WorldWideScience

Sample records for angiosperms nuphar advena

  1. Comparative chloroplast genomics: Analyses including new sequencesfrom the angiosperms Nuphar advena and Ranunculus macranthus

    Energy Technology Data Exchange (ETDEWEB)

    Raubeso, Linda A.; Peery, Rhiannon; Chumley, Timothy W.; Dziubek,Chris; Fourcade, H. Matthew; Boore, Jeffrey L.; Jansen, Robert K.

    2007-03-01

    The number of completely sequenced plastid genomes available is growing rapidly. This new array of sequences presents new opportunities to perform comparative analyses. In comparative studies, it is most useful to compare across wide phylogenetic spans and, within angiosperms, to include representatives from basally diverging lineages such as the new genomes reported here: Nuphar advena (from a basal-most lineage) and Ranunculus macranthus (from the basal group of eudicots). We report these two new plastid genome sequences and make comparisons (within angiosperms, seed plants, or all photosynthetic lineages) to evaluate features such as the status of ycf15 and ycf68 as protein coding genes, the distribution of simple sequence repeats (SSRs) and longer dispersed repeats (SDR), and patterns of nucleotide composition.

  2. Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus

    Directory of Open Access Journals (Sweden)

    Boore Jeffrey L

    2007-06-01

    Full Text Available Abstract Background The number of completely sequenced plastid genomes available is growing rapidly. This array of sequences presents new opportunities to perform comparative analyses. In comparative studies, it is often useful to compare across wide phylogenetic spans and, within angiosperms, to include representatives from basally diverging lineages such as the genomes reported here: Nuphar advena (from a basal-most lineage and Ranunculus macranthus (a basal eudicot. We report these two new plastid genome sequences and make comparisons (within angiosperms, seed plants, or all photosynthetic lineages to evaluate features such as the status of ycf15 and ycf68 as protein coding genes, the distribution of simple sequence repeats (SSRs and longer dispersed repeats (SDR, and patterns of nucleotide composition. Results The Nuphar [GenBank:NC_008788] and Ranunculus [GenBank:NC_008796] plastid genomes share characteristics of gene content and organization with many other chloroplast genomes. Like other plastid genomes, these genomes are A+T-rich, except for rRNA and tRNA genes. Detailed comparisons of Nuphar with Nymphaea, another Nymphaeaceae, show that more than two-thirds of these genomes exhibit at least 95% sequence identity and that most SSRs are shared. In broader comparisons, SSRs vary among genomes in terms of abundance and length and most contain repeat motifs based on A and T nucleotides. Conclusion SSR and SDR abundance varies by genome and, for SSRs, is proportional to genome size. Long SDRs are rare in the genomes assessed. SSRs occur less frequently than predicted and, although the majority of the repeat motifs do include A and T nucleotides, the A+T bias in SSRs is less than that predicted from the underlying genomic nucleotide composition. In codon usage third positions show an A+T bias, however variation in codon usage does not correlate with differences in A+T-richness. Thus, although plastome nucleotide composition shows "A

  3. Evolutionary trends in the floral transcriptome: insights from one of the basalmost angiosperms, the water lily Nuphar advena (Nymphaeaceae).

    Science.gov (United States)

    Yoo, Mi-Jeong; Chanderbali, André S; Altman, Naomi S; Soltis, Pamela S; Soltis, Douglas E

    2010-11-01

    Current understanding of floral developmental genetics comes primarily from the core eudicot model Arabidopsis thaliana. Here, we explore the floral transcriptome of the basal angiosperm, Nuphar advena (water lily), for insights into the ancestral developmental program of flowers. We identify several thousand Nuphar genes with significantly upregulated floral expression, including homologs of the well-known ABCE floral regulators, deployed in broadly overlapping transcriptional programs across floral organ categories. Strong similarities in the expression profiles of different organ categories in Nuphar flowers are shared with the magnoliid Persea americana (avocado), in contrast to the largely organ-specific transcriptional cascades evident in Arabidopsis, supporting the inference that this is the ancestral condition in angiosperms. In contrast to most eudicots, floral organs are weakly differentiated in Nuphar and Persea, with staminodial intermediates between stamens and perianth in Nuphar, and between stamens and carpels in Persea. Consequently, the predominantly organ-specific transcriptional programs that characterize Arabidopsis flowers (and perhaps other eudicots) are derived, and correlate with a shift towards morphologically distinct floral organs, including differentiated sepals and petals, and a perianth distinct from stamens and carpels. Our findings suggest that the genetic regulation of more spatially discrete transcriptional programs underlies the evolution of floral morphology.

  4. Pollination by flies, bees, and beetles of Nuphar ozarkana and N. advena (Nymphaeaceae).

    Science.gov (United States)

    Lippok, B; Gardine, A A; Williamson, P S; Renner, S S

    2000-06-01

    Nuphar comprises 13 species of aquatic perennials distributed in the temperate Northern Hemisphere. The European species N. lutea and N. pumila in Norway, the Netherlands, and Germany are pollinated by bees and flies, including apparent Nuphar specialists. This contrasts with reports of predominant beetle pollination in American N. advena and N. polysepala. We studied pollination in N. ozarkana in Missouri and N. advena in Texas to assess whether (1) there is evidence of pollinator shifts associated with floral-morphological differences between Old World and New World species as hypothesized by Padgett, Les, and Crow (American Journal of Botany 86: 1316-1324. 1999) and (2) whether beetle pollination characterizes American species of Nuphar. Ninety-seven and 67% of flower visits in the two species were by sweat bees, especially Lasioglossum (Evylaeus) nelumbonis. Syrphid fly species visiting both species were Paragus sp., Chalcosyrphus metallicus, and Toxomerus geminatus. The long-horned leaf beetle Donacia piscatrix was common on leaves and stems of N. ozarkana but rarely visited flowers. Fifteen percent of visits to N. advena flowers were by D. piscatrix and D. texana. The beetles' role as pollinators was investigated experimentally by placing floating mesh cages that excluded flies and bees over N. advena buds about to open and adding beetles. Beetles visited 40% of the flowers in cages, and flowers that received visits had 69% seed set, likely due to beetle-mediated geitonogamy of 1st-d flowers. Experimentally outcrossed 1st-d flowers had 62% seed set, and open-pollinated flowers 76%; 2nd-d selfed or outcrossed flowers had low seed sets (9 and 12%, respectively). Flowers are strongly protogynous and do not self spontaneously. Flowers shielded from pollinators set no seeds. A comparison of pollinator spectra in the two Old World and three New World Nuphar species studied so far suggests that the relative contribution of flies, bees, and beetles to pollen transfer

  5. Xylem of early angiosperms: Nuphar (Nymphaeaceae) has novel tracheid microstructure1.

    Science.gov (United States)

    Carlquist, Sherwin; Schneider, Edward L; Hellquist, C Barre

    2009-01-01

    SEM studies of xylem of stems of Nuphar reveal a novel feature, not previously reported for any angiosperm. Pit membranes of tracheid end walls are composed of coarse fibrils, densest on the distal (outside surface, facing the pit of an adjacent cell) surface of the pit membrane of a tracheid, thinner, and disposed at various levels on the lumen side of a pit membrane. The fibrils tend to be randomly oriented on the distal face of the pit membrane; the innermost fibrils facing the lumen take the form of longitudinally oriented strands. Where most abundantly present, the fibrils tend to be disposed in a spongiform, three-dimensional pattern. Pores that interconnect tracheids are present within the fibrillar meshwork. Pit membranes on lateral walls of stem tracheids bear variously diminished versions of this pattern. Pits of root tracheids are unlike those of stems in that the lumen side of pit membranes bears a reticulum revealed on the outer surface of the tracheid after most of the thickness of a pit membrane is shaved away by the sectioning process. No fibrillar texturing is visible on the root tracheid pits when they are viewed from the inside of a tracheid. Tracheid end walls of roots do contain pores of various sizes in pit membranes. These root and stem patterns were seen in six species representing the two sections of Nuphar, plus one intersectional hybrid, as well as in one collection of Nymphaea, included for purposes of comparison. Differences between root and stem tracheids with respect to microstructure are consistent in all species studied. Microstructural patterns reported here for stem tracheid pits of Nymphaeaceae are not like those of Chloranthaceae, Illiciaceae, or other basal angiosperms. They are not referable to any of the patterns reported for early vascular plants. The adaptational nature of the pit membrane structure in these tracheids is not apparent; microstructure of pit membranes in basal angiosperms is more diverse than thought prior to

  6. Evidence for the hybrid origin of Nuphar xrubrodisca (Nymphaeaceae).

    Science.gov (United States)

    Padgett, D J; Les, D; Crow, G

    1998-10-01

    Plants intermediate in appearance between Nuphar microphyllaand N. variegata (Nymphaeaceae) have long been assumed to bethe result of hybridization. The evidence for this is based primarilyon field observations of morphology, poor fruit production, closegeographical proximity of presumed parent species, and limited pollensterility data. Fertile populations of the same plants have also beendocumented. We employed multivariate analyses of morphology, pollenfertility studies, and random amplified polymorphic DNA (RAPD) markersto test the hypothesis that Nuphar × rubrodiscarepresents a natural interspecific hybrid between N.microphylla and N. variegata. Examination of 15morphological characters demonstrated the intermediacy of N.× rubrodisca between N. microphylla and N.variegata, and the pollen data revealed a markedly lower meanpollen viability in N. × rubrodisca (23%)compared to the other two species (91 and 86%, respectively). Eight 10-mer primers produced 13 species-specific RAPD markers forN. microphylla and nine for N. variegata, with all 22markers present in N. × rubrodisca. The datafrom RAPDs are concordant with morphology in implicating N.microphylla and N. variegata as parents of N.×rubrodisca.

  7. Potent immunosuppressive principles, dimeric sesquiterpene thioalkaloids, isolated from nupharis rhizoma, the rhizoma of Nuphar pumilum (nymphaeaceae): structure-requirement of nuphar-alkaloid for immunosuppressive activity.

    Science.gov (United States)

    Yamahara, J; Shimoda, H; Matsuda, H; Yoshikawa, M

    1996-09-01

    Potent immunosuppressants, the dimeric sesquiterpene thioalkaloids, 6-hydroxythiobinupharidine (2), 6,6'-dihydroxythiobinupharidine (3), 6-hydroxythionuphlutine B (5) and 6'-hydroxythionuphlutine B (6), were isolated from a natural medicine, Nupharis Rhizoma, the rhizoma of Nuphar pumilum (TIMM.) DC., through bioassay-guided separation together with five quinolizidine alkaloids (8, 9, 10, 11, 12). Dimeric sesquiterpene thioalkaloids (2, 3, 5, 6) were found to significantly inhibit anti-sheep erythrocyte plaque forming cell formation in mice spleen cells at 10(-6) M concentration. At this concentration, 2, 5 and 6 were found to exhibit no cytotoxicity to mice spleen cells, and 3 also showed only a little cytotoxicity. In addition, the inhibitory activity of several Nuphar alkaloids, dimeric sesquiterpene thioalkaloids (1, 4, 7, 8), and monomeric sesquiterpene alkaloids (9, 10, 11, 12) on anti-sheep erythrocyte plaque forming cell formation was examined and some structural requirement of Nuphar alkaloid for immunosuppressive activity was determined.

  8. Phylogeny and divergence of basal angiosperms inferred from APETALA3- and PISTILLATA-like MADS-box genes.

    Science.gov (United States)

    Aoki, Seishiro; Uehara, Koichi; Imafuku, Masao; Hasebe, Mitsuyasu; Ito, Motomi

    2004-06-01

    The B-class MADS-box genes composed of APETALA3 ( AP3) and PISTILLATA ( PI) lineages play an important role in petal and stamen identity in previously studied flowering plants. We investigated the diversification of the AP3-like and PI-like MADS-box genes of eight species in five basal angiosperm families: Amborella trichopoda (Amborellaceae); Brasenia schreberi and Cabomba caroliniana (Cabombaceae); Euryale ferox, Nuphar japonicum, and Nymphaea tetragona (Nymphaeaceae); Illicium anisatum (Illiciaceae); and Kadsura japonica (Schisandraceae). Sequence analysis showed that a four amino acid deletion in the K domain, which was found in all previously reported angiosperm PI genes, exists in a PI homologue of Schisandraceae, but not in six PI homologues of the Amborellaceae, Cabombaceae, and Nymphaeaceae, suggesting that the Amborellaceae, Cabombaceae, and Nymphaeaceae are basalmost lineages in angiosperms. The results of molecular phylogenetic analyses were not inconsistent with this hypothesis. The AP3 and PI homologues from Amborella share a sequence of five amino acids in the 5' region of exon 7. Using the linearized tree and likelihood methods, the divergence time between the AP3 and PI lineages was estimated as somewhere between immediately after to several tens of millions of years after the split between angiosperms and extant gymnosperms. Estimates of the age of the most recent common ancestor of all extant angiosperms range from approximately 140-210 Ma, depending on the trees used and assumptions made.

  9. Microsatellite markers for Nuphar japonica (Nymphaeaceae), an aquatic plant in the agricultural ecosystem of Japan1

    Science.gov (United States)

    Kondo, Toshiaki; Watanabe, Sonoko; Shiga, Takashi; Isagi, Yuji

    2016-01-01

    Premise of the study: Nuphar species (Nymphaeaceae) are representative aquatic plants in irrigation ponds in Japanese agricultural ecosystems. We developed 15 polymorphic microsatellite markers for N. japonica and confirmed their utility for its close relatives N. oguraensis var. akiensis and N. ×saijoensis, which originated from natural hybridization between N. japonica and N. oguraensis. Methods and Results: Genetic variation was characterized in 15 polymorphic loci in three populations of N. japonica. The average number of alleles per locus was 3.47 (range = 2−9; n = 32), and the average expected heterozygosity per locus was 0.84 (range = 0.5–1.0); 11 loci were amplified in N. oguraensis var. akiensis and 15 in N. ×saijoensis. Conclusions: The polymorphic microsatellite markers developed in this study will be useful for investigating the levels of genetic diversity within remnant populations of Nuphar taxa and could provide a valuable tool for conservation genetics of these taxa. PMID:28101435

  10. Anatomically preserved seeds of Nuphar (Nymphaeaceae) from the Early Eocene of Wutu, Shandong Province, China.

    Science.gov (United States)

    Chen, Iju; Manchester, Steven R; Chen, Zhiduan

    2004-08-01

    Well-preserved seeds from the early Eocene of Wutu, Shandong, China are assigned to the genus Nuphar (Nymphaeaceae) based on morphology and anatomy. The seeds of Nuphar wutuensis sp. nov. are ellipsoidal to ovoid, 4-5 mm long with a clearly visible raphe ridge, and a truncate apex capped by a circular operculum ca. 1 mm in diameter bearing a central micropylar protrusion. These features, along with the testa composed of a uniseriate outer layer of equiaxial pentagonal to hexagonal surface cells and a middle layer 4-6 cells thick composed of thick-walled, periclinally elongate sclereids, correspond to the morphology and anatomy of extant Nuphar and distinguish this fossil species from all other extant and extinct genera of Nymphaeales. These seeds provide the oldest record for the genus in Asia and are supplemented by a similar well-preserved specimen from the Paleocene of North Dakota, USA. These data, together with the prior recognition of Brasenia (Cabombaceae) in the middle Eocene, indicate that the families Nymphaeaceae and Cabombaceae had differentiated by the early Tertiary.

  11. Phylogenetic relationships in Nuphar (Nymphaeaceae): evidence from morphology, chloroplast DNA, and nuclear ribosomal DNA.

    Science.gov (United States)

    Padgett, D J; Les, D H; Crow, G E

    1999-09-01

    The genus Nuphar consists of yellow-flowered waterlilies and is widely distributed in north-temperate bodies of water. Despite regular taxonomic evaluation of these plants, no explicit phylogenetic hypotheses have been proposed for the genus. We investigated phylogenetic relationships in Nuphar using morphology and sequences of the chloroplast gene matK and of the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA. Two major lineages within Nuphar are consistently resolved with the morphological and molecular data sets. One lineage comprises New World taxa and the other represents a primarily Old World lineage. Relationships within the major lineages were poorly resolved by morphology and ITS, yet certain relationships were elucidated by all analyses. Most notable is the strong support for a monophyletic lineage of dwarf taxa and the alliance of the North American N. microphylla with the Eurasian taxa. Minor discordance between the independent cladograms is accounted for by hybridization. The common taxonomic practice of uniting all North American and Eurasian taxa under one species is not supported phylogenetically.

  12. Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication.

    Science.gov (United States)

    Kim, Sangtae; Yoo, Mi-Jeong; Albert, Victor A; Farris, James S; Soltis, Pamela S; Soltis, Douglas E

    2004-12-01

    B-function MADS-box genes play crucial roles in floral development in model angiosperms. We reconstructed the structural and functional implications of B-function gene phylogeny in the earliest extant flowering plants based on analyses that include 25 new AP3 and PI sequences representing critical lineages of the basalmost angiosperms: Amborella, Nuphar (Nymphaeaceae), and Illicium (Austrobaileyales). The ancestral size of exon 5 in PI-homologues is 42 bp, typical of exon 5 in other plant MADS-box genes. This 42-bp length is found in PI-homologues from Amborella and Nymphaeaceae, successive sisters to all other angiosperms. Following these basalmost branches, a deletion occurred in exon 5, yielding a length of 30 bp, a condition that unites all other angiosperms. Several shared amino acid strings, including a prominent "DEAER" motif, are present in the AP3- and PI-homologues of Amborella. These may be ancestral motifs that were present before the duplication that yielded the AP3 and PI lineages and subsequently were modified after the divergence of Amborella. Other structural features were identified, including a motif that unites the previously described TM6 clade and a deletion in AP3-homologues that unites all Magnoliales. Phylogenetic analyses of AP3- and PI-homologues yielded gene trees that generally track organismal phylogeny as inferred by multigene data sets. With both AP3 and PI amino acid sequences, Amborella and Nymphaeaceae are sister to all other angiosperms. Using nonparametric rate smoothing (NPRS), we estimated that the duplication that produced the AP3 and PI lineages occurred approximately 260 mya (231-290). This places the duplication after the split between extant gymnosperms and angiosperms, but well before the oldest angiosperm fossils. A striking similarity in the multimer-signalling C domains of the Amborella proteins suggests the potential for the formation of unique transcription-factor complexes. The earliest angiosperms may have been

  13. Identifying the Basal Angiosperm Node in Chloroplast GenomePhylogenies: Sampling One's Way Out of the Felsenstein Zone

    Energy Technology Data Exchange (ETDEWEB)

    Leebens-Mack, Jim; Raubeson, Linda A.; Cui, Liying; Kuehl,Jennifer V.; Fourcade, Matthew H.; Chumley, Timothy W.; Boore, JeffreyL.; Jansen, Robert K.; dePamphilis, Claude W.

    2005-05-27

    While there has been strong support for Amborella and Nymphaeales (water lilies) as branching from basal-most nodes in the angiosperm phylogeny, this hypothesis has recently been challenged by phylogenetic analyses of 61 protein-coding genes extracted from the chloroplast genome sequences of Amborella, Nymphaea and 12 other available land plant chloroplast genomes. These character-rich analyses placed the monocots, represented by three grasses (Poaceae), as sister to all other extant angiosperm lineages. We have extracted protein-coding regions from draft sequences for six additional chloroplast genomes to test whether this surprising result could be an artifact of long-branch attraction due to limited taxon sampling. The added taxa include three monocots (Acorus, Yucca and Typha), a water lily (Nuphar), a ranunculid(Ranunculus), and a gymnosperm (Ginkgo). Phylogenetic analyses of the expanded DNA and protein datasets together with microstructural characters (indels) provided unambiguous support for Amborella and the Nymphaeales as branching from the basal-most nodes in the angiospermphylogeny. However, their relative positions proved to be dependent on method of analysis, with parsimony favoring Amborella as sister to all other angiosperms, and maximum likelihood and neighbor-joining methods favoring an Amborella + Nympheales clade as sister. The maximum likelihood phylogeny supported the later hypothesis, but the likelihood for the former hypothesis was not significantly different. Parametric bootstrap analysis, single gene phylogenies, estimated divergence dates and conflicting in del characters all help to illuminate the nature of the conflict in resolution of the most basal nodes in the angiospermphylogeny. Molecular dating analyses provided median age estimates of 161 mya for the most recent common ancestor of all extant angiosperms and 145 mya for the most recent common ancestor of monocots, magnoliids andeudicots. Whereas long sequences reduce variance in

  14. Schmeissneria: A missing link to angiosperms?

    Directory of Open Access Journals (Sweden)

    Cui Jinzhong

    2007-02-01

    Full Text Available Abstract Background The origin of angiosperms has been under debate since the time of Darwin. While there has been much speculation in past decades about pre-Cretaceous angiosperms, including Archaefructus, these reports are controversial. The earliest reliable fossil record of angiosperms remains restricted to the Cretaceous, even though recent molecular phylogenetic studies suggest an origin for angiosperms much earlier than the current fossil record. Results In this paper, after careful SEM and light microscopic work, we report fossils with angiospermous traits of the Jurassic age. The fossils were collected from the Haifanggou Formation (middle Jurassic in western Liaoning, northeast China. They include two female structures and an associated leaf on the same slab. One of the female structures is physically connected to the apex of a short shoot. The female organs are borne in pairs on short peduncles that are arranged along the axis of the female structure. Each of the female organs has a central unit that is surrounded by an envelope with characteristic longitudinal ribs. Each central unit has two locules completely separated by a vertical septum. The apex of the central unit is completely closed. The general morphology places these fossils into the scope of Schmeissneria, an early Jurassic genus that was previously attributed to Ginkgoales. Conclusion Because the closed carpel is a character only found in angiosperms, the closed apex of the central unit suggests the presence of angiospermy in Schmeissneria. This angiospermous trait implies either a Jurassic angiosperm or a new seed plant group parallel to angiosperms and other known seed plants. As an angiosperm, the Liassic age (earliest Jurassic of Schmeissneria microstachys would suggest an origin of angiosperms during the Triassic. Although still uncertain, this could have a great impact on our perspective of the history, diversity and systematics of seed plants and angiosperms.

  15. Schmeissneria: An angiosperm from the Early Jurassic

    Institute of Scientific and Technical Information of China (English)

    Xin WANG

    2010-01-01

    The origin of angiosperms has been a focus of intensive research for a long time. The so-called preCretaceous angiosperms, including Schmeissneria, are usually clouded with doubt. To expel the cloud around the enigmatic Schmeissneria, the syntype and new materials of Schmeissneria collected previously in Germany and recently in China are studied. These materials include female inflorescences and infructescences. The latter are old materials but were under-studied previously. Light microscopy and scanning electron microscope observations indicate that the fruits in these infructescences have in situ seeds enclosed, and that the ovaries are closed before pollination. Thus the plants meet two strict criteria for angiosperms: angiospermy plus angio-ovuly. Placing Schmeissneria in angiosperms will extend the record of angiosperms up to the Early Jurassic, more compatible with many molecular dating conclusions on the age of angiosperms, and demanding a reassessment of the current doctrines on the origin of angiosperms. Although the phylogenetic relationship of Schmeissneria to other angiosperms apparently is still an open question, this study adds to research concerning the origin of angiosperms.

  16. Biodiversity: modelling angiosperms as networks.

    Science.gov (United States)

    Gottlieb, O R; Borin, M R

    2000-11-01

    In the neotropics, one of the last biological frontiers, the major ecological concern should not involve local strategies, but global effects often responsible for irreparable damage. For a holistic approach, angiosperms are ideal model systems dominating most land areas of the present world in an astonishing variety of form and function. Recognition of biogeographical patterns requires new methodologies and entails several questions, such as their nature, dynamics and mechanism. Demographical patterns of families, modelled via species dominance, reveal the existence of South American angiosperm networks converging at the central Brazilian plateau. Biodiversity of habitats, measured via taxonomic uniqueness, reveal higher creative power at this point of convergence than in more peripheral regions. Compositional affinities of habitats, measured via bioconnectivity, reveal the decisive role of ecotones in the exchange or redistribution of information, energy and organisms among the ecosystems. Forming dynamic boundaries, ecotones generate and relay evolutionary novelty, and integrate all neotropical ecosystems into a single vegetation net. Connectivity in such plant webs may depend on mycorrhizal links. If sufficiently general such means of metabolic transfer will require revision of the chemical composition of many plants.

  17. Heterophylly in the yellow waterlily, Nuphar variegata (Nymphaeaceae): effects of [CO2], natural sediment type, and water depth.

    Science.gov (United States)

    Titus, J E; Gary Sullivan, P

    2001-08-01

    We transplanted Nuphar variegata with submersed leaves only into natural lake sediments in pH-, [CO(2)]-, depth-, and temperature-controlled greenhouse tanks to test the hypotheses that more fertile sediment, lower free [CO(2)], and shallower depth would all stimulate the development of floating leaves. Sediment higher in porewater [NH(4)(+)] favored floating leaf development. Low CO(2)-grown plants initiated floating leaf development significantly earlier than high CO(2)-grown plants, which produced significantly more submersed leaves and fewer floating leaves. Mean floating leaf biomass was significantly greater than mean submersed leaf biomass but was not influenced by CO(2) enrichment, whereas mean submersed leaf biomass increased 88% at high [CO(2)]. At the shallower depth (35 cm), floating leaves required 50% less biomass investment per leaf than at 70 cm, and a significantly greater proportion of plants had floating leaves (70 vs. 23-43% at 35 vs. 70 cm, respectively) for the last three of the eight leaf censuses. Sediment type, water depth, and especially free [CO(2)] all can influence leaf morphogenesis in Nuphar variegata, and the development of more and larger submersed leaves with CO(2) enrichment favors the exploitation of high [CO(2)] when it is present in the water column.

  18. Changes in macroelement content of rhizomes of Nuphar lutea (L. Sibith. and Sm. during the annual cycle

    Directory of Open Access Journals (Sweden)

    Henryk Tomaszewicz

    2011-04-01

    Full Text Available This study presents the results of studies on the chemical composition of rhizomes of Nuphar lutea which were carried out from July 2006 to November 2007 (the samples were collected at two-week intervals from March to November 2007. The first indication of the start of the growing season was the growth of leaves in the apical part of the rhizomes. Clearly visible signs that marked the beginning of the growing season were unfolding of leaves, which became arrow-shaped. The leaves had already unfolded and were arrow-shaped (saggitate on April 10th when the temperature of the bottom water layer was 7oC. It may be assumed, therefore, that the growing season began between the 28th March and 10th April 2007. The phosphates, nitrates, sodium, calcium, total iron and sulphates levels in the rhizomes declined just after the growing season had started. The total nitrogen content remained at a constant level whereas the amount of dissolved silica increased. Considerable changes in the macroelement contents were noted when Nuphar lutea was in full bloom (10th-24th June. The macroelement contents presented in the tables and diagrams were expressed on a dry matter basis. An additional table illustrates the macroelement contents expressed on a fresh matter basis. The problem of collecting rhizomes of polycormic plants is discussed.

  19. A combinatorial morphospace for angiosperm pollen

    Science.gov (United States)

    Mander, Luke

    2016-04-01

    The morphology of angiosperm (flowering plant) pollen is extraordinarily diverse. This diversity results from variations in the morphology of discrete anatomical components. These components include the overall shape of a pollen grain, the stratification of the exine, the number and form of any apertures, the type of dispersal unit, and the nature of any surface ornamentation. Different angiosperm pollen morphotypes reflect different combinations of these discrete components. In this talk, I ask the following question: given the anatomical components of angiosperm pollen that are known to exist in the plant kingdom, how many unique biologically plausible combinations of these components are there? I explore this question from the perspective of enumerative combinatorics using an algorithm I have written in the Python programming language. This algorithm (1) calculates the number of combinations of these components; (2) enumerates those combinations; and (3) graphically displays those combinations. The result is a combinatorial morphospace that reflects an underlying notion that the process of morphogenesis in angiosperm pollen can be thought of as an n choose k counting problem. I compare the morphology of extant and fossil angiosperm pollen grains to this morphospace, and suggest that from a combinatorial point of view angiosperm pollen is not as diverse as it could be, which may be a result of developmental constraints.

  20. Archaefructaceae, a new basal angiosperm family.

    Science.gov (United States)

    Sun, Ge; Ji, Qiang; Dilcher, David L; Zheng, Shaolin; Nixon, Kevin C; Wang, Xinfu

    2002-05-03

    Archaefructaceae is proposed as a new basal angiosperm family of herbaceous aquatic plants. This family consists of the fossils Archaefructus liaoningensis and A. sinensis sp. nov. Complete plants from roots to fertile shoots are known. Their age is a minimum of 124.6 million years from the Yixian Formation, Liaoning, China. They are a sister clade to all angiosperms when their characters are included in a combined three-gene molecular and morphological analysis. Their reproductive axes lack petals and sepals and bear stamens in pairs below conduplicate carpels.

  1. The Early Flowers and Angiosperm Evolution

    DEFF Research Database (Denmark)

    Friis, Else Marie; Crane, P.R.; Pedersen, Kaj Raunsgaard

    of the evolutionary history of flowering plants from their earliest phases in obscurity to their dominance in modern vegetation. The discussion provides comprehensive biological and geological background information, before moving on to summarise the fossil record in detail. Including previously unpublished results......The recent discovery of diverse fossil flowers and floral organs in Cretaceous strata has revealed astonishing details about the structural and systematic diversity of early angiosperms. Exploring the rich fossil record that has accumulated over the last three decades, this is a unique study...... based on research into Early and Late Cretaceous fossil floras from Europe and North America, the authors draw on direct palaeontological evidence of the pattern of angiosperm evolution through time. Synthesising palaeobotanical data with information from living plants, this unique book explores...

  2. Advances and challenges in resolving the angiosperm phylogeny

    Directory of Open Access Journals (Sweden)

    Liping Zeng

    2014-01-01

    Full Text Available Angiosperm phylogenetics investigates the evolutionary history and relationships of angiosperms based on the construction of phylogenetic trees. Since the 1990s, nucleotide or amino acid sequences have been widely used for this and angiosperm phylogenetic analysis has advanced from using single or a combination of a few organellar genes to whole plastid genome sequences, resulting in the widely accepted modern molecular systematics of angiosperms. The current framework of the angiosperm phylogeny includes highly supported basal angiosperm relationships, five major clades (eudicots, monocots, magnoliids, Chloranthales, and Ceratophyllales, orders grouped within these clades, and core groups in the monocots or eudicots. However, organellar genes have some limitations; these involve uniparental inheritance in most instances and a relatively low percentage of phylogenetic informative sites. Thus, they are unable to resolve some relationships even when whole plastid genome sequences are used. Therefore, the utility of biparentally inherited nuclear genes with more information about evolutionary history, has gradually received more attention. Nevertheless, there are still some plant groups that are difficult to place in the angiosperm phylogeny, such as those involving the relative positions of the five major groups as well as those of several orders of eudicots. In this review, we discuss the applications, advantages and disadvantages of marker genes, the deep relationships that have been resolved in angiosperm phylogeny, groups with uncertain positions, and the challenges that remain in resolving an accurate phylogeny for angiosperms.

  3. Angiosperm phylogeny based on matK sequence information

    NARCIS (Netherlands)

    Hilu, K.W.; Borsch, T.; Müller, K.; Soltis, D.E.; Savolainen, V.; Chase, M.W.; Powell, M.; Alice, L.A.; Evans, R.; Sauquet, H.; Neinhuis, C.; Slotta, T.A.B.; Rohwer, J.G.; Campbell, C.; Chatrou, L.W.

    2003-01-01

    Plastid matK gene sequences for 374 genera representing all angiosperm orders and 12 genera of gymnosperms were analyzed using parsimony (MP) and Bayesian inference (BI) approaches. Traditionally, slowly evolving genomic regions have been preferred for deep-level phylogenetic inference in angiosperm

  4. An Undercover Angiosperm from the Jurassic of China

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shaolin; WANG Xin

    2010-01-01

    Searching for early angiosperms is a riveting activity in botany because it helps to resolve the phylogenetic relationships among seed plants and among angiosperms themselves.One of the challenges for this job is what the target fossils look like.Most possibly early angiosperms may elude our scrutiny with gymnospermous appearances.This possibility becomes a reality in a Jurassic plant,Solaranthus gen.nov,which bears a peltaspermalean appearance and enclosed ovules.According to knowledge available hitherto,the latter feature makes it an angiosperm.However,such a feature is more likely to be eclipsed by its gymnospermous appearance.The early age and unexpected character assemblage of Solaranthus urge for a fresh look on the assumed-simple relationship between angiosperms and gymnosperms.Its resemblance to the order Peltaspermales favors the Mostly Male Theory.

  5. Design of biomimetic camouflage materials based on angiosperm leaf organs

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The micro structures and reflectance spectra of angiosperm leaves were compared with those of angiosperm petals. The study indicated that angiosperm leaf organs had identical micro structures and reflectance characteristics in the wave band of near infrared. Micro structures and compositions of leaf organs were the crucial factors influencing their reflectance spectra. The model of biomimetic materials based on angiosperm leaf organs was introduced and verified. From 300 to 2600 nm, the similarity coefficients of reflectance spectra of the foam containing water and Platanus Orientalis Linn. leaves were all above 0.969. The biomimetic camou- flage material exhibited almost the same reflectance spectra with those of green leaves in ultraviolet, visible and near infrared wave bands. And its "concolor and conspectrum" effect might take on reconnaissance of hyperspectral and ultra hy- perspectral imaging.

  6. Design of biomimetic camouflage materials based on angiosperm leaf organs

    Institute of Scientific and Technical Information of China (English)

    LIU ZhiMing; WU WenJian; HU BiRu

    2008-01-01

    The micro structures and reflectance spectra of angiosperm leaves were compared with those of angiosperm petals. The study indicated that angiosperm leaf organs had identical micro structures and reflectance characteristics in the wave band of near infrared. Micro structures and compositions of leaf organs were the crucial factors influencing their reflectance spectra. The model of biomimetic materials based on angiosperm leaf organs was introduced and verified. From 300 to 2600 nm, the similarity coefficients of reflectance spectra of the foam containing water and Platanus Orientalis Linn. leaves were all above 0.969. The biomimetic camou-flage material exhibited almost the same reflectance spectra with those of green leaves in ultraviolet, visible and near infrared wave bands, And its "concolor and conspectrum" effect might take on reconnaissance of hyperspectral and ultra hyperspectral imaging.

  7. Late Cretaceous Aquatic Angiosperms from Jiayin, Heilongjiang,Northeast China

    Institute of Scientific and Technical Information of China (English)

    QUAN Cheng; SUN Ge

    2008-01-01

    Three taxa of Late Cretaceous aquatic angiosperms, Queruexia angulata (Lesq.) Krysht., Cobbania corrugate. (Lesq.) Stockey et al. and Nelumbites cf. extenuinervis Upchurch et al. from Jiayin of Heilongjiang, NE China, are described in detail. Among them, Cobbania and Nelumbites from the Upper Cretaceous in China are reported for the first time. The aquatic angiosperm assemblage of Queruexia-Cobbania-Nelumbites appears to imply a seasonal, warm and moist environment in the Jiayin area during the Santonian-Campanian time.

  8. Pollination biology of basal angiosperms (ANITA grade).

    Science.gov (United States)

    Thien, Leonard B; Bernhardt, Peter; Devall, Margaret S; Chen, Zhi-Duan; Luo, Yi-Bo; Fan, Jian-Hua; Yuan, Liang-Chen; Williams, Joseph H

    2009-01-01

    The first three branches of the angiosperm phylogenetic tree consist of eight families with ∼201 species of plants (the ANITA grade). The oldest flower fossil for the group is dated to the Early Cretaceous (115-125 Mya) and identified to the Nymphaeales. The flowers of extant plants in the ANITA grade are small, and pollen is the edible reward (rarely nectar or starch bodies). Unlike many gymnosperms that secrete "pollination drops," ANITA-grade members examined thus far have a dry-type stigma. Copious secretions of stigmatic fluid are restricted to the Nymphaeales, but this is not nectar. Floral odors, floral thermogenesis (a resource), and colored tepals attract insects in deceit-based pollination syndromes throughout the first three branches of the phylogenetic tree. Self-incompatibility and an extragynoecial compitum occur in some species in the Austrobaileyales. Flies are primary pollinators in six families (10 genera). Beetles are pollinators in five families varying in importance as primary (exclusive) to secondary vectors of pollen. Bees are major pollinators only in the Nymphaeaceae. It is hypothesized that large flowers in Nymphaeaceae are the result of the interaction of heat, floral odors, and colored tepals to trap insects to increase fitness.

  9. Fruit evolution and diversification in campanulid angiosperms.

    Science.gov (United States)

    Beaulieu, Jeremy M; Donoghue, Michael J

    2013-11-01

    With increases in both the size and scope of phylogenetic trees, we are afforded a renewed opportunity to address long-standing comparative questions, such as whether particular fruit characters account for much of the variation in diversity among flowering plant clades. Studies to date have reported conflicting results, largely as a consequence of taxonomic scale and a reliance on potentially conservative statistical measures. Here we examine a larger and older angiosperm clade, the Campanulidae, and infer the rates of character transitions among the major fruit types, emphasizing the evolution of the achene fruits that are most frequently observed within the group. Our analyses imply that campanulids likely originated bearing capsules, and that all subsequent fruit diversity was derived from various modifications of this dry fruit type. We also found that the preponderance of lineages bearing achenes is a consequence of not only being a fruit type that is somewhat irreversible once it evolves, but one that also seems to have a positive association with diversification rates. Although these results imply the achene fruit type is a significant correlate of diversity patterns observed across campanulids, we conclude that it remains difficult to confidently and directly view this character state as the actual cause of increased diversification rates.

  10. Plant Sterol Diversity in Pollen from Angiosperms.

    Science.gov (United States)

    Villette, Claire; Berna, Anne; Compagnon, Vincent; Schaller, Hubert

    2015-08-01

    Here we have examined the composition of free sterols and steryl esters of pollen from selected angiosperm species, as a first step towards a comprehensive analysis of sterol biogenesis in the male gametophyte. We detected four major sterol structural groups: cycloartenol derivatives bearing a 9β,19-cyclopropyl group, sterols with a double bond at C-7(8), sterols with a double bond at C-5(6), and stanols. All these groups were unequally distributed among species. However, the distribution of sterols as free sterols or as steryl esters in pollen grains indicated that free sterols were mostly Δ(5)-sterols and that steryl esters were predominantly 9β,19-cyclopropyl sterols. In order to link the sterol composition of a pollen grain at anthesis with the requirement for membrane lipid constituents of the pollen tube, we germinated pollen grains from Nicotiana tabacum, a model plant in reproductive biology. In the presence of radiolabelled mevalonic acid and in a time course series of measurements, we showed that cycloeucalenol was identified as the major neosynthesized sterol. Furthermore, the inhibition of cycloeucalenol neosynthesis by squalestatin was in full agreement with a de novo biogenesis and an apparent truncated pathway in the pollen tube.

  11. Herbaceous Angiosperms Are Not More Vulnerable to Drought-Induced Embolism Than Angiosperm Trees1[OPEN

    Science.gov (United States)

    Delmas, Chloé E.L.; Buttler, Alexandre; Chauvin, Thibaud; Doria, Larissa Chacon; del Arco, Marcelino

    2016-01-01

    The water transport pipeline in herbs is assumed to be more vulnerable to drought than in trees due to the formation of frequent embolisms (gas bubbles), which could be removed by the occurrence of root pressure, especially in grasses. Here, we studied hydraulic failure in herbaceous angiosperms by measuring the pressure inducing 50% loss of hydraulic conductance (P50) in stems of 26 species, mainly European grasses (Poaceae). Our measurements show a large range in P50 from −0.5 to −7.5 MPa, which overlaps with 94% of the woody angiosperm species in a worldwide, published data set and which strongly correlates with an aridity index. Moreover, the P50 values obtained were substantially more negative than the midday water potentials for five grass species monitored throughout the entire growing season, suggesting that embolism formation and repair are not routine and mainly occur under water deficits. These results show that both herbs and trees share the ability to withstand very negative water potentials without considerable embolism formation in their xylem conduits during drought stress. In addition, structure-function trade-offs in grass stems reveal that more resistant species are more lignified, which was confirmed for herbaceous and closely related woody species of the daisy group (Asteraceae). Our findings could imply that herbs with more lignified stems will become more abundant in future grasslands under more frequent and severe droughts, potentially resulting in lower forage digestibility. PMID:27268961

  12. Rise to dominance of angiosperm pioneers in European Cretaceous environments.

    Science.gov (United States)

    Coiffard, Clément; Gomez, Bernard; Daviero-Gomez, Véronique; Dilcher, David L

    2012-12-18

    The majority of environments are dominated by flowering plants today, but it is uncertain how this dominance originated. This increase in angiosperm diversity happened during the Cretaceous period (ca. 145-65 Ma) and led to replacement and often extinction of gymnosperms and ferns. We propose a scenario for the rise to dominance of the angiosperms from the Barremian (ca. 130 Ma) to the Campanian (ca. 84 Ma) based on the European megafossil plant record. These megafossil data demonstrate that angiosperms migrated into new environments in three phases: (i) Barremian (ca. 130-125 Ma) freshwater lake-related wetlands; (ii) Aptian-Albian (ca. 125-100 Ma) understory floodplains (excluding levees and back swamps); and (iii) Cenomanian-Campanian (ca. 100-84 Ma) natural levees, back swamps, and coastal swamps. This scenario allows for the measured evolution of angiosperms in time and space synthesizing changes in the physical environment with concomitant changes in the biological environment. This view of angiosperm radiation in three phases reconciles previous scenarios based on the North American record. The Cretaceous plant record that can be observed in Europe is exceptional in many ways. (i) Angiosperms are well preserved from the Barremian to the Maastrichtian (ca. 65 Ma). (ii) Deposits are well constrained and dated stratigraphically. (iii) They encompass a full range of environments. (iv) European paleobotany provides many detailed studies of Cretaceous floras for analysis. These factors make a robust dataset for the study of angiosperm evolution from the Barremian to the Campanian that can be traced through various ecosystems and related to other plant groups occupying the same niches.

  13. Angiosperm phylogeny inferred from sequences of four mitochondrial genes

    Institute of Scientific and Technical Information of China (English)

    Yin-Long QIU; Zhi-Duan CHEN; Libo LI; Bin WANG; Jia-Yu XUE; Tory A. HENDRY; Rui-Qi LI; Joseph W. BROWN; Yang LIU; Geordan T. HUDSON

    2010-01-01

    An angiosperm phylogeny was reconstructed in a maximum likelihood analysis of sequences of four mitochondrial genes, atpl, matR, had5, and rps3, from 380 species that represent 376 genera and 296 families of seed plants. It is largely congruent with the phylogeny of angiosperms reconstructed from chloroplast genes atpB, matK, and rbcL, and nuclear 18S rDNA. The basalmost lineage consists of Amborella and Nymphaeales (including Hydatellaceae). Austrobaileyales follow this clade and are sister to the mesangiosperms, which include Chloranthaceae, Ceratophyllum, magnoliids, monocots, and eudicots. With the exception of Chloranthaceae being sister to Ceratophyllum, relationships among these five lineages are not well supported. In eudicots, Ranunculales, Sabiales, Proteales, Trochodendrales, Buxales, Gunnerales, Saxifragales, Vitales, Berberidopsidales, and Dilleniales form a basal grade of lines that diverged before the diversification of rosids and asterids. Within rosids, the COM (Celastrales-Oxalidales-Malpighiales) clade is sister to malvids (or rosid Ⅱ), instead of to the nitrogen-fixing clade as found in all previous large-scale molecular analyses of angiosperms. Santalales and Caryophyllales are members of an expanded asterid clade. This study shows that the mitochondrial genes are informative markers for resolving relationships among genera, families, or higher rank taxa across angiosperms. The low substitution rates and low homoplasy levels of the mitochondrial genes relative to the chloroplast genes, as found in this study, make them particularly useful for reconstructing ancient phylogenetic relationships. A mitochondrial gene-based angiosperm phylogeny provides an independent and essential reference for comparison with hypotheses of angiosperm phylogeny based on chloroplast genes, nuclear genes, and non-molecular data to reconstruct the underlying organismal phylogeny.

  14. STUDY OF AQUATIC ANGIOSPERMIC PLANTS OF ANAND CITY, GUJARAT, INDIA

    Directory of Open Access Journals (Sweden)

    K. R. PATEL1 AND N. K. PATEL2

    2014-06-01

    Full Text Available The present study deals with the taxonomic study of Aquatic Angiosperms growing throughout the Anand city. The plants are listed along with their brief taxonomic account of each species with current nomenclature, vernacular name, family and uses. The  collected plants are systematically observed during present work, During my study I observed various aquatic angiospermic plants such as   Ceratophyllum demersum, Colocasia esculenta, Eichhornia crassipes, Ipomoea aquatica, Nymphoides indicum, Ludwigia repens, Polygonum orientale, Typha elephantina, Lemna perpusilla, Spirodella polyrrhiza, Xanthium indicum, Phyllanthus reticulatus, Cynodon dactylon, Hydrilla verticillata were very common. Whereas Nymphaea nouchali, Polygonum barbatum, Scirpus articulatus were very rare in the study area.

  15. Lower Cretaceous angiosperm leaf from Wuhe in Anhui, China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new early angiosperm leaf species is reported from the Xinzhuang Formation in Wuhe County, Anhui Province. It is probably of Barremian or slightly later in geological age. The fossil leaf is small, no more than 0.6 cm both in length and in width. The leaf veins are well preserved and clearly visible under a low power microscope. Leaf architectural analysis shows that such a leaf should belong to the first leaf rank of Hickey, I.e. The most primitive one. There are no early angiosperm leaves published completely similar to ours. A new species name of Dicotylophyllum minutissimum sp. Nov. Is established for the present leaf fossils.

  16. Evolutionary aspects of life forms in angiosperm families

    NARCIS (Netherlands)

    Kremer, P; VanAndel, J

    1995-01-01

    The distribution patterns of life forms among extant families, subclasses and classes are described with the aim of detecting evolutionary trends. The explosive diversification of angiosperms constrains the possibilities for detecting such trends. Moreover, the extant groups of seed plants are only

  17. Epiphytic leafy liverworts diversified in angiosperm-dominated forests

    Science.gov (United States)

    Feldberg, Kathrin; Schneider, Harald; Stadler, Tanja; Schäfer-Verwimp, Alfons; Schmidt, Alexander R.; Heinrichs, Jochen

    2014-08-01

    Recent studies have provided evidence for pulses in the diversification of angiosperms, ferns, gymnosperms, and mosses as well as various groups of animals during the Cretaceous revolution of terrestrial ecosystems. However, evidence for such pulses has not been reported so far for liverworts. Here we provide new insight into liverwort evolution by integrating a comprehensive molecular dataset with a set of 20 fossil age constraints. We found evidence for a relative constant diversification rate of generalistic liverworts (Jungermanniales) since the Palaeozoic, whereas epiphytic liverworts (Porellales) show a sudden increase of lineage accumulation in the Cretaceous. This difference is likely caused by the pronounced response of Porellales to the ecological opportunities provided by humid, megathermal forests, which were increasingly available as a result of the rise of the angiosperms.

  18. New universal matK primers for DNA barcoding angiosperms

    Institute of Scientific and Technical Information of China (English)

    Jing YU; Jian-Hua XUE; Shi-Liang ZHOU

    2011-01-01

    The chloroplast maturase K gene (matK) is one of the most variable coding genes of angiosperms and has been suggested to be a "barcode" for land plants. However, matK exhibits low amplification and sequencing rates due to low universality of currently available primers and mononucleotide repeats. To resolve these technical problems, we evaluated the entire matK region to find a region of 600-800 bp that is highly variable, represents the best of all matK regions with priming sites conservative enough to design universal primers, and avoids the mononucleotide repeats. After careful evaluation, a region in the middle was chosen and a pair of primers named natK472F and matK1248R was designed to amplify and sequence the matK fragment of approximately 776 bp. This region encompasses the most variable sites, represents the entire matK region best, and also exhibits high amplification rates and quality of sequences. The universality of this primer pair was tested using 58 species from 47 families of angiosperm plants. The primers showed a strong amplification (93.1%) and sequencing (92.6%)successes in the species tested. We propose that the new primers will solve, in part, the problems encountered when using matK and promote the adoption of matK as a DNA barcode for angiosperms.

  19. Genetic diversity and population structure of Nuphar submersa (Nymphaeaceae), a critically endangered aquatic plant endemic to Japan, and implications for its conservation.

    Science.gov (United States)

    Shiga, Takashi; Yokogawa, Masashi; Kaneko, Shingo; Isagi, Yuji

    2017-01-01

    Nuphar submersa (Nymphaeaceae) is a critically endangered freshwater macrophyte indigenous to central Japan, with only four small extant populations represented across its entire range. We investigated the genotypic and genetic diversity as well as the genetic structure of all extant individuals of N. submersa based on analysis of 15 microsatellite loci. Among 278 individual ramets, 52 multilocus genotypes were detected: 30 genotypes in Nikko City (NIK), 18 in Nasukarasuyama City (NAS), 3 in Mooka City (MOK), and 1 in Sakura City (SAK). The average number of alleles per locus ranged from 1.20 to 1.93, whereas the observed and expected heterozygosities ranged from 0.11 to 0.33 and from 0.10 to 0.24, respectively. With the exception of SAK, all populations contained multiple clones, but our results indicated low levels of within-population genetic diversity. The populations NIK and NAS comprised few large or middle-sized genets and many small genets. The populations NIK and NAS were suggested to comprise large old, old fragmented, and/or young small genets resulting from seedling establishment. All four populations were differentiated, and gene flow between the populations was restricted (average level of gene flow (Nm) = 0.122, G' ST  = 0.639). Of the total genetic diversity, 67.20 and 9.13% were attributable to inter- and intra-population diversity, respectively. STRUCTURE analysis revealed two or three well-differentiated groups of populations. Cluster I comprised one population (NIK) and cluster II comprised the remaining populations at K = 2. The populations NIK, NAS, and the remaining populations were assigned to clusters I, II, and III, respectively, at K = 3. For conservation practices, we recommend that each cluster be regarded as a different management unit. We further suggest that artificial gene flow among MOK and SAK populations is an appropriate option, whereas NIK should not be reinforced with genotypes from the remaining populations.

  20. Fire-adapted Gondwanan Angiosperm floras evolved in the Cretaceous

    Directory of Open Access Journals (Sweden)

    Lamont Byron B

    2012-11-01

    Full Text Available Abstract Background Fires have been widespread over the last 250 million years, peaking 60−125 million years ago (Ma, and might therefore have played a key role in the evolution of Angiosperms. Yet it is commonly believed that fireprone communities existed only after the global climate became more arid and seasonal 15 Ma. Recent molecular-based studies point to much earlier origins of fireprone Angiosperm floras in Australia and South Africa (to 60 Ma, Paleocene but even these were constrained by the ages of the clades examined. Results Using a molecular-dated phylogeny for the great Gondwanan family Proteaceae, with a 113-million-year evolutionary history, we show that the ancestors of many of its characteristic sclerophyll genera, such as Protea, Conospermum, Leucadendron, Petrophile, Adenanthos and Leucospermum (all subfamily Proteoideae, occurred in fireprone habitats from 88 Ma (83−94, 95% HPD, Mid-Upper Cretaceous. This coincided with the highest atmospheric oxygen (combustibility levels experienced over the past 150 million years. Migration from non-fireprone (essentially rainforest-climate-type environments was accompanied by the evolution of highly speciose clades with a range of seed storage traits and fire-cued seed release or germination mechanisms that was diagnostic for each clade by 71 Ma, though the ant-dispersed lineage (as a soil seed-storage subclade was delayed until 45 Ma. Conclusions Focusing on the widespread 113-million-year-old family Proteaceae, fireproneness among Gondwanan Angiosperm floras can now be traced back almost 90 million years into the fiery Cretaceous. The associated evolution of on-plant (serotiny and soil seed storage, and later ant dispersal, affirms them as ancient adaptations to fire among flowering plants.

  1. The evolution of floral biology in basal angiosperms.

    Science.gov (United States)

    Endress, Peter K

    2010-02-12

    In basal angiosperms (including ANITA grade, magnoliids, Choranthaceae, Ceratophyllaceae) almost all bisexual flowers are dichogamous (with male and female functions more or less separated in time), and nearly 100 per cent of those are protogynous (with female function before male function). Movements of floral parts and differential early abscission of stamens in the male phase are variously associated with protogyny. Evolution of synchronous dichogamy based on the day/night rhythm and anthesis lasting 2 days is common. In a few clades in Magnoliales and Laurales heterodichogamy has also evolved. Beetles, flies and thrips are the major pollinators, with various degrees of specialization up to large beetles and special flies in some large-flowered Nymphaeaceae, Magnoliaceae, Annonaceae and Aristolochiaceae. Unusual structural specializations are involved in floral biological adaptations (calyptras, inner staminodes, synandria and food bodies, and secretory structures on tepals, stamens and staminodes). Numerous specializations that are common in monocots and eudicots are absent in basal angiosperms. Several families are poorly known in their floral biology.

  2. Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica

    Directory of Open Access Journals (Sweden)

    Neus eGarcias-Bonet

    2012-09-01

    Full Text Available Bacterial endophytes are crucial for the survival of many terrestrial plants, but little is known about the presence and importance of bacterial endophytes of marine plants. We conducted a survey of the endophytic bacterial community of the long-living Mediterranean marine angiosperm Posidonia oceanica in surface-sterilized tissues (roots, rhizomes and leaves by DGGE. A total of 26 Posidonia oceanica meadows around the Balearic Islands were sampled, and the band patterns obtained for each meadow were compared for the three sampled tissues. Endophytic bacterial sequences were detected in most of the samples analyzed. A total of 34 OTUs (Operational Taxonomic Units were detected. The main OTUs of endophytic bacteria present in P. oceanica tissues belonged primarily to Proteobacteria (α, γ and δ subclasses and Bacteroidetes. The OTUs found in roots significantly differed from those of rhizomes and leaves. Moreover, some OTUs were found to be associated to each type of tissue. Bipartite network analysis revealed differences in the bacterial endophyte communities present on different islands. The results of this study provide a pioneering step toward the characterization of the endophytic bacterial community associated with tissues of a marine angiosperm and reveal the presence of bacterial endophytes that differed among locations and tissue types.

  3. Gibberellin-induced formation of tension wood in angiosperm trees.

    Science.gov (United States)

    Funada, Ryo; Miura, Tatsuhiko; Shimizu, Yousuke; Kinase, Takanori; Nakaba, Satoshi; Kubo, Takafumi; Sano, Yuzou

    2008-05-01

    After gibberellin had been applied to the vertical stems of four species of angiosperm trees for approximately 2 months, we observed eccentric radial growth that was due to the enhanced growth rings on the sides of stems to which gibberellin had been applied. Moreover, the application of gibberellin resulted in the formation of wood fibers in which the thickness of inner layers of cell walls was enhanced. These thickened inner layers of cell walls were unlignified or only slightly lignified. In addition, cellulose microfibrils on the innermost surface of these thickened inner layers of cell walls were oriented parallel or nearly parallel to the longitudinal axis of the fibers. Such thickened inner layers of cell walls had features similar to those of gelatinous layers in the wood fibers of tension wood, which are referred to as gelatinous fibers. Our anatomical and histochemical investigations indicate that the application of gibberellin can induce the formation of tension wood on vertical stems of angiosperm trees in the absence of gravitational stimulus.

  4. Floral gene resources from basal angiosperms for comparative genomics research

    Directory of Open Access Journals (Sweden)

    Zhang Xiaohong

    2005-03-01

    Full Text Available Abstract Background The Floral Genome Project was initiated to bridge the genomic gap between the most broadly studied plant model systems. Arabidopsis and rice, although now completely sequenced and under intensive comparative genomic investigation, are separated by at least 125 million years of evolutionary time, and cannot in isolation provide a comprehensive perspective on structural and functional aspects of flowering plant genome dynamics. Here we discuss new genomic resources available to the scientific community, comprising cDNA libraries and Expressed Sequence Tag (EST sequences for a suite of phylogenetically basal angiosperms specifically selected to bridge the evolutionary gaps between model plants and provide insights into gene content and genome structure in the earliest flowering plants. Results Random sequencing of cDNAs from representatives of phylogenetically important eudicot, non-grass monocot, and gymnosperm lineages has so far (as of 12/1/04 generated 70,514 ESTs and 48,170 assembled unigenes. Efficient sorting of EST sequences into putative gene families based on whole Arabidopsis/rice proteome comparison has permitted ready identification of cDNA clones for finished sequencing. Preliminarily, (i proportions of functional categories among sequenced floral genes seem representative of the entire Arabidopsis transcriptome, (ii many known floral gene homologues have been captured, and (iii phylogenetic analyses of ESTs are providing new insights into the process of gene family evolution in relation to the origin and diversification of the angiosperms. Conclusion Initial comparisons illustrate the utility of the EST data sets toward discovery of the basic floral transcriptome. These first findings also afford the opportunity to address a number of conspicuous evolutionary genomic questions, including reproductive organ transcriptome overlap between angiosperms and gymnosperms, genome-wide duplication history, lineage

  5. Rapid and accurate pyrosequencing of angiosperm plastid genomes

    Directory of Open Access Journals (Sweden)

    Farmerie William G

    2006-08-01

    Full Text Available Abstract Background Plastid genome sequence information is vital to several disciplines in plant biology, including phylogenetics and molecular biology. The past five years have witnessed a dramatic increase in the number of completely sequenced plastid genomes, fuelled largely by advances in conventional Sanger sequencing technology. Here we report a further significant reduction in time and cost for plastid genome sequencing through the successful use of a newly available pyrosequencing platform, the Genome Sequencer 20 (GS 20 System (454 Life Sciences Corporation, to rapidly and accurately sequence the whole plastid genomes of the basal eudicot angiosperms Nandina domestica (Berberidaceae and Platanus occidentalis (Platanaceae. Results More than 99.75% of each plastid genome was simultaneously obtained during two GS 20 sequence runs, to an average depth of coverage of 24.6× in Nandina and 17.3× in Platanus. The Nandina and Platanus plastid genomes shared essentially identical gene complements and possessed the typical angiosperm plastid structure and gene arrangement. To assess the accuracy of the GS 20 sequence, over 45 kilobases of sequence were generated for each genome using conventional sequencing. Overall error rates of 0.043% and 0.031% were observed in GS 20 sequence for Nandina and Platanus, respectively. More than 97% of all observed errors were associated with homopolymer runs, with ~60% of all errors associated with homopolymer runs of 5 or more nucleotides and ~50% of all errors associated with regions of extensive homopolymer runs. No substitution errors were present in either genome. Error rates were generally higher in the single-copy and noncoding regions of both plastid genomes relative to the inverted repeat and coding regions. Conclusion Highly accurate and essentially complete sequence information was obtained for the Nandina and Platanus plastid genomes using the GS 20 System. More importantly, the high accuracy

  6. Exceptional preservation of tiny embryos documents seed dormancy in early angiosperms.

    Science.gov (United States)

    Friis, Else Marie; Crane, Peter R; Pedersen, Kaj Raunsgaard; Stampanoni, Marco; Marone, Federica

    2015-12-24

    The rapid diversification of angiosperms through the Early Cretaceous period, between about 130-100 million years ago, initiated fundamental changes in the composition of terrestrial vegetation and is increasingly well understood on the basis of a wealth of palaeobotanical discoveries over the past four decades and their integration with improved knowledge of living angiosperms. Prevailing hypotheses, based on evidence both from living and from fossil plants, emphasize that the earliest angiosperms were plants of small stature with rapid life cycles that exploited disturbed habitats in open, or perhaps understorey, conditions. However, direct palaeontogical data relevant to understanding the seed biology and germination ecology of Early Cretaceous angiosperms are sparse. Here we report the discovery of embryos and their associated nutrient storage tissues in exceptionally well-preserved angiosperm seeds from the Early Cretaceous. Synchrotron radiation X-ray tomographic microscopy of the fossil embryos from many taxa reveals that all were tiny at the time of dispersal. These results support hypotheses based on extant plants that tiny embryos and seed dormancy are basic for angiosperms as a whole. The minute size of the fossil embryos, and the modest nutrient storage tissues dictated by the overall small seed size, is also consistent with the interpretation that many early angiosperms were opportunistic, early successional colonizers of disturbance-prone habitats.

