and Dynamics of Cutting Knife in a Vertical Disc Mobile Wood Chipper

    Directory of Open Access Journals (Sweden)

    Segun R. BELLO

    2011-06-01

    Full Text Available The force relations and dynamics of cutting knife in a vertical disc wood chipper were investigated. The tool geometry determined include: rake angle (20 deg C; Shear angle, (fi= 52.15 deg C; the mean frictional angle, (t = 5.71 deg C. The analysis and comparison of the cutting forces has shown that the chips separated from the wood are being formed by off cutting, since normal applied force N is compressive in nature, the magnitude of the forces used by the knife on the wood is expected to increase as the cutting edge of the knife goes deeper into the wood until the value of the resisting force acting against the cut wood Ff is reached and exceeded. The evaluated forces acting on the knife and the chip are: F = 3.63Nmm^-1; N = 34.7 Nmm^-1; Fs= 27.45Nmm^-1; Fn =31.92 Nmm^-1; Ft = -8.46Nmm^-1; Fc = 33.85Nmm^-1. The resultant force acting on the tool face, Pr = 34.89Nmm^-1. The specific cutting pressure, Pc and cutting force needed to cut the timber, Fc, are 1.79 × 10^6 N/m2 and 644.84N respectively. The energy consumed in removing a unit volume of material is 69.96kJ/mm^-3 and the maximum power developed in cutting the chip is 3591.77W (4.82hp. The chipper efficiency (86.6% was evaluated by the highest percentage of accepted chip sizes.

  4. Cutting assembly

    Science.gov (United States)

    Racki, Daniel J.; Swenson, Clark E.; Bencloski, William A.; Wineman, Arthur L.

    1984-01-01

    A cutting apparatus includes a support table mounted for movement toward and away from a workpiece and carrying a mirror which directs a cutting laser beam onto the workpiece. A carrier is rotatably and pivotally mounted on the support table between the mirror and workpiece and supports a conduit discharging gas toward the point of impingement of the laser beam on the workpiece. Means are provided for rotating the carrier relative to the support table to place the gas discharging conduit in the proper positions for cuts made in different directions on the workpiece.

  5. Research Progress of PcBN Materials and Cutting Tools%PcBN材料及其刀具研究进展

    Institute of Scientific and Technical Information of China (English)

    班新星; 谢欢; 纪莲清; 刘书锋

    2012-01-01

    介绍了PcBN材料及其刀具的发展史,给出了制备PcBN的工艺流程及关键技术.通过大量实验数据总结出,作为合成PcBN的基本原料,cBN具有高的硬度和化学惰性.但高的化学惰性阻碍了晶格间的良好烧结,即cBN与cBN晶粒直接键合是十分困难的.分析了不同结合剂对制备PcBN的影响,介绍了金属结合剂及陶瓷结合剂对PcBN性能的影响,如:Al、B、AlN、TiN和WC等.最后对PcBN材料的发展作了展望.%The development status of materials and cutting tools of PcBN were briefly introduced, and the preparation PcBN process and the key technologies were given. Summed up by a large number of experimental data, as synthetic PcBN of basic raw materials, cBN has high hardness and chemical inertness. But high chemical inertness hinders the good sintering between the lattices. cBN and cBN grain direct bonding is very difficult. To solve the problems, the influences of different binders on the preparation of PcBN were analyzed, the metal-binding agents and ceramic-binding agents of PcBN performance were introduced, such as: Al, B, AlN and TiN, WC, etc. Finally, the development of PcBN materials in the future was prospected.

  6. 椭圆状微织构自润滑车刀切削性能试验%Cutting Performance of Self-lubricating Turning Tools with Elliptical Micro-textures

    Institute of Scientific and Technical Information of China (English)

    吴泽; 邓建新; 邢佑强; 程洁; 赵军

    2012-01-01

    采用激光加工方法在硬质合金刀具前刀面易磨损区域加工椭圆状微织构,并在微织构中填充MoS2固体润滑剂,制备了微织构自润滑刀具.运用有限元方法分析了微织构对刀具刀尖处应力分布的影响;将微织构自润滑刀具与传统刀具进行了干切削45号钢的对比试验.结果表明:微织构的存在对刀尖处的应力分布无显著影响,与传统刀具相比,微织构自润滑刀具能够有效降低切削力和切削温度,减小切屑变形,增加切屑卷曲,同时减缓刀具前刀面磨损.%Elliptical micro-textures were made by using laser on the rake face of the tungsten carbide cutting inserts. Molybdenum disulfide ( MoS2 ) solid lubricants were embedded into the micro-textures to form self-lubricating textured tools. Finite element analysis was conducted to assess the effect of micro-texture on the stress distribution of the cutting inserts. Dry cutting tests were carried out with these self-lubricated cutting tools and conventional cemented carbide tools. As the results, there is no conspicuous adverse effect on the stress distribution of the tool nose with micro-textures on the rake face. The cutting forces and the cutting temperatures with the self-lubricating textured tools were greatly reduced compared with that of conventional cemented carbide tools. Meanwhile, the rake wear and the chip deformation were reduced, and the chip coiling was improved with micro-texturing lubrication.

  7. Computer-aided Selection System for Cutting Tools and Parameters Based on Machining Features%面向加工特征的刀具和切削参数计算机辅助选择系统

    Institute of Scientific and Technical Information of China (English)

    郝传海; 刘战强; 任小平; 万熠

    2012-01-01

    Cutting tool manufacturers are facing increasing demands to supply a comprehensive advice service with relation to selection of appropriate tools and cutting parameters for a widely variety of part materials and machining features. The central element for process planning is to select the appropriate cutting tools and machining parameters, too. However, the main attention has been only paid on the part materials. It causes the mismatches between workpieces and tools. This study is to describe the development of a computer - aided selection system for cutting tools and cutting parameters based on machining features (FTCPS), which is designed to cover different component shapes including turning, milling, drilling as well as boring operation features. The kinematic link between machined surface feature with a simple icon based interface being used to input data records, and a relational database combined with data - driven method and rule - based decision logic is used to select cutting tool geometry and machining parameters for a range of machining operations. The system also utilizes mathematical model to calculate processing conditions (machining time in single path, cutting power, maximum harshness, etc. ). Process planning is completed in the end. By turning tools and turning parameters selection for example , the result shows the realization method of system. FTCPS will help the designers and manufacturing planners to select optimal set of cutting tools and cutting conditions.%切削刀具制造商面临围绕大量工件材料和加工特征为客户提供合理刀具和切削参数的现状,切削工艺规划的核心步骤也是刀具和切削参数的确定.确定刀具和切削参数一般多从零件材料角度出发,可能导致工件与刀具不匹配.文中提出面向加工特征的刀具和切削参数计算机辅助选择系统的开发.系统包括车削特征、铣削特征、钻削和镗削加工特征,系统利用特征

  8. Solution small-angle x-ray scattering as a screening and predictive tool in the fabrication of asymmetric block copolymer membranes

    KAUST Repository

    Dorin, Rachel Mika

    2012-05-15

    Small-angle X-ray scattering (SAXS) analysis of the diblock copolymer poly(styrene-b-(4-vinyl)pyridine) in a ternary solvent system of 1,4-dioxane, tetrahydrofuran, and N,N-dimethylformamide, and the triblock terpolymer poly(isoprene-b-styrene-b-(4-vinyl)-pyridine) in a binary solvent system of 1,4-dioxane and tetrahydrofuran, reveals a concentration-dependent onset of ordered structure formation. Asymmetric membranes fabricated from casting solutions with polymer concentrations at or slightly below this ordering concentration possess selective layers with the desired nanostructure. In addition to rapidly screening possible polymer solution concentrations, solution SAXS analysis also predicts hexagonal and square pore lattices of the final membrane surface structure. These results suggest solution SAXS as a powerful tool for screening casting solution concentrations and predicting surface structure in the fabrication of asymmetric ultrafiltration membranes from self-assembled block copolymers. (Figure presented) © 2012 American Chemical Society.

  9. Fundamental Science Tools for Geologic Carbon Sequestration and Mineral Carbonation Chemistry: In Situ Magic Angle Spinning (MAS) Nuclear Magnetic Resonance

    Science.gov (United States)

    Hoyt, D. W.; Turcu, R. V.; Sears, J. A.; Rosso, K. M.; Burton, S. D.; Kwak, J.; Felmy, A. R.; Hu, J.

    2010-12-01

    GCS is one of the most promising ways of mitigating atmospheric greenhouse gases. Mineral carbonation reactions are potentially important to the long-term sealing effectiveness of caprock but remain poorly predictable, particularly reactions occurring in low-water supercritical CO2(scCO2)-dominated environments where the chemistry has not been adequately explored. In situ probes that provide molecular-level information is desirable for investigating mechanisms and rates of GCS mineral carbonation reactions. MAS-NMR is a powerful tool for obtaining detailed molecular structure and dynamics information of a system regardless whether the system is in a solid, a liquid, a gaseous, or a supercritical state, or a mixture thereof. However, MAS NMR under scCO2 conditions has never been realized due to the tremendous technical difficulties of achieving and maintaining high pressure within a fast spinning MAS rotor. In this work, we report development of a unique high pressure MAS NMR capability, and its application to mineral carbonation chemistry in scCO2 under geologically relevant temperatures and pressures. Our high pressure MAS rotor has successfully maintained scCO2 conditions with minimal leakage over a period of 72 hours. Mineral carbonation reactions of a model magnesium silicate (forsterite) reacted with 96 bars scCO2 containing varying amounts of H2O (both below and above saturation of the scCO2) were investigated at 50○C. Figure 1 shows typical in situ 13C MAS NMR spectra demonstrating that the peaks corresponding to the reactants, intermediates, and the magnesium carbonation products are all observed in a single spectrum. For example, the scCO2 peak is located at 126.1 ppm. Reaction intermediates include the aqueous species HCO3-(160 ppm), partially hydrated/hydroxylated magnesium carbonates(166-168 ppm), and can easily be distinguished from final product magnesite(170 ppm). The new capability and this model mineral carbonation process will be overviewed in

  10. SKD11铣削刀具寿命试验研究及工艺参数优化%Experimental study on milling tool life for SKD1 1 steel and optimization of cutting parameters

    Institute of Scientific and Technical Information of China (English)

    肖军民

    2014-01-01

    In order to improve tool life for hardened steel SKD1 1 during the mil ing process,the related mil ing experiments are carried out and the influence of cutting parameters on tool life is analyzed based on range method.It is found that the influence of axial cutting depth on tool wear is pretty strong,and the influence of radial cutting width on tool wear is very weak.Based on the mil ing experiments,the mathematical model of tool wear is established by using of regression a-nalysis method.In order to solve the actual mil ing problem,the cutting parameters are optimized by using of SQP optimization method based on MATLAB software.During the optimization process,the machining efficiency and the tool wear quantity are set as the objective function. The optimized cutting parameters could greatly improve the machining efficiency in the premise of ensuring smal er tool wear,and it provides the important theory evidence and case reference for NC machining enterprises to reduce compositive production costs.%为提高SKD11模具钢铣削刀具的寿命,对SKD11模具钢进行了刀具寿命铣削试验,基于极差方法分析了各工艺参数对刀具寿命的影响规律。基于刀具寿命铣削试验,利用多元线性回归方法,推导并求解出了SKD11模具钢铣削刀具磨损的数学模型。利用最优化设计方法和MATLAB优化工具箱,以加工效率和刀具磨损为目标函数,针对实际的铣削问题优选了工艺参数。优化的工艺参数能兼顾刀具寿命和加工效率,为加工企业降低综合生产成本提供了重要的理论依据和案例参考。

  11. Finite Element Analysis and OADs Optimization of the Temperature in the Plane-strain Orthogonal Metal Cutting Process

    Institute of Scientific and Technical Information of China (English)

    刘龙权; 姚振强; 袁光杰

    2004-01-01

    In order to analyze the influences of the different tool's shape and surface conditions (such as different coated and material) and their interaction on the cutting temperature, a coupled thermo-mechanical finite element analysis (FEA)model of plane-strain orthogonal metal cutting process is constructed, and 16 simulation cases with 16 different types of tools, which cover 4 rake angles, - 10°, 0°, 10°, 20°,and 4 friction coefficient values, 0, 0.1, 0.2, 0.3 in the same cutting condition (cutting depth and cutting speed)have been performed. Finally the simulation results are analyzed according to the variance analysis method (VAM)of orthogonal array designs (OADs), the relationships between the rake angle, tool-workpiece interface's friction coefficient and their interact effect to the maximum temperature value and the temperature field of the chip are obtained. This result has some instructive meaning to analyze the causes of the cutting temperature and to control the maximum temperature value and the overall temperature field in the metal cutting process.

  12. Heat Resistance of TiN Coated HSS Tools

    Institute of Scientific and Technical Information of China (English)

    周兰英; 周焕雷; 贾庆莲

    2003-01-01

    The cutting friction, cutting deformation, producing heat, conducting heat, temperature field of TiN coated HSS tools in the cutting process are discussed profoundly. In order to make clear the heat property of TiN coated tools, from the micromechanism angle, the relationship of the heat property and the crystal structure of TiN compound is analyzed, and the regularity of TiN compound crystal structure changing with temperature rising is sought. The difference of the wear resistance and heat resistance of TiN coated tools deposited by c1 and c2 depositing techniques is proved by tests. The conclusions will offer the theoretical basis for correct design of geometrical parameters of TiN coated tools, rational selection of cutting regimes and optimization of the depositing technique.

  13. Cutting temperature measurement and material machinability

    Directory of Open Access Journals (Sweden)

    Nedić Bogdan P.

    2014-01-01

    Full Text Available Cutting temperature is very important parameter of cutting process. Around 90% of heat generated during cutting process is then away by sawdust, and the rest is transferred to the tool and workpiece. In this research cutting temperature was measured with artificial thermocouples and question of investigation of metal machinability from aspect of cutting temperature was analyzed. For investigation of material machinability during turning artificial thermocouple was placed just below the cutting top of insert, and for drilling thermocouples were placed through screw holes on the face surface. In this way was obtained simple, reliable, economic and accurate method for investigation of cutting machinability.

  14. Numerical modeling of cutting processes for elastoplastic materials in 3D-statement

    Science.gov (United States)

    Kukudzhanov, V. N.; Levitin, A. L.

    2008-06-01

    In the present paper, we use the finite element method to perform the three-dimensional modeling of unsteady process of cutting an elastoplastic plate (slab) by an absolutely rigid cutting tool moving at a constant velocity V 0 at different inclinations α of the tool face (Fig. 1). The modeling was based on the coupled thermomechanical model of an elastoviscoplastic material. The adiabatic process of cutting was compared with the regime in which the slab material heat conduction is taken into account. The cutting process was parametrically studied for variations in the slab and cutting tool geometry, in the rate and depth of cutting, and in the properties of the processed material. The slab thickness was varied in the direction of the axis z. The stressed state varied from the plane-stressed bar H = H/L≪ 1 (thin plate) to the plane-strained bar H ≫ 1 (wide plate), where H is the slab thickness and L is the slab length. The problem was solved on a moving adaptive Lagrange-Euler grid by the finite element method with splitting, by using the explicit-implicit integration schemes for equations [13]. It was shown that the numerical modeling of the problem in the three-dimensional statement permits studying the cutting processes with continuous chip formation and with chip destruction into separate pieces. The mechanism of this phenomenon in the case of orthogonal cutting ( α = 0) can be explained by the thermal softening with formation of adiabatic shear strips without using the damage models. In cutting by a sharper tool (the angle α is large), it is necessary to use the coupled model of thermal and structural softening. We obtain dependences of the force acting on the tool for different geometric and physical parameters of the problem. We also show that the quasimonotone and oscillating operation modes are possible and explain them from the physical standpoint.

  15. GRINDING OF SHAPED TOOLS ON CNC TOOL GRINDER

    Directory of Open Access Journals (Sweden)

    Ján Kráľ

    2013-03-01

    Full Text Available Worm gears are special gears consisting of a worm wheel and a worm. Worm gears can be produced in different ways, depending on the size of the transmission, the number of courses, the pitch angle of worm profile, the number of units produced, the purpose of application, etc. As cylindrical worm gears we consider the cylindrical worms with globoid gears, globoid worm with globoid worm gear and globoid worm with cylindrical worm gearing. This paper deals with the evolvent worm whose curve of the tooth side in the front plane is evolvent. The production of worm with an optimal profile for optimal meshing conditions is an increasingly frequent focus of worm gear manufacturers. The problem of designing the tool cutting edge can be divided into several steps. This article deals with the problems of optimum design of a tool shape for the production of worms; and the problems of calculating the coordinates of the transition cutting edge shape, and thus the path of grinding wheel for sharpening the tool cutting edge shape are solved. By grinding tool of grinding machine we can complete the worm shape and also sharpen the cutting edges of tools for production of worm surface. The problems of calculation of the coordinates are solved with regard to the functioning of the KON 250 CNC grinding machine logic.

  16. Quality Analysis of Cutting Steel Using Laser

    Directory of Open Access Journals (Sweden)

    Vladislav Markovič

    2013-02-01

    Full Text Available The article explores the quality dependence of the edge surface of steel C45 LST EN 10083-1 obtained cutting the material using laser on different cutting regimes and variations in the thickness of trial steel. The paper presents the influence of the main modes of laser cutting equipment Trulaser 3030, including cutting speed, pressure, angle and the thickness of the surface on the quality characteristics of the sample. The quality of the edge after laser cutting is the most important indicator influencing such technological spread in industry worldwide. Laser cutting is the most popular method of material cutting. Therefore, the article focuses on cutting equipment, cutting defects and methods of analysis. Research on microstructure, roughness and micro-toughness has been performed with reference to edge samples. At the end of the publication, conclusions are drawn.Article in Lithuanian

  17. Quality Analysis of Cutting Steel Using Laser

    Directory of Open Access Journals (Sweden)

    Vladislav Markovič

    2012-12-01

    Full Text Available The article explores the quality dependence of the edge surface of steel C45 LST EN 10083-1 obtained cutting the material using laser on different cutting regimes and variations in the thickness of trial steel. The paper presents the influence of the main modes of laser cutting equipment Trulaser 3030, including cutting speed, pressure, angle and the thickness of the surface on the quality characteristics of the sample. The quality of the edge after laser cutting is the most important indicator influencing such technological spread in industry worldwide. Laser cutting is the most popular method of material cutting. Therefore, the article focuses on cutting equipment, cutting defects and methods of analysis. Research on microstructure, roughness and micro-toughness has been performed with reference to edge samples. At the end of the publication, conclusions are drawn.Article in Lithuanian

  18. 高速切削淬硬模具钢刀具磨损的对比实验研究%Tool wear when high-speed cutting hardened die steel

    Institute of Scientific and Technical Information of China (English)

    于静; 赵琰巍; 倪清泉; 董海

    2013-01-01

    使用PCBN和陶瓷两种材质的刀具对淬硬模具钢Cr12MoV进行高速切削试验,深入研究了高速切削时的刀具寿命、刀具磨损形态和磨损原因,得出如下结论:相同的切削条件下,PCBN刀具寿命约为陶瓷刀具的2~3倍,当切削速度由153 m/min增大到241 m/min时,两种材质刀具寿命均下降50%以上;在相对低速下切削时,PCBN刀具和陶瓷刀具磨损形态主要为月牙洼和后刀面磨损,在相对高速下切削时,两种刀具均出现破损,破损形态主要包括崩刃和片状剥落等;PCBN刀具磨损原因主要为黏结磨损、氧化磨损和扩散磨损,陶瓷刀具的主要磨损原因有磨粒磨损、黏结磨损和扩散磨损;相同切削条件下,PCBN刀具抗磨粒磨损的能力好于陶瓷刀具,而陶瓷刀具的抗氧化性能要好于PCBN刀具;切削速度对刀具磨损原因有重要影响,随着切削速度的增大,磨粒磨损程度和黏结磨损程度均减弱.%PCBN tool and ceramic tool were used to cut hardened die steel Crl2MoV at high speed. Tool life, tool wear forms and mechanisms were studied. Results showed that; under the same conditions, tool life of PCBN tool was 2 to 3 times than that of ceramic tool; when cutting speed increased from 153 m/min to 241 m/min, tool life of both tools decreased by more than 50% ; wear form of both tools was crater and flank wear under relatively low speed, but it became breakage under the relatively high speed, including tipping and exfoliated, etc; wear mechanisms of PCBN tool were mainly adhesive wear, oxidation wear and diffusion wear, while those of ceramic tool were mainly abrasive wear, adhesive wear and diffusion wear; under the same cutting conditions, the abrasive wear resistance of PCBN tool was better than that of ceramic tool, but its oxidation resistance was lower. Cutting speed had a significant effect on wear mechanism, which was that as the cutting speed increased, abrasive wear and adhesive wear became

  19. Novel powder-coating solutions to improved micro-structures of ZnO based varistors, WC-Co cutting tools, and Co/Ni nano-phase films and sponges

    OpenAIRE

    Ekstrand, Åsa

    2002-01-01

    Solution chemistry is a versatile and powerful tool in the synthesis of designed, complex nano-level high-tech materials. Normally, the technique is considered too expensive for large-scale production of complex multi-component ceramic materials. This thesis describes the expansion of the useful area of solution processing to multi-component bulk materials such as ZnO-based high-field varistors and WC–Co cutting tools, by developing novel techniques for solution-based coating of conventionall...

  20. Cutting Cosmos

    DEFF Research Database (Denmark)

    Mikkelsen, Henrik Hvenegaard

    The foundation for this book is an ethnographic study of masculinity in a Bugkalot village in northern Philippines. While offering new research on the Bugkalot, widely known as the Ilongot, more than 30 years after the last important works were written on this famous hill-people, Cutting Cosmos...... into egalitarian relations. Cutting Cosmos shows how these seemingly opposed characteristics of male life - the egalitarianism and the assertive ideals - are interwoven. Acts of dominance are presented as acts of transgression that are persistently ritualized, contained and isolated as spectacular events within...

  1. REVIEW OF STATUS OF CERAMIC TOOLS.

    Science.gov (United States)

    CERAMIC MATERIALS, CUTTING TOOLS , ALUMINUM COMPOUNDS, OXIDES, PHYSICAL PROPERTIES, FAILURE(MECHANICS), FRICTION, TEMPERATURE, SURFACE PROPERTIES, CUTTING FLUIDS, MACHINING, LATHE TOOLS, PERFORMANCE(ENGINEERING).

  2. 土压平衡盾构机刀盘刀具布置方法研究%Research on Cutting Tool Layout Method of Earth Pressure Balance Shield

    Institute of Scientific and Technical Information of China (English)

    蒲毅; 刘建琴; 郭伟; 裴瑞英

    2011-01-01

    To ensure rationality and practicability of the cutter configuration, it is necessary to propose the method of cutting tool layout of earth pressure balance (EPB) shield. According to the equal-life principle of tool wear, the wear coefficient method and tunneling coefficient method are proposed to determine the number of tools; When it comes to a specific construction, it also can predict tool wear condition and the tunneling distance under the allowable attrition in the range of the shield tunnel excavation, which offer a reference for the safety of project; Based on Archimedes spiral layout method, the arrangement curve of drag bits on cutter head should be calculated according to the equal-life principle of tool wear; In order to obtain the actual depth of a cutting tool, the rule of plane symmetry layout of the cutting tool is put forward, and cutting process is analyzed; the first knife's three-dimensional arrangement method of the EPB shield is established, the actual cutting depth of a single tool is obtained; The accuracy of the cutting tool layout theory above is investigated with the example of TA07 of Nanjing Metro number two line. The research content and method lay a theoretical foundation for the EPB shield cutter selection and design theory.%研究土压平衡(Earth pressure balanced,EPB)盾构机刀盘刀具的布置方法,目的是为了确保刀具结构布置的合理性和实用性.依据刀具磨损的等寿命原则,提出确定刀具数量的磨损系数法和掘进系数法;针对具体施工问题,可预测盾构在开挖区间,刀具的磨损量以及许用磨损情况下刀具的掘进距离,为保障工程的安全顺利进行提供参考.基于阿基米德螺旋线布置方法,计算以刀具磨损的等寿命原则下,主切削刀的布置曲线;提出刀具平面对称布局原则,分析刀具的切削过程,得到单把刀具的实际切深;建立EPB盾构刀盘上先行刀的立体布局方法,计算得到先行刀的超前

  3. Comportamiento del acabado superficial de la pieza y el desgaste de la herramienta al fresar aluminio con altas velocidades de corte en fresadoras cnc convencionales. // Superficial finish behavior and tool wear in aluminium milling with high cutting spee

    Directory of Open Access Journals (Sweden)

    F. Martínez Aneiro

    2006-05-01

    mechanical components of high quality and great accuracy for systems of high performance isincreasing considerably in the last years at world level. This fact has caused the development of new appliedtechnologies in cutting processes.The development of machine tools (control, high-speed spindle, the cutting tools (new materials, substrata and layers andthe technology of machining, facilitated the application of cut with high cutting speed (High speed Cutting HSC. Theincrease of cutting speeds increases the efficiency of the productive processes through the reduction of the manufacturingtimes. The reduction in several times of the manufacturing process, is not achieved alone for the time of machining but alsofor the substitution of other elaboration processes that are part of the productive chain that are relatively slow in occasionsas the electroerosion (spark erosion, the manual finishing in molds and dies production as well as the changes of spareoperations. Being a relatively new process introduced starting from the decade of the 90’s; many technological questionsare still without answer. This paper presents the benefit of the high cutting speeds HSC on the tool useful life and thesuperficial finishing in spares, working in conventional milling machines of CNC. The results stated, that within the studiedparameters, that the durability of the tool and the surface roughness improve and that the behavior of the machine is stablein spite of not being conceived for high speeds.Keywords: High speed cutting, HSC, HSM, Wear, surface roughness.

  4. Sanitation Can Be A Foundation Disease Management Tool: Potential Of Spreading Binucleate Rhizoctonia from Nursery Propagation Floors To Trays Containing Azalea Stem Cuttings

    Science.gov (United States)

    Binucelate Rhizoctonia spp. (BNR), the cause of web blight, are present all year on container-grown azaleas in the southern U.S. BNR can be eliminated during vegetative propagation by submerging stem cuttings in 50°C water for 21 minutes. The objective was to evaluate risk of rooting trays being con...

  5. Abrasive water jet cutting as a new procedure for cutting cancellous bone--in vitro testing in comparison with the oscillating saw.

    Science.gov (United States)

    Schwieger, Karsten; Carrero, Volker; Rentzsch, Reemt; Becker, Axel; Bishop, Nick; Hille, Ekkehard; Louis, Hartmut; Morlock, Michael; Honl, Matthias

    2004-11-15

    The quality of bone cuts is assessed by the accuracy and biological potency of the cut surfaces. Conventional tools (such as saws and milling machines) can cause thermal damage to bone tissue. Water jet cutting is nonthermal; that is, it does not generate heat. This study investigates whether the abrasive jet cutting quality in cancellous bone with a biocompatible abrasive is sufficient for the implantation of endoprostheses or for osteotomies. Sixty porcine femoral condyles were cut with an abrasive water jet and with an oscillating saw. alpha-lactose-monohydrate was used as a biocompatible abrasive. Water pressure (pW = 35 and 70 MPa) and abrasive feed rate (m = 0.5, 1, and 2 g/s) were varied. As a measure of the quality of the cut surface the cutting gap angle (delta) and the surface roughness (Ra) were determined. The surface roughness was lowest for an abrasive feed rate of m = 2 g/s (jet direction: 39 +/- 16 microm, advance direction: 54 +/- 22 microm). However, this was still significantly higher than the surface roughness for the saw group (jet direction: 28 +/- 12 microm, advance direction: 36 +/- 19 microm) (p cutting gap angle was observed for a mass flow rate of m = 1 g/s (pW = 35 MPa: delta = 2.40 +/- 4.67 degrees ; pW = 70 MPa: delta = 4.13 +/- 4.65 degrees), which was greater than for m = 0.5 g/s (pW = 35 MPa: delta = 1.63 +/- 3.89 degrees ; pW = 70 MPa: delta = 0.36 +/- 1.70 degrees) and m = 2 g/s (pW =70 MPa: delta = 0.06 +/- 2.40 degrees). Abrasive water jets are suitable for cutting cancellous bone. The large variation of the cutting gap angle is, however, unfavorable, as the jet direction cannot be adjusted by a predefined value. If it is possible to improve the cutting quality by a further parameter optimization, the abrasive water jet may be the cutting technique of the future for robotic usage.

  6. Heat shock and UV-C abiotic stress treatments as alternative tools to promote fresh-cut carrot quality and shelf-life

    OpenAIRE

    Alegria, Carla Sofia Marques

    2015-01-01

    Doutoramento em Engenharia Alimentar - Instituto Superior de Agronomia Abiotic stress treatments, heat shock (HS_100 ºC/45 s) and UV-C (0.1-5 kJ.m-2), and two passive modified atmosphere packaging conditions were evaluated under the hurdle concept as alternative approaches to the standard processing of fresh-cut carrot (FCC). The significant phenolic accumulation, via phenylalanine-ammonia lyase activation, showed to be independent on key factors contributing to raw material bioactivity, c...

  7. 线切割自动编程中刀补方向的确定方法%The Method of Tool Compensation Direction Calculation in Wire Cutting Automatic Programming

    Institute of Scientific and Technical Information of China (English)

    莫秀波; 张秋菊

    2013-01-01

    In order to improve the wire cutting automatic programming system and simplify the operation process , it puts forward a automatic judgment tool compensation direction method based on a set of process parameters and processing conditions in the wire cutting tool path generation .This method does not need a manually tool direc-tion definition , effectively improves the efficiency of programming and avoids human error .%为了提高线切割自动编程系统的自动化程度,减少操作步骤,根据生成线切割刀补轨迹所需设定的工艺参数与加工条件,提出了一种可以自动判断刀补方向的方法,自动编程系统应用该方法后无需人工设定刀补方向,可有效提高编程效率,避免人为出错。

  8. Study on Electrical Discharge Machining Technology of Polycrystalline Cubic Boron Nitride Cutting Tool%聚晶立方氮化硼刀具刃口放电加工工艺研究

    Institute of Scientific and Technical Information of China (English)

    贾云海; 李建钢; 朱立新; 宋英杰

    2012-01-01

    通过调整电火花加工的主要放电参数(脉冲宽度和加工电流),对聚晶立方氮化硼(PCBN)样刀进行放电加工,进而对样刀刃口表面进行X射线衍射分析,并在扫描电子显微镜下观察其表层结构及能谱分析.通过对加工后样刀表面变质层主要成分及产生原因的分析,总结了脉冲宽度和加工电流对样刀表面变质层厚度、刃口表面粗糙度影响的关系曲线,为制定精密快速放电加工PCBN刀具的工艺提供了重要依据.%The samples of polycrystalline cubic boron nitride(PCBN) cutting tool were machined by adjusting the main parameters of electrical discharge machining (EDM). After the machining, the phases were analyzed by X-ray diffraction analyzer and the surface layer microstructure was observed by scanning electronic microscope. The fundamental component of machined PCBN cutting tool affected layer was obtained and the reason of begetting affected layer was analyzed. The relationship curves between pulse width, working electric current and depth affected layer, blade surface roughness were summarized. The results showed that to adjust electrical discharge machining parameters, such as decreasing pulse width or machining electric currents, can reduce the depth of affect layer and improve blade surface roughness. These researches provide valuable test reference for drawing up electrical discharge machining technology of PCBN cutting tool.

  9. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a

  10. Distribution of contact loads over the flank-land of the cutter with a rounded cutting edge

    Science.gov (United States)

    Kozlov, V.; Gerasimov, A.; Kim, A.

    2016-04-01

    ]; σh - normal specific contact load on the flank land [MPa]; τh - tangential (shear) specific contact load on the flank land [MPa]; HSS - high speed steel (material of cutting tool); Py - radial component of cutting force [N]; Py r - radial component of cutting force on the rake face [N]; Pz - tangential component of cutting force [N]; γ - rake angle of the cutting tool [°] α - clearance angle of the sharp cutting tool [°] αh - clearance angle of the flank wear land [°] ρ - rounding off radius of the cutting edge [mm]; b - width of the machined disk [mm].

  11. LASER CUTTING MACHINES FOR 3-D THIN SHEET PARTS

    Directory of Open Access Journals (Sweden)

    Miroslav RADOVANOVIC

    2012-11-01

    Full Text Available Laser cutting machines are used for precise contour cutting thin sheet. In industrial application nowadays various types and construction of laser cutting machines can be met. For contour cutting 3-D thin sheet parts laser cutting machines with rotation movements and laser robots are used. Laser generates the light beam, that presents a tool in working process. Application of laser cutting machines made possible good quality of products, flexibility of production and enlargement of economy

  12. Role of Optical Coherence Tomography in Assessing Anterior Chamber Angles

    Science.gov (United States)

    Kochupurakal, Reema Thomas; Jha, Kirti Nath; Rajalakshmi, A.R.; Nagarajan, Swathi; Ezhumalai, G.

    2016-01-01

    Introduction Gonioscopy is the gold standard in assessing anterior chamber angles. However, interobserver variations are common and there is a need for reliable objective method of assessment. Aim To compare the anterior chamber angle by gonioscopy and Spectral Domain Optical Coherence Tomography (SD-OCT) in individuals with shallow anterior chamber. Materials and Methods This comparative observational study was conducted in a rural tertiary multi-speciality teaching hospital. A total of 101 eyes of 54 patients with shallow anterior chamber on slit lamp evaluation were included. Anterior chamber angle was graded by gonioscopy using the shaffer grading system. Angles were also assessed by SD-OCT with Trabecular Iris Angle (TIA) and Angle Opening Distance (AOD). Chi-square test, sensitivity, specificity, positive and negative predictive value to find correlation between OCT parameters and gonioscopy grading. Results Females represented 72.7%. The mean age was 53.93 ±8.24 years and mean anterior chamber depth was 2.47 ± 0.152 mm. Shaffer grade ≤ 2 were identified in 95(94%) superior, 42(41.5%) inferior, 65(64.3%) nasal and 57(56.4%) temporal quadrants. Cut-off values of TIA ≤ 22° and AOD ≤ 290 μm were taken as narrow angles on SD-OCT. TIA of ≤ 22° were found in 88(92.6%) nasal and 87(87%) temporal angles. AOD of ≤ 290 μm was found in 73(76.8%) nasal and 83(83%) temporal quadrants. Sensitivity in detecting narrow angles was 90.7% and 82.2% for TIA and AOD, while specificity was 11.7% and 23.4%, respectively. Conclusion Individuals were found to have narrow angles more with SD-OCT. Sensitivity was high and specificity was low in detecting narrow angles compared to gonioscopy, making it an unreliable tool for screening. PMID:27190851

  13. 刀具磨损对微铣削力变化影响的理论与试验研究%Study on the Variation of Micro Milling Forces and Specific Cutting Forces with Tool Wear

    Institute of Scientific and Technical Information of China (English)

    赵显日

    2015-01-01

    The variation of micro milling forces due to the tool wear, when milling a plastic mould steel, has been investigated. Tool wear is evaluated by measuring the change of the micro tool diameter and related with the variation of the specific cutting forces. It has been found that, instead of using a constant specific cutting force Km value,variable specific cutting forces has to be used to calculate the micro milling forces with the consideration of tool wear effects. The micro milling force predicted using the modified model pro-posed in this work show good agreements with measured force values. It also shows that the monitored micro milling forces can be used as means to judge whether the change of tool size is within the preset range to en-sure the machining accuracy.%微铣削条件下加工塑料模具钢时,刀具磨损将引起微铣削力的变化。采用激光测量方法测量刀具直径的变化,用以评估微铣刀磨损情况;研究比切削力( SCF)随刀具磨损的变化关系,发现刀具磨损对于比切削力Km具有显著影响。微铣削力的计算必须考虑刀具磨损造成的比切削力变化的影响。文章提出微铣削力修正模型,所预测的微铣削力与测量出的铣削力值表现出良好的一致性。采用本模型,可预测加工过程中的微铣削力,还可通过监测微铣削力的变化判断刀具尺寸是否在预设范围内,从而确保铣削加工的精度。

  14. Grey Comprehensive Evaluation of Cutting Tool Performance for Aero-engine Blisk%航空发动机整体叶盘刀具性能灰色综合评价

    Institute of Scientific and Technical Information of China (English)

    贾玉佩; 赵威; 李亮

    2016-01-01

    A grey comprehensive evaluation method of CNC milling tool performance was pro—posed for an aero-engine titanium alloy blisk with the CNC milling of a type of aero-engine blisk as the research obj ect.In this method,a benchmark with some typical difficult-to-machine features extracted from aero-engine blisk was designed,and the processing route was developed.In addition,grey com—prehensive evaluation models of cutting tool performance were established for roughing and finishing tools respectively.Finally,experiments of CNC milling the benchmark were carried out,and then the grey comprehensive evaluation models were used to evaluate the cutting tools.The results show that the method is convenient and effective to evaluate the cutting tool performance for aero-engine blisks.%以某型航空发动机钛合金整体叶盘的数控铣削为研究对象,提出了一种面向航空发动机整体叶盘的数控铣削刀具性能灰色综合评价方法。首先设计涵盖航空发动机整体叶盘难加工特征的基准件模型,然后基于灰色关联度分别构建了粗精加工刀具性能灰色综合评价模型,最后进行基准件的切削试验并应用所建立的灰色综合评价模型对刀具性能进行综合评价。研究结果表明,所构建的基准件模型和灰色综合评价模型可以快捷、有效地评价刀具性能。

  15. Characterization of tool-workpiece contact during the micromachining of conductive materials

    Science.gov (United States)

    Castaño, Fernando; Haber, Rodolfo E.; del Toro, Raúl M.

    2017-01-01

    The characterization of dynamic cutting in micro-machining operations is essential for real-time monitoring of tool performance. The analysis of tool-edge/material contact and its electrical resistivity is therefore an interesting avenue of research for monitoring tool-workpiece interaction. This study examines mechanical cutting operations in micromilling operations that remove material to meet the design requirements of conductive parts. It draws from previous research into the theoretical models of cutting mechanisms in milling operations, to present a mathematical characterization of the tool-edge/material contact area. The rationale behind this research is that the contact area between two conductive materials is one of the main factors in determining the magnitude of resistance to the flow of an electric current between both materials. The study also offers a theoretical analysis of tool-edge radial immersion angles on entry and exit and their dynamic behavior. The analysis is mainly centered on cutting operations and cutting-time intervals, where tool-material contact is intermittent. Our theoretical analysis is experimentally corroborated by measuring tool-edge immersion time and tool-edge/material contact time. Promising results are reported that contribute to the development of a technological method for high-precision, real-time monitoring of tool-workpiece interaction and cutting detection in micromachining operations.

  16. SEM and EDS Characterisation of Layering TiOx Growth onto the Cutting Tool Surface in Hard Drilling Processes of Ti-Al-V Alloys

    Directory of Open Access Journals (Sweden)

    M. Álvarez

    2011-01-01

    Full Text Available Scanning electron microscopy (SEM has been used to identify and analyse the secondary adhesion effect precursors formed during the dry drilling processes of Ti-6Al-4V alloy over the rake face and flute of the drilling tools. Subsequent analysis with energy dispersive spectroscopy (EDS was enabled to distinguish its compositional characteristics. Thus, according to the EDS obtained data, a stratified multi built-up layer (MBUL composed by TiOx is formed over the rake face of the tool. Furthermore, this multi-layer adhered allows initially the built-up edge (BUE development close to the edge of the tool by a mechanical adhesion mechanism. In a second step, it is responsible for the formation of a thicker secondary BUL which avoids the chip flow, and it provokes the tool collapse. These mechanisms are different from those observed in the dry machining of other alloys such as steels, nickel-based alloys, or aluminium alloys.

  17. 铣削加工中心对刀方式分析及案例探讨%Analysis of Cutting Tool Setting Case for Milling Machining Center

    Institute of Scientific and Technical Information of China (English)

    李志梅

    2012-01-01

    The tool setting and tool length offset setting are important before NC milling. The different tool setting method results in the different setting of the tool length offset. Based on the FANUC-0iM NC system, this paper presents the different tool setting and the different details, combined with the concrete cases. tool length offset setting for milling machining center in%对刀与刀具长度补偿值的设定是数控加工前很重要的一个环节。对刀方式不同,刀长补的设置也不同。本文结合具体零件加工实例,以FANUC-OiM数控系统为媒介,详尽阐述了铣削加工中心申各种对刀方式及相应刀长补的设定不同。

  18. UN MÉTODO DE MONITOREO DEL DESGASTE DE UNA HERRAMIENTA DE CORTE BASADO EN UN SENSOR DE PROXIMIDAD DE FIBRA ÓPTICA A METHOD FOR CUTTING TOOL WEAR MONITORING BASED ON AN OPTICAL FIBER PROXIMITY PROBE

    Directory of Open Access Journals (Sweden)

    G de Anda-Rodriguez

    2006-08-01

    Full Text Available Este documento presenta una técnica novedosa para el monitoreo en línea del desgaste de una herramienta de fresado. El desgaste es estimado directamente a partir de un sensor de proximidad de fibra óptica (SPFO con características de alta resolución y alto ancho de banda. El SPFO proporciona una medida de la distancia entre su extremo y el perfil de la herramienta. La principal contribución de este trabajo es la aplicación del SPFO para monitorear en línea el desgaste de una herramienta de fresado. Puesto que la luz emitida por el SPFO proviene de un fotodiodo, esta no produce daño a los ojos, lo que la hace más segura que los sensores de desplazamiento de tipo láser. Esta técnica permite monitorear el desgaste de la herramienta en tiempo real, mientras la herramienta gira, con una precisión inferior a 1 micra. Se presentan resultados experimentales para una herramienta de fresado vertical de cuatro filos que gira a 300 rpm.A novel technique for on-line wear monitoring of a milling tool is presented. The tool wear is estimated directly from a fiber optic proximity sensor (FOPS with high resolution and high bandwidth characteristics. The FOPS provides a distance measurement between its probe and the tool profile. The main contribution of this work is the application of FOPS to sense on-line the wear of a milling tool. Since the light emitted by this sensor comes from a photodiode, it does not produce eye damage; this is safer than laser displacement sensors. This technique senses the tool wear in real time, while the tool is rotating, with an accuracy of less than 1 micron. Experimental results are also presented for a four-flank cutting tool rotating at 300 rpm.