  7. Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms.

    Science.gov (United States)

    Crisp, Michael D; Cook, Lyn G

    2011-12-01

    We test the widely held notion that living gymnosperms are 'ancient' and 'living fossils' by comparing them with their sister group, the angiosperms. This perception derives partly from the lack of gross morphological differences between some Mesozoic gymnosperm fossils and their living relatives (e.g. Ginkgo, cycads and dawn redwood), suggesting that the rate of evolution of gymnosperms has been slow. We estimated the ages and diversification rates of gymnosperm lineages using Bayesian relaxed molecular clock dating calibrated with 21 fossils, based on the phylogenetic analysis of alignments of matK chloroplast DNA (cpDNA) and 26S nuclear ribosomal DNA (nrDNA) sequences, and compared these with published estimates for angiosperms. Gymnosperm crown groups of Cenozoic age are significantly younger than their angiosperm counterparts (median age: 32 Ma vs 50 Ma) and have long unbranched stems, indicating major extinctions in the Cenozoic, in contrast with angiosperms. Surviving gymnosperm genera have diversified more slowly than angiosperms during the Neogene as a result of their higher extinction rate. Compared with angiosperms, living gymnosperm groups are not ancient. The fossil record also indicates that gymnosperms suffered major extinctions when climate changed in the Oligocene and Miocene. Extant gymnosperm groups occupy diverse habitats and some probably survived after making adaptive shifts.

  8. The angiosperm radiation revisited, an ecological explanation for Darwin's 'abominable mystery'.

    Science.gov (United States)

    Berendse, Frank; Scheffer, Marten

    2009-09-01

    One of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to have been limited to disturbed, aquatic or extremely dry sites, suggesting that they were suppressed in most other places by the gymnosperms that still dominated the plant world. However, fossil evidence suggests that by the end of the Cretaceous the angiosperms had spectacularly taken over the dominant position from the gymnosperms around the globe. Here, we suggest an ecological explanation for their escape from their subordinate position relative to gymnosperms and ferns. We propose that angiosperms due to their higher growth rates profit more rapidly from increased nutrient supply than gymnosperms, whereas at the same time angiosperms promote soil nutrient release by producing litter that is more easily decomposed. This positive feedback may have resulted in a runaway process once angiosperms had reached a certain abundance. Evidence for the possibility of such a critical transition to angiosperm dominance comes from recent work on large scale vegetation shifts, linking long-term field observations, large scale experiments and the use of simulation models.

  9. Utility of the Amborella trichopoda expansin superfamily in elucidating the history of angiosperm expansins.

    Science.gov (United States)

    Seader, Victoria H; Thornsberry, Jennifer M; Carey, Robert E

    2016-03-01

    Expansins form a superfamily of plant proteins that assist in cell wall loosening during growth and development. The superfamily is divided into four families: EXPA, EXPB, EXLA, and EXLB (Sampedro and Cosgrove in Genome Biol 6:242, 2005. doi: 10.1186/gb-2005-6-12-242 ). Previous studies on Arabidopsis, rice, and Populus trichocarpa have clarified the evolutionary history of expansins in angiosperms (Sampedro et al. in Plant J 44:409-419, 2005. doi: 10.1111/j.1365-313X.2005.02540.x ). Amborella trichopoda is a flowering plant that diverged very early. Thus, it is a sister lineage to all other extant angiosperms (Amborella Genome Project in 342:1241089, 2013. doi: 10.1126/science.1241089 ). Because of this relationship, comparing the A. trichopoda expansin superfamily with those of other flowering plants may indicate which expansin genes were present in the last common ancestor of all angiosperms. The A. trichopoda expansin superfamily was assembled using BLAST searches with angiosperm expansin queries. The search results were analyzed and annotated to isolate the complete A. trichopoda expansin superfamily. This superfamily is similar to other angiosperm expansin superfamilies, but is somewhat smaller. This is likely because of a lack of genome duplication events (Amborella Genome Project 2013). Phylogenetic and syntenic analyses of A. trichopoda expansins have improved our understanding of the evolutionary history of expansins in angiosperms. Nearly all of the A. trichopoda expansins were placed into an existing Arabidopsis-rice expansin clade. Based on the results of phylogenetic and syntenic analyses, we estimate there were 12-13 EXPA genes, 2 EXPB genes, 1 EXLA gene, and 2 EXLB genes in the last common ancestor of all angiosperms.

  10. Physiological mechanisms drive differing foliar calcium content in ferns and angiosperms.

    Science.gov (United States)

    Funk, Jennifer L; Amatangelo, Kathryn L

    2013-09-01

    Recent evidence points to ferns containing significantly lower contents of foliar calcium and other cations than angiosperms. This is especially true of more ancient 'non-polypod' fern lineages, which predate the diversification of angiosperms. Calcium is an important plant nutrient, the lack of which can potentially slow plant growth and litter decomposition, and alter soil invertebrate communities. The physiological mechanisms limiting foliar calcium (Ca) content in ferns are unknown. While there is a lot we do not know about Ca uptake and transport in plants, three physiological processes are likely to be important. We measured transpiration rate, cation exchange capacity, and leaching loss to determine which process most strongly regulates foliar Ca content in a range of fern and co-occurring understory angiosperm species from a montane Hawaiian rainforest. We found higher instantaneous and lifetime (corrected for leaf lifespan) transpiration rates in angiosperms relative to ferns. Ferns preferentially incorporated Ca into leaves relative to strontium, which suggests that root or stem cation exchange capacity differs between ferns and angiosperms, potentially affecting calcium transport in plants. There were no differences in foliar Ca leaching loss between groups. Among the physiological mechanisms measured, foliar Ca was most strongly correlated with leaf-level transpiration rate and leaf lifespan. This suggests that inter-specific differences in a leaf's lifetime transpiration may play a significant role in determining plant nutrition.

  11. Hydraulic tuning of vein cell microstructure in the evolution of angiosperm venation networks.

    Science.gov (United States)

    Feild, Taylor S; Brodribb, Timothy J

    2013-08-01

    High vein density (D(V)) evolution in angiosperms represented a key functional transition. Yet, a mechanistic account on how this hydraulic transformation evolved remains lacking. We demonstrate that a consequence of producing high D(V is that veins must become very small to fit inside the leaf, and that angiosperms are the only clade that evolved the specific type of vessel required to yield sufficiently conductive miniature leaf veins. From 111 species spanning key divergences in vascular plant evolution, we show, using analyses of vein conduit evolution in relation to vein packing, that a key xylem innovation associated with high D(V) evolution is a strong reduction in vein thickness and simplification of the perforation plates of primary xylem vessels. Simple perforation plates in the leaf xylem occurred only in derived angiosperm clades exhibiting high D(V) (> 12 mm mm(-2)). Perforation plates in the vessels of other species, including extant basal angiosperms, consisted of resistive scalariform types that were associated with thicker veins and much lower D(V). We conclude that a reduction in within-vein conduit resistance allowed vein size to decrease. We suggest that this adaptation may have been a critical evolutionary step that enabled dramatic D(V) elaboration in angiosperms.

  12. False Blister Beetles and the Expansion of Gymnosperm-Insect Pollination Modes before Angiosperm Dominance.

    Science.gov (United States)

    Peris, David; Pérez-de la Fuente, Ricardo; Peñalver, Enrique; Delclòs, Xavier; Barrón, Eduardo; Labandeira, Conrad C

    2017-02-26

    During the mid-Cretaceous, angiosperms diversified from several nondiverse lineages to their current global domination [1], replacing earlier gymnosperm lineages [2]. Several hypotheses explain this extensive radiation [3], one of which involves proliferation of insect pollinator associations in the transition from gymnosperm to angiosperm dominance. However, most evidence supports gymnosperm-insect pollinator associations, buttressed by direct evidence of pollen on insect bodies, currently established for four groups: Thysanoptera (thrips), Neuroptera (lacewings), Diptera (flies), and now Coleoptera (beetles). Each group represents a distinctive pollination mode linked to a unique mouthpart type and feeding guild [4-9]. Extensive indirect evidence, based on specialized head and mouthpart morphology, is present for one of these pollinator types, the long-proboscid pollination mode [10], representing minimally ten family-level lineages of Neuroptera, Mecoptera (scorpionflies), and Diptera [8, 10, 11]. A recurring feature uniting these pollinator modes is host associations with ginkgoalean, cycad, conifer, and bennettitalean gymnosperms. Pollinator lineages bearing these pollination modes were categorized into four evolutionary cohorts during the 35-million-year-long angiosperm radiation, each defined by its host-plant associations (gymnosperm or angiosperm) and evolutionary pattern (extinction, continuation, or origination) during this interval [12]. Here, we provide the first direct evidence for one cohort, exemplified by the beetle Darwinylus marcosi, family Oedemeridae (false blister beetles), that had an earlier gymnosperm (most likely cycad) host association, later transitioning onto angiosperms [13]. This association constitutes one of four patterns explaining the plateau of family-level plant lineages generally and pollinating insects specifically during the mid-Cretaceous angiosperm radiation [12].

  13. Darwin's second 'abominable mystery': Why are there so many angiosperm species?

    Science.gov (United States)

    Crepet, William L; Niklas, Karl J

    2009-01-01

    The rapid diversification and ecological dominance of the flowering plants beg the question "Why are there so many angiosperm species and why are they so successful?" A number of equally plausible hypotheses have been advanced in response to this question, among which the most widely accepted highlights the mutually beneficial animal-plant relationships that are nowhere better developed nor more widespread than among angiosperm species and their biotic vectors for pollination and dispersal. Nevertheless, consensus acknowledges that there are many other attributes unique to or characteristic of the flowering plants. In addition, the remarkable coevolution of the angiosperms and pollination/dispersal animal agents could be an effect of the intrinsic adaptability of the flowering plants rather than a primary cause of their success, suggesting that the search for underlying causes should focus on an exploration of the genetic and epigenetic mechanisms that might facilitate adaptive evolution and speciation. Here, we explore angiosperm diversity promoting attributes in their general form and draw particular attention to those that, either individually or collectively, have been shown empirically to favor high speciation rates, low extinction rates, or broad ecological tolerances. Among these are the annual growth form, homeotic gene effects, asexual/sexual reproduction, a propensity for hybrid polyploidy, and apparent "resistance" to extinction. Our survey of the literature suggests that no single vegetative, reproductive, or ecological feature taken in isolation can account for the evolutionary success of the angiosperms. Rather, we believe that the answer to Darwin's second "abominable mystery" lies in a confluence of features that collectively make the angiosperms unique among the land plants.

  14. Do quantitative vessel and pit characters account for ion-mediated changes in the hydraulic conductance of angiosperm xylem?

    NARCIS (Netherlands)

    Jansen, S.; Gortan, E.; Lens, F.; Assunta Lo Gullo, M.; Salleo, S.; Scholtz, A.; Stein, A.; Trifilò, P.; Nardini, A.

    2011-01-01

    • The hydraulic conductance of angiosperm xylem has been suggested to vary with changes in sap solute concentrations because of intervessel pit properties. • The magnitude of the ‘ionic effect’ was linked with vessel and pit dimensions in 20 angiosperm species covering 13 families including six Laur

  15. The Paleocene Eocene carbon isotope excursion in higher plant organic matter: Differential fractionation of angiosperms and conifers in the Arctic

    Science.gov (United States)

    Schouten, Stefan; Woltering, Martijn; Rijpstra, W. Irene C.; Sluijs, Appy; Brinkhuis, Henk; Sinninghe Damsté, Jaap S.

    2007-06-01

    A study of upper Paleocene-lower Eocene (P-E) sediments deposited on the Lomonosov Ridge in the central Arctic Ocean reveals relatively high abundances of terrestrial biomarkers. These include dehydroabietane and simonellite derived from conifers (gymnosperms) and a tetra-aromatic triterpenoid derived from angiosperms. The relative percentage of the angiosperm biomarker of the summed angiosperm + conifer biomarkers was increased at the end of the Paleocene-Eocene thermal maximum (PETM), different when observed with pollen counts which showed a relative decrease in angiosperm pollen. Stable carbon isotopic analysis of these biomarkers shows that the negative carbon isotope excursion (CIE) during the PETM amounts to 3‰ for both conifer biomarkers, dehydroabietane and simonellite, comparable to the magnitude of the CIE inferred from marine carbonates, but significantly lower than the 4.5‰ of the terrestrial C 29n-alkane [M. Pagani, N. Pedentchouk, M. Huber, A. Sluijs, S. Schouten, H. Brinkhuis, J.S. Sinninghe Damsté, G.R. Dickens, and the IODP Expedition 302 Expedition Scientists (2006), Arctic's hydrology during global warming at the Paleocene-Eocene thermal maximum. Nature, 442, 671-675.], which is a compound sourced by both conifers and angiosperms. Conspicuously, the angiosperm-sourced aromatic triterpane shows a much larger CIE of 6‰ and suggests that angiosperms increased in their carbon isotopic fractionation during the PETM. Our results thus indicate that the 4.5‰ C 29n-alkane CIE reported previously represents the average CIE of conifers and angiosperms at this site and suggest that the large and variable CIE observed in terrestrial records may be partly explained by the variable contributions of conifers and angiosperms. The differential response in isotopic fractionation of angiosperms and conifers points to different physiological responses of these vegetation types to the rise in temperature, humidity, and greenhouse gases during the PETM.

  16. Molecular data from the chloroplast rpoC1 gene suggest a deep and distinct dichotomy of contemporary spermatophytes into two monophyla: gymnosperms (including Gnetales) and angiosperms.

    Science.gov (United States)

    Samigullin, T K; Martin, W F; Troitsky, A V; Antonov, A S

    1999-09-01

    Partial sequences of the rpoC1 gene from two species of angiosperms and three species of gymnosperms (8330 base pairs) were determined and compared. The data obtained support the hypothesis that angiosperms and gymnosperms are monophyletic and none of the recent groups of the latter is sister to angiosperms.

  17. The enigma of the rise of angiosperms: can we untie the knot?

    Science.gov (United States)

    Augusto, L; Davies, T J; Delzon, S; De Schrijver, A

    2014-10-01

    Multiple hypotheses have been put forward to explain the rise of angiosperms to ecological dominance following the Cretaceous. A unified scheme incorporating all these theories appears to be an inextricable knot of relationships, processes and plant traits. Here, we revisit these hypotheses, categorising them within frameworks based on plant carbon economy, resistance to climatic stresses, nutrient economy, biotic interactions and diversification. We maintain that the enigma remains unresolved partly because our current state of knowledge is a result of the fragmentary nature of palaeodata. This lack of palaeodata limits our ability to draw firm conclusions. Nonetheless, based on consistent results, some inferences may be drawn. Our results indicate that a complex multidriver hypothesis may be more suitable than any single-driver theory. We contend that plant carbon economy and diversification may have played an important role during the early stages of gymnosperms replacement by angiosperms in fertile tropical sites. Plant tolerance to climatic stresses, plant nutrition, biotic interactions and diversification may have played a role in later stages of angiosperm expansion within temperate and harsh environments. The angiosperm knot remains partly tied, but to unravel it entirely will only be feasible if new discoveries are made by scientific communities.

  18. Phylogenetic analyses of basal angiosperms based on nine plastid, mitochondrial, and nuclear genes

    NARCIS (Netherlands)

    Qiu, Y.L.; Dombrovska, O.; Lee, J.; Li, L.; Whitlock, B.A.; Bernasconi-Quadroni, F.; Rest, J.S.; Davis, C.C.; Borsch, T.; Hilu, K.W.; Renner, S.S.; Soltis, D.E.; Soltis, P.E.; Zanis, M.J.; Cannone, J.J.; Powell, M.; Savolainen, V.; Chatrou, L.W.; Chase, M.W.

    2005-01-01

    DNA sequences of nine genes (plastid: atpB, matK, and rbcL; mitochondrial: atp1, matR, mtSSU, and mtLSU; nuclear: 18S and 26S rDNAs) from 100 species of basal angiosperms and gymnosperms were analyzed using parsimony, Bayesian, and maximum likelihood methods. All of these analyses support the follow

  19. Seed Size and Dispersal Systems of Early Cretaceous Angiosperms from Famalicão, Portugal.

    Science.gov (United States)

    Eriksson; Friis; Pedersen; Crane

    2000-03-01

    Seeds and fruits of Early Cretaceous (Barremian-Aptian) angiosperms from the Famalicão locality in Portugal were analyzed to establish seed and fruit size (volume) distributions and to infer the proportion of animal-dispersed fruits. On the basis of a sample of 106 angiosperm fruit and seed taxa, the average seed size was 0.78 mm3 (range 0.02-6.86 mm3), whereas the average fruit size was 2.06 mm3 (range 0.12-8.34 mm3). Variation in seed size among taxa is smaller than in modern plant communities, but within-taxon variation is similar to that known for extant plants. No significant difference in the size of "fleshy" versus other fruits was observed. The proportion of fleshy fruits was 24.5%. This high figure was surprising and indicates that the significance of animal dispersal during an early stage in angiosperm evolution has been underestimated. We suggest that reptiles and multituberculates, and perhaps other mammals and birds as well, were the likely seed dispersers and that the early angiosperms from Famalicão probably were herbs or small shrubs that inhabited a semiopen coniferous woodland.

  20. Unequal plastid distribution during the development of the male gametophyte of angiosperms

    Directory of Open Access Journals (Sweden)

    R. Hagemann

    2014-02-01

    Full Text Available The difference between the uniparental maternal and biparental type of plastid inheritance is based upon a relatively simple mechanism. In the uniparental type plastids are excluded from the generative or siperm cells during the firts pollen mitosis or during pollen development. In some angiosperms this exclusion is completely lacking or carried out partially.

  1. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications.

    Science.gov (United States)

    Tank, David C; Eastman, Jonathan M; Pennell, Matthew W; Soltis, Pamela S; Soltis, Douglas E; Hinchliff, Cody E; Brown, Joseph W; Sessa, Emily B; Harmon, Luke J

    2015-07-01

    Our growing understanding of the plant tree of life provides a novel opportunity to uncover the major drivers of angiosperm diversity. Using a time-calibrated phylogeny, we characterized hot and cold spots of lineage diversification across the angiosperm tree of life by modeling evolutionary diversification using stepwise AIC (MEDUSA). We also tested the whole-genome duplication (WGD) radiation lag-time model, which postulates that increases in diversification tend to lag behind established WGD events. Diversification rates have been incredibly heterogeneous throughout the evolutionary history of angiosperms and reveal a pattern of 'nested radiations' - increases in net diversification nested within other radiations. This pattern in turn generates a negative relationship between clade age and diversity across both families and orders. We suggest that stochastically changing diversification rates across the phylogeny explain these patterns. Finally, we demonstrate significant statistical support for the WGD radiation lag-time model. Across angiosperms, nested shifts in diversification led to an overall increasing rate of net diversification and declining relative extinction rates through time. These diversification shifts are only rarely perfectly associated with WGD events, but commonly follow them after a lag period.

  2. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea

    NARCIS (Netherlands)

    Olsen, Jeanine; Rouzé, Pierre; Verhelst, Bram; Lin, Yao-Cheng; Bayer, Till; Collen, Jonas; Dattolo, Emanuela; De Paoli, Emanuele; Dittami, Simon; Maumus, Florian; Michel, Gurvan; Kersting, Anna; Lauritano, Chiara; Lohaus, Rolf; Töpel, Mats; Tonon, Thierry; Vanneste, Kevin; Amirebrahimi, Mojgan; Brakel, Janina; Boström, Christoffer; Chovatia, Mansi; Grimwood, Jane; Jenkins, Jerry W; Jueterbock, Alexander; Mraz, Amy; Stam, Wytze T; Tice, Hope; Bornberg-Bauer, Erich; Green, Pamela J; Pearson, Gareth A; Procaccini, Gabriele; Duarte, Carlos M; Schmutz, Jeremy; Reusch, Thorsten B H; Van de Peer, Yves

    2016-01-01

    Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals u

  3. Genetic enablers underlying the clustered evolutionary origins of C4 photosynthesis in angiosperms.

    Science.gov (United States)

    Christin, Pascal-Antoine; Arakaki, Mónica; Osborne, Colin P; Edwards, Erika J

    2015-04-01

    The evolutionary accessibility of novel adaptations varies among lineages, depending in part on the genetic elements present in each group. However, the factors determining the evolutionary potential of closely related genes remain largely unknown. In plants, CO2-concentrating mechanisms such as C4 and crassulacean acid metabolism (CAM) photosynthesis have evolved numerous times in distantly related groups of species, and constitute excellent systems to study constraints and enablers of evolution. It has been previously shown for multiple proteins that grasses preferentially co-opted the same gene lineage for C4 photosynthesis, when multiple copies were present. In this work, we use comparative transcriptomics to show that this bias also exists within Caryophyllales, a distantly related group with multiple C4 origins. However, the bias is not the same as in grasses and, when all angiosperms are considered jointly, the number of distinct gene lineages co-opted is not smaller than that expected by chance. These results show that most gene lineages present in the common ancestor of monocots and eudicots produced gene descendants that were recruited into C4 photosynthesis, but that C4-suitability changed during the diversification of angiosperms. When selective pressures drove C4 evolution, some copies were preferentially co-opted, probably because they already possessed C4-like expression patterns. However, the identity of these C4-suitable genes varies among clades of angiosperms, and C4 phenotypes in distant angiosperm groups thus represent genuinely independent realizations, based on different genetic precursors.

  4. The angiosperm radiation revisited, an ecological explanation for Darwin's 'abominable mystery'

    NARCIS (Netherlands)

    Berendse, F.; Scheffer, M.

    2009-01-01

    One of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to have been limited to disturbed, aquatic or extremely dry sites, suggesting that they were suppressed in most other places by the gymnosperms

  5. Ontogenetic shifts in plant-plant interactions in a rare cycad within angiosperm communities.

    Science.gov (United States)

    Álvarez-Yépiz, Juan C; Búrquez, Alberto; Dovčiak, Martin

    2014-06-01

    Gymnosperms and angiosperms can co-occur within the same habitats but key plant traits are thought to give angiosperms an evolutionary competitive advantage in many ecological settings. We studied ontogenetic changes in competitive and facilitative interactions between a rare gymnosperm (Dioon sonorense, our target species) and different plant and abiotic neighbours (conspecific-cycads, heterospecific-angiosperms, or abiotic-rocks) from 2007 to 2010 in an arid environment of northwestern Mexico. We monitored survival and growth of seedlings, juveniles, and adults of the cycad Dioon sonorense to evaluate how cycad survival and relative height growth rate (RHGR) responded to intra- and interspecific competition, canopy openness, and nearest neighbour. We tested spatial associations among D. sonorense life stages and angiosperm species and measured ontogenetic shifts in cycad shade tolerance. Canopy openness decreased cycad survival while intraspecific competition decreased survival and RHGR during early ontogeny. Seedling survival was higher in association with rocks and heterospecific neighbours where intraspecific competition was lower. Shade tolerance decreased with cycad ontogeny reflecting the spatial association of advanced stages with more open canopies. Interspecific facilitation during early ontogeny of our target species may promote its persistence in spite of increasing interspecific competition in later stages. We provide empirical support to the long-standing assumption that marginal rocky habitats serve as refugia from angiosperm competition for slow-growing gymnosperms such as cycads. The lack of knowledge of plant-plant interactions in rare or endangered species may hinder developing efficient conservation strategies (e.g. managing for sustained canopy cover), especially under the ongoing land use and climatic changes.

  6. Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy.

    Science.gov (United States)

    Schuettpelz, Eric; Pryer, Kathleen M

    2009-07-07

    In today's angiosperm-dominated terrestrial ecosystems, leptosporangiate ferns are truly exceptional--accounting for 80% of the approximately 11,000 nonflowering vascular plant species. Recent studies have shown that this remarkable diversity is mostly the result of a major leptosporangiate radiation beginning in the Cretaceous, following the rise of angiosperms. This pattern is suggestive of an ecological opportunistic response, with the proliferation of flowering plants across the landscape resulting in the formation of many new niches--both on forest floors and within forest canopies--into which leptosporangiate ferns could diversify. At present, one-third of leptosporangiate species grow as epiphytes in the canopies of angiosperm-dominated tropical rain forests. However, we know too little about the evolutionary history of epiphytic ferns to assess whether or not their diversification was in fact linked to the establishment of these forests, as would be predicted by the ecological opportunistic response hypothesis. Here we provide new insight into leptosporangiate diversification and the evolution of epiphytism by integrating a 400-taxon molecular dataset with an expanded set of fossil age constraints. We find evidence for a burst of fern diversification in the Cenozoic, apparently driven by the evolution of epiphytism. Whether this explosive radiation was triggered simply by the establishment of modern angiosperm-dominated tropical rain forest canopies, or spurred on by some other large-scale extrinsic factor (e.g., climate change) remains to be determined. In either case, it is clear that in both the Cretaceous and Cenozoic, leptosporangiate ferns were adept at exploiting newly created niches in angiosperm-dominated ecosystems.

  7. Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots?

    Directory of Open Access Journals (Sweden)

    Rice Danny W

    2004-09-01

    Full Text Available Abstract Background Numerous studies, using in aggregate some 28 genes, have achieved a consensus in recognizing three groups of plants, including Amborella, as comprising the basal-most grade of all other angiosperms. A major exception is the recent study by Goremykin et al. (2003; Mol. Biol. Evol. 20:1499–1505, whose analyses of 61 genes from 13 sequenced chloroplast genomes of land plants nearly always found 100% support for monocots as the deepest angiosperms relative to Amborella, Calycanthus, and eudicots. We hypothesized that this conflict reflects a misrooting of angiosperms resulting from inadequate taxon sampling, inappropriate phylogenetic methodology, and rapid evolution in the grass lineage used to represent monocots. Results We used two main approaches to test this hypothesis. First, we sequenced a large number of chloroplast genes from the monocot Acorus and added these plus previously sequenced Acorus genes to the Goremykin et al. (2003 dataset in order to explore the effects of altered monocot sampling under the same analytical conditions used in their study. With Acorus alone representing monocots, strongly supported Amborella-sister trees were obtained in all maximum likelihood and parsimony analyses, and in some distance-based analyses. Trees with both Acorus and grasses gave either a well-supported Amborella-sister topology or else a highly unlikely topology with 100% support for grasses-sister and paraphyly of monocots (i.e., Acorus sister to "dicots" rather than to grasses. Second, we reanalyzed the Goremykin et al. (2003 dataset focusing on methods designed to account for rate heterogeneity. These analyses supported an Amborella-sister hypothesis, with bootstrap support values often conflicting strongly with cognate analyses performed without allowing for rate heterogeneity. In addition, we carried out a limited set of analyses that included the chloroplast genome of Nymphaea, whose position as a basal angiosperm was

  8. Exploring Early Angiosperm Fire Feedbacks using Coupled Experiments and Modelling Approaches to Estimate Cretaceous Palaeofire Behaviour

    Science.gov (United States)

    Belcher, Claire; Hudpsith, Victoria

    2016-04-01

    Using the fossil record we are typically limited to exploring linkages between palaeoecological changes and palaeofire activity by assessing the abundance of charcoals preserved in sediments. However, it is the behaviour of fires that primarily governs their ecological effects. Therefore, the ability to estimate variations in aspects of palaeofire behaviour such as palaeofire intensity and rate of spread would be of key benefit toward understanding the coupled evolutionary history of ecosystems and fire. The Cretaceous Period saw major diversification in land plants. Previously, conifers (gymnosperms) and ferns (pteridophytes) dominated Earth's ecosystems until flowering plants (angiosperms) appear in the fossil record of the Early Cretaceous (~135Ma). We have created surface fire behaviour estimates for a variety of angiosperm invasion scenarios and explored the influence of Cretaceous superambient atmospheric oxygen levels on the fire behaviour occurring in these new Cretaceous ecosystems. These estimates are then used to explore the hypothesis that the early spread of the angiosperms was promoted by the novel fire regimes that they created. In order to achieve this we tested the flammability of Mesozoic analogue fuel types in controlled laboratory experiments using an iCone calorimeter, which measured the ignitability as well as the effective heat of combustion of the fuels. We then used the BehavePlus fire behaviour modelling system to scale up our laboratory results to the ecosystem scale. Our results suggest that fire-angiosperm feedbacks may have occurred in two phases: The first phase being a result of weedy angiosperms providing an additional easily ignitable fuel that enhanced both the seasonality and frequency of surface fires. In the second phase, the addition of shrubby understory fuels likely expanded the number of ecosystems experiencing more intense surface fires, resulting in enhanced mortality and suppressed post-fire recruitment of gymnosperms

  9. Additions of angiosperms to the Flora of Peru from the Andean-Amazonian forests of southern Peru

    Directory of Open Access Journals (Sweden)

    Isau Huamantupa

    2014-10-01

    Full Text Available We present 25 new records of angiosperms for the Peruvian flora, as a result of different botanical explorations conducted in southern Peru, mainly in the areas of the departments of Cusco, Apurimac and Madre de Dios.

  10. Photosynthesis of Resurrection Angiosperms%更苏被子植物的光合作用

    Institute of Scientific and Technical Information of China (English)

    阳文龙; 胡志昂; 王洪新; 匡廷云

    2003-01-01

    更苏植物是一类在极度干燥条件下组织会迅速脱水后遇水又能很快复苏的植物.极少数被子植物有这种能力,在双子叶植物中尤其罕见,而且脱水时叶绿素含量和叶绿体完整性变化较少,称为叶绿素保持型(HDT).该类植物的复苏机理简单,研究方便,因而得到更广泛注意.更苏被子植物光合作用的最新研究进展说明,光化学活性是研究更苏植物脱水复苏生理状态的灵敏指标.和普通植物一样,在光下,更苏被子植物的光化学活性随着叶片失水而受到抑制,但奇怪的是在失去95%以上的水分后复水仍可迅速复活.在脱水过程中叶黄素循环和抗氧化系统的上调以及光合膜完整性和稳定性的保持,可能对更苏被子植物的耐脱水性起非常重要的作用.磷酸盐对复苏的影响也表现在复水阶段而且与上述两种保护机理关系不大,因此应该加强更苏被子植物复水阶段的研究.%Resurrection plants which are able to quickly reactivate after falling into a period of anabiosis caused by dehydration have been very rare among angiosperms, especially among dicotyledons whose chlorophyll content and chloroplast structure little changed in the course of desiccation, therefore has been called homoiochlorophyllous desiccation-tolerant plants (HDTs). Another type of resurrection angiosperms that lost its chlorophyll during desiccation is called poikilochlorophyllous desiccation-tolerant plants (PDTs). HDTs have been received more attention because of simplicity of protection mechanism which is much easy to the study and utilization of the desiccation tolerance of resurrection angiosperms. Recent advances in studies of photosynthesis of resurrection angiosperms indicate that photochemical activities are sensitive indicators for the study of physiological state of resurrection angiosperms during desiccation and rehydration. Photochemical activities of resurrection angiosperms are inhibited

  11. A probable pollination mode before angiosperms: Eurasian, long-proboscid scorpionflies.

    Science.gov (United States)

    Ren, Dong; Labandeira, Conrad C; Santiago-Blay, Jorge A; Rasnitsyn, Alexandr; Shih, ChungKun; Bashkuev, Alexei; Logan, M Amelia V; Hotton, Carol L; Dilcher, David

    2009-11-06

    The head and mouthpart structures of 11 species of Eurasian scorpionflies represent three extinct and closely related families during a 62-million-year interval from the late Middle Jurassic to the late Early Cretaceous. These taxa had elongate, siphonate (tubular) proboscides and fed on ovular secretions of extinct gymnosperms. Five potential ovulate host-plant taxa co-occur with these insects: a seed fern, conifer, ginkgoopsid, pentoxylalean, and gnetalean. The presence of scorpionfly taxa suggests that siphonate proboscides fed on gymnosperm pollination drops and likely engaged in pollination mutualisms with gymnosperms during the mid-Mesozoic, long before the similar and independent coevolution of nectar-feeding flies, moths, and beetles on angiosperms. All three scorpionfly families became extinct during the later Early Cretaceous, coincident with global gymnosperm-to-angiosperm turnover.

  12. Cretaceous flowers of Nymphaeaceae and implications for complex insect entrapment pollination mechanisms in early angiosperms.

    Science.gov (United States)

    Gandolfo, M A; Nixon, K C; Crepet, W L

    2004-05-25

    Based on recent molecular systematics studies, the water lily lineage (Nymphaeales) provides an important key to understanding ancestral angiosperm morphology and is of considerable interest in the context of angiosperm origins. Therefore, the fossil record of Nymphaeales potentially provides evidence on both the timing and nature of diversification of one of the earliest clades of flowering plants. Recent fossil evidence of Turonian age (approximately 90 million years B.P.) includes fossil flowers with characters that, upon rigorous analysis, firmly place them within Nymphaeaceae. Unequivocally the oldest floral record of the Nymphaeales, these fossils are closely related to the modern Nymphaealean genera Victoria (the giant Amazon water lily) and Euryale. Although the fossils are much smaller than their modern relatives, the precise and dramatic correspondence between the fossil floral morphology and that of modern Victoria flowers suggests that beetle entrapment pollination was present in the earliest part of the Late Cretaceous.

  13. Testing the recent theories for the origin of the hermaphrodite flower by comparison of the transcriptomes of gymnosperms and angiosperms

    Directory of Open Access Journals (Sweden)

    Tavares Raquel

    2010-08-01

    Full Text Available Abstract Background Different theories for the origin of the angiosperm hermaphrodite flower make different predictions concerning the overlap between the genes expressed in the male and female cones of gymnosperms and the genes expressed in the hermaphrodite flower of angiosperms. The Mostly Male (MM theory predicts that, of genes expressed primarily in male versus female gymnosperm cones, an excess of male orthologs will be expressed in flowers, excluding ovules, while Out Of Male (OOM and Out Of Female (OOF theories predict no such excess. Results In this paper, we tested these predictions by comparing the transcriptomes of three gymnosperms (Ginkgo biloba, Welwitschia mirabilis and Zamia fisheri and two angiosperms (Arabidopsis thaliana and Oryza sativa, using EST data. We found that the proportion of orthologous genes expressed in the reproductive organs of the gymnosperms and in the angiosperms flower is significantly higher than the proportion of orthologous genes expressed in the reproductive organs of the gymnosperms and in the angiosperms vegetative tissues, which shows that the approach is correct. However, we detected no significant differences between the proportion of gymnosperm orthologous genes expressed in the male cone and in the angiosperms flower and the proportion of gymnosperm orthologous genes expressed in the female cone and in the angiosperms flower. Conclusions These results do not support the MM theory prediction of an excess of male gymnosperm genes expressed in the hermaphrodite flower of the angiosperms and seem to support the OOM/OOF theories. However, other explanations can be given for the 1:1 ratio that we found. More abundant and more specific (namely carpel and ovule expression data should be produced in order to further test these theories.

  14. Roots of angiosperm formins: The evolutionary history of plant FH2 domain-containing proteins

    Directory of Open Access Journals (Sweden)

    Žárský Viktor

    2008-04-01

    Full Text Available Abstract Background Shuffling of modular protein domains is an important source of evolutionary innovation. Formins are a family of actin-organizing proteins that share a conserved FH2 domain but their overall domain architecture differs dramatically between opisthokonts (metazoans and fungi and plants. We performed a phylogenomic analysis of formins in most eukaryotic kingdoms, aiming to reconstruct an evolutionary scenario that may have produced the current diversity of domain combinations with focus on the origin of the angiosperm formin architectures. Results The Rho GTPase-binding domain (GBD/FH3 reported from opisthokont and Dictyostelium formins was found in all lineages except plants, suggesting its ancestral character. Instead, mosses and vascular plants possess the two formin classes known from angiosperms: membrane-anchored Class I formins and Class II formins carrying a PTEN-like domain. PTEN-related domains were found also in stramenopile formins, where they have been probably acquired independently rather than by horizontal transfer, following a burst of domain rearrangements in the chromalveolate lineage. A novel RhoGAP-related domain was identified in some algal, moss and lycophyte (but not angiosperm formins that define a specific branch (Class III of the formin family. Conclusion We propose a scenario where formins underwent multiple domain rearrangements in several eukaryotic lineages, especially plants and chromalveolates. In plants this replaced GBD/FH3 by a probably inactive RhoGAP-like domain, preserving a formin-mediated association between (membrane-anchored Rho GTPases and the actin cytoskeleton. Subsequent amplification of formin genes, possibly coincident with the expansion of plants to dry land, was followed by acquisition of alternative membrane attachment mechanisms present in extant Class I and Class II formins, allowing later loss of the RhoGAP-like domain-containing formins in angiosperms.

  15. Chemical ecology of marine angiosperms: opportunities at the interface of marine and terrestrial systems.

    Science.gov (United States)

    Sieg, R Drew; Kubanek, Julia

    2013-06-01

    This review examines the state of the field for chemically mediated interactions involving marine angiosperms (seagrasses, mangroves, and salt marsh angiosperms). Small-scale interactions among these plants and their herbivores, pathogens, fouling organisms, and competitors are explored, as are community-level effects of plant secondary metabolites. At larger spatial scales, secondary metabolites from marine angiosperms function as reliable cues for larval settlement, molting, or habitat selection by fish and invertebrates, and can influence community structure and ecosystem function. Several recent studies illustrate the importance of chemical defenses from these plants that deter feeding by herbivores and infection by pathogens, but the extent to which allelopathic compounds kill or inhibit the growth of competitors is less clear. While some phenolic compounds such as ferulic acid and caffeic acid act as critical defenses against herbivores and pathogens, we find that a high total concentration of phenolic compounds within bulk plant tissues is not a strong predictor of defense. Residual chemical defenses prevent shredding or degradation of plant detritus by detritivores and microbes, delaying the time before plant matter can enter the microbial loop. Mangroves, marsh plants, and seagrasses remain plentiful sources of new natural products, but ecological functions are known for only a small proportion of these compounds. As new analytical techniques are incorporated into ecological studies, opportunities are emerging for chemical ecologists to test how subtle environmental cues affect the production and release of marine angiosperm chemical defenses or signaling molecules. Throughout this review, we point to areas for future study, highlighting opportunities for new directions in chemical ecology that will advance our understanding of ecological interactions in these valuable ecosystems.

  16. New taxa of angiosperms from coal-bearing continental deposits in Amur area

    Institute of Scientific and Technical Information of China (English)

    Tat'yana V. KEZINA

    2008-01-01

    Considered the question about stratigraphic position of coal-beating continental deposits of the Amur area, the main attention is paid to the definition of pollen of angiosperms. Khlonova (1960), Zaklinskaya (1963), Bratseva (1969) and other scientists reported a lot about the significance of the pollen. Among the new taxa the special interest represents the first description of Engelhardtia pollen of late Maestrichtian and Paleocene deposits. A new kind of pollen Vacuopollis triplicatus sp. nov. is described.

  17. Diffusional limitations explain the lower photosynthetic capacity of ferns as compared with angiosperms in a common garden study.

    Science.gov (United States)

    Carriquí, M; Cabrera, H M; Conesa, M À; Coopman, R E; Douthe, C; Gago, J; Gallé, A; Galmés, J; Ribas-Carbo, M; Tomás, M; Flexas, J

    2015-03-01

    Ferns are thought to have lower photosynthetic rates than angiosperms and they lack fine stomatal regulation. However, no study has directly compared photosynthesis in plants of both groups grown under optimal conditions in a common environment. We present a common garden comparison of seven angiosperms and seven ferns paired by habitat preference, with the aims of (1) confirming that ferns do have lower photosynthesis capacity than angiosperms and quantifying these differences; (2) determining the importance of diffusional versus biochemical limitations; and (3) analysing the potential implication of leaf anatomical traits in setting the photosynthesis capacity in both groups. On average, the photosynthetic rate of ferns was about half that of angiosperms, and they exhibited lower stomatal and mesophyll conductance to CO2 (gm ), maximum velocity of carboxylation and electron transport rate. A quantitative limitation analysis revealed that stomatal and mesophyll conductances were co-responsible for the lower photosynthesis of ferns as compared with angiosperms. However, gm alone was the most constraining factor for photosynthesis in ferns. Consistently, leaf anatomy showed important differences between angiosperms and ferns, especially in cell wall thickness and the surface of chloroplasts exposed to intercellular air spaces.

  18. A Targeted Enrichment Strategy for Massively Parallel Sequencing of Angiosperm Plastid Genomes

    Directory of Open Access Journals (Sweden)

    Gregory W. Stull

    2013-02-01

    Full Text Available Premise of the study: We explored a targeted enrichment strategy to facilitate rapid and low-cost next-generation sequencing (NGS of numerous complete plastid genomes from across the phylogenetic breadth of angiosperms. Methods and Results: A custom RNA probe set including the complete sequences of 22 previously sequenced eudicot plastomes was designed to facilitate hybridization-based targeted enrichment of eudicot plastid genomes. Using this probe set and an Agilent SureSelect targeted enrichment kit, we conducted an enrichment experiment including 24 angiosperms (22 eudicots, two monocots, which were subsequently sequenced on a single lane of the Illumina GAIIx with single-end, 100-bp reads. This approach yielded nearly complete to complete plastid genomes with exceptionally high coverage (mean coverage: 717×, even for the two monocots. Conclusions: Our enrichment experiment was highly successful even though many aspects of the capture process employed were suboptimal. Hence, significant improvements to this methodology are feasible. With this general approach and probe set, it should be possible to sequence more than 300 essentially complete plastid genomes in a single Illumina GAIIx lane (achieving 50× mean coverage. However, given the complications of pooling numerous samples for multiplex sequencing and the limited number of barcodes (e.g., 96 available in commercial kits, we recommend 96 samples as a current practical maximum for multiplex plastome sequencing. This high-throughput approach should facilitate large-scale plastid genome sequencing at any level of phylogenetic diversity in angiosperms.

  19. Divergence of RNA polymerase α subunits in angiosperm plastid genomes is mediated by genomic rearrangement

    Science.gov (United States)

    Blazier, J. Chris; Ruhlman, Tracey A.; Weng, Mao-Lun; Rehman, Sumaiyah K.; Sabir, Jamal S. M.; Jansen, Robert K.

    2016-01-01

    Genes for the plastid-encoded RNA polymerase (PEP) persist in the plastid genomes of all photosynthetic angiosperms. However, three unrelated lineages (Annonaceae, Passifloraceae and Geraniaceae) have been identified with unusually divergent open reading frames (ORFs) in the conserved region of rpoA, the gene encoding the PEP α subunit. We used sequence-based approaches to evaluate whether these genes retain function. Both gene sequences and complete plastid genome sequences were assembled and analyzed from each of the three angiosperm families. Multiple lines of evidence indicated that the rpoA sequences are likely functional despite retaining as low as 30% nucleotide sequence identity with rpoA genes from outgroups in the same angiosperm order. The ratio of non-synonymous to synonymous substitutions indicated that these genes are under purifying selection, and bioinformatic prediction of conserved domains indicated that functional domains are preserved. One of the lineages (Pelargonium, Geraniaceae) contains species with multiple rpoA-like ORFs that show evidence of ongoing inter-paralog gene conversion. The plastid genomes containing these divergent rpoA genes have experienced extensive structural rearrangement, including large expansions of the inverted repeat. We propose that illegitimate recombination, not positive selection, has driven the divergence of rpoA. PMID:27087667

  20. The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals.

    Science.gov (United States)

    Ahrens, Dirk; Schwarzer, Julia; Vogler, Alfried P

    2014-09-22

    Extant terrestrial biodiversity arguably is driven by the evolutionary success of angiosperm plants, but the evolutionary mechanisms and timescales of angiosperm-dependent radiations remain poorly understood. The Scarabaeoidea is a diverse lineage of predominantly plant- and dung-feeding beetles. Here, we present a phylogenetic analysis of Scarabaeoidea based on four DNA markers for a taxonomically comprehensive set of specimens and link it to recently described fossil evidence. The phylogeny strongly supports multiple origins of coprophagy, phytophagy and anthophagy. The ingroup-based fossil calibration of the tree widely confirmed a Jurassic origin of the Scarabaeoidea crown group. The crown groups of phytophagous lineages began to radiate first (Pleurostict scarabs: 108 Ma; Glaphyridae between 101 Ma), followed by the later diversification of coprophagous lineages (crown-group age Scarabaeinae: 76 Ma; Aphodiinae: 50 Ma). Pollen feeding arose even later, at maximally 62 Ma in the oldest anthophagous lineage. The clear time lag between the origins of herbivores and coprophages suggests an evolutionary path driven by the angiosperms that first favoured the herbivore fauna (mammals and insects) followed by the secondary radiation of the dung feeders. This finding makes it less likely that extant dung beetle lineages initially fed on dinosaur excrements, as often hypothesized.

  1. Rosid radiation and the rapid rise of angiosperm-dominated forests.

    Science.gov (United States)

    Wang, Hengchang; Moore, Michael J; Soltis, Pamela S; Bell, Charles D; Brockington, Samuel F; Alexandre, Roolse; Davis, Charles C; Latvis, Maribeth; Manchester, Steven R; Soltis, Douglas E

    2009-03-10

    The rosid clade (70,000 species) contains more than one-fourth of all angiosperm species and includes most lineages of extant temperate and tropical forest trees. Despite progress in elucidating relationships within the angiosperms, rosids remain the largest poorly resolved major clade; deep relationships within the rosids are particularly enigmatic. Based on parsimony and maximum likelihood (ML) analyses of separate and combined 12-gene (10 plastid genes, 2 nuclear; >18,000 bp) and plastid inverted repeat (IR; 24 genes and intervening spacers; >25,000 bp) datasets for >100 rosid species, we provide a greatly improved understanding of rosid phylogeny. Vitaceae are sister to all other rosids, which in turn form 2 large clades, each with a ML bootstrap value of 100%: (i) eurosids I (Fabidae) include the nitrogen-fixing clade, Celastrales, Huaceae, Zygophyllales, Malpighiales, and Oxalidales; and (ii) eurosids II (Malvidae) include Tapisciaceae, Brassicales, Malvales, Sapindales, Geraniales, Myrtales, Crossosomatales, and Picramniaceae. The rosid clade diversified rapidly into these major lineages, possibly over a period of <15 million years, and perhaps in as little as 4 to 5 million years. The timing of the inferred rapid radiation of rosids [108 to 91 million years ago (Mya) and 107-83 Mya for Fabidae and Malvidae, respectively] corresponds with the rapid rise of angiosperm-dominated forests and the concomitant diversification of other clades that inhabit these forests, including amphibians, ants, placental mammals, and ferns.

  2. The SLEEPER genes: a transposase-derived angiosperm-specific gene family

    Directory of Open Access Journals (Sweden)

    Knip Marijn

    2012-10-01

    Full Text Available Abstract Background DAYSLEEPER encodes a domesticated transposase from the hAT-superfamily, which is essential for development in Arabidopsis thaliana. Little is known about the presence of DAYSLEEPER orthologs in other species, or how and when it was domesticated. We studied the presence of DAYSLEEPER orthologs in plants and propose a model for the domestication of the ancestral DAYSLEEPER gene in angiosperms. Results Using specific BLAST searches in genomic and EST libraries, we found that DAYSLEEPER-like genes (hereafter called SLEEPER genes are unique to angiosperms. Basal angiosperms as well as grasses (Poaceae and dicotyledonous plants possess such putative orthologous genes, but SLEEPER-family genes were not found in gymnosperms, mosses and algae. Most species contain more than one SLEEPER gene. All SLEEPERs contain a C2H2 type BED-zinc finger domain and a hATC dimerization domain. We designated 3 motifs, partly overlapping the BED-zinc finger and dimerization domain, which are hallmark features in the SLEEPER family. Although SLEEPER genes are structurally conserved between species, constructs with SLEEPER genes from grapevine and rice did not complement the daysleeper phenotype in Arabidopsis, when expressed under control of the DAYSLEEPER promoter. However these constructs did cause a dominant phenotype when expressed in Arabidopsis. Rice plant lines with an insertion in the RICESLEEPER1 or 2 locus displayed phenotypic abnormalities, indicating that these genes are functional and important for normal development in rice. We suggest a model in which we hypothesize that an ancestral hAT transposase was retrocopied and stably integrated in the genome during early angiosperm evolution. Evidence is also presented for more recent retroposition events of SLEEPER genes, such as an event in the rice genome, which gave rise to the RICESLEEPER1 and 2 genes. Conclusions We propose the ancestral SLEEPER gene was formed after a process of retro

  3. Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of Pseudo-Response Regulators

    Directory of Open Access Journals (Sweden)

    Saito Shigeru

    2010-05-01

    Full Text Available Abstract Background Plant circadian clocks regulate many photoperiodic and diurnal responses that are conserved among plant species. The plant circadian clock system has been uncovered in the model plant, Arabidopsis thaliana, using genetics and systems biology approaches. However, it is still not clear how the clock system had been organized in the evolutionary history of plants. We recently revealed the molecular phylogeny of LHY/CCA1 genes, one of the essential components of the clock system. The aims of this study are to reconstruct the phylogenetic relationships of angiosperm clock-associated PRR genes, the partner of the LHY/CCA1 genes, and to clarify the evolutionary history of the plant clock system in angiosperm lineages. Results In the present study, to investigate the molecular phylogeny of PRR genes, we performed two approaches: reconstruction of phylogenetic trees and examination of syntenic relationships. Phylogenetic analyses revealed that PRR genes had diverged into three clades prior to the speciation of monocots and eudicots. Furthermore, copy numbers of PRR genes have been independently increased in monocots and eudicots as a result of ancient chromosomal duplication events. Conclusions Based on the molecular phylogenies of both PRR genes and LHY/CCA1 genes, we inferred the evolutionary process of the plant clock system in angiosperms. This scenario provides evolutionary information that a common ancestor of monocots and eudicots had retained the basic components required for reconstructing a clock system and that the plant circadian clock may have become a more elaborate mechanism after the speciation of monocots and eudicots because of the gene expansion that resulted from polyploidy events.

  4. Androecium of Archaefructus, the Late Jurassic Angiosperms from Western Liaoning, China

    Institute of Scientific and Technical Information of China (English)

    SUN Ge; ZHENG Shaolin; SUN Chunlin; SUN Yuewu; David L. DILCHER; MIAO Yuyan

    2002-01-01

    Androecium of the earliest known flowering plant Archaefructus liaoningensis was found from the Upper Jurassic Jianshangou Formation of western Liaoning, China. The androecium consists of numerous stamens bearing in pair on the reproductive axes below conduplicate carpels. The stamens are composed of a short filament and basifixed anther for each. Monosulcate pollen in situ are found from the anthers. The characters of the androecium reveals that Archaefructus are probably protandrous, and the paired stamens and monosulcate pollen appear to indicate that Archaefructus, as primitive angiosperms,might be derived from extinct seed -ferns during the Older Mesozoic. Archaefructus is considered Late Jurassic in age.

  5. [Estimation of the relationship of the gymnosperms and angiosperms on the basis of the data obtained by biochemical methods].

    Science.gov (United States)

    Semikhov, V F; Aref'eva, L P; Zolkin, S Iu; Timoshenko, A S; Novozhilova, O A; Kostrikin, D S

    2004-01-01

    The phylogenetic relationships of gymnospermous and angiospermous plants were studied. To this end, 13 antisera to seed proteins of plant taxa representing all the four classes of the gymnosperms were obtained. The antigens used in immunochemical reactions with these antisera included the proteins of 134 seed samples representing 91 families from all the 11 subclasses of dicotyledons and 64 seed samples representing 33 families from five out of six classes of monocotyledons (according to Takhtajan, 1996). Immunochemical analysis was performed by the methods of double immunodiffusion in agar gel (two variants) and immunoelectroblotting. In addition, some samples of seed proteins were analyzed for amino acid composition. The results corroborate the concept that the seed plants are a monophyletic taxon. The angiosperms have apparently originated from a progymnospermous ancestor or have branched from the main stem of gymnosperms prior to its division into the recent phyla. No common ancestor of all subclasses of the angiosperms has been identified.

  6. Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms.

    Science.gov (United States)

    Nardmann, Judith; Reisewitz, Pascal; Werr, Wolfgang

    2009-08-01

    The morphologically diverse bodies of seed plants comprising gymnosperms and angiosperms, which separated some 350 Ma, grow by the activity of meristems containing stem cell niches. In the dicot model Arabidopsis thaliana, these are maintained by the stem cell-promoting functions of WUS and WUSCHEL-related homeobox 5 (WOX5) in the shoot and the root, respectively. Both genes are members of the WOX gene family, which has a monophyletic origin in green algae. The establishment of the WOX gene phylogeny from basal land plants through gymnosperms to basal and higher angiosperms reveals three major branches: a basal clade consisting of WOX13-related genes present in some green algae and throughout all land plant genomes, a second clade containing WOX8/9/11/12 homologues, and a modern clade restricted to seed plants. The analysis of the origin of the modern branch in two basal angiosperms (Amborella trichopoda and Nymphaea jamesoniana) and three gymnosperms (Pinus sylvestris, Ginkgo biloba, and Gnetum gnemon) shows that all members of the modern clade consistently found in monocots and dicots exist at the base of the angiosperm lineage, including WUS and WOX5 orthologues. In contrast, our analyses identify a single WUS/WOX5 homologue in all three gymnosperm genomes, consistent with a monophyletic origin in the last common ancestor of gymnosperms and angiosperms. Phylogenetic data, WUS- and WOX5-specific evolutionary signatures, as well as the expression pattern and stem cell-promoting function of the single gymnosperm WUS/WOX5 pro-orthologue in Arabidopsis indicate a gene duplication event followed by subfunctionalization at the base of angiosperms.

  7. The complete chloroplast genome sequence of Ampelopsis: gene organization, comparative analysis and phylogenetic relationships to other angiosperms

    Directory of Open Access Journals (Sweden)

    Gurusamy eRaman

    2016-03-01

    Full Text Available Ampelopsis brevipedunculata is an economically important plant that belongs to the Vitaceae family of angiosperms. The phylogenetic placement of Vitaceae is still unresolved. Recent phylogenetic studies suggested that it should be placed in various alternative families including Caryophyllaceae, asteraceae, Saxifragaceae, Dilleniaceae, or with the rest of the rosid families. However, these analyses provided weak supportive results because they were based on only one of several genes. Accordingly, complete chloroplast genome sequences are required to resolve the phylogenetic relationships among angiosperms. Recent phylogenetic analyses based on the complete chloroplast genome sequence suggested strong support for the position of Vitaceae as the earliest diverging lineage of rosids and placed it as a sister to the remaining rosids. These studies also revealed relationships among several major lineages of angiosperms; however, they highlighted the significance of taxon sampling for obtaining accurate phylogenies. In the present study, we sequenced the complete chloroplast genome of A. brevipedunculata and used these data to assess the relationships among 32 angiosperms, including 18 taxa of rosids. The Ampelopsis chloroplast genome is 161,090 bp in length, and includes a pair of inverted repeats of 26,394 bp that are separated by small and large single copy regions of 19,036 bp and 89,266 bp, respectively. The gene content and order of Ampelopsis is identical to many other unrearranged angiosperm chloroplast genomes, including Vitis and tobacco. A phylogenetic tree constructed based on 70 protein-coding genes of 33 angiosperms showed that both Saxifragales and Vitaceae diverged from the rosid clade and formed two clades with 100% bootstrap value. The position of the Vitaceae is sister to Saxifragales, and both are the basal and earliest diverging lineages. Moreover, Saxifragales forms a sister clade to Vitaceae of rosids. Overall, the results of

  8. Evolution of a unique anatomical precision in angiosperm leaf venation lifts constraints on vascular plant ecology.

    Science.gov (United States)

    Zwieniecki, Maciej A; Boyce, Charles K

    2014-03-22

    The main role of leaf venation is to supply water across the photosynthetic surface to keep stomata open and allow access to atmospheric CO2 despite evaporative demand. The optimal uniform delivery of water occurs when the distance between veins equals the depth of vein placement within the leaf away from the evaporative surface. As presented here, only angiosperms maintain this anatomical optimum across all leaf thicknesses and different habitats, including sheltered environments where this optimization need not be required. Intriguingly, basal angiosperm lineages tend to be underinvested hydraulically; uniformly high optimization is derived independently in the magnoliids, monocots and core eudicots. Gymnosperms and ferns, including available fossils, are limited by their inability to produce high vein densities. The common association of ferns with shaded humid environments may, in part, be a direct evolutionary consequence of their inability to produce hydraulically optimized leaves. Some gymnosperms do approach optimal vein placement, but only by virtue of their ability to produce thick leaves most appropriate in environments requiring water conservation. Thus, this simple anatomical metric presents an important perspective on the evolution and phylogenetic distribution of plant ecologies and further evidence that the vegetative biology of flowering plants-not just their reproductive biology-is unique.

  9. Recalibrated tree of leaf beetles (Chrysomelidae indicates independent diversification of angiosperms and their insect herbivores.