  19. STUDY ON SUB-DRY CUTTING GCr12

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Through the comparison study on cutting force, cutting temperature and machined surface quality with the sub-dry cutting traditional cooling method, it is shown that sub-dry cutting can retard the wear of the tooled parts. It is beneficial to realize the production without pollution and meet the demand of clean environment.

  20. Influence of cutting conditions on chip side curl

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    2004-01-01

    The paper describes the influence of local variations of contact length, cutting speed and material constraint, showing the effect of lubrication, on the side curl of the chip. The following examples are illustrated by experiments: cutting of a tube vs. cutting of a bar; cutting using a tool with...

  1. Smart tool holder

    Science.gov (United States)

    Day, Robert Dean; Foreman, Larry R.; Hatch, Douglas J.; Meadows, Mark S.

    1998-01-01

    There is provided an apparatus for machining surfaces to accuracies within the nanometer range by use of electrical current flow through the contact of the cutting tool with the workpiece as a feedback signal to control depth of cut.

  2. Machining Challenges: Macro to Micro Cutting

    Science.gov (United States)

    Shunmugam, M. S.

    2016-04-01

    Metal cutting is an important machining operation in the manufacture of almost all engineering components. Cutting technology has undergone several changes with the development of machine tools and cutting tools to meet challenges posed by newer materials, complex shapes, product miniaturization and competitive environments. In this paper, challenges in macro and micro cutting are brought out. Conventional and micro end-milling are included as illustrative examples and details are presented along with discussion. Lengthy equations are avoided to the extent possible, as the emphasis is on the basic concepts.

  3. Cutting food in terrestrial carnivores and herbivores.

    Science.gov (United States)

    Sanson, Gordon

    2016-06-06

    Insects and mammals cut their food up into small pieces to facilitate ingestion and chemical digestion. Teeth and jaws act as cutting tools, but, unlike engineering tools designed for a specific purpose, must generally cope with substantial variation in food properties and work at many scales. Knowing how teeth and jaws work effectively requires an understanding of the cutting on the edges and the mechanisms that remove cut material. Variability and heterogeneity of diet properties are not well known, and, for example, may be higher and overlap more in the browsing and grazing categories of plant diets. A reinterpretation of tooth function in large mammal browsers and grazers is proposed.

  4. Cutting capacity of PDC cutters in very hard rock

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An experimental programm of investigating the cutting capacity of PDC flat cutters in very hard rock has been performed.Experiments include both the cutting of PDC fixed at different angles on the granite core or bar and linear cutting with different static thrust on the block of granite.The effects of the rough degree of rock surface,cutting angles,and static thrust on the cutting capacity of PDC in very hard rock were investigated and analyzed.The results show that the single mode of rotary drilling using PDC cutters is not applied for very hard rocks.

  5. Influences of Cutting Tool Load on Impedance Characteristics of Honeycomb Composite Material Ultrasonic Cutting Acoustic System%刀具负载对蜂窝复合材料超声切割声学系统阻抗特性的影响

    Institute of Scientific and Technical Information of China (English)

    纪华伟; 虞文泽; 胡小平; 于保华

    2016-01-01

    针对刀具负载对蜂窝复合材料超声切割声学系统的影响,利用四端网络法,将压电换能器与变幅杆结合在一起,提出了声学系统的整体设计方程,得出了负载与声学系统阻抗特性的关系式。利用有限元软件对声学系统进行模态分析及谐响应分析,并利用阻抗分析仪和激光位移传感器对声学系统的阻抗﹑谐振频率和输出振幅进行检测。仿真和实验结果表明:随着刀具负载的增大,声学系统的阻抗值增大,谐振频率减小,但仿真与实验得出的输出振幅与理论分析不同,这是由于刀具的放大作用造成的。研究结果对声学系统的设计及实际应用有指导意义。%The impedance characteristics of a honeycomb composite material ultrasonic cutting a-coustic system varied with the cutting tool load.By combing piezoelectric transducer with horn,a hy-brid design equation of the acoustic system was put forward based on four-terminal network,and the relationship between load and the impedance characteristics of acoustic system was obtained.The mo-dal analysis and the harmonic response analysis to the acoustic system were carried on by using of the finite element software and the impedance,resonant frequency and output amplitude of the acoustic system were measured by the impedance analyzer and laser displacement sensor.Simulation and ex-perimental results show that the impedance of the acoustic system is increased,and the resonance fre-quency decreases with the increase of the tool load,but the output amplitudes among theoretical anal-ysis,simulation and experiment are different,which is due to the amplification of the tool.The study has a guiding significance for the design and applications of honeycomb composite material ultrasonic cutting acoustic system.

  6. Discrete and continuum modelling of soil cutting

    Science.gov (United States)

    Coetzee, C. J.

    2014-12-01

    Both continuum and discrete methods are used to investigate the soil cutting process. The Discrete Element Method ( dem) is used for the discrete modelling and the Material-Point Method ( mpm) is used for continuum modelling. M pmis a so-called particle method or meshless finite element method. Standard finite element methods have difficulty in modelling the entire cutting process due to large displacements and deformation of the mesh. The use of meshless methods overcomes this problem. M pm can model large deformations, frictional contact at the soil-tool interface, and dynamic effects (inertia forces). In granular materials the discreteness of the system is often important and rotational degrees of freedom are active, which might require enhanced theoretical approaches like polar continua. In polar continuum theories, the material points are considered to possess orientations. A material point has three degrees-of-freedom for rigid rotations, in addition to the three classic translational degrees-of-freedom. The Cosserat continuum is the most transparent and straightforward extension of the nonpolar (classic) continuum. Two-dimensional dem and mpm (polar and nonpolar) simulations of the cutting problem are compared to experiments. The drag force and flow patterns are compared using cohesionless corn grains as material. The corn macro (continuum) and micro ( dem) properties were obtained from shear and oedometer tests. Results show that the dilatancy angle plays a significant role in the flow of material but has less of an influence on the draft force. Nonpolar mpm is the most accurate in predicting blade forces, blade-soil interface stresses and the position and orientation of shear bands. Polar mpm fails in predicting the orientation of the shear band, but is less sensitive to mesh size and mesh orientation compared to nonpolar mpm. dem simulations show less material dilation than observed during experiments.

  7. The investigations of (Ti,Al)N and (Al,Ti)N coatings obtained by PVD process onto sintered cutting tools

    OpenAIRE

    L.A. Dobrzański; M. Staszuk; M. Pawlyta; J. Konieczny

    2010-01-01

    Purpose: The main aim of this research was an investigation of both the coatings structure and mechanical properties deposited by the cathode arc evaporation physical vapor deposition (CAE-PVD) on sintered carbides and sialon tool ceramics substrates.Design/methodology/approach: The (Ti,Al)N and (Al,Ti)N coatings were investigated. Microstructure was characterized using the scanning and transmission electron microscopy. Phases composition analysis was carried out by the XRD and GIXRD method. ...

  8. Wear Patterns and Wear Mechanisms of Tool in High Speed Cutting of Inconel 718%高速切削Inconel 718刀具磨损形态和机理分析

    Institute of Scientific and Technical Information of China (English)

    黄雪红; 赵军

    2013-01-01

    The dry-cutting tests of high speed turning Inconel 718 using coated carbide tool is presented.The worn surface morphology of tool and its abrasion mechanism are studied by scanning electronic microscope (SEM) and energy disperse spectrum (EDS).The results show that the failure modes are rake wear,flake wear,flaking and chipping and the main failure mechanisms of tool are adhesive wear,abrasion wear,oxidation wear,diffusive wear and so on.%利用涂层硬质合金刀具对Inconel 718进行了高速干切削试验,采用扫描电子显微镜SEM和能量分散光谱EDS扫描,对不同切削参数下刀具的损坏形态和损坏机理进行了研究.分析结果表明刀具损坏形式主要有前刀面磨损、后刀面磨损、剥落和崩刃.刀具损坏机理主要是粘结磨损、磨粒磨损、氧化磨损和扩散磨损等.

  9. 水射流辅助岩石切削过程的刀具热应力分析%Thermal stress analysis of tool in cutting rock with water jet

    Institute of Scientific and Technical Information of China (English)

    杨晓峰; 李晓红; 卢义玉

    2011-01-01

    Heat conduction model of the blade of tool was established during the process of rock cutting with water jet.Based on the analysis of the conversion between thermal and power in rock cutting, computational methods of the boundary conditions such as heat flux, interface temperature were given. Thereby the temperature field model of the blade was established in rock cutting with water jet. The thermal stresses of drill bit were analyzed and computational models of the thermal stress were also presented. The influence of parameters to the thermal stresses such as jet pressure was analyzed and computational methods were also given. The results show that thermal stresses are the main factors which induce the tool failure. The thermal stresses are influenced by material properties of the tool and rock ,blade sizes, cutting force and speed, jet pressure. The thermal stresses of drill bit can be decreased efficiently by water jet and it is proportional to the reciprocal of four square root of the jet pressure. The life cycle of the tool will be prolonged without earlier failure if the parameters are controlled in critical range.%建立了刀片在水射流辅助切削岩石过程中的热传导模型,并在对岩石切削过程进行热功转换分析的基础上,给出了热流密度、界面温度等边界条件的确定方法,从而建立了水射流条件下刀片的温度场模型.对刀片由于温度变化产生的热应力进行了系统分析,并给出了热应力的计算模型,并且结合计算分析了射流压力等参数对各种热应力的影响.研究表明:热应力是导致岩石切削刀具失效的主要影响因素.热应力受刀具与岩石材料热物性质、刀片尺寸、切削力、切削速度、射流压力等因素影响.水射流的存在可以大幅降低刀具的热应力,热应力的大小与射流压力p的四次方根的倒数成正比.选择合适参数可将热应力控制在临界范围内,避免刀具早期失效,延长其使用寿命.

  10. Experimental test of theory for the stability of partially saturated vertical cut slopes

    Science.gov (United States)

    Morse, Michael M.; Lu, N.; Wayllace, Alexandra; Godt, Jonathan W.; Take, W.A.

    2014-01-01

    This paper extends Culmann's vertical-cut analysis to unsaturated soils. To test the extended theory, unsaturated sand was compacted to a uniform porosity and moisture content in a laboratory apparatus. A sliding door that extended the height of the free face of the slope was lowered until the vertical cut failed. Digital images of the slope cross section and upper surface were acquired concurrently. A recently developed particle image velocimetry (PIV) tool was used to quantify soil displacement. The PIV analysis showed strain localization at varying distances from the sliding door prior to failure. The areas of localized strain were coincident with the location of the slope crest after failure. Shear-strength and soil-water-characteristic parameters of the sand were independently tested for use in extended analyses of the vertical-cut stability and of the failure plane angle. Experimental failure heights were within 22.3% of the heights predicted using the extended theory.

  11. Laser cutting - trends in the development,

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    2002-01-01

    Since the laser was invented in 1960, the industrial applications of this tool has grown and grown. And - since the beginning of the 1980'ies, the major industrial application of lasers in production has been laser cutting. In this paper a short review of the development of the laser cutting...

  12. Designing for hot-blade cutting

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Clausen, Kenn

    2016-01-01

    -trivial constraints of blade-cutting in a bottom-up fashion, enabling an exploration of the unique architectural potential of this fabrication approach. The method is implemented as prototype design tools in MatLAB, C++, GhPython, and Python and demonstrated through cutting of expanded polystyrene foam design...

  13. ANALYSIS OF CUTTING FORCES ON CNC LATHES EXPERIMENTAL APPROACH

    Directory of Open Access Journals (Sweden)

    Erdem Koç

    1996-01-01

    Full Text Available Objective of this study is to make use easy programming of CNC lathes and to achieve the optimization of part program prepared considering the limiting parameters of the machine. In the present study, a BOXFORD 250 B CNC lathe has been used for experiment and optimization process. The measurement of cutting forces exerted on the cutting tool of CNC lathe has been performed. The cutting forces occurring during the turning operation have been determined for different depth of" cut, feed rate and cutting speed as well as different cutting tools and related data base has been obtained.

  14. A Tentative Study on Dynamics of a New Parallel NC Machine Tool with Long Travel, Large Rotating Angle and High Moving Speed

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In view of the structure of traditional five-coord in ate machine tool, the work-piece and machine tool often move along their respec tive guides simultaneously on the whole. In this kind of machine structure, the total mass of moving parts including work-pieces, fixtures, rotating table, wor king table and so on is often very large. Besides, the elastic reform of transmi ssion and the viscous friction force of the guide can not be ignored. As a resul t, the machine tool can not move with high velocity and...

  15. Microbiopsy/precision cutting devices

    Science.gov (United States)

    Krulevitch, Peter A.; Lee, Abraham P.; Northrup, M. Allen; Benett, William J.

    1999-01-01

    Devices for performing tissue biopsy on a small scale (microbiopsy). By reducing the size of the biopsy tool and removing only a small amount of tissue or other material in a minimally invasive manner, the risks, costs, injury and patient discomfort associated with traditional biopsy procedures can be reduced. By using micromachining and precision machining capabilities, it is possible to fabricate small biopsy/cutting devices from silicon. These devices can be used in one of four ways 1) intravascularly, 2) extravascularly, 3) by vessel puncture, and 4) externally. Additionally, the devices may be used in precision surgical cutting.

  16. Cutting Symmetrical Recesses In Soft Ceramic Tiles

    Science.gov (United States)

    Nesotas, Tony C.; Tyler, Brent

    1989-01-01

    Simple tool cuts hemispherical recesses in soft ceramic tiles. Designed to expose wires of thermocouples embedded in tiles without damaging leads. Creates neat, precise holes around wires. End mill includes axial hole to accommodate thermocouple wires embedded in material to be cut. Wires pass into hole without being bent or broken. Dimensions in inches. Used in place of such tools as dental picks, tweezers, spatulas, and putty knives.

  17. 刀调仪测量系统Y向自动调节与光学测量的设计研究%Design of Y Axis Automatical Adjustment of cutting Tool Presetter Measuring System and Study of Optical Measurement

    Institute of Scientific and Technical Information of China (English)

    商友云; 刘九庆; 牛明; 孟鸽

    2013-01-01

    Cutting tool presetter is a measuring instrument for text major parameter and presetting of cutting tools before Numerical control machining,non-traditional machining and high precision machining.But there are some drawbacks in actual operation,it is hard to catch the cutting tools automatic,the relations of imaging size and proportion are not determined,which brings the poor universality.Caption and measurement are currently accomplished through improving accuracy of Charge Coupled Device (CCD) and cross-captive program by manufacturers.According to these problems combining with the existing technology of cutter adjustable instrument on the measuring system structure based on the Y direction of improvement,adjustable instrument can make cutter location determined by infrared sensing technology,with the drive of optic axis smoothly along the Y axis moving knife adjustment device of the measurement system.When guarantee imaging fixed percentage through the principle of autofocus camera distance to adjust the object distance.Not only the tool automatically capture capacity can also reduce research and development and manufacture of high precision photoelectric and the cost of the charge coupled camera device (CCD).%刀调仪是数控加工、特种加工、高精密加工之前对刀具主要参数进行检测、调整的仪器.但在实际的操作中会产生一些弊端,如自动化对刀难、刀具尺寸大小与成像比例关系不固定、通用性差等.目前现有厂商主要是通过提高光电耦合摄像装置(CCD)精度和十字捕捉程序来实现刀具捕捉和测量,但成像比例仍然需要人为调整.本文主要根据上述弊端结合现有技术对刀调仪的测量系统Y方向进行结构上改进,使刀调仪可以通过红外线传感技术确定刀具位置,在光轴的带动下平稳地沿刀调仪的测量系统Y轴移动,并在保证成像比例固定的前提下,通过自动对焦原理对摄像头的相距、物距进行调整.

  18. Multibeam fiber laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Hansen, Klaus Schütt; Nielsen, Jakob Skov

    2009-01-01

    The appearance of the high power high brilliance fiber laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating Cutting laser, the CO2 laser. However, quality problems in fiber-laser...... cutting have until now limited its application to metal cutting. In this paper the first results of proof-of-principle Studies applying a new approach (patent pending) for laser cutting with high brightness and short wavelength lasers will be presented. In the approach, multibeam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from two single mode fiber lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W...

  19. Multibeam Fibre Laser Cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    The appearance of the high power high brilliance fibre laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating cutting laser, the CO2-laser. However, quality problems in fibre-laser...... cutting have until now limited its application in metal cutting. In this paper the first results of proof-of-principle studies applying a new approach (patent pending) for laser cutting with high brightness short wavelength lasers will be presented. In the approach, multi beam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from 2 single mode fibre lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W of single...

  20. CO2 laser cutting

    CERN Document Server

    Powell, John

    1998-01-01

    The laser has given manufacturing industry a new tool. When the laser beam is focused it can generate one of the world's most intense energy sources, more intense than flames and arcs, though similar to an electron beam. In fact the intensity is such that it can vaporise most known materials. The laser material processing industry has been growing swiftly as the quality, speed and new manufacturing possibilities become better understood. In the fore of these new technologies is the process of laser cutting. Laser cutting leads because it is a direct process substitu­ tion and the laser can usually do the job with greater flexibility, speed and quality than its competitors. However, to achieve these high speeds with high quality con­ siderable know how and experience is required. This information is usually carefully guarded by the businesses concerned and has to be gained by hard experience and technical understanding. Yet in this book John Powell explains in lucid and almost non­ technical language many o...

  1. NANOSCALE CUTTING OF MONOCRYSTALLINE SILICON USING MOLECULAR DYNAMICS SIMULATION

    Institute of Scientific and Technical Information of China (English)

    LI Xiaoping; CAI Minbo; RAHMAN Mustafizur

    2007-01-01

    It has been found that the brittle material, monocrystalline silicon, can be machined in ductile mode in nanoscale cutting when the tool cutting edge radius is reduced to nanoscale and the undeformed chip thickness is smaller than the tool edge radius. In order to better understand the mechanism of ductile mode cutting of silicon, the molecular dynamics (MD) method is employed to simulate the nanoscale cutting of monocrystalline silicon. The simulated variation of the cutting forces with the tool cutting edge radius is compared with the cutting force results from experimental cutting tests and they show a good agreement. The results also indicate that there is silicon phase transformation from monocrystalline to amorphous in the chip formation zone that can be used to explain the cause of ductile mode cutting. Moreover, from the simulated stress results, the two necessary conditions of ductile mode cutting, the tool cutting edge radius are reduced to nanoscale and the undeformed chip thickness should be smaller than the tool cutting edge radius, have been explained.

  2. 安徽何郢遗址植物残体切割形态与脱粒农具的关系%Study of cutting patterns of plant residues and threshing tools from Heying site of Anhui province

    Institute of Scientific and Technical Information of China (English)

    吴妍; 王昌燧; Linda Scott Cummings; Patricia C. Anderson

    2012-01-01

    石器和植物残体的相关研究证明,脱粒板曾大规模应用于近东地区。为探索古代中国或远东是否也曾使用过这种工具或类似工具,本研究对何郢遗址植物残体形态进行了研究,结果表明中国商周遗址存在切割形态植物残体的证据,以此推测类似脱粒板的农具在商周时期曾被使用。无疑,这一发现对我国古代农作物的脱粒加工方式具有重要的启示,可望深化我国农业考古的探索。%Related studies of stone tools and cutting patterns on plant residues has indicated that the bladed threshing sledge was used on a large scale in the Near East.However,up to now,there has been no evidence that either threshing-boards or threshing-sledges were used in China or anywhere the Far East.As described in this paper,cutting patterns on plant residues found at the Heying site provide first evidence that the bladed threshing sledges may have been used in China as far back as the Shang-Zhou period of China.This discovery has important implications with reard to threshing and processing methods used for ancient crops and for development of agricultural archaeology in China.

  3. Cutting state identification

    Energy Technology Data Exchange (ETDEWEB)

    Berger, B.S.; Minis, I.; Rokni, M. [Univ. of Maryland, College Park, MD (United States)] [and others

    1997-12-31

    Cutting states associated with the orthogonal cutting of stiff cylinders are identified through an analysis of the singular values of a Toeplitz matrix of third order cumulants of acceleration measurements. The ratio of the two pairs of largest singular values is shown to differentiate between light cutting, medium cutting, pre-chatter and chatter states. Sequences of cutting experiments were performed in which either depth of cut or turning frequency was varied. Two sequences of experiments with variable turning frequency and five with variable depth of cut, 42 cutting experiments in all, provided a database for the calculation of third order cumulants. Ratios of singular values of cumulant matrices find application in the analysis of control of orthogonal cutting.

  4. Ann modeling of kerf transfer in Co2 laser cutting and optimization of cutting parameters using monte carlo method

    Directory of Open Access Journals (Sweden)

    Miloš Madić

    2015-01-01

    Full Text Available In this paper, an attempt has been made to develop a mathematical model in order to study the relationship between laser cutting parameters such as laser power, cutting speed, assist gas pressure and focus position, and kerf taper angle obtained in CO2 laser cutting of AISI 304 stainless steel. To this aim, a single hidden layer artificial neural network (ANN trained with gradient descent with momentum algorithm was used. To obtain an experimental database for the ANN training, laser cutting experiment was planned as per Taguchi’s L27 orthogonal array with three levels for each of the cutting parameters. Statistically assessed as adequate, ANN model was then used to investigate the effect of the laser cutting parameters on the kerf taper angle by generating 2D and 3D plots. It was observed that the kerf taper angle was highly sensitive to the selected laser cutting parameters, as well as their interactions. In addition to modeling, by applying the Monte Carlo method on the developed kerf taper angle ANN model, the near optimal laser cutting parameter settings, which minimize kerf taper angle, were determined.

  5. An Experimental Study of the Cutting Forces in Metal Turning

    Directory of Open Access Journals (Sweden)

    Zoltan Iosif Korka

    2013-09-01

    Full Text Available Cutting forces are classified among the most important technological parameters in machining process. Cutting forces are the background for the evaluation of the necessary machining power, as well as for dimensioning of the tools. Cutting forces are also having a major influence on the deformation of the work piece machined, its dimensional accuracy, and machining system stability.

  6. Analysis of Damage of Carbide Welding Cutting Tool for Drilling High Manganese Steel%硬质合金焊接刀具钻削高锰钢破损原因分析

    Institute of Scientific and Technical Information of China (English)

    许立; 董航; 杨亮; 施志辉; 曹春风

    2012-01-01

    High manganese steel is a typical of hard - machining material. It has the characteristic of high strength, hardness and good wearing ability, so it' s machining is poor, mostly because tool' s wearing and machining efficiency is very low. This article focuses on dry cutting for ZGMn13 high manganese steel and through plenary academic analysis and scientific experiments, to improve Carbide drill with Multi - facet on the geometric parameters and the structure. This provides scientific basis for the high manganese steel' s drilling.%作为一种典型的难加工材料,高锰钢的加工硬化现象很严重,加工性能很差,特别是钻削时刀具容易破损,加工效率低下.本文基于工厂实地调研,详细分析了导致钻头破损的各方面原因,并针对工厂现实情况提出了改进措施与设想,为减少刀具破损,提高生产效率提供了科学依据.

  7. 设施蔬菜收获切割影响因素优化试验%Optimization experiment of influence factors on greenhouse vegetable harvest cutting

    Institute of Scientific and Technical Information of China (English)

    高国华; 王天宝; 周增产; 卜云龙

    2015-01-01

    , eulaliopsis binata stem and cabbage in China and abroad. This paper detailed the design and study of the SHQG-I greenhouse vegetable harvest cutting experiment platform, which used a response surface method (RSM) to optimize the harvest process through a comprehensive cutting tool that removed vegetables from their stems. The study object of this paper was butter lettuce; the experiment was carried out on the SHQG-I greenhouse vegetable harvest cutting experiment platform, and the working process of greenhouse vegetable harvester was analyzed. According to the butter lettuce growth and the working process conditions, 6 parameters of the harvest cutting process were analyzed: cutting position, way of cutting, cutting speed, cutting angle, clamping distance and clamping angle. Determining the ways in which these parameters affected cutting force was the target of the experiment. The working range of these factors, which could be adjusted on the SHQG-I greenhouse vegetable harvest cutting experiment platform, influenced the cutting force. For the RSM employed in the experiment, generally no more than 4 parameters would be adjusted at a time. Therefore, the experiment first used the factor-screening test to determine the cutting position and cutting way. The cutting position was at 7 mm and the smooth cutting angle was 10°. The results of the experiment were analyzed with the Design-expert software. In addition, the regression equation of the cutting force and the various factors were determined, and lack of fit of the regression equation was found to be insignificant. Next, variance analysis was used to determine the significant factors, which were cutting speed, clamp distance, interaction between cutting speed and cutting angle, and interaction between cutting speed and clamp distance. Then, the curve diagram of significant factors and the response surface figure were drawn. Ultimately, the optimal working parameters were determined: cutting speed was 675 mm/s, cutting angle

  8. The analysis and selection of methods and facilities for cutting of naturally-deficit materials

    Science.gov (United States)

    Akhmetov, I. D.; Zakirova, A. R.; Sadykov, Z. B.

    2016-06-01

    The comparison of perspective methods is done in the article, such as laser, plasma and combined electro-diamond methods of hard processed materials cutting. There are the review and analysis of naturally-deficit materials cutting facilities. A new electrode-tool for the combined cutting of naturally-deficit materials is suggested. This electrode-tool eliminates electrical contact between the cutting electrode-tool and side surfaces of the channel of cutting workpiece cut, which allows to obtain coplanar channels of cut.

  9. Effect of Tool Geometry in Nanometric Cutting

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With the development of science and technology, the ultra-precision manufacturing of the brittle and hard materials with superior quality have become a new attractive subject. Brittle materials (such as engineering ceramics, optical glass, semiconductor and so on) are widely used in electronics, optics, aeronautics and other high technology fields, so there are important theory significance and practical value to systematically study its machining mechanism and technology. Single crystal silicon is one of t...

  10. Laser cutting - from 200 Watt to 12 Kilowatt

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Nielsen, Jakob Skov

    2004-01-01

    Laser cutting is the most widespread industrial application of high power lasers. The development of this process was initiated around 1970, when scientists at TWI first demonstrated laser cutting with coaxial gas assistance. 10 years later, the polarisation problem was solved and the technology...... got its breakthrough. Since then some 30,000 laser cutting systems have been installed worldwide, making the laser an important cutting tool in modern industry....

  11. Analysis of Orthogonal Cutting of Aluminium-based Composites

    Directory of Open Access Journals (Sweden)

    P. Ravinder Reddy

    2002-10-01

    Full Text Available A turning test on aluminium-based metal-matrix composites (MMCs (aluminium-30% silicon carbide was performed with K-20 carbide tool material and wear patterns and the wear land growth rates were analysed to evaluate the wear characteristics and to classify the relationship between the physical (mechanical properties and the flank wear of cutting tools. The study was also extended to the machining aspects and the width of cuts on MMCs and the influence of various cutting parameters. The experiments were conducted to measure the temperature along the cutting tool edge using thermocouple at various cutting speeds, and depth of cuts, keeping the feed rate constant while turning with K-20 carbide cutting tool. The finite-element method was used to simulate the orthogonal cutting of aluminium-based MMCs. The heat generation at the chip-tool interface, frictional heat generation at the tool flank, and the heat generation at the work tool interface were calculated analytically and imposed as boundary conditions. The analysis of the steady-state heat transfer was carried out and the temperature distribution at cutting edge, shear zone, and interface regions have been reported.

  12. Development and characterization of AlCrN coated Si{sub 3}N{sub 4} ceramic cutting tool; Desenvolvimento e caracterizacao de ferramentas ceramicas de Si{sub 3}N{sub 4} revestidas com AlCrN

    Energy Technology Data Exchange (ETDEWEB)

    Souza, J.V.C.; Nono, M.C.A.; Machado, J.P.B., E-mail: vitor@las.inpe.b [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Silva, O.M.M. [Centro Tecnico de Aeronautica (CTA-IAE/AMR), Sao Jose dos Campos, SP (Brazil). Inst. de Aeronautica e Espaco. Div. de Materiais; Pimenta, M. [Balzers, Jundiai, SP (Brazil); Sa, F.C.L. [Centro Universitario de Volta Redonda (UNIFOA), RJ (Brazil)

    2010-07-01

    Ceramic cutting tools are showing a growing market perspective in terms of application on machining operations due to their high hardness, wear resistance, and machining without a cutting fluid, therefore are good candidates for cast iron and Nickel superalloys machining. The objective of the present paper was the development of Si{sub 3}N{sub 4} based ceramic cutting insert, characterization of its physical and mechanical properties, and subsequent coating with AlCrN using a PVD method. The characterization of the coating was made using an optical profiler, XRD, AFM and microhardness tester. The results showed that the tool presented a fracture toughness of 6,43 MPa.m{sup 1/2} and hardness of 16 GPa. The hardness reached 31 GPa after coating. The machining tests showed an improvement on work piece roughness when machining with coated insert, in comparison with the uncoated cutting tool. Probably this fact is related to hardness, roughness and topography of AlCrN. (author)

  13. Advances in Cross-Cutting Ideas for Computational Climate Science

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Evans, Katherine J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Caldwell, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hoffman, Forrest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Charles [Univ. of Texas, Austin, TX (United States); Kerstin, Van Dam [Brookhaven National Lab. (BNL), Upton, NY (United States); Leung, Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martin, Daniel F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ostrouchov, George [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tuminaro, Raymond [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ullrich, Paul [Univ. of California, Davis, CA (United States); Wild, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-01-01

    enabling breakthrough climate simulation advancements also need the "glue" of outreach and learning across the scientific domains to be successful. The workshop identified several strategies to allow productive, continuous engagement across those who have a broad knowledge of the various angles of the problem. Specific ideas to foster education and tools to make material progress were discussed. Examples include follow-on cross-cutting meetings that enable unstructured discussions of the types this workshop fostered. A concerted effort to recruit undergraduate and graduate students from all relevant domains and provide them experience, training, and networking across their immediate expertise is needed. This will broaden and expand their exposure to the future needs and solutions, and provide a pipeline of scientists with a diversity of knowledge and know-how. Providing real-world experience with subject matter experts from multiple angles may also motivate the students to attack these problems and even come up with the missing solutions.

  14. A Study on Ultrasonic Elliptical Vibration Cutting of Inconel 718

    OpenAIRE

    Zhao Haidong; Zou Ping; Ma Wenbin; Zhou Zhongming

    2016-01-01

    Inconel 718 is a kind of nickel-based alloys that are widely used in the aerospace and nuclear industry owing to their high temperature mechanical properties. Cutting of Inconel 718 in conventional cutting (CC) is a big challenge in modern industry. Few researches have been studied on cutting of Inconel 718 using single point diamond tool applying the UEVC method. This paper shows an experimental study on UEVC of Inconel 718 by using polycrystalline diamond (PCD) coated tools. Firstly, cuttin...

  15. Device for cutting protrusions

    Science.gov (United States)

    Bzorgi, Fariborz M.

    2011-07-05

    An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade. The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.

  16. The Constant Intensity Cut Method applied to the KASCADE-Grande muon data

    Energy Technology Data Exchange (ETDEWEB)

    Arteaga-Velazquez, J.C., E-mail: arteaga@ifm.umich.m [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany); Apel, W.D.; Badea, F.; Bekk, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Bluemer, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany); Bozdog, H. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, P.O. Box Mg-6, RO-7690 Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen, 57068 Siegen (Germany); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Istituto di Fisica dello Spazio Interplanetario, INAF, 10133 Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany); Daumiller, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Souza, V. de [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D-76021 Karlsruhe (Germany); Di Pierro, F. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Doll, P.; Engel, R.; Engler, J.; Finger, M. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany)

    2009-12-15

    The constant intensity cut method is a very useful tool to reconstruct the cosmic ray energy spectrum in order to combine or compare extensive air shower data measured for different attenuation depths independently of the MC model. In this contribution the method is used to explore the muon data of the KASCADE-Grande experiment. In particular, with this technique, the measured muon number spectra for different zenith angle ranges are compared and summed up to obtain a single muon spectrum for the measured showers. Preliminary results are presented, along with estimations of the systematic uncertainties associated with the analysis technique.

  17. Compensation for Error of Diamond Tool's Cutting Edge in Single Diamond Turning%超精密车削金刚石刀具刃口误差的高精度补偿

    Institute of Scientific and Technical Information of China (English)

    王毅; 余景池

    2011-01-01

    超精密车削中的金刚石刀具刃口误差的补偿问题一直是制约高精度非球面车削直接成形的瓶颈技术,尤其对于大相对口径,深度非球面的车削,金刚石刀具刃口误差对最终的面形的影响非常大.传统补偿方法是根据轮廓仪的测量结果对刀具刃口误差进行修正,但是该方法存在测量时间长,高频误差大,加工效率低的缺点,本文最先提出利用车削表面面形误差拟合后的泽尼克多项式系数对刀具刃口误差进行加工补偿,首先对该补偿方法进行了详细的理论推导,然后对补偿效果进行计算机模拟,最后在 Nanotech250 单点金刚石车床上完成了口径 50mm,半径 50 mm 大相对口径实验件的超精密车削及修正车削,面形精度 PV=86 nm,RMS=7 nm.充分证明该补偿符合预期,精度高,误差收敛速度快.%The compensation method for the error of diamond tool's cutting edge is a bottle-neck technology to hinder the high accuracy aspheric surface's directly formation after single diamond tuming. Especially to the big relative aperture aspheric, influence is bigger. Traditional compensation was done according to the measurement result from profile meter,which took long measurement time and caused low processing efficiency. A new compensation method was firstly put forward in the article, in which the correction of the error of diamond tool's cutting edge was done according to measurement result from digital interferometer. First, detailed theoretical calculation related with compensation method was deduced. Then, the effect after compensation was simulated by computer. Finally, φ 50 mm , radius 50 mm, work piece with big relative aperture finished its diamond turning and new correction turning under Nanotech 250. Testing surface achieved high shape accuracy PV=86 nm and RMS=7 nm, which approved of the new compensation method agreeing with predictive analysis, high accuracy and fast speed of error convergence.

  18. Effects of superfine refractory carbide additives on microstructure and mechanical properties of TiB{sub 2}–TiC+Al{sub 2}O{sub 3} composite ceramic cutting tool materials

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Bin, E-mail: zou20011110@163.com [Centre for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education (China); Ji, Wenbin; Huang, Chuanzhen; Wang, Jun [Centre for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education (China); Li, Shasha [Shandong Special Equipment Inspection Institute, Jinan 250013 (China); Xu, Kaitao [Centre for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education (China)

    2014-02-05

    Highlights: • The superfine carbides determined the mechanical properties of composites. • Superfine HfC or TaC caused some oxide impurities in composites. • Superfine VC or NbC refined and homogenized the microstructure. • Failure of composites containing HfC or TaC was produced by larger grains. • Composite containing VC exhibited more bridging and transcrystalline failure. -- Abstract: A study to increase the mechanical properties of TiB{sub 2}–TiC+Al{sub 2}O{sub 3} composite ceramic cutting tool material by using superfine refractory carbide additives is presented. Four superfine refractory carbides are considered to investigate their effects on the phase composition, element distribution, grain size, fracture surface, crack propagation of the metal ceramic. The physicochemical properties of superfine carbides, such as chemical activities and atom radius, were found to have the significant effects on the microstructure and mechanical properties of the metal ceramic. Hafnium carbide (HfC) and Tantalum carbide (TaC) reduced the mechanical properties of the metal ceramic because of their poor solubility with the Ni binder phase and the formation of oxides. The mechanical properties of the metal ceramic were increased by the addition of superfine niobium carbide (NbC) and vanadium carbide (VC), and their optimum values were a flexural strength of 1100 ± 62 MPa, fracture toughness of 8.5 ± 0.8 MPa.m1/2 and hardness of 21.53 ± 0.36 GPa, respectively, when 3.2 wt% superfine VC was used.

  19. The water jet as a new tool for endoprosthesis revision surgery--an in vitro study on human bone and bone cement.

    Science.gov (United States)

    Honl, Matthias; Rentzsch, Reemt; Schwieger, Karsten; Carrero, Volker; Dierk, Oliver; Dries, Sebastian; Louis, Hartmut; Pude, Frank; Bishop, Nick; Hille, Ekkehard; Morlock, Michael

    2003-01-01

    In revision surgeries of endoprostheses, the interface between implant and bone cement or bone must be loosened. Conventional tools have many disadvantages because of their size and limited range. Taking advantage of the selective and athermic cutting process, a plain water jet is already used in order to cut soft tissues. This study investigates the possibilities of both a plain and an abrasive water jet as cutting tools for revision surgery. Samples of the mid-diaphysis of human femora and bone cement (CMW3) were cut with a plain water jet (PWJ) and an abrasive water jet (AWJ) at two different jet-to-surface angles (30 degrees,90 degrees ) and at five different pressure levels (30, 40, 50, 60, 70 MPa). For a PWJ a selective pressure range was identified, where only bone cement was cut. Injecting a bio-compatible abrasive (lactose) to the jet stream resulted in significantly higher cut depths in both materials. Material removal in bone was significantly less at the smaller jet-to-surface angle for both techniques. No clear selectivity between bone and bone cement was observed for application of the AWJ. However, the material removal rate was significantly higher for bone cement than for bone at all pressure levels. The results indicate that an AWJ might be an alternative tool for cement removal. The possibility for localised cutting at interfaces could be an advantage for revision of a non-cemented prosthesis.

  20. Apply of Automatic Generation Technology Segment Tool Electrode Blank Geometry and Cutting Dimension%花纹块工具电极毛坯几何体及下料尺寸图自动生成技术的应用

    Institute of Scientific and Technical Information of China (English)

    胡海明; 张浩

    2013-01-01

    To solve the inefficient problem of relying on traditional manual drawing the tool electrode blank geometry and cutting dimension separately,it write the tool electrode blank geometry and cutting dimension generated procedures automatically and simultaneously are writed using GRIP language.Users need only directly to select the three-dimensional model of the tool electrode and enter the unilateral margin,the tool electrode blank geometry and cutting dimension could be generated automatically.This improves greatly work efficiency.%为了解决传统手工单独绘制工具电极毛坯几何体及下料尺寸图效率低的问题,应用GRIP语言编写了工具电极毛坯几何体及下料尺寸图自动同时生成程序.用户只需选择工具电极的三维模型并输入单边余量值,便可自动生成该工具电极的毛坯几何体及其下料尺寸图,大大提高了工作效率.

  1. Micro-Grooving and Micro-Threading Tools for Fabricating Curvilinear Features

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS,DAVID P.; VASILE,MICHAEL J.; KRISHNAN,A.S.M.

    2000-07-24

    This paper presents techniques for fabricating microscopic, curvilinear features in a variety of workpiece materials. Micro-grooving and micro-threading tools having cutting widths as small as 13 {micro}m are made by focused ion beam sputtering and used for ultra-precision machining. Tool fabrication involves directing a 20 keV gallium beam at polished cylindrical punches made of cobalt M42 high-speed steel or C2 tungsten carbide to create a number of critically aligned facets. Sputtering produces rake facets of desired angle and cutting edges having radii of curvature equal to 0.4 {micro}m. Clearance for minimizing frictional drag of a tool results from a particular ion beam/target geometry that accounts for the sputter yield dependence on incidence angle. It is believed that geometrically specific cutting tools of this dimension have not been made previously. Numerically controlled, ultra-precision machining with micro-grooving tools results in a close match between tool width and feature size. Microtools are used to machine 13 {micro}m wide, 4 {micro}m deep, helical grooves in polymethyl methacrylate and 6061 Al cylindrical workplaces. Micro-grooving tools are also used to fabricate sinusoidal cross-section features in planar metal samples.

  2. 标准滚刀滚切变位直齿轮的刀架角计算%The Calculation of Tool Post Angle for the Standard Hob Cutting the Spur Gear with Addendum Modification

    Institute of Scientific and Technical Information of China (English)

    陈琰; 钱志良

    2010-01-01

    针对变位直齿轮滚切加工中的刀架角调整问题,建立了齿轮滚刀滚切变位直齿轮的模型,用Matlab编程计算了刀架角对工件齿轮齿形及分度圆齿厚的影响.计算结果表明,刀架角对工件齿轮齿形的影响很小,但对工件齿轮分度圆齿厚的影响很大.同时,用本文中的方法可求得理想的刀架角,使变位直齿轮的加工误差为最小.