    Directory of Open Access Journals (Sweden)

    Jesús Gómez-Zurita

    Full Text Available BACKGROUND: The great diversity of the "Phytophaga" (weevils, longhorn beetles and leaf beetles has been attributed to their co-radiation with the angiosperms based on matching age estimates for both groups, but phylogenetic information and molecular clock calibrations remain insufficient for this conclusion. METHODOLOGY: A phylogenetic analysis of the leaf beetles (Chrysomelidae was conducted based on three partial ribosomal gene markers (mitochondrial rrnL, nuclear small and large subunit rRNA including over 3000 bp for 167 taxa representing most major chrysomelid lineages and outgroups. Molecular clock calibrations and confidence intervals were based on paleontological data from the oldest (K-T boundary leaf beetle fossil, ancient feeding traces ascribed to hispoid Cassidinae, and the vicariant split of Nearctic and Palearctic members of the Timarchini. PRINCIPAL FINDINGS: The origin of the Chrysomelidae was dated to 73-79 Mya (confidence interval 63-86 Mya, and most subfamilies were post-Cretaceous, consistent with the ages of all confirmed body fossils. Two major monocot feeding chrysomelid lineages formed widely separated clades, demonstrating independent colonization of this ancient (early Cretaceous angiosperm lineage. CONCLUSIONS: Previous calibrations proposing a much older origin of Chrysomelidae were not supported. Therefore, chrysomelid beetles likely radiated long after the origin of their host lineages and their diversification was driven by repeated radiaton on a pre-existing diverse resource, rather than ancient host associations.

  10. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea

    KAUST Repository

    Olsen, Jeanine L.

    2016-01-27

    Seagrasses colonized the sea1 on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet2. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes3, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae4 and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming5, 6, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants7.

  11. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea.

    Science.gov (United States)

    Olsen, Jeanine L; Rouzé, Pierre; Verhelst, Bram; Lin, Yao-Cheng; Bayer, Till; Collen, Jonas; Dattolo, Emanuela; De Paoli, Emanuele; Dittami, Simon; Maumus, Florian; Michel, Gurvan; Kersting, Anna; Lauritano, Chiara; Lohaus, Rolf; Töpel, Mats; Tonon, Thierry; Vanneste, Kevin; Amirebrahimi, Mojgan; Brakel, Janina; Boström, Christoffer; Chovatia, Mansi; Grimwood, Jane; Jenkins, Jerry W; Jueterbock, Alexander; Mraz, Amy; Stam, Wytze T; Tice, Hope; Bornberg-Bauer, Erich; Green, Pamela J; Pearson, Gareth A; Procaccini, Gabriele; Duarte, Carlos M; Schmutz, Jeremy; Reusch, Thorsten B H; Van de Peer, Yves

    2016-02-18

    Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants.

  12. Mechanisms for independent cytoplasmic inheritance of mitochondria and plastids in angiosperms.

    Science.gov (United States)

    Nagata, Noriko

    2010-03-01

    The inheritance of mitochondria and plastids in angiosperms has been categorized into three modes:maternal, biparental and paternal. Many mechanisms have been proposed for maternal inheritance, including: (1) physical exclusion of the organelle itself during pollenmitosis I (PMI); (2) elimination of the organelle by formation of enucleated cytoplasmic bodies (ECB); (3) autophagic degradation of organelles during male gametophyte development; (4) digestion of the organelle after fertilization; and (5)--the most likely possibility--digestion of organellar DNA in generative cells just after PMI. In detailed cytological observations, the presence or absence of mitochondrial and plastid DNA in generative cells corresponds to biparental/paternal inheritance or maternal inheritance of the respective organelle examined genetically. These improved cytological observations demonstrate that the replication or digestion of organellar DNA in young generative cells just after PMI is a critical point determining the mode of cytoplasmic inheritance. This review describes the independent control mechanisms in mitochondria and plastids that lead to differences in cytoplasmic inheritance in angiosperms.

  13. Re-evaluating the isotopic divide between angiosperms and gymnosperms using n-alkane δ13C values

    Science.gov (United States)

    Bush, R. T.; McInerney, F. A.

    2009-12-01

    Angiosperm δ13C values are typically 1-3‰ more negative than those of co-occurring gymnosperms. This is known for both bulk leaf and compound-specific values from n-alkanes, which are stable, straight-chain hydrocarbons (C23-C35) found in the epicuticular leaf wax of vascular plants. For n-alkanes, there is a second distinction between the δ13C values of angiosperms and gymnosperms—δ13C values generally decrease with increasing chain-length in angiosperms, while in gymnosperms they increase. These two distinctions have been used to support the ‘plant community change hypothesis’ explaining the difference between the terrestrial and marine carbon isotope excursions during the Paleocene-Eocene Thermal Maximum (PETM.) Preserved n-alkanes from terrestrial paleosols in the Bighorn Basin, Wyoming reveal a negative carbon isotope excursion during the PETM of 4-5‰, which is 1-2‰ greater than the excursion recorded by marine carbonates. The local plant community, known from macrofossils as well as palynoflora, shifted from a deciduous, mixed angiosperm/gymnosperm flora to a suite of evergreen angiosperm species during the PETM. At the end of the PETM, the community returned to a mixed deciduous flora very similar to the original. This change in the plant community could thus magnify the terrestrial negative carbon isotope excursion to the degree necessary to explain its divergence from the marine record. However, the comparison between modern angiosperms and gymnosperms has been made mostly between broadleaf, deciduous angiosperms and evergreen, coniferous gymnosperms. New data analyzing deciduous, coniferous gymnosperms, including Metasequoia glyptostroboides and Taxodium distichum, suggests that the division previously ascribed to taxonomy may actually be based on leaf habit and physiology, specifically broadleaf, deciduous versus needle-leaf, evergreen plants. If differences in n-alkane δ13C values can be described not as angiosperms versus gymnosperms

  14. Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower

    Science.gov (United States)

    Chanderbali, André S.; Yoo, Mi-Jeong; Zahn, Laura M.; Brockington, Samuel F.; Wall, P. Kerr; Gitzendanner, Matthew A.; Albert, Victor A.; Leebens-Mack, James; Altman, Naomi S.; Ma, Hong; dePamphilis, Claude W.; Soltis, Douglas E.; Soltis, Pamela S.

    2010-01-01

    The origin and rapid diversification of the angiosperms (Darwin's “Abominable Mystery”) has engaged generations of researchers. Here, we examine the floral genetic programs of phylogenetically pivotal angiosperms (water lily, avocado, California poppy, and Arabidopsis) and a nonflowering seed plant (a cycad) to obtain insight into the origin and subsequent evolution of the flower. Transcriptional cascades with broadly overlapping spatial domains, resembling the hypothesized ancestral gymnosperm program, are deployed across morphologically intergrading organs in water lily and avocado flowers. In contrast, spatially discrete transcriptional programs in distinct floral organs characterize the more recently derived angiosperm lineages represented by California poppy and Arabidopsis. Deep evolutionary conservation in the genetic programs of putatively homologous floral organs traces to those operating in gymnosperm reproductive cones. Female gymnosperm cones and angiosperm carpels share conserved genetic features, which may be associated with the ovule developmental program common to both organs. However, male gymnosperm cones share genetic features with both perianth (sterile attractive and protective) organs and stamens, supporting the evolutionary origin of the floral perianth from the male genetic program of seed plants. PMID:21149731

  15. Weak coordination among petiole, leaf, vein, and gas-exchange traits across 41 Australian angiosperm species and its possible implications

    Science.gov (United States)

    Background and Aims Close coordination between leaf gas exchange and maximal hydraulic supply has been reported across diverse plant life-forms. However, recent reports suggest that this relationship may become weak or break down completely within the angiosperms. Methods To examine this possi...

  16. Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower.

    Science.gov (United States)

    Chanderbali, André S; Yoo, Mi-Jeong; Zahn, Laura M; Brockington, Samuel F; Wall, P Kerr; Gitzendanner, Matthew A; Albert, Victor A; Leebens-Mack, James; Altman, Naomi S; Ma, Hong; dePamphilis, Claude W; Soltis, Douglas E; Soltis, Pamela S

    2010-12-28

    The origin and rapid diversification of the angiosperms (Darwin's "Abominable Mystery") has engaged generations of researchers. Here, we examine the floral genetic programs of phylogenetically pivotal angiosperms (water lily, avocado, California poppy, and Arabidopsis) and a nonflowering seed plant (a cycad) to obtain insight into the origin and subsequent evolution of the flower. Transcriptional cascades with broadly overlapping spatial domains, resembling the hypothesized ancestral gymnosperm program, are deployed across morphologically intergrading organs in water lily and avocado flowers. In contrast, spatially discrete transcriptional programs in distinct floral organs characterize the more recently derived angiosperm lineages represented by California poppy and Arabidopsis. Deep evolutionary conservation in the genetic programs of putatively homologous floral organs traces to those operating in gymnosperm reproductive cones. Female gymnosperm cones and angiosperm carpels share conserved genetic features, which may be associated with the ovule developmental program common to both organs. However, male gymnosperm cones share genetic features with both perianth (sterile attractive and protective) organs and stamens, supporting the evolutionary origin of the floral perianth from the male genetic program of seed plants.

  17. Effects of plant diversity on primary production and species interactions in brackish water angiosperm communities

    DEFF Research Database (Denmark)

    Salo, Tiina; Gustafsson, Camilla; Boström, Christoffer

    2009-01-01

    plant productivity in brackish water angiosperm communities, a 14 wk field experiment was conducted. Using a replacement design with a standardized initial aboveground biomass, shoots of Zostera marina, Potamogeton filiformis and P. perfoliatus were planted on a shallow, sandy bottom in replicated...... monocultures and all possible species combinations. Response variables included aboveground and belowground biomass, shoot density, space occupation and porewater nutrients. To determine whether selection and/or complementarity controlled productivity, additive partitioning and Di were calculated. Richness...... effects were species-specific and only increased the biomass production of P. perfoliatus and tuber production of P. filiformis, while species composition generally had a stronger effect on biomass production. Additive partitioning indicated a positive complementarity effect for the aboveground biomass...

  18. Uneven HAK/KUP/KT protein diversity among angiosperms: species distribution and perspectives

    Directory of Open Access Journals (Sweden)

    Manuel eNieves-Cordones

    2016-02-01

    Full Text Available HAK/KUP/KT K+ transporters have been widely associated with K+ transport across membranes in bacteria, fungi and plants. Indeed some members of the plant HAK/KUP/KT family contribute to root K+ uptake, notably at low external concentrations. Besides such role in acquisition, several studies carried out in Arabidopsis have shown that other members are also involved in developmental processes. With the publication of new plant genomes, a growing interest on plant species other than Arabidopsis has become evident. In order to understand HAK/KUP/KT diversity in these new plant genomes, we discuss the evolutionary trends of 913 HAK/KUP/KT sequences identified in 46 genomes revealing five major groups with an uneven distribution among angiosperms, notably between dicotyledonous and monocotyledonous species. This information evidenced the richness of crop genomes in HAK/KUP/KT transporters and supports their study for unraveling novel physiological roles of such transporters in plants.

  19. Gymnosperms have increased capacity for electron leakage to oxygen (Mehler and PTOX reactions) in photosynthesis compared with angiosperms.

    Science.gov (United States)

    Shirao, Masayoshi; Kuroki, Shu; Kaneko, Kaoru; Kinjo, Yuriko; Tsuyama, Michito; Förster, Britta; Takahashi, Shunichi; Badger, Murray R

    2013-07-01

    Oxygen plays an important role in photosynthesis by participating in a number of O2-consuming reactions. O2 inhibits CO2 fixation by stimulating photorespiration, thus reducing plant production. O2 interacts with photosynthetic electron transport in the chloroplasts' thylakoids in two main ways: by accepting electrons from PSI (Mehler reaction); and by accepting electrons from reduced plastoquinone (PQ) mediated by the plastid terminal oxidase (PTOX). In this study, we show, using 101 plant species, that there is a difference in the potential for photosynthetic electron flow to O2 between angiosperms and gymnosperms. We found, from measurements of Chl fluorescence and leaf absorbance at 830 nm, (i) that electron outflow from PSII, as determined by decay kinetics of Chl fluorescence after application of a saturating light pulse, is more rapid in gymnosperms than in angiosperms; (ii) that the reaction center Chl of PSI (P700) is rapidly and highly oxidized in gymnosperms during induction of photosynthesis; and (iii) that these differences are dependent on oxygen. Finally, rates of O2 uptake measured by mass spectrometry in the absence of photorespiration were significantly promoted by illumination in dark-adapted leaves of gymnosperms, but not in those of angiosperms. The light-stimulated O2 uptake was around 10% of the maximum O2 evolution in gymnosperms and 1% in angiosperms. These results suggest that gymnosperms have increased capacity for electron leakage to oxygen in photosynthesis compared with angiosperms. The involvement of the Mehler reaction and PTOX in the electron flow to O2 is discussed.

  20. Early to mid Cretaceous vegetation of northern Gondwana - the onset of angiosperm radiation and climatic implications

    Science.gov (United States)

    Coiffard, Clément; Mohr, Barbara

    2014-05-01

    Early Cretaceous Northern Gondwana seems to be the cradle of many early flowering plants, especially mesangiosperms that include magnoliids and monocots and basal eudicots. So far our knowledge was based mostly on dispersed pollen and small flowering structures. New fossil finds from Brazil include more complete plants with attached roots, leaves and flowers. Taxonomic studies show that these fossils belonged to clades which are, based on macroscopic characters and molecular data, also considered to be rather basal, such as several members of Nymphaeales, Piperales, Laurales, Magnoliales, monocots (Araliaceae) and Ranunculales. Various parameters can be used in order to understand the physiology and habitat of these plants. Adaptations to climate and habitat are partly mirrored in their root anatomy (evidence of tap roots), leaf size and shape, leaf anatomy including presence of glands, and distribution of stomata. An important ecophysiolocical parameter is vein density as an indicator for the plants' cabability to pump water, and the stomatal pore index, representing the proportion of stomatal pore area on the leaf surface, which is related to the water vapor resistance of the leaf epidermis. During the mid-Cretaceous leaf vein density started to surpass that of gymnosperms, one factor that made angiosperms very successful in conquering many kinds of new environments. Using data on these parameters we deduce that during the late Early to mid Cretaceous angiosperms were already diverse, being represented as both herbs, with aquatic members, such as Nymphaeles, helophytes (e.g. some monocots) and plants that may have grown in shady locations. Other life forms included shrubs and perhaps already small trees (e.g. Magnoliales). These flowering plants occupied various habitats, ranging from xeric (e.g. some Magnoliales) to mesic and shady (e.g. Piperales) or aquatic (e.g. Araceae, Nymphaeales). Overall, it seems that several of these plants clearly exhibited some

  1. Evolution of Xylan Substitution Patterns in Gymnosperms and Angiosperms: Implications for Xylan Interaction with Cellulose.

    Science.gov (United States)

    Busse-Wicher, Marta; Li, An; Silveira, Rodrigo L; Pereira, Caroline S; Tryfona, Theodora; Gomes, Thiago C F; Skaf, Munir S; Dupree, Paul

    2016-08-01

    The interaction between cellulose and xylan is important for the load-bearing secondary cell wall of flowering plants. Based on the precise, evenly spaced pattern of acetyl and glucuronosyl (MeGlcA) xylan substitutions in eudicots, we recently proposed that an unsubstituted face of xylan in a 2-fold helical screw can hydrogen bond to the hydrophilic surfaces of cellulose microfibrils. In gymnosperm cell walls, any role for xylan is unclear, and glucomannan is thought to be the important cellulose-binding polysaccharide. Here, we analyzed xylan from the secondary cell walls of the four gymnosperm lineages (Conifer, Gingko, Cycad, and Gnetophyta). Conifer, Gingko, and Cycad xylan lacks acetylation but is modified by arabinose and MeGlcA. Interestingly, the arabinosyl substitutions are located two xylosyl residues from MeGlcA, which is itself placed precisely on every sixth xylosyl residue. Notably, the Gnetophyta xylan is more akin to early-branching angiosperms and eudicot xylan, lacking arabinose but possessing acetylation on alternate xylosyl residues. All these precise substitution patterns are compatible with gymnosperm xylan binding to hydrophilic surfaces of cellulose. Molecular dynamics simulations support the stable binding of 2-fold screw conifer xylan to the hydrophilic face of cellulose microfibrils. Moreover, the binding of multiple xylan chains to adjacent planes of the cellulose fibril stabilizes the interaction further. Our results show that the type of xylan substitution varies, but an even pattern of xylan substitution is maintained among vascular plants. This suggests that 2-fold screw xylan binds hydrophilic faces of cellulose in eudicots, early-branching angiosperm, and gymnosperm cell walls.

  2. Inferring phylogenies with incomplete data sets: a 5-gene, 567-taxon analysis of angiosperms

    Directory of Open Access Journals (Sweden)

    Hilu Khidir W

    2009-03-01

    Full Text Available Abstract Background Phylogenetic analyses of angiosperm relationships have used only a small percentage of available sequence data, but phylogenetic data matrices often can be augmented with existing data, especially if one allows missing characters. We explore the effects on phylogenetic analyses of adding 378 matK sequences and 240 26S rDNA sequences to the complete 3-gene, 567-taxon angiosperm phylogenetic matrix of Soltis et al. Results We performed maximum likelihood bootstrap analyses of the complete, 3-gene 567-taxon data matrix and the incomplete, 5-gene 567-taxon data matrix. Although the 5-gene matrix has more missing data (27.5% than the 3-gene data matrix (2.9%, the 5-gene analysis resulted in higher levels of bootstrap support. Within the 567-taxon tree, the increase in support is most evident for relationships among the 170 taxa for which both matK and 26S rDNA sequences were added, and there is little gain in support for relationships among the 119 taxa having neither matK nor 26S rDNA sequences. The 5-gene analysis also places the enigmatic Hydrostachys in Lamiales (BS = 97% rather than in Cornales (BS = 100% in 3-gene analysis. The placement of Hydrostachys in Lamiales is unprecedented in molecular analyses, but it is consistent with embryological and morphological data. Conclusion Adding available, and often incomplete, sets of sequences to existing data sets can be a fast and inexpensive way to increase support for phylogenetic relationships and produce novel and credible new phylogenetic hypotheses.

  3. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms.

    OpenAIRE

    Soltis, D. E.; Soltis, P S; Morgan, D. R.; Swensen, S M; Mullin, B C; Dowd, J M; Martin, P. G.

    1995-01-01

    Of the approximately 380 families of angiosperms, representatives of only 10 are known to form symbiotic associations with nitrogen-fixing bacteria in root nodules. The morphologically based classification schemes proposed by taxonomists suggest that many of these 10 families of plants are only distantly related, engendering the hypothesis that the capacity to fix nitrogen evolved independently several, if not many, times. This has in turn influenced attitudes toward the likelihood of transfe...

  4. Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms.

    Science.gov (United States)

    Zhang, Pingyu; Tan, Hugh T W; Pwee, Keng-Hock; Kumar, Prakash P

    2004-02-01

    Flower development in angiosperms is regulated by the family of MADS-box transcription factors. MADS-box genes have also been reported from gymnosperms, another major group of seed plants. AGAMOUS (AG) is the class C MADS-box floral organ identity gene controlling the stamen and carpel development in Arabidopsis. We report the characterization of an ortholog of the AG gene, named Cycas AGAMOUS (CyAG), from the primitive gymnosperm Cycas edentata. The expression pattern of CyAG in Cycas parallels that of AG in Arabidopsis. Additionally, the gene structure, including the number and location of the introns, is conserved in CyAG and other AG orthologs known. Most importantly, functional analysis shows that CyAG driven by the AG promoter can rescue the loss-of-function ag mutant of Arabidopsis. However, the ectopic expression of CyAG in ag mutant Arabidopsis cannot produce the carpeloid and stamenoid organs in the first and second whorls, although the stamen and carpel are rescued in the third and fourth whorls of the transformants. These observations show that the molecular mechanism of class C function controlling reproductive organ identity (stamen and carpel of angiosperms or microsporophyll and megasporophyll of gymnosperms) arose before the divergence of angiosperms and gymnosperms, and has been conserved during 300 million years of evolution thereafter.

  5. Evolutionarily stable size of a megagametophyte: evolution of tiny megagametophytes of angiosperms from large ones of gymnosperms.

    Science.gov (United States)

    Sakai, Satoki

    2013-02-01

    To examine the factors favoring large megagametophytes of gymnosperms and tiny ones of angiosperms, a game model for seed production was developed in which megagametophytes growing in the same female parent compete for resources provided by the parent. In the model, megagametophytes may continue to grow until seed completion or may cease to grow at a certain time and regrow at pollination or fertilization. Autonomous abortion of unpollinated or unfertilized megagametophytes may occur either at pollination or fertilization. Those megagametophytes absorb a certain amount of resources before abortion, due to constraints in the signal process, in addition to the resources absorbed before pollination or fertilization. It was found that both growth habits can be the ESS: megagametophytes continue to grow without cessation and monopolize resources, such as gymnosperms, or cease to grow until fertilization to reduce the loss of resources due to autonomous abortion, such as angiosperms. The former and the latter are the ESS if the time interval between pollination and fertilization is long and short, respectively. Thus, the fertilization interval may be a critical factor selecting for large megagametophytes of gymnosperms or tiny ones of angiosperms.

  6. Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies).

    Science.gov (United States)

    Pellicer, J; Kelly, L J; Magdalena, C; Leitch, I J

    2013-08-01

    Nymphaeales are the most species-rich lineage of the earliest diverging angiosperms known as the ANA grade (Amborellales, Nymphaeales, Austrobaileyales), and they have received considerable attention from morphological, physiological, and ecological perspectives. Although phylogenetic relationships between these three lineages of angiosperms are mainly well resolved, insights at the whole genome level are still limited because of a dearth of information. To address this, genome sizes and chromosome numbers in 34 taxa, comprising 28 species were estimated and analysed together with previously published data to provide an overview of genome size and chromosome diversity in Nymphaeales. Overall, genome sizes were shown to vary 10-fold and chromosome numbers and ploidy levels ranged from 2n = 2x = 18 to 2n = 16x = ∼224. Distinct patterns of genome diversity were apparent, reflecting the differential incidence of polyploidy, changes in repetitive DNA content, and chromosome rearrangements within and between genera. Using model-based approaches, ancestral genome size and basic chromosome numbers were reconstructed to provide insights into the dynamics of genome size and chromosome number evolution. Finally, by combining additional data from Amborellales and Austrobaileyales, a comprehensive overview of genome sizes and chromosome numbers in these early diverging angiosperms is presented.

  7. Chemical Composition of Soil Horizons and Aggregate Size Fractions Under the Hawaiian Fern Dicranopteris and Angiosperm Cheirodendrom

    Science.gov (United States)

    Stewart, C. E.; Amatangelo, K.; Neff, J.

    2007-12-01

    Soil organic matter (SOM) inherits much of its chemical nature from the dominant vegetation, including phenolic (lignin-derived), aromatic, and aliphatic (cutin and wax-derived) compounds. However, relatively stable recalcitrant compounds may also be formed as a result of condensation and complexation reactions through decomposition and protected with association with mineral particles. The Hawaiian fern species Dicranopteris decomposes more slowly than the angiosperm, Cheirodendrom due to high concentrations of recalcitrant C compounds. These aliphatic fern leaf waxes are well-preserved and may comprise a large portion of the recalcitrant organic matter in these soils. Our objective was to determine the chemical composition of the SOM under the O- (litter-dominated) and the A- (mineral) horizons formed under fern and angiosperm vegetation. To determine the effect of mineral-association, we fractioned the soil into four size classes; 850-590 μm, 590-180 μm, 180-53 μm and cutin and leaf waxes (alkene and alkanes structures) occurred in the 180-53 μm fraction, which has been shown to be the most stable of the aggregate-size fractions. Soils developed under fern versus angiosperm vegetation have distinct chemical signatures, which likely determine the recalcitrance of the SOM.

  8. An unusual form of reaction wood in Koromiko [Hebe salicifolia G. Forst. (Pennell)], a southern hemisphere angiosperm.

    Science.gov (United States)

    Kojima, Miho; Becker, Verena K; Altaner, Clemens M

    2012-02-01

    Koromiko [Hebe salicifolia G. Forst. (Pennell)] is a woody angiosperm native to New Zealand and Chile. Hebe spp. belong to the otherwise herbaceous family Plantaginaceae in the order Lamiales. Reaction wood exerting expansional forces was found on the lower side of leaning H. salicifolia stems. Such reaction wood is atypical for angiosperms, which commonly form contracting reaction wood on the upper side of leaning stems. Reaction wood typical for angiosperms is formed by species in other families in the order Lamiales. This suggests that the form of reaction wood is specific to the family level. Functionally the reaction wood of H. salicifolia is similar to that found in gymnosperms, which both act by pushing. However, their chemical, anatomical and physical characteristics are different. Typical features of reaction wood present in gymnosperms such as high density, thick-walled rounded cells and the presence of (1 → 4)-β-galactan in the secondary cell wall layer are absent in H. salicifolia reaction wood. Reaction wood of H. salicifolia varies from normal wood in having a higher microfibril angle, which is likely to determine the direction of generated maturation stresses.

  9. Conservation and divergence of plant LHP1 protein sequences and expression patterns in angiosperms and gymnosperms.

    Science.gov (United States)

    Guan, Hexin; Zheng, Zhengui; Grey, Paris H; Li, Yuhua; Oppenheimer, David G

    2011-05-01

    Floral transition is a critical and strictly regulated developmental process in plants. Mutations in Arabidopsis LIKE HETEROCHROMATIN PROTEIN 1 (AtLHP1)/TERMINAL FLOWER 2 (TFL2) result in early and terminal flowers. Little is known about the gene expression, function and evolution of plant LHP1 homologs, except for Arabidopsis LHP1. In this study, the conservation and divergence of plant LHP1 protein sequences was analyzed by sequence alignments and phylogeny. LHP1 expression patterns were compared among taxa that occupy pivotal phylogenetic positions. Several relatively conserved new motifs/regions were identified among LHP1 homologs. Phylogeny of plant LHP1 proteins agreed with established angiosperm relationships. In situ hybridization unveiled conserved expression of plant LHP1 in the axillary bud/tiller, vascular bundles, developing stamens, and carpels. Unlike AtLHP1, cucumber CsLHP1-2, sugarcane SoLHP1 and maize ZmLHP1, rice OsLHP1 is not expressed in the shoot apical meristem (SAM) and the OsLHP1 transcript level is consistently low in shoots. "Unequal crossover" might have contributed to the divergence in the N-terminal and hinge region lengths of LHP1 homologs. We propose an "insertion-deletion" model for soybean (Glycine max L.) GmLHP1s evolution. Plant LHP1 homologs are more conserved than previously expected, and may favor vegetative meristem identity and primordia formation. OsLHP1 may not function in rice SAM during floral induction.

  10. The chromosomal distribution of histone methylation marks in gymnosperms differs from that of angiosperms.

    Science.gov (United States)

    Fuchs, Jörg; Jovtchev, Gabriele; Schubert, Ingo

    2008-01-01

    The chromosomal distribution of seven histone methylation marks (H3K4me2, H3K9me1,2,3 and H3K27me1,2,3) was analysed in the gymnosperm species Pinus sylvestris and Picea abies. Similarly to the situation in other investigated eukaryotes, dimethylation of lysine 4 of histone H3 is restricted to euchromatin in gymnosperms. Surprisingly, also H3K9me1-a mark classified as heterochromatin-specific in angiosperms-labels the euchromatin in P. sylvestris and P. abies. The other investigated methylation marks are either equally distributed along the chromosomes, as H3K9me2 and H3K27me1 (in both species) and H3K9me3 (in P. abies), or enriched at specific types of heterochromatin, as H3K9me3 (in P. sylvestris) and H3K27me2 and H3K27me3 in both species. Although the methylation marks themselves are apparently conserved, their functional specificity within the frame of the 'epigenetic code' might have diverged during evolution.

  11. Anatomical relations among endophytic holoparasitic angiosperms, autotrophic host plants and mycorrhizal fungi: A novel tripartite interaction.

    Science.gov (United States)

    de Vega, Clara; Arista, Montserrat; Ortiz, Pedro L; Talavera, Salvador

    2010-05-01

    Mycorrhizae are widespread mutualistic symbioses crucial for the functioning of terrestrial ecosystems. Not all plants associate with mycorrhizae; most parasitic plants have been suggested to be nonmycorrhizal because they have developed alternative strategies to obtain nutrients. In endophytic parasitic plants, whose vegetative bodies grow completely inside their mycorrhizal host roots, the opportunity for establishing a tripartite association seems evident, but information on these systems is lacking. In studying natural associations among the endophytic holoparasite Cytinus hypocistis, their Cistaceae host species, and associated mycorrhizal fungi, we found that mycorrhizae were associated with the hosts and the parasites, reaching high frequencies of colonization. In parasitic and host root tissues, mycorrhizal fungi spread in the parenchymatic cells by intracellular growth and formed hyphal coils and vesicles, while the cambium and the vascular tissues were never colonized. This report is the first on a tripartite association of an endophytic parasitic plant, its host, and mycorrhizae in natural conditions, representing a novel trophic interaction not previously reported within the angiosperms. Additional studies on the interactions occurring among these three players are needed because they may be crucial to our understanding of how this mutualistic-antagonistic system is functioning and evolving.

  12. Leaf hydraulic vulnerability influences species' bioclimatic limits in a diverse group of woody angiosperms.

    Science.gov (United States)

    Blackman, Chris J; Brodribb, Tim J; Jordan, Gregory J

    2012-01-01

    The ability of plants to maintain water flow through leaves under water stress-induced tension (assessed as the leaf hydraulic vulnerability; P50(leaf)) is intimately linked with survival. We examined the significance of P50(leaf) as an adaptive trait in influencing the dry-end distributional limits of cool temperate woody angiosperm species. We also examined differences in within-site variability in P50(leaf) between two high-rainfall montane rainforest sites in Tasmania and Peru, respectively. A significant relationship between P50(leaf) and the 5th percentile of mean annual rainfall across each species distribution was found in Tasmania, suggesting that P50(leaf) influences species climatic limits. Furthermore, a strong correlation between P50(leaf) and the minimum rainfall availability was found using five phylogenetically independent species pairs in wet and dry evergreen tree species, suggesting that rainfall is an important selective agent in the evolution of leaf hydraulic vulnerability. Greater within-site variability in P50(leaf) was found among dominant montane rainforest species in Tasmania than in Peru and this result is discussed within the context of differences in spatial and temporal environmental heterogeneity and parochial historical ecology.

  13. Internal habitat quality determines the effects of fragmentation on austral forest climbing and epiphytic angiosperms.

    Directory of Open Access Journals (Sweden)

    Ainhoa Magrach

    Full Text Available Habitat fragmentation has become one of the major threats to biodiversity worldwide, particularly in the case of forests, which have suffered enormous losses during the past decades. We analyzed how changes in patch configuration and habitat quality derived from the fragmentation of austral temperate rainforests affect the distribution of six species of forest-dwelling climbing and epiphytic angiosperms. Epiphyte and vine abundance is primarily affected by the internal characteristics of patches (such as tree size, the presence of logging gaps or the proximity to patch edges rather than patch and landscape features (such as patch size, shape or connectivity. These responses were intimately related to species-specific characteristics such as drought- or shade-tolerance. Our study therefore suggests that plant responses to fragmentation are contingent on both the species' ecology and the specific pathways through which the study area is being fragmented, (i.e. extensive logging that shaped the boundaries of current forest patches plus recent, unregulated logging that creates gaps within patches. Management practices in fragmented landscapes should therefore consider habitat quality within patches together with other spatial attributes at landscape or patch scales.

  14. Internal habitat quality determines the effects of fragmentation on austral forest climbing and epiphytic angiosperms.

    Science.gov (United States)

    Magrach, Ainhoa; Larrinaga, Asier R; Santamaría, Luis

    2012-01-01

    Habitat fragmentation has become one of the major threats to biodiversity worldwide, particularly in the case of forests, which have suffered enormous losses during the past decades. We analyzed how changes in patch configuration and habitat quality derived from the fragmentation of austral temperate rainforests affect the distribution of six species of forest-dwelling climbing and epiphytic angiosperms. Epiphyte and vine abundance is primarily affected by the internal characteristics of patches (such as tree size, the presence of logging gaps or the proximity to patch edges) rather than patch and landscape features (such as patch size, shape or connectivity). These responses were intimately related to species-specific characteristics such as drought- or shade-tolerance. Our study therefore suggests that plant responses to fragmentation are contingent on both the species' ecology and the specific pathways through which the study area is being fragmented, (i.e. extensive logging that shaped the boundaries of current forest patches plus recent, unregulated logging that creates gaps within patches). Management practices in fragmented landscapes should therefore consider habitat quality within patches together with other spatial attributes at landscape or patch scales.

  15. Floristic composition and community structure of epiphytic angiosperms in a terra firme forest in central Amazonia

    Directory of Open Access Journals (Sweden)

    Mariana Victória Irume

    2013-06-01

    Full Text Available This survey aimed to describe the floristic composition and structure of the epiphytic community occurring in a terra firme forest in the city of Coari, Brazil, in the Amazon region. Data collection was performed with a 1.5 ha plot method, with which upland, slope and lowland habitats were sampled. All angiosperm epiphytes and their host plants (diameter at breast height > 10 cm were sampled. We recorded 3.528 individuals in 13 families, 48 genera and 164 species. Araceae was the most prevalent family with regard to the importance value and stood out in all related parameters, followed by Bromeliaceae, Cyclanthaceae and Orchidaceae. The species with the highest epiphytic importance values were Guzmania lingulata (L. Mez. and Philodendron linnaei Kunth. The predominant life form was hemiepiphytic. Estimated floristic diversity was 3.2 (H'. The studied epiphytic community was distributed among 727 host plants belonging to 40 families, 123 genera and 324 species. One individual of Guarea convergens T.D. Penn. was the host with the highest richness and abundance of epiphytes. Stems/trunks of host plants were the most colonized segments, and the most favorable habitat for epiphytism was the lowlands, where 84.1% of species and 48.2% of epiphytic specimens were observed.

  16. Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues

    Directory of Open Access Journals (Sweden)

    Alessandra eMoscatelli

    2015-02-01

    Full Text Available In plants, actin filaments have an important role in organelle movement and cytoplasmic streaming. Otherwise microtubules have a role in restricting organelles to specific areas of the cell and in maintaining organelle morphology. In somatic plant cells, microtubules also participate in cell division and morphogenesis, allowing cells to take their definitive shape in order to perform specific functions. In the latter case, microtubules influence assembly of the cell wall, controlling the delivery of enzymes involved in cellulose synthesis and of wall modulation material to the proper sites.In angiosperm pollen tubes, organelle movement is generally attributed to the acto-myosin system, the main role of which is in distributing organelles in the cytoplasm and in carrying secretory vesicles to the apex for polarized growth. Recent data on membrane trafficking suggests a role of microtubules in fine delivery and repositioning of vesicles to sustain pollen tube growth. This review examines the role of microtubules in secretion and endocytosis, highlighting new research cues regarding cell wall construction and pollen tube-pistil crosstalk, that help unravel the role of microtubules in polarized growth.

  17. The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower.

    Science.gov (United States)

    Melzer, Rainer; Wang, Yong-Qiang; Theissen, Günter

    2010-02-01

    20 years after establishment of the ABC model many of the molecular mechanisms underlying development of the angiosperm flower are relatively well understood. Central players in the gene regulatory network controlling flower development are SQUA-like, DEF/GLO-like, AG-like and AGL6/SEP1-like MIKC-type MADS-domain transcription factors. These provide class A, class B, class C and the more recently defined class E floral homeotic functions, respectively. There is evidence that the floral homeotic proteins recognize the DNA of target genes in an organ-specific way as multimeric protein complexes, thus constituting 'floral quartets'. In contrast to the detailed insights into flower development, how the flower originated during evolution has remained enigmatic. However, while orthologues of all classes of floral homeotic genes appear to be absent from all non-seed plants, DEF/GLO-like, AG-like, and AGL6-like genes have been found in diverse extant gymnosperms, the closest relatives of the angiosperms. While SQUA-like and SEP1-like MADS-box genes appear to be absent from extant gymnosperms, reconstruction of MADS-box gene phylogeny surprisingly suggests that the most recent common ancestor of gymnosperms and angiosperms possessed representatives of both genes, but that these have been lost in the lineage that led to extant gymnosperms. Expression studies and genetic complementation experiments indicate that both angiosperm and gymnosperm AG-like and DEF/GLO-like genes have conserved functions in the specification of reproductive organs and in distinguishing male from female organs, respectively. Based on these findings novel models about the molecular basis of flower origin, involving changes in the expression patterns of DEF/GLO-like or AGL6/SEP1/SQUA-like genes in reproductive structures, were developed. While in angiosperms SEP1-like proteins play an important role in floral quartet formation, preliminary evidence suggests that gymnosperm DEF/GLO-like and AG

  18. Investigation of genome structure of a cinnamyl alcohol dehydrogenase locus in a basal angiosperm hardwood species, Liriodendron tulipifera L., reveals low synteny

    Institute of Scientific and Technical Information of China (English)

    Yi XU; Scott E. SCHLARBAUM; Haiying LIANG

    2011-01-01

    Basal angiosperms contain a wide diversity of floral and growth forms and gave rise to the largest recent angiosperm lineages.As none of the basal angiosperm genomes has been sequenced,examining large bacterial artificial chromosome (BAC) inserts remains the main approach to providing a first glimpse of the structure and organization of their genomes.In this study,we sequenced a 126.9-kbp BAC contig harboring a cinnamyl alcohol dehydrogenase gene (LtuCAD1) in a basal angiosperm species,Liriodendron tulipifera L.,an important timber tree species with significant ecological and economic values.A key enzyme in lignin biosynthesis,CAD catalyzes the final step in the synthesis of monolignols.We carried out phylogenetic analyses of seven full-length CAD family genes (LtuCAD1-7) obtained from a comprehensive Liriodendron expressed sequence tag dataset.The phylogenetic tree suggests that LtuCAD1 is the primary CAD gene involved in lignifications as it is the only Liriodendron CAD grouped with the bona fide CADs class.As well as the LtuCAD1,the BAC contig contained fragmented sequences for one integrase,eight hypothetical proteins,two gag-pol polyproteins,one RNase H family protein,and one chromatin binding protein.Comparative analysis with other angiosperm species suggests that the genomic segment in this BAC has undergone frequent arrangement.This study is our initial step in identifying and understanding lignin biosynthesis genes from basal angiosperm species.Such knowledge can help bridge the information gap between hardwood (angiosperm) and softwood (gymnosperm) species and benefit potential breeding and biotechnology application for enhanced production ofbiomass and digestibility in L.tulipifera.

  19. GC-biased gene conversion impacts ribosomal DNA evolution in vertebrates, angiosperms, and other eukaryotes.

    Science.gov (United States)

    Escobar, Juan S; Glémin, Sylvain; Galtier, Nicolas

    2011-09-01

    Ribosomal DNA (rDNA) is one of the most conserved genes in eukaryotes. The multiples copies of rDNA in the genome evolve in a concerted manner, through unequal crossing over and/or gene conversion, two mechanisms related to homologous recombination. Recombination increases local GC content in several organisms through a process known as GC-biased gene conversion (gBGC). gBGC has been well characterized in mammals, birds, and grasses, but its phylogenetic distribution across the tree of life is poorly understood. Here, we test the hypothesis that recombination affects the evolution of base composition in 18S rDNA and examine the reliability of this thoroughly studied molecule as a marker of gBGC in eukaryotes. Phylogenetic analyses of 18S rDNA in vertebrates and angiosperms reveal significant heterogeneity in the evolution of base composition across both groups. Mammals, birds, and grasses experience increases in the GC content of the 18S rDNA, consistent with previous genome-wide analyses. In addition, we observe increased GC contents in Ostariophysi ray-finned fishes and commelinid monocots (i.e., the clade including grasses), suggesting that the genomes of these two groups have been affected by gBGC. Polymorphism analyses in rDNA confirm that gBGC, not mutation bias, is the most plausible explanation for these patterns. We also find that helix and loop sites of the secondary structure of ribosomal RNA do not evolve at the same pace: loops evolve faster than helices, whereas helices are GC richer than loops. We extend analyses to major lineages of eukaryotes and suggest that gBGC might have also affected base composition in Giardia (Diplomonadina), nudibranch gastropods (Mollusca), and Asterozoa (Echinodermata).

  20. A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica

    Directory of Open Access Journals (Sweden)

    Krishnan Neeraja M

    2012-09-01

    Full Text Available Abstract Background The Azadirachta indica (neem tree is a source of a wide number of natural products, including the potent biopesticide azadirachtin. In spite of its widespread applications in agriculture and medicine, the molecular aspects of the biosynthesis of neem terpenoids remain largely unexplored. The current report describes the draft genome and four transcriptomes of A. indica and attempts to contextualise the sequence information in terms of its molecular phylogeny, transcript expression and terpenoid biosynthesis pathways. A. indica is the first member of the family Meliaceae to be sequenced using next generation sequencing approach. Results The genome and transcriptomes of A. indica were sequenced using multiple sequencing platforms and libraries. The A. indica genome is AT-rich, bears few repetitive DNA elements and comprises about 20,000 genes. The molecular phylogenetic analyses grouped A. indica together with Citrus sinensis from the Rutaceae family validating its conventional taxonomic classification. Comparative transcript expression analysis showed either exclusive or enhanced expression of known genes involved in neem terpenoid biosynthesis pathways compared to other sequenced angiosperms. Genome and transcriptome analyses in A. indica led to the identification of repeat elements, nucleotide composition and expression profiles of genes in various organs. Conclusions This study on A. indica genome and transcriptomes will provide a model for characterization of metabolic pathways involved in synthesis of bioactive compounds, comparative evolutionary studies among various Meliaceae family members and help annotate their genomes. A better understanding of molecular pathways involved in the azadirachtin synthesis in A. indica will pave ways for bulk production of environment friendly biopesticides.

  1. A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species.

    Science.gov (United States)

    Johnson, Daniel M; Wortemann, Remi; McCulloh, Katherine A; Jordan-Meille, Lionel; Ward, Eric; Warren, Jeffrey M; Palmroth, Sari; Domec, Jean-Christophe

    2016-08-01

    Water transport from soils to the atmosphere is critical for plant growth and survival. However, we have a limited understanding about many portions of the whole-tree hydraulic pathway, because the vast majority of published information is on terminal branches. Our understanding of mature tree trunk hydraulic physiology, in particular, is limited. The hydraulic vulnerability segmentation hypothesis (HVSH) stipulates that distal portions of the plant (leaves, branches and roots) should be more vulnerable to embolism than trunks, which are nonredundant organs that require a massive carbon investment. In the current study, we compared vulnerability to loss of hydraulic function, leaf and xylem water potentials and the resulting hydraulic safety margins (in relation to the water potential causing 50% loss of hydraulic conductivity) in leaves, branches, trunks and roots of four angiosperms and four conifer tree species. Across all species, our results supported strongly the HVSH as leaves and roots were less resistant to embolism than branches or trunks. However, branches were consistently more resistant to embolism than any other portion of the plant, including trunks. Also, calculated whole-tree vulnerability to hydraulic dysfunction was much greater than vulnerability in branches. This was due to hydraulic dysfunction in roots and leaves at less negative water potentials than those causing branch or trunk dysfunction. Leaves and roots had narrow or negative hydraulic safety margins, but trunks and branches maintained positive safety margins. By using branch-based hydraulic information as a proxy for entire plants, much research has potentially overestimated embolism resistance, and possibly drought tolerance, for many species. This study highlights the necessity to reconsider past conclusions made about plant resistance to drought based on branch xylem only. This study also highlights the necessity for more research of whole-plant hydraulic physiology to better

  2. Bark ecology of twigs vs. main stems: functional traits across eighty-five species of angiosperms.

    Science.gov (United States)

    Rosell, Julieta A; Castorena, Matiss; Laws, Claire A; Westoby, Mark

    2015-08-01

    Although produced by meristems that are continuous along the stem length, marked differences in bark morphology and in microenvironment would suggest that main stem and twig bark might differ ecologically. Here, we examined: (1) how closely associated main stem and twig bark traits were, (2) how these associations varied across sites, and (3) used these associations to infer functional and ecological differences between twig and main stem bark. We measured density, water content, photosynthesis presence/absence, total, outer, inner, and relative thicknesses of main stem and twig bark from 85 species of angiosperms from six sites of contrasting precipitation, temperature, and fire regimes. Density and water content did not differ between main stems and twigs across species and sites. Species with thicker twig bark had disproportionately thicker main stem bark in most sites, but the slope and degree of association varied. Disproportionately thicker main stem bark for a given twig bark thickness in most fire-prone sites suggested stem protection near the ground. The savanna had the opposite trend, suggesting that selection also favors twig protection in these fire-prone habitats. A weak main stem-twig bark thickness association was observed in non fire-prone sites. The near-ubiquity of photosynthesis in twigs highlighted its likely ecological importance; variation in this activity was predicted by outer bark thickness in main stems. It seems that the ecology of twig bark can be generalized to main stem bark, but not for functions depending on the amount of bark, such as protection, storage, or photosynthesis.

  3. Recent long-distance dispersal overshadows ancient biogeographical patterns in a pantropical angiosperm family (Simaroubaceae, Sapindales).

    Science.gov (United States)

    Clayton, Joshua W; Soltis, Pamela S; Soltis, Douglas E

    2009-08-01

    Detailed biogeographic studies of pantropical clades are still relatively few, and those conducted to date typically use parsimony or event-based methods to reconstruct ancestral areas. In this study, a recently developed likelihood method for reconstructing ancestral areas (the dispersal-extinction cladogenesis [DEC] model) is applied to the angiosperm family Simaroubaceae, a geographically widespread and ecologically diverse clade of pantropical and temperate trees and shrubs. To estimate divergence dates in the family, Bayesian uncorrelated rates analyses and robust fossil calibrations are applied to the well-sampled and strongly supported phylogeny. For biogeographic analyses, the effects of parameter configurations in the DEC model are assessed for different possible ancestral ranges, and the likelihood method is compared with dispersal-vicariance analysis (DIVA). Regardless of the parameters used, likelihood analyses show a common pattern of multiple recent range shifts that overshadow reconstruction of events deeper in the family's history. DIVA produced results similar to the DEC model when ancestral ranges were restricted to two areas, but some improbable ancestral ranges were also observed. Simaroubaceae exhibit an early history of range expansion between major continental areas in the Northern Hemisphere, but reconstruction of ancestral areas for lineages diverging in the early Tertiary are sensitive to the parameters of the model used. A North American origin is suggested for the family, with migration via Beringia by ancestral taxa. In contrast to traditional views, long-distance dispersal events are common, particularly in the Late Oligocene and later. Notable dispersals are inferred to have occurred across the Atlantic Ocean in both directions, as well as between Africa and Asia, and around the Indian Ocean basin and Pacific islands.

  4. 侏罗纪的花化石与被子植物起源%Jurassic flower fossils and the origin of angiosperms

    Institute of Scientific and Technical Information of China (English)

    王鑫; 刘仲健

    2015-01-01

    理解被子植物的历史对于人们了解现代被子植物之间的关系十分重要。以前欧美古植物学家认为,被子植物的历史不会早于白垩纪,使得被子植物看起来似乎是在白垩纪早期突然爆发的。但是分子钟和系统分析显示,被子植物应当早在三叠纪,至少在侏罗纪就已经出现了,但是问题的关键是相应化石证据的缺失。因此侏罗纪的花化石成为解决两个学派之间争斗的关键证据。本文简要地介绍了产出于中国辽西同一地层的、侏罗纪的三个被子植物属种及其特征,确认了被子植物在侏罗纪的存在,提出了新的被子植物雌蕊同源性理论,并为下一步植物系统学的发展打下了坚实的基础。%Understanding on the history of angiosperms is hinged with our appreciation of the relationship among extant angiosperms. Formerly European and American palaeobotanists believed that angiosperms cannot be older than the Cretaceous, leaving the origin of angiosperms as if a sudden explosion during the Early Cretaceous. But molecular clock and systematic analysis suggested that angiosperms should have been in place in the Triassic or at least the Jurassic, but this point of view lacked fossil support. Therefore the fates of angiosperm evolution hypotheses are hinged with the existence of fossilflowers in the Jurassic. Herein we introduce three taxa of angiosperms from a single Jurassic fossil locality in western Liaoning, China, confirming the existence of angiosperms in the Jurassic, advancing a new theory on the homology of angiosperm gynoecium, and paving the road for further development of plant systematics.

  5. Phylogenetic assemblage structure of North American trees is more strongly shaped by glacial-interglacial climate variability in gymnosperms than in angiosperms.

    Science.gov (United States)

    Ma, Ziyu; Sandel, Brody; Svenning, Jens-Christian

    2016-05-01

    How fast does biodiversity respond to climate change? The relationship of past and current climate with phylogenetic assemblage structure helps us to understand this question. Studies of angiosperm tree diversity in North America have already suggested effects of current water-energy balance and tropical niche conservatism. However, the role of glacial-interglacial climate variability remains to be determined, and little is known about any of these relationships for gymnosperms. Moreover, phylogenetic endemism, the concentration of unique lineages in restricted ranges, may also be related to glacial-interglacial climate variability and needs more attention. We used a refined phylogeny of both angiosperms and gymnosperms to map phylogenetic diversity, clustering and endemism of North American trees in 100-km grid cells, and climate change velocity since Last Glacial Maximum together with postglacial accessibility to recolonization to quantify glacial-interglacial climate variability. We found: (1) Current climate is the dominant factor explaining the overall patterns, with more clustered angiosperm assemblages toward lower temperature, consistent with tropical niche conservatism. (2) Long-term climate stability is associated with higher angiosperm endemism, while higher postglacial accessibility is linked to to more phylogenetic clustering and endemism in gymnosperms. (3) Factors linked to glacial-interglacial climate change have stronger effects on gymnosperms than on angiosperms. These results suggest that paleoclimate legacies supplement current climate in shaping phylogenetic patterns in North American trees, and especially so for gymnosperms.

  6. Inference of phylogenetic relationships among key angiosperm lineages using a compatibility method on a molecular data set

    Institute of Scientific and Technical Information of China (English)

    Yin-Long QIU; George F.ESTABROOK

    2008-01-01

    Phylogenetic relationships among the five key angiosperm lineages,Ceratophyllum,Chloranthaceae,eudicots,magnoliids,and monocots,have resisted resolution despite several large-scale analyses sampling taxa and characters extensively and using various analytical methods.Meanwhile,compatibility methods,which were explored together with parsimony and likelihood methods during the early development stage of phylogenetics.have been greatly under-appreciated and not been used to analyze the massive amount of sequence data to reconstruct thye basal angiosperm phylogeny.In this study,we used a compatibility method on a data set of eight genes (mitochondrial atp1,matR,and nad5,plastid atpB,marK,rbcL,and rpoC2,and nuclear 18S rDNA)gathered in an earlier study.We selected two sets of characters that are compatible with more of the other characters than a random character would be with at probabilities of pM<0.1 and p<0.5 respectively.The resulting data matrices were subjected to parsimony and likelihood bootstrap analyses.Our unrooted parsimony analyses showed that Ceratophyllum was immediately related to eudicots,this larger lineage was immediately related to magnoliids,and monocots were closely related to Chloranthaceae.All these relationships received 76%-96% bootstrap support.A likelihood analysis of the 8 gene pM<0.5 compatible site matrix recovered the same topology but with low support.Likelihood analyses of other compatible site matrices produced different topologies that were all weakly supported.The topology reconstructed in the parsimony analyses agrees with the one recovered in the previous study using both parsimony and likelihood methods when no character was eliminated.Parts of this topology have also been recovered in several earlier studies.Hence,this topology plausibly reflects the true relationships among the five key angiosperm lineages.

  7. Barcoding success as a function of phylogenetic relatedness in Viburnum, a clade of woody angiosperms

    Directory of Open Access Journals (Sweden)

    Clement Wendy L

    2012-05-01

    Full Text Available Abstract Background The chloroplast genes matK and rbcL have been proposed as a “core” DNA barcode for identifying plant species. Published estimates of successful species identification using these loci (70-80% may be inflated because they may have involved comparisons among distantly related species within target genera. To assess the ability of the proposed two-locus barcode to discriminate closely related species, we carried out a hierarchically structured set of comparisons within Viburnum, a clade of woody angiosperms containing ca. 170 species (some 70 of which are currently used in horticulture. For 112 Viburnum species, we evaluated rbcL + matK, as well as the chloroplast regions rpl32-trnL, trnH-psbA, trnK, and the nuclear ribosomal internal transcribed spacer region (nrITS. Results At most, rbcL + matK could discriminate 53% of all Viburnum species, with only 18% of the comparisons having genetic distances >1%. When comparisons were progressively restricted to species within major Viburnum subclades, there was a significant decrease in both the discriminatory power and the genetic distances. trnH-psbA and nrITS show much higher levels of variation and potential discriminatory power, and their use in plant barcoding should be reconsidered. As barcoding has often been used to discriminate species within local areas, we also compared Viburnum species within two regions, Japan and Mexico and Central America. Greater success in discriminating among the Japanese species reflects the deeper evolutionary history of Viburnum in that area, as compared to the recent radiation of a single clade into the mountains of Latin America. Conclusions We found very low levels of discrimination among closely related species of Viburnum, and low levels of variation in the proposed barcoding loci may limit success within other clades of long-lived woody plants. Inclusion of the supplementary barcodes trnH-psbA and nrITS increased discrimination rates but

  8. Phylogenetic assemblage structure of North American trees is more strongly shaped by glacial–interglacial climate variability in gymnosperms than in angiosperms

    DEFF Research Database (Denmark)

    Ma, Ziyu; Sandel, Brody Steven; Svenning, Jens-Christian

    and tropical niche conservatism. However, the role of glacial-interglacial climate variability remains to be determined, and little is known about any of these relationships for gymnosperms. Moreover, phylogenetic edemism, patterns of unique lineages in restricted ranges is also related to glacial......-interglacial climate variability and needs more attention. We used a refined phylogeny of both angiosperms and gymnosperms to map phylogenetic diversity, clustering and endemism of North American trees in 100-km grid cells, and climate change velocity since Last Glacial Maximum together with postglacial accessibility...... is associated with higher angiosperm endemism, while higher postglacial accessibility is linked to to more phylogenetic clustering and endemism in gymnosperms. iii) Factors linked to glacial-interglacial climate change had stronger effects on gymnosperms than on angiosperms. These results suggest...

  9. Comparative Genomics of NAC Transcriptional Factors in Angiosperms: Implications for the Adaptation and Diversification of Flowering Plants.

    Science.gov (United States)

    Pereira-Santana, Alejandro; Alcaraz, Luis David; Castaño, Enrique; Sanchez-Calderon, Lenin; Sanchez-Teyer, Felipe; Rodriguez-Zapata, Luis

    2015-01-01

    NAC proteins constitute one of the largest groups of plant-specific transcription factors and are known to play essential roles in various developmental processes. They are also important in plant responses to stresses such as drought, soil salinity, cold, and heat, which adversely affect growth. The current knowledge regarding the distribution of NAC proteins in plant lineages comes from relatively small samplings from the available data. In the present study, we broadened the number of plant species containing the NAC family origin and evolution to shed new light on the evolutionary history of this family in angiosperms. A comparative genome analysis was performed on 24 land plant species, and NAC ortholog groups were identified by means of bidirectional BLAST hits. Large NAC gene families are found in those species that have experienced more whole-genome duplication events, pointing to an expansion of the NAC family with divergent functions in flowering plants. A total of 3,187 NAC transcription factors that clustered into six major groups were used in the phylogenetic analysis. Many orthologous groups were found in the monocot and eudicot lineages, but only five orthologous groups were found between P. patens and each representative taxa of flowering plants. These groups were called basal orthologous groups and likely expanded into more recent taxa to cope with their environmental needs. This analysis on the angiosperm NAC family represents an effort to grasp the evolutionary and functional diversity within this gene family while providing a basis for further functional research on vascular plant gene families.

  10. Putting scales into evolutionary time: the divergence of major scale insect lineages (Hemiptera) predates the radiation of modern angiosperm hosts.

    Science.gov (United States)

    Vea, Isabelle M; Grimaldi, David A

    2016-03-22

    The radiation of flowering plants in the mid-Cretaceous transformed landscapes and is widely believed to have fuelled the radiations of major groups of phytophagous insects. An excellent group to test this assertion is the scale insects (Coccomorpha: Hemiptera), with some 8,000 described Recent species and probably the most diverse fossil record of any phytophagous insect group preserved in amber. We used here a total-evidence approach (by tip-dating) employing 174 morphological characters of 73 Recent and 43 fossil taxa (48 families) and DNA sequences of three gene regions, to obtain divergence time estimates and compare the chronology of the most diverse lineage of scale insects, the neococcoid families, with the timing of the main angiosperm radiation. An estimated origin of the Coccomorpha occurred at the beginning of the Triassic, about 245 Ma [228-273], and of the neococcoids 60 million years later [210-165 Ma]. A total-evidence approach allows the integration of extinct scale insects into a phylogenetic framework, resulting in slightly younger median estimates than analyses using Recent taxa, calibrated with fossil ages only. From these estimates, we hypothesise that most major lineages of coccoids shifted from gymnosperms onto angiosperms when the latter became diverse and abundant in the mid- to Late Cretaceous.

  11. Primary productivity of angiosperm and macroalgae dominated habitats in a New England salt marsh: a comparative analysis

    Science.gov (United States)

    Roman, C.T.; Able, K.W.; Lazzari, M.A.; Heck, K.L.

    1990-01-01

    Net primary productivity estimates were made for the major macrophyte dominated habitats of the Nauset Marsh system, Cape Cod, Massachusetts. Above-ground primary productivity of short form Spartina alterniflora, the dominant habitat of the system, was 664 g m-2 y-1. Productivity of the other dominant angiosperm (Zostera marina) was estimated to range from 444?987 g m-2 y-1. The marsh creekbank habitat was dominated by an intertidal zone of fucoid algae (Ascophyllum nodosum ecad. scorpioides, 1179 g m-2 y-1; Fucus vesiculosus, 426 g m-2 y-1), mixed intertidal filamentous algae (91 g m-2 y-1), and a subtidal zone of assorted macroalgae (68 g m-2 y-1). Intertidal mudflats were dominated by Cladophora gracilis, with net production ranging from 59?637 g m-2 y-1. These angiosperm and macrophyte and macrophyte dominated habitats produce over 3 ? 106 kg y-1 of biomass (1?2 ? 106 kg carbon y-1). Twenty-eight per cent (28%) of this carbon production is derived from the Zostera and macroalgae habitats. Although S. alterniflora is considered the major macrophyte primary producer in Nauset Marsh and other north temperate salt marshes, it is concluded that other habitats also contribute significantly to total system carbon production.