  3. Laser Cutting, Development Trends

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    1999-01-01

    In this paper a short review of the development trends in laser cutting will be given.The technology, which is the fastest expanding industrial production technology will develop in both its core market segment: Flat bed cutting of sheet metal, as it will expand in heavy industry and in cutting o...... of 3-dimensional shapes.The CO2-laser will also in the near future be the dominating laser source in the market, although the new developments in ND-YAG-lasers opens for new possibilities for this laser type.......In this paper a short review of the development trends in laser cutting will be given.The technology, which is the fastest expanding industrial production technology will develop in both its core market segment: Flat bed cutting of sheet metal, as it will expand in heavy industry and in cutting...

  4. Graphs of Plural Cuts

    CERN Document Server

    Dosen, K

    2011-01-01

    Plural (or multiple-conclusion) cuts are inferences made by applying a structural rule introduced by Gentzen for his sequent formulation of classical logic. As singular (single-conclusion) cuts yield trees, which underlie ordinary natural deduction derivations, so plural cuts yield graphs of a more complicated kind, related to trees, which this paper defines. Besides the inductive definition of these oriented graphs, which is based on sequent systems, a non-inductive, graph-theoretical, combinatorial, definition is given, and to reach that other definition is the main goal of the paper. As trees underlie multicategories, so the graphs of plural cuts underlie polycategories. The graphs of plural cuts are interesting in particular when the plural cuts are appropriate for sequent systems without the structural rule of permutation, and the main body of the paper deals with that matter. It gives a combinatorial characterization of the planarity of the graphs involved.

  5. Research on the Surface Micro-configuration in Vibration Cutting Particle Reinforced Metallic Matrix Composites SiC_p/Al

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The cutting performance of particulate reinforced me tallic matrix composites(PRMMCs) SiC p/Al in ultrasonic vibration cutting and c ommon cutting with carbide tools and PCD tools was researched in the paper. Mic rostructure of machined surface was described, the relation between cutting para meters and surface roughness was presented, and characteristic of the surface re mained stress was also presented. Furthermore, wear regularity and abrasion resi stance ability of tools in ultrasonic vibration cut...

  6. Research on the Characters of the Cutting Force in Vibration Cutting Particle Reinforced Metal Matrix Composites SiC_p/Al

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning compared with that in com mon turning were studied. Through the single factor experiments and multiple fac tor orthogonal experiments, the influences of three kinds of cutting conditions such as cutting velocity, amount of feed and cutting depth on cutting force were analyzed in detail. Meanwh...

  7. Cutting Forces and Chip Morphology during Wood Plastic Composites Orthogonal Cutting

    Directory of Open Access Journals (Sweden)

    Xiaolei Guo

    2014-02-01

    Full Text Available The effect of chip thickness, rake angle, and edge radius on cutting forces and chip morphology in wood plastic composites (WPCs orthogonal cutting was investigated. Three types of WPCs, Wood flour/polyethylene composite (WFPEC, wood flour/polypropylene composite (WFPPC, and wood flour/polyvinyl chloride composite (WFPVCC, that were tested exhibited different behavior with respect to the machinability aspects. The cutting forces of WFPVCC were the highest, followed by WFPPC and WFPEC. The most significant factor on the parallel cutting force of these three types of WPCs was the chip thickness, which explained more than 90%, contribution of total variation, while rake angle, edge radius, and the interactions between these factors had small contributions. The most significant factor on the normal cutting force of WPCs was also the chip thickness, which accounted for more than 60% of the total variation. The chips produced included long continuous chips, short continuous chips, flake chips, and granule chips when cutting these three types of WPCs.

  8. Study on Wearing-resistant Capacity and Cutting Tool Adaptability of Shield Machine: Machines Used in Sandy Gravel Stratum in Chengdu%成都砂、卵石地层盾构机耐磨性及刀具适用性研究

    Institute of Scientific and Technical Information of China (English)

    王树华

    2012-01-01

    针对成都砂、卵石地层盾构施工中刀盘、刀具和螺旋输送机等磨损大的问题,提出和实施了预防磨损和提高耐磨性的几方面措施,提出和应用了适用于成都砂、卵石地层的刀具,并特别强调了滚刀在成都砂卵石地层中使用的重要性和适用性。延长了刀盘、刀具和螺旋输送机的使用寿命,降低了磨损和消耗,减少了在砂卵石地层中的修理和更换刀具次数,顺利达到长距离掘进和施工的目标。%The wearing of the cutter heads,cutting tools and screw conveyors is serious when shield machines are used in the sandy gravel stratum in Chengdu.Wearing prevention countermeasures and anti-wearing capacity improvement countermeasures are proposed,cutting tools suitable for the sandy gravel stratum in Chengdu are proposed and the importance and adaptability of disc cutters to the sandy gravel stratum in Chengdu are emphasized.In the end,the service life of the cutter heads,cutting tools and screw conveyors are extended,the wearing and relevant cost are reduced,the repairing and replacement of the cutting tools in the sandy gravel stratum are minimized and successful long-distance tunneling is achieved.

  9. Atomic Study on Some Problems in Nanometric Cutting Mechanism

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An investigation of some problems such as chip formation and surface generation in nanometric cutting mechanism based on molecular dynamics(MD) simulation is presented.It shows that chip formation is similar to that observed in macro-scale cutting.The movement of some micro-dislocation is the main cause of formation of chip and surface.Surface generation is notably affected by very small cutting force vibration.The highest stress appears in tool cutting edge,and it may cause wear,so it is necessary to build a MD model of tool wear.

  10. Saving Seal Cutting

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    On April 20, the graduation ceremony of China’s seal-cutting art postgraduates and visiting experts from the Institute of Seal Cutting Art under the China Art Academy was held in Beijing. On the same day, the exhibition of the works of the teachers and graduates of the institute was also held.

  11. Cutting Class Harms Grades

    Science.gov (United States)

    Taylor, Lewis A., III

    2012-01-01

    An accessible business school population of undergraduate students was investigated in three independent, but related studies to determine effects on grades due to cutting class and failing to take advantage of optional reviews and study quizzes. It was hypothesized that cutting classes harms exam scores, attending preexam reviews helps exam…

  12. Effect of cutting parameters on chip formation in orthogonal cutting

    Directory of Open Access Journals (Sweden)

    S. Ben Salem

    2012-01-01

    Full Text Available Purpose: of this paper is to study the chip formation to obtain the optimal cutting conditions and to observe the different chip formation mechanisms. Analysis of machining of a hardened alloy, X160CrMoV12-1 (cold work steel: AISI D2 with a ferritic and cementite matrix and coarse primary carbides, showed that there are relationships between the chip geometry, cutting conditions and the different micrographs under different metallurgical states.Design/methodology/approach: Machining of hardened alloys has some metallurgical and mechanical difficulties even if many successful processes have been increasingly developed. A lot of study has been carried out on this subject, however only with modest progress showing specific results concerning the real efficiency of chip formation. Hence, some crucial questions remain unanswered: the evolution of white layers produced during progressive tool flank wear in dry hard turning and to correlate this with the surface integrity of the machined surface. For the experimental study here, various cutting speeds and feed rates have been applied on the work material.Findings: The “saw-tooth type chips” geometry has been examined and a specific attention was given to the chip samples that were metallographically processed and observed under scanning electronic microscope (SEM to determine if white layers are present.Research limitations/implications: This research will be followed by a detail modelling and need more experimental results for a given a good prediction of the results occurred on the damage related to the microstructure by using the cutting parameters.Practical implications: A special detail was given to the mechanism of chip formation resulting from hard machining process and behaviour of steel at different metallurgical states on the material during the case of annealing and or the case of quench operations.Originality/value: For the sake of simplicity, ANOVA (Analysis of Variance was used to

  13. DESIGN AND DEVELOPMENT OF SPECIAL CUTTING SYSTEM FOR SWEET SORGHUM HARVESTER

    Directory of Open Access Journals (Sweden)

    OMID GHAHRAE

    2009-03-01

    Full Text Available Sweet Sorghum is similar to racemose maize with about 3m height and 0.5-3cm thickness of stalk. Sweet Sorghum has sweet flavor stalk, which is used for sugar production. Developed cutting mechanism in this research has a rotary disk with 50 cm diameter and four cutting blades that spin clockwise. The stalks are cut with the impact and inertia forces at the linear velocity of 27 m/s, by cutting blades. This system has a simple bar mechanism guiding the whole-stalk to one side. The cutting quality tests were achieved by two series of blades with 30°and 45° blade angles on the stalk. The results showed that the stalk cutting surface with 30° blade angle was smooth and without fracture on filaments and vasculums, compared to that of 45° blade angle. Blade penetration was accomplished very well with 30° blade angle.

  14. A Study on Ultrasonic Elliptical Vibration Cutting of Inconel 718

    Directory of Open Access Journals (Sweden)

    Zhao Haidong

    2016-01-01

    Full Text Available Inconel 718 is a kind of nickel-based alloys that are widely used in the aerospace and nuclear industry owing to their high temperature mechanical properties. Cutting of Inconel 718 in conventional cutting (CC is a big challenge in modern industry. Few researches have been studied on cutting of Inconel 718 using single point diamond tool applying the UEVC method. This paper shows an experimental study on UEVC of Inconel 718 by using polycrystalline diamond (PCD coated tools. Firstly, cutting tests have been carried out to study the effect of machining parameters in the UEVC in terms of surface finish and flank wear during machining of Inconel 718. The tests have clearly shown that the PCD coated tools in cutting of Inconel 718 by the UEVC have better performance at 0.1 mm depth of cut as compared to the lower 0.05 mm depth of cut and the higher 0.12 or 0.15 mm depth of cut. Secondly, like CC method, the cutting performance in UEVC increases with the decrease of the feed rate and cutting speed. The CC tests have also been carried out to compare performance of CC with UEVC method.

  15. Fractal Characteristic of Rock Cutting Load Time Series

    Directory of Open Access Journals (Sweden)

    Hongxiang Jiang

    2014-01-01

    Full Text Available A test-bed was developed to perform the rock cutting experiments under different cutting conditions. The fractal theory was adopted to investigate the fractal characteristic of cutting load time series and fragment size distribution in rock cutting. The box-counting dimension for the cutting load time series was consistent with the fractal dimension of the corresponding fragment size distribution, which indicated that there were inherent relations between the rock fragmentation and the cutting load. Furthermore, the box-counting dimension was used to describe the fractal characteristic of cutting load time series under different conditions. The results show that the rock compressive strength, cutting depth, cutting angle, and assisted water-jet types all have no significant effect on the fractal characteristic of cutting load. The box-counting dimension can be an evaluation index to assess the extent of rock crushing or cutting. Rock fracture mechanism would not be changed due to water-jet in front of or behind the cutter, but it would be changed when the water-jet was in cutter.

  16. Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper.

    Science.gov (United States)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun

    2015-12-01

    Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.

  17. Taping torque test for cutting fluid evaluation: test method and procedure

    DEFF Research Database (Denmark)

    Belluco, Walter; De Chiffre, Leonardo

    Tapping torque is a parameter closely connected to the lubricating effect of a cutting fluid. Tapping involves many small cutting edges in continuous contact with the work throughout the cut. The design of the tools and the nature of this operation shield the edges of the tool from the flow of th...

  18. Influence of the transition area on efficiency of the water jet cutting

    OpenAIRE

    Říha, Zdeněk

    2013-01-01

    The transition area between big and small pipe diameter in the tool for water jet cutting creates subject of researching. Three kinds of transition areas were tested such as conical change, radius change and step change. The efficiency of the water jet cutting was evaluated for above mentioned transition areas. This work brings new possibilities for design of the water jet cutting tool.

  19. On Triple-Cut of Scattering Amplitudes

    CERN Document Server

    Mastrolia, Pierpaolo

    2007-01-01

    It is analysed the triple-cut of one-loop amplitudes in dimensional regularisation within spinor-helicity representation. The triple-cut is defined as a difference of two double-cuts with the same particle content, and a same propagator carrying, respectively, causal and anti-causal prescription in each of the two cuts. That turns out into an effective tool for extracting the coefficients of the three-point functions (and higher-point ones) from one-loop-amplitudes. The phase-space integration is oversimplified by using residues theorem to perform the integration over the spinor variables, via the holomorphic anomaly, and a trivial integration on the Feynman parameter. The results are valid for arbitrary values of dimensions.

  20. Improving the Quality of Ceramic and Cemented Carbide Cutting Inserts by Diamond Grinding

    Directory of Open Access Journals (Sweden)

    Tareq Ahmad Abu Shreehah

    2005-01-01

    Full Text Available The machining of hardened steel and other difficult-to-cut materials require high quality and progressive cutting tools to meet the growing requirements for increasing productivity, improving tool life and quality of the cutting process. This study deals with an experimental investigation on the quality improvement by diamond grinding of ceramic and cemented carbide cutting inserts, comparing it with conventional batch produced types. It was found that under finish turning of hardened up to 61 HRC steel the ground cutting inserts improve the machined surface finish, reduce tool wear and breakage and subsequently extend the tool life.

  1. Selection Of Cutting Inserts For Aluminum Alloys Machining By Using MCDM Method

    Science.gov (United States)

    Madić, Miloš; Radovanović, Miroslav; Petković, Dušan; Nedić, Bogdan

    2015-07-01

    Machining of aluminum and its alloys requires the use of cutting tools with special geometry and material. Since there exists a number of cutting tools for aluminum machining, each with unique characteristics, selection of the most appropriate cutting tool for a given application is very complex task which can be viewed as a multi-criteria decision making (MCDM) problem. This paper is focused on multi-criteria analysis of VCGT cutting inserts for aluminum alloys turning by applying recently developed MCDM method, i.e. weighted aggregated sum product assessment (WASPAS) method. The MCDM model was defined using the available catalogue data from cutting tool manufacturers.

  2. Tools and their uses

    CERN Document Server

    1973-01-01

    Teaches names, general uses, and correct operation of all basic hand and power tools, fasteners, and measuring devices you are likely to need. Also, grinding, metal cutting, soldering, and more. 329 illustrations.

  3. Analyses of Effects of Cutting Parameters on Cutting Edge Temperature Using Inverse Heat Conduction Technique

    Directory of Open Access Journals (Sweden)

    Marcelo Ribeiro dos Santos

    2014-01-01

    Full Text Available During machining energy is transformed into heat due to plastic deformation of the workpiece surface and friction between tool and workpiece. High temperatures are generated in the region of the cutting edge, which have a very important influence on wear rate of the cutting tool and on tool life. This work proposes the estimation of heat flux at the chip-tool interface using inverse techniques. Factors which influence the temperature distribution at the AISI M32C high speed steel tool rake face during machining of a ABNT 12L14 steel workpiece were also investigated. The temperature distribution was predicted using finite volume elements. A transient 3D numerical code using irregular and nonstaggered mesh was developed to solve the nonlinear heat diffusion equation. To validate the software, experimental tests were made. The inverse problem was solved using the function specification method. Heat fluxes at the tool-workpiece interface were estimated using inverse problems techniques and experimental temperatures. Tests were performed to study the effect of cutting parameters on cutting edge temperature. The results were compared with those of the tool-work thermocouple technique and a fair agreement was obtained.

  4. Online Cake Cutting

    CERN Document Server

    Walsh, Toby

    2010-01-01

    We propose an online form of the cake cutting problem. This models situations where players arrive and depart during the process of dividing a resource. We show that well known fair division procedures like cut-and-choose and the Dubins-Spanier moving knife procedure can be adapted to apply to such online problems. We propose some desirable properties that online cake cutting procedures might possess like online forms of proportionality and envy-freeness, and identify which properties are in fact possessed by the different online cake procedures.

  5. Experimental testing of exchangeable cutting inserts cutting ability

    OpenAIRE

    Čep, Robert; Janásek, Adam; Čepová Lenka; Petrů, Jana; Ivo HLAVATÝ; Car, Zlatan; Hatala, Michal

    2013-01-01

    The article deals with experimental testing of the cutting ability of exchangeable cutting inserts. Eleven types of exchangeable cutting inserts from five different manufacturers were tested. The tested cutting inserts were of the same shape and were different especially in material and coating types. The main aim was both to select a suitable test for determination of the cutting ability of exchangeable cutting inserts and to design such testing procedure that could make it possible...

  6. FUZZY STABILITY ANALYSIS OF MODE COUPLING CHATTER ON CUTTING PROCESS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The influence of fuzzy uncertainty factors is considered on the analysis of chatter occurring during machine tool cutting process. Using fuzzy mathematics analysis methods, a detailed discussion over fuzzy stability analysis problems is presented related to the mode coupling chatter with respect to intrinsic structure fuzzy factors, and the possibility distribution of the fuzzy stability cutting range and the confidence level expressions of the fuzzy stability cutting width are given.

  7. Short-cut math

    CERN Document Server

    Kelly, Gerard W

    1984-01-01

    Clear, concise compendium of about 150 time-saving math short-cuts features faster, easier ways to add, subtract, multiply, and divide. Each problem includes an explanation of the method. No special math ability needed.

  8. Cutting Cakes Correctly

    CERN Document Server

    Hill, Theodore P

    2008-01-01

    Without additional hypotheses, Proposition 7.1 in Brams and Taylor's book "Fair Division" (Cambridge University Press, 1996) is false, as are several related Pareto-optimality theorems of Brams, Jones and Klamler in their 2006 cake-cutting paper.

  9. Laser cutting system

    Science.gov (United States)

    Dougherty, Thomas J

    2015-03-03

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  10. Study on Cutting Performance of Nano-scale Zirconia Toughening Alumina Matrix Ceramic Tool Materials (Ⅱ)%纳米氧化锆增韧氧化铝基陶瓷刀具切削性能的研究(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    钟金豹

    2014-01-01

    研究新型陶瓷刀具A15Zc和A20Z(c+m)切削淬硬40Cr合金钢时的切削性能,并与已经商业化的陶瓷刀具SG4的切削性能进行了对比。结果表明:刀具后刀面磨损量随切削深度的增加而增大,而切削速度对刀具后刀面磨损量的影响较小;在较小的切削深度下切削时刀具具有良好的切削性能,A15Zc和A20Z(c+m)的抗磨损能力都好于SG4刀具;刀具的主要磨损形态为前后刀面磨损,主要磨损机制为前刀面的黏结磨损和后刀面的磨粒磨损。%Compared to the commercial ceramic tool SG4,the performances of nano-scale ZrO2 toughening Al2O3 matrix ceram-ics tool in machining the hardened 40Cr alloy steel,such as A15Zc and A20Z(c+m),were studied. When the hardened 40Cr alloy steel is machined,the tool flank wear widthes of A15Zc and A20Z(c+m)are increased with an increase of the cut depth and the effect of cutting speed on cutting performance is small. A15Zc and A20Z(c+m)have stronger wear resistance than SG4 at the smaller cut depth. The main wear patterns are tool wear on the rake face and flank,and the main wear mechanisms are bonding wear on tool rake face and abrasive wear on tool flank.

  11. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2003-01-30

    This is the second quarterly progress report for Year-4 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between October 1, 2002 and December 30, 2002. This report presents a review of progress on the following specific tasks. (a) Design and development of an Advanced Cuttings Transport Facility Task 3: Addition of a Cuttings Injection/Separation System, Task 4: Addition of a Pipe Rotation System. (b) New research project (Task 9b): ''Development of a Foam Generator/Viscometer for Elevated Pressure and Elevated Temperature (EPET) Conditions''. (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions''. (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b). (f) New Research project (Task 13): ''Study of Cuttings Transport with Foam under Elevated Pressure and Temperature Conditions''. (g) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (h) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  12. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Evren Ozbayoglu; Lei Zhou

    2002-07-30

    This is the fourth quarterly progress report for Year-3 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between April 1, 2002 and June 30, 2002. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 3: Addition of a Cuttings Injection/Separation System), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)''; (c) Research project (Task 9b): ''Study of Foam Flow Behavior Under EPET Conditions''; (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions''; (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b); (f) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S); (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  13. Force-frequency effect of Y-cut langanite and Y-cut langatate.

    Science.gov (United States)

    Kim, Yoonkee; Ballato, Arthur

    2003-12-01

    Most recently, langasite and its isomorphs (LGX) have been advanced as potential substitutes for quartz, owing to their extremely high-quality (Q) factors. At least twice higher Q value of LGX than that of quartz has been reported. High Q translates into potentially greater stability. In order to make such materials practical, the environmental sensitivities must be addressed. One of such sensitivities is the force-frequency effect, which relates the sensitiveness of a resonator to shock and vibration via the third-order (non-Hookean) elastic constants. In this paper, we report measured force-frequency coefficients of a Y-cut langanite (LGN) resonator and a Y-cut langatate (LGT) resonator as a function of the azimuthal angle, which is the angle between the crystalline x-axis of a resonator plate and the direction of in-plane diametric force applied to the periphery of the resonator. It was found that the LGN and the LGT behave like AT-cut quartz in the polarity of the frequency changes and the existence of zero-coefficient angle. The maximum magnitudes of the coefficients of the LGN and the LGT are five and seven times smaller than that of stress-compensated cut (SC-cut) quartz, respectively (or, 7 and 10 times smaller comparing to AT-cut quartz). The coefficients of planar-stress, which represent the superposition of a continuous distribution of periphery stresses, also were obtained as 0.52 X 10(-15) m x s/N and 0.38 X 10(-15) m x s/N for the LGN and the LGT, respectively.