  12. Global DNA cytosine methylation as an evolving trait: phylogenetic signal and correlated evolution with genome size in Angiosperms

    Directory of Open Access Journals (Sweden)

    Conchita eAlonso

    2015-01-01

    Full Text Available DNA cytosine methylation is a widespread epigenetic mechanism in eukaryotes, and plant genomes commonly are densely methylated. Genomic methylation can be associated with functional consequences such as mutational events, genomic instability or altered gene expression, but little is known on interspecific variation in global cytosine methylation in plants. In this paper, we compare global cytosine methylation estimates obtained by HPLC and use a phylogenetically-informed analytical approach to test for significance of evolutionary signatures of this trait across 54 angiosperm species in 25 families. We evaluate whether interspecific variation in global cytosine methylation is statistically related to phylogenetic distance and also whether it is evolutionarily correlated with genome size (C-value. Global cytosine methylation varied widely between species, ranging between 5.3% (Arabidopsis and 39.2% (Narcissus. Differences between species were related to their evolutionary trajectories, as denoted by the strong phylogenetic signal underlying interspecific variation. Global cytosine methylation and genome size were evolutionarily correlated, as revealed by the significant relationship between the corresponding phylogenetically independent contrasts. On average, a ten-fold increase in genome size entailed an increase of about 10% in global cytosine methylation. Results show that global cytosine methylation is an evolving trait in angiosperms whose evolutionary trajectory is significantly linked to changes in genome size, and suggest that the evolutionary implications of epigenetic mechanisms are likely to vary between plant lineages.

  13. Cytogenetics of Chilean angiosperms: Advances and prospects Citogenética de angiospermas chilenas: Avances y proyecciones

    Directory of Open Access Journals (Sweden)

    PEDRO JARA-SEGUEL

    2012-03-01

    Full Text Available Cytogenetic data on Chilean angiosperms have been reported since at least eight decades ago; however, much of this information is disperse in diverse sources and is not readily available as a comprehensive document that allows having a general vision on advances and gaps in this matter. The goal of this paper is to summarize the advances and prospets on cytogenetic studies of the Chilean angiosperms based on compiled publications from 1929 to 2010. We found 78 publications supplied by four groups of Chilean researchers and some foreign specialists. Cytogenetic data have been reported for 139 Chilean angiosperm species (2.8 % of the total, which belong to 58 genera and 34 families. During 2001-2010 there was an increase in the number of publications, being available 40 reports including 95 additional species. Based on these data, we hope that such a trend can be maintained in the next decade if the current research groups and young specialists continue to be interested in the study of native plants.Los datos citogenéticos sobre angiospermas chilenas han sido reportados desde al menos ocho décadas atrás; sin embargo, mucha de esta información está dispersa en diversas fuentes y no está disponible como un documento completo que permita tener una visión general sobre los avances y vacíos en esta materia. El objetivo de este trabajo es resumir los avances y proyecciones sobre los estudios citogenéticos disponibles para angiospermas chilenas, basado en publicaciones recopiladas desde 1929 hasta el 2010. Nosotros encontramos 78 publicaciones aportadas por cuatro grupos de investigadores chilenos y por algunos especialistas extranjeros. Datos citogenéticos han sido reportados para 139 especies de angiospermas chilenas (2.8 % del total, las cuales pertenecen a 58 géneros y 34 familias. Durante los años 2001-2010, existió un incremento en el número de publicaciones estando disponibles 40 reportes que incluyen 95 especies adicionales. Basados

  14. Geranyllinalool synthases in solanaceae and other angiosperms constitute an ancient branch of diterpene synthases involved in the synthesis of defensive compounds

    NARCIS (Netherlands)

    Falara, V.; Alba, J.M.; Kant, M.R.; Schuurink, R.C.; Pichersky, E.

    2014-01-01

    Many angiosperm plants, including basal dicots, eudicots, and monocots, emit (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene, which is derived from geranyllinalool, in response to biotic challenge. An Arabidopsis (Arabidopsis thaliana) geranyllinalool synthase (GLS) belonging to the e/f clade of the

  15. The complete chloroplast genome sequence of Citrus sinensis (L. Osbeck var 'Ridge Pineapple': organization and phylogenetic relationships to other angiosperms

    Directory of Open Access Journals (Sweden)

    Jansen Robert K

    2006-09-01

    Full Text Available Abstract Background The production of Citrus, the largest fruit crop of international economic value, has recently been imperiled due to the introduction of the bacterial disease Citrus canker. No significant improvements have been made to combat this disease by plant breeding and nuclear transgenic approaches. Chloroplast genetic engineering has a number of advantages over nuclear transformation; it not only increases transgene expression but also facilitates transgene containment, which is one of the major impediments for development of transgenic trees. We have sequenced the Citrus chloroplast genome to facilitate genetic improvement of this crop and to assess phylogenetic relationships among major lineages of angiosperms. Results The complete chloroplast genome sequence of Citrus sinensis is 160,129 bp in length, and contains 133 genes (89 protein-coding, 4 rRNAs and 30 distinct tRNAs. Genome organization is very similar to the inferred ancestral angiosperm chloroplast genome. However, in Citrus the infA gene is absent. The inverted repeat region has expanded to duplicate rps19 and the first 84 amino acids of rpl22. The rpl22 gene in the IRb region has a nonsense mutation resulting in 9 stop codons. This was confirmed by PCR amplification and sequencing using primers that flank the IR/LSC boundaries. Repeat analysis identified 29 direct and inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Comparison of protein-coding sequences with expressed sequence tags revealed six putative RNA edits, five of which resulted in non-synonymous modifications in petL, psbH, ycf2 and ndhA. Phylogenetic analyses using maximum parsimony (MP and maximum likelihood (ML methods of a dataset composed of 61 protein-coding genes for 30 taxa provide strong support for the monophyly of several major clades of angiosperms, including monocots, eudicots, rosids and asterids. The MP and ML trees are incongruent in three areas: the position of Amborella and

  16. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests

    DEFF Research Database (Denmark)

    Augusto, Laurent; De Schrijver, An; Vesterdal, Lars;

    2015-01-01

    It has been recognized for a long time that the overstorey composition of a forest partly determines its biological and physical-chemical functioning. Here, we review evidence of the influence of evergreen gymnosperm (EG) tree species and deciduous angiosperm (DA) tree species on the water balance......, physical-chemical soil properties and biogeochemical cycling of carbon and nutrients. We used scientific publications based on experimental designs where all species grew on the same parent material and initial soil, and were similar in stage of stand development, former land use and current management. We......, resulting in drier soil conditions and lower water discharge. Soil temperature is generally not different, or slightly lower, under an EG canopy compared to a DA canopy. Chemical properties, such as soil pH, can also be significantly modified by taxonomic groups of tree species. Biomass production...

  17. Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support gnetalean affinities of angiosperms.

    Science.gov (United States)

    Goremykin, V; Bobrova, V; Pahnke, J; Troitsky, A; Antonov, A; Martin, W

    1996-02-01

    We developed PCR primers against highly conserved regions of the rRNA operon located within the inverted repeat of the chloroplast genome and used these to amplify the region spanning from the 3' terminus of the 23S rRNA gene to the 5' terminus of the 5S rRNA gene. The sequence of this roughly 500-bp region, which includes the 4.5S rRNA gene and two chloroplast intergenic transcribed spacer regions (cpITS2 and cpITS3), was determined from 20 angiosperms, 7 gymnosperms, and 16 ferns (21,700 bp). Sequences for the large subunit of ribulose bisphosphate carboxylase/oxygenase (rbcL) from the same or confamilial genera were analyzed in both separate and combined data sets. Due to the low substitution rate in the inverted repeat region, noncoding sequences in the cpITS region are not saturated with substitutions, in contrast to synonymous sites in rbcL, which are shown to evolve roughly six times faster than noncoding cpITS sequences. Several length polymorphisms with very clear phylogenetic distributions were detected in the data set. Results of phylogenetic analyses provide very strong bootstrap support for monophyly of both spermatophytes and angiosperms. No support for a sister group relationship between Gnetales and angiosperms in either cpITS or rbcL data was found. Rather, weak bootstrap support for monophyly of gymnosperms studied and for a basal position for the aquatic angiosperm Nymphaea among angiosperms studied was observed. Noncoding sequences from the inverted repeat region of chloroplast DNA appear suitable for study of land plant evolution.

  18. Evolution of Xylan Substitution Patterns in Gymnosperms and Angiosperms: Implications for Xylan Interaction with Cellulose1[OPEN

    Science.gov (United States)

    Li, An; Gomes, Thiago C.F.

    2016-01-01

    The interaction between cellulose and xylan is important for the load-bearing secondary cell wall of flowering plants. Based on the precise, evenly spaced pattern of acetyl and glucuronosyl (MeGlcA) xylan substitutions in eudicots, we recently proposed that an unsubstituted face of xylan in a 2-fold helical screw can hydrogen bond to the hydrophilic surfaces of cellulose microfibrils. In gymnosperm cell walls, any role for xylan is unclear, and glucomannan is thought to be the important cellulose-binding polysaccharide. Here, we analyzed xylan from the secondary cell walls of the four gymnosperm lineages (Conifer, Gingko, Cycad, and Gnetophyta). Conifer, Gingko, and Cycad xylan lacks acetylation but is modified by arabinose and MeGlcA. Interestingly, the arabinosyl substitutions are located two xylosyl residues from MeGlcA, which is itself placed precisely on every sixth xylosyl residue. Notably, the Gnetophyta xylan is more akin to early-branching angiosperms and eudicot xylan, lacking arabinose but possessing acetylation on alternate xylosyl residues. All these precise substitution patterns are compatible with gymnosperm xylan binding to hydrophilic surfaces of cellulose. Molecular dynamics simulations support the stable binding of 2-fold screw conifer xylan to the hydrophilic face of cellulose microfibrils. Moreover, the binding of multiple xylan chains to adjacent planes of the cellulose fibril stabilizes the interaction further. Our results show that the type of xylan substitution varies, but an even pattern of xylan substitution is maintained among vascular plants. This suggests that 2-fold screw xylan binds hydrophilic faces of cellulose in eudicots, early-branching angiosperm, and gymnosperm cell walls. PMID:27325663

  19. Comparative Genomics of NAC Transcriptional Factors in Angiosperms: Implications for the Adaptation and Diversification of Flowering Plants.

    Directory of Open Access Journals (Sweden)

    Alejandro Pereira-Santana

    Full Text Available NAC proteins constitute one of the largest groups of plant-specific transcription factors and are known to play essential roles in various developmental processes. They are also important in plant responses to stresses such as drought, soil salinity, cold, and heat, which adversely affect growth. The current knowledge regarding the distribution of NAC proteins in plant lineages comes from relatively small samplings from the available data. In the present study, we broadened the number of plant species containing the NAC family origin and evolution to shed new light on the evolutionary history of this family in angiosperms. A comparative genome analysis was performed on 24 land plant species, and NAC ortholog groups were identified by means of bidirectional BLAST hits. Large NAC gene families are found in those species that have experienced more whole-genome duplication events, pointing to an expansion of the NAC family with divergent functions in flowering plants. A total of 3,187 NAC transcription factors that clustered into six major groups were used in the phylogenetic analysis. Many orthologous groups were found in the monocot and eudicot lineages, but only five orthologous groups were found between P. patens and each representative taxa of flowering plants. These groups were called basal orthologous groups and likely expanded into more recent taxa to cope with their environmental needs. This analysis on the angiosperm NAC family represents an effort to grasp the evolutionary and functional diversity within this gene family while providing a basis for further functional research on vascular plant gene families.

  20. Comparative Genomics of NAC Transcriptional Factors in Angiosperms: Implications for the Adaptation and Diversification of Flowering Plants

    Science.gov (United States)

    Pereira-Santana, Alejandro; Alcaraz, Luis David; Castaño, Enrique; Sanchez-Calderon, Lenin; Sanchez-Teyer, Felipe; Rodriguez-Zapata, Luis

    2015-01-01

    NAC proteins constitute one of the largest groups of plant-specific transcription factors and are known to play essential roles in various developmental processes. They are also important in plant responses to stresses such as drought, soil salinity, cold, and heat, which adversely affect growth. The current knowledge regarding the distribution of NAC proteins in plant lineages comes from relatively small samplings from the available data. In the present study, we broadened the number of plant species containing the NAC family origin and evolution to shed new light on the evolutionary history of this family in angiosperms. A comparative genome analysis was performed on 24 land plant species, and NAC ortholog groups were identified by means of bidirectional BLAST hits. Large NAC gene families are found in those species that have experienced more whole-genome duplication events, pointing to an expansion of the NAC family with divergent functions in flowering plants. A total of 3,187 NAC transcription factors that clustered into six major groups were used in the phylogenetic analysis. Many orthologous groups were found in the monocot and eudicot lineages, but only five orthologous groups were found between P. patens and each representative taxa of flowering plants. These groups were called basal orthologous groups and likely expanded into more recent taxa to cope with their environmental needs. This analysis on the angiosperm NAC family represents an effort to grasp the evolutionary and functional diversity within this gene family while providing a basis for further functional research on vascular plant gene families. PMID:26569117

  1. Expansion and Functional Divergence of Jumonji C-Containing Histone Demethylases: Significance of Duplications in Ancestral Angiosperms and Vertebrates.

    Science.gov (United States)

    Qian, Shengzhan; Wang, Yingxiang; Ma, Hong; Zhang, Liangsheng

    2015-08-01

    Histone modifications, such as methylation and demethylation, are crucial mechanisms altering chromatin structure and gene expression. Recent biochemical and molecular studies have uncovered a group of histone demethylases called Jumonji C (JmjC) domain proteins. However, their evolutionary history and patterns have not been examined systematically. Here, we report extensive analyses of eukaryotic JmjC genes and define 14 subfamilies, including the Lysine-Specific Demethylase3 (KDM3), KDM5, JMJD6, Putative-Lysine-Specific Demethylase11 (PKDM11), and PKDM13 subfamilies, shared by plants, animals, and fungi. Other subfamilies are detected in plants and animals but not in fungi (PKDM12) or in animals and fungi but not in plants (KDM2 and KDM4). PKDM7, PKDM8, and PKDM9 are plant-specific groups, whereas Jumonji, AT-Rich Interactive Domain2, KDM6, and PKDM10 are animal specific. In addition to known domains, most subfamilies have characteristic conserved amino acid motifs. Whole-genome duplication (WGD) was likely an important mechanism for JmjC duplications, with four pairs from an angiosperm-wide WGD and others from subsequent WGDs. Vertebrates also experienced JmjC duplications associated with the vertebrate ancestral WGDs, with additional mammalian paralogs from tandem duplication and possible transposition. The sequences of paralogs have diverged in both known functional domains and other regions, showing evidence of selection pressure. The increases of JmjC copy number and the divergences in sequence and expression might have contributed to the divergent functions of JmjC genes, allowing the angiosperms and vertebrates to adapt to a great number of ecological niches and contributing to their evolutionary successes.

  2. Scaling of stomatal size and density optimizes allocation of leaf epidermal space for gas exchange in angiosperms

    Science.gov (United States)

    de Boer, Hugo Jan; Price, Charles A.; Wagner-Cremer, Friederike; Dekker, Stefan C.; Franks, Peter J.; Veneklaas, Erik J.

    2015-04-01

    Stomata on plant leaves are key traits in the regulation of terrestrial fluxes of water and carbon. The basic morphology of stomata consists of a diffusion pore and two guard cells that regulate the exchange of CO2 and water vapour between the leaf interior and the atmosphere. This morphology is common to nearly all land plants, yet stomatal size (defined as the area of the guard cell pair) and stomatal density (the number of stomata per unit area) range over three orders of magnitude across species. Evolution of stomatal sizes and densities is driven by selection pressure on the anatomical maximum stomatal conductance (gsmax), which determines the operational range of leaf gas exchange. Despite the importance of stomata traits for regulating leaf gas exchange, a quantitative understanding of the relation between adaptation of gsmax and the underlying co-evolution of stomatal sizes and densities is still lacking. Here we develop a theoretical framework for a scaling relationship between stomatal sizes and densities within the constraints set by the allocation of epidermal space and stomatal gas exchange. Our theory predicts an optimal scaling relationship that maximizes gsmax and minimizes epidermal space allocation to stomata. We test whether stomatal sizes and densities reflect this optimal scaling with a global compilation of stomatal trait data on 923 species reflecting most major clades. Our results show optimal scaling between stomatal sizes and densities across all species in the compiled data set. Our results also show optimal stomatal scaling across angiosperm species, but not across gymnosperm and fern species. We propose that the evolutionary flexibility of angiosperms to adjust stomatal sizes underlies their optimal allocation of leaf epidermal space to gas exchange.

  3. Early Angiosperm Flowers and Angiosperm Evolution

    DEFF Research Database (Denmark)

    Friis, Else Marie; Pedersen, Kaj Raunsgaard

    2015-01-01

    Boletim de Resumos XXIV Congresso Brasileiro de Paleontologia pp43 Paleontoiogi em Destaque Edicao especial-Agosto,2015......Boletim de Resumos XXIV Congresso Brasileiro de Paleontologia pp43 Paleontoiogi em Destaque Edicao especial-Agosto,2015...

  4. Organismal versus Environmental Control of the Carbon Isotope Composition of Dicot Angiosperm Pollen: Implications for Paleoenvironmental Reconstruction

    Science.gov (United States)

    King, D. P.; Schubert, B.; Foelber, K.; Jahren, H.

    2011-12-01

    The prevalence and diagenetic resilience of palynomorphs in Proterozoic and Phanerozoic sediments has led researchers to investigate its potential as an environmental proxy based on its stable isotope composition. Towards this, Loader and Hemming (2001), noted that the carbon isotope composition (δ13C) of modern Pinus sylvestris pollen exine correlates with the developmental period temperature (°C) of the pollen (R2=0.68), implying that the δ13C of gymnosperm pollen could be quantitatively utilized as a paleotemperature proxy. However, the majority of pollen-producing organisms during the last ~120 million years have been angiosperms, which are subject to complex internal signaling for reproduction, in addition to environmental triggers. Because these internal signals control the relative proportion of lipids, long-chain fatty acids, and polysaccharides within pollen grains, we hypothesized that the δ13C variability in pollen (δ13Cpollen) from several plants subject to the same external environmental parameters is of the same magnitude as the amount attributed to the environment for gymnosperms. Within growth chambers, the test organism (Brassica rapa) was cultivated under constant light, water, pCO2, and nutrient supply, but exhibited average δ13Cpollen variability = 4.35% within any chamber (n = 6 to 8 plants per chamber). Field experiments were also conducted in which the pollen from the test organism (Hibiscus spp.) was sampled from several botanical gardens within the state of Hawaii. Pollen collected from any one botanical garden exhibited an average δ13Cpollen variability = 4.5% (up to 5 plants per garden). Upon comparing chambers operating at different temperatures (17°C to 32°C), we discovered no correlation (R2=0.01) between the developmental period temperature (°C) and the δ13C of B. rapa pollen; similarly, no correlation was found between the δ13C of Hibiscus pollen and its developmental period temperature (°C) (R2=0.12). This work

  5. Paleomycology of the Princeton Chert II. Dark-septate fungi in the aquatic angiosperm Eorhiza arnoldii indicate a diverse assemblage of root-colonizing fungi during the Eocene.

    Science.gov (United States)

    Klymiuk, Ashley A; Taylor, Thomas N; Taylor, Edith L; Krings, Michael

    2013-01-01

    Tissues of the extinct aquatic or emergent angiosperm, Eorhiza arnoldii incertae sedis, were extensively colonized by microfungi, and in this study we report the presence of several types of sterile mycelia. In addition to inter- and intracellular proliferation of regular septate hyphae, the tissues contain monilioid hyphae with intercalary branching. These filamentous mycelia are spatially associated with two distinct morphotypes of intracellular microsclerotia. These quiescent structures are morphologically similar to loose and cerebriform microsclerotia found within the living tissues of some plants, which have been attributed to an informal assemblage of dematiaceous ascomycetes, the dark-septate endophytes. While there are significant challenges to interpreting the ecology of fossilized fungi, these specimens provide evidence for asymptomatic endophytic colonization of the rooting structures of a 48.7 million year old aquatic angiosperm.

  6. Trees and Weathering: Using Soil Petrographic and Chemical Analyses to Compare the Relative Weathering Effects of Gymnosperms and Angiosperms in the Cascade Mountains of Washington State, USA

    Science.gov (United States)

    Andrews, M. Y.; Ague, J. J.; Berner, R. A.

    2006-12-01

    Knowledge of the long-term carbon cycle and its control on atmospheric carbon dioxide levels over the Phanerozoic is crucial to understanding the impending dynamics of contemporary anthropogenic carbon contributions to the atmosphere. One aspect of the long-term carbon cycle that is poorly understood is the role of large vascular plants (trees) in contributing to the chemical weathering of silicate minerals. In particular, little is known about the differences in weathering rates between gymnosperms and angiosperms and how these dissimilarities may have impacted the carbon cycle subsequent to the evolution of angiosperm trees in the Mesozoic. One approach to evaluating these potential differences in weathering is to examine and quantitatively compare the chemistry and petrology of the soil mineral constituents from beneath modern groves of each broad tree type, where the groves have been subject to nearly identical environmental and geological conditions. This particular study focuses on field samples collected along transects through adjacent groves of angiosperms and gymnosperms in the Cascade Mountains of Washington State. Preliminary data demonstrate a significant difference in the soil texture and composition beneath the two types of trees. While soil at each field site has been generated from a homogeneous parent material, and subjected to similar inorganic environmental phenomena, soil density, particle size, and organic content vary across the transects. Soils beneath the angiosperms are denser and have a more clay-like texture, while soils beneath the gymnosperms are more organic-rich and have a sandy texture. Additional macroscopic and microscopic differences in the chemistry and petrology of these soils will illuminate the varied impacts these trees have on the silicate minerals in their immediate environment, and therefore lend insight into the potential impact these groups of organisms have had on the long-term carbon cycle over the past five hundred

  7. Conservation of the abscission signaling peptide IDA during Angiosperm evolution: withstanding genome duplications and gain and loss of the receptors HAE/HSL2

    Directory of Open Access Journals (Sweden)

    Ida M. Stø

    2015-10-01

    Full Text Available The peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA, which signals through the leucine-rich repeat receptor-like kinases HAESA (HAE and HAESA-LIKE2 (HSL2, controls different cell separation events in Arabidopsis thaliana. We hypothesize the involvement of this signaling module in abscission processes in other plant species even though they may shed other organs than A. thaliana. As the first step towards testing this hypothesis from an evolutionarily perspective we have identified genes encoding putative orthologues of IDA and its receptors by BLAST searches of publically available protein, nucleotide and genome databases for angiosperms. Genes encoding IDA or IDA-LIKE (IDL peptides and HSL proteins were found in all investigated species, which were selected as to represent each angiosperm order with available genomic sequences. The 12 amino acids representing the bioactive peptide in A. thaliana have virtually been unchanged throughout the evolution of the angiosperms; however, the number of IDL and HSL genes varies between different orders and species. The phylogenetic analyses suggest that IDA, HSL2 and the related HSL1 gene, were present in the species that gave rise to the angiosperms. HAE has arisen from HSL1 after a genome duplication that took place after the monocot - eudicots split. HSL1 has also independently been duplicated in the monocots, while HSL2 has been lost in gingers (Zingiberales and grasses (Poales. IDA has been duplicated in eudicots to give rise to functionally divergent IDL peptides. We postulate that the high number of IDL homologs present in the core eudicots is a result of multiple whole genome duplications. We substantiate the involvement of IDA and HAE/HSL2 homologs in abscission by providing gene expression data of different organ separation events from various species.

  8. Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperm lignins (and an indicator for cinnamoyl CoA reductase deficiency).

    Science.gov (United States)

    Ralph, John; Kim, Hoon; Lu, Fachuang; Grabber, John H; Leplé, Jean-Charles; Berrio-Sierra, Jimmy; Derikvand, Mohammad Mir; Jouanin, Lise; Boerjan, Wout; Lapierre, Catherine

    2008-01-01

    A molecular marker compound, derived from lignin by the thioacidolysis degradative method, for structures produced when ferulic acid is incorporated into lignin in angiosperms (poplar, Arabidopsis, tobacco), has been structurally identified as 1,2,2-trithioethyl ethylguaiacol [1-(4-hydroxy-3-methoxyphenyl)-1,2,2-tris(ethylthio)ethane]. Its truncated side chain and distinctive oxidation state suggest that it derives from ferulic acid that has undergone bis-8-O-4 (cross) coupling during lignification, as validated by model studies. A diagnostic contour for such structures is found in two-dimensional (13)C-(1)H correlated (HSQC) NMR spectra of lignins isolated from cinnamoyl CoA reductase (CCR)-deficient poplar. As low levels of the marker are also released from normal (i.e. non-transgenic) plants in which ferulic acid may be present during lignification, notably in grasses, the marker is only an indicator for CCR deficiency in general, but is a reliable marker in woody angiosperms such as poplar. Its derivation, together with evidence for 4-O-etherified ferulic acid, strongly implies that ferulic acid is incorporated into angiosperm lignins. Its endwise radical coupling reactions suggest that ferulic acid should be considered an authentic lignin precursor. Moreover, ferulic acid incorporation provides a new mechanism for producing branch points in the polymer. The findings sharply contradict those reported in a recent study on CCR-deficient Arabidopsis.

  9. Three loblolly pine CesA genes expressed in developing xylem are orthologous to secondary cell wall CesA genes of angiosperms.

    Science.gov (United States)

    Nairn, C Joseph; Haselkorn, Tamara

    2005-06-01

    Specific plant cellulose synthases (CesA), encoded by a multigene family, are necessary for secondary wall synthesis in vascular tissues and are critical to wood production. We obtained full-length clones for the three CesAs that are highly expressed in developing xylem and examined their phylogenetic relationships and expression patterns in loblolly pine tissues. Full-length CesA clones were isolated from cDNA of developing loblolly pine (Pinus taeda) xylem and phylogenetic inferences made from plant CesA protein sequences. Expression of the three genes was examined by Northern blot analysis and semiquantitative RT-PCR. Each of three PtCesA genes is orthologous to one of the three angiosperm secondary cell wall CesAs. The PtCesAs are coexpressed in tissues of loblolly pine with tissues undergoing secondary cell wall biosynthesis showing the highest levels of expression. Phylogenetic and expression analyses suggest that functional roles for these loblolly pine CesAs are analogous to those of orthologs in angiosperm taxa. Based upon evidence from this and other studies, we suggest division of seed plant CesA genes into six major paralogous groups, each containing orthologs from various taxa. Available evidence suggests that paralogous CesA genes and their distinct functional roles evolved before the divergence of gymnosperm and angiosperm lineages.

  10. A gene family derived from transposable elements during early angiosperm evolution has reproductive fitness benefits in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Zoé Joly-Lopez

    2012-09-01

    Full Text Available The benefits of ever-growing numbers of sequenced eukaryotic genomes will not be fully realized until we learn to decipher vast stretches of noncoding DNA, largely composed of transposable elements. Transposable elements persist through self-replication, but some genes once encoded by transposable elements have, through a process called molecular domestication, evolved new functions that increase fitness. Although they have conferred numerous adaptations, the number of such domesticated transposable element genes remains unknown, so their evolutionary and functional impact cannot be fully assessed. Systematic searches that exploit genomic signatures of natural selection have been employed to identify potential domesticated genes, but their predictions have yet to be experimentally verified. To this end, we investigated a family of domesticated genes called MUSTANG (MUG, identified in a previous bioinformatic search of plant genomes. We show that MUG genes are functional. Mutants of Arabidopsis thaliana MUG genes yield phenotypes with severely reduced plant fitness through decreased plant size, delayed flowering, abnormal development of floral organs, and markedly reduced fertility. MUG genes are present in all flowering plants, but not in any non-flowering plant lineages, such as gymnosperms, suggesting that the molecular domestication of MUG may have been an integral part of early angiosperm evolution. This study shows that systematic searches can be successful at identifying functional genetic elements in noncoding regions and demonstrates how to combine systematic searches with reverse genetics in a fruitful way to decipher eukaryotic genomes.

  11. Diversification rates and chromosome evolution in the most diverse angiosperm genus of the temperate zone (Carex, Cyperaceae).

    Science.gov (United States)

    Escudero, Marcial; Hipp, Andrew L; Waterway, Marcia J; Valente, Luis M

    2012-06-01

    The sedge family (Cyperaceae: Poales; ca. 5600 spp.) is a hyperdiverse cosmopolitan group with centres of species diversity in Africa, Australia, eastern Asia, North America, and the Neotropics. Carex, with ca. 40% of the species in the family, is one of the most species-rich angiosperm genera and the most diverse in temperate regions of the Northern Hemisphere, making it atypical among plants in that it inverts the latitudinal gradient of species richness. Moreover, Carex exhibits high rates of chromosome rearrangement via fission, fusion, and translocation, which distinguishes it from the rest of the Cyperaceae. Here, we use a phylogenetic framework to examine how the onset of contemporary temperate climates and the processes of chromosome evolution have influenced the diversification dynamics of Carex. We provide estimates of diversification rates and map chromosome transitions across the evolutionary history of the main four clades of Carex. We demonstrate that Carex underwent a shift in diversification rates sometime between the Late Eocene and the Oligocene, during a global cooling period, which fits with a transition in diploid chromosome number. We suggest that adaptive radiation to novel temperate climates, aided by a shift in the mode of chromosome evolution, may explain the large-scale radiation of Carex and its latitudinal pattern of species richness.

  12. Leishmanicidal and antitumoral activities of endophytic fungi associated with the Antarctic angiosperms Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl.

    Science.gov (United States)

    Santiago, Iara F; Alves, Tânia M A; Rabello, Ana; Sales Junior, Policarpo A; Romanha, Alvaro J; Zani, Carlos L; Rosa, Carlos A; Rosa, Luiz H

    2012-01-01

    A total of 564 isolates of endophytic fungi were recovered from the plants Deschampsia antarctica and Colobanthus quitensis collected from Antarctica. The isolates were screened against parasites Leishmania amazonensis and Trypanosoma cruzi and against the human tumour cell lines. Of the 313 fungal isolates obtained from D. antarctica and 251 from C. quitensis, 25 displayed biological activity. Nineteen extracts displayed leishmanicidal activity, and six inhibited the growth of at least one tumour cell line. These fungi belong to 19 taxa of the genera Alternaria, Antarctomyces, Cadophora, Davidiella, Helgardia, Herpotrichia, Microdochium, Oculimacula, Phaeosphaeria and one unidentified fungus. Extracts of 12 fungal isolates inhibited the proliferation of L. amazonesis at a low IC(50) of between 0.2 and 12.5 μg ml(-1). The fungus Phaeosphaeria herpotrichoides displayed only leishmanicidal activity with an IC(50) of 0.2 μg ml(-1), which is equivalent to the inhibitory value of amphotericin B. The extract of Microdochium phragmitis displayed specific cytotoxic activity against the UACC-62 cell line with an IC(50) value of 12.5 μg ml(-1). Our results indicate that the unique angiosperms living in Antarctica shelter an interesting bioactive fungal community that is able to produce antiprotozoal and antitumoral molecules. These molecules may be used to develop new leishmanicidal and anticancer drugs.

  13. Perfume-collecting male euglossine bees as pollinators of a basal angiosperm: the case of Unonopsis stipitata (Annonaceae).

    Science.gov (United States)

    Teichert, H; Dötterl, S; Zimma, B; Ayasse, M; Gottsberger, G

    2009-01-01

    Pollination of Unonopsis stipitata (Annonaceae) by males of two perfume-collecting bees, Euglossa imperialis and Eulaema bombiformis (Euglossini) is described. This is the first detailed account of this pollination mode in a member of a basal angiosperm family. Pollinator behaviour, identification of the odour bouquet and electrophysiological reaction of one of the two pollinators to the odour bouquet were determined. The collected odour is produced by 'osmophores' located adaxially on the petals. Starch and polysaccharides accumulated in petals are metabolized during odour emission. Mainly monoterpenes were detected in the scent samples, among them trans-carvone oxide. This molecule is thought by several authors to be the key attractant for male Eulaema bees and may be pivotal for convergent evolution of the perfume-collecting syndrome among dicotyledonous and monocotyledonous plants. It is speculated that Unonopsis, which on the basis of molecular age dating is considered a relatively recent genus of the Annonaceae (being 15-30 million years old), has diversified in relation to male euglossine bee pollinators.

  14. Phylogeny of the basal angiosperm genus Pseuduvaria (Annonaceae) inferred from five chloroplast DNA regions, with interpretation of morphological character evolution.

    Science.gov (United States)

    Su, Yvonne C F; Smith, Gavin J D; Saunders, Richard M K

    2008-07-01

    Phylogenetic relationships within the magnoliid basal angiosperm genus Pseuduvaria (Annonaceae) are investigated using chloroplast DNA sequences from five regions: psbA-trnH spacer, trnL-F, matK, rbcL, and atpB-rbcL spacer. Over 4000 nucleotides from 51 species (of the total 53) were sequenced. The five cpDNA datasets were analyzed separately and in combination using maximum parsimony (MP), maximum likelihood (ML), and Bayesian methods. The phylogenetic trees constructed using all three phylogenetic methods, based on the combined data, strongly support the monophyly of Pseuduvaria following the inclusion of Craibella phuyensis. The trees generated using MP were less well resolved, but relationships are similar to those obtained using the other methods. ML and Bayesian analyses recovered trees with short branch lengths, showing five main clades. This study highlights the evolutionary changes in seven selected morphological characters (floral sex, stamen and carpel numbers, inner petal color, presence of inner petal glands, flowering peduncle length, and monocarp size). Although floral unisexuality is ancestral within the genus, several evolutionary lineages reveal reversal to bisexuality. Other phylogenetic transitions include the evolution of sapromyophily, and fruit-bat frugivory and seed dispersal, thus allowing a wide range of adaptations for species survival.

  15. Citogenética de Angiospermas coletadas em Pernambuco: V Cytogenetics of Angiosperms collected in the State of Pernambuco: V

    Directory of Open Access Journals (Sweden)

    Andrea Pedrosa

    1999-04-01

    Full Text Available Foram analisadas 33 espécies, entre nativas e introduzidas, pertencentes a 20 famílias de angiospermas ocorrentes no Estado de Pernambuco. A caracterização cariotípica da maioria das espécies foi baseada no número e morfologia cromossômica, padrão de condensação de cromossomos profásicos e estrutura de núcleo interfásico. Cinco espécies tiveram seus números cromossômicos determinados pela primeira vez, sendo elas: Cereus jamacaru (2n=22, Clitoria fairchildiana (2n=22, Eugenia luschnathiana (2n=22, Licania tomentosa (2n=22 e Spondias tuberosa (n=16. No caso de Licania tomentosa esta é a primeira citação de número cromossômico para o gênero. Das outras 28 espécies, três (Cecropia cf. palmata, 2n=26; Crinum erubescens, 2n=70; e Schinus terebentifolius, 2n=28 apresentaram números cromossômicos diferentes dos registrados previamente na literatura.Thirty three native and introduced species from 20 families of angiosperms collected in the State of Pernambuco were analysed. The karyotype description of the majority of the species was based on chromosome number and morphology, condensation pattern of prophase chromosomes as well as interphase nuclear structure. In five species (Cereus jamacaru, 2n=22; Clitoria fairchildiana, 2n=22; Eugenia luschnathiana, 2n=22; Licania tomentosa, 2n=22; and Spondias tuberosa, n=16 the chromosome number is reported here for the first time. In the case of Licania tomentosa, this is also the first report for the genus. Among the other 28 species, three (Cecropia cf. palmata, 2n=26; Crinum erubescens, 2n=70; and Schinus terebentifolius, 2n=28 showed chromosome numbers different from what has previously been reported.

  16. Useful ethnophytomedicinal recipes of angiosperms used against diabetes in South East Asian Countries (India, Pakistan & Sri Lanka).

    Science.gov (United States)

    Marwat, Sarfaraz Khan; Rehman, Fazalur; Khan, Ejaz Ahmad; Khakwani, Abdul Aziz; Ullah, Imdad; Khan, Kaleem Ullah; Khan, Inam Ullah

    2014-09-01

    This paper is based on data recorded from various literatures pertaining to ethnophytomedicinal recipes used against diabetes in South East Asia (India, Pakistan and Srilanka). Traditional plant treatments have been used throughout the world for the therapy of diabetes mellitus. In total 419 useful phytorecipes of 270 plant species belonging to 74 Angiospermic families were collected. From the review it was revealed that plants showing hypoglycemic potential mainly belong to the families, Cucurbitaceae (16 spp.), Euphorbiaceae (15 spp.), Caesalpiniaceae and Papilionaceae (13 spp. each), Moraceae (11 spp.), Acanthaceae (10 spp.), Mimosaceae (09 spp.), Asteraceae, Malvaceae and Poaceae (08 spp. each), Hippocrateaceae, Rutaceae and Zingiberaceae (07 spp. each), Apocynaceae, Asclepiadaceae and Verbenaceae (06 spp. each), Apiaceae, Convolvulaceae, Lamiaceae, Myrtaceae, Solanaceae (05 spp.each). The most active plants are Syzigium cumini (14 recipes), Phyllanthus emblica (09 recipes), Centella asiatica and Momordica charantia (08 recipes each), Azadirachta indica (07 recipes), Aegle marmelos, Catharanthus roseus, Ficus benghalensis, Ficus racemosa, Gymnema sylvestre (06 recipes each), Allium cepa, A. sativum, Andrographis paniculata, Curcuma longa (05 recipes each), Citrullus colocynthis, Justicia adhatoda, Nelumbo nucifera, Tinospora cordifolia, Trigonella foenum-graecum, Ziziphus mauritiana and Wattakaka volubilis (4 recipes each). These traditional recipes include extracts, leaves, powders, flour, seeds, vegetables, fruits and herbal mixtures. Data inventory consists of botanical name, recipe, vernacular name, English name. Some of the plants of the above data with experimentally confirmed antidiabetic properties have also been recorded. More investigations must be carried out to evaluate the mechanism of action of diabetic medicinal plants. Toxicity of these plants should also be explained. Scientific validation of these recipes may help in discovering new drugs from

  17. Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids.

    Science.gov (United States)

    Horn, Stefanie; Pabón-Mora, Natalia; Theuß, Vanessa S; Busch, Andrea; Zachgo, Sabine

    2015-02-01

    Flower monosymmetry contributes to specialized interactions between plants and their insect pollinators. In the magnoliids, flower monosymmetry is exhibited only in the Aristolochiaceae (Piperales). Aristolochia flowers develop a calyx-derived monosymmetric perianth that enhances pollination success by a flytrap mechanism. Aristolochia arborea forms additionally a special perianth outgrowth that mimics a mushroom to attract flies, the mushroom mimicry structure (MMS). In core eudicots, members of the CYC2 clade of TCP transcription factors are key regulators of corolla monosymmetry establishment. The CYC2 clade arose via core eudicot-specific duplications from ancestral CYC/TB1 genes. CYC/TB1 genes are also thought to affect monosymmetry formation in early diverging eudicot and monocot species. Here, we demonstrate that CYC/TB1 genes, named CYC-like genes (CYCL) are present in basal angiosperms and magnoliids. Expression analyses in A. arborea indicate that CYCL genes participate in perianth and MMS differentiation processes and do not support a CYCL gene function in initial flower monosymmetry formation. Heterologous CYCL and CYC2 gene overexpression studies in Arabidopsis show that Aristolochia CYCL proteins only perform a CYC2-like function when the CYCL TCP domain is replaced by a CYC2 domain. Comparative TCP domain analyses revealed that an LxxLL motif, known to mediate protein-protein interactions, evolved in the second helix of the TCP domain in the CYC2 lineage and contributes to CYC2-related functions. Our data imply that divergent evolution of the CYC/TB1 lineages caused significant changes in their coding regions, which together with cis-regulatory changes established the key CYC2 function in regulating eudicot flower monosymmetry.

  18. The plastid genome of Najas flexilis: adaptation to submersed environments is accompanied by the complete loss of the NDH complex in an aquatic angiosperm.

    Directory of Open Access Journals (Sweden)

    Elena L Peredo

    Full Text Available The re-colonization of aquatic habitats by angiosperms has presented a difficult challenge to plants whose long evolutionary history primarily reflects adaptations to terrestrial conditions. Many aquatics must complete vital stages of their life cycle on the water surface by means of floating or emergent leaves and flowers. Only a few species, mainly within the order Alismatales, are able to complete all aspects of their life cycle including pollination, entirely underwater. Water-pollinated Alismatales include seagrasses and water nymphs (Najas, the latter being the only freshwater genus in the family Hydrocharitaceae with subsurface water-pollination. We have determined the complete nucleotide sequence of the plastid genome of Najas flexilis. The plastid genome of N. flexilis is a circular AT-rich DNA molecule of 156 kb, which displays a quadripartite structure with two inverted repeats (IR separating the large single copy (LSC from the small single copy (SSC regions. In N. flexilis, as in other Alismatales, the rps19 and trnH genes are localized in the LSC region instead of within the IR regions as in other monocots. However, the N. flexilis plastid genome presents some anomalous modifications. The size of the SSC region is only one third of that reported for closely related species. The number of genes in the plastid is considerably less. Both features are due to loss of the eleven ndh genes in the Najas flexilis plastid. In angiosperms, the absence of ndh genes has been related mainly to the loss of photosynthetic function in parasitic plants. The ndh genes encode the NAD(PH dehydrogenase complex, believed essential in terrestrial environments, where it increases photosynthetic efficiency in variable light intensities. The modified structure of the N. flexilis plastid genome suggests that adaptation to submersed environments, where light is scarce, has involved the loss of the NDH complex in at least some photosynthetic angiosperms.

  19. Geranyllinalool Synthases in Solanaceae and Other Angiosperms Constitute an Ancient Branch of Diterpene Synthases Involved in the Synthesis of Defensive Compounds1[C][W][OPEN

    Science.gov (United States)

    Falara, Vasiliki; Alba, Juan M.; Kant, Merijn R.; Schuurink, Robert C.; Pichersky, Eran

    2014-01-01

    Many angiosperm plants, including basal dicots, eudicots, and monocots, emit (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene, which is derived from geranyllinalool, in response to biotic challenge. An Arabidopsis (Arabidopsis thaliana) geranyllinalool synthase (GLS) belonging to the e/f clade of the terpene synthase (TPS) family and two Fabaceae GLSs that belong to the TPS-g clade have been reported, making it unclear which is the main route to geranyllinalool in plants. We characterized a tomato (Solanum lycopersicum) TPS-e/f gene, TPS46, encoding GLS (SlGLS) and its homolog (NaGLS) from Nicotiana attenuata. The Km value of SlGLS for geranylgeranyl diphosphate was 18.7 µm, with a turnover rate value of 6.85 s–1. In leaves and flowers of N. attenuata, which constitutively synthesize 17-hydroxygeranyllinalool glycosides, NaGLS is expressed constitutively, but the gene can be induced in leaves with methyl jasmonate. In tomato, SlGLS is not expressed in any tissue under normal growth but is induced in leaves by alamethicin and methyl jasmonate treatments. SlGLS, NaGLS, AtGLSs, and several other GLSs characterized only in vitro come from four different eudicot families and constitute a separate branch of the TPS-e/f clade that diverged from kaurene synthases, also in the TPS-e/f clade, before the gymnosperm-angiosperm split. The early divergence of this branch and the GLS activity of genes in this branch in diverse eudicot families suggest that GLS activity encoded by these genes predates the angiosperm-gymnosperm split. However, although a TPS sequence belonging to this GLS lineage was recently reported from a basal dicot, no representative sequences have yet been found in monocot or nonangiospermous plants. PMID:25052853

  20. Slow but not low: genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms

    Directory of Open Access Journals (Sweden)

    Buschiazzo Emmanuel

    2012-01-01

    Full Text Available Background Comparative genomics can inform us about the processes of mutation and selection across diverse taxa. Among seed plants, gymnosperms have been lacking in genomic comparisons. Recent EST and full-length cDNA collections for two conifers, Sitka spruce (Picea sitchensis and loblolly pine (Pinus taeda, together with full genome sequences for two angiosperms, Arabidopsis thaliana and poplar (Populus trichocarpa, offer an opportunity to infer the evolutionary processes underlying thousands of orthologous protein-coding genes in gymnosperms compared with an angiosperm orthologue set. Results Based upon pairwise comparisons of 3,723 spruce and pine orthologues, we found an average synonymous genetic distance (dS of 0.191, and an average dN/dS ratio of 0.314. Using a fossil-established divergence time of 140 million years between spruce and pine, we extrapolated a nucleotide substitution rate of 0.68 × 10-9 synonymous substitutions per site per year. When compared to angiosperms, this indicates a dramatically slower rate of nucleotide substitution rates in conifers: on average 15-fold. Coincidentally, we found a three-fold higher dN/dS for the spruce-pine lineage compared to the poplar-Arabidopsis lineage. This joint occurrence of a slower evolutionary rate in conifers with higher dN/dS, and possibly positive selection, showcases the uniqueness of conifer genome evolution. Conclusions Our results are in line with documented reduced nucleotide diversity, conservative genome evolution and low rates of diversification in conifers on the one hand and numerous examples of local adaptation in conifers on the other hand. We propose that reduced levels of nucleotide mutation in large and long-lived conifer trees, coupled with large effective population size, were the main factors leading to slow substitution rates but retention of beneficial mutations.

  1. Antioxidant, anticholinesterase and tyrosinase inhibition activities, and fatty acids of Crocus mathewii - A forgotten endemic angiosperm of Turkey.

    Science.gov (United States)

    Yildiztekin, Fatma; Nadeem, Said; Erol, Ebru; Yildiztekin, Mahmut; Tuna, Atilla L; Ozturk, Mehmet

    2016-09-01

    Context We report the first ever chemical/biochemical study on Crocus mathewii Kerndorff (Iridaceae) - a Turkish endemic angiosperm. This plant has never been explored for its phytochemistry and bioactivities. Objective This study explores C. mathewii corm and aerial parts for the chemical and biological properties of hexane, ethyl acetate, methanol and water fractions of the extracts. Material and methods Plant material (20 g) was extracted by methanol (250 mL × 5, 3 days each) and fractioned into hexane, ethyl acetate, methanol and water. All fractions were subjected to β-carotene-linoleic acid, DPPH(·), ABTS(·)(+), CUPRAC, metal chelating and tyrosinase inhibition activities. Hexane fractions were submitted to GC-MS analysis. Results Ethyl acetate fractions showed excellent IC50 values in DPPH(·) (aerial 36.21 ± 0.76 and corm 33.87 ± 0.02 mg/L) and ABTS(·)(+) (aerial 33.01 ± 0.79 and bulb 27.87 ± 0.33 mg/L); higher than the IC50 of the standard α-tocopherol (DPPH 116.25 ± 1.97; ABTS 52.64 ± 0.37 mg/L), higher than BHA in DPPH (57.31 ± 0.25 mg/L), but slightly lower in ABTS (19.86 ± 2.73 mg/L). Methanol extract of aerial parts also showed higher activity than α-tocopherol in DPPH (85.56 ± 11.51 mg/L) but slightly less (72.90 ± 3.66 mg/L) than both the standards in ABTS. Linoleic (aerial 53.9%, corm 43.9%) and palmitic (aerial 22.2%, corm 18%) were found as the major fatty acids. Discussion and conclusion Some fractions of C. mathewii showed higher antioxidant activities than the standards. There is a need to explore more about this plant.

  2. Phylogeny and Expression Analyses Reveal Important Roles for Plant PKS III Family during the Conquest of Land by Plants and Angiosperm Diversification

    Science.gov (United States)

    Xie, Lulu; Liu, Pingli; Zhu, Zhixin; Zhang, Shifan; Zhang, Shujiang; Li, Fei; Zhang, Hui; Li, Guoliang; Wei, Yunxiao; Sun, Rifei

    2016-01-01

    Polyketide synthases (PKSs) utilize the products of primary metabolism to synthesize a wide array of secondary metabolites in both prokaryotic and eukaryotic organisms. PKSs can be grouped into three distinct classes, types I, II, and III, based on enzyme structure, substrate specificity, and catalytic mechanisms. The type III PKS enzymes function as homodimers, and are the only class of PKS that do not require acyl carrier protein. Plant type III PKS enzymes, also known as chalcone synthase (CHS)-like enzymes, are of particular interest due to their functional diversity. In this study, we mined type III PKS gene sequences from the genomes of six aquatic algae and 25 land plants (1 bryophyte, 1 lycophyte, 2 basal angiosperms, 16 core eudicots, and 5 monocots). PKS III sequences were found relatively conserved in all embryophytes, but not exist in algae. We also examined gene expression patterns by analyzing available transcriptome data, and identified potential cis-regulatory elements in upstream sequences. Phylogenetic trees of dicots angiosperms showed that plant type III PKS proteins fall into three clades. Clade A contains CHS/STS-type enzymes coding genes with diverse transcriptional expression patterns and enzymatic functions, while clade B is further divided into subclades b1 and b2, which consist of anther-specific CHS-like enzymes. Differentiation regions, such as amino acids 196-207 between clades A and B, and predicted positive selected sites within α-helixes in late appeared branches of clade A, account for the major diversification in substrate choice and catalytic reaction. The integrity and location of conserved cis-elements containing MYB and bHLH binding sites can affect transcription levels. Potential binding sites for transcription factors such as WRKY, SPL, or AP2/EREBP may contribute to tissue- or taxon-specific differences in gene expression. Our data shows that gene duplications and functional diversification of plant type III PKS enzymes

  3. Phylogeny and expression analyses reveal important roles for plant PKS III family during the conquest of land by plants and angiosperm diversification

    Directory of Open Access Journals (Sweden)

    Lulu Xie

    2016-08-01

    Full Text Available AbstractPolyketide synthases (PKSs utilize the products of primary metabolism to synthesize a wide array of secondary metabolites in both prokaryotic and eukaryotic organisms. PKSs can be grouped into three distinct classes, type I, II, and III, based on enzyme structure, substrate specificity, and catalytic mechanisms. The type III PKS enzymes function as homodimers, and are the only class of PKS that do not require acyl carrier protein. Plant type III PKS enzymes, also known as chalcone synthase (CHS-like enzymes, are of particular interest due to their functional diversity. In this study, we mined type III PKS gene sequences from the genomes of six aquatic algae and twenty-five land plants (one bryophyte, one lycophyte, two basal angiosperms, sixteen core eudicots, and five monocots. PKS III sequences were found relatively conserved in all embryophytes, but not exist in algae. We also examined gene expression patterns by analyzing available transcriptome data, and identified potential cis regulatory elements in upstream sequences. Phylogenetic trees of dicots angiosperms showed that plant type III PKS proteins fall into three clades. Clade A contains CHS/STS-type enzymes coding genes with diverse transcriptional expression patterns and enzymatic functions, while clade B is further divided into subclades b1 and b2, which consist of anther-specific CHS-like enzymes. Differentiation regions, such as amino acids 196-207 between clades A and B, and predicted positive selected sites within α-helixes in late appeared branches of clade A, account for the major diversification in substrate choice and catalytic reaction. The integrity and location of conserved cis-elements containing MYB and bHLH binding sites can affect transcription levels. Potential binding sites for transcription factors such as WRKY, SPL or AP2/EREBP may contribute to tissue- or taxon-specific differences in gene expression. Our data shows that gene duplications and functional

  4. Phylogeny and Expression Analyses Reveal Important Roles for Plant PKS III Family during the Conquest of Land by Plants and Angiosperm Diversification.

    Science.gov (United States)

    Xie, Lulu; Liu, Pingli; Zhu, Zhixin; Zhang, Shifan; Zhang, Shujiang; Li, Fei; Zhang, Hui; Li, Guoliang; Wei, Yunxiao; Sun, Rifei

    2016-01-01

    Polyketide synthases (PKSs) utilize the products of primary metabolism to synthesize a wide array of secondary metabolites in both prokaryotic and eukaryotic organisms. PKSs can be grouped into three distinct classes, types I, II, and III, based on enzyme structure, substrate specificity, and catalytic mechanisms. The type III PKS enzymes function as homodimers, and are the only class of PKS that do not require acyl carrier protein. Plant type III PKS enzymes, also known as chalcone synthase (CHS)-like enzymes, are of particular interest due to their functional diversity. In this study, we mined type III PKS gene sequences from the genomes of six aquatic algae and 25 land plants (1 bryophyte, 1 lycophyte, 2 basal angiosperms, 16 core eudicots, and 5 monocots). PKS III sequences were found relatively conserved in all embryophytes, but not exist in algae. We also examined gene expression patterns by analyzing available transcriptome data, and identified potential cis-regulatory elements in upstream sequences. Phylogenetic trees of dicots angiosperms showed that plant type III PKS proteins fall into three clades. Clade A contains CHS/STS-type enzymes coding genes with diverse transcriptional expression patterns and enzymatic functions, while clade B is further divided into subclades b1 and b2, which consist of anther-specific CHS-like enzymes. Differentiation regions, such as amino acids 196-207 between clades A and B, and predicted positive selected sites within α-helixes in late appeared branches of clade A, account for the major diversification in substrate choice and catalytic reaction. The integrity and location of conserved cis-elements containing MYB and bHLH binding sites can affect transcription levels. Potential binding sites for transcription factors such as WRKY, SPL, or AP2/EREBP may contribute to tissue- or taxon-specific differences in gene expression. Our data shows that gene duplications and functional diversification of plant type III PKS enzymes

  5. Variability among the most rapidly evolving plastid genomic regions is lineage-specific: implications of pairwise genome comparisons in Pyrus (Rosaceae and other angiosperms for marker choice.

    Directory of Open Access Journals (Sweden)

    Nadja Korotkova

    Full Text Available Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae-a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC-trnV, trnR-atpA, ndhF-rpl32, psbM-trnD, and trnQ-rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters. Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid, Olea (asterids and Cymbidium (monocots showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF-rpl32 and trnK-rps16 were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations. Sequencing

  6. Both water source and atmospheric water impact leaf wax n-alkane 2H/1H values of hydroponically grown angiosperm trees

    Science.gov (United States)

    Tipple, B. J.; Berke, M. A.; Hambach, B.; Roden, J. S.; Ehleringer, J. R.

    2013-12-01

    The extent to which both water source and leaf water 2H-enrichment affect the δ2H values of terrestrial plant leaf waxes is an area of active research as ecologists seek a mechanistic understanding of the environmental determinants of leaf wax isotope values before applying δ2H values of leaf waxes to reconstruct past hydrologic conditions. To elucidate the effects of both water source and atmospheric water vapor on δ2H values of leaf waxes for broad-leaved angiosperms, we analyzed hydrogen isotope ratios of high-molecular weight n-alkanes from two tree species that were grown throughout the spring and summer (five months) in a hydroponic system under controlled atmospheric conditions. Here, 12 subpopulations each of Populus fremontii and Betula occidentalis saplings were grown under one of six source different waters ranging in hydrogen isotope ratio values from -120 to +180 ‰ and under either 40 % or 75 % relative humidity conditions. We found n-alkane δ2H values of both species were linearly related to source water δ2H values with differences in slope associated with differing atmospheric humidity. A Craig-Gordon model was used to predict the δ2H values of leaf water and, by extension, n-alkane δ2H values under the range of growth conditions. The modeled leaf water values were found to be linearly related to observed n-alkane δ2H values with a statistically indistinguishable slope between the high and low humidity treatments. These leaf wax observations support a constant biosynthetic fractionation factor between evaporatively-enriched leaf water and n-alkanes for each species. However, we found the calculated biosynthetic fractionation between modeled leaf-water and n-alkane to be different between the two species. We submit that these dissimilarities were due to model inputs and not differences in the specific-species biochemistry. Nonetheless, these results are significant as they indicated that the δ2H value of atmospheric water vapor and

  7. Pollen performance, cell number, and physiological state in the early-divergent angiosperm Annona cherimola Mill. (Annonaceae) are related to environmental conditions during the final stages of pollen development

    OpenAIRE

    Lora, Jorge; Herrero Romero, María; Hormaza Urroz, José Ignacio

    2012-01-01

    Pollen performance is an important determinant for fertilization success, but high variability in pollen behavior both between and within species occurs in different years and under varying environmental conditions. Annona cherimola, an early-divergent angiosperm, is a species that releases a variable ratio of bicellular and tricellular hydrated pollen at anther dehiscence depending on temperature. The presence of both bi- and tricellular types of pollen is an uncommon characteristic in angio...

  8. The endo-1,4-β-glucanase Korrigan exhibits functional conservation between gymnosperms and angiosperms and is required for proper cell wall formation in gymnosperms.

    Science.gov (United States)

    Maloney, Victoria J; Samuels, A Lacey; Mansfield, Shawn D

    2012-03-01

    The evolution of compositional polymers and their complex arrangement and deposition in the cell walls of terrestrial plants included the acquisition of key protein functions. A membrane-bound endoglucanase, termed Korrigan (KOR), has been shown to be required for proper cellulose synthesis. To date, no extensive characterization of the gymnosperm KOR has been undertaken. Characterization of the white spruce (Picea glauca) gene encoding KOR (PgKOR) shows conserved protein features such as polarized targeting signals and residues predicted to be essential for catalytic activity. The rescue of the Arabidopsis thaliana kor1-1 mutant by the expression of PgKOR suggests gene conservation, providing evidence for functional equivalence. Analyses of endogenous KOR expression in white spruce revealed the highest expression in young developing tissues, which corresponds with primary cell wall development. Additionally, RNA interference of the endogenous gymnosperm gene substantially reduced growth and structural glucose content, but had no effect on cellulose ultrastructure. Partial functional conservation of KOR in gymnosperms suggests that its role in cell wall synthesis dates back to 300 million yr ago (Mya), predating angiosperms, which arose 130 Mya, and shows that proteins contributing to proper cellulose deposition are important conserved features of vascular plants.

  9. Contradiction between plastid gene transcription and function due to complex posttranscriptional splicing: an exemplary study of ycf15 function and evolution in angiosperms.