  14. Correlation of cutting fluid performance in different machining operations

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Belluco, Walter

    2001-01-01

    and tapping, with respect to tool life, cutting forces and product quality (dimensional accuracy and surface integrity). A number of different work materials were considered, with emphasis on austenitic stainless steel, and cutting fluids from two main groups, water miscible and straight oils, were...

  15. Cutting Edge Localisation in an Edge Profile Milling Head

    NARCIS (Netherlands)

    Fernandez Robles, Laura; Azzopardi, George; Alegre, Enrique; Petkov, Nicolai

    2015-01-01

    Wear evaluation of cutting tools is a key issue for prolonging their lifetime and ensuring high quality of products. In this paper, we present a method for the effective localisation of cutting edges of inserts in digital images of an edge profile milling head. We introduce a new image data set of 1

  16. Researches on evaluation of smooth entrance in cutting using electrical current. A case study

    Directory of Open Access Journals (Sweden)

    Diţu Valentin

    2017-01-01

    Full Text Available At metal drilling, at the beginning of the process, the cutting tool in the chisel edge zone, frictions and plastically deforms the material, and then enters in cutting. If the drill is entered smoothly in cutting with a special device, its life is increased. The paper presents how the electrical current at cutting is used for the evaluation of smooth entrance in cutting in comparison with classical cutting. These are demonstrated for 41MoC11 steel drilled with a set of 30 tools having 8 mm diameter.

  17. Researches on evaluation of smooth entrance in cutting using electrical current. A case study

    OpenAIRE

    Diţu Valentin; Oancea Gheorghe; Daicu Raluca

    2017-01-01

    At metal drilling, at the beginning of the process, the cutting tool in the chisel edge zone, frictions and plastically deforms the material, and then enters in cutting. If the drill is entered smoothly in cutting with a special device, its life is increased. The paper presents how the electrical current at cutting is used for the evaluation of smooth entrance in cutting in comparison with classical cutting. These are demonstrated for 41MoC11 steel drilled with a set of 30 tools having 8 mm d...

  18. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mengjiao Yu; Ramadan Ahmed; Mark Pickell; Len Volk; Lei Zhou; Zhu Chen; Aimee Washington; Crystal Redden

    2003-09-30

    The Quarter began with installing the new drill pipe, hooking up the new hydraulic power unit, completing the pipe rotation system (Task 4 has been completed), and making the SWACO choke operational. Detailed design and procurement work is proceeding on a system to elevate the drill-string section. The prototype Foam Generator Cell has been completed by Temco and delivered. Work is currently underway to calibrate the system. Literature review and preliminary model development for cuttings transportation with polymer foam under EPET conditions are in progress. Preparations for preliminary cuttings transport experiments with polymer foam have been completed. Two nuclear densitometers were re-calibrated. Drill pipe rotation system was tested up to 250 RPM. Water flow tests were conducted while rotating the drill pipe up to 100 RPM. The accuracy of weight measurements for cuttings in the annulus was evaluated. Additional modifications of the cuttings collection system are being considered in order to obtain the desired accurate measurement of cuttings weight in the annular test section. Cutting transport experiments with aerated fluids are being conducted at EPET, and analyses of the collected data are in progress. The printed circuit board is functioning with acceptable noise level to measure cuttings concentration at static condition using ultrasonic method. We were able to conduct several tests using a standard low pass filter to eliminate high frequency noise. We tested to verify that we can distinguish between different depths of sand in a static bed of sand. We tested with water, air and a mix of the two mediums. Major modifications to the DTF have almost been completed. A stop-flow cell is being designed for the DTF, the ACTF and Foam Generator/Viscometer which will allow us to capture bubble images without the need for ultra fast shutter speeds or microsecond flash system.

  19. Improved cutting performance in high power laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    2003-01-01

    Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described.......Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described....

  20. A new angle on the Euler angles

    Science.gov (United States)

    Markley, F. Landis; Shuster, Malcolm D.

    1995-01-01

    We present a generalization of the Euler angles to axes beyond the twelve conventional sets. The generalized Euler axes must satisfy the constraint that the first and the third are orthogonal to the second; but the angle between the first and third is arbitrary, rather than being restricted to the values 0 and pi/2, as in the conventional sets. This is the broadest generalization of the Euler angles that provides a representation of an arbitrary rotation matrix. The kinematics of the generalized Euler angles and their relation to the attitude matrix are presented. As a side benefit, the equations for the generalized Euler angles are universal in that they incorporate the equations for the twelve conventional sets of Euler angles in a natural way.

  1. Determination of cut front position in laser cutting

    Science.gov (United States)

    Pereira, M.; Thombansen, U.

    2016-07-01

    Laser cutting has a huge importance to manufacturing industry. Laser cutting machines operate with fixed technological parameters and this does not guarantee the best productivity. The adjustment of the cutting parameters during operation can improve the machine performance. Based on a coaxial measuring device it is possible to identify the cut front position during the cutting process. This paper describes the data analysis approach used to determine the cut front position for different feed rates. The cut front position was determined with good resolution, but improvements are needed to make the whole process more stable.

  2. The use of cutting temperature to evaluate the machinability of titanium alloys.

    Science.gov (United States)

    Kikuchi, Masafumi

    2009-02-01

    This study investigated the machinability of titanium, two commercial titanium alloys (Ti-6Al-4V and Ti-6Al-7Nb) and free-cutting brass using the cutting temperature. The cutting temperature was estimated by measuring the thermal electromotive force of the tool-workpiece thermocouple during cutting. The thermoelectric power of each metal relative to the tool had previously been determined. The metals were slotted using a milling machine and carbide square end mills under four cutting conditions. The cutting temperatures of Ti-6Al-4V and Ti-6Al-7Nb were significantly higher than that of the titanium, while that of the free-cutting brass was lower. This result coincided with the relationship of the magnitude of the cutting forces measured in a previous study. For each metal, the cutting temperature became higher when the depth of cut or the cutting speed and feed increased. The increase in the cutting speed and feed was more influential on the value than the increase in the depth of cut when two cutting conditions with the same removal rates were compared. The results demonstrated that cutting temperature measurement can be utilized to develop a new material for dental CAD/CAM applications and to optimize the cutting conditions.

  3. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk, Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2002-10-30

    This is the first quarterly progress report for Year-4 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between July 1, 2002 and Sept. 30, 2002. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility Task 3: Addition of a Cuttings Injection/Separation System, Task 4: Addition of a Pipe Rotation System, (b) New Research project (Task 9b): ''Development of a Foam Generator/Viscometer for Elevated Pressure and Elevated Temperature (EPET) Conditions'', (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings (Task 12), Viscosity of Foam under EPET (Task 9b). (f) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  4. Glaucoma, Open-Angle

    Science.gov (United States)

    ... Programs Home > Statistics and Data > Glaucoma, Open-angle Glaucoma, Open-angle Open-angle Glaucoma Defined In open-angle glaucoma, the fluid passes ... 2010 2010 U.S. Age-Specific Prevalence Rates for Glaucoma by Age and Race/Ethnicity The prevalence of ...

  5. Large Chip Production Mechanism under the Extreme Load Cutting Conditions

    Institute of Scientific and Technical Information of China (English)

    LIU Xianli; HE Genghuang; YAN Fugang; CHENG Yaonan; LIU Li

    2015-01-01

    There has existed a great deal of theory researches in term of chip production and chip breaking characteristics under conventional cutting and high speed cutting conditions, however, there isn’t sufficient research on chip formation mechanism as well as its influence on cutting state regarding large workpieces under extreme load cutting. This paper presents a model of large saw-tooth chip through applying finite element simulation method, which gives a profound analysis about the characteristics of the extreme load cutting as well as morphology and removal of the large chip. In the meantime, a calculation formula that gives a quantitative description of the saw-tooth level regarding the large chip is established on the basis of cutting experiments on high temperature and high strength steel 2.25Cr-1Mo-0.25V. The cutting experiments are carried out by using the scanning electron microscope and super depth of field electron microscope to measure and calculate the large chip produced under different cutting parameters, which can verify the validity of the established model. The calculating results show that the large saw-toothed chip is produced under the squeezing action between workpiece and cutting tools. In the meanwhile, the chip develops a hardened layer where contacts the cutting tool and the saw-tooth of the chip tend to form in transverse direction. This research creates the theoretical model for large chip and performs the cutting experiments under the extreme load cutting condition, as well as analyzes the production mechanism of the large chip in the macro and micro conditions. Therefore, the proposed research could provide theoretical guidance and technical support in improving productivity and cutting technology research.

  6. Influence of minimum quantity lubrication parameters on tool wear and surface roughness in milling of forged steel

    Science.gov (United States)

    Yan, Lutao; Yuan, Songmei; Liu, Qiang

    2012-05-01

    The minimum quantity of lubrication (MQL) technique is becoming increasingly more popular due to the safety of environment. Moreover, MQL technique not only leads to economical benefits by way of saving lubricant costs but also presents better machinability. However, the effect of MQL parameters on machining is still not clear, which needs to be overcome. In this paper, the effect of different modes of lubrication, i.e., conventional way using flushing, dry cutting and using the minimum quantity lubrication (MQL) technique on the machinability in end milling of a forged steel (50CrMnMo), is investigated. The influence of MQL parameters on tool wear and surface roughness is also discussed. MQL parameters include nozzle direction in relation to feed direction, nozzle elevation angle, distance from the nozzle tip to the cutting zone, lubricant flow rate and air pressure. The investigation results show that MQL technique lowers the tool wear and surface roughness values compared with that of conventional flood cutting fluid supply and dry cutting conditions. Based on the investigations of chip morphology and color, MQL technique reduces the cutting temperature to some extent. The relative nozzle-feed position at 120°, the angle elevation of 60° and distance from nozzle tip to cutting zone at 20 mm provide the prolonged tool life and reduced surface roughness values. This fact is due to the oil mists can penetrate in the inner zones of the tool edges in a very efficient way. Improvement in tool life and surface finish could be achieved utilizing higher oil flow rate and higher compressed air pressure. Moreover, oil flow rate increased from 43.8 mL/h to 58.4 mL/h leads to a small decrease of flank wear, but it is not very significant. The results obtained in this paper can be used to determine optimal conditions for milling of forged steel under MQL conditions.

  7. Performance Testing of Cutting Fluids

    DEFF Research Database (Denmark)

    Belluco, Walter

    The importance of cutting fluid performance testing has increased with documentation requirements of new cutting fluid formulations based on more sustainable products, as well as cutting with minimum quantity of lubrication and dry cutting. Two sub-problems have to be solved: i) which machining t...

  8. Theoretical Models for Orthogonal Cutting

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This review of simple models for orthogonal cutting was extracted from: “L. De Chiffre: Metal Cutting Mechanics and Applications, D.Sc. Thesis, Technical University of Denmark, 1990.”......This review of simple models for orthogonal cutting was extracted from: “L. De Chiffre: Metal Cutting Mechanics and Applications, D.Sc. Thesis, Technical University of Denmark, 1990.”...

  9. Dealing with Cuts (For Parents)

    Science.gov (United States)

    ... For Kids For Parents MORE ON THIS TOPIC Cellulitis First Aid: Cuts Staph Infections Bites and Scratches First Aid: Falls First Aid: ... Out Cuts, Scratches, and Abrasions What's a Scab? Cellulitis Cuts, Scratches, and Scrapes Staph Infections Dealing With Cuts and Wounds Contact Us Print ...

  10. The Methodology of Calculation of Cutting Forces When Machining Composite Materials

    Science.gov (United States)

    Rychkov, D. A.; Yanyushkin, A. S.

    2016-08-01

    Cutting of composite materials has specific features and is different from the processing of metals. When this characteristic intense wear of the cutting tool. An important criterion in the selection process parameters composite processing is the value of the cutting forces, which depends on many factors and is determined experimentally, it is not always appropriate. The study developed a method of determining the cutting forces when machining composite materials and the comparative evaluation of the calculated and actual values of cutting forces. The methodology for calculating cutting forces into account specific features of the cutting tool and the extent of wear, the strength properties of the processed material and cutting conditions. Experimental studies conducted with fiberglass milling cutter equipped with elements of hard metal VK3M. The discrepancy between the estimated and the actual values of the cutting force is not more than 10%.

  11. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Lei Zhou

    2000-01-30

    This is the second quarterly progress report for Year 2 of the ACTS project. It includes a review of progress made in Flow Loop development and research during the period of time between Oct 1, 2000 and December 31, 2000. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 2: Addition of a foam generation and breaker system), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 7): ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (d) Research project (Task 8): ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (e) Research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (g) Research on instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), and Foam properties while transporting cuttings. (Task 12), (h) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (i) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members. The tasks Completed During This Quarter are Task 7 and Task 8.

  12. The perfect cut

    DEFF Research Database (Denmark)

    Scozzafava, G.; Mueller Loose, Simone; Corsi, A.

    (organic, standard, GMO free). The cross-price elasticity provides insights to which degree different cuts compete against each other from a consumer perspective and how price premiums can be achieved by producers and marketers with certification and labeling strategies. The paper will also provide...... other from the consumer perspective dependent on price, intrinsic and extrinsic product characteristics as well as intended usage. So far, there is limited knowledge about optimal marketing and pricing of meat cuts simultaneously offered at the retail shelf. Results from an online choice experiment...

  13. Tool breakage detection from 2D workpiece profile using vision method

    Science.gov (United States)

    Lee, W. K.; Ratnam, M. M.; Ahmad, Z. A.

    2016-02-01

    In-process tool breakage monitoring can significantly save cost and prevent damages to machine tool. In this paper, a machine vision approach was employed to detect the tool fracture in commercial aluminium oxide ceramic cutting tool during turning of AISI 52100 hardened steel. The contour of the workpiece profile was captured with the aid of backlighting during turning using a high-resolution DSLR camera with a shutter speed of 1/4000 s. The surface profile of the workpiece was extracted to sub-pixel accuracy using the invariant moment method. The effect of fracture in ceramic cutting tools on the surface profile signature of the machined workpiece using autocorrelation was studied. Fracture in the aluminum oxide ceramic tool was found to cause the peaks of autocorrelation function of the workpiece profile to decrease rapidly as the lag distance increased. The envelope of the peaks of the autocorrelation function was observed to deviate significantly from one another at different workpiece angles when the tool has fractured due to the continuous fracture of ceramic cutting insert during machining.

  14. GH4169高速切削刀具耐用度及给定约束参数优化方法研究%Research on Tool Life and Cutting Parameter Optimization with a Given Constraint Condition in High Speed Milling GH 4169

    Institute of Scientific and Technical Information of China (English)

    李锋; 刘维伟; 史凯宁; 李文科

    2014-01-01

    针对难加工镍基高温合金材料G H4169切削过程中的加工效率低下、刀具耐用度差等问题,新型PVD-TiAlN涂层硬质合金刀具进行了高温合金GH4169高速铣削正交试验,研究了TiAlN涂层刀具高速铣削GH4169过程中的刀具耐用度。另外,应用退火罚函数遗传算法建立了以最大切除率为目标函数,以给定刀具寿命为约束条件的切削参数优化数学模型,得到了刀具寿命 T≥30 min条件下,切除率最大的最优参数组合,并进行了试验验证。研究结果表明:高温合金G H4169高速铣削过程中,切削速度对刀具寿命的影响非常明显,进给量及切削深度的影响较小;应用退火罚函数遗传算法建立的切削参数优化模型能在给定约束条件下明显提高加工效率,为现实加工过程中的参数优化提供了一种新方法。%For the problems of the poor tool life and the low removal rate to machine nickel based superalloys GH4169, the orthogonal experiment was processed to obtain the tool life data of a new developed PVD-TiAlN coated carbide tool to cut superalloy GH4169. In addition, by annealing penalty function genetic algorithm ,an optimization model of cutting parameters, which lead to maximum material removal rate, is built according to the specified tool life values .The optimal parameter combination is gotten when the tool life T≥30min as constraint conditions ,and the experimental validation is done .The results indicate that cutting speed has highly obvious influence on tool life. The optimization model, which is established based on annealing penalty function genetic algorithm, can improve materials processing efficiency and quality of the GH4169 effectively .

  15. The effect of cutting conditions on power inputs when machining

    Science.gov (United States)

    Petrushin, S. I.; Gruby, S. V.; Nosirsoda, Sh C.

    2016-08-01

    Any technological process involving modification of material properties or product form necessitates consumption of a certain power amount. When developing new technologies one should take into account the benefits of their implementation vs. arising power inputs. It is revealed that procedures of edge cutting machining are the most energy-efficient amongst the present day forming procedures such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc, such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc. An expanded formula for calculation of power inputs is deduced, which takes into consideration the mode of cutting together with the tip radius, the form of the replaceable multifaceted insert and its wear. Having taken as an example cutting of graphite iron by the assembled cutting tools with replaceable multifaceted inserts the authors point at better power efficiency of high feeding cutting in comparison with high-speed cutting.

  16. Genetic Evolutionary Approach for Cutting Forces Prediction in Hard Milling

    Science.gov (United States)

    Taylan, Fatih; Kayacan, Cengiz

    2011-11-01

    Hard milling is a very common used machining procedure in the last years. Therefore the prediction of cutting forces is important. The paper deals with this prediction using genetic evolutionary programming (GEP) approach to set mathematical expression for out cutting forces. In this study, face milling was performed using DIN1.2842 (90MnCrV8) cold work tool steel, with a hardness of 61 HRC. Experimental parameters were selected using stability measurements and simulations. In the hard milling experiments, cutting force data in a total of three axes were collected. Feed direction (Fx) and tangential direction (Fy) cutting forces generated using genetic evolutionary programming were modelled. Cutting speed and feed rate values were treated as inputs in the models, and average cutting force values as output. Mathematical expressions were created to predict average Fxand Fy forces that can be generated in hard material milling.

  17. Mechanics of Cutting and Boring. Part 3. Kinematics of Continuous Belt Machines,

    Science.gov (United States)

    BOREHOLES, * CUTTING TOOLS , *ICE PENETRATION, *DRILLING MACHINES, *ROAD BUILDING EQUIPMENT, KINEMATICS, PERFORMANCE(ENGINEERING), ROCK, BELTS, EXCAVATION, ARCTIC REGIONS, PERMAFROST, SHALE, SAWS, TRENCHING.

  18. Cutting Cakes Carefully

    Science.gov (United States)

    Hill, Theodore P.; Morrison, Kent E.

    2010-01-01

    This paper surveys the fascinating mathematics of fair division, and provides a suite of examples using basic ideas from algebra, calculus, and probability which can be used to examine and test new and sometimes complex mathematical theories and claims involving fair division. Conversely, the classical cut-and-choose and moving-knife algorithms…

  19. Simultaneous Cake Cutting

    DEFF Research Database (Denmark)

    Balkanski, Eric; Branzei, Simina; Kurokawa, David;

    2014-01-01

    We introduce the simultaneous model for cake cutting (the fair allocation of a divisible good), in which agents simultaneously send messages containing a sketch of their preferences over the cake. We show that this model enables the computation of divisions that satisfy proportionality — a popular...

  20. "Kid Cuts" by Broderbund.

    Science.gov (United States)

    Martin, Ron

    1994-01-01

    Describes "Kid Cuts," an arts and crafts computer software program for students in prekindergarten through sixth grade that provides 22 activities in 6 curriculum areas. An example is given of an activity for kindergarten and first graders related to counting that includes library media skills objectives and mathematics objectives. (LRW)

  1. Kids Who Cut.

    Science.gov (United States)

    Coy, Doris Rhea; Simpson, Chris

    2002-01-01

    Regardless of whether it is cutting, burning or some other form of self-harm, self-injury is a serious problem requiring serious solutions. This article reviews the various types of self-harm, descriptions of self-mutilators, common myths about self-mutilation, and effective treatment methods. (GCP)

  2. Machine Tool Software

    Science.gov (United States)

    1988-01-01

    A NASA-developed software package has played a part in technical education of students who major in Mechanical Engineering Technology at William Rainey Harper College. Professor Hack has been using (APT) Automatically Programmed Tool Software since 1969 in his CAD/CAM Computer Aided Design and Manufacturing curriculum. Professor Hack teaches the use of APT programming languages for control of metal cutting machines. Machine tool instructions are geometry definitions written in APT Language to constitute a "part program." The part program is processed by the machine tool. CAD/CAM students go from writing a program to cutting steel in the course of a semester.