    Directory of Open Access Journals (Sweden)

    Chao Shi

    Full Text Available Plant chloroplast genes are usually co-transcribed while its posttranscriptional splicing is fairly complex and remains largely unsolved. On basis of sequencing the three complete Camellia (Theaceae chloroplast genomes for the first time, we comprehensively analyzed the evolutionary patterns of ycf15, a plastid gene quite paradoxical in terms of its function and evolution, along the inferred angiosperm phylogeny. Although many species in separate lineages including the three species reported here contained an intact ycf15 gene in their chloroplast genomes, the phylogenetic mixture of both intact and obviously disabled ycf15 genes imply that they are all non-functional. Both intracellular gene transfer (IGT and horizontal gene transfer (HGT failed to explain such distributional anomalies. While, transcriptome analyses revealed that ycf15 was transcribed as precursor polycistronic transcript which contained ycf2, ycf15 and antisense trnL-CAA. The transcriptome assembly was surprisingly found to cover near the complete Camellia chloroplast genome. Many non-coding regions including pseudogenes were mapped by multiple transcripts, indicating the generality of pseudogene transcriptions. Our results suggest that plastid DNA posttranscriptional splicing may involve complex cleavage of non-functional genes.

  10. Fleshy seeds form in the basal Angiosperm Magnolia grandiflora and several MADS-box genes are expressed as fleshy seed tissues develop.

    Science.gov (United States)

    Lovisetto, Alessandro; Masiero, Simona; Rahim, Md Abdur; Mendes, Marta Adelina Miranda; Casadoro, Giorgio

    2015-01-01

    One successful mechanism of seed dispersal in plants involves production of edible fleshy structures which attract frugivorous animals and transfer this task to them. Not only Angiosperms but also Gymnosperms may use the fleshy fruit habit for seed dispersal, and a similar suite of MADS-box genes may be expressed as these structures form. Magnolia grandiflora produces dry follicles which, at maturity, open to reveal brightly colored fleshy seeds. This species thus also employs endozoochory for seed dispersal, although it produces dry fruits. Molecular analysis reveals that genes involved in softening and color changes are expressed at late stages of seed development, when the fleshy seed sarcotesta softens and accumulates carotenoids. Several MADS-box genes have also been studied and results highlight the existence of a basic genetic toolkit which may be common to all fleshy fruit-like structures, independently of their anatomic origin. According to their expression patterns, one of two AGAMOUS genes and the three SEPALLATA genes known so far in Magnolia are of particular interest. Duplication of AGAMOUS already occurs in both Nymphaeales and Magnoliids, although the lack of functional gene analysis prevents comparisons with known duplications in the AGAMOUS lineage of core Eudicots.

  11. Plant functional types are more efficient than climate in predicting spectrums of trait variation in evergreen angiosperm trees of tropical Australia and China

    Science.gov (United States)

    Togashi, H. F.; Prentice, I. C. C.; Atkin, O. K.; Bloomfield, K. J.; Bradford, M.; Weerasinghe, L. K.; Harrison, S. P.; Evans, B. J.; Liddell, M. J.; Wang, H.; Cao, K. F.; Fan, Z.

    2015-12-01

    The representation of Plant Functional Types (PFTs) in current generation of Dynamic Global Vegetation Models (DGVMs) is excessively simplistically. Key ecophysiological properties, such as photosynthesis biochemistry, are most times merely averaged and trade-off with other plant traits is often neglected. Validation of a PFT framework based in photosynthetic process is crucial to improve reliability of DGVMs. We present 431 leaf-biochemical and wood level measurements in evergreen angiosperm trees of tropical forests in Australia and China that were divided in four spectrums of plant trait variation: metabolic, structural, hydraulic and height dimensions. Plant traits divided in each of these dimensions adopt survival strategies reflected more clearly by trade-off within each spectrum, and in some extent across spectrums. Co-ordination theory (that Rubisco- and electron-transport limited rates of photosynthesis are co-limiting) and least-coast theory (that intercellular to ambient CO2 concentration minimizes the combined costs per unit carbon assimilation, regulating maximum height and wood density) expectations matched PFT (which takes in account canopy position and light access, and life spam) variation. Our findings suggest that climate (air moisture, air temperature, light) has lower power representing these dimensions, in comparison to the PFT framework.

  12. Getting ready for host invasion: elevated expression and action of xyloglucan endotransglucosylases/hydrolases in developing haustoria of the holoparasitic angiosperm Cuscuta

    Science.gov (United States)

    Olsen, Stian; Striberny, Bernd; Hollmann, Julien; Schwacke, Rainer; Popper, Zoë; Krause, Kirsten

    2016-01-01

    Changes in cell walls have been previously observed in the mature infection organ, or haustorium, of the parasitic angiosperm Cuscuta, but are not equally well charted in young haustoria. In this study, we focused on the molecular processes in the early stages of developing haustoria; that is, before the parasite engages in a physiological contact with its host. We describe first the identification of differentially expressed genes in young haustoria whose development was induced by far-red light and tactile stimuli in the absence of a host plant by suppression subtractive hybridization. To improve sequence information and to aid in the identification of the obtained candidates, reference transcriptomes derived from two species of Cuscuta, C. gronovii and C. reflexa, were generated. Subsequent quantitative gene expression analysis with different tissues of C. reflexa revealed that among the genes that were up-regulated in young haustoria, two xyloglucan endotransglucosylase/hydrolase (XTH) genes were highly expressed almost exclusively at the onset of haustorium development. The same expression pattern was also found for the closest XTH homologues from C. gronovii. In situ assays for XTH-specific action suggested that xyloglucan endotransglucosylation was most pronounced in the cell walls of the swelling area of the haustorium facing the host plant, but was also detectable in later stages of haustoriogenesis. We propose that xyloglucan remodelling by Cuscuta XTHs prepares the parasite for host infection and possibly aids the invasive growth of the haustorium. PMID:26561437

  13. De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome

    Directory of Open Access Journals (Sweden)

    Iorizzo Massimo

    2012-05-01

    Full Text Available Abstract Background Sequence analysis of organelle genomes has revealed important aspects of plant cell evolution. The scope of this study was to develop an approach for de novo assembly of the carrot mitochondrial genome using next generation sequence data from total genomic DNA. Results Sequencing data from a carrot 454 whole genome library were used to develop a de novo assembly of the mitochondrial genome. Development of a new bioinformatic tool allowed visualizing contig connections and elucidation of the de novo assembly. Southern hybridization demonstrated recombination across two large repeats. Genome annotation allowed identification of 44 protein coding genes, three rRNA and 17 tRNA. Identification of the plastid genome sequence allowed organelle genome comparison. Mitochondrial intergenic sequence analysis allowed detection of a fragment of DNA specific to the carrot plastid genome. PCR amplification and sequence analysis across different Apiaceae species revealed consistent conservation of this fragment in the mitochondrial genomes and an insertion in Daucus plastid genomes, giving evidence of a mitochondrial to plastid transfer of DNA. Sequence similarity with a retrotransposon element suggests a possibility that a transposon-like event transferred this sequence into the plastid genome. Conclusions This study confirmed that whole genome sequencing is a practical approach for de novo assembly of higher plant mitochondrial genomes. In addition, a new aspect of intercompartmental genome interaction was reported providing the first evidence for DNA transfer into an angiosperm plastid genome. The approach used here could be used more broadly to sequence and assemble mitochondrial genomes of diverse species. This information will allow us to better understand intercompartmental interactions and cell evolution.

  14. Phylogenomic and structural analyses of 18 complete plastomes across nearly all families of early-diverging eudicots, including an angiosperm-wide analysis of IR gene content evolution.

    Science.gov (United States)

    Sun, Yanxia; Moore, Michael J; Zhang, Shoujun; Soltis, Pamela S; Soltis, Douglas E; Zhao, Tingting; Meng, Aiping; Li, Xiaodong; Li, Jianqiang; Wang, Hengchang

    2016-03-01

    The grade of early-diverging eudicots includes five major lineages: Ranunculales, Trochodendrales, Buxales, Proteales and Sabiaceae. To examine the evolution of plastome structure in early-diverging eudicots, we determined the complete plastome sequences of eight previously unsequenced early-diverging eudicot taxa, Pachysandra terminalis (Buxaceae), Meliosma aff. cuneifolia (Sabiaceae), Sabia yunnanensis (Sabiaceae), Epimedium sagittatum (Berberidaceae), Euptelea pleiosperma (Eupteleaceae), Akebia trifoliata (Lardizabalaceae), Stephania japonica (Menispermaceae) and Papaver somniferum (Papaveraceae), and compared them to previously published plastomes of the early-diverging eudicots Buxus, Tetracentron, Trochodendron, Nelumbo, Platanus, Nandina, Megaleranthis, Ranunculus, Mahonia and Macadamia. All of the newly sequenced plastomes share the same 79 protein-coding genes, 4 rRNA genes, and 30 tRNA genes, except for that of Epimedium, in which infA is pseudogenized and clpP is highly divergent and possibly a pseudogene. The boundaries of the plastid Inverted Repeat (IR) were found to vary significantly across early-diverging eudicots; IRs ranged from 24.3 to 36.4kb in length and contained from 18 to 33 genes. Based on gene content, the IR was classified into six types, with shifts among types characterized by high levels of homoplasy. Reconstruction of ancestral IR gene content suggested that 18 genes were likely present in the IR region of the ancestor of eudicots. Maximum likelihood phylogenetic analysis of a 79-gene, 97-taxon data set that included all available early-diverging eudicots and representative sampling of remaining angiosperm diversity largely agreed with previous estimates of early-diverging eudicot relationships, but resolved Trochodendrales rather than Buxales as sister to Gunneridae, albeit with relatively weak bootstrap support, conflicting with what has been found for these three clades in most previous analyses. In addition, Proteales was

  15. ITS and trnH-psbA as Efficient DNA Barcodes to Identify Threatened Commercial Woody Angiosperms from Southern Brazilian Atlantic Rainforests.

    Science.gov (United States)

    Bolson, Mônica; Smidt, Eric de Camargo; Brotto, Marcelo Leandro; Silva-Pereira, Viviane

    2015-01-01

    The Araucaria Forests in southern Brazil are part of the Atlantic Rainforest, a key hotspot for global biodiversity. This habitat has experienced extensive losses of vegetation cover due to commercial logging and the intense use of wood resources for construction and furniture manufacturing. The absence of precise taxonomic tools for identifying Araucaria Forest tree species motivated us to test the ability of DNA barcoding to distinguish species exploited for wood resources and its suitability for use as an alternative testing technique for the inspection of illegal timber shipments. We tested three cpDNA regions (matK, trnH-psbA, and rbcL) and nrITS according to criteria determined by The Consortium for the Barcode of Life (CBOL). The efficiency of each marker and selected marker combinations were evaluated for 30 commercially valuable woody species in multiple populations, with a special focus on Lauraceae species. Inter- and intraspecific distances, species discrimination rates, and ability to recover species-specific clusters were evaluated. Among the regions and different combinations, ITS was the most efficient for identifying species based on the 'best close match' test; similarly, the trnH-psbA + ITS combination also demonstrated satisfactory results. When combining trnH-psbA + ITS, Maximum Likelihood analysis demonstrated a more resolved topology for internal branches, with 91% of species-specific clusters. DNA barcoding was found to be a practical and rapid method for identifying major threatened woody angiosperms from Araucaria Forests such as Lauraceae species, presenting a high confidence for recognizing members of Ocotea. These molecular tools can assist in screening those botanical families that are most targeted by the timber industry in southern Brazil and detecting certain species protected by Brazilian legislation and could be a useful tool for monitoring wood exploitation.

  16. ITS and trnH-psbA as Efficient DNA Barcodes to Identify Threatened Commercial Woody Angiosperms from Southern Brazilian Atlantic Rainforests.

    Directory of Open Access Journals (Sweden)

    Mônica Bolson

    Full Text Available The Araucaria Forests in southern Brazil are part of the Atlantic Rainforest, a key hotspot for global biodiversity. This habitat has experienced extensive losses of vegetation cover due to commercial logging and the intense use of wood resources for construction and furniture manufacturing. The absence of precise taxonomic tools for identifying Araucaria Forest tree species motivated us to test the ability of DNA barcoding to distinguish species exploited for wood resources and its suitability for use as an alternative testing technique for the inspection of illegal timber shipments. We tested three cpDNA regions (matK, trnH-psbA, and rbcL and nrITS according to criteria determined by The Consortium for the Barcode of Life (CBOL. The efficiency of each marker and selected marker combinations were evaluated for 30 commercially valuable woody species in multiple populations, with a special focus on Lauraceae species. Inter- and intraspecific distances, species discrimination rates, and ability to recover species-specific clusters were evaluated. Among the regions and different combinations, ITS was the most efficient for identifying species based on the 'best close match' test; similarly, the trnH-psbA + ITS combination also demonstrated satisfactory results. When combining trnH-psbA + ITS, Maximum Likelihood analysis demonstrated a more resolved topology for internal branches, with 91% of species-specific clusters. DNA barcoding was found to be a practical and rapid method for identifying major threatened woody angiosperms from Araucaria Forests such as Lauraceae species, presenting a high confidence for recognizing members of Ocotea. These molecular tools can assist in screening those botanical families that are most targeted by the timber industry in southern Brazil and detecting certain species protected by Brazilian legislation and could be a useful tool for monitoring wood exploitation.

  17. The role of O2 as an electron acceptor alternative to CO2 in photosynthesis of the common marine angiosperm Zostera marina L.

    Science.gov (United States)

    Buapet, Pimchanok; Björk, Mats

    2016-07-01

    This study investigates the role of O2 as an electron acceptor alternative to CO2 in photosynthesis of the common marine angiosperm Zostera marina L. Electron transport rates (ETRs) and non-photochemical quenching (NPQ) of Z. marina were measured under saturating irradiance in synthetic seawater containing 2.2 mM DIC and no DIC with different O2 levels (air-equilibrated levels, 3 % of air equilibrium and restored air-equilibrated levels). Lowering O2 did not affect ETR when DIC was provided, while it caused a decrease in ETR and an increase in NPQ in DIC-free media, indicating that O2 acted as an alternative electron acceptor under low DIC. The ETR and NPQ as a function of irradiance were subsequently assessed in synthetic seawater containing (1) 2.2 mM DIC, air-equilibrated O2; (2) saturating CO2, no O2; and (3) no DIC, air-equilibrated O2. These treatments were combined with glycolaldehyde pre-incubation. Glycolaldehyde caused a marked decrease in ETR in DIC-free medium, indicating significant electron flow supported by photorespiration. Combining glycolaldehyde with O2 depletion completely suppressed ETR suggesting the operation of the Mehler reaction, a possibility supported by the photosynthesis-dependent superoxide production. However, no notable effect of suppressing the Mehler reaction on NPQ was observed. It is concluded that during DIC-limiting conditions, such as those frequently occurring in the habitats of Z. marina, captured light energy exceeds what is utilised for the assimilation of available carbon, and photorespiration is a major alternative electron acceptor, while the contribution of the Mehler reaction is minor.

  18. Sequencing of the needle transcriptome from Norway spruce (Picea abies Karst L. reveals lower substitution rates, but similar selective constraints in gymnosperms and angiosperms

    Directory of Open Access Journals (Sweden)

    Chen Jun

    2012-11-01

    09and 1.1 × 10−09 is an order of magnitude smaller than values reported for angiosperm herbs. However, if one takes generation time into account, most of this difference disappears. The estimates of the dN/dS ratio (non-synonymous over synonymous divergence reported here are in general much lower than 1 and only a few genes showed a ratio larger than 1.

  19. Hydrogen Apparent Fractionation between Precipitation and Leaf Wax n-Alkanes from Conifers and Deciduous Angiosperms along a Longitudinal Transect in Eurasia

    Science.gov (United States)

    Pedentchouk, Nikolai; Fisher, Katherine; Wagner, Thomas

    2010-05-01

    D/H composition of individual organic compounds derived from leaf wax may provide a wealth of information regarding plant-water relations in studies of plant ecology and climate change. Extracting that information from the organic D/H signal requires a thorough understanding of hydrogen isotope fractionation between environmental water and organic compounds. The purpose of this project is to investigate the importance of plant types and local climatic conditions on hydrogen apparent fractionation in higher terrestrial plants. We determined D/H composition of n-alkanes derived from leaf wax extracted from several extant plants representing common evergreen and deciduous conifer (Pinus and Larix) and deciduous angiosperm (Betula, Salix, and Sorbus) genera along a longitudinal transect from the UK to central Siberia at 10 different locations. These data were used to calculate the apparent fractionation factor (epsilon) between source water, estimated using the Online Isotopes in Precipitation Calculator, and n-alkanes. Our initial results show the following. First, we found large differences in the epsilon values among different genera at each location, e.g. Betula -63‰ vs. Salix -115‰ in Norwich, UK, and Betula -86‰ vs. Salix -146‰ in Novosibirsk, Russia. Assuming the plants at individual locations utilized soil water of very similar deltaD values, variations in the epsilon values are likely to be explained by differences in plant physiology and biochemistry. Second, we identified extensive shifts in the epsilon values in individual species along the transect from the UK to central Siberia, e.g. Betula -63‰ in Norwich vs. -104‰ in Zotino, Krasnoyarsk Krai, central Siberia and Salix -115‰ in Norwich vs. -164‰ in Sodankyla, Finland. With the exception of Sorbus, there is a positive relationship between the MAT (mean annual temperature) and epsilon values at locations above 2 °C MAT, suggesting a possible climatic effect on isotopic fractionation

  20. New Results of Angiosperm Bryophytes of Inner Mongolia in the Post-Bryophytes Time%内蒙古苔藓植物志后时期苔藓植物区系研究进展

    Institute of Scientific and Technical Information of China (English)

    赫智霞; 徐杰; 白学良; 田桂泉; 李琴琴

    2012-01-01

    本文综述了《内蒙古苔藓植物志》出版之后内蒙古苔藓植物区系研究的新成果.结果表明,在《内蒙古苔藓植物志》出版之后的十多年间,以白学良教授为领导的研究团队,对内蒙古地区苔藓植物的分布、种类多样性等方面进行了深入研究,特别是沙漠地区.在此期间,发现内蒙古苔藓植物新记录1纲;新记录科3科;新记录属16属;新记录种76种、订正种9种.内蒙古苔藓植物区系研究取得了显著成果,为《内蒙古苔藓植物志》的再版编著奠定了坚实的基础.%The paper has overviewed the research new result of angiosperm bryophytes of Inner Mongolian after the publishing edition of "bryophytes Intramongolica".The results indicate: after the "bryophytes Intramongolica " publish ten more years,under the leadership of the professor Bai Xueliang,distribution and species variety of the Inner Mongolia bryophytes go ahead intensive study,especially in desert area.During this time: 1 new record class,3 new record family;16 new record genus;76 new record species,9 revised species were found.In the post-flora time,the research on angiosperm flora of Inner Mongolia has achieved notable progress,which has provide a strong base of the second edition of " Flora Intramongolica ".

  1. Pollen performance, cell number, and physiological state in the early-divergent angiosperm Annona cherimola Mill. (Annonaceae) are related to environmental conditions during the final stages of pollen development.

    Science.gov (United States)

    Lora, J; Herrero, M; Hormaza, J I

    2012-09-01

    Pollen performance is an important determinant for fertilization success, but high variability in pollen behavior both between and within species occurs in different years and under varying environmental conditions. Annona cherimola, an early-divergent angiosperm, is a species that releases a variable ratio of bicellular and tricellular hydrated pollen at anther dehiscence depending on temperature. The presence of both bi- and tricellular types of pollen is an uncommon characteristic in angiosperms and makes Annona cherimola an interesting model to study the effect of varying environmental conditions on subsequent pollen performance during the final stages of pollen development. In this work, we study the influence of changes in temperature and humidity during the final stages of pollen development on subsequent pollen performance, evaluating pollen germination, presence of carbohydrates, number of nuclei, and water content. At 25 °C, which is the average field temperature during the flowering period of this species, pollen had a viability of 60-70 %, starch hydrolyzed just prior to shedding, and pollen mitosis II was taking place, resulting in a mixture of bi- and tricellular pollen. This activity may be related to the pollen retaining 70 % water content at shedding. Temperatures above 30 °C resulted in a decrease in pollen germination, whereas lower temperatures did not have a clear influence on pollen germination, although they did have a clear effect on starch hydrolysis. On the other hand, slightly higher dehydration accelerated mitosis II, whereas strong dehydration arrested starch hydrolysis and reduced pollen germination. These results show a significant influence of environmental conditions on myriad pollen characteristics during the final stages of pollen development modifying subsequent pollen behavior and contributing to our understanding of the variability observed in pollen tube performance.

  2. Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two freshwater macrophytes.

    Science.gov (United States)

    Cronin, Greg; Lodge, David M

    2003-09-01

    Phenotypic responses of Potamogeton amplifolius and Nuphar advena to different light (7% and 35% of surface irradiance) and nutrient environments were assessed with field manipulation experiments. Higher light and nutrient availability enhanced the growth of P. amplifolius by 154% and 255%, respectively. Additionally, biomass was allocated differently depending on the resource: high light availability resulted in a higher root/shoot ratio, whereas high nutrient availability resulted in a lower root/shoot ratio. Low light availability and high nutrient availability increased the nitrogen content of leaf tissue by 53% and 40% respectively, resulting in a 37% and 31% decrease in the C/N ratio. Root nitrogen content was also increased by low light and high nutrient availability, by 50% (P=0.0807) and 77% respectively, resulting in a 20% and 40% decrease in root C/N ratio. Leaf phenolics were significantly increased 72% by high light and 31% by high nutrient availability, but root phenolic concentrations were not altered significantly. None of these changes in tissue constituents resulted in altered palatability to crayfish. N. advena was killed by the same high nutrient treatment that stimulated growth in P. amplifolius, preventing assessment of phenotypic responses to nutrient availability. However, high light availability increased overall growth by 24%, but this was mainly due to increased growth of the rhizome (increased 100%), resulting in a higher root/shoot ratio. High light tended to increase the production of floating leaves (P=0.09) and significantly decreased the production of submersed leaves. High light availability decreased the nitrogen content by 15% and 25% and increased the phenolic concentration by 88% and 255% in floating and submersed leaves, respectively. These differences in leaf traits did not result in detectable differences in damage by herbivores.

  3. Megastigmus seed chalcids (Hymenoptera, Torymidae) radiated much more on Angiosperms than previously considered. I- Description of 8 new species from Kenya, with a key to the females of Eastern and Southern Africa

    Science.gov (United States)

    Roques, Alain; Copeland, Robert S.; Soldati, Laurent; Denux, Olivier; Auger-Rozenberg, Marie-Anne

    2016-01-01

    Abstract A survey of seed chalcids from woody plants in Kenya revealed 12 species belonging to the genus Megastigmus Dalman, 1820, and has increased to 16 the number of Megastigmus species presently recorded from the Afrotropical Region, of which at least 13 are seed feeders. A key to female Megastigmus of the Afrotropical Region is provided. Eight new species are described from morphological evidence: Megastigmus lanneae Roques & Copeland, Megastigmus laventhali Roques & Copeland, Megastigmus ozoroae Roques & Copeland, and Megastigmus smithi Roques & Copeland in seeds of species of the family Anacardiaceae, Megastigmus copelandi Roques & Copeland and Megastigmus grewianae Roques & Copeland in seeds of Malvaceae, Megastigmus helinae Roques & Copeland in seeds of Rhamnaceae, and Megastigmus icipeensis Roques & Copeland for which no host is known. These collections include the first records of Malvaceae and Rhamnaceae as hosts of Megastigmus seed chalcids, which appear to have radiated in Angiosperms much more than previously considered. Analyses of the mitochondrial (cytochrome oxidase subunit one – COI) and nuclear DNA (28S ribosomal region) could be carried out on 8 of the 16 African species of which 5 were newly described ones. The species associated with Anacardiaceae always clustered together in phylogenies, confirming the existence of a strong and ancestral monophyletic clade, unlike the ones associated with Malvaceae and Rhamnaceae, whose position remains unclear. All holotypes are deposited in the National Museums of Kenya. PMID:27199604

  4. Megastigmus seed chalcids (Hymenoptera, Torymidae) radiated much more on Angiosperms than previously considered. I- Description of 8 new species from Kenya, with a key to the females of Eastern and Southern Africa.

    Science.gov (United States)

    Roques, Alain; Copeland, Robert S; Soldati, Laurent; Denux, Olivier; Auger-Rozenberg, Marie-Anne

    2016-01-01

    A survey of seed chalcids from woody plants in Kenya revealed 12 species belonging to the genus Megastigmus Dalman, 1820, and has increased to 16 the number of Megastigmus species presently recorded from the Afrotropical Region, of which at least 13 are seed feeders. A key to female Megastigmus of the Afrotropical Region is provided. Eight new species are described from morphological evidence: Megastigmus lanneae Roques & Copeland, Megastigmus laventhali Roques & Copeland, Megastigmus ozoroae Roques & Copeland, and Megastigmus smithi Roques & Copeland in seeds of species of the family Anacardiaceae, Megastigmus copelandi Roques & Copeland and Megastigmus grewianae Roques & Copeland in seeds of Malvaceae, Megastigmus helinae Roques & Copeland in seeds of Rhamnaceae, and Megastigmus icipeensis Roques & Copeland for which no host is known. These collections include the first records of Malvaceae and Rhamnaceae as hosts of Megastigmus seed chalcids, which appear to have radiated in Angiosperms much more than previously considered. Analyses of the mitochondrial (cytochrome oxidase subunit one - COI) and nuclear DNA (28S ribosomal region) could be carried out on 8 of the 16 African species of which 5 were newly described ones. The species associated with Anacardiaceae always clustered together in phylogenies, confirming the existence of a strong and ancestral monophyletic clade, unlike the ones associated with Malvaceae and Rhamnaceae, whose position remains unclear. All holotypes are deposited in the National Museums of Kenya.

  5. A copal-8-ol diphosphate synthase from the angiosperm Cistus creticus subsp. creticus is a putative key enzyme for the formation of pharmacologically active, oxygen-containing labdane-type diterpenes.

    Science.gov (United States)

    Falara, Vasiliki; Pichersky, Eran; Kanellis, Angelos K

    2010-09-01

    The resin of Cistus creticus subsp. creticus, a plant native to Crete, is rich in labdane-type diterpenes with significant antimicrobial and cytotoxic activities. The full-length cDNA of a putative diterpene synthase was isolated from a C. creticus trichome cDNA library. The deduced amino acid sequence of this protein is highly similar (59%-70% identical) to type B diterpene synthases from other angiosperm species that catalyze a protonation-initiated cyclization. The affinity-purified recombinant Escherichia coli-expressed protein used geranylgeranyl diphosphate as substrate and catalyzed the formation of copal-8-ol diphosphate. This diterpene synthase, therefore, was named CcCLS (for C. creticus copal-8-ol diphosphate synthase). Copal-8-ol diphosphate is likely to be an intermediate in the biosynthesis of the oxygen-containing labdane-type diterpenes that are abundant in the resin of this plant. RNA gel-blot analysis revealed that CcCLS is preferentially expressed in the trichomes, with higher transcript levels found in glands on young leaves than on fully expanded leaves, while CcCLS transcript levels increased after mechanical wounding. Chemical analyses revealed that labdane-type diterpene production followed a similar pattern, with higher concentrations in trichomes of young leaves and increased accumulation upon wounding.

  6. CHS基因起源初探及其在被子植物中的进化分析%A Preliminary Study on the Origin and Evolution of Chalcone Synthase (CHS) Gene in Angiosperms

    Institute of Scientific and Technical Information of China (English)

    黄金霞; 瞿礼嘉; 杨继; 银好; 顾红雅

    2004-01-01

    nudum (L.) Griseb. and Equisetum arvense L., as outgroups, the phylogenetic trees of about 250 CHSs from 29 families of angiosperm plants were constructed by using the neighbour-joining (NJ), maximum parsimony (MP) and quartet puzzle (QP)methods. The results showed that the CHSs from most plant families were separated into two or more clades while sequences from the families Brassicaceae, Fabaceae and Poaceae were each grouped into an independent monophyletic clade. The relative base substitution rates were estimated for CHS genes in three plant families, Solanaceae, Convolvulaceae, and Asteraceae, where the heterogeneity rate was detected both within and among the families. Results indicated that CHS genes in angiosperm plants were greatly diverse in terms of copy number, base substitution rate, and duplication/deletion events, which might be correlated with the diversity of life history, habitat, floral characters, and defense system of angiosperm plants.

  7. Distally lobed integuments in some Angiosperm ovules

    NARCIS (Netherlands)

    Heel, van W.A.

    1970-01-01

    In this treatise ‘De l’Ovule’ Warming (1878) remarked that although the borders of the integuments grow uniformly, very rarely a division into lobes can be observed. He mentioned Symplocarpus foetida (inner integument four-lobed), Lagarosiphon schweinfurthii (outer integument four- or five-lobed) an

  8. Inferring climate from angiosperm leaf venation networks.

    Science.gov (United States)

    Blonder, Benjamin; Enquist, Brian J

    2014-10-01

    Leaf venation networks provide an integrative linkage between plant form, function and climate niche, because leaf water transport underlies variation in plant performance. Here, we develop theory based on leaf physiology that uses community-mean vein density to predict growing season temperature and atmospheric CO2 concentration. The key assumption is that leaf water supply is matched to water demand in the local environment. We test model predictions using leaves from 17 temperate and tropical sites that span broad climatic gradients. We find quantitative agreement between predicted and observed climate values. We also highlight additional leaf traits that may improve predictions. Our study provides a novel approach for understanding the functional linkages between functional traits and climate that may improve the reconstruction of paleoclimate from fossil assemblages.

  9. Molecular diversity of phospholipase D in angiosperms

    Directory of Open Access Journals (Sweden)

    Cvrčková Fatima

    2002-02-01

    Full Text Available Abstract Background The phospholipase D (PLD family has been identified in plants by recent molecular studies, fostered by the emerging importance of plant PLDs in stress physiology and signal transduction. However, the presence of multiple isoforms limits the power of conventional biochemical and pharmacological approaches, and calls for a wider application of genetic methodology. Results Taking advantage of sequence data available in public databases, we attempted to provide a prerequisite for such an approach. We made a complete inventory of the Arabidopsis thaliana PLD family, which was found to comprise 12 distinct genes. The current nomenclature of Arabidopsis PLDs was refined and expanded to include five newly described genes. To assess the degree of plant PLD diversity beyond Arabidopsis we explored data from rice (including the genome draft by Monsanto as well as cDNA and EST sequences from several other plants. Our analysis revealed two major PLD subfamilies in plants. The first, designated C2-PLD, is characterised by presence of the C2 domain and comprises previously known plant PLDs as well as new isoforms with possibly unusual features-catalytically inactive or independent on Ca2+. The second subfamily (denoted PXPH-PLD is novel in plants but is related to animal and fungal enzymes possessing the PX and PH domains. Conclusions The evolutionary dynamics, and inter-specific diversity, of plant PLDs inferred from our phylogenetic analysis, call for more plant species to be employed in PLD research. This will enable us to obtain generally valid conclusions.

  10. 苏铁类植物4个属的导管与被子植物导管结构特征的比较研究%Comparative Studies on Structural Feature of Vessels of Four Genera of Cycads with Angiosperm

    Institute of Scientific and Technical Information of China (English)

    黄玉源; 廖文波; 张宏达; 王佳卓; 伍映辉

    2008-01-01

    The tissues of leaf of Cycas taiwaniana,Bowenia serrulata and Dioon edule and tissue of root of Macrozamia longispina of cycads, and leaves of Michelia alba and Amygdalus persica of angiosperm were observed by scanning electron microscope. The results showed that there are many types of vessels in four genera of two families of cycads,the manner and process of development and constitution in structural characteristics of vessel of cycads and angiosperm are identical,some characters of vessel such as inclined extent of perforation plate of end wall etc. showed that some angiosperm are more primitive then that of cycads. In vessels of species of angiosperm, many are band shape, and without end wall, only have two lateral walls and another two narrow margins, the top is acute or with an arc margin, many perforations located in lateral wall. Cognized to vessel of cycads, help us to understand the mechanism which these most primitive seed plants extant how to adapted to harsh environments and their evolutionary level, and has significance to use efficiency measure protect these rarity plants and has significance to plant anatomy, plant systematics and plant evolution.%对苏铁属的台湾苏铁(Cycas taiwaniana)、波温铁属的细齿波温铁(Bowenia serrulata)、双子铁属的双子铁(Dioon edule)叶的羽片,大泽米铁属长刺大泽米铁(Macrozamia longispina)的根,以及被子植物的白兰(Michelia alba)和桃(Amygdalus persica)的叶组织进行了电子扫描显微镜的观察研究,结果表明,2个科4个属苏铁植物的导管类型是丰富的,导管的结构组成方式、发育过程与被子植物是一致的;例如导管端壁倾斜度等结构特征显示,一些被子植物导管的结构比苏铁类植物的要原始.在被子植物的导管中有许多为端部呈扁平的带状,而且还带有扭曲状,没有端壁,只有两面的侧壁及另两侧的很窄的边,在带状的侧壁上具有许多的穿孔.这在过去未见有报道.对苏

  11. Drug: D06749 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available drugs 5100 Crude drugs D06749 Nuphar rhizome (JP16) Traditional Chinese Medicine in Japan [BR:br08304] Crude Drugs Drugs... for blood Drugs for removing blood stasis D06749 Nuphar rhizome; Nup

  12. Viewpoints on apornictic and sexual reproduction in angiosperms

    Directory of Open Access Journals (Sweden)

    Sven Asker

    2014-02-01

    Full Text Available Gametophytic apomixis implies different changes of the reproductive cycle of sexual plants. Each of these "elements of apomixis" occurs in sexual plants, which may even display functional diploid parthenogenesis. Thus, apomixis, like vegetative reproduction, is part of the reproductive behaviour of sexual plants, becoming important when sexual reproduction is impaired. The elements of apomixis are probably to a large extent under polygenic control.

  13. Chromosome numbers of some Angiosperm plants in Thailand

    OpenAIRE

    Tanpho, S.; Jansone, A; Jornead, S.; Decharun, S.; Eksomtramage, L.

    2007-01-01

    Chromosome numbers in the root-tip cells of 58 cultivars 27 species belonging to 15 genera of Apocynaceae, Araceae, Campanulaceae, Compositae (Asteraceae), Marantaceae, Musaceae and Plumbaginaceae were determined. Chromosome numbers in Aglaonema commutatum var. maculatum (2n = 40), A. modestum (2n = 80), A. pseudobracteatum (2n = 60), Alocasia lindenii (2n = 28), A. sanderiana (2n = 28), Laurentia longiflora (2n = 26), Gynura pseudochina var. hispida (2n = 20), Calathea lancifolia (2n = 26), ...

  14. Chromosome numbers of some Angiosperm plants in Thailand

    Directory of Open Access Journals (Sweden)

    Tanpho, S.

    2007-01-01

    Full Text Available Chromosome numbers in the root-tip cells of 58 cultivars 27 species belonging to 15 genera of Apocynaceae, Araceae, Campanulaceae, Compositae (Asteraceae, Marantaceae, Musaceae and Plumbaginaceae were determined. Chromosome numbers in Aglaonema commutatum var. maculatum (2n = 40, A. modestum (2n = 80, A. pseudobracteatum (2n = 60, Alocasia lindenii (2n = 28, A. sanderiana (2n = 28, Laurentia longiflora (2n = 26, Gynura pseudochina var. hispida (2n = 20, Calathea lancifolia (2n = 26, C. majestica cv. Roseolineata (2n = 24, C. picturata cv. Argentea (2n = 26 & cv. Vandenheckei (2n = 26, Maranta leuconeura "Mediovariegata" (2n = 52 and Musa sp. (Kluai Hin & Kluai Thong Ruang (2n = 33 are firstly reported.

  15. The Pace and Shape of Senescence in Angiosperms

    DEFF Research Database (Denmark)

    Baudisch, Annette; Salguero-Gómez, Roberto; Jones, Owen

    2013-01-01

    1. Demographic senescence, the decay in fertility and increase in the risk of mortality with age, is one of the most striking phenomena in ecology and evolution. Comparative studies of senescence patterns of plants are scarce, and consequently, little is known about senescence and its determinant...

  16. A cutin fluorescence pattern in developing embryos of some angiosperms

    Directory of Open Access Journals (Sweden)

    Ewa Szczuka

    2014-01-01

    Full Text Available A cuticle visualized by auramine O fluorescence appears on the developing embryos of 9 species belonging to Cruciferae, Caryophyllaceae, Plantaginaceae, Linaceae and Papilionaceae. In the investigated species the formation and extent of fluorescing and non-fluorescing embryonic areas follow a similar pattern. At first the cutin fluorescing layer is formed on the apical part of the proembryo without delimited protoderm. This layer extends and at the late globular stage envelops the embryo proper, except for a cell adjoining the suspensor. Fluorescing cutin persists during the heart stage but disappears from the torpedo embryo. During these stages there is no cutine fluorescence on suspensorial cells. Continuous cutin fluorescence appears again on the surface of the whole embryo by the late torpedo stage. Then fluorescence disappears from the radicular part of U-shaped embryos, but persists on the shoot apex, cotyledons and at least on the upper part of hypocotyl. It is assumed that polarization and nutrition of the embryo may be influenced by cuticular changes.

  17. Meiotic studies in some selected angiosperms from the Kashmir Himalayas

    Institute of Scientific and Technical Information of China (English)

    Syed Mudassir JEELANI; Santosh KUMARI; Raghbir Chand GUPTA

    2012-01-01

    As a part of our program to explore and evaluate genetic diversity of flowering plants of the Kashmir Himalayas,meiotic studies have been carried out on 150 wild species.Of these,Caltha alba (2n =32),Delphinium roylei (2n =16),D.uncinatum (2n =16),Ranunculus palmatifidus (2n =28),and Sedum heterodontum (2n =14) have been cytologically worked out for the first time.New intraspecific diploid or polyploid cytotypes have been recorded for Alchemilla vulgaris (2n =34,96),Arabis amplexicaulis (2n =16),Impatiens amphorata (2n =14),Ⅰ.racemosa (2n =12),Ⅰ.sutcata (2n =16,12),Meconopsis latifolia (2n =14),Potentilla supina (2n =14),Saxifraga cernua (2n =16),Sium latijugam (2n =24),and Vicatia coniifolia (2n =44).Four species,Arabidopsis thaliana (2n =10),Berberis vulgaris (2n =28),Potentilla nubicola (2n =14),and P.sericea (2n =28),have been cytologically reported for the first time from India.A large number of meiotic abnormalities have been observed in most of these species,leading to a reduction in pollen fertility and production of heterogeneous-sized pollen grains.

  18. 复苏被子植物牛耳草脱水和复水期间叶黄素循环的保护作用%The Protective Role of Xanthophyll Cycle in Resurrection Angiosperm Boea hygrometrica During Dehydration and Rehydration

    Institute of Scientific and Technical Information of China (English)

    阳文龙; 胡志昂; 王洪新; 单际修; 匡廷云

    2003-01-01

    研究了复苏被子植物牛耳草(Boea hygrometrica (Bunge) R.Br.)离体叶片在微弱光强下(3 μmol photons*m-2*s-1)和黑暗中叶黄素循环组分及叶绿素荧光随脱水复水的变化.结果发现:脱水期间随着光系统Ⅱ光化学效率(Fv/Fm)、实际量子产率(ΦPSⅡ)、光化学淬灭(qP)和非光化学淬灭(NPQ)值的降低,微弱光强下的对照叶片玉米黄素含量显著增加,而微弱光强下DTT处理的叶片和黑暗中的叶片都没有玉米黄素的积累.经过3 d复水后,微弱光强下对照叶片的Fv/Fm, ΦPSⅡ, qP 和 NPQ值能完全恢复,但是微弱光强下DTT处理的叶片和黑暗中的叶片其Fv/Fm、ΦPSⅡ、qP 和 NPQ值只有部分恢复.说明脱水的牛耳草离体叶片光系统Ⅱ的光化学活性的恢复明显受到DTT处理和黑暗的影响,因此玉米黄素可能对微弱光强下脱水的牛耳草叶片具有重要的保护作用.%The protective role of xanthophyll cycle in resurrection angiosperm Boea hygrometrica (Bunge) R.Br. Was investigated by analysis of the changes of chlorophyll fluorescence and xanthophyll cycle components in response to dehydration and rehydration in detached leaves under very weak light condition (3 μmol photons*m-2*s-1) and in the dark. With declines in the values of PSⅡ photochemical efficiency (Fv/Fm), PSⅡ actual quantum yield (ΦPSⅡ), photochemical quenching (qP) and non-photochemical quenching (NPQ) during dehydration, zeaxanthin significantly increased in control Boea leaves under very weak light condition, while no zeaxanthin accumulation was detected in Boea leaves treated with dithiothreitol (DTT) and Boea leaves in the dark, and after 3 d rehydration, the parameters Fv/Fm, ΦPSⅡ, qP and NPQ showed full recovery in control Boea leaves under very weak light condition, but the parameters only underwent partial recovery in Boea leaves treated with DTT and Boea leaves in the dark, suggesting that the recovery of photosystemⅡ (PS

  19. CUTICULAR STRUCTURE OF TWO ANGIOSPERM FOSSILS IN NEOGENE FROM TENGCHONG, YUNNAN PROVINCE AND ITS PALAEOENVIRONMENTAL SIGNIFICANCE%云南腾冲新近纪两种被子植物化石的角质层构造及其古环境意义

    Institute of Scientific and Technical Information of China (English)

    孙柏年; 丛培允; 阎德飞; 解三平

    2003-01-01

    This paper emphatically describes the cuticular characteristics of two fossil angiosperm species Betula mioluminifera Hu et Chaney and Carpinus subcordata Nathorst collected from Neogene in Tengchong, Yunnan. The cuticular characteristics of their Nearest Living Relative species (NLR species), Betula luminifera Winkler and Carpinus cordata B1.var. mollis Cheng et Chen, are analysed. In this experiment, we have got the lower epidermis of C.subcordata, whose characteristics are described as follows: Only the middle and lower parts of leave preserved; length about 7.5 cm, width 5 cm. Midrib strong; angle between ventricumbent and midrib 40°-50°; nearer to the base, bigger the angle; venulose, more than 12 pairs. Upper epidermis a little thicker and net-veined, stomata not found; epidermic cells arrayed rotundly, polygonal, length and width 20-30 μm; length of the net about 350 μm, width about 200 μm; width of nervecourses 50 μm with 3-4 rows of parallel cells; cells in nervecourses oblong, length about 2-3 times of width. Lower epidermis thin with stomata; trichome found; arrangement of epidermic cells as the same of upper epidermis. Distribution of stomata ruleless; type of stomatal apparatus Anomocytic; stomata slightly sunken; guard cells kidney-shaped and slightly lower than surrounding cells; inner surface of guard cells thick; guard cell surrounded by several epidermic cells. The cuticle, with its stomatal pores, represents the interface between plants and atmosphere, and its features such as cuticle thickness, stomatal density (SD), stomatal index (SI) and stomatal ratio (SR) are well used as a palaeoenvironmental indicator. Therefore, we can analyse changes in palaeoenvironment by studying the stomatal parameter of fossil plants which are sensitive to the change in atmospheric CO2 concentration. In this experiment, we have got the stomatal parameter of C.subcordata which indicates that atmospheric CO2 concentration in Neogene was higher than that of

  20. 西藏及其东南地区被子植物与其不同生活型的果实类型分析%Fruit Types of Angiosperm and Their 4 Life Forms in Tibet and Its Southeastern Region

    Institute of Scientific and Technical Information of China (English)

    于顺利; 方伟伟; 泽仁旺姆; 尼珍; 张小凤

    2013-01-01

    统计了分布在西藏自治区的被子植物及各生活型果实的类型及比例,并与藏东南地区做了比较.结果如下,西藏自治区果实以蒴果为主(占37.74%),其次为瘦果、坚果、浆果等;干果的比例远远大于肉果;不同生活型的果实类型谱差异较大,乔木中核果的比例最高,藤本中浆果比例最高,灌木中瘦果比例最高,草本中蒴果占优势;4个生活型中,肉果的比例乔木为最高,其次为藤本、灌木、草本.藏东南地区植物的果实类型也以蒴果为主,其次为瘦果、浆果、核果等;藏东南乔木中核果比例最高,藤本中浆果比例最高,灌木和草本植物以蒴果占优势;乔木肉果的比例最高,其次为藤本、灌木、草本.藏东南肉果比例大于全藏区,而干果比例则相反.果实类型的这些性状特征与各自的环境相适应,是植物长期适应自然环境的进化结果,该研究对于理解植物果实对生态环境的长期适应进化具有一定的意义.%This article calculated the percentages of different fruit types of total angiosperms (5810 species,28 varieties) and their life forms (trees,shrubs,herbs and lianas) distributed in Tibet and southeastern Tibet.The results showed that in Tibet capsule is the dominant fruit type (37.74% ) ,followed by achene,nut and berry.The percentage of dry fruits is far bigger than that of fleshy fruits in Tibet.There are great variations in 4 life forms in fruit type spectrum.Drupe is dominant in tree,berry in liana,achene in shrub,and capsule in herb.Tree possesses the greatest percentage of fleshy fruit in 4 life forms,followed by liana,shrub and herb.In southeastern Tibet,capsule is also the dominant fruit type (37.54% ) ,followed by achene,berry,drupe,nut and caryopsis.The larger differences occur among the percentages of various fruit types.Drupe is dominant in tree,berry in liana,capsule in shrub and in herb.In the 4 life forms tree possesses the largest

  1. Notes on genus Eurydoxa Filipjev (Lepidoptera: Tortricidae) in China

    Institute of Scientific and Technical Information of China (English)

    BYUN Bong-Kyu; YAN Shan-chun; LI Cheng-de

    2003-01-01

    Genus Eurydoxa Filipjev in China is reviewed and noted for the first time. Based on the present study, two species are recognized, including rhodopa Diakonoff and advena Filipjev. All available information for the species is reviewed and provided.

  2. Floral phenology, secondary pollen presentation and pollination mechanism in Inula racemosa (Angiosperms: Asteraceae

    Directory of Open Access Journals (Sweden)

    P.A. Shabir

    2013-06-01

    Full Text Available Inula racemosa Hook. f. is protandrous, discharges pollen grains inside the anther tube and presents pollen secondarily onto the sweeping hairs of the style. The style and stigmatic branches present the yellow clumped pollen grains for pollination. This study describes floral functional morphology and phenology, anther dehiscence and pollen presentation, growth and behaviour of style during anthesis and pollination mechanism of I. racemosa. The species is entomophilous and is characterized by a highly asynchronous sexual phase. A large degree of asynchrony from floret to floret in a capitulum, and capitulum to capitulum in a plant, keeps the pollen dispersed for a longer duration. Two insect families were represented in the pollinator survey: Hymenoptera and Diptera. A significant correlation was observed between the number of capitula visited per bout and foraging time. We discuss morphological features of the ?owers which may enhance the pollen removal rate per bee visit and consequently cause a high visitation and pollination rate.

  3. Flower development and perianth identity candidate genes in the basal angiosperm Aristolochia fimbriata (Piperales: Aristolochiaceae

    Directory of Open Access Journals (Sweden)

    Natalia ePabón-Mora

    2015-12-01

    Full Text Available Aristolochia fimbriata (Aristolochiaceae: Piperales exhibits highly synorganized flowers with a single convoluted structure forming a petaloid perianth that surrounds the gynostemium, putatively formed by the congenital fusion between stamens and the upper portion of the carpels. Here we present the flower development and morphology of A. fimbriata, together with the expression of the key regulatory genes that participate in flower development, particularly those likely controlling perianth identity. A. fimbriata is a member of the magnoliids, and thus gene expression detected for all ABCE MADS-box genes in this taxon, can also help to elucidate patterns of gene expression prior the independent duplication of these genes in eudicots and monocots. Using both floral development and anatomy in combination with the isolation of MADS-box gene homologs, gene phylogenetic analyses and expression studies (both by reverse transcription PCR and in situ hybridization we present hypotheses on floral organ identity genes involved in the formation of this bizarre flower. We found that most MADS-box genes were expressed in vegetative and reproductive tissues with the exception of AfimSEP2, AfimAGL6 and AfimSTK transcripts that are only found in flowers and capsules but are not detected in leaves. Two genes show ubiquitous expression; AfimFUL that is found in all floral organs at all developmental stages as well as in leaves and capsules and AfimAG that has low expression in leaves and is found in all floral organs at all stages with a considerable reduction of expression in the limb of anthetic flowers. Our results indicate that expression of AfimFUL is indicative of pleiotropic roles and not of a perianth identity specific function. On the other hand, expression of B-class genes, AfimAP3 and AfimPI, suggests their conserved role in stamen identity and corroborates that the perianth is sepal and not petal-derived. Our data also postulates an AGL6 ortholog as a candidate gene for sepal identity in the Aristolochiaceae and provides testable hypothesis for a modified ABCE model in synorganized magnoliid flowers.

  4. Pollen resistance to water in 80 angiosperm species: flower structures protect rain-susceptible pollen.

    Science.gov (United States)

    Mao, Yun-Yun; Huang, Shuang-Quan

    2009-08-01

    Flowers exhibit adaptive responses to biotic and abiotic factors. It remains unclear whether pollen susceptibility to rain damage plays a role in the evolution of floral form. We investigated flower performance in rain and compared pollen longevity in dry conditions, pure water and solutions with different sucrose concentrations in 80 flowering species from 46 families with diverse floral shapes and pollination modes. A pollen viability test showed that pollen longevity in all studied species was greatly reduced by wetting. We found that pollen of species with complete protection by flower structures was susceptible to water damage and a high proportion of resistant pollen occurred in unprotected species. Flowers whose structures expose pollen to rain may also reduce rain damage through temporal patterns of pollen presentation. This prediction was supported by our direct measurement of pollen presentation duration on rainy days. Our observations showed that variation in pollen performance in water was associated with differences in floral forms. Water-resistant pollen and extended pollen presentation duration were favored by selection via rain contact in species in which pollen was not protected from rain. These findings support the functional hypothesis that flower structures protect susceptible pollen from rain, demonstrating that rain acts as a force shaping floral form.

  5. Effect of SO/sub 2/ on stomatal aperture and sulfur uptake of woody angiosperm seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Noland, T.L.; Kozlowski, T.T.

    1979-01-01

    Effects of SO/sub 2/ pollution on stomatal aperture and sulfur uptake varied with SO/sub 2/ dosage and plant species. Fumigation of Ulmus americana L. seedlings with 1 ppm SO/sub 2/ for 8 h inhibited stomatal closure and fumigation with 2 ppm SO/sub 2/ for 12 h induced stomatal closure. Sulfur uptake of fumigated Ulmus americana seedlings depended on stomatal aperture and was much higher in the light than in the dark. Fumigation of water-stressed Ginkgo biloba L. seedlings with 2 ppm SO/sub 2/ for 6.5 h tended to prevent stomatal closure. However, the effects of SO/sub 2/ on stomatal aperture were modulated and often overridden by environmental stresses such as low light intensity and drought.

  6. Evaluation of DNA barcodes in Codonopsis (Campanulaceae) and in some large angiosperm plant genera

    Science.gov (United States)

    Xiang, Xiao-Guo; Huang, Lu-Qi; Jin, Xiao-Hua

    2017-01-01

    DNA barcoding is expected to be one of the most promising tools in biological taxonomy. However, there have been no agreements on which core barcode should be used in plants, especially in species-rich genera with wide geographical distributions. To evaluate their discriminatory power in large genera, four of the most widely used DNA barcodes, including three plastid regions (matK, rbcL, trnH-psbA) and nuclear internal transcribed spacer (nrITS), were tested in seven species-rich genera (Ficus, Pedicularis, Rhodiola, Rhododendron,Viburnum, Dendrobium and Lysimachia) and a moderate size genus, Codonopsis. All of the sequences from the aforementioned seven large genera were downloaded from NCBI. The related barcodes for Codonopsis were newly generated in this study. Genetics distances, DNA barcoding gaps and phylogenetic trees of the four single barcodes and their combinations were calculated and compared in the seven genera. As for single barcode, nrITS has the most variable sites, the clearest intra- and inter-specific divergences and the highest discrimination rates in the seven genera. Among the combinations of barcodes, ITS+matK performed better than all the single barcodes in most cases and even the three- and four-loci combinations in the seven genera. Therefore, we recommend ITS+matK as the core barcodes for large plant genera. PMID:28182623

  7. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles

    Directory of Open Access Journals (Sweden)

    Emanuela eDattolo

    2013-06-01

    Full Text Available For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in the shallow (-5m and a deep (-25m portions of a single meadow, (i we generated two reciprocal EST (Expressed Sequences Tags libraries using a Suppressive Subtractive Hybridization (SSH approach, to obtain depth/specific transcriptional profiles, and (ii we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear o be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed.

  8. Convergent and correlated evolution of major life-history traits in the angiosperm genus Leucadendron (Proteaceae).

    Science.gov (United States)

    Tonnabel, Jeanne; Mignot, Agnès; Douzery, Emmanuel J P; Rebelo, Anthony G; Schurr, Frank M; Midgley, Jeremy; Illing, Nicola; Justy, Fabienne; Orcel, Denis; Olivieri, Isabelle

    2014-10-01

    Natural selection is expected to cause convergence of life histories among taxa as well as correlated evolution of different life-history traits. Here, we quantify the extent of convergence of five key life-history traits (adult fire survival, seed storage, degree of sexual dimorphism, pollination mode, and seed-dispersal mode) and test hypotheses about their correlated evolution in the genus Leucadendron (Proteaceae) from the fire-prone South African fynbos. We reconstructed a new molecular phylogeny of this highly diverse genus that involves more taxa and molecular markers than previously. This reconstruction identifies new clades that were not detected by previous molecular study and morphological classifications. Using this new phylogeny and robust methods that account for phylogenetic uncertainty, we show that the five life-history traits studied were labile during the evolutionary history of the genus. This diversity allowed us to tackle major questions about the correlated evolution of life-history strategies. We found that species with longer seed-dispersal distances tended to evolve lower pollen-dispersal distance, that insect-pollinated species evolved decreased sexual dimorphism, and that species with a persistent soil seed-bank evolved toward reduced fire-survival ability of adults.

  9. Intercellular relations and wall structures in mature embryo sacs of four species of angiosperms

    Directory of Open Access Journals (Sweden)

    Monique Fougére-Rifot

    2014-01-01

    Full Text Available During the maturation process of an ovule, the internal walls of the embryo sac becomes gradually thinner from the poles to the central cell. The thinning process results in an association of two plasma membranes with no polysaccharide structure betwen them. The presence of one disymmetrical ER cistern along the walls during the thinning process permits to anticipate a turn-over of carbohydrates.

  10. Dioecy does not consistently accelerate or slow lineage diversification across multiple genera of angiosperms.

    Science.gov (United States)

    Sabath, Niv; Goldberg, Emma E; Glick, Lior; Einhorn, Moshe; Ashman, Tia-Lynn; Ming, Ray; Otto, Sarah P; Vamosi, Jana C; Mayrose, Itay

    2016-02-01

    Dioecy, the sexual system in which male and female organs are found in separate individuals, allows greater specialization for sex-specific functions and can be advantageous under various ecological and environmental conditions. However, dioecy is rare among flowering plants. Previous studies identified contradictory trends regarding the relative diversification rates of dioecious lineages vs their nondioecious counterparts, depending on the methods and data used. We gathered detailed species-level data for dozens of genera that contain both dioecious and nondioecious species. We then applied a probabilistic approach that accounts for differential speciation, extinction, and transition rates between states to examine whether there is an association between dioecy and lineage diversification. We found a bimodal distribution, whereby dioecious lineages exhibited higher diversification in certain genera but lower diversification in others. Additional analyses did not uncover an ecological or life history trait that could explain a context-dependent effect of dioecy on diversification. Furthermore, in-depth simulations of neutral characters demonstrated that such bimodality is also found when simulating neutral characters across the observed trees. Our analyses suggest that - at least for these genera with the currently available data - dioecy neither consistently places a strong brake on diversification nor is a strong driver.

  11. The trade-off between vegetative and generative reproduction among angiosperms influences regional hydrochorous propagule pressure

    NARCIS (Netherlands)

    Boedeltje, Ger; Ozinga, Wim A.; Prinzing, Andreas

    2008-01-01

    Aim Local communities are subject to spatiotemporal contingencies of landscape processes; community assembly is thus often considered to be unpredictable and idiosyncratic. However, evolved trade-offs of species' life histories may set distinct constraints on the assembly of species communities. In

  12. The trade-off between vegetative and generative reproduction among angiosperms influences regional hydrochorous propagule pressure

    NARCIS (Netherlands)

    Boedeltje, G.; Ozinga, W.A.; Prinzing, A.

    2008-01-01

    Aim Local communities are subject to spatiotemporal contingencies of landscape processes; community assembly is thus often considered to be unpredictable and idiosyncratic. However, evolved trade-offs of species¿ life histories may set distinct constraints on the assembly of species communities. In

  13. A website for all angiosperm families – http://www.mobot.org/mobot/research/apweb/

    NARCIS (Netherlands)

    Stevens, P.F.

    2002-01-01

    Currently both those teaching and those learning about phylogenies face a variety of problems. There are several systems to chose from, yet there is no explicitly phylogenetic system (in the sense of recognizing only strictly monophyletic groups) where all those groups are described. Conventional fa

  14. Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees

    Science.gov (United States)

    Chave, Jérôme

    2016-01-01

    Amazonian tree species vary enormously in their total abundance and range size, while Amazonian tree genera vary greatly in species richness. The drivers of this variation are not well understood. Here, we construct a phylogenetic hypothesis that represents half of Amazonian tree genera in order to contribute to explaining the variation. We find several clear, broad-scale patterns. Firstly, there is significant phylogenetic signal for all three characteristics; closely related genera tend to have similar numbers of species and similar mean range size and abundance. Additionally, the species richness of genera shows a significant, negative relationship with the mean range size and abundance of their constituent species. Our results suggest that phylogenetically correlated intrinsic factors, namely traits of the genera themselves, shape among lineage variation in range size, abundance and species richness. We postulate that tree stature may be one particularly relevant trait. However, other traits may also be relevant, and our study reinforces the need for ambitious compilations of trait data for Amazonian trees. In the meantime, our study shows how large-scale phylogenies can help to elucidate, and contribute to explaining, macroecological and macroevolutionary patterns in hyperdiverse, yet poorly understood regions like the Amazon Basin. PMID:27651991

  15. Ecological monophagy in Tasmanian Graphium macleayanum moggana with evolutionary reflections of ancient angiosperm hosts

    Institute of Scientific and Technical Information of China (English)

    J.MARK SCRIBER; GEOFF R.ALLEN; PAUL W.WALKER

    2006-01-01

    Local host plant specialization in an insect herbivore may be caused by numerous factors,including host-specific natural enemy pressures or a local lack of suitable host-plant choices that are available elsewhere in its range. Such local specialization or "ecological monophagy",for whatever reason,may reflect reduced ability to behaviourally accept or physiologically utilize other allopatric hosts that are naturally used elsewhere by the species.We tested this feeding specialization hypothesis using the Tasmanian subspecies of Macleay's swallowtail butterfly,Graphium macleayanum moggana (Papilionidae),which uses only a single host-plant species,Antherosperma moschatum (southern sassafras,of the Monimiaceae). Further north,this same butterfly species (G. m. macleayanum) uses at least 13 host-plant species from seven genera and four families (Lauraceae,Rutaceae,Winteraceae,and Monimiaceae). Our larval feeding assays with G. m. moggana from Tasmania showed that certain Magnoliaceae and Lauraceae could support some larval growth to pupation.However,such growth was slower and survival was lower than observed on their normal southern sassafras host (Monimiaceae). We also found that toxicity of particular plant species varied tremendously within plant families (for both the Magnoliceae and the Monimiaceae).