  3. A New-type of Cermets Cutter with Nano-TiN Addition: Microstructure, Mechanical and Cutting Properties

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The microstructure and mechanical properties of a new- type of cermets cutter ( tool A ) with nano- TiN modification and its cutting properties in cutting gray cast iron are investigated.SEM and TEM observations of the microstructure of the above material reveal that nano- TiN modified cermets possess a finer microstructure than conventional cermets .In the cutting tests, for comparison, cemented carbide cutter ( YG8 , tool B) was also utilized.The cutting results show that the cutting properties of tool A are superior to those of tool B.It is also found that the predominant failure mode of tool A is normal wear and micro-spalling under lower cutting quantities, and that chipping occurs under higher cutting quantities.SEM analysis reveals that cohesion, oxidation and diffusion wear become very apparent at a higher cutting speed.On the contrary, grain wear also exists but is not apparent.

  4. Slicing Cuts on Food Materials Using Robotic-Controlled Razor Blade

    Directory of Open Access Journals (Sweden)

    Debao Zhou

    2011-01-01

    Full Text Available Cutting operations using blades can arise in a number of industries, for example, food processing industry, in which cheese, fruit and vegetable, even meat, are involved. Certain questions will rise during these works, such as “why pressing-and-slicing cuts use less force than pressing-only cuts” and “how is the influence of the blade cutting-edge on force”. To answer these questions, this research developed a mathematical expression of the cutting stress tensor. Based on the analysis of the stress tensor on the contact surface, the influence of the blade edge-shape and slicing angle on the resultant cutting force were formulated and discussed. These formulations were further verified using experimental results by robotic cutting of potatoes. Through studying the change of the cutting force, the optimal slicing angle can be obtained in terms of maximum feeding distance and minimum cutting force. Based on the blade sharpness properties and the specific materials, the required cutting force can be predicted. These formulation and experimental results explained the basic theory of blade cutting fracture and further provided the support to optimize the cutting mechanism design and to develop the force control algorithms for the automation of blade cutting operations.

  5. An approach for the delineation of a generic cut-off value for local respiratory tract irritation by irritating or corrosive substances as a pragmatic tool to fulfill REACH requirements.

    Science.gov (United States)

    Messinger, H

    2014-04-01

    Under the current European legislation for the Registration, Evaluation, Authorisation and restriction of Chemicals (REACHs) a Derived No Effect Level (DNEL) has to be delineated for acute and chronic inhalation effects. The majority of available experimental studies are performed by the oral route of exposure. Route to route extrapolation poses particular problems for irritating or corrosive substances but the necessity for additional animal studies with inhalation exposure needs to be balanced with the regulatory information requirements. Existing occupational exposure limits (OEL) as surrogate for cut-off limits representing safe exposure under working conditions were grouped under certain criteria for substances that are legally classified in Europe as irritating or corrosive. As a result, it was shown that the OEL for irritating substances in this dataset is not lower than 10mg/m(3) and for corrosives not lower than 1mg/m(3). Under certain conditions these generic limits could be applied as a pragmatic, but still sufficiently reliable and protective upper cut-off limit approach to avoid additional animal tests with irritating or corrosive chemicals. The respective systemic toxicity profiles and physical-chemical properties need to be considered. Specific exclusion criteria for the discussed concept apply.

  6. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  7. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2003-04-30

    Experiments on the flow loop are continuing. Improvements to the software for data acquisition are being made as additional experience with three-phase flow is gained. Modifications are being made to the Cuttings Injection System in order to improve control and the precision of cuttings injection. The design details for a drill-pipe Rotation System have been completed. A US Patent was filed on October 28, 2002 for a new design for an instrument that can generate a variety of foams under elevated pressures and temperatures and then transfer the test foam to a viscometer for measurements of viscosity. Theoretical analyses of cuttings transport phenomena based on a layered model is under development. Calibrations of two nuclear densitometers have been completed. Baseline tests have been run to determine wall roughness in the 4 different tests sections (i.e. 2-in, 3-in, 4-in pipes and 5.76-in by 3.5-in annulus) of the flow loop. Tests have also been conducted with aerated fluids at EPET conditions. Preliminary experiments on the two candidate aqueous foam formulations were conducted which included rheological tests of the base fluid and foam stability reports. These were conducted after acceptance of the proposal on the Study of Cuttings Transport with Foam Under Elevated Pressure and Elevated Temperature Conditions. Preparation of a test matrix for cuttings-transport experiments with foam in the ACTF is also under way. A controller for instrumentation to measure cuttings concentration and distribution has been designed that can control four transceivers at a time. A prototype of the control circuit board was built and tested. Tests showed that there was a problem with radiated noise. AN improved circuit board was designed and sent to an external expert to verify the new design. The new board is being fabricated and will first be tested with static water and gravel in an annulus at elevated temperatures. A series of viscometer tests to measure foam properties have

  8. Metrology Influence on the Cutting Modelisation

    CERN Document Server

    Cahuc, Olivier

    2009-01-01

    High speed machining has been improved thanks to considerable advancement on the tools (optimum geometry, harder materials), on machined materials (increased workability and machining capacity for harder workpieces) and finally on the machines (higher accuracy and power at the high speeds, performances of the numerical control system). However at such loading velocities, the cutting process generates high strain and high-speed strain which cause complex, various and irreversible phenomena in plasticity. These phenomena are comprehended through the complete measurement of the mechanical actions using a six-component dynamometer and flux and temperatures measurements at the tip of the cutting tool. Balanced energy assessments are the starting points of our reflection on the machining modelling. The modelling of these phenomena and the material behaviour under this type of loading requires a suitable theoretical approach. The main points of the strain gradient theory are developed. A theoretical behaviour law ad...

  9. Understanding Angle and Angle Measure: A Design-Based Research Study Using Context Aware Ubiquitous Learning

    Science.gov (United States)

    Crompton, Helen

    2015-01-01

    Mobile technologies are quickly becoming tools found in the educational environment. The researchers in this study use a form of mobile learning to support students in learning about angle concepts. Design-based research is used in this study to develop an empirically-substantiated local instruction theory about students' develop of angle and…

  10. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Neelima Godugu

    2000-07-30

    ACTS flow loop is now operational under elevated pressure and temperature. Currently, experiments with synthetic based drilling fluids under pressure and temperature are being conducted. Based on the analysis of Fann 70 data, empirical correlations defining the shear stress as a function of temperature, pressure and the shear rate have been developed for Petrobras synthetic drilling fluids. PVT equipment has been modified for testing Synthetic oil base drilling fluids. PVT tests with Petrobras Synthetic base mud have been conducted and results are being analyzed Foam flow experiments have been conducted and the analysis of the data has been carried out to characterize the rheology of the foam. Comparison of pressure loss prediction from the available foam hydraulic models and the test results has been made. Cuttings transport experiments in horizontal annulus section have been conducted using air, water and cuttings. Currently, cuttings transport tests in inclined test section are being conducted. Foam PVT analysis tests have been conducted. Foam stability experiments have also been conducted. Effects of salt and oil concentration on the foam stability have been investigated. Design of ACTS flow loop modification for foam and aerated mud flow has been completed. A flow loop operation procedure for conducting foam flow experiments under EPET conditions has been prepared Design of the lab-scale flow loop for dynamic foam characterization and cuttings monitoring instrumentation tests has been completed. The construction of the test loop is underway. As part of the technology transport efforts, Advisory Board Meeting with ACTS-JIP industry members has been organized on May 13, 2000.

  11. Cutting Out Continuations

    DEFF Research Database (Denmark)

    Bahr, Patrick; Hutton, Graham

    2016-01-01

    In the field of program transformation, one often transforms programs into continuation-passing style to make their flow of control explicit, and then immediately removes the resulting continuations using defunctionalisation to make the programs first-order. In this article, we show how these two...... transformations can be fused together into a single transformation step that cuts out the need to first introduce and then eliminate continuations. Our approach is calculational, uses standard equational reasoning techniques, and is widely applicable....

  12. Making the cut

    OpenAIRE

    Millard, Chris

    2013-01-01

    ‘Deliberate self-harm’, ‘self-mutilation’ and ‘self-injury’ are just some of the terms used to describe one of the most prominent issues in British mental health policy in recent years. This article demonstrates that contemporary literature on ‘self-harm’ produces this phenomenon (to varying extents) around two key characteristics. First, this behaviour is predominantly performed by those identified as female. Second, this behaviour primarily involves cutting the skin. These constitutive char...

  13. Soluble oil cutting fluid

    Energy Technology Data Exchange (ETDEWEB)

    Rawlinson, A.P.; White, J.

    1987-06-23

    A soluble oil, suitable when diluted with water, for use as a cutting fluid comprises an alkali or alkaline-earth metal alkyl benzene sulphonate, a fatty acid diethanolamide, a mixed alkanolamine borate, a polyisobutenesuccinimide and a major proportion of mineral oil. The soluble oil is relatively stable without the need for a conventional coupling agent and some soluble oil emulsions are bio-static even though conventional biocides are not included.

  14. Water Powered Tools

    Science.gov (United States)

    1976-01-01

    Space Spin-Offs, Inc. under a contract with Lewis Research Center and Marshall Space Flight Center produced a new water-powered saw that cuts through concrete and steel plate reducing danger of explosion or electric shock in rescue and other operations. In prototype unit efficient water-powered turbine drives an 8 inch diameter grinding disk at 6,600 rpm. Exhaust water cools disk and workpiece quenching any sparks produced by cutting head. At maximum power, tool easily cuts through quarter inch steel plate. Adapter heads for chain saws, impact wrenches, heavy duty drills, and power hack saws can be fitted.

  15. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2003-07-30

    This Quarter has been divided between running experiments and the installation of the drill-pipe rotation system. In addition, valves and piping were relocated, and three viewports were installed. Detailed design work is proceeding on a system to elevate the drill-string section. Design of the first prototype version of a Foam Generator has been finalized, and fabrication is underway. This will be used to determine the relationship between surface roughness and ''slip'' of foams at solid boundaries. Additional cups and rotors are being machined with different surface roughness. Some experiments on cuttings transport with aerated fluids have been conducted at EPET. Theoretical modeling of cuttings transport with aerated fluids is proceeding. The development of theoretical models to predict frictional pressure losses of flowing foam is in progress. The new board design for instrumentation to measure cuttings concentration is now functioning with an acceptable noise level. The ultrasonic sensors are stable up to 190 F. Static tests with sand in an annulus indicate that the system is able to distinguish between different sand concentrations. Viscometer tests with foam, generated by the Dynamic Test Facility (DTF), are continuing.

  16. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Len Volk; Mark Pickell; Evren Ozbayoglu; Barkim Demirdal; Paco Vieira; Affonso Lourenco

    1999-10-15

    This report includes a review of the progress made in ACTF Flow Loop development and research during 90 days pre-award period (May 15-July 14, 1999) and the following three months after the project approval date (July15-October 15, 1999) The report presents information on the following specific subjects; (a) Progress in Advanced Cuttings Transport Facility design and development, (b) Progress report on the research project ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (c) Progress report on the research project ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (d) Progress report on the research project ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (e) Progress report on the research project ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Progress report on the instrumentation tasks (Tasks 11 and 12) (g) Activities towards technology transfer and developing contacts with oil and service company members.

  17. Surface roughness and cutting force estimation in the CNC turning using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Mohammad Ramezani

    2015-04-01

    Full Text Available Surface roughness and cutting forces are considered as important factors to determine machinability rate and the quality of product. A number of factors like cutting speed, feed rate, depth of cutting and tool noise radius influence the surface roughness and cutting forces in turning process. In this paper, an Artificial Neural Network (ANN model was used to forecast surface roughness and cutting forces with related inputs, including cutting speed, feed rate, depth of cut and tool noise radius. The machined surface roughness and cutting force parameters related to input parameters are the outputs of the ANN model. In this work, 24 samples of experimental data were used to train the network. Moreover, eight other experimental tests were implemented to test the network. The study concludes that ANN was a reliable and accurate method for predicting machining parameters in CNC turning operation.

  18. Cutting force signal pattern recognition using hybrid neural network in end milling

    Institute of Scientific and Technical Information of China (English)

    Song-Tae SEONG; Ko-Tae JO; Young-Moon LEE

    2009-01-01

    Under certain cutting conditions in end milling, the signs of cutting forces change from positive to negative during a revolution of the tool. The change of force direction causes the cutting dynamics to be unstable which results in chatter vibration. Therefore, cutting force signal monitoring and classification are needed to determine the optimal cutting conditions and to improve the efficiency of cut. Artificial neural networks are powerful tools for solving highly complex and nonlinear problems. It can be divided into supervised and unsupervised learning machines based on the availability of a teacher. Hybrid neural network was introduced with both of functions of multilayer perceptron (MLP) trained with the back-propagation algorithm for monitoring and detecting abnormal state, and self organizing feature map (SOFM) for treating huge datum such as image processing and pattern recognition, for predicting and classifying cutting force signal patterns simultaneously. The validity of the results is verified with cutting experiments and simulation tests.

  19. Influence of Fiber Orientation on Single-Point Cutting Fracture Behavior of Carbon-Fiber/Epoxy Prepreg Sheets

    OpenAIRE

    2015-01-01

    The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture to...

  20. Wear and cutting performance of diamond composite material-a comparison with tungsten carbide

    Institute of Scientific and Technical Information of China (English)

    LI Xing-sheng; J. N. Boland

    2004-01-01

    A series of wear and rock cutting tests were undertaken to assess the wear and cutting performance of a thermally stable diamond composite (TSDC). The wear tests were conducted on a newly designed wear testing rig in which a rotating aluminium oxide grinding wheel is turned (also known as machined) by the testing tool element.The rock cutting tests were performed on a linear rock-cutting planer. The thrust and cutting forces acting on the tool were measured during these tests. A tungsten carbide element was also studied for comparative purposes. The wear coefficients of both materials were used to evaluate wear performance while cutting performance was assessed by tool wear and the rates of increase in forces with cutting distance.

  1. Improving axial depth of cut accuracy in micromilling

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2004-01-01

    In order to maintain an optimum cutting speed, the reduction of mill diameters requires machine tools with high rotational speed capabilities. A solution to update existing machine tools is the use of high speed attached spindles. Major drawbacks of these attachments are the high thermal expansio...

  2. Adiabatic Shear Mechanisms for the Hard Cutting Process

    Institute of Scientific and Technical Information of China (English)

    YUE Caixu; WANG Bo; LIU Xianli; FENG Huize; CAI Chunbin

    2015-01-01

    The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remalns some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride (PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high straln domaln caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters.

  3. ITER lip seal welding and cutting developments

    Energy Technology Data Exchange (ETDEWEB)

    Levesy, B.; Cordier, J.J.; Jokinen, T. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Kujanpää, V.; Karhu, M. [VTT Technical Research Centre of Finland (Finland); Le Barbier, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Määttä, T. [VTT Technical Research Centre of Finland (Finland); Martins, J.P.; Utin, Y. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-10-15

    Highlights: • Different TIG and Laser welding techniques are tested. • Twin spot laser welding techniques is the best. • Limited heat input gives a stable weld pool in all positions. • Penetrations is achieved. • Lip seal welding and cutting with a robotic arm is successfully performed on a representative mock-up. - Abstract: The welded lip seals form part of the torus primary vacuum boundary in between the port plugs and the vacuum vessel, and are classified as Protection Important Component. In order to refurbish the port plugs or the in-vessel components, port plugs have to be removed from the machine. The lip seal design must enable up to ten opening of the vacuum vessel during the life time operation of the ITER machine. Therefore proven, remote reliable cutting and re-welding are essential, as these operations need to be performed in the port cells in a nuclear environment, where human presence will be restricted. Moreover, the combination of size of the components to be welded (∼10 m long vacuum compatible thin welds) and the congested environment close to the core of the machine constraint the type and size of tools to be used. This paper describes the lip seal cutting and welding development programme performed at the VTT Technical Research Centre, Finland. Potential cutting and welding techniques are analyzed and compared. The development of the cutting, TIG and laser welding techniques on samples are presented. Effects of lip seal misalignments and optimization of the 2 welding processes are discussed. Finally, the manufacturing and test of the two 1.2 m × 1 m representative mock-ups are presented. The set-up and use of a robotic arm for the mock-up cutting and welding operations are also described.

  4. Machine tool structures

    CERN Document Server

    Koenigsberger, F

    1970-01-01

    Machine Tool Structures, Volume 1 deals with fundamental theories and calculation methods for machine tool structures. Experimental investigations into stiffness are discussed, along with the application of the results to the design of machine tool structures. Topics covered range from static and dynamic stiffness to chatter in metal cutting, stability in machine tools, and deformations of machine tool structures. This volume is divided into three sections and opens with a discussion on stiffness specifications and the effect of stiffness on the behavior of the machine under forced vibration c

  5. Verification test results of a cutting technique for the ITER blanket cooling pipes

    Energy Technology Data Exchange (ETDEWEB)

    Shigematsu, Soichiro, E-mail: shigematsu.soichiro@jaea.go.jp [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki (Japan); Tanigawa, Hisashi; Aburadani, Atsushi; Takeda, Nobukazu; Kakudate, Satoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki (Japan); Mori, Seiji; Nakahira, Masataka; Raffray, Rene; Merola, Mario [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France)

    2012-08-15

    For replacement of the first wall (FW) of the international thermonuclear experimental reactor (ITER), cutting and welding tools for the cooling pipes must be able to access a pipe from the surface side of the FW and cut/weld the pipe from the inside the cooling pipe (inner diameter: 42.72 mm, thickness: 2.77 mm). The cutting tool for the pipe end is required to cut a flat plate circularly from the surface side of the FW (cutting diameter: approximately 44 mm, plate thickness: 5 mm). To determine the specifications for both the tools and the blanket hydraulic connections, the ITER Organization (IO) and the Japan Domestic Agency (JADA) conducted research and development activities regarding the FW replacement. This paper describes the current status of the development of cutting tools for the cooling pipe connection.

  6. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining

    Directory of Open Access Journals (Sweden)

    Qiaokang Liang

    2016-11-01

    Full Text Available Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.

  7. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining.

    Science.gov (United States)

    Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin

    2016-11-16

    Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.

  8. Analysis of forces in conventional and ultrasonically assisted plane cutting of cortical bone.

    Science.gov (United States)

    Alam, Khurshid; Khan, Mushtaq; Silberschmidt, Vadim V

    2013-06-01

    Bone cutting is a well accepted but technically demanding surgical procedure in orthopaedics. A level of tool penetration force during cutting of bones has been the prime concern to surgeons, since it can produce unnecessary mechanical damage to surrounding tissues. Research in this area has been undertaken for many decades to find ways to minimise the cutting force. Cutting of bone with ultrasonic tools is a relatively new technique replacing conventional procedures in neuro-, dental and orthopaedic surgeries, due to its precision and safety. In this article, the level of forces produced during a chisel-like tool penetration in a fresh cortical bone is studied. The obtained force data are analysed for both conventional cutting and ultrasonically assisted cutting. Through a series of experiments, it was demonstrated that the depth of cut and parameters of ultrasonic oscillations affected the level of cutting force, the former being the main factor in both types of cutting. It was found that the tool penetration force was decreased with an increase in the ultrasonic frequency or amplitude and was not affected by the cutting speed. The rise in bone temperature was measured and was found to be insensitive to the level of cutting speed within the range used in this study.

  9. Cutting heat dissipation in high-speed machining of carbon steel based on the calorimetric method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The cutting heat dissipation in chips,workpiece,tool and surroundings during the high-speed machining of carbon steel is quantitatively investigated based on the calorimetric method.Water is used as the medium to absorb the cutting heat;a self-designed container suitable for the high-speed lathe is used to collect the chips,and two other containers are adopted to absorb the cutting heat dissipated in the workpiece and tool,respectively.The temperature variations of the water,chips,workpiece,tool and surroundings during the closed high-speed machining are then measured.Thus,the cutting heat dissipated in each component of the cutting system,total cutting heat and heat flux are calculated.Moreover,the power resulting from the main cutting force is obtained according to the measured cutting force and predetermined cutting speed.The accuracy of cutting heat measurement by the calorimetric method is finally evaluated by comparing the total cutting heat flux with the power resulting from the main cutting force.

  10. Cutting the Cord-2

    Science.gov (United States)

    2004-01-01

    This animation shows the view from the rear hazard avoidance cameras on the Mars Exploration Rover Spirit as the rover turns 45 degrees clockwise. This maneuver is the first step in a 3-point turn that will rotate the rover 115 degrees to face west. The rover must make this turn before rolling off the lander because airbags are blocking it from exiting from the front lander petal. Before this crucial turn took place, engineers instructed the rover to cut the final cord linking it to the lander. The turn took around 30 minutes to complete.

  11. Cutting the Cord

    Science.gov (United States)

    2004-01-01

    This animation shows the view from the front hazard avoidance cameras on the Mars Exploration Rover Spirit as the rover turns 45 degrees clockwise. This maneuver is the first step in a 3-point turn that will rotate the rover 115 degrees to face west. The rover must make this turn before rolling off the lander because airbags are blocking it from exiting off the front lander petal. Before this crucial turn could take place, engineers instructed the rover to cut the final cord linking it to the lander. The turn took around 30 minutes to complete.