  16. Angiosperm n-alkane distribution patterns and the geologic record of C4 grassland evolution

    Science.gov (United States)

    Henderson, A.; Graham, H. V.; Patzkowsky, M.; Fox, D. L.; Freeman, K. H.

    2012-12-01

    n-Alkane average chain-length (ACL) patterns vary regionally with community composition and climate. To clarify the influence of phylogenetic and community patterns, we compiled and analyzed a global database of published n-alkane abundance for n-C27 to C35 homologs in modern plant specimens (n=205). ACL for waxes in C4 non-woody plants are longer than for woody plants, suggesting ACL can serve as an indicator of the three-dimensional structure of local vegetation. Further, these findings suggest compound-specific isotopic data for longer alkane homologs (C31, C33, C35) will proportionately represent non-woody vegetation and isotope measurements of C29 are more representative of woody vegetation. Thus, the combination of ACL and carbon isotope compositions should allow us to disentangle C3 woody, C3 non-woody, and C4 non-woody signals in terrestrial paleorecords. Application of this approach to the geologic record of Miocene C4 grassland expansion in the US Great Plains and the Siwaliks in Pakistan illustrate two very different transition scenarios. Alkane-specific isotopic data indicate C4 grasslands appeared 2.5 Ma in the Great Plains and 6.5 Ma in the Siwaliks, and ACL analysis indicates that this transition involved the replacement of woody vegetation in the US and the replacement of C3 grasses in Pakistan. Our analysis illustrates that, consistent with differences in the timing of C4 grassland, the drivers of change were likely not the same in these regions. Oxygen isotope records suggest that the more recent transition in the Great Plains was associated with climate cooling and possibly changes in disturbance regimes and that the transition in the Siwaliks was likely associated with warming and drying.

  17. Trifurcatia flabellata n. gen. n. sp., a putative monocotyledon angiosperm from the Lower Cretaceous Crato Formation (Brazil

    Directory of Open Access Journals (Sweden)

    B. Mohr

    2002-01-01

    Full Text Available The Lower Cretaceous Crato Formation (northeast Brazil contains plant remains, here described as Trifurcatia flabellata n. gen. and n. sp., consisting of shoot fragments with jointed trifurcate axes, each axis bearing a single amplexicaul serrate leaf at the apex. The leaves show a flabellate acrodromous to parallelodromous venation pattern, with several primary, secondary and higher order cross-veins. This very unique fossil taxon shares many characters with monocots. However, this fossil taxon exhibits additional features which point to a partly reduced, and specialized plant, which probably enabled this plant to grow in (seasonally dry, even salty environments. In der unterkretazischen Cratoformation (Nordostbrasilien sind Pflanzenfossilien erhalten, die hier als Trifurcatia flabellata n. gen. n. sp. beschrieben werden. Sie bestehen aus trifurcaten Achsen, mit einem apikalen amplexicaulen fächerförmigen serraten Blatt. Diese Blätter zeigen eine flabellate bis acrodrome-paralellodrome Aderung mit Haupt- und Nebenadern und transversale Adern 3. Ordnung. Diese Merkmale sind typisch für Monocotyledone. Allerdings weist dieses Taxon einige Merkmale auf, die weder bei rezenten noch fossilen Monocotyledonen beobachtet werden. Sie müssen als besondere Anpassungen an einen (saisonal trockenen und vielleicht übersalzenen Lebensraum dieser Pflanze interpretiert werden. doi:10.1002/mmng.20020050121

  18. Conserved genetic regions across angiosperms as tools to develop single-copy nuclear markers in gymnosperms: an example using cycads.

    Science.gov (United States)

    Salas-Leiva, Dayana E; Meerow, Alan W; Francisco-Ortega, Javier; Calonje, Michael; Griffith, M Patrick; Stevenson, Dennis W; Nakamura, Kyoko

    2014-07-01

    Several individuals of the Caribbean Zamia clade and other cycad genera were used to identify single-copy nuclear genes for phylogeographic and phylogenetic studies in Cycadales. Two strategies were employed to select target loci: (i) a tblastX search of Arabidopsis conserved ortholog sequence (COS) set and (ii) a tblastX search of Arabidopsis-Populus-Vitis-Oryza Shared Single-Copy genes (APVO SSC) against the EST Zamia databases in GenBank. From the first strategy, 30 loci were selected, and from the second, 16 loci. In both cases, the matching GenBank accessions of Zamia were used as a query for retrieving highly similar sequences from Cycas, Picea, Pinus species or Ginkgo biloba. After retrieving and aligning all the sequences in each locus, intron predictions were completed to assist in primer design. PCR was carried out in three rounds to detect paralogous loci. A total of 29 loci were successfully amplified as a single band of which 20 were likely single-copy loci. These loci showed different diversity and divergence levels. A preliminary screening allowed us to select 8 promising loci (40S, ATG2, BG, GroES, GTP, LiSH, PEX4 and TR) for the Zamia pumila complex and 4 loci (COS26, GroES, GTP and HTS) for all other cycad genera.

  19. Conserved-peptide upstream open reading frames (CPuORFs are associated with regulatory genes in angiosperms

    Directory of Open Access Journals (Sweden)

    Richard A Jorgensen

    2012-08-01

    Full Text Available Upstream open reading frames (uORFs are common in eukaryotic transcripts, but those that encode conserved peptides (CPuORFs occur in less than 1% of transcripts. The peptides encoded by three plant CPuORF families are known to control translation of the downstream ORF in response to a small signal molecule (sucrose, polyamines and phosphocholine. In flowering plants, transcription factors are statistically over-represented among genes that possess CPuORFs, and in general it appeared that many CPuORF genes also had other regulatory functions, though the significance of this suggestion was uncertain (Hayden and Jorgensen, 2007. Five years later the literature provides much more information on the functions of many CPuORF genes. Here we reassess the functions of 27 known CPuORF gene families and find that 22 of these families play a variety of different regulatory roles, from transcriptional control to protein turnover, and from small signal molecules to signal transduction kinases. Clearly then, there is indeed a strong association of CPuORFs with regulatory genes. In addition, 16 of these families play key roles in a variety of different biological processes. Most strikingly, the core sucrose response network includes three different CPuORFs, creating the potential for sophisticated balancing of the network in response to three different molecular inputs. We propose that the function of most CPuORFs is to modulate translation of a downstream major ORF (mORF in response to a signal molecule recognized by the conserved peptide and that because the mORFs of CPuORF genes generally encode regulatory proteins, many of them centrally important in the biology of plants, CPuORFs play key roles in balancing such regulatory networks.

  20. Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems

    NARCIS (Netherlands)

    Bakker, Elisabeth S.; Pagès, Jordi F.; Arthur, Rohan; Alcoverro, Teresa

    2016-01-01

    While large herbivores can have strong impacts on terrestrial ecosystems, much less is known of their role in aquatic systems. We reviewed the literature to determine: (1) which large herbivores (>10 kg) have a (semi-)aquatic lifestyle and are important consumers of submerged vascular plants, (2) th

  1. Patterns of nucleotide substitution in angiosperm cpDNA trnL (UAA)-F(GAA) regions

    NARCIS (Netherlands)

    Bakker, F.T.; Culham, A.; Gomez-Martinez, R.; Carvalho, J.; Compton, J.; Dawtrey, R.; Gibby, M.

    2000-01-01

    Patterns of substitution in chloroplast encoded trnL-F regions were compared between species of Actaea (Ranunculales), Digitalis (Scrophulariales), Drosera (Caryophyllales), Panicoideae (Poales), the small chromosome species clade of Pelargonium (Geraniales), each representing a different order of f

  2. Whole-genome duplications followed by tandem duplications drive diversification of the protein modifier SUMO in Angiosperms

    NARCIS (Netherlands)

    Hammoudi, V.; Vlachakis, G.; Schranz, M.E.; van den Burg, H.A.

    2016-01-01

    The ubiquitin-like modifier (UBL) SUMO (Small Ubiquitin-Like Modifier) regulates protein function. Structural rather than sequence homology typifies UBL families. However, individual UBL types, such as SUMO, show remarkable sequence conservation. Selection pressure also operates at the SUMO gene cop

  3. Whole-genome duplications followed by tandem duplications drive diversification of the protein modifier SUMO in Angiosperms

    NARCIS (Netherlands)

    Hammoudi, Valentin; Vlachakis, Georgios; Schranz, Eric; Burg, van den Harrold A.

    2016-01-01

    The ubiquitin-like modifier (UBL) SUMO (Small Ubiquitin-Like Modifier) regulates protein function. Structural rather than sequence homology typifies UBL families. However, individual UBL types, such as SUMO, show remarkable sequence conservation. Selection pressure also operates at the SUMO gene

  4. The massive mitochondrial genome of the angiosperm Silene noctiflora is evolving by gain or loss of entire chromosomes.

    Science.gov (United States)

    Wu, Zhiqiang; Cuthbert, Jocelyn M; Taylor, Douglas R; Sloan, Daniel B

    2015-08-18

    Across eukaryotes, mitochondria exhibit staggering diversity in genomic architecture, including the repeated evolution of multichromosomal structures. Unlike in the nucleus, where mitosis and meiosis ensure faithful transmission of chromosomes, the mechanisms of inheritance in fragmented mitochondrial genomes remain mysterious. Multichromosomal mitochondrial genomes have recently been found in multiple species of flowering plants, including Silene noctiflora, which harbors an unusually large and complex mitochondrial genome with more than 50 circular-mapping chromosomes totaling ∼7 Mb in size. To determine the extent to which such genomes are stably maintained, we analyzed intraspecific variation in the mitochondrial genome of S. noctiflora. Complete genomes from two populations revealed a high degree of similarity in the sequence, structure, and relative abundance of mitochondrial chromosomes. For example, there are no inversions between the genomes, and there are only nine SNPs in 25 kb of protein-coding sequence. Remarkably, however, these genomes differ in the presence or absence of 19 entire chromosomes, all of which lack any identifiable genes or contain only duplicate gene copies. Thus, these mitochondrial genomes retain a full gene complement but carry a highly variable set of chromosomes that are filled with presumably dispensable sequence. In S. noctiflora, conventional mechanisms of mitochondrial sequence divergence are being outstripped by an apparently nonadaptive process of whole-chromosome gain/loss, highlighting the inherent challenge in maintaining a fragmented genome. We discuss the implications of these findings in relation to the question of why mitochondria, more so than plastids and bacterial endosymbionts, are prone to the repeated evolution of multichromosomal genomes.

  5. 西藏被子植物新记录%New Records of Angiosperm Plants in Xizang

    Institute of Scientific and Technical Information of China (English)

    汪书丽; 罗建

    2013-01-01

    报道了西藏被子植物3种新记录,即石竹科(Caryophyllaceae)的坚硬女娄菜(Silene firma Sieb.et Zucc.)、川续断科(Dipsacaceae)的绿花刺参(Morina chlorantha Diels)和菊科(Asteraceae)的粘毛香青[Anaphalis bulley-ana(J.F.Jeffr.)Chang].

  6. Ancestral Gene Flow and Parallel Organellar Genome Capture Result in Extreme Phylogenomic Discord in a Lineage of Angiosperms.

    Science.gov (United States)

    Folk, Ryan A; Mandel, Jennifer R; Freudenstein, John V

    2016-09-16

    While hybridization has recently received a resurgence of attention from systematists and evolutionary biologists, there remains a dearth of case studies on ancient, diversified hybrid lineages-clades of organisms that originated through reticulation. Studies on these groups are valuable in that they would speak to the long-term phylogenetic success of lineages following gene flow between species. We present a phylogenomic view of Heuchera, long known for frequent hybridization, incorporating all three independent genomes: targeted nuclear (~400,000 bp), plastid (~160,000 bp), and mitochondrial (~470,000 bp) data. We analyze these data using multiple concatenation and coalescence strategies. The nuclear phylogeny is consistent with previous work and with morphology, confidently suggesting a monophyletic Heuchera By contrast, analyses of both organellar genomes recover a grossly polyphyletic Heuchera,consisting of three primary clades with relationships extensively rearranged within these as well. A minority of nuclear loci also exhibit phylogenetic discord; yet these topologies remarkably never resemble the pattern of organellar loci and largely present low levels of discord inter alia Two independent estimates of the coalescent branch length of the ancestor of Heuchera using nuclear data suggest rare or nonexistent incomplete lineage sorting with related clades, inconsistent with the observed gross polyphyly of organellar genomes (confirmed by simulation of gene trees under the coalescent). These observations, in combination with previous work, strongly suggest hybridization as the cause of this phylogenetic discord. [Ancient hybridization; chloroplast capture; incongruence; phylogenomics; reticulation.].

  7. Theoretical and experimental evidence indicates that there is no detectable auxin gradient in the angiosperm female gametophyte.

    Science.gov (United States)

    Lituiev, Dmytro S; Krohn, Nádia G; Müller, Bruno; Jackson, David; Hellriegel, Barbara; Dresselhaus, Thomas; Grossniklaus, Ueli

    2013-11-01

    The plant life cycle alternates between a diploid sporophytic and a haploid gametophytic generation. The female gametophyte (FG) of flowering plants is typically formed through three syncytial mitoses, followed by cellularisation that forms seven cells belonging to four cell types. The specification of cell fates in the FG has been suggested to depend on positional information provided by an intrinsic auxin concentration gradient. The goal of this study was to develop mathematical models that explain the formation of this gradient in a syncytium. Two factors were proposed to contribute to the maintenance of the auxin gradient in Arabidopsis FGs: polar influx at early stages and localised auxin synthesis at later stages. However, no gradient could be generated using classical, one-dimensional theoretical models under these assumptions. Thus, we tested other hypotheses, including spatial confinement by the large central vacuole, background efflux and localised degradation, and investigated the robustness of cell specification under different parameters and assumptions. None of the models led to the generation of an auxin gradient that was steep enough to allow sufficiently robust patterning. This led us to re-examine the response to an auxin gradient in developing FGs using various auxin reporters, including a novel degron-based reporter system. In agreement with the predictions of our models, auxin responses were not detectable within the FG of Arabidopsis or maize, suggesting that the effects of manipulating auxin production and response on cell fate determination might be indirect.

  8. Phenolic content of daylight-exposed and shaded floating leaves of water lilies (Nymphaeaceae) in relation to infection by fungi.

    Science.gov (United States)

    Vergeer, L H T; van der Velde, G

    1997-11-01

    Under suboptimal growing conditions (e.g. a lack of sunshine), floating leaves of Nymphaea alba and Nuphar lutea can become heavily infected with the fungi Colletotrichum nymphaeae and Pythium F, respectively. These fungi normally act as decomposers of senescent leaves. Mature leaves of Nymphaea alba and Nuphar lutea contain high concentrations of phenolics, secondary substances known for their fungistatic properties. The production of these compounds requires energy and primary metabolites. The hypothesis that suboptimal growing conditions reduce the ability of nymphaeids to maintain a sufficiently high level of phenolics, thereby making them more vulnerable to infection by fungi, was tested. Outdoor mesocosm experiments were used to examine the response of floating leaves of Nymphaea alba and Nuphar lutea to reduced light availability. Shading significantly reduced the phenolic content of the leaves. This was accompanied by higher disease severity. The outcome of this experiment is also discussed in relation to the higher nitrogen content measured in shaded leaves.

  9. The expression pattern of the Picea glauca Defensin 1 promoter is maintained in Arabidopsis thaliana, indicating the conservation of signalling pathways between angiosperms and gymnosperms.

    Science.gov (United States)

    Germain, Hugo; Lachance, Denis; Pelletier, Gervais; Fossdal, Carl Gunnar; Solheim, Halvor; Séguin, Armand

    2012-01-01

    A 1149 bp genomic fragment corresponding to the 5' non-coding region of the PgD1 (Picea glauca Defensin 1) gene was cloned, characterized, and compared with all Arabidopsis thaliana defensin promoters. The cloned fragment was found to contain several motifs specific to defence or hormonal response, including a motif involved in the methyl jasmonate reponse, a fungal elicitor responsive element, and TC-rich repeat cis-acting element involved in defence and stress responsiveness. A functional analysis of the PgD1 promoter was performed using the uidA (GUS) reporter system in stably transformed Arabidopsis and white spruce plants. The PgD1 promoter was responsive to jasmonic acid (JA), to infection by fungus and to wounding. In transgenic spruce embryos, GUS staining was clearly restricted to the shoot apical meristem. In Arabidopsis, faint GUS coloration was observed in leaves and flowers and a strong blue colour was observed in guard cells and trichomes. Transgenic Arabidopsis plants expressing the PgD1::GUS construct were also infiltrated with the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000. It caused a suppression of defensin expression probably resulting from the antagonistic relationship between the pathogen-stimulated salicylic acid pathway and the jasmonic acid pathway. It is therefore concluded that the PgD1 promoter fragment cloned appears to contain most if not all the elements for proper PgD1 expression and that these elements are also recognized in Arabidopsis despite the phylogenetic and evolutionary differences that separates them.

  10. Progress and gaps in understanding mechanisms of ash tree resistance to emerald ash borer, a model for wood-boring insects that kill angiosperms.

    Science.gov (United States)

    Villari, Caterina; Herms, Daniel A; Whitehill, Justin G A; Cipollini, Don; Bonello, Pierluigi

    2016-01-01

    We review the literature on host resistance of ash to emerald ash borer (EAB, Agrilus planipennis), an invasive species that causes widespread mortality of ash. Manchurian ash (Fraxinus mandshurica), which coevolved with EAB, is more resistant than evolutionarily naïve North American and European congeners. Manchurian ash was less preferred for adult feeding and oviposition than susceptible hosts, more resistant to larval feeding, had higher constitutive concentrations of bark lignans, coumarins, proline, tyramine and defensive proteins, and was characterized by faster oxidation of phenolics. Consistent with EAB being a secondary colonizer of coevolved hosts, drought stress decreased the resistance of Manchurian ash, but had no effect on constitutive bark phenolics, suggesting that they do not contribute to increased susceptibility in response to drought stress. The induced resistance of North American species to EAB in response to the exogenous application of methyl jasmonate was associated with increased bark concentrations of verbascoside, lignin and/or trypsin inhibitors, which decreased larval survival and/or growth in bioassays. This finding suggests that these inherently susceptible species possess latent defenses that are not induced naturally by larval colonization, perhaps because they fail to recognize larval cues or respond quickly enough. Finally, we propose future research directions that would address some critical knowledge gaps.

  11. The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an "inhibitor of an inhibitor" enables flexible response to fluctuating environments.

    Science.gov (United States)

    Harberd, Nicholas P; Belfield, Eric; Yasumura, Yuki

    2009-05-01

    The phytohormone gibberellin (GA) has long been known to regulate the growth, development, and life cycle progression of flowering plants. However, the molecular GA-GID1-DELLA mechanism that enables plants to respond to GA has only recently been discovered. In addition, studies published in the last few years have highlighted previously unsuspected roles for the GA-GID1-DELLA mechanism in regulating growth response to environmental variables. Here, we review these advances within a general plant biology context and speculate on the answers to some remaining questions. We also discuss the hypothesis that the GA-GID1-DELLA mechanism enables flowering plants to maintain transient growth arrest, giving them the flexibility to survive periods of adversity.

  12. Consideration on some viewpoints in researches of the origin of angiosperms%被子植物起源研究中几种观点的思考

    Institute of Scientific and Technical Information of China (English)

    路安民; 汤彦承

    2005-01-01

    对被子植物起源研究中的几种观点进行了讨论.(1)由于被子植物存在着一组共同的性状,它们不可能是从不同祖先起源的,而是有着共同的祖先.被子植物是一个单源起源的类群.现存被子植物分类系统是依据包括形态学(广义)、分子系统学、古植物学和植物地理学等的综合性状建立的,只能表示出现存类群的亲缘关系并且追溯到它们最近的祖先.人们现在还不可能建立一个包括全部已绝灭的类群和现代生存类群的谱系发生系统.因此,现存被子植物分类系统只能看作是"亲缘"系统.(2)分析了用于推测被子植物起源时间的分子、化石和地理分布证据.我们认为,要确定被子植物起源时间,植物化石是一类重要证据,但化石只能说是植物本身可保存部分和当时当地所提供的化石条件的综合反映,它们不可能就是植物类群或种的起源时间.人们还必须考虑到化石本身的演化历史.应用分子钟也是一种手段,但误差比较大.如果我们除了利用上述两种资料之外,根据植物类群的现代分布格局及其形成,把植物的演化同地球的历史和板块运动联系起来,以推断它们起源的时间,这无疑会增加其可信度.通过对56个种子植物不同演化水平的重要科属地理分布的研究结果,我们曾提出被子植物的起源时间可能要追溯到早侏罗世,甚至晚三叠世.(3)分析了基于分子证据所提出的被子植物基部类群--ANITA成员(包括无油樟科Amborellaceae、睡莲科Nymphaeaceae、八角目Illiciales、早落瓣科Trimeniaceae、木兰藤科Austrobaileyaceae)的性质,讨论了ANITA成员在现代几个被子植物分类系统中的系统位置的不同观点,评价了它们的形态学(广义)性状.指出ANITA的成员由于包含大量的祖征,是属于原始的类群.但由于它们的共有衍征很少,如花粉球形,说明它们在被子植物演化早期就分道扬镳了,沿着不同的传代线分化.因此ANITA是一个源于不同传代线的复合群.

  13. Evaluation of angiosperm and fern contributions to soil organic matter using two methods of pyrolysis-gas chromatography-mass spectrometry

    Science.gov (United States)

    Plant biochemical characteristics influence decomposition rates and subsequently the biochemical composition of soil organic matter. Ferns, in particular have biochemical characteristics that could influence the stability of soil organic matter (SOM), such as high concentrations of aliphatic compou...

  14. The phylogeny of C/S1 bZIP transcription factors reveals a shared algal ancestry and the pre-angiosperm translational regulation of S1 transcripts

    NARCIS (Netherlands)

    Peviani, Alessia; Lastdrager, Jeroen; Hanson, Johannes; Snel, Berend

    2016-01-01

    Basic leucine zippers (bZIPs) form a large plant transcription factor family. C and S1 bZIP groups can heterodimerize, fulfilling crucial roles in seed development and stress response. S1 sequences also harbor a unique regulatory mechanism, termed Sucrose-Induced Repression of Translation (SIRT). Th

  15. Reassessing morphological homologies in the early-divergent angiosperm Fenerivia (annonaceae) based on floral vascular anatomy: significance for interpreting putative homeotic mutations.

    Science.gov (United States)

    Xue, Bine; Saunders, Richard M K

    2013-01-01

    Fenerivia species (Annonaceae) are characterized by a prominent flange immediately below the perianth, which has been interpreted as synapomorphic for the genus. The homology of this flange is controversial: previous studies of Fenerivia heteropetala (an aberrant species, with 12 perianth parts in three whorls) have suggested that the flange may represent a vestigial calyx resulting from a disruption to the homeotic control of organ identity during floral development. Comparative data on floral vasculature in Fenerivia capuronii are presented to elucidate the homology of the flange in other Fenerivia species (which possess nine perianth parts in three whorls, typical of most Annonaceae). The flange in F. capuronii differs from that in F. heteropetala as it is unvascularized. It is nevertheless suggested that the flange is likely to be homologous, and that a homeotic mutation in the F. heteropetala lineage resulted in the formation of a vestigial but vascularized calyx that fused with the otherwise unvascularized flange.

  16. Molecular phylogenetics of the species-rich angiosperm genus Goniothalamus (Annonaceae) inferred from nine chloroplast DNA regions: Synapomorphies and putative correlated evolutionary changes in fruit and seed morphology.

    Science.gov (United States)

    Tang, Chin Cheung; Thomas, Daniel C; Saunders, Richard M K

    2015-11-01

    A phylogenetic study of the genus Goniothalamus (Annonaceae) is presented using maximum parsimony, maximum likelihood and Bayesian approaches, with 65 species sampled (48.5% of the genus) based on sequences of nine chloroplast DNA regions (11,214 aligned positions). The resultant phylogeny clearly indicates that Goniothalamus is monophyletic. Preliminary research initially focused on identifying synapomorphies and estimating the phylogenetic signal of selected morphological characters based on parsimony and likelihood ancestral character state reconstructions. This prescreening of characters enabled 40 to be selected for further study, and of these 15 are shown here to demonstrate significant phylogenetic signal and to provide clear synapomorphies for several infrageneric clades. Although floral structure in Goniothalamus is comparatively uniform, suggesting a common basic pattern of pollination ecology, fruit and seed morphology in the genus is very diverse and is presumably associated with different patterns of frugivory. The present study assesses correlations amongst fruit and seed characters which are putatively of functional importance with regard to frugivory and dispersal. One-way phylogenetic ANOVA indicates significant phylogenetically independent correlation between the following fruit and seed characters: fruits borne on older branches and/or on the main trunk have larger monocarps than fruits borne on young branches; and monocarps that contain seeds with a hairy testa are larger than those with glabrous seeds. We discuss fruit morphologies and potential explanations for the inferred correlations, and suggest that they may be the result of adaptation to different frugivores (birds, larger non-volant animal and primate seed dispersers, respectively).

  17. Conserved roles of CrRLK1L receptor-like kinases in cell expansion and reproduction from algae to angiosperms

    Directory of Open Access Journals (Sweden)

    Sergio Galindo Trigo

    2016-08-01

    Full Text Available Receptor-like kinases (RLKs are regulators of plant development through allowing cells to sense their extracellular environment. They facilitate detection of local endogenous signals, in addition to external biotic and abiotic stimuli. The Catharanthus roseus RLK1-like (CrRLK1L protein kinase subfamily, which contains FERONIA, plays a central role in regulating fertilization and in cell expansion mechanisms such as cell elongation and tip growth, as well as having indirect links to plant-pathogen interactions. Several components of CrRLK1L signaling pathways have been identified, including an extracellular ligand, coreceptors and downstream signaling elements. The presence and abundance of the CrRLK1L proteins in the plant kingdom suggest an origin within the Streptophyta lineage, with a notable increase in prevalence in the seeded land plants. Given the function of the sole CrRLK1L protein in a charophycean alga, the possibility of a conserved role in detection and/or regulation of cell wall integrity throughout the Strephtophytes is discussed. Orthologs of signaling pathway components are also present in extant representatives of non-vascular land plants and early vascular land plants including the liverwort Marchantia polymorpha, the moss Physcomitrella patens and the lycophyte Selaginella moellendorffii. Deciphering the roles in development of the CrRLK1L protein kinases in early diverging land plants will provide insights into their ancestral function, furthering our understanding of this diversified subfamily of receptors in higher plants.

  18. Conserved Roles of CrRLK1L Receptor-Like Kinases in Cell Expansion and Reproduction from Algae to Angiosperms

    Science.gov (United States)

    Galindo-Trigo, Sergio; Gray, Julie E.; Smith, Lisa M.

    2016-01-01

    Receptor-like kinases (RLKs) are regulators of plant development through allowing cells to sense their extracellular environment. They facilitate detection of local endogenous signals, in addition to external biotic and abiotic stimuli. The Catharanthus roseus RLK1-like (CrRLK1L) protein kinase subfamily, which contains FERONIA, plays a central role in regulating fertilization and in cell expansion mechanisms such as cell elongation and tip growth, as well as having indirect links to plant–pathogen interactions. Several components of CrRLK1L signaling pathways have been identified, including an extracellular ligand, coreceptors, and downstream signaling elements. The presence and abundance of the CrRLK1L proteins in the plant kingdom suggest an origin within the Streptophyta lineage, with a notable increase in prevalence in the seeded land plants. Given the function of the sole CrRLK1L protein in a charophycean alga, the possibility of a conserved role in detection and/or regulation of cell wall integrity throughout the Strephtophytes is discussed. Orthologs of signaling pathway components are also present in extant representatives of non-vascular land plants and early vascular land plants including the liverwort Marchantia polymorpha, the moss Physcomitrella patens and the lycophyte Selaginella moellendorffii. Deciphering the roles in development of the CrRLK1L protein kinases in early diverging land plants will provide insights into their ancestral function, furthering our understanding of this diversified subfamily of receptors in higher plants. PMID:27621737

  19. It is a matter of timing: asynchrony during pollen development and its consequences on pollen performance in angiosperms-a review.

    Science.gov (United States)

    Carrizo García, Carolina; Nepi, Massimo; Pacini, Ettore

    2017-01-01

    Functional pollen is needed to successfully complete fertilization. Pollen is formed inside the anthers following a specific sequence of developmental stages, from microsporocyte meiosis to pollen release, that concerns microsporocytes/microspores and anther wall tissues. The processes involved may not be synchronous within a flower, an anther, and even a microsporangium. Asynchrony has been barely analyzed, and its biological consequences have not been yet assessed. In this review, different processes of pollen development and lifetime, stressing on the possible consequences of their differential timing on pollen performance, are summarized. Development is usually synchronized until microsporocyte meiosis I (occasionally until meiosis II). Afterwards, a period of mostly asynchronous events extends up to anther opening as regards: (1) meiosis II (sometimes); (2) microspore vacuolization and later reduction of vacuoles; (3) amylogenesis, amylolysis, and carbohydrate inter-conversion; (4) the first haploid mitosis; and (5) intine formation. Asynchrony would promote metabolic differences among developing microspores and therefore physiologically heterogeneous pollen grains within a single microsporangium. Asynchrony would increase the effect of competition for resources during development and pollen tube growth and also for water during (re)hydration on the stigma. The differences generated by developmental asynchronies may have an adaptive role since more efficient pollen grains would be selected with regard to homeostasis, desiccation tolerance, resilience, speed of (re)hydration, and germination. The performance of each pollen grain which landed onto the stigma will be the result of a series of selective steps determined by its development, physiological state at maturity, and successive environmental constrains.

  20. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Great Plains Region (Version 2.0)

    Science.gov (United States)

    2010-03-01

    Potamogeton, Brasenia, Nuphar) and sedges ( Carex , Cyperus, Rhynchospora), bulrushes (Scirpus, Schoenoplectus), spikerushes (Eleocharis), cattails (Typha...prairie pothole wetlands is dominated by sedges , bulrushes, grasses, and forbs, but the composition varies greatly depending upon the hydrologic regime...spikerushes, smartweeds, sedges , reed canary grass (Phalaris arundinacea), and foxtail barley in seasonally wet areas, and western wheatgrass, buffalo grass

  1. Estimativa por infravermelho da concentração da unidade estrutural b-O-4 em ligninas de angiospermas tropicais Infrared estimates of the concentration of the b-o-4 structural unit in lignins of tropical angiosperms

    Directory of Open Access Journals (Sweden)

    Heber dos Santos Abreu

    1997-12-01

    Full Text Available Five Björkman lignins, codified as AM, LL, GG, PP and AP, were isolated from wood species of Aspidosperma macrocarpum Mart., Lophanthera lactescens Ducke, Gallesia gorazema (Vell. Miq., Peltogyne paniculata Bth. and Aspidosperma polyneuron Muell. Arg., respectively. Analyses of the lignins were carried out by Fourier transformed infrared spectroscopy using an experimental technique, Diffusely Reflected Infrared Fourier Transformed (DRIFT, admitting in the original spectra a band at 1500 cm-1 as an internal reference. Application of a deconvolution technique made possible to estimate the percentage per mol of b-O-4 unit content around 65.5% to AM, 68.0% to LL, 71.0% to GG. 73.4% to PP and 75.0% to AP, toward AM

  2. Co-ordination in morphological leaf traits of early diverging angiosperms is maintained following exposure to experimental palaeo-atmospheric conditions of sub-ambient O2 and elevated CO2

    Directory of Open Access Journals (Sweden)

    Christiana Evans-Fitz.Gerald

    2016-09-01

    Full Text Available In order to be successful in a given environment a plant should invest in a vein network and stomatal distribution that ensures balance between both water supply and demand. Vein density (Dv and stomatal density (SD have been shown to be strongly positively correlated in response to a range of environmental variables in more recently evolved plant species, but the extent of this relationship has not been confirmed in earlier diverging plant lineages. In order to examine the effect of a changing atmosphere on the relationship between Dv and SD, five early-diverging plant species representing two different reproductive plant grades were grown for seven months in a palaeo-treatment comprising an O2:CO2 ratio that has occurred multiple times throughout plant evolutionary history. Results show a range of species-specific Dv and SD responses to the palaeo-treatment, however we show that the strong relationship between Dv and SD under modern ambient atmospheric composition is maintained following exposure to the palaeo-treatment. This suggests strong inter-specific co-ordination between vein and stomatal traits for our study species even under relatively extreme environmental change. This co-ordination supports existing plant function proxies that use the distance between vein endings and stomata (Dm to infer plant palaeo-physiology.

  3. Situação amostral e riqueza de espécies das Angiospermas do estado do Ceará, Brasil Sampling effort and species richness of Angiosperms in the state of Ceará, Brazil

    Directory of Open Access Journals (Sweden)

    Regina Celli Araújo de Freitas

    2010-12-01

    Full Text Available O estado do Ceará, situado no nordeste brasileiro, apresenta predomínio do clima semi-árido. Objetivando um delineamento para futuros inventários florísticos, realizou-se uma averiguação preliminar do esforço de coleta em seu território. Para isto, o estudo da amostragem e da riqueza de espécies das famílias Asteraceae, Euphorbiaceae, Fabaceae, Poaceae e Rubiaceae foram analisadas. Assim como, a distribuição geográfica das amostras foi correlacionada às sete unidades fitoecológicas do estado do Ceará: caatinga arbustiva, caatinga arbórea, carrasco, cerradão, complexo litorâneo, mata seca e mata úmida. Os dados utilizados foram obtidos da coleção do Herbário Prisco Bezerra (EAC, sendo reunidos através do software BRAHMS. Desde 1933 até agosto de 2008, foram registradas na coleção: 11.551 exsicatas (exs. representando 1.209 espécies (spp.. Este total de exsicatas está distribuído da seguinte forma entre as unidades fitoecológicas: mata úmida 27% exs. e 33% spp., complexo litorâneo 24% exs. e 24% spp., caatinga arbustiva 16% exs. e 19% spp., carrasco 13% exs. e 17% spp., mata seca 10% exs. e 9% spp., caatinga arbórea 8% exs. e 12%; e cerradão 2% exs. e 3% spp. Os dados evidenciam um maior esforço de coleta e riqueza de espécies nas áreas de mata úmida e no complexo litorâneo, seguidos das áreas da caatinga arbustiva e arbórea. Com apenas 5% do território cearense, a mata úmida supera a amostragem das caatingas, que detêm 70% do estado do Ceará. Portanto, observamos a ocorrência satisfatória de coletas na mata úmida, em detrimento das outras unidades, tornando necessária a elaboração de novos projetos visando um maior esforço de coleta nessas áreas subamostradas.The state of Ceará, located in northeast Brazil, has a predominantly semi-arid climate. To guide future inventories of the flora, a preliminary survey of collections in the state was made, where we analyzed sampling effort and species richness of Asteraceae, Euphorbiaceae, Fabaceae, Poaceae and Rubiaceae. Geographic distribution of the samples was correlated to the seven phytoecological units of Ceará state: caatinga arbustiva, caatinga arbórea, carrasco, cerradão, complexo litorâneo, mata seca and mata úmida. The data were obtained from the Prisco Bezerra Herbarium (EAC collection and were combined using the software BRAHMS. From 1933 to August 2008, this collection registered the following: 11,551 exsiccatae (exs. representing 1,209 species (spp.. This total number of exsiccatae is distributed as follows among the phytoecological units: mata úmida 27% exs. and 33% spp., complexo litorâneo 24% exs. and 24% spp., caatinga arbustiva 16% exs. and 19% spp., carrasco 13% exs. and 17% spp., mata seca 10% exs. and 9% spp., caatinga arbórea 8% exs. and 12% and cerradão 2% exs. and 3% spp. These data reveal greater collection effort and species richness in areas of mata úmida and complexo litorâneo, followed by areas of caatinga arbustiva and caatinga arbórea. With only 5% of Ceara's territory, sampling in mata úmida surpasses that in caatingas, the latter with 70% of the state's territory. Therefore, a satisfactory number of collections in mata úmida was observed to the detriment of other units, making it necessary to draw up new projects aimed at a greater effort in these sub-sampling collection areas.

  4. Co-ordination in Morphological Leaf Traits of Early Diverging Angiosperms Is Maintained Following Exposure to Experimental Palaeo-atmospheric Conditions of Sub-ambient O2 and Elevated CO2

    Science.gov (United States)

    Evans-Fitz.Gerald, Christiana; Porter, Amanda S.; Yiotis, Charilaos; Elliott-Kingston, Caroline; McElwain, Jennifer C.

    2016-01-01

    In order to be successful in a given environment a plant should invest in a vein network and stomatal distribution that ensures balance between both water supply and demand. Vein density (Dv) and stomatal density (SD) have been shown to be strongly positively correlated in response to a range of environmental variables in more recently evolved plant species, but the extent of this relationship has not been confirmed in earlier diverging plant lineages. In order to examine the effect of a changing atmosphere on the relationship between Dv and SD, five early-diverging plant species representing two different reproductive plant grades were grown for 7 months in a palaeo-treatment comprising an O2:CO2 ratio that has occurred multiple times throughout plant evolutionary history. Results show a range of species-specific Dv and SD responses to the palaeo-treatment, however, we show that the strong relationship between Dv and SD under modern ambient atmospheric composition is maintained following exposure to the palaeo-treatment. This suggests strong inter-specific co-ordination between vein and stomatal traits for our study species even under relatively extreme environmental change. This co-ordination supports existing plant function proxies that use the distance between vein endings and stomata (Dm) to infer plant palaeo-physiology. PMID:27695464

  5. Kootenai Canyon Archaeology. The 1979 LAURD (Libby Additional Units and Reregulating Dam) Project.

    Science.gov (United States)

    1982-01-01

    Cyperaceae ) represents primarily t-rrestr.il sedg.ie procuction. At McKillop Creek Pond however ce percentage o \\,peraceae pollen is generally much lower...Amaranthaceae are unlikely in this flora, including in the Holocene). The aquatic pollen record contains only Nuphar and sedge . Initial pollen...parviflora, Shepherdia canadensis and Symphoricarpos albus. Both study sites are currently fens supporting an extensive cover of sedges (Carex

  6. Chaves para a identificação dos principais Coleoptera (Insecta associados com produtos armazenados Keys for the identification of Coleoptera (Insecta associated with stored products

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Valle da Silva Pereira

    2001-03-01

    Full Text Available An illustrated key to identify nine families of Coleoptera commonly found in stored products is presented. Keys for the identification of Anobiidae [Lasioderma serricorne (Fabricius, 1792, Stegobium paniceum (Linnaeus, 1761], Bruchidae [Acanthoscelides obtectus (Say, 1831, Zabrotes subfasciatus (Boheman, 1833], Curculionidae [Sitophilus oryzae (Linnaeus, 1763, S. zeamais Motschulsky, 1885], Silvanidae [Ahasverus advena (Waltl, 1832, Cathartus quadricollis (Guérin, 1892, Oryzaephilus mercator (Fauvel, 1889, O. surinamensis (Linnaeus, 1758] and Tenebrionidae [Gnathocerus cornutus (Fabricius, 1798, Tribolium castaneum (Herbst, 1797, T. confusum du Val, 1868] are also provided. These keys cover the most frequent Coleoptera found in stored products, specially grains, and are to the adult stage only. Illustrations of external morphology and general characteristics are provided for each species reported.

  7. Allelopathic potential ofnuphar lutea (L.) Sibth. & Sm. (Nymphaeaceae).

    Science.gov (United States)

    Elakovich, S D; Wooten, J W

    1991-04-01

    Aqueous extracts ofNuphar lutea (L.) Sibth. & Sm. leaves (blades plus petioles) and roots plus rhizomes were tested for allelopathic activity using lettuce seedling andLemna minor L. assay systems. The 12.5, 25, 125, and 250 parts per thousand (ppt) treatments of both extracts killed the lettuce seedlings. At 2.5 ppt of extract, radicle growth of lettuce was 29% of the control for leaves and 31% of the control for roots plus rhizomes.Lemna minor frond number was reduced to 34% of the control by the 25 ppt leaf extract and to 43% of the control by the 25 ppt roots plus rhizomes extract.L. minor was killed by concentrations of 125 ppt and above of both plant part extracts. As expected, the frond number and total chlorophyll content measured by theL. minor assay were highly correlated. Osmotic potentials below 143 mOsmol/kg had no influence onL. minor growth. Neither the osmotic potential nor the pH of the undiluted extracts ofN. lutea were in the range known to influence the growth of either lettuce seedlings orL. minor. Nuphar lutea extracts were many times more inhibitory than 16 other hydrophytes we previously examined.

  8. 几种植物生殖细胞质膜表面的凝集素受体荧光标记%Probing Lectin Receptors on the Plasma Membrane of Isolated Viable Generative Cells in Angiosperms by Means of Single Cell Manipulation

    Institute of Scientific and Technical Information of China (English)

    房克凤; 孙蒙祥; 周嫦

    2003-01-01

    为进一步探讨从生殖细胞到精子的发育过程中细胞质膜表面凝集素受体的可能变化,及其与两类对凝集素标记有不同结果的精子的关系,用异硫氰酸荧光素标记的伴刀豆凝集素(Con A)、麦芽凝集素(WGA)和大豆凝集素(SBA)对蚕豆(Vicia faba L.)、鸢尾(Iris tectorium Maxim.)和朱顶红(Hippeastrum vittatum Herb.)的生殖细胞质膜表面的凝集素受体进行标记.结果显示:在不同植物中均有部分生殖细胞不能被凝集素探针标记,且在保持尾状形态的生殖细胞的表面发现有凝集素受体的极性分布.这可能是导致部分精子表面不能被同种凝集素标记的重要原因.此外,同一种凝集素受体在不同物种的生殖细胞上分布不一致,不同的凝集素受体在同一种植物的生殖细胞上的分布模式亦有不同.在蚕豆和鸢尾的生殖细胞表面均有这三种凝集素的受体.在朱顶红生殖细胞的表面有前两种凝集素的受体,分布比较均一,但是没有大豆凝集素的受体.此外,在具尾生殖细胞表面发现有凝集素受体极性分布的现象,为探讨精细胞功能及其表面糖蛋白分布的可能差异提供了重要启示.%Fluorescein isothiocyanate (FITC) conjugated concanavalin agglutinin (Con A), wheat germ agglutinin (WGA) and soybean agglutinin (SBA) were used as probes to localize their specific receptors on the plasma membrane of generative cells (GCs) isolated from Vicia faba L., Iris tectorium Maxim. and Hippeastrum vittatum Herb. It is a further investigation on possible distributive dynamic of lectin receptors during the developmental process from generative cells to sperm cells. In the present study, all the three lectin receptors were found on the surface of generative cells of V. faba and l. tectorium. However, on generative cells of H. vittaturn only Con A and WGA, but not SBA receptors were observed. The same lectin receptors on the generative cells from different species showed various distribution patterns. The distribution of various lectin receptors on the same generative cells also showed different characteristics.Lectin receptors were totally absent on some generative cells of all three investigated species. Polar distribution of lectin receptors was observed on tailed generative cells. The findings offer important clues to investigate sperm cell function and possible sperm dimorphism of surface glycoprotein.

  9. Distribution and production of submerged macrophytes in Tipper Grund (Ringkøbing Fjord, Denmark), and the impact of waterfowl grazing

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    1980-01-01

    . at intermediate depth and Potamogeton pectinatus, Myriophyllum spicatum and Ranunculus baudauti at greater depth. (2) All macrophyte species showed a unimodal peak of biomass during the summer. Angiosperms with heavy epiphytic load withered 1-2 months earlier than did angiosperms without epiphytes. (3) Annual...

  10. 中国睡莲科植物种子胚及其营养组织的研究%A Study on the Embryo and Its Nutritive Tissues, Endosperm and Perisperm of Nymphaeaceae in China

    Institute of Scientific and Technical Information of China (English)

    孙阎; 张欣欣; 王臣; 刘玫; 刘鸣远

    2007-01-01

    研究了中国睡莲科的3属3种即芡(Euryale ferox Salisb.)、睡莲(Nymphaea tetragona Georgi)和萍蓬草(Nuphar pumilum(Hoffm.)DC.)的胚、胚乳及外胚乳.它们的胚的共同特点是苗端发育良好,特另是胚芽具2~4枚胚芽叶,而根端滞育.三个种皆既有胚乳,又有外胚乳,但在成熟种子中作为胚的营养组织则胚乳弱育而外胚乳发达.最后对上述特点在系统发生中的意义进行了讨论.

  11. Developmental morphology of branching flowers in Nymphaea prolifera.

    Science.gov (United States)

    Grob, Valentin; Moline, Philip; Pfeifer, Evelin; Novelo, Alejandro R; Rutishauser, Rolf

    2006-11-01

    Nymphaea and Nuphar (Nymphaeaceae) share an extra-axillary mode of floral inception in the shoot apical meristem (SAM). Some leaf sites along the ontogenetic spiral are occupied by floral primordia lacking a subtending bract. This pattern of flower initiation in leaf sites is repeated inside branching flowers of Nymphaea prolifera (Central and South America). Instead of fertile flowers this species usually produces sterile tuberiferous flowers that act as vegetative propagules. N. prolifera changes the meristem identity from reproductive to vegetative or vice versa repeatedly. Each branching flower first produces some perianth-like leaves, then it switches back to the vegetative meristem identity of the SAM with the formation of foliage leaves and another set of branching flowers. This process is repeated up to three times giving rise to more than 100 vegetative propagules. The developmental morphology of the branching flowers of N. prolifera is described using both microtome sections and scanning electron microscopy.

  12. Temporal Assemblage Turnovers of Foraminiferal Communities from the Caribbean, United Kingdom and Mediterranean regions

    Science.gov (United States)

    Costelloe, Ashleigh; Wilson, Brent

    2016-04-01

    Temporal assemblage turnovers of intertidal foraminiferal communities were quantitatively determined using the assemblage turnover index (ATI), and contributing species were identified using the conditioned on-boundary index (CoBI). The live foraminiferal communities were examined as metacommunities (all stations) and assemblages (groups of stations defined by cluster analysis) over one and two year periods at Caroni Swamp, Claxton Bay (E Trinidad), Cowpen Marsh (NE England) and Bay of Cádiz (SW Spain). Major assemblage turnovers (when ATI > x + σ) of the Caroni Swamp metacommunity and assemblages coincided with seasonal changes from dry to wet conditions in 2011 and 2012. The abundant species (Ammonia tepida, Ammotium salsum, Arenoparella mexicana, Trochammina advena, Trochammina laevigata and Trochammina inflata) contributed the most to assemblage turnovers but showed no preference to either dry or wet conditions. At Claxton Bay major assemblage turnovers of the metacommunity and mid assemblage coincided with seasonal change and calcareous species (A. tepida and Triloculina oblonga) increased during wet conditions and decreased during dry conditions, while agglutinated species (T. advena and A. salsum) fluctuated oppositely. At Cowpen Marsh major assemblage turnovers of the metacommunity coincided with the start of summer and winter. Assemblages at higher elevations (mainly Jadammina macrescens and Haplophragmoides spp.) were responsible for the summer turnover, while the winter turnover was led by the assemblage at lower elevations (mainly Haynesina germanica, Elphidium earlandi, Elphidium williamsoni, Elphidium excavatum and Quinqueloculina spp.). At Bay of Cádiz, the foraminiferal assemblage at a tidal height of 1.5 to 1.7 m above the hydrographic zero was examined within three separate plots, and the seasonal occurrence of assemblage turnovers differed between plots. Thus, replicate samples and multiple plots may be necessary to overcome spatial

  13. Ecology of rare water plant communities in lakes of north-eastern Poland

    Directory of Open Access Journals (Sweden)

    Ewa Jabłońska

    2012-03-01

    Full Text Available Habitat studies were conducted on three rare plant communities dominated by Nuphar pumila, Nymphaea candida and Hydrilla verticillata in lakes of north-eastern Poland. The comparison of habitat properties of these three types of phytocoenoses with those of Nuphar lutea common in the area under study was also performed. It was demonstrated that the plant communities studied were ecologically distinct. The habitats of the phytocoenoses of N. pumila differed most significantly from those of the other phytocoenoses. They often inhabited softer waters poor in Mg2+, dissolved SiO2, but rich in total Fe, PO43−, NO3−, and were associated with acidic substrates containing lower levels of Ca2+ and Na+, but greater amounts of total Fe and NO3−. The differences in the habitats of H. verticillata and N. candida phytocoenoses were most pronounced in the case of four properties of water: Na+, K+, Cl−, and Mg+. Their values were lower in waters of the H. verticillata phytocoenoses. The habitats of all the three types of rare phytocoenoses differed considerably from those of N. lutea. The most significant differences were found between the N. lutea and N. pumila phytocoenoses and the smallest differences were between the patches of N. lutea and N. candida. The properties of water were more important in differentiating the habitats of the phytocoenoses studied than the substrate properties. Due to alkalization and increase in water hardness in the lakes studied the stands of N. pumila are among the most threatened. The patches of N. candida and H. verticillata, which occur in waters with a wider range of hardness and tolerating a slight increase in trophy, can still continue to persist in the lakes for a long time.

  14. Differences in preference and performance of the water lily leaf beetle, Galerucella nymphaeae populations on native and introduced aquatic plants.

    Science.gov (United States)

    Ding, Jianqing; Blossey, Bernd

    2009-12-01

    Plant invasions represent ecological opportunities for herbivorous insects able to exploit novel host plants. The availability of new hosts and rapid adaptations may lead to host race formation and ultimately speciation. We studied potential host race formation in the water lily leaf beetle, Galerucella nymphaeae, in response to invasion by water chestnut, Trapa natans, in eastern North America. This leaf beetle is well suited for such studies because previous work showed that different herbivore populations follow different "evolutionary pathways" and specialize locally in response to differences in habitat preferences and host plant availability. We compared host preference and performance of G. nymphaeae offspring originating from T. natans and offspring of individuals originating from an ancestral host Nuphar lutea, yellow water lily, on T. natans and three native hosts (N. lutea, Nympheae odorata, and Brasenia schreberi). Regardless of origin (Trapa or Nuphar), adults strongly preferred their native host, N. lutea, over T. natans. Although laboratory survival rates (larva to pupa) were extremely high (80%) regardless of origin or host offered, survival rates in a common garden were greatly reduced, particularly for T. natans (24%) and to a lesser extent on N. lutea (54%), regardless of beetle origin. Larval drowning during more frequent leaf changes when developing on small Trapa leaves seems to be responsible for this difference. Preference of females for N. lutea is beneficial considering the much higher larval survival on the ancestral host. Abundant T. natans where the plant is invasive provides an alternative food source that beetles can use after egg/larval loads on their preferred host reach carrying capacity, but this utilization comes at a cost of high larval mortality.

  15. Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants.

    Science.gov (United States)

    Drouin, Guy; Daoud, Hanane; Xia, Junnan

    2008-12-01

    Previous studies have estimated that, in angiosperms, the synonymous substitution rate of chloroplast genes is three times higher than that of mitochondrial genes and that of nuclear genes is twelve times higher than that of mitochondrial genes. Here we used 12 genes in 27 seed plant species to investigate whether these relative rates of substitutions are common to diverse seed plant groups. We find that the overall relative rate of synonymous substitutions of mitochondrial, chloroplast and nuclear genes of all seed plants is 1:3:10, that these ratios are 1:2:4 in gymnosperms but 1:3:16 in angiosperms and that they go up to 1:3:20 in basal angiosperms. Our results show that the mitochondrial, chloroplast and nuclear genomes of seed plant groups have different synonymous substitutions rates, that these rates are different in different seed plant groups and that gymnosperms have smaller ratios than angiosperms.

  16. Flowering plant physiology triggered the expansion of tropical rainforest

    Science.gov (United States)

    Lee, J.; Boyce, C. K.

    2009-12-01

    Transpiration has long been known to feed precipitation, but unique hydraulic characteristics of flowering plants recently have been recognized to impart transpiration capacities dramatically higher than any other plants, living or extinct. Here we show through climate modeling that the replacement of angiosperm with non-angiosperm vegetation would result in a hotter, drier, and more seasonal Amazon basin—dry season length increases by 80 days over the eastern Amazon and overall area of everwet conditions decreases by a factor of five. Evolution of angiosperm physiology has uniquely facilitated spread of warm everwet forests and their enormous biodiversity, perhaps including their early Cenozoic expansion to extra-tropical latitudes. Divergent responses may be expected to general climate parameters and discrete environmental perturbations before and after evolution of angiosperm dominated ecosystems.

  17. Chromosome numbers of some Angiospermae collected in Cameroun and the Ivory Coast

    NARCIS (Netherlands)

    Gadella, Th.W.J.

    1969-01-01

    The chromosome numbers of 16 species of Angiosperms, collected in Cameroun and the Ivory Coast, were determined. The numbers given for 14 species are new, in the remaining species the results of other authors could be confirmed.

  18. Dr. Zompo : an online data repository for Zostera marina and Posidonia oceanica ESTs

    NARCIS (Netherlands)

    Wissler, L.; Dattolo, E.; Moore, A. D.; Reusch, T. B. H.; Olsen, J. L.; Migliaccio, M.; Bornberg-Bauer, E.; Procaccini, G.

    2009-01-01

    As ecosystem engineers, seagrasses are angiosperms of paramount ecological importance in shallow shoreline habitats around the globe. Furthermore, the ancestors of independent seagrass lineages have secondarily returned into the sea in separate, independent evolutionary events. Thus, understanding t

  19. Cross-talk between sporophyte and gametophyte generations is promoted by CHD3 chromatin remodelers in Arabidopsis thaliana

    NARCIS (Netherlands)

    Carter, Benjamin; Henderson, James T.; Svedin, Elisabeth; Fiers, M.A.; McCarthy, Kyle; Smith, Amanda; Guo, Changhua; Bishop, Brett; Zhang, Heng; Riksen-Bruinsma, T.; Shockley, Allison; Dilkes, Brian P.; Boutilier, K.A.; Ogas, Joe

    2016-01-01

    Angiosperm reproduction requires the integrated development of multiple tissues with different genotypes. To achieve successful fertilization, the haploid female gametophytes and diploid ovary must coordinate their development, after which the male gametes must navigate through the maternal sporophy

  20. New additions to the flora of Uttarakhand, India

    Directory of Open Access Journals (Sweden)

    D.S. Rawat

    2014-07-01

    Full Text Available Botanical explorations in different parts of Uttarakhand resulted in collection of seven angiosperm species which were not known previously from the state. These are described here with images of live plants and herbarium specimens.

  1. Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots

    NARCIS (Netherlands)

    de Vries, Jan; Fischer, Angela Melanie; Roettger, Mayo; Rommel, Sophie; Schluepmann, Henriette; Bräutigam, Andrea; Carlsbecker, Annelie; Gould, Sven Bernhard

    2016-01-01

    The phytohormones cytokinin and auxin orchestrate the root meristem development in angiosperms by determining embryonic bipolarity. Ferns, having the most basal euphyllophyte root, form neither bipolar embryos nor permanent embryonic primary roots but rather an adventitious root system. This raises

  2. Botanical control on banding character in two New Zealand coal beds

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, J.C.; Moore, T.A. (Research Science and Technology Federation, Wellington (New Zealand))

    1994-07-01

    Two New Zealand coal beds were examined using a palaeobotanical approach to determine controls on banding characteristics. The Morley (Cretaceous) coal is thickly (-5 to -1 phi or 32 to 2 mm) and well ([gt]25%) banded whereas the Brunner (Eocene) coal is essentially non-banded. Palynological analyses indicate that the Morley was formed from a gymnosperm-dominated vegetation with a secondary component of angiosperms. In contrast, the Brunner was dominated by angiosperm vegetation with only a minor component of gymnosperms. However, it was found that any (xylite/vitrain) bands [gt] 1 mm in either coal bed were comprised exclusively of secondary xylem of probable gymnosperm origin. The presence of (gymnosperm) wood (i.e. secondary xylem) forming the larger bands in both coals can be related to the relative resistance of this material to chemical and physical decay as compared to all other plant tissues. An absence of angiosperm wood in either the Morley or Brunner coal beds may be the result of the relative chemical degradability of angiosperm wood as compared to gymnosperm wood. Alternatively, angiosperms in either of the two palaeo-mires may have been shrubby and thus did not produce abundant woody tissue. In either case, the banded nature of the Morley coal bed is the result of the presence of gymnosperm wood and the non-banded nature of the Brunner is the result of being dominated by a flora (angiosperm) which is easily degraded.

  3. Phylogeny of the Botryosphaeriaceae reveals patterns of host association.

    Science.gov (United States)

    De Wet, Juanita; Slippers, Bernard; Preisig, Oliver; Wingfield, Brenda D; Wingfield, Michael J

    2008-01-01

    Three anamorph genera of the Botryosphaeriaceae namely Diplodia, Lasiodiplodia and Dothiorella have typically dark, ovoid conidia with thick walls, and are consequently difficult to distinguish from each other. These genera are well-known pathogens of especially pine species. We generated a multiple gene genealogy to resolve the phylogenetic relationships of Botryosphaeriaceae with dark conidial anamorphs, and mapped host associations based on this phylogeny. The multiple gene genealogy separated Diplodia, Lasiodiplodia and Dothiorella and it revealed trends in the patterns of host association. The data set was expanded to include more lineages of the Botryosphaeriaceae, and included all isolates from different host species for which ITS sequence data are available. Results indicate that Diplodia species occur mainly on gymnosperms, with a few species on both gymnosperms and angiosperms. Lasiodiplodia species occur equally on both gymnosperms and angiosperms, Dothiorella species are restricted to angiosperms and Neofusicoccum species occur mainly on angiosperms with rare reports on Southern Hemisphere gymnosperms. Botryosphaeria species with Fusicoccum anamorphs occur mostly on angiosperms with rare reports on gymnosperms. Ancestral state reconstruction suggests that a putative ancestor of the Botryosphaeriaceae most likely evolved on the angiosperms. Another interesting observation was that both host generalist and specialist species were observed in all the lineages of the Botryosphaeriaceae, with little evidence of host associated co-evolution.