  12. Drilling cost-cutting

    Energy Technology Data Exchange (ETDEWEB)

    Capuano, L.E. Jr.

    1996-12-31

    This presentation by Louis E. Capuano, Jr., President, ThermaSource, Inc., discusses cost-cutting in the drilling phase of geothermal energy exploration and production. All aspects of a geothermal project including the drilling must be streamlined to make it viable and commercial. If production could be maximized from each well, there would be a reduction in drilling costs. This could be achieved in several ways, including big hole and multi-hole completion, directional drilling, better knowledge of the resource and where to penetrate, etc.

  13. Investigations of Cutting Fluid Performance Using Different Machining Operations

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Belluco, Walter

    2002-01-01

    An analysis of cutting fluid performance in dif-ferent metal cutting operations is presented based on performance criteria, work material and fluid type. Cutting fluid performance was evaluated in turning, drilling, reaming and tapping operations, with respect to tool life, cutting forces and prod-uct...... quality (dimensional accuracy and surface in-tegrity). A number of different work materials were considered, with emphasis on austenitic stainless steel. Three different water-miscible products, all without EP additives and used at 5% concentra-tion, and four different straight oils, were investi......-gated. In the case of austenitic stainless steel as the workpiece material, results using the different operations under different cutting conditions show that the performance of vegetable oil based prod-ucts is superior or equal to that of mineral oil based products. The hypothesis was investigated that one...

  14. Study on precision cutting technology of complex shape microparts

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Relatively to non-traditional and high-energy-beam micro-manufacturing technique, the micro-cutting technology has many merits. For instance, the machining range is bigger, the cost of equipments is much lower, and the productivity and machining accuracy are higher. Therefore, the micro-cutting technology will take an important effect on the machining technique of complex shape microparts. In this paper, based on selfly-developed machine tool, the precision cutting technology of complex shape microparts made of metal material was studied by analyzing the modeling method on complex shape, the means of toolpaths layout and the optimal selection for cutting parameters. On the basis of above work, a typical duralumin specimen of high precision, low surface roughness and complex shape micropart was manufactured. This result will provide favorable technical support for farther research on the micro-cutting technology.

  15. High performance cutting of aircraft and turbine components

    Science.gov (United States)

    Krämer, A.; Lung, D.; Klocke, F.

    2012-04-01

    Titanium and nickel-based alloys belong to the group of difficult-to-cut materials. The machining of these high-temperature alloys is characterized by low productivity and low process stability as a result of their physical and mechanical properties. Major problems during the machining of these materials are low applicable cutting speeds due to excessive tool wear, long machining times, and thus high manufacturing costs, as well as the formation of ribbon and snarled chips. Under these conditions automation of the production process is limited. This paper deals with strategies to improve machinability of titanium and nickel-based alloys. Using the example of the nickel-based alloy Inconel 718 high performance cutting with advanced cutting materials, such as PCBN and cutting ceramics, is presented. Afterwards the influence of different cooling strategies, like high-pressure lubricoolant supply and cryogenic cooling, during machining of TiAl6V4 is shown.

  16. Improved performance of linear coal cutting compared with rotary cutting

    Energy Technology Data Exchange (ETDEWEB)

    Roepke, W.W.; Hanson, B.D.; Olson, R.C.; Wingquist, C.F.; Myren, T.A.

    1995-09-01

    The linear cutting system, developed by the US Bureau of Mines uses geometric principles developed by Cardan to produce a nearly constant cut depth. The new system has been extensively tested in a synthetic material under laboratory conditions to verify mechanical capability and to identify operational characteristics. Comparison between 15-rpm linear cutting and 50-rpm rotary cutting systems show significant improvement in respirable dust entrainment, product size distribution, and energy usage. Respirable dust is reduced by as much as 90%. Recovered product showed a 67% reduction in {minus}0.32-cm ({minus}1/8-in) material and a 200% increase in +5.08 cm (+ 2 in) materials. Average power was reduced by 66% for the linear cutting. Because the bit cutting paths differ between linear and rotary cutting, it was necessary to compare the two at the same cut depths and bit types. These comparisons show that low revolution per minute rotary cutting entrains about the same amount of respirable dust as the linear cutting system, but the average shaft torque may be 55 to 130% greater for the rotary system.

  17. Automatic Generation of Minimal Cut Sets

    Directory of Open Access Journals (Sweden)

    Sentot Kromodimoeljo

    2015-06-01

    Full Text Available A cut set is a collection of component failure modes that could lead to a system failure. Cut Set Analysis (CSA is applied to critical systems to identify and rank system vulnerabilities at design time. Model checking tools have been used to automate the generation of minimal cut sets but are generally based on checking reachability of system failure states. This paper describes a new approach to CSA using a Linear Temporal Logic (LTL model checker called BT Analyser that supports the generation of multiple counterexamples. The approach enables a broader class of system failures to be analysed, by generalising from failure state formulae to failure behaviours expressed in LTL. The traditional approach to CSA using model checking requires the model or system failure to be modified, usually by hand, to eliminate already-discovered cut sets, and the model checker to be rerun, at each step. By contrast, the new approach works incrementally and fully automatically, thereby removing the tedious and error-prone manual process and resulting in significantly reduced computation time. This in turn enables larger models to be checked. Two different strategies for using BT Analyser for CSA are presented. There is generally no single best strategy for model checking: their relative efficiency depends on the model and property being analysed. Comparative results are given for the A320 hydraulics case study in the Behavior Tree modelling language.

  18. Establishment of Processing Spatial Coordinates and Surface of Cutting Tool Compensation of FANUC CNC System%FANUC的坐标系及曲面加工刀具补偿的建立

    Institute of Scientific and Technical Information of China (English)

    王志斌; 薛姣益; 王志龙

    2015-01-01

    Point at causing the accident during processing because the factors for the direction when manual programming space surface machining of FANUC CNC system. Beside establishment of tool compensation during space curved surface ma-chining has a large impact on ensuring machining precision and whether to generate tool Collision. This paper solve the problem by a practical example.%针对FANUC数控系统在手工编程加工空间曲面时,由于对第一坐标轴的忽视,经常在加工时造成事故,造成空间曲面加工对尺寸精度的影响,文章通过实例分析,提出曲面加工时空间刀具补偿的建立方法来解决这一问题。

  19. Smart Tooling for Manufacturing Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — CRG's shape memory polymer (SMP) tooling technologies, Smart Tooling, offer cutting-edge manufacturing solutions that can meet the construction needs of all future...

  20. Cutting Forces Analysis in Additive Manufactured AISI H13 Alloy

    OpenAIRE

    Montevecchi, Filippo; Grossi, Niccolò; Takagi, Hisataka; Scippa, Antonio; Sasahara, Hiroyuki; Campatelli, Gianni

    2016-01-01

    Combining Additive Manufacturing (AM) and traditional machining processes is essential to meet components functional requirements. However significant differences arise in machining AM and wrought parts. Previous works highlighted the increasing of tool wear and worse surface finish. In this paper cutting forces are investigated as an indicator of material machinability. Milling cutting force coefficients are identified using mechanistic approach, comparing AISI-H13 wrought and AM specimen. C...

  1. Stress Field Analyses of Functionally Gradient Ceramic Tool by FEM

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The cutting properties of the functionally gradient ceramic cutting tools relate closely to the gradient distribution. A cutting model of the functionally gradient ceramic tool is firstly designed in the present paper. The optimum of gradient distribution is obtained by way of the FEM analyses.

  2. Research of annealing mode for high accuracy stamped parts production from titanium alloy 83Ti-5Al-5Cr-5Mo after tooling

    Science.gov (United States)

    Balaykin, A. V.; Nosova, E. A.; Galkina, N. V.

    2016-11-01

    The aim of the work is to solve question of accuracy increase in tolled and annealed parts made from forged rod of titanium alloy. Plate pieces were cut from cross-section, annealed at 800°C during 1, 2, 3, 4 and 5 hours. The criterion combining minimum bending radius and spring back angle was found. This criterion shows the maximum values after tooling and annealing for 3 hours.

  3. Reading Angles in Maps

    Science.gov (United States)

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…

  4. Optimal cuts to extract the third-order elastic constants of langasite single crystals.

    Science.gov (United States)

    Zhang, Haifeng

    2011-06-01

    Optimal cuts to determine the third-order elastic constants of langasite single crystals by the resonator method are proposed. By designing a small number of langasite resonators with optimal cut angles and measuring their force-frequency effects, the third-order elastic constants of langasite single crystals may be extracted separately. The numerical method to search for these optimal cut angles is presented. All 14 third-order elastic constants may be determined through a series of experimental measurements. This method will simplify traditional methods used to determine the third-order elastic constants and could potentially produce more accurate results.

  5. Effects of vegetable-based cutting fluids on the wear in drilling

    Indian Academy of Sciences (India)

    Babur Ozcelik; Emel Kuram; Erhan Demirbas; Emrah Şik

    2013-08-01

    This study focuses on both formulation of vegetable-based cutting fluids (VBCFs) and machining with these cutting fluids. For this purpose, characterizations of chemical and physical analyses of these formulated cutting fluids are carried out. In this study, performances of three VBCFs developed from crude sunflower oil, refined sunflower oil, refined canola oil and commercial semi-synthetic cutting fluid are compared in terms of tool wear, thrust force and surface roughness during drilling of AISI 304 austenitic stainless steel with HSSE tool. Experimental results show that canolabased cutting fluid gives the best performance due to its higher lubricant properties with respect to other cutting fluids at the constant cutting conditions (spindle speed of 750 rpm and feed rate of 0.1 mm/rev).

  6. Simulation of Oscillatory Working Tool

    Directory of Open Access Journals (Sweden)

    Carmen Debeleac

    2010-01-01

    Full Text Available The paper presents a study of the resistance forces in soils cutting, with emphasis on their dependence on working tool motion during the loading process and dynamic regimes. The periodic process of cutting of soil by a tool (blade has described. Different intervals in the cycle of steady-state motion of the tool, and several interaction regimes were considered. The analysis has based on a non-linear approximation of the dependence of the soil resistance force on tool motion. Finally, the influence of frequency on the laws governing the interaction in the cyclic process was established.

  7. Vortex cutting in superconductors

    Science.gov (United States)

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; Crabtree, G. W.

    2016-08-01

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details of the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.

  8. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi

    2004-01-31

    Final design of the mast was completed (Task 5). The mast is consisting of two welded plate girders, set next to each other, and spaced 14-inches apart. Fabrication of the boom will be completed in two parts solely for ease of transportation. The end pivot connection will be made through a single 2-inch diameter x 4 feet-8 inch long 316 SS bar. During installation, hard piping make-ups using Chiksan joints will connect the annular section and 4-inch return line to allow full movement of the mast from horizontal to vertical. Additionally, flexible hoses and piping will be installed to isolate both towers from piping loads and allow recycling operations respectively. Calibration of the prototype Foam Generator Cell has been completed and experiments are now being conducted. We were able to generate up to 95% quality foam. Work is currently underway to attach the Thermo-Haake RS300 viscometer and install a view port with a microscope to measure foam bubble size and bubble size distribution. Foam rheology tests (Task 13) were carried out to evaluate the rheological properties of the proposed foam formulation. After successful completion of the first foam test, two sets of rheological tests were conducted at different foam flow rates while keeping other parameters constant (100 psig, 70F, 80% quality). The results from these tests are generally in agreement with the previous foam tests done previously during Task 9. However, an unanticipated observation during these tests was that in both cases, the frictional pressure drop in 2 inch pipe was lower than that in the 3 inch and 4 inch pipes. We also conducted the first foam cuttings transport test during this quarter. Experiments on aerated fluids without cuttings have been completed in ACTF (Task 10). Gas and liquid were injected at different flow rates. Two different sets of experiments were carried out, where the only difference was the temperature. Another set of tests was performed, which covered a wide range of

  9. Diamond tool machining of materials which react with diamond

    Science.gov (United States)

    Lundin, Ralph L.; Stewart, Delbert D.; Evans, Christopher J.

    1992-01-01

    Apparatus for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond.

  10. Laser Cutting of Different Materials

    Directory of Open Access Journals (Sweden)

    Kadir ÇAVDAR

    2013-08-01

    Full Text Available In this paper; in general potential developments and trends of a particular machining field by extensively evaluating present studies of laser beam machining have been discussed. As it is indicated below, technical literatures have been subsumed under five major headlines: Experimental studies, reviews, optimization researches of the cutting parameters, theoretical modelling studies of laser beam cutting and academic studies relating to laser cutting

  11. An appraisal of techniques and equipment for cutting force measurement

    Institute of Scientific and Technical Information of China (English)

    AUDY J.

    2006-01-01

    Current research focussed on the assessment of metal machining process parameters and on the development of adaptive control, shows that machine performance, work-piece and tool material selections, tool life, quality of machined surfaces,the geometry of cutting tool edges, and cutting conditions are closely related to the cutting forces. This information is of great interest to cutting tool manufactures and users alike. Over the years there have been significant developments and improvements in the equipment used to monitor such forces. In 1930 mechanical gauges were replaced by resistance strain gauges, and some 30 years later compact air gauge dynamometers were invented. Since this time intensive research has continued being directed towards developing new approaches to cutting force measurement. The Kistler Company, well-known manufacturer of acceleration and piezoelectrical dynamometers, has worked in this field for more than three decades, and developed very sensitive devices.While leading manufacturing research laboratories are often equipped with this technology, classical electrical strain gauges and other dynamometers of individual designs are still commonly used in industry. The present paper presents data obtained using different techniques of force measurement in metal machining processes. In particular, areas of uncertainties, illustrated through results concerning the turning process, are analysed, leading to an appraisal of the current status of these measurements and their significance.

  12. CALCULATION OF LASER CUTTING COSTS

    Directory of Open Access Journals (Sweden)

    Bogdan Nedic

    2016-09-01

    Full Text Available The paper presents description methods of metal cutting and calculation of treatment costs based on model that is developed on Faculty of mechanical engineering in Kragujevac. Based on systematization and analysis of large number of calculation models of cutting with unconventional methods, mathematical model is derived, which is used for creating a software for calculation costs of metal cutting. Software solution enables resolving the problem of calculating the cost of laser cutting, comparison' of costs made by other unconventional methods and provides documentation that consists of reports on estimated costs.

  13. Determination of basic friction angle using various laboratory tests.

    Science.gov (United States)

    Jang, Bo-An

    2016-04-01

    The basic friction angle of rock is an important factor of joint shear strength and is included within most shear strength criteria. It can be measured by direct shear test, triaxial compression test and tilt test. Tilt test is mostly used because it is the simplest method. However, basic friction angles measured using tilt test for same rock type or for one sample are widely distributed and often do not show normal distribution. In this research, the basic friction angles for the Hangdeung granite form Korea and Berea sandstone from USA are measured accurately using direct shear test and triaxial compression test. Then basic friction angles are again measured using tilt tests with various conditions and are compared with those measured using direct shear test and triaxial compression test to determine the optimum condition of tilt test. Three types of sliding planes, such as planes cut by saw and planes polished by #100 and #600 grinding powders, are prepared. When planes are polished by #100 grinding powder, the basic friction angles measured using direct shear test and triaxial compression test are very consistent and show narrow ranges. However, basic friction angles show wide ranges when planes are cut by saw and are polished by #600 grinding powder. The basic friction angle measured using tilt test are very close to those measured using direct shear test and triaxial compression test when plane is polished by #100 grinding powder. When planes are cut by saw and are polished by #600 grinding powder, basic friction angles measured using tilt test are slightly different. This indicates that tilt test with plane polished by #100 grinding powder can yield an accurate basic friction angle. In addition, the accurate values are obtained not only when planes are polished again after 10 times of tilt test, but values are averaged by more 30 times of tests.

  14. ANALYSIS OF PARAMETERS AFFECTING THE QUALITY OF A CUTTING MACHINE

    Directory of Open Access Journals (Sweden)

    Iveta Onderová

    2014-02-01

    Full Text Available The quality of cutting machines is affected by several factors that can be directly or indirectly influenced by manufacturers, technicians and users of machine tools. The most critical qualitative evaluation parameters of machine tools include accuracy and stability. Investigations of accuracy and repeatable positioning accuracy were essential for the research presented in this paper. The aim was to develop and experimentally verify the design of a methodology for cutting centers aimed at achieving the desired working precision. Before working on the topic described here, it was necessary to make several scientific analyses, which are summarized in this paper. We can build on the initial working hypothesis that by improving the technological parameters (e.g. by increasing the working speed of the machine, or by improving the precision of the positioning the quality of the cutting machine will also be improved. For the purposes of our study, several investigated parameters were set affecting positioning accuracy, such as rigidity, positioning speed, etc. First, the stiffness of the portal structure of the cutting machine was analyzed. FEM analysis was used to investigate several alternative structures of the cutting machine, and also an innovative solution for beam mounting. The second step was to integrate two types of drives into the design of the cutting machine. The first drive is a classic rack and pinion drive for cutting machines. To increase (improve the working speed of the machine, linear motors were designed as an alternative drive. The portal of the cutting machine was designed for a working speed of 260mmin−1 and acceleration of 25 m. s−2. The third step was based on the results of the analysis. In collaboration with Microstep, an experimental cutting machine in a portal version was produced using linear synchronous motors driving the portal on both sides, and with direct linear metering of its position. In the fourth step, an

  15. Opening angles and residual strains in normal rat trachea

    Institute of Scientific and Technical Information of China (English)

    柳兆荣; 王忆勤; 滕忠照; 徐刚; 汤伟昌

    2002-01-01

    The no-load state and zero-stress state of the normal rat trachea were analyzed. It was found that there exist compressive residual strains in the inner wall region of the rat trachea and tensile residual strains in the outer wall region. The fact that the opening angle of the rat trachea cut at the cartilaginous region is significantly larger than that cut at the muscular portion shows that residual strains exist mainly in the muscular region in the rat trachea. It was also indicated that the opening angles and residual strains expressed by cutting at the muscular portion are basically identical along longitudinal location and those expressed by cutting in the cartilaginous region tend to increase in the longitudinal direction in the normal rat, and that there exists quantitatively positive correlation between the opening angles and residual strains in rat trachea. The results will help to further understand the opening angles and residual strains in the trachea and study tracheal remodeling in response to mechanical environment.

  16. Photoelectric angle converter

    Science.gov (United States)

    Podzharenko, Volodymyr A.; Kulakov, Pavlo I.

    2001-06-01

    The photo-electric angle transmitter of rotation is offered, at which the output voltage is linear function of entering magnitude. In a transmitter the linear phototransducer is used on the basis of pair photo diode -- operating amplifier, which output voltage is linear function of the area of an illuminated photosensitive stratum, and modulator of a light stream of the special shape, which ensures a linear dependence of this area from an angle of rotation. The transmitter has good frequent properties and can be used for dynamic measurements of an angular velocity and angle of rotation, in systems of exact drives and systems of autocontrol.

  17. Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting.

    Science.gov (United States)

    Kus, Abdil; Isik, Yahya; Cakir, M Cemal; Coşkun, Salih; Özdemir, Kadir

    2015-01-12

    In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.

  18. Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting

    Directory of Open Access Journals (Sweden)

    Abdil Kus

    2015-01-01

    Full Text Available In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.

  19. Application of gas-fluid atomization technology in ultrosonic vibration cutting titanium alloy workpiece

    Science.gov (United States)

    Zhou, Zhimin; Zhang, Yuangliang; Li, Xiaoyan; Sun, Baoyuan

    2009-11-01

    To further improve machined surface quality of diamond cutting titanium workpiece and reduce diamond tool wear, it puts forward a kind of machining technology with mixture of carbon dioxide gas, water and vegetable oil atomized mist as cooling media in the paper. The cooling media is sprayed to cutting area through gas-liquid atomizer device to achieve purpose of cooling, lubricating, and protecting diamond tool. Experiments indicate that carbon dioxide gas can touch cutting surface more adequately through using gas-liquid atomization technology, which makes iron atoms of cutting surface cause a chemical reaction directly with carbon in carbon dioxide gas and reduce graphitizing degree of diamond tool. Thus, this technology of using gas-liquid atomization and ultrasonic vibration together for cutting Titanium Alloy is able to improve machined surface quality of workpiece and slow of diamond tool wear.

  20. Angle-Ply Weaving

    Science.gov (United States)

    Farley, Gary L.

    1990-01-01

    Bias-direction or angle-ply weaving is proposed new process for weaving fibers along bias in conventional planar fabric or in complicated three-dimensional multilayer fabric preform of fiber-reinforced composite structure. Based upon movement of racks of needles and corresponding angle yarns across fabric as fabric being formed. Fibers woven along bias increases shear stiffness and shear strength of preform, increasing value of preform as structural member.