  4. Ecological and genetic factors linked to contrasting genome dynamics in seed plants.

    Science.gov (United States)

    Leitch, A R; Leitch, I J

    2012-05-01

    The large-scale replacement of gymnosperms by angiosperms in many ecological niches over time and the huge disparity in species numbers have led scientists to explore factors (e.g. polyploidy, developmental systems, floral evolution) that may have contributed to the astonishing rise of angiosperm diversity. Here, we explore genomic and ecological factors influencing seed plant genomes. This is timely given the recent surge in genomic data. We compare and contrast the genomic structure and evolution of angiosperms and gymnosperms and find that angiosperm genomes are more dynamic and diverse, particularly amongst the herbaceous species. Gymnosperms typically have reduced frequencies of a number of processes (e.g. polyploidy) that have shaped the genomes of other vascular plants and have alternative mechanisms to suppress genome dynamism (e.g. epigenetics and activity of transposable elements). Furthermore, the presence of several characters in angiosperms (e.g. herbaceous habit, short minimum generation time) has enabled them to exploit new niches and to be viable with small population sizes, where the power of genetic drift can outweigh that of selection. Together these processes have led to increased rates of genetic divergence and faster fixation times of variation in many angiosperms compared with gymnosperms.

  5. Keeping it simple: flowering plants tend to retain, and revert to, simple leaves.

    Science.gov (United States)

    Geeta, R; Dávalos, Liliana M; Levy, André; Bohs, Lynn; Lavin, Mathew; Mummenhoff, Klaus; Sinha, Neelima; Wojciechowski, Martin F

    2012-01-01

    • A wide range of factors (developmental, physiological, ecological) with unpredictable interactions control variation in leaf form. Here, we examined the distribution of leaf morphologies (simple and complex forms) across angiosperms in a phylogenetic context to detect patterns in the directions of changes in leaf shape. • Seven datasets (diverse angiosperms and six nested clades, Sapindales, Apiales, Papaveraceae, Fabaceae, Lepidium, Solanum) were analysed using maximum likelihood and parsimony methods to estimate asymmetries in rates of change among character states. • Simple leaves are most frequent among angiosperm lineages today, were inferred to be ancestral in angiosperms and tended to be retained in evolution (stasis). Complex leaves slowly originated ('gains') and quickly reverted to simple leaves ('losses') multiple times, with a significantly greater rate of losses than gains. Lobed leaves may be a labile intermediate step between different forms. The nested clades showed mixed trends; Solanum, like the angiosperms in general, had higher rates of losses than gains, but the other clades had higher rates of gains than losses. • The angiosperm-wide pattern could be taken as a null model to test leaf evolution patterns in particular clades, in which patterns of variation suggest clade-specific processes that have yet to be investigated fully.

  6. Self-incompatibility systems: barriers to self-fertilization in flowering plants.

    Science.gov (United States)

    Rea, Anne C; Nasrallah, June B

    2008-01-01

    Flowering plants (angiosperms) are the most prevalent and evolutionarily advanced group of plants. Success of these plants is owed to several unique evolutionary adaptations that aid in reproduction: the flower, the closed carpel, double fertilization, and the ultimate products of fertilization, seeds enclosed in the fruit. Angiosperms exhibit a vast array of reproductive strategies, including both asexual and sexual, the latter of which includes both self-fertilization and cross-fertilization. Asexual reproduction and self-fertilization are important reproductive strategies in a variety of situations, such as when mates are scarce or when the environment remains relatively stable. However, reproductive strategies promoting cross-fertilization are critical to angiosperm success, since they contribute to the creation of genetically diverse populations, which increase the probability that at least one individual in a population will survive given changing environmental conditions. The evolution of several physical and genetic barriers to self-fertilization or fertilization among closely related individuals is thus widespread in angiosperms. A major genetic barrier to self-fertilization is self-incompatibility (SI), which allows female reproductive cells to discriminate between "self" and "non-self" pollen, and specifically reject self pollen. Evidence for the importance of SI in angiosperm evolution lies in the highly diverse set of mechanisms used by various angiosperm families for recognition of self pollen tube development and preventing self-fertilization.

  7. The Rise of Flowering Plants and Land Surface Physics: The Cretaceous and Eocene Were Different

    Science.gov (United States)

    Upchurch, G. R.; Feild, T.

    2010-12-01

    The Cretaceous and Eocene have served as the poster children of past greenhouse climates. One difference between the two time periods is that angiosperms (flowering plants) underwent a major diversification and rise to dominance during the mid-Cretaceous to Paleocene. Flowering plants differ from all other living and fossil plants in having significantly higher rates of transpiration and photosynthesis, which in modern leaves correlate with the density of venation (Dv), a feature that can be measured directly from fossils. This increase in Dv, coupled with an increase in the abundance of angiosperms, is thought to have had major impact on the climate system. This is, in part, because transpiration plays an important role in determining the ratio of sensible to latent heat flux from the land surface and in determining precipitation rate in regions such as the equatorial rainforest. Analysis of Dv in fossil leaves indicates two phases of increase in transpiration rate for angiosperms during the Cretaceous-Paleocene. The oldest known angiosperms (Aptian-early Albian) have a low Dv characteristic of extant and fossil ferns and gymnosperms. At this time angiosperms are low-stature plants of minor importance in terms of relative abundance and diversity (<5%). The first phase of Dv increase occurs during the Late Albian to Cenomanian, where average Dv is 40% greater than that of conifers and ferns, and maximum Dv reaches levels characteristic of many trees from the temperate zone. This first phase coincides with the first local dominance of angiosperms, the first occurrence of moderate to large angiosperm trees (up to 1 m in diameter) , and the first common occurrence of angiosperms in the Arctic. The second phase of Dv increase occurs during the Maastrichtian to Paleocene, where average Dv reaches levels characteristic of modern tropical forests and maximum Dv reaches the level found in highly productive modern vegetation. This second phase coincides with the rise to

  8. Production of n-alkyl lipids in living plants and implications for the geologic past

    Science.gov (United States)

    Diefendorf, Aaron F.; Freeman, Katherine H.; Wing, Scott L.; Graham, Heather V.

    2011-12-01

    Leaf waxes (i.e., n-alkyl lipids or n-alkanes) are land-plant biomarkers widely used to reconstruct changes in climate and the carbon isotopic composition of the atmosphere. There is little information available, however, on how the production of leaf waxes by different kinds of plants might influence the abundance and isotopic composition of n-alkanes in sedimentary archives. This lack of information increases uncertainty in interpreting n-alkyl lipid abundance and δ 13C signals in ancient settings. We provide here n-alkyl abundance distributions and carbon isotope fractionation data for deciduous and evergreen angiosperm and gymnosperm leaves from 46 tree species, representing 24 families. n-Alkane abundances are significantly higher in angiosperms than gymnosperms; many of the gymnosperm species investigated did not produce any n-alkanes. On average, deciduous angiosperms produce 200 times more n-alkanes than deciduous gymnosperms. Although differences between angiosperms and gymnosperms dominate the variance in n-alkane abundance, leaf life-span is also important, with higher n-alkane abundances in longer-lived leaves. n-Alkanol abundances covary with n-alkanes, but n-alkanoic acids have similar abundances across all plant groups. Isotopic fractionation between leaf tissue and individual alkanes ( ɛlipid) varies by as much as 10‰ among different chain lengths. Overall, ɛlipid values are slightly lower (-4.5‰) for angiosperm than for gymnosperm (-2.5‰) n-alkanes. Angiosperms commonly express slightly higher Δleaf (photosynthetic discrimination) relative to gymnosperms under similar growth conditions. As a result, angiosperm n-alkanes are expected to be generally 3-5‰ more depleted in 13C relative to gymnosperm alkanes for the same locality. Differences in n-alkane production indicate the biomarker record will largely (but not exclusively) reflect angiosperms if both groups were present, and also that evergreen plants will likely be overrepresented

  9. No evidence of general CO2 insensitivity in ferns: one stomatal control mechanism for all land plants?

    Science.gov (United States)

    Franks, Peter J; Britton-Harper, Zoe J

    2016-08-01

    Stomatal regulation of plant carbon uptake and water loss under changing environmental conditions was a crucial evolutionary step in the colonization of land by plants. There are currently two conflicting models describing the nature of stomatal regulation across terrestrial vascular plants: the first is characterized by a fundamental mechanistic similarity across all lineages, and the second is characterized by the evolution of major differences in angiosperms compared with more ancient lineages. Specifically, the second model posits that stomata of ferns lack a response to elevated atmospheric CO2 concentration (ca ) and therefore cannot regulate leaf intercellular CO2 concentration (ci ). We compared stomatal sensitivity to changes in ca in three distantly related fern species and a representative angiosperm species. Fern and angiosperm stomata responded strongly and similarly to changes in ca . As a result, ci /ca was maintained within narrow limits during ca changes. Our results challenge the model in which stomata of ferns generally lack a response to elevated ca and that angiosperms evolved new dynamic mechanisms for regulating leaf gas exchange that differ fundamentally from ferns. Instead, the results are consistent with a universal stomatal control mechanism that is fundamentally conserved across ferns and angiosperms, and therefore likely all vascular plant divisions.

  10. Many independent origins of trans splicing of a plant mitochondrial group II intron.

    Science.gov (United States)

    Qiu, Yin-Long; Palmer, Jeffrey D

    2004-07-01

    We examined the cis- vs. trans-splicing status of the mitochondrial group II intron nad1i728 in 439 species (427 genera) of land plants, using both Southern hybridization results (for 416 species) and intron sequence data from the literature. A total of 164 species (157 genera), all angiosperms, was found to have a trans-spliced form of the intron. Using a multigene land plant phylogeny, we infer that the intron underwent a transition from cis to trans splicing 15 times among the sampled angiosperms. In 10 cases, the intron was fractured between its 5' end and the intron-encoded matR gene, while in the other 5 cases the fracture occurred between matR and the 3' end of the intron. The 15 intron fractures took place at different time depths during the evolution of angiosperms, with those in Nymphaeales, Austrobaileyales, Chloranthaceae, and eumonocots occurring early in angiosperm evolution and those in Syringodium filiforme, Hydrocharis morsus- ranae, Najas, and Erodium relatively recently. The trans-splicing events uncovered in Austrobaileyales, eumonocots, Polygonales, Caryophyllales, Sapindales, and core Rosales reinforce the naturalness of these major clades of angiosperms, some of which have been identified solely on the basis of recent DNA sequence analyses.

  11. Slower phloem transport in gymnosperm trees can be attributed to higher sieve element resistance

    DEFF Research Database (Denmark)

    Liesche, Johannes; Windt, Carel; Bohr, Tomas;

    2015-01-01

    In trees, carbohydrates produced in photosynthesizing leaves are transported to roots and other sink organs over distances of up to 100 m inside a specialized transport tissue, the phloem. Angiosperm and gymnosperm trees have a fundamentally different phloem anatomy with respect to cell size, shape...... and connectivity. Whether these differences have an effect on the physiology of carbohydrate transport, however, is not clear. A meta-analysis of the experimental data on phloem transport speed in trees yielded average speeds of 56 cm h−1 for angiosperm trees and 22 cm h−1 for gymnosperm trees. Similar values...... resulted from theoretical modeling using a simple transport resistance model. Analysis of the model parameters clearly identified sieve element (SE) anatomy as the main factor for the significantly slower carbohydrate transport speed inside the phloem in gymnosperm compared with angiosperm trees. In order...

  12. The evolutionary root of flowering plants.

    Science.gov (United States)

    Goremykin, Vadim V; Nikiforova, Svetlana V; Biggs, Patrick J; Zhong, Bojian; Delange, Peter; Martin, William; Woetzel, Stefan; Atherton, Robin A; McLenachan, Patricia A; Lockhart, Peter J

    2013-01-01

    Correct rooting of the angiosperm radiation is both challenging and necessary for understanding the origins and evolution of physiological and phenotypic traits in flowering plants. The problem is known to be difficult due to the large genetic distance separating flowering plants from other seed plants and the sparse taxon sampling among basal angiosperms. Here, we provide further evidence for concern over substitution model misspecification in analyses of chloroplast DNA sequences. We show that support for Amborella as the sole representative of the most basal angiosperm lineage is founded on sequence site patterns poorly described by time-reversible substitution models. Improving the fit between sequence data and substitution model identifies Trithuria, Nymphaeaceae, and Amborella as surviving relatives of the most basal lineage of flowering plants. This finding indicates that aquatic and herbaceous species dominate the earliest extant lineage of flowering plants. [; ; ; ; ; .].

  13. Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers.

    Science.gov (United States)

    Bowe, L M; Coat, G; dePamphilis, C W

    2000-04-11

    Efforts to resolve Darwin's "abominable mystery"-the origin of angiosperms-have led to the conclusion that Gnetales and various fossil groups are sister to angiosperms, forming the "anthophytes." Morphological homologies, however, are difficult to interpret, and molecular data have not provided clear resolution of relationships among major groups of seed plants. We introduce two sequence data sets from slowly evolving mitochondrial genes, cox1 and atpA, which unambiguously reject the anthophyte hypothesis, favoring instead a close relationship between Gnetales and conifers. Parsimony- and likelihood-based analyses of plastid rbcL and nuclear 18S rDNA alone and with cox1 and atpA also strongly support a gnetophyte-conifer grouping. Surprisingly, three of four genes (all but nuclear rDNA) and combined three-genome analyses also suggest or strongly support Gnetales as derived conifers, sister to Pinaceae. Analyses with outgroups screened to avoid long branches consistently identify all gymnosperms as a monophyletic sister group to angiosperms. Combined three- and four-gene rooted analyses resolve the branching order for the remaining major groups-cycads separate from other gymnosperms first, followed by Ginkgo and then (Gnetales + Pinaceae) sister to a monophyletic group with all other conifer families. The molecular phylogeny strongly conflicts with current interpretations of seed plant morphology, and implies that many similarities between gnetophytes and angiosperms, such as "flower-like" reproductive structures and double fertilization, were independently derived, whereas other characters could emerge as synapomorphies for an expanded conifer group including Gnetales. An initial angiosperm-gymnosperm split implies a long stem lineage preceding the explosive Mesozoic radiation of flowering plants and suggests that angiosperm origins and homologies should be sought among extinct seed plant groups.

  14. Floristics and Plant Biogeography in China

    Institute of Scientific and Technical Information of China (English)

    De-Zhu Li

    2008-01-01

    In 1998, a revolutionary system of angiosperm classification, the Angiosperm Phylogeny Group system was published.Meanwhile, another new system of classification of angiosperms, the eight-class system was proposed by C.Y. Wu and colleagues based on long term work on the flora of China. The Flora Reipublicae Popularis Sinicae project was initiated in 1959 and completed by 2004. It is the largest Flora so far completed in the world, including 31 228 species of vascular plants,or one-eighth of the global plant diversity. The English-language and updated Flora of China (FOC) is an international joint effort initiated in 1988 and accelerated in 1998. Up to now, 15 of the 24 volumes of the FOC have been published. Based on the fioristic data, the composition, characteristics, floristic divisions and affinities of the flora of China have been studied by Wu and colleagues since 1965. In the past 10years, analyses of the available floristic data have been very productive.The East Asiatic Floristic Kingdom was proposed in 1998. All 346 families of angiosperms in China, according to the eightclass system of classification, were comprehensively discussed by using knowledge of current and historical distribution of seed plants in the world, together with some morphological and molecular data. A scheme of distribution patterns or areal-types of families and genera of seed plants in China was modified and elucidated, together with a proposed scheme of areal-types of the world. Molecular phylogenetic and biogeographical studies of angiosperms in China in the past 10 yearsalso witnessed a progressive development. Integration of morphological and molecular data and fossil evidence revealed some significant results. Eastern Asia, which used to be regarded as an important center of survival during the ice age, is likely an important center of diversification of angiosperms.

  15. Contributions of plant molecular systematics to studies of molecular evolution.

    Science.gov (United States)

    Soltis, E D; Soltis, P S

    2000-01-01

    Dobzhansky stated that nothing in biology makes sense except in the light of evolution. A close corollary, and the central theme of this paper, is that everything makes a lot more sense in the light of phylogeny. Systematics is in the midst of a renaissance, heralded by the widespread application of new analytical approaches and the introduction of molecular techniques. Molecular phylogenetic analyses are now commonplace, and they have provided unparalleled insights into relationships at all levels of plant phylogeny. At deep levels, molecular studies have revealed that charophyte green algae are the closest relatives of the land plants and suggested that liverworts are sister to all other extant land plants. Other studies have suggested that lycopods are sister to all other vascular plants and clarified relationships among the ferns. The impact of molecular phylogenetics on the angiosperms has been particularly dramatic--some of the largest phylogenetic analyses yet conducted have involved the angiosperms. Inferences from three genes (rbcL, atpB, 18S rDNA) agree in the major features of angiosperm phylogeny and have resulted in a reclassification of the angiosperms. This ordinal-level reclassification is perhaps the most dramatic and important change in higher-level angiosperm taxonomy in the past 200 years. At lower taxonomic levels, phylogenetic analyses have revealed the closest relatives of many crops and 'model organisms' for studies of molecular genetics, concomitantly pointing to possible relatives for use in comparative studies and plant breeding. Furthermore, phylogenetic information has contributed to new perspectives on the evolution of polyploid genomes. The phylogenetic trees now available at all levels of the taxonomic hierarchy for angiosperms and other green plants should play a pivotal role in comparative studies in diverse fields from ecology to molecular evolution and comparative genetics.

  16. Floristics and plant biogeography in China.

    Science.gov (United States)

    Li, De-Zhu

    2008-07-01

    In 1998, a revolutionary system of angiosperm classification, the Angiosperm Phylogeny Group system was published. Meanwhile, another new system of classification of angiosperms, the eight-class system was proposed by C. Y. Wu and colleagues based on long term work on the flora of China. The Flora Reipublicae Popularis Sinicae project was initiated in 1959 and completed by 2004. It is the largest Flora so far completed in the world, including 31 228 species of vascular plants, or one-eighth of the global plant diversity. The English-language and updated Flora of China (FOC) is an international joint effort initiated in 1988 and accelerated in 1998. Up to now, 15 of the 24 volumes of the FOC have been published. Based on the floristic data, the composition, characteristics, floristic divisions and affinities of the flora of China have been studied by Wu and colleagues since 1965. In the past 10 years, analyses of the available floristic data have been very productive. The East Asiatic Floristic Kingdom was proposed in 1998. All 346 families of angiosperms in China, according to the eight-class system of classification, were comprehensively discussed by using knowledge of current and historical distribution of seed plants in the world, together with some morphological and molecular data. A scheme of distribution patterns or areal-types of families and genera of seed plants in China was modified and elucidated, together with a proposed scheme of areal-types of the world. Molecular phylogenetic and biogeographical studies of angiosperms in China in the past 10 years also witnessed a progressive development. Integration of morphological and molecular data and fossil evidence revealed some significant results. Eastern Asia, which used to be regarded as an important center of survival during the ice age, is likely an important center of diversification of angiosperms.

  17. Insect diversity in the fossil record

    Science.gov (United States)

    Labandeira, C. C.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1993-01-01

    Insects possess a surprisingly extensive fossil record. Compilation of the geochronologic ranges of insect families demonstrates that their diversity exceeds that of preserved vertebrate tetrapods through 91 percent of their evolutionary history. The great diversity of insects was achieved not by high origination rates but rather by low extinction rates comparable to the low rates of slowly evolving marine invertebrate groups. The great radiation of modern insects began 245 million years ago and was not accelerated by the expansion of angiosperms during the Cretaceous period. The basic trophic machinery of insects was in place nearly 100 million years before angiosperms appeared in the fossil record.

  18. Meiosis in flowering plants and other green organisms.

    Science.gov (United States)

    Harrison, C Jill; Alvey, Elizabeth; Henderson, Ian R

    2010-06-01

    Sexual eukaryotes generate gametes using a specialized cell division called meiosis that serves both to halve the number of chromosomes and to reshuffle genetic variation present in the parent. The nature and mechanism of the meiotic cell division in plants and its effect on genetic variation are reviewed here. As flowers are the site of meiosis and fertilization in angiosperms, meiotic control will be considered within this developmental context. Finally, we review what is known about the control of meiosis in green algae and non-flowering land plants and discuss evolutionary transitions relating to meiosis that have occurred in the lineages giving rise to the angiosperms.

  19. [Control of fertilization by self-incompatibility mechanisms].

    Science.gov (United States)

    Fobis-Loisy, Isabelle; Gaude, Thierry

    2010-01-01

    Flowering plants (angiosperms) are the most prevalent and evolutionarily advanced group of plants. Reproductive strategies that promote cross-fertilization have played an essential role in the success of angiosperms as they contribute to genetic variability among plant species. A major genetic barrier to self-fertilization is self-incompatibility (SI), which allows female reproductive cells to discriminate between self- and non-self pollen and specifically reject self-pollen. In this review, we describe three SI mechanisms showing that different flowering plant families use distinct molecules for recognition of self as well as diverse biochemical pathways to arrest pollen tube growth.

  20. Composición taxonómica, distribución y bionomía de la familia Noteridae (Coleoptera: Adephaga en Cuba

    Directory of Open Access Journals (Sweden)

    Yoandri S. MEGNA

    2006-01-01

    Full Text Available La presente investigación analiza la composición taxonómica, distribución y bionomía de los notéridos registrados en Cuba, y se brinda una clave para su identificación. El estudio se realizó sobre la base de datos bibliográficos a nivel regional y nacional, así como del material colectado en diferentes localidades del país. Este trabajo permitió definir la lista de especies, su distribución por distritos fitogeográficos y los aspectos más generales de su bionomía. Se determinó que la familia Noteridae está compuesta por cinco géneros (Hydrocanthus Say, Mesonoterus Sharp, Suphis Aubé, Suphisellus Crotch y Notomicrus Sharp y 10 especies, de las cuales Suphisellus tenuicornis (Chevrolat es endémica, e Hydrocanthus advena Sharp no está confirmada. Las especies registradas están distribuidas en 11 (28,2% de los 39 distritos fitogeográficos establecidos. El distrito de mayor riqueza de especies es el No 15 (Planicie Centro-Occidental, con ocho especies. La especie más ampliamente distribuida es Notomicrus sharpi J. Balfour-Browne, reportada para seis (15,4% distritos. Los datos bionómicos muestran que los notéridos tienen preferencia por los hábitats lénticos y permanentes, de aguas dulces y turbias, ubicados en zonas bajas y soleadas con abundante vegetación acuática.

  1. Trilobites, scolecodonts and fish remains occurrence and the depositional paleoenvironment of the upper Monte Alegre and lower Itaituba formations, Lower - Middle Pennsylvanian of the Amazonas Basin, Brazil

    Science.gov (United States)

    Moutinho, Luciane Profs; Nascimento, Sara; Scomazzon, Ana Karina; Lemos, Valesca Brasil

    2016-12-01

    This study aims to characterize the scolecodonts, trilobite pygidium fragments and fish remains of an outcropped region in the southern Amazonas Basin, comprising the uppermost section of the Monte Alegre Formation and the basal section of the Itaituba Formation. These, correspond to part of the marine portion of the Tapajós Group, related to an intracratonic carbonate platform. The Monte Alegre Formation includes a deposition of fluvial-deltaic and aeolian sandstones, siltstones and shales of interdunes and lakes, intercalated with transgressive carbonates of a shallow restrict nearshore marine environment. The Itaituba Formation comprises a thickest deposit of marine carbonates, representing the establishment of widespread marine conditions, and is the richest interval containing organisms of shallow marine environment in the Pennsylvanian of the Amazonas Basin. The associated fauna includes brachiopods, bivalves, gastropods, crinoids, echinoids, bryozoans, corals, foraminifers, sponges, ostracods, trilobites, scolecodonts, fish remains and conodonts, mainly in the packstones, and subordinately in the wackestones and mudstones. Conodonts Neognathodus atokaensis, Diplognathodus orphanus, Idiognathodus incurvus, and foraminifers Millerella extensa, Millerella pressa, Millerella marblensis, Eostaffella ampla, Eostaffella pinguis and Eostaffella advena characterizes a predominant Atokan age to the analyzed profile. The fossil association herein presented is taxonomically diversified and biologically interesting, comprising an important and well preserved, for the first time occurrence of two molds and two fragments of Proetida trilobites. Well preserved Eunicida and Phyllodocida scolecodonts and paleonisciform fish remains. These fossils help in the paleoenvironmental establishment of the studied interval in the Amazonas Basin and as a potential biostratigraphic and paleoecological tool to correlate regionally and globally the Pennsylvanian.

  2. Microscopic fungi on Nymphaeaceae plants of the Lake Płociczno in Drawa National Park (NW Poland

    Directory of Open Access Journals (Sweden)

    Kinga Mazurkiewicz-Zapałowicz

    2016-07-01

    Full Text Available The aim of this study was to determine the occurrence of micromycetes associated with disease symptoms on the leaves and flowers of three plant species, Nymphaea alba (NA, Nymphaea candida (NC, and Nuphar lutea (NL, forming nympheid phytocoenoses on Lake Płociczno in Drawa National Park during the years 2009 to 2012. From all collected plant specimens, an overall number of 38 distinct taxa of fungi and chromistan fungal analogues was isolated. The largest diversity of taxa was found on NL (37 taxa, the lowest was on NC (4 taxa, and NA contained 12 taxa. Each year, anamorphic forms of Ascomycota were dominant in the taxonomic structure. For the first time in Poland, Septoria nupharis (NA, NL, NC and Colletotrichum nymphaeae (NL, NC were found on their spotted leaves. For both of the mentioned pathogens, Nymphaea candida is a new host plant in Poland. Botrytis cinerea, Elongisporangium undulatum (= Pythium undulatum, Epicoccum nigrum, Fusarium incarnatum (= F. semitectum, and Gibberella avenacea (= Fusarium avenaceum were found each year in the studied phytocoenoses. The confirmation of NA and NL flower infections by Botrytis cinerea, which leads to gangrene, is an important aspect of the gray mold epidemiology. Until now, the occurrence of smut fungi on nympheids in Drawa National Park was not observed. The taxonomic structure and the predomination of asexual stages of fungi, as well as the similarity coefficients, suggest that the seasonal decomposition of nympheids run naturally and contribute to maintaining the stability of the lake ecosystem.

  3. 浙江省6种新记录植物%Six newly recorded plant species in Zhejiang Province

    Institute of Scientific and Technical Information of China (English)

    陈丽春; 陈征海; 马丹丹; 林海伦; 李修鹏; 李根有

    2016-01-01

    报道了发现于浙江宁波的6种新记录植物,隶属于6科6属,它们分别是心脏叶瓶尔小草(Ophioglossum reticulatum Linn.)(瓶尔小草科Ophioglossaceae)、银花苋(Gomphrena celosioides Mart.)(苋科Amaranthaceae)、中华萍蓬草(Nuphar sinensis Hand.-Mazz.)(睡莲科Nymphaeaceae)、白花水八角(Gratiola japonica Miq.)(玄参科Scrophulariaceae)、三叶绞股蓝(Gynostemma laxum(Wallich) Cogniaux)(葫芦科Cucurbitaceae)和乳白石蒜(Lycoris albiflora Koidz.)(石蒜科Amaryllidaceae);其中水八角属Gratiola Linn.为浙江新记录属.它们在浙江省的发现丰富了浙江省植物区系的内容,同时也为其在中国的地理分布研究提供了基础资料.

  4. The newly recorded plants in Liaoning%辽宁的新纪录植物

    Institute of Scientific and Technical Information of China (English)

    张淑梅; 李忠宇; 王萌; 李丁男; 于立敏

    2016-01-01

    根据2003年至今十几年野外调查的一手材料,报道了番杏科(Aizoaceae)、落葵科(Basellaceae)、马钱科(Loganiaceae)等14个《辽宁植物志》和《东北植物检索表》(第2版)未收录的科;阿洛葵属(Anoda Cav.)、野茼蒿属(Crassooephalum Moench.)、胶菀属(Grindelia Willdenow)等98个《辽宁植物志》和《东北植物检索表》(第2版)未收录的属;银莲花(Anemone catha yensis)、萍蓬草(Nuphar pumilum)、野皂荚(Gleditsia microphylla)等305种《辽宁植物志》未收录的野生植物;埃氏马先蒿(Pedicularis artselaeri)、姬岩垂草(Phyla canescens)、欧地笋(Lycopus europaeus)等114种《东北植物检索表》(第2版)未收录的野生植物.

  5. ENVIRONMENTAL FACTORS INFLUENCING THE VEGETATION IN MIDDLE-SIZED STREAMS IN LATVIA

    Directory of Open Access Journals (Sweden)

    L. GRINBERGA

    2011-01-01

    Full Text Available In this study the species diversity and distribution of macrophytes in 131 surveyed sites of middle-sized streams of Latvia were investigated. The aim of the study was to determine the composition of macrophyte vegetation in Latvian streams in relation to the environmental factors (stream width, water depth, substrate type, shading and flow velocity. On the basis of these factors, five major groups of streams were distinguished representing mutually different typical macrophyte communities – (1 fast flowing streams on gravelly and stony substrate, (2 slow flowing streams on gravelly and stony substrate, (3 fast flowing streams on sandy substrate, (4 slow flowing streams on sandy substrate, and (5 streams with soft, silty substrate. Totally, 47 macrophyte taxa were found in the streams. The most common macrophyte species were Nuphar lutea found in 65% of all sites, followed by Sparganium emersum (64%, S. erectum s.l. (48%, Phalaris arundinacea (50%, Alisma plantago-aquatica (54% and Lemna minor (41%. The highest species richness (22 was found in slow flowing streams with gravelly substrate. Species-poor macrophyte communities were characteristic for fast flowing streams on sandy substrate.

  6. Vegetation of natural and artificial shorelines in Upper Klamath Basin’s fringe wetlands

    Science.gov (United States)

    Ray, Andrew M.; Irvine, Kathryn M.; Hamilton, Andy S.

    2013-01-01

    The Upper Klamath Basin (UKB) in northern California and southern Oregon supports large hypereutrophic lakes surrounded by natural and artificial shorelines. Lake shorelines contain fringe wetlands that provide key ecological services to the people of this region. These wetlands also provide a context for drawing inferences about how differing wetland types and wave exposure contribute to the vegetative assemblages in lake-fringe wetlands. Here, we summarize how elevation profiles and vegetation richness vary as a function of wave exposure and wetland type. Our results show that levee wetland shorelines are 4X steeper and support fewer species than other wetland types. We also summarize the occurrence probability of the five common wetland plant species that represent the overwhelming majority of the diversity of these wetlands. In brief, the occurrence probability of the culturally significant Nuphar lutea spp. polysepala and the invasive Phalaris arundinacea in wave exposed and sheltered sites varies based on wetland type. The occurrence probability for P. arundinacea was greatest in exposed portions of deltaic shorelines, but these trends were reversed on levees where the occurrence probability was greater in sheltered sites. The widespread Schoenoplectus acutus var. acutus occurred throughout all wetland and exposure type combinations but had a higher probability of occurrence in wave exposed sites. Results from this work will add to our current understanding of how wetland shoreline profiles interact with wave exposure to influence the occurrence probability of the dominant vegetative species in UKB’s shoreline wetlands.

  7. What Does It Take to Evolve A Nitrogen-Fixing Endosymbiosis?

    NARCIS (Netherlands)

    Geurts, Rene; Xiao, Ting Ting; Reinhold-Hurek, Barbara

    2016-01-01

    Plant rhizo- and phyllospheres are exposed to a plethora of nitrogen-fixing bacteria, providing opportunities for the establishment of symbiotic associations. Nitrogen-fixing endosymbioses are most profitable and have evolved more than ten times in the angiosperms. This suggests that the evolutio

  8. The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes.

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo Guedes Corrêa

    Full Text Available BACKGROUND: Transcription factors of the basic leucine zipper (bZIP family control important processes in all eukaryotes. In plants, bZIPs are regulators of many central developmental and physiological processes including photomorphogenesis, leaf and seed formation, energy homeostasis, and abiotic and biotic stress responses. Here we performed a comprehensive phylogenetic analysis of bZIP genes from algae, mosses, ferns, gymnosperms and angiosperms. METHODOLOGY/PRINCIPAL FINDINGS: We identified 13 groups of bZIP homologues in angiosperms, three more than known before, that represent 34 Possible Groups of Orthologues (PoGOs. The 34 PoGOs may correspond to the complete set of ancestral angiosperm bZIP genes that participated in the diversification of flowering plants. Homologous genes dedicated to seed-related processes and ABA-mediated stress responses originated in the common ancestor of seed plants, and three groups of homologues emerged in the angiosperm lineage, of which one group plays a role in optimizing the use of energy. CONCLUSIONS/SIGNIFICANCE: Our data suggest that the ancestor of green plants possessed four bZIP genes functionally involved in oxidative stress and unfolded protein responses that are bZIP-mediated processes in all eukaryotes, but also in light-dependent regulations. The four founder genes amplified and diverged significantly, generating traits that benefited the colonization of new environments.

  9. Distribution and carbon isotope patterns of diterpenoids and triterpenoids in modern temperate C3 trees and their geochemical significance

    Science.gov (United States)

    Diefendorf, Aaron F.; Freeman, Katherine H.; Wing, Scott L.

    2012-05-01

    Tricyclic diterpenoids and pentacyclic triterpenoids are nearly exclusively produced by gymnosperms and angiosperms, respectively. Even though both classes of terpenoids have long been recognized as plant biomarkers, their potential use as phylogenetically specific δ13C proxies remains largely unexplored. Little is known of how terpenoid abundance and carbon isotope composition vary either with plant phylogenetic position, functional group, or during synthesis. Here, we report terpenoid abundances and isotopic data for 44 tree species in 21 families, representing both angiosperms and gymnosperms, and both deciduous and evergreen leaf habits. Di- and triterpenoid abundances are significantly higher in evergreens compared to deciduous species, reflecting differences in growth strategies and increased chemical investment in longer-lived leaves. Carbon isotope abundances of terpenoid lipids are similar to leaf tissues, indicating biosynthetic isotope effects are small for both the MVA (-0.4‰) and MEP (-0.6‰) pathways. Leaf and molecular isotopic patterns for modern plants are consistent with observations of amber, resins and plant biomarkers in ancient sediments. The δ13C values of ancient diterpenoids are higher than triterpenoids by 2-5‰, consistent with observed isotopic differences between gymnosperms and angiosperms leaves, and support the relatively small lipid biosynthetic effects reported here. All other factors being equal, evergreen plants will dominate the abundance of terpenoids contributed to soils, sediments and ancient archives, with similar inputs estimated for angiosperm and gymnosperm trees when scaled by litter flux.

  10. Leaf rust of wheat: Pathogen biology, variation and host resistance

    Science.gov (United States)

    Rusts are important pathogens of angiosperms and gymnosperms. Rust fungi are among the most important pathogens of cereals. Cereal rusts are heteroecious and macrocyclic requiring two taxonomically unrelated hosts to complete a five spore stage life cycle. Cereal rust fungi are highly variable for v...

  11. The resources of the wild preferential conservation plants in Chongqing%重庆市野生重点保护植物资源

    Institute of Scientific and Technical Information of China (English)

    易思荣; 黄娅

    2002-01-01

    According to primary statistics, there are 33 wild national protection plants in Chongqing, with a 60% of the total, in which 5 fern, 20 gymnosperm and 30 angiosperm. In all the protective plants, there are 14 species Ⅰ grade and 41 species Ⅱ grade. The kinds, resource situation and geographical distribution of all wild preferential conservation plants in Chongqing were emphatically investigated and analyed.

  12. The effects of climate stability on northern temperate forests

    DEFF Research Database (Denmark)

    Ma, Ziyu

    2016-01-01

    refugia have served as both museums and cradles for old and new species, respectively. Moreover, comparing gymnosperm to angiosperm trees in North America, I found that gymnosperm phylogenetic diversity patterns were more linked to historical than to current climate. However, I also documented effects...

  13. Coniferales

    NARCIS (Netherlands)

    Laubenfels, de D.J.

    1984-01-01

    In spite of generalized impressions sometimes advanced about the decline and decrease of the Gymnosperms through the enormous development of the Angiosperms in the Cretaceous and their rapidly accelerated development in the Tertiary, it must be realized that this impression is confusing as far as Co

  14. Seed Development and Germination

    Science.gov (United States)

    Seed is the fertilized and matured ovule of angiosperms and gymnosperms and represents a crucial stage in the life cycle of plants. Seeds of diverse plant species may display differences in size, shape and color. Despite apparent morphological variations, most mature seeds consist of three major com...

  15. Molecular Evolution and Expression Divergence of Aconitase (ACO Gene Family in Land Plants

    Directory of Open Access Journals (Sweden)

    Yi-ming Wang

    2016-12-01

    Full Text Available Aconitase (ACO is a key enzyme that catalyzes the isomerization of citrate to isocitrate in the tricarboxylic acid (TCA and glyoxylate cycles. The function of ACOs has been well studied in model plants, such as Arabidopsis. In contrast, the evolutionary patterns of the ACO family in land plants are poorly understood. In this study, we systematically examined the molecular evolution and expression divergence of the ACO gene family in 12 land plant species. Thirty-six ACO genes were identified from the 12 land plant species representing the four major land plant lineages: bryophytes, lycophytes, gymnosperms, and angiosperms. All of these ACOs belong to the cytosolic isoform. Three gene duplication events contributed to the expansion of the ACO family in angiosperms. The ancestor of angiosperms may have contained only one ACO gene. One gene duplication event split angiosperm ACOs into two distinct clades. Two clades showed a divergence in selective pressure and gene expression patterns. The cis-acting elements that function in light responsiveness were most abundant in the promoter region of the ACO genes, indicating that plant ACO genes might participate in light regulatory pathways. Our findings provide comprehensive insights into the ACO gene family in land plants.

  16. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander

    2015-01-01

    oligomerization, and leads to a high sugar accumulation in the phloem, even though the phloem is not symplasmically isolated, but well coupled by plasmodesmata (PD). Hence the mode polymer-trap mode is also designated active symplasmic loading. For woody angiosperms and gymnosperms an alternate loading mode...

  17. Vestured pits: a diagnostic character in the secondary xylem of Myrtales

    NARCIS (Netherlands)

    Jansen, S.; Pletsers, A.; Rabaey, D.; Lens, F.

    2008-01-01

    Vestures are small projections from the secondary cell wall associated with tracheary elements of the secondary xylem. They are usually associated with bordered pits and characterize various angiosperm families, including important timber species such as Dipterocarpaceae and Eucalyptus trees. The mi

  18. Feoforbídeo (etoxi-purpurina-18 isolado de Gossypium mustelinum (Malvaceae Ethyl ester putpurin-18 from Gossypium mustelinum (Malvaceae

    Directory of Open Access Journals (Sweden)

    Tania Maria Sarmento Silva

    2010-01-01

    Full Text Available The phaeophorbide ethyl ester named Purpurin-18 and the flavonoids quercetin and kaempferol were obtained by chromatographic procedures from the chloroform fraction of aerial parts of Gossypium mustelinum. The structure of these compound was determined by NMR, IR and mass spectra data analysis. This is the first occurrence of this compound in Angiosperm.

  19. Development and structure of the female gametophyte in Austrobaileya scandens (Austrobaileyaceae).

    Science.gov (United States)

    Tobe, Hiroshi; Kimoto, Yukitoshi; Prakash, Nallamilli

    2007-05-01

    Austrobaileyales, comprising the four families Austrobaileyaceae, Trimeniaceae, Schisandraceae, and Illiciaceae, are included in the basal angiosperms along with Amborellaceae and Nymphaeaceae. Here, we present the first developmental study of the female gametophyte in Austrobaileya scandens, the only species of Austrobaileyaceae, which are sister to the rest of the Austrobaileyales. Austrobaileya scandens has a four-celled/four-nucleate embryo sac as in the derived families of the order, e.g., Illiciaceae and Schisandraceae. It is monosporic, with the chalazal megaspore of a tetrad developing into the embryo sac composed of an egg cell, two synergids, and one polar nucleus. This mode of embryo sac formation was first reported in Schisandra over 40 years ago and should now be established as the Schisandra type. Its occurrence in A. scandens shows that the Schisandra-type embryo sac is likely common to the whole Austrobaileyales as well as to Nymphaeaceae. Amborellaceae were recently reported to have an eight-celled/nine-nucleate embryo sac, clarifying that none of the basal angiosperms has the seven-celled/eight-nucleate Polygonum-type embryo sac found in the majority of angiosperms, and that the Polygonum-type embryo sac represents a derived character state in angiosperms.

  20. A fossil wood flora from King George Island: ecological implications for an Antarctic eocene vegetation

    NARCIS (Netherlands)

    Poole, I.J.; Hunt, Richard J.; Cantrill, David J.

    2001-01-01

    Early Tertiary sediments of the Antarctic Peninsula region continue to yield a rich assemblage of well-preserved fossil dicotyledonous angiosperm wood. The wood flora under consideration is from the Collins Glacier region on Fildes Peninsula, King George Island and is derived from tuffaceous sedimen

  1. The Amborella Genome and the Evolution of Flowering Plants

    DEFF Research Database (Denmark)

    Palmer, Jeffrey D.; Ammiraju, Jetty S. S.; Ralph, Paula

    2013-01-01

    Amborella trichopoda is strongly supported as the single living species of the sister lineage to all other extant flowering plants, providing a unique reference for inferring the genome content and structure of the most recent common ancestor (MRCA) of living angiosperms. Sequencing the Amborella...

  2. Back to the sea twice : identifying candidate plant genes for molecular evolution to marine life

    NARCIS (Netherlands)

    Wissler, Lothar; Codoner, Francisco M.; Gu, Jenny; Reusch, Thorsten B. H.; Olsen, Jeanine L.; Procaccini, Gabriele; Bornberg-Bauer, Erich

    2011-01-01

    Background: Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs) of two wide-spread and ecologically important seagrass species, the Mediterranean

  3. Cycads: Fossil evidence of late paleozoic origin

    Science.gov (United States)

    Mamay, S.H.

    1969-01-01

    Plant fossils from Lower Permian strata of the southwestern United States have been interpreted as cycadalean megasporophylls. They are evidently descended from spermopterid elements of the Pennsylvanian Taeniopteris complex; thus the known fossil history of the cycads is extended from the Late Triassic into the late Paleozoic. Possible implications of the Permian fossils toward evolution of the angiosperm carpel are considered.

  4. The palm family (Arecaceae)

    DEFF Research Database (Denmark)

    Nadot, Sophie; Alapetite, Elodie; Baker, William J.

    2016-01-01

    Among the 416 angiosperm families, palms (Arecaceae) are striking in possessing almost all possible combinations of hermaphroditic and/or unisexual flowers, making them a particularly interesting subject for studies of the evolution of plant sexuality. The purpose of this review is to highlight...

  5. Mechanisms of self-incompatibility and unilateral incompatibility in diploid potato (Solanum tuberosum L.).

    NARCIS (Netherlands)

    Eijlander, R.

    1998-01-01

    In chapter 1 an overview is given of the major mechanisms operating in Angiosperms that prevent or limit the degree of inbreeding. The two major systems that function on the basis of interaction between pollen and stigma/style, are the sporophytic and the gametophytic self-incompatibility systems (S

  6. Cryopreservation of fern spores

    Science.gov (United States)

    Spore banks for ferns are analogous to seed banks for angiosperms and provide a promising ex situ conservation tool because large quantities of germplasm with high genetic variation can be conserved in a small space with low economic and technical costs. Ferns produce two types of spores with very ...

  7. The Sexual Advantage of Looking, Smelling, and Tasting Good

    NARCIS (Netherlands)

    Borghi, Monica; Fernie, Alisdair R.; Schiestl, Florian P.; Bouwmeester, Harro J.

    2016-01-01

    A striking feature of the angiosperms that use animals as pollen carriers to sexually reproduce is the great diversity of their flowers with regard to morphology and traits such as color, odor, and nectar. These traits are underpinned by the synthesis of secondary metabolites such as pigments and vo

  8. Phylogenetic Analysis of the Plant-specific Zinc Finger-Homeobox and Mini Zinc Finger Gene Families

    Institute of Scientific and Technical Information of China (English)

    Wei Hu; Claude W.dePamphilis; Hong Ma

    2008-01-01

    Zinc finger-homaodomain proteins (ZHD) are present in many plants;however,the evolutionary history of the ZHD gene family remains largely unknown.We show here that ZHD genes are plant-specific,nearly all intronless,and related to MINI ZINC FINGER (MIF) genes that possess only the zinc finger.Phylogenetic analyses of ZHD genes from representative land plants suggest that non-seed plant ZHD genes occupy basal positions and angiosperm homologs form seven distinct clades.Several clades contain genes from two or more major angiosperm groups,including eudicots,monocots,magnoliids,and other basal angiosperms,indicating that several duplications occurred before the diversification of flowering plants.In addition,specific lineages have experienced more recent duplications.Unlike the ZHD genes,&fiFs are found only from seed plants,possibly derived from ZHDs by loss of the homeodomain before the divergence of seed plants.Moreover,the MIF genes have also undergone relatively recent gene duplications.Finally,genome duplication might have contributed substantially to the expansion of family size in angiosperms and caused a high level of functional redundancy/overlap in these genes.

  9. Oxygenation of the Root Zone and TCE Remediation: A Plant Model of Rhizosphere Dynamics

    Science.gov (United States)

    2008-03-01

    photosynthetic, and eukaryotic organisms. There are four main plant groups: bryophytes , seedless vascular plants, gymnosperms, and angiosperms. The 28...unique physiological characteristics has initiated deeper interest in the study and protection of these critical habitat areas. The relationship...and J. P. Amon. “Seasonal dynamics of arbuscular mycorrhizal fungi in differing wetland habitats ,” Mycorrhiza 14: 329-337 (2004). Beckett, P

  10. Bicarbonate utilization and pH polarity. The response of photosynthetic electron transport to carbon limitation in Potamogeton lucens leaves

    NARCIS (Netherlands)

    van Ginkel, LC; Prins, HBA

    1998-01-01

    By the process of pH polarity, several submersed angiosperms can use bicarbonate as carbon source for photosynthesis. Under conditions of relatively high light intensity and low CO2 availability, the pH of the apoplast and unstirred layer becomes acid at one side of the leaf and alkaline at the othe

  11. Tha palm family (Arecaceae): a microcosm of sexual system evolution

    DEFF Research Database (Denmark)

    Nadot, Sophie; Alapetite, Elodie; Baker, William J.

    2016-01-01

    Among the 416 angiosperm families, palms (Arecaceae) are striking in possessing almost all possible combinations of hermaphroditic and/or unisexual flowers, making them a particularly interesting subject for studies of the evolution of plant sexuality. The purpose of this review is to highlight...

  12. Keys to the Common Genera of Marine Plants Taken Aboard the Orange County Floating Marine Laboratory.

    Science.gov (United States)

    Williams, H. R.

    Provided is a dichotomous key to the common genera of marine algae and angiosperms which are taken aboard the Orange County Floating Marine Laboratory. It is designed primarily for use by junior and senior high school students. Drawings of representative members of the various genera are included. This work was prepared under an ESEA Title III…

  13. The Juxtamembrane and carboxy-terminal domains of Arabidopsis PRK2 are critical for ROP-induced growth in pollen tubes

    Science.gov (United States)

    Polarized growth of pollen tubes is a critical step for successful reproduction in angiosperms and is controlled by ROP GTPases. Spatiotemporal activation of ROP (Rho GTPases of plants) necessitates a complex and sophisticated regulatory system, in which guanine nucleotide exchange factors (RopGEFs)...

  14. Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns

    DEFF Research Database (Denmark)

    Leroux, Olivier; Sørensen, Iben; Marcus, Susan E.;

    2015-01-01

    across the ferns and specifically associated with phloem cell walls and similarly the LM11 xylan epitope was associated with xylem cell walls. The LM5 galactan and LM6 arabinan epitopes, linked to pectic supramolecules in angiosperms, were associated with vascular structures with only limited detection...

  15. Transcriptional signatures of ancient floral developmental genetics in avocado (Persea americana; Lauraceae).

    Science.gov (United States)

    Chanderbali, André S; Albert, Victor A; Leebens-Mack, Jim; Altman, Naomi S; Soltis, Douglas E; Soltis, Pamela S

    2009-06-02

    The debate on the origin and evolution of flowers has recently entered the field of developmental genetics, with focus on the design of the ancestral floral regulatory program. Flowers can differ dramatically among angiosperm lineages, but in general, male and female reproductive organs surrounded by a sterile perianth of sepals and petals constitute the basic floral structure. However, the basal angiosperm lineages exhibit spectacular diversity in the number, arrangement, and structure of floral organs, whereas the evolutionarily derived monocot and eudicot lineages share a far more uniform floral ground plan. Here we show that broadly overlapping transcriptional programs characterize the floral transcriptome of the basal angiosperm Persea americana (avocado), whereas floral gene expression domains are considerably more organ specific in the model eudicot Arabidopsis thaliana. Our findings therefore support the "fading borders" model for organ identity determination in basal angiosperm flowers and extend it from the action of regulatory genes to downstream transcriptional programs. Furthermore, the declining expression of components of the staminal transcriptome in central and peripheral regions of Persea flowers concurs with elements of a previous hypothesis for developmental regulation in a gymnosperm "floral progenitor." Accordingly, in contrast to the canalized organ-specific regulatory apparatus of Arabidopsis, floral development may have been originally regulated by overlapping transcriptional cascades with fading gradients of influence from focal to bordering organs.

  16. The Winteraceae of the Old World. I. Pseudowintera and Drimys — Morphology and taxonomy

    NARCIS (Netherlands)

    Vink, W.

    1970-01-01

    The primitive woody Angiosperm family Winteraceae is centred in the southwest Pacific, has an outpost in Madagascar (1 species), and a section of Drimys (4 species) in the New World. Pseudowintera is restricted to New Zealand, the Old World section Tasmannia of Drimys extends from the Philippines to

  17. Review

    NARCIS (Netherlands)

    Steenis, van C.G.G.J.

    1970-01-01

    As explained in Takhtajan’s preface this book is not a mere translation of his ‘The origin of Angiospermous plants’ (1961, in Russian), but an entirely new book. I find this true and not true. Comparing it with the Origin (1958 translation of the 1954 Russian version) the essence of the new book was

  18. Hydrogel Regulation of Xylem Water Flow: An Alternative Hypothesis

    NARCIS (Netherlands)

    Doorn, van W.G.; Hiemstra, T.; Fanourakis, D.

    2011-01-01

    The concentration of cations in the xylem sap influences the rate of xylem water flow in angiosperm plants. It has been speculated that this is due to the shrinking and swelling of pectins in the pit membranes. However, there is as yet minimal evidence for the presence of pectin in pit membranes of

  19. The impacts of feeding in a resistant tree on the Asian longhorned beetle (Anoplophora glabripennis) and its gut microbiota

    Science.gov (United States)

    The Asian longhorned beetle (ALB; Anoplophora glabripennis) is an invasive, wood-boring beetle capable of thriving in the heartwood of a broad range of angiospermous trees. Here, it faces a number of nutritional and digestive challenges, including the presence of highly recalcitrant lignocellulose a...

  20. Sporobolus stapfianus: Insights into desiccation tolerance in the resurrection grasses from linking transcriptomics to metabolomics

    Science.gov (United States)

    Understanding the response of resurrection angiosperms to dehydration and rehydration is critical in order to decipher the mechanistic aspects of how plants cope with the rigors of water loss from their vegetative tissues. We have focused our studies on the C4 resurrection grass, Sprobolus stapfianu...

  1. A CO2-flux mechanism operating via pH-polarity in Hydrilla verticillata leaves with C-3 and C-4 photosynthesis

    NARCIS (Netherlands)

    van Ginkel, LC; Bowes, G; Reiskind, JB; Prins, HBA

    2001-01-01

    The aquatic angiosperm Hydrilla verticillata lacks Kranz anatomy, but has an inducible, C-4-based, CO2 concentrating mechanism (CCM) that concentrates CO2 in the chloroplasts. Both C-3 and C-4 Hydrilla leaves showed light-dependent pH polarity that was suppressed by high dissolved inorganic carbon (

  2. Functional monoecy due to delayed anther dehiscence: a novel mechanism in Pseuduvaria mulgraveana (Annonaceae).

    Science.gov (United States)

    Pang, Chun-Chiu; Scharaschkin, Tanya; Su, Yvonne C F; Saunders, Richard M K

    2013-01-01

    Unlike most genera in the early-divergent angiosperm family Annonaceae, Pseuduvaria exhibits a diversity of floral sex expression. Most species are structurally andromonoecious (or possibly androdioecious), although the hermaphroditic flowers have been inferred to be functionally pistillate, with sterile staminodes. Pseuduvaria presents an ideal model for investigating the evolution of floral sex in early-divergent angiosperms, although detailed empirical studies are currently lacking. The phenology and pollination ecology of the Australian endemic species Pseuduvaria mulgraveana are studied in detail, including evaluations of floral scent chemistry, pollen viability, and floral visitors. Results showed that the flowers are pollinated by small diurnal nitidulid beetles and are protogynous. Pollen from both hermaphroditic and staminate flowers are shown to be equally viable. The structurally hermaphroditic flowers are nevertheless functionally pistillate as anther dehiscence is delayed until after petal abscission and hence after the departure of pollinators. This mechanism to achieve functional unisexuality of flowers has not previously been reported in angiosperms. It is known that protogyny is widespread amongst early-divergent angiosperms, including the Annonaceae, and is effective in preventing autogamy. Delayed anther dehiscence represents a further elaboration of this, and is effective in preventing geitonogamy since very few sexually mature flowers occur simultaneously in an individual. We highlight the necessity for field-based empirical interpretations of functional floral sex expression prior to evaluations of evolutionary processes.

  3. Chromosome numbers of some Angiospermae collected in Cameroun and the Ivory Coast II

    NARCIS (Netherlands)

    Gadella, Th.W.J.

    1970-01-01

    The chromosome number of 15 species of Angiosperms, occurring in Cameroun and the Ivory Coast, was determined. The numbers given for 11 species are new, for three species the results of previous studies could be confirmed, whereas in one species the presence of intraspecific polyploidy could be demo

  4. The occurrence and evolution of nectar extraction apparatus among Hymenoptera ‘Symphyta'. Jervis, M. & Vilhelmsen, L

    DEFF Research Database (Denmark)

    Vilhelmsen, Lars

    2000-01-01

    , plant (angiosperm) sap, the juice of ripe fruit, the spermatial fluid of rust fungi, sternorrhynchan bug honeydew, and insect tissues. Adults show feeding-related mouthpart specialization either for consuming pollen (the Xyelidae only) or for consuming ‘concealed' floral nectar (several families). Seven...

  5. A Phylogeny of the Monocots, as Inferred from rbcL and atpA Sequence Variation, and a Comparison of Methods for Calculating Jackknife and Bootstrap Values

    DEFF Research Database (Denmark)

    Davis, Jerrold I.; Stevenson, Dennis W.; Petersen, Gitte;

    2004-01-01

    A phylogenetic analysis of the monocots was conducted on the basis of nucleotide sequence variation in two genes (atpA, encoded in the mitochondrial genome, and rbcL, encoded in the plastid genome). The taxon sample of 218 angiosperm terminals included 177 monocots and 41 dicots. Among the major ...

  6. Development of the trophic part of consortia’s relations of the gossamer-winged butterflies (Lepidoptera, Lycaenidae with Salvia nutans (Lamiaceae

    Directory of Open Access Journals (Sweden)

    K. K. Goloborodko

    2008-03-01

    Full Text Available On the basis of dummy individual consortia of Salvia nutans L. an important component of fertilization mechanism – the dynamics of trophic relations of antophylus agents with an entomophilous angiosperm autotroph was investigated. The dominant position in species structure of fertilizers in conditionally native steppe ecosystems is occupied by relict TomaresnogelidobrogensisCar.

  7. Main: RHERPATEXPA7 [PLACE

    Lifescience Database Archive (English)

    Full Text Available RHERPATEXPA7 S000512 04-January-2007 (last modified) kehi Right part of RHEs (Root ...Hair-specific cis-Elements) conserved among the Arabidopsis thaliana A7 (AtEXPA7) orthologous (and paralogou...s) genes from diverse angiosperm species with different hair distribution patterns; K=G/T; W=T/A; root; hair; Arabidopsis thaliana KCACGW ...

  8. Ethyl ester purpurine-18 from Gossypium mustelinum (Malvaceae);Feoforbideo (etoxi-purpurina-18) isolado de Gossypium mustelinum (Malvaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tania Maria Sarmento; Camara, Celso Amorim, E-mail: taniasarmento@dq.ufrpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Quimica; Barbosa-Filho, Jose Maria [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Lab. de Tecnologia Farmaceutica; Giulietti, Ana Maria [Universidade Estadual de Feira de Santana, BA (Brazil). Dept. de Ciencias Biologicas

    2010-07-01

    The phaeophorbide ethyl ester named Purpurine-18 and the flavonoids quercetin and kaempferol were obtained by chromatographic procedures from the chloroform fraction of aerial parts of Gossypium mustelinum. The structure of these compound was determined by NMR, IR and mass spectra data analysis. This is the first occurrence of this compound in Angiosperm. (author)

  9. Regulation of pollen tube polarity: Feedback loops rule

    Science.gov (United States)

    Targeted delivery of immotile sperm through growing pollen tubes is a crucial step in achieving sexual reproduction in angiosperms. Unlike diffuse-growing cells, the growth of a pollen tube is restricted to the very apical region where targeted exocytosis and regulated endocytosis occur. The plant-s...

  10. Phylogenetic analysis of Magnoliales and Myristicaceae based on multiple data sets: implications for character evolution

    NARCIS (Netherlands)

    Sauquet, H.; Doyle, J.A.; Scharaschkin, T.; Borsch, T.; Hilu, K.W.; Chatrou, L.W.; Thomas, Le A.

    2003-01-01

    Magnoliales, consisting of six families of tropical to warm-temperate woody angiosperms, were long considered the most archaic order of flowering plants, but molecular analyses nest them among other eumagnoliids. Based on separate and combined analyses of a morphological matrix (115 characters) and

  11. Molecular identification of Phytoplasmas infecting diseased pine trees in the UNESCO-protected Curonian Spit of Lithuania

    Science.gov (United States)

    Although mainly known as pathogens that affect angiosperms, phytoplasmas have recently been detected in diseased coniferous plants. In 2008-2014, we observed, in the Curonian Spit of western Lithuania and in forests of southern Lithuania (Varena district), diseased trees of Scots pine (Pinus sylvest...

  12. Diverse functions of KNOX transcription factors in the diploid body plan of plants

    Science.gov (United States)

    KNOX genes were initially found as shoot meristem regulators in angiosperms. Recent studies in diverse plant lineages however, have revealed the divergence of KNOX gene function during the evolution of diploid body plans. Using genomic approaches, class I KNOX transcription factors have been shown t...

  13. Natural variation in synthesis and catabolism genes influences dhurrin content in sorghum (Sorghum bicolor L. Moench)

    Science.gov (United States)

    Cyanogenic glucosides are natural compounds found in over 1,000 species of angiosperms that produce HCN and are deemed undesirable for agricultural use. However, these compounds are important components of primary defensive mechanisms of many plant species. One of the best-studied cyanogenic glucos...

  14. Hypergravity prevents seed production in Arabidopsis by disrupting pollen tube growth

    NARCIS (Netherlands)

    M.E. Musgrave; A.X. Kuang; J. Allen; J.J.W.A. van Loon

    2009-01-01

    How tightly land plants are adapted to the gravitational force (g) prevailing on Earth has been of interest because unlike many other environmental factors, g presents as a constant force. Ontogeny of mature angiosperms begins with an embryo that is formed after tip growth by a pollen tube delivers

  15. Palynological composition of a Lower Cretaceous South American tropical sequence: Climatic implications and diversity comparisons with other latitudes.

    Science.gov (United States)

    Mejia-Velasquez, Paula J.; Dilcher, David L.; Jaramillo, Carlos A.; Fortini, Lucas B.; Manchester, Steven R.

    2012-01-01

    Premise of the study: Reconstruction of floristic patterns during the early diversification of angiosperms is impeded by the scarce fossil record, especially in tropical latitudes. Here we collected quantitative palynological data from a stratigraphic sequence in tropical South America to provide floristic and climatic insights into such tropical environments during the Early Cretaceous. Methods: We reconstructed the floristic composition of an Aptian-Albian tropical sequence from central Colombia using quantitative palynology (rarefied species richness and abundance) and used it to infer its predominant climatic conditions. Additionally, we compared our results with available quantitative data from three other sequences encompassing 70 floristic assemblages to determine latitudinal diversity patterns. Key results: Abundance of humidity indicators was higher than that of aridity indicators (61% vs. 10%). Additionally, we found an angiosperm latitudinal diversity gradient (LDG) for the Aptian, but not for the Albian, and an inverted LDG of the overall diversity for the Albian. Angiosperm species turnover during the Albian, however, was higher in humid tropics. Conclusions: There were humid climates in northwestern South America during the Aptian-Albian interval contrary to the widespread aridity expected for the tropical belt. The Albian inverted overall LDG is produced by a faster increase in per-sample angiosperm and pteridophyte diversity in temperate latitudes. However, humid tropical sequences had higher rates of floristic turnover suggesting a higher degree of morphological variation than in temperate regions.

  16. Slower phloem transport in gymnosperm trees can be attributed to higher sieve element resistance.

    Science.gov (United States)

    Liesche, Johannes; Windt, Carel; Bohr, Tomas; Schulz, Alexander; Jensen, Kaare H

    2015-04-01

    In trees, carbohydrates produced in photosynthesizing leaves are transported to roots and other sink organs over distances of up to 100 m inside a specialized transport tissue, the phloem. Angiosperm and gymnosperm trees have a fundamentally different phloem anatomy with respect to cell size, shape and connectivity. Whether these differences have an effect on the physiology of carbohydrate transport, however, is not clear. A meta-analysis of the experimental data on phloem transport speed in trees yielded average speeds of 56 cm h(-1) for angiosperm trees and 22 cm h(-1) for gymnosperm trees. Similar values resulted from theoretical modeling using a simple transport resistance model. Analysis of the model parameters clearly identified sieve element (SE) anatomy as the main factor for the significantly slower carbohydrate transport speed inside the phloem in gymnosperm compared with angiosperm trees. In order to investigate the influence of SE anatomy on the hydraulic resistance, anatomical data on SEs and sieve pores were collected by transmission electron microscopy analysis and from the literature for 18 tree species. Calculations showed that the hydraulic resistance is significantly higher in the gymnosperm than in angiosperm trees. The higher resistance is only partially offset by the considerably longer SEs of gymnosperms.

  17. Variation in pollen competitive ability in diverse maize lines

    Science.gov (United States)

    Although pollen occupies a small fraction of the angiosperm life cycle, it is of interest for both basic and applied scientific reasons. Seed production depends on a functional male gametophyte achieving fertilization following pollination. Pollen also serves as a vector for ge...

  18. Plant Reproduction and the Pollen Tube Journey--How the Females Lure the Males

    Science.gov (United States)

    Lorbiecke, Rene

    2012-01-01

    The growth of pollen tubes is one of the most characteristic events in angiosperm reproduction. This article describes an activity for visualizing the journey and guidance of pollen tubes in the reproductive structures of a flowering plant. The activity uses a semi-in vivo system with rapid-cycling "Brassica rapa," also known as Fast Plants.…

  19. Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants

    DEFF Research Database (Denmark)

    Liepman, Aaron H; Nairn, C Joseph; Willats, William G T

    2007-01-01

    , the CslA genes are members of extended multigene families; however, it is not known whether all CslA proteins are glucomannan synthases. CslA proteins from diverse land plant species, including representatives of the mono- and dicotyledonous angiosperms, gymnosperms, and bryophytes, were produced...

  20. BIOMONITORING USING AQUATIC VEGETATION

    Science.gov (United States)

    This chapter provides an overview of the state-of-the-science as related to the phytoassessment techniques used in environmental biomonitoring and the hazard assessment process for chemicals. The emphasis is on freshwater angiosperms and bryophytes. Algal species, which are prese...

  1. Increased diversification rates follow shifts to bisexuality in liverworts

    DEFF Research Database (Denmark)

    Laenen, Benjamin; Machac, Antonin; Gradstein, S. Robbert

    2016-01-01

    Shifts in sexual systems are one of the key drivers of species diversification. In contrast to angiosperms, unisexuality prevails in bryophytes. Here, we test the hypotheses that bisexuality evolved from an ancestral unisexual condition and is a key innovation in liverworts. We investigate whether...

  2. Legume phylogeny and classification in the 21st century: Progress, prospects and lessons for other species-rich clades

    NARCIS (Netherlands)

    Bruneau, A.; Doyle, J.J.; Herendeen, P.; Hughes, C.; Kenicer, G.; Lewis, G.; Mackinder, B.A.; Pennington, R.T.; Sanderson, M.J.; Wojciechowski, M.F.; Boatwright, S.; Brown, G.; Cardoso, D.; Crips, M.; Egan, A.; Fortunato, R.; Hawkins, J.; Kajita, T.; Klitgaard, B.B.; Koenen, E.; Lavin, M.; Luckow, M.; Marazzi, B.; McMahon, M.M.; Miller, J.T.; Murphy, D.J.; Ohashi, H.; Queiroz, de L.P.; Rico, L.; Särkinen, T.; Schrire, B.; Simon, M.F.; Souza, E.R.; Steele, K.; Torke, B.M.; Wieringa, J.J.; Wijk, B.E.

    2013-01-01

    The Leguminosae, the third-largest angiosperm family, has a global distribution and high ecological and economic importance. We examine how the legume systematic research community might join forces to produce a comprehensive phylogenetic estimate for the ca. 751 genera and ca. 19,500 species of leg

  3. Nutrient dynamics in Indonesian seagrass beds : factors determining conservation and loss of nitrogen and phosp[h]orus

    NARCIS (Netherlands)

    Stapel, J.

    1997-01-01

    Seagrasses are marine angiosperms that occur in shallow coastal seas around the world. They have reached their highest species diversity in Southeast Asia, where they formextensive multi-species meadows. The seagrass beds in Indonesia maintain a high productivity despite a low nu

  4. Plant-derived terpenoids as paleovegetation proxies: evaluation of the proxy with Paleocene and Eocene megafloras and plant biomarkers in the Bighorn Basin, USA

    Science.gov (United States)

    Diefendorf, A. F.; Freeman, K. H.; Wing, S. L.

    2012-12-01

    Plant terpenoids (defense compounds synthesized from the 5-carbon building block isoprene) have a long history of use as geochemical plant biomarkers, and potentially can be used to reconstruct changes in the abundances of major land plant groups in rocks and sediments that do not preserve plant megafossils or pollen. Pentacyclic triterpenoids are synthesized almost exclusively by angiosperms whereas conifers produce the tricyclic diterpenoids. Many previous studies have focused on the use of di- to triterpenoid ratios to reconstruct floral changes in the geologic past, however few studies have compared terpenoid-based paleoflora proxies to pollen or megafossils. Prior reconstructions also did not take into account differences in biomarker production between plant functional types, such as deciduous and evergreen plants, which can be quite large. To investigate the use of terpenoids as paleoflora proxies, we examined sediments from the Bighorn Basin (Wyoming, USA) where ancient megafloras have been studied in detail. We analyzed di- and triterpenoid abundances as well as plant leaf waxes (n-alkanes) and other biomarkers in a total of 75 samples from 15 stratigraphic horizons from the late Paleocene (62 Ma) to early Eocene (52.5 Ma). By comparing terpenoid ratios with abundances estimated from plant megafossils, we can evaluate the utility of terpenoids as paleovegetation proxies. In nearly all samples, angiosperm triterpenoids are significantly lower in abundance than conifer diterpenoids. This contrasts with leaf fossil data that indicate paleofloras were dominated by angiosperms in both abundance and diversity. Traditional use of terpenoid paleovegetation proxies would therefore significantly overestimate the abundance of conifers, even when accounting for plant production differences. To determine if this overestimate is related to the loss of angiosperm triterpenoids (rather than enhanced production of diterpenoids in the geologic past), we compared angiosperm

  5. Carbon and Hydrogen Isotopic Composition of Plant Wax n-Alkanes: A Tool for Characterizing Soil Provenance in Forensic Science

    Science.gov (United States)

    Pedentchouk, N.; Wagner, T.; Jones, M.

    2009-04-01

    Forensic science is an integrative discipline that requires material evidence from diverse sources. Geochemical evidence derived from inorganic and organic substances is becoming increasingly popular among law enforcement agencies in industrialized countries. Previous investigations indicate that the relative distributions of individual plant-derived biomarkers found in soils are linked to the biomarker patterns found in the overlying vegetation. However, identification of soil provenance based on the distribution of plant-derived biomarkers for forensic purposes is inhibited by the fact that a significant number of terrestrial plant species have overlapping biomarker distributions. In order to enhance the resolving power of plant-derived biomarker signal, we propose to enhance the molecular approach by adding a stable isotope component, i.e. the delta13C/deltaD values of individual biomarkers. The first objective of this project is to determine the delta13C/deltaD signatures of n-alkanes derived from various higher plant types commonly growing in the UK. The second objective is to investigate whether the same species/plant types differ isotopically between two locations affected by different weather patterns in the UK: a relatively warmer and drier Norwich, Norfolk and a cooler and wetter Newcastle-upon-Tyne in NE England. The n-C29 alkane data from 14 tree species sampled during July 2007 and August 2008 in Newcastle show a clear negative trend between delta13C and deltaD values. When these data are plotted against each other, the six deciduous angiosperms (delta13C: c. -39 to -35 per mil; deltaD: c. -155 to -130 per mil) are completely separated from four evergreen angiosperms (delta13C: c. -33 to -28 per mil; deltaD: c. -195 to -165 per mil). The four gymnosperm species data plot between those of the deciduous and evergreen angiosperms. Because all 14 species in Newcastle experience the same environmental conditions, we suggest that the observed isotopic

  6. Complete chloroplast genome sequences of Drimys, Liriodendron, andPiper: Implications for the phylogeny of magnoliids and the evolution ofGC content

    Energy Technology Data Exchange (ETDEWEB)

    Zhengqiu, C.; Penaflor, C.; Kuehl, J.V.; Leebens-Mack, J.; Carlson, J.; dePamphilis, C.W.; Boore, J.L.; Jansen, R.K.

    2006-06-01

    The magnoliids represent the largest basal angiosperm clade with four orders, 19 families and 8,500 species. Although several recent angiosperm molecular phylogenies have supported the monophyly of magnoliids and suggested relationships among the orders, the limited number of genes examined resulted in only weak support, and these issues remain controversial. Furthermore, considerable incongruence has resulted in phylogenies supporting three different sets of relationships among magnoliids and the two large angiosperm clades, monocots and eudicots. This is one of the most important remaining issues concerning relationships among basal angiosperms. We sequenced the chloroplast genomes of three magnoliids, Drimys (Canellales), Liriodendron (Magnoliales), and Piper (Piperales), and used these data in combination with 32 other completed angiosperm chloroplast genomes to assess phylogenetic relationships among magnoliids. The Drimys and Piper chloroplast genomes are nearly identical in size at 160,606 and 160,624 bp, respectively. The genomes include a pair of inverted repeats of 26,649 bp (Drimys) and 27,039 (Piper), separated by a small single copy region of 18,621 (Drimys) and 18,878 (Piper) and a large single copy region of 88,685 bp (Drimys) and 87,666 bp (Piper). The gene order of both taxa is nearly identical to many other unrearranged angiosperm chloroplast genomes, including Calycanthus, the other published magnoliid genome. Comparisons of angiosperm chloroplast genomes indicate that GC content is not uniformly distributed across the genome. Overall GC content ranges from 34-39%, and coding regions have a substantially higher GC content than non-coding regions (both intergenic spacers and introns). Among protein-coding genes, GC content varies by codon position with 1st codon > 2nd codon > 3rd codon, and it varies by functional group with photosynthetic genes having the highest percentage and NADH genes the lowest. Across the genome, GC content is highest in

  7. Paleocene floral diversities and turnover events in eastern North America and their relation to diversity models

    Science.gov (United States)

    Frederiksen, N.O.

    1994-01-01

    This paper uses angiosperm pollen taxon turnover (first and last appearance) and diversity events as metrics to describe the Paleocene floral history of the eastern Gulf Coast; data are from 64 samples and 67 angiosperm pollen taxa. Angiosperm pollen diversity was very low at the beginning of the Paleocene, rose slowly and then somewhat more rapidly to a maximum for the epoch in the middle of the late Paleoceneas a result of the maximum in rate of first appearances during the late early Paleocene and earliest late Paleocene. Diversity then dropped very rapidly at or near the end of the epoch as the rate of last appearances reached its maximum, resulting in the Terminal Paleocene Extinction Event. The latest Paleocene diversity decline coincided with an increase in mean annual temperature and probably in rainfall, representing the beginning of the climatic maximum for the Tertiary which characterized the early Eocene. The increase in diversity of early Paleocene floras in the eastern Gulf Coast resulted from exploitation of unfilled ecospace originating from (1) low regional diversity following the Terminal Cretaceous Extinction Event, and (2) creation of many new niches during the Paleocene, resulting, according to megafloral evidence, from a change to a new vegetation type (multistratal tropical rainforest) brought about by an increase in rainfall. The slow rate of recovery of earliest Paleocene angiosperm diversity in the eastern Gulf Coast may be explained in part by the diversity-dependence model of Carr and Kitchell (1980). However, additional factors may have contributed to the slow recovery: (1) the adverse terminal Cretaceous climates may have extended into the early Paleocene, (2) the initial Paleocene environment of the eastern Gulf Coast may have contained relatively few niches, (3) some earliest Paleocene angiosperms, particularly trees, may have had inherently poor capabilities for rapid evolution, and (4) there was a lack of significant immigration of

  8. The flat bark beetles (Coleoptera, Silvanidae, Cucujidae, Laemophloeidae of Atlantic Canada

    Directory of Open Access Journals (Sweden)

    Christopher Majka

    2008-09-01

    Full Text Available As a result of the present investigations 18 species of flat bark beetles are known to occur in Atlantic Canada, 10 in New Brunswick, 17 in Nova Scotia, four on Prince Edward Island, six on insular Newfoundland, and one in Labrador. Twenty-three new provincial records are reported and nine species, Uleiota debilis (LeConte, Uleiota dubius (Fabricius, Nausibius clavicornis (Kugelann, Ahasverus advena (Waltl, Cryptolestes pusillus (Schönherr, Cryptolestes turcicus (Grouvelle, Charaphloeus convexulus (LeConte, Charaphloeus species nr. adustus, and Placonotus zimmermanni (LeConte are newly recorded in the region, one of which C. sp. nr. adustus, is newly recorded in Canada as a whole. Eight species are cosmopolitan species introduced to the region and North America, nine are native Nearctic species, and one, Pediacus fuscus Erichson, is Holarctic in distribution. All the introduced species except for one (Silvanus bidentatus (Fabricius, a saproxylic species are found on various stored products, whereas all the native species are saproxylic. Ahasverus longulus (Blatchley, is removed from the species list of New Brunswick and Charophloeus adustus (LeConte is removed from the species list of Nova Scotia. One tropical Asian species, Cryptamorpha desjardinsi (Guérin-Méneville, has been intercepted in the region in imported produce, but is not established. The substantial proportion (44% of the fauna that is comprised of introduced species is highlighted, almost all of which are synanthropic species associated with various dried stored products. The island faunas of Prince Edward Island, Cape Breton Island, and insular Newfoundland are diminished in comparison to the mainland fauna, that of Prince Edward Island being exceptionally so in comparison to other saproxylic groups found there. Of the ten native species, four can be categorized as 'apparently rare' (i.e., comprising ≤ 0.005% of specimens examined from the region. It is possibly that the

  9. Simple Indolizidine and Quinolizidine Alkaloids.

    Science.gov (United States)

    Michael, Joseph P

    2016-01-01

    This review of simple indolizidine and quinolizidine alkaloids (i.e., those in which the parent bicyclic systems are in general not embedded in polycyclic arrays) is an update of the previous coverage in Volume 55 of this series (2001). The present survey covers the literature from mid-1999 to the end of 2013; and in addition to aspects of the isolation, characterization, and biological activity of the alkaloids, much emphasis is placed on their total synthesis. A brief introduction to the topic is followed by an overview of relevant alkaloids from fungal and microbial sources, among them slaframine, cyclizidine, Steptomyces metabolites, and the pantocins. The important iminosugar alkaloids lentiginosine, steviamine, swainsonine, castanospermine, and related hydroxyindolizidines are dealt with in the subsequent section. The fourth and fifth sections cover metabolites from terrestrial plants. Pertinent plant alkaloids bearing alkyl, functionalized alkyl or alkenyl substituents include dendroprimine, anibamine, simple alkaloids belonging to the genera Prosopis, Elaeocarpus, Lycopodium, and Poranthera, and bicyclic alkaloids of the lupin family. Plant alkaloids bearing aryl or heteroaryl substituents include ipalbidine and analogs, secophenanthroindolizidine and secophenanthroquinolizidine alkaloids (among them septicine, julandine, and analogs), ficuseptine, lasubines, and other simple quinolizidines of the Lythraceae, the simple furyl-substituted Nuphar alkaloids, and a mixed quinolizidine-quinazoline alkaloid. The penultimate section of the review deals with the sizable group of simple indolizidine and quinolizidine alkaloids isolated from, or detected in, ants, mites, and terrestrial amphibians, and includes an overview of the "dietary hypothesis" for the origin of the amphibian metabolites. The final section surveys relevant alkaloids from marine sources, and includes clathryimines and analogs, stellettamides, the clavepictines and pictamine, and bis

  10. Establishment and Evaluation of the Vegetative Community in A Surface Flow Constructed Wetland Treating Industrial Park Contaminants

    Directory of Open Access Journals (Sweden)

    C. C. Galbrand

    2008-01-01

    Full Text Available A surface flow constructed wetland, designed to curve in a kidney shape in order to increase the length to width ratio to 5:1 was used to treat runoff from an industrial park. A natural wetland system located approximately 200 m downstream of the constructed wetland was selected to act as the vegetative community model for the constructed wetland. The selected model was a riparian, open water marsh dominated by emergent macrophytes. Baseline plant species surveying was conducted. In total, 21 emergent wetland plant species, 40 upland vascular plant species, 17 upland shrub species and 13 upland tree species were identified in the model site. The species from the model site were screened for suitability in the constructed wetland based on the following criteria: (a phytoremediation potential (especially metal uptake, (b sedimentation and erosion control, (c habitat function, (d public deterrent potential and (e rate of plant establishment, tolerances and maintenance requirements. Transplantation was chosen as the main vegetation establishment methodology in the constructed wetland. The species woolgrass (Scirpus cyperinus and soft rush (Juncus effusus were chosen to dominate the interior berms and littoral edges of the constructed wetland cells. The buffer areas were dominated by meadowsweet (Spiraea alba var. latifolia and the open water areas were dominated by cowlily (Nuphar variegate and pickerelweed (Pontederia cordata species. A diverse, self-sustaining vegetative community was successfully established in the constructed wetland. The transplant success was gauged by mortality census in the spring of 2003. Over all, 138 dead transplants were observed, many of which had died as a direct result of washout. These computes to an overall site establish success rate of about 87.3%. The species, which suffered the highest mortality rates, were the pickerelweed, with approximately 50 dead plants, the meadowsweet with 32 observed dead plants and

  11. Seasonal foraging responses of beavers to sodium-enhanced foods: An experimental assessment with field feeding trials

    Science.gov (United States)

    Strules, Jennifer; Destefano, Stephen

    2015-01-01

    Salt drive is a seasonal phenomenon common to several classes of wild herbivores. Coincident with shifts of nutrient quality when plants resume growth in the spring, sodium is secondarily lost as surplus potassium is excreted. The beaver (Castor canadensis) is an herbivore whose dietary niche closely follows that of other herbivores that are subject to salt drive, but no published studies to date have assessed the likelihood of its occurrence. To quantify if beavers experience seasonal salt drive, we designed a field experiment to measure the foraging responses of beavers to sodium-enhanced foods. We used sodium-treated (salted) and control (no salt) food items (aspen [Populus tremuloides] and pine [Pinus spp.] sticks) during monthly feeding trials at beaver-occupied wetlands. If conventional ontogeny of salt drive was operant, we expected to observe greater utility of sodium-treated food items by beavers in May and June. Further, if water lilies (Nymphaea spp. and Nuphar spp.) supply beavers with sodium to meet dietary requirements as is widely speculated, we expected foraging responses to sodium-treated food items at wetlands where water lilies were absent to be greater than at wetlands where water lily was present. Aspen was selected by beavers in significantly greater amounts than pine. There was no difference between the mean percent consumed of salted and control aspen sticks by beavers at lily and non-lily wetlands, and no differences in temporal consumption associated with salted or control pine sticks at either wetland type. Salted pine was consumed in greater amounts than unsalted pine. We propose that the gastrointestinal or renal physiology of beavers may preclude solute loss, thereby preventing salt drive.

  12. In vitro antibacterial and antitumor activities of some medicinal plant extracts, growing in Turkey

    Institute of Scientific and Technical Information of China (English)

    Arzu Birinci Yildirim; Fatma Pehlivan Karakas; Arzu Ucar Turker

    2013-01-01

    Objective:To investigate antibacterial and antitumor activities of 51 different extracts prepared with 3 types of solvents (water, ethanol and methanol) of 16 different plant species (Ajuga reptans (A. reptans) L., Phlomis pungens (P. pungens) Willd., Marrubium astracanicum (M. astracanicum) Jacq., Nepeta nuda (N. nuda) L., Stachys annua (S. annua) L., Genista lydia (G. lydia) Boiss., Nuphar lutea (N. lutea) L., Nymphaea alba (N. alba) L., Vinca minor (V. minor) L., Stellaria media (S. media) L., Capsella bursa-pastoris (C. bursa-pastoris) L., Galium spurium (G. spurium) L., Onosma heterophyllum (O. heterophyllum) Griseb., Reseda luteola (R. luteola) L., Viburnum lantana (V. lantana) L. and Mercurialis annua (M. annua) L.) grown in Turkey was conducted. Methods:Antibacterial activity was evaluated with 10 bacteria including Streptococcus pyogenes (S. pyogenes), Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis), Escheria coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Salmonella typhimurium (S. typhimurium), Serratia marcescens (S. marcescens), Proteus vulgaris (P. vulgaris), Enterobacter cloacae (E. cloacea), and Klebsiella pneumoniae (K. pneumoniae) by using disc diffusion method. Antitumor activity was evaluated with Agrobacterium tumefaciens (A. tumefaciens)-induced potato disc tumor assay. Results: Best antibacterial activity was obtained with ethanolic extract of P. pungens against S. pyogenes. Ethanolic and methanolic extract of N. alba and ethanolic extract of G. lydia also showed strong antibacterial activities. Results indicated that alcoholic extracts especially ethanolic extracts exhibited strong antibacterial activity against both gram-positive and gram-negative bacteria. Best antitumor activity was obtained with methanolic extracts of N. alba and V. lantana (100%tumor inhibition). Ethanolic extract of N. alba, alcoholic extracts of N. lutea, A. reptans and V. minor flowers, methanolic extracts of G. lydia and O

  13. Paleoenvironmental implications from biomarker and stable isotope investigations on the Pliocene Velenje lignite seam (Slovenia)

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, A.; Sachsenhofer, R.F.; Markic, M.; Gratzer, R.; Lucke, A.; Puttmann, W. [Montan University of Leoben, Leoben (Austria)

    2003-07-01

    A Pliocene lignite seam up to 160 m thick occurs in the Velenje basin (Slovenia). The seam originated in a topogenous mire and evolved within a non-marine, transgressive setting. Differences in soluble organic matter yield and hydrocarbon content of borehole samples from the lignite are related to differences in the composition of free lipids of microbial origin and/or hydrocarbons derived from the biogeochemical degradation of plant tissue. Variations of the redox conditions within the mire are reflected by pristane/phytane ratios. The abundance of terpenoid biomarkers indicates the predominance of gymnosperms over angiosperms, which is consistent with palynomorphic spectra dominated by pollen of the Sequoia-Taxodium-Metasequoia plant community rather than by angiosperms. Evidence is also provided that the content of land plant derived biomarkers and the preservation of plant tissue is controlled by the input of resin-rich, decay-resistant conifers.

  14. The late Cretaceous Arman flora of Magadan oblast, Northeastern Russia

    Science.gov (United States)

    Herman, A. B.; Golovneva, L. B.; Shczepetov, S. V.; Grabovsky, A. A.

    2016-12-01

    The Arman flora from the volcanogenic-sedimentary beds of the Arman Formation is systematically studied using materials from the Arman River basin and the Nelkandya-Khasyn interfluve (Magadan oblast, Northeastern Russia). Seventy-three species of fossil plants belonging to 49 genera are described. They consist of liverworts, horsetails, ferns, seed ferns, cycadaleans, bennettitaleans, ginkgoaleans, czekanowskialeans, conifers, gymnosperms of uncertain systematic affinity, and angiosperms. The Arman flora shows a unique combination, with relatively ancient Early Cretaceous ferns and gymnosperms occurring alongside younger Late Cretaceous plants, primarily angiosperms. The similarity of the Arman flora to the Penzhina and Kaivayam floras of northwestern Kamchatka and the Tylpegyrgynai flora of the Pekul'nei Ridge allows the Arman flora to be dated as Turonian and Coniacian (Late Cretaceous), which is corroborated by isotopic (U-Pb and 40Ar/39Ar) age determination for the plant-bearing layers.

  15. Occurrence of naturally acetylated lignin units.

    Science.gov (United States)

    Del Río, José C; Marques, Gisela; Rencoret, Jorge; Martínez, Angel T; Gutiérrez, Ana

    2007-07-11

    This work examines the occurrence of native acetylated lignin in a large set of vascular plants, including both angiosperms and gymnosperms, by a modification of the so-called Derivatization Followed by Reductive Cleavage (DFRC) method. Acetylated lignin units were found in the milled wood lignins of all angiosperms selected for this study, including mono- and eudicotyledons, but were absent in the gymnosperms analyzed. In some plants (e.g., abaca, sisal, kenaf, or hornbeam), lignin acetylation occurred at a very high extent, exceeding 45% of the uncondensed (alkyl-aryl ether linked) syringyl lignin units. Acetylation was observed exclusively at the gamma-carbon of the lignin side chain and predominantly on syringyl units, although a predominance of acetylated guaiacyl over syringyl units was observed in some plants. In all cases, acetylation appears to occur at the monomer stage, and sinapyl and coniferyl acetates seem to behave as real lignin monomers participating in lignification.

  16. Longitudinal zonation pattern in plant roots: conflicts and solutions.

    Science.gov (United States)

    Ivanov, Victor B; Dubrovsky, Joseph G

    2013-05-01

    Despite the relative simplicity of Arabidopsis root organization, there is no general agreement regarding the terminology used to describe the longitudinal zonation pattern (LZP) of this model system. In this opinion article, we examine inconsistencies in the terminology and provide a conceptual framework for the LZP that may be applied to all angiosperms. We propose that the root apical meristem (RAM) consists of the cell-proliferation domain where cells maintain a high probability to divide and the transition domain with a low probability of cell division; in both domains cells grow at the same, relatively low, rate. Owing to stochastic termination of cell proliferation in the RAM, the border between the domains is 'fuzzy'. Molecular markers analyzed together with quantitative growth and cell analyses could help to identify developmental zones along the root and lead to a better understanding of the LZP in angiosperms.

  17. On the origin and evolutionary consequences of gene body DNA methylation.

    Science.gov (United States)

    Bewick, Adam J; Ji, Lexiang; Niederhuth, Chad E; Willing, Eva-Maria; Hofmeister, Brigitte T; Shi, Xiuling; Wang, Li; Lu, Zefu; Rohr, Nicholas A; Hartwig, Benjamin; Kiefer, Christiane; Deal, Roger B; Schmutz, Jeremy; Grimwood, Jane; Stroud, Hume; Jacobsen, Steven E; Schneeberger, Korbinian; Zhang, Xiaoyu; Schmitz, Robert J

    2016-08-01

    In plants, CG DNA methylation is prevalent in the transcribed regions of many constitutively expressed genes (gene body methylation; gbM), but the origin and function of gbM remain unknown. Here we report the discovery that Eutrema salsugineum has lost gbM from its genome, to our knowledge the first instance for an angiosperm. Of all known DNA methyltransferases, only CHROMOMETHYLASE 3 (CMT3) is missing from E. salsugineum Identification of an additional angiosperm, Conringia planisiliqua, which independently lost CMT3 and gbM, supports that CMT3 is required for the establishment of gbM. Detailed analyses of gene expression, the histone variant H2A.Z, and various histone modifications in E. salsugineum and in Arabidopsis thaliana epigenetic recombinant inbred lines found no evidence in support of any role for gbM in regulating transcription or affecting the composition and modification of chromatin over evolutionary timescales.

  18. Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns

    DEFF Research Database (Denmark)

    Leroux, Olivier; Sørensen, Iben; Marcus, Susan E.;

    2015-01-01

    plants, ferns have been largely neglected in cell wall comparative studies. Results: To explore fern cell wall diversity sets of monoclonal antibodies directed to matrix glycans of angiosperm cell walls have been used in glycan microarray and in situ analyses with 76 fern species and four species...... across the ferns and specifically associated with phloem cell walls and similarly the LM11 xylan epitope was associated with xylem cell walls. The LM5 galactan and LM6 arabinan epitopes, linked to pectic supramolecules in angiosperms, were associated with vascular structures with only limited detection...... in ground tissues. Mannan epitopes were found to be associated with the development of mechanical tissues. We provided the first evidence for the presence of MLG in leptosporangiate ferns. Conclusions: The data sets indicate that cell wall diversity in land plants is multifaceted and that matrix glycan...

  19. Physiological Effects of Smoke Exposure on Deciduous and Conifer Tree Species

    Directory of Open Access Journals (Sweden)

    W. John Calder

    2010-01-01

    Full Text Available Smoke from forest fires can persist in the environment for weeks and while there is a substantial amount of literature examining the effects of smoke exposure on seed germination, the effects of smoke on leaf function are nearly uninvestigated. The objective of this study was to compare growth and primary and secondary metabolic responses of deciduous angiosperm and evergreen conifer tree species to short smoke exposure. Twenty minutes of smoke exposure resulted in a greater than 50% reduction in photosynthetic capacity in five of the six species we examined. Impairment of photosynthesis in response to smoke was a function of reductions in stomatal conductance and biochemical limitations. In general, deciduous angiosperm species showed a greater sensitivity than evergreen conifers. While there were significant decreases in photosynthesis and stomatal conductance, smoke had no significant effect on growth or secondary defense compound production in any of the tree species examined.

  20. Gene transfer from a parasitic flowering plant to a fern.

    Science.gov (United States)

    Davis, Charles C; Anderson, William R; Wurdack, Kenneth J

    2005-11-07

    The rattlesnake fern (Botrychium virginianum (L.) Sw.) is obligately mycotrophic and widely distributed across the northern hemisphere. Three mitochondrial gene regions place this species with other ferns in Ophioglossaceae, while two regions place it as a member of the largely parasitic angiosperm order Santalales (sandalwoods and mistletoes). These discordant phylogenetic placements suggest that part of the genome in B. virginianum was acquired by horizontal gene transfer (HGT), perhaps from root-parasitic Loranthaceae. These transgenes are restricted to B. virginianum and occur across the range of the species. Molecular and life-history traits indicate that the transfer preceded the global expansion of B. virginianum, and that the latter may have happened very rapidly. This is the first report of HGT from an angiosperm to a fern, through either direct parasitism or the mediation of interconnecting fungal symbionts.

  1. Monolignol ferulate conjugates are naturally incorporated into plant lignins.

    Science.gov (United States)

    Karlen, Steven D; Zhang, Chengcheng; Peck, Matthew L; Smith, Rebecca A; Padmakshan, Dharshana; Helmich, Kate E; Free, Heather C A; Lee, Seonghee; Smith, Bronwen G; Lu, Fachuang; Sedbrook, John C; Sibout, Richard; Grabber, John H; Runge, Troy M; Mysore, Kirankumar S; Harris, Philip J; Bartley, Laura E; Ralph, John

    2016-10-01

    Angiosperms represent most of the terrestrial plants and are the primary research focus for the conversion of biomass to liquid fuels and coproducts. Lignin limits our access to fibers and represents a large fraction of the chemical energy stored in plant cell walls. Recently, the incorporation of monolignol ferulates into lignin polymers was accomplished via the engineering of an exotic transferase into commercially relevant poplar. We report that various angiosperm species might have convergently evolved to natively produce lignins that incorporate monolignol ferulate conjugates. We show that this activity may be accomplished by a BAHD feruloyl-coenzyme A monolignol transferase, OsFMT1 (AT5), in rice and its orthologs in other monocots.

  2. Ethnobotanical Study of Tehsil Kabal, Swat District, KPK, Pakistan

    Directory of Open Access Journals (Sweden)

    Imtiaz Ahmad

    2011-01-01

    Full Text Available A total of 140 plants have been reported ethnobotanically from Tehsil Kabal, Swat District. These include the 133 plants (95% of angiosperms, 3 (2.14% of gymnosperms, and 2 (1.42% each of pteridophytes and fungi. The largest family is Lamiaceae represented by 11 species followed by Rosaceae represented by 9 species. Among angiosperms 76 (55.63% were herbs, 17 (12.78% were shrubs, and 40 (30.07% were trees; 127 plants (95.48% were dicot while 6 plants (4.51% were monocot. Most of the plants were used for more than one purpose. Generally the plants were used for medicinal, fuel, timber wood, food, and fodder for cattle purposes.

  3. A Long PCR–Based Approach for DNA Enrichment Prior to Next-Generation Sequencing for Systematic Studies

    Directory of Open Access Journals (Sweden)

    Simon Uribe-Convers

    2014-01-01

    Full Text Available Premise of the study: We present an alternative approach for molecular systematic studies that combines long PCR and next-generation sequencing. Our approach can be used to generate templates from any DNA source for next-generation sequencing. Here we test our approach by amplifying complete chloroplast genomes, and we present a set of 58 potentially universal primers for angiosperms to do so. Additionally, this approach is likely to be particularly useful for nuclear and mitochondrial regions. Methods and Results: Chloroplast genomes of 30 species across angiosperms were amplified to test our approach. Amplification success varied depending on whether PCR conditions were optimized for a given taxon. To further test our approach, some amplicons were sequenced on an Illumina HiSeq 2000. Conclusions: Although here we tested this approach by sequencing plastomes, long PCR amplicons could be generated using DNA from any genome, expanding the possibilities of this approach for molecular systematic studies.

  4. Contribution of species-specific chemical signatures to soil organic matter in Kohala, HI.

    Science.gov (United States)

    Stewart, C. E.; Amatangelo, K.; Neff, J. C.

    2008-12-01

    Soil organic matter (SOM) inherits much of its chemical structure from the dominant vegetation, including phenolic (lignin-derived), aromatic, and aliphatic (cutin and wax-derived) compounds. The Hawaiian fern species Dicranopteris decomposes more slowly than the angiosperm, Cheirodendron due to high concentrations of recalcitrant C compounds. These aliphatic fern leaf waxes are well-preserved and may comprise a large portion of the recalcitrant organic matter in these soils. Our objective was to determine the chemical signature of fern and angiosperm vegetation types and trace the preservation or loss of those compounds into the soil. We collected live tissue, litter, roots, and soil (cutin and leaf waxes (alkene and alkanes structures) were evident in the soils, but clear species differences were not observed. Although ferns contain distinct lipid and wax-derived compounds, soils developed under fern do not appear to accumulate these compounds in SOM.

  5. THE BIOLOGICAL CYCLE OF SUNFLOWER BROOMRAPE

    Directory of Open Access Journals (Sweden)

    DUCA Maria

    2013-12-01

    Full Text Available Orobanchaceae is a dicot family, which consists of annual and perennial plants distributing from tropical to subarctic regions, predominately in temperate regions. Broomrape (Orobanche cumana Wallr. = Orobanche cernua Loefl. is a parasitic angiosperm that has been causing a great deal of damage to sunflower production in many countries, including Republic of Moldova. This parasitic angiosperm depends entirely on the host for its supply of water and nutrients. A thorough understanding of its biology, including detailed knowledge of the specific mechanisms of parasitism, is needed in order to develop novel control methods. Some main developmental steps are described for the root parasites: seed conditioning and germination, haustorium formation, penetration into host tissues, maturation of the parasite plant, and seed production. All these stages were studied in artificial and natural conditions.

  6. A search of Brassica SI-involved orthologs in buckwheat leads to novel buckwheat sequence identification: MLPK possibly involved in SI response

    Directory of Open Access Journals (Sweden)

    Banović Bojana

    2010-01-01

    Full Text Available Self-incompatibility (SI systems, gamethophytic (GSI and sporophytic (SSI, prevent self-pollination in angiosperms. Buckwheat displays heteromorphic SSI, with pollination allowed only between different flower morphs - thrum and pin. The physiology of thrum and pin morph SI responses are entirely different, resembling homomorphic Brassica SSI and Prunus GSI responses, respectively. Considering angiosperm species may share ancestral SI genes, we examined the presence of Brassica and Prunus SI-involved gene orthologs in the buckwheat genome. We did not find evidence of SRK, SLG and SP11 Brassica or S-RNase and SFB Prunus orthologs in the buckwheat genome, but we found a Brassica MLPK ortholog. We report the partial nucleotide sequence of the buckwheat MLPK and discuss the possible implications of this finding.

  7. Monolignol ferulate conjugates are naturally incorporated into plant lignins

    Science.gov (United States)

    Karlen, Steven D.; Zhang, Chengcheng; Peck, Matthew L.; Smith, Rebecca A.; Padmakshan, Dharshana; Helmich, Kate E.; Free, Heather C. A.; Lee, Seonghee; Smith, Bronwen G.; Lu, Fachuang; Sedbrook, John C.; Sibout, Richard; Grabber, John H.; Runge, Troy M.; Mysore, Kirankumar S.; Harris, Philip J.; Bartley, Laura E.; Ralph, John

    2016-01-01

    Angiosperms represent most of the terrestrial plants and are the primary research focus for the conversion of biomass to liquid fuels and coproducts. Lignin limits our access to fibers and represents a large fraction of the chemical energy stored in plant cell walls. Recently, the incorporation of monolignol ferulates into lignin polymers was accomplished via the engineering of an exotic transferase into commercially relevant poplar. We report that various angiosperm species might have convergently evolved to natively produce lignins that incorporate monolignol ferulate conjugates. We show that this activity may be accomplished by a BAHD feruloyl–coenzyme A monolignol transferase, OsFMT1 (AT5), in rice and its orthologs in other monocots. PMID:27757415

  8. Vestured pits: a diagnostic character in the secondary xylem of Myrtales

    OpenAIRE

    Jansen, S; Pletsers, A.; Rabaey, D.; Lens, F.

    2008-01-01

    Vestures are small projections from the secondary cell wall associated with tracheary elements of the secondary xylem. They are usually associated with bordered pits and characterize various angiosperm families, including important timber species such as Dipterocarpaceae and Eucalyptus trees. The micromorphology and distribution of vestures were studied in 22 species representing all families within the order Myrtales based on light and scanning electron microscopy. Vestures are consistently ...

  9. Traditional Medicinal Flora of the District Buxar (Bihar, India)

    OpenAIRE

    Ritesh Singh; Manavendra Kumar Singh; Arvind Singh

    2013-01-01

    Buxar district (Bihar,India) is one of the less floristically studied regions of central Gangetic plain. The district lacks dense forests and its medicinal flora exclusively consists of dicot angiosperms. A total of 84 species belonging to 27 families were reported in this study. Majority of the reported plants were herbs with highest contribution from family Fabaceae (12). The present paper deals with the traditional uses of these plants. Plants and their part thereof were used to treat dise...

  10. SURVEY ON MEDICINAL SPICES OF THE NILGIRIS

    OpenAIRE

    Viswanathan, K.

    1995-01-01

    A survey is made on the medicinal spices of the Nilgiris. Totally, there are 25 species available in various parts of the Nilgiris and they belong to 16 different families of angiosperms. Gudalur, Kothagiri, Kookalthorai, Aruvankadu, Coonoor, Burliar, Masinagudi and Ootacamund are some of the important places in the Nilgiris have a variety of medicinal properties that are put to use in homoeopathic and ayurvedic preparations.

  11. Survey on medicinal spices of the nilgiris.

    Science.gov (United States)

    Viswanathan, K

    1995-04-01

    A survey is made on the medicinal spices of the Nilgiris. Totally, there are 25 species available in various parts of the Nilgiris and they belong to 16 different families of angiosperms. Gudalur, Kothagiri, Kookalthorai, Aruvankadu, Coonoor, Burliar, Masinagudi and Ootacamund are some of the important places in the Nilgiris have a variety of medicinal properties that are put to use in homoeopathic and ayurvedic preparations.

  12. Homogalacturonan deesterification during pollen–ovule interaction in Larix decidua Mill.: an immunocytochemical study

    OpenAIRE

    Rafińska, Katarzyna; Świdziński, Michał; Bednarska-Kozakiewicz, Elżbieta

    2014-01-01

    Studies on angiosperm plants have shown that homogalacturonan present in the extracellular matrix of pistils plays an important role in the interaction with the male gametophyte. However, in gymnosperms, knowledge on the participation of HG in the pollen–ovule interaction is limited, and only a few studies on male gametophytes have been reported. Thus, the aim of this study was to determine the distribution of HG in male gametophytes and ovules during their interaction in Larix decidua Mill. ...

  13. Phylogenomics reveals surprising sets of essential and dispensable clades of MIKC(c)-group MADS-box genes in flowering plants.

    Science.gov (United States)

    Gramzow, Lydia; Theißen, Günter

    2015-06-01

    MIKC(C)-group MADS-box genes are involved in the control of many developmental processes in flowering plants. All of these genes are members of one of 17 clades that had already been established in the most recent common ancestor (MRCA) of extant angiosperms. These clades trace back to 11 seed plant-specific superclades that were present in the MRCA of extant seed plants. Due to their important role in plant development and evolution, the origin of the clades of MIKC(C)-group genes has been studied in great detail. In contrast, whether any of these ancestral clades has ever been lost completely in any species has not been investigated so far. Here, we determined the presence of these clades by BLAST, PSI-BLAST, and Hidden Markov Model searches and by phylogenetic methods in the whole genomes of 27 flowering plants. Our data suggest that there are only three superclades of which all members have been lost in at least one of the investigated flowering plant species, and only few additional losses of angiosperm-specific MIKC(C)-group gene clades could be identified. Remarkably, for one seed plant superclade (TM8-like genes) and one angiosperm clade (FLC-like genes), multiple losses were identified, suggesting that the function of these genes is dispensable or that gene loss might have even been adaptive. The clades of MIKC(C)-group genes that have never been wiped out in any of the investigated species comprises, in addition to the expected floral organ identity genes, also TM3-like (SOC1-like), StMADS11-like (SVP-like), AGL17-like and GGM13-like (Bsister) genes, suggesting that these genes are more important for angiosperm development and evolution than has previously been appreciated.

  14. Reference: 800 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available he accumulation of sinapic acid-derived metabolites, including the guaiacyl-syringyl lignin typical of angiosperms. Earlier re...tunia hybrida. In contrast, it shares much less homology with cinnamate-4-hydroxylase, a P450 that catalyzes... the hydroxylation of cinnamic acid three steps earlier in the general phenylprop...anoid pathway. Since the highest degree of identity between F5H and previously sequenced P450s is only 34%,

  15. Loss of matK RNA editing in seed plant chloroplasts

    Directory of Open Access Journals (Sweden)

    Maier Uwe G

    2009-08-01

    Full Text Available Abstract Background RNA editing in chloroplasts of angiosperms proceeds by C-to-U conversions at specific sites. Nuclear-encoded factors are required for the recognition of cis-elements located immediately upstream of editing sites. The ensemble of editing sites in a chloroplast genome differs widely between species, and editing sites are thought to evolve rapidly. However, large-scale analyses of the evolution of individual editing sites have not yet been undertaken. Results Here, we analyzed the evolution of two chloroplast editing sites, matK-2 and matK-3, for which DNA sequences from thousands of angiosperm species are available. Both sites are found in most major taxa, including deep-branching families such as the nymphaeaceae. However, 36 isolated taxa scattered across the entire tree lack a C at one of the two matK editing sites. Tests of several exemplary species from this in silico analysis of matK processing unexpectedly revealed that one of the two sites remain unedited in almost half of all species examined. A comparison of sequences between editors and non-editors showed that specific nucleotides co-evolve with the C at the matK editing sites, suggesting that these nucleotides are critical for editing-site recognition. Conclusion (i Both matK editing sites were present in the common ancestor of all angiosperms and have been independently lost multiple times during angiosperm evolution. (ii The editing activities corresponding to matK-2 and matK-3 are unstable. (iii A small number of third-codon positions in the vicinity of editing sites are selectively constrained independent of the presence of the editing site, most likely because of interacting RNA-binding proteins.

  16. Floral associations of cyclocephaline scarab beetles.

    Science.gov (United States)

    Moore, Matthew Robert; Jameson, Mary Liz

    2013-01-01

    The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: (1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, (2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and (3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses

  17. Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest

    OpenAIRE

    Wing, Scott L.; Herrera, Fabiany; Jaramillo, Carlos A.; Gómez-Navarro, Carolina; Wilf, Peter; Labandeira, Conrad C.

    2009-01-01

    Neotropical rainforests have a very poor fossil record, making hypotheses concerning their origins difficult to evaluate. Nevertheless, some of their most important characteristics can be preserved in the fossil record: high plant diversity, dominance by a distinctive combination of angiosperm families, a preponderance of plant species with large, smooth-margined leaves, and evidence for a high diversity of herbivorous insects. Here, we report on an ≈58-my-old flora from the Cerrejón Formatio...

  18. Dust seed production and dispersal in Swedish Pyroleae species

    OpenAIRE

    Johansson, Veronika A.; Müller, Gregor; Eriksson, Ove

    2014-01-01

    Dust seeds are the smallest seeds in angiosperms weighing just about a few micrograms. These seeds are characteristic of most orchids, and several studies have been performed on seed features, fecundity and dispersal of orchid dust seeds. In this study we examine seed features, seed production and seed dispersal in another plant group with dust seeds, the Pyroleae Monotropoideae, Ericaceae), focusing on six species: Pyrola chlorantha, P. minor, P. rotundifolia, Chimaphila umbellata, Moneses u...

  19. Light conditions alter accumulation of long chain polyprenols in leaves of trees and shrubs throughout the vegetation season.

    Science.gov (United States)

    Bajda, Agnieszka; Chojnacki, Tadeusz; Hertel, Józefina; Swiezewska, Ewa; Wójcik, Jacek; Kaczkowska, Alicja; Marczewski, Andrzej; Bojarczuk, Tomasz; Karolewski, Piotr; Oleksyn, Jacek

    2005-01-01

    In many plants belonging to angiosperms and gymnosperms the accumulation in leaves of long chain polyprenols and polyprenyl esters during growth in natural habitats depends on the light intensity. The amount of polyprenols in leaves is also positively correlated with the thickness of the leaf blade (SLA, specific leaf area). The polyprenol content of leaves shows seasonal changes with a maximum in autumn and a minimum in early summer with the difference between poorly and well illuminated plants persisting throughout the vegetation season.

  20. Pre-adaptations and the evolution of pollination by sexual deception: Cope's rule of specialization revisited

    OpenAIRE

    2012-01-01

    Pollination by sexual deception is arguably one of the most unusual liaisons linking plants and insects, and perhaps the most illustrative example of extreme floral specialization in angiosperms. While considerable progress has been made in understanding the floral traits involved in sexual deception, less is known about how this remarkable mimicry system might have arisen, the role of pre-adaptations in promoting its evolution and its extent as a pollination mechanism outside the few groups ...

  1. The evolution of floral deception in Epipactis veratrifolia (Orchidaceae): from indirect defense to pollination

    OpenAIRE

    2014-01-01

    Background It is estimated that floral deception has evolved in at least 7500 species of angiosperms, of which two thirds are orchids. Epipactis veratrifolia (Orchidaceae) is a model system of aphid mimicry as aphidophagous hoverflies lay eggs on false brood sites on their flowers. To understand the evolutionary ecology of floral deception, we investigated the pollination biology of E. veratrifolia across 10 populations in the Eastern Himalayas. We reconstructed the phylogeny of Epipactis and...

  2. Deceptive pollination of orchids

    OpenAIRE

    2012-01-01

    Mutualism, or a mutually beneficial interaction between two organisms, are ubiquitous in ecological systems. However, some “empty flowers”, which offer pollinators no any kinds of rewards, design different strategies to attract pollinators without providing rewards to the pollinators. These pollination mechanisms are called deceptive pollination. The family Orchidaceae, representing one of the largest groups in angiosperms, is distinguished by high floral diversity and intricate adaptations t...

  3. Bryophytes: Hoard of remedies, an ethno-medicinal review

    OpenAIRE

    Chandra, Satish; Chandra, Dinesh; Barh, Anupam; Pankaj,; Pandey, Raj Kumar; Sharma, Ishwar Prakash

    2016-01-01

    Bryophytes are the second largest group of land plants after angiosperms. There is very less knowledge available about medicinal properties of these plants. Bryophytes are popular remedy among the tribal people of different parts of the world. Tribal people use these plants to cure various ailments in their daily lives. Bryophytes are used to cure hepatic disorders, skin diseases, cardiovascular diseases, used as antipyretic, antimicrobial, wound healing and many more other ailments by differ...

  4. Aquilapollenites 花粉グループと Normapolles 花粉グループ-その分布と層位学的意義-

    OpenAIRE

    高橋, 清

    1990-01-01

    Two large angiosperm pollen groups, Aquilapollenites/Triprojectacites and Normapolles, are found in the late Cretaceous and early Palaeogene. Pollen grains referable to the Normapolles group, which is composed of more than 100 genera, first appeared during the Cenomanian. After their relatively leisured evolution during the Cenomanian, they diversified rapidly and attained to the maximal prosperity during the Santonian to Maastrichtian, but by the end of the Eocene they were virtually extinct...

  5. A New Symmetrodont Mammal with Fur Impressions from the Mesozoic of China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Western Liaoning of northeastern China is world-renowned for the Mesozoic Jehol biota, especially for yielding many feathered dinosaurs, primitive birds, mammals and fossil angiosperm. This paper describes a complete specimen of a symmetrodont mammal with well-preserved hairs and soft tissue from the basal part of the Yixian Formation in the Sihetun area, Beipiao, western Liaoning. It is significant for understanding the morphology, osteology, phylogeny and life habits of Mesozoic symmetrodont mammals.

  6. Nuevo yacimiento de flora Albense en la vertiente sur de la Sierra de Guadarrama. Soto del Real (Madrid)

    OpenAIRE

    1986-01-01

    A new superior Albian - Cenomanian fossil flore locality are described for the first time on. the Sierra Guadarrama (Madrid). Between all the numerous specimens there found. stand out, due to their abundancy, the ones belonging to various species of Cycadales and Coniferals, accompanied by the Filicales, Lycopodiales and the Angiosperms Monocotiledonae and Dicotilodenae of the Policarpicales and Rosales orders. Two species of the Filicales orderGleichenites giesekianus (Hee...

  7. Chemical structural studies of natural lignin by dipolar dephasing solid-state 13C nuclear magnetic resonance

    Science.gov (United States)

    Hatcher, P.G.

    1987-01-01

    Two natural lignins, one from a gymnosperm wood the other from angiosperm wood, were examined by conventional solid-state and dipolar dephasing 13C nuclear magnetic resonance (NMR) techniques. The results obtained from both techniques show that the structure of natural lignins is consistent with models of softwood and hardwood lignin. The dipolar dephasing NMR data provide a measure of the degree of substitution on aromatic rings which is consistent with the models. ?? 1987.

  8. Phylogenetic diversification of glycogen synthase kinase 3/SHAGGY-like kinase genes in plants

    Directory of Open Access Journals (Sweden)

    Soltis Pamela S

    2006-02-01

    Full Text Available Abstract Background The glycogen synthase kinase 3 (GSK3/SHAGGY-like kinases (GSKs are non-receptor serine/threonine protein kinases that are involved in a variety of biological processes. In contrast to the two members of the GSK3 family in mammals, plants appear to have a much larger set of divergent GSK genes. Plant GSKs are encoded by a multigene family; analysis of the Arabidopsis genome revealed the existence of 10 GSK genes that fall into four major groups. Here we characterized the structure of Arabidopsis and rice GSK genes and conducted the first broad phylogenetic analysis of the plant GSK gene family, covering a taxonomically diverse array of algal and land plant sequences. Results We found that the structure of GSK genes is generally conserved in Arabidopsis and rice, although we documented examples of exon expansion and intron loss. Our phylogenetic analyses of 139 sequences revealed four major clades of GSK genes that correspond to the four subgroups initially recognized in Arabidopsis. ESTs from basal angiosperms were represented in all four major clades; GSK homologs from the basal angiosperm Persea americana (avocado appeared in all four clades. Gymnosperm sequences occurred in clades I, III, and IV, and a sequence of the red alga Porphyra was sister to all green plant sequences. Conclusion Our results indicate that (1 the plant-specific GSK gene lineage was established early in the history of green plants, (2 plant GSKs began to diversify prior to the origin of extant seed plants, (3 three of the four major clades of GSKs present in Arabidopsis and rice were established early in the evolutionary history of extant seed plants, and (4 diversification into four major clades (as initially reported in Arabidopsis occurred either just prior to the origin of the angiosperms or very early in angiosperm history.

  9. Climatic gradient and δ13C values of plants: A case study from the Himalaya

    Science.gov (United States)

    Hirave, Pranav; Sanyal, Prasanta

    2016-04-01

    Change in atmospheric conditions is believed to be responsible for the evolution of plants. In an evolving atmosphere, gymnosperms appeared during the Carboniferous Period and appearance and diversification of angiosperms occurred during the Cretaceous time. In a symbiotic environment, difference in the response of these plant types to the climatic factors can be studied for parallel correlation. To monitor plants response with the changing climatic factors, variations in plants δ13Cleaf value can be used as one of the indicators. To investigate the variation in δ13Cleaf values in response to water availability, air temperature and a change in pCO2 pressure with elevation, five gymnosperm (Cedrus deodara, Pinus wallichiana, Pinus roxburghii, Pinus gerardiana and Abies pindrow) and two angiosperm (Betula utilis and Eucalyptus globulus) species were collected along an altitude gradient in the Himalayan mountain ranges. The studied sites cover ca. 3.5 km elevation transect. The δ13Cleaf value for Cedrus Deodara changes with altitude and mean annual precipitation (MAP). A sensitivity of 2.9 ‰ km-1 and 0.3 ‰ /100 mm was calculated for the altitude range of 1.5 km and precipitation range of 700 mm respectively. Although Pinus wallichiana do not show a correlation between elevation and δ13Cleaf value, a negative correlation between MAP and δ13Cleaf value with an average sensitivity of 0.2 ‰ /100 mm for the precipitation range of 900 mm is obtained. Comparison of results acquired from both gymnosperm and angiosperm species shows that gymnosperms are comparatively more sensitive to the climatic factors than angiosperms growing in a similar environmental setting.

  10. Gene transfer from a parasitic flowering plant to a fern

    OpenAIRE

    Davis, Charles C.; Anderson, William R.; Wurdack, Kenneth J

    2005-01-01

    The rattlesnake fern (Botrychium virginianum (L.) Sw.) is obligately mycotrophic and widely distributed across the northern hemisphere. Three mitochondrial gene regions place this species with other ferns in Ophioglossaceae, while two regions place it as a member of the largely parasitic angiosperm order Santalales (sandalwoods and mistletoes). These discordant phylogenetic placements suggest that part of the genome in B. virginianum was acquired by horizontal gene transfer (HGT), perhaps fro...

  11. Study of Thiosemicarbazone Derivative of Essential Fatty Acid

    OpenAIRE

    2014-01-01

    Essential fatty acids results in numerous health benefits. Only two fatty acids are known to be essential for human alpha-linolenic acid (an omega-3 fatty acid) and linoleic acid (an omega-6 fatty acid).The importance of omega-3 fatty acids for physical well-being has been recognised for several decades . Omega-3 fatty acids have anti-inflammatory, antithrombotic, antiarrhythmic and hypolipidaemic effects. Cannabis sativa (Hemp) is an angiosperm belonging to the cannabaceae family and cannabi...

  12. Evolution of the bHLH genes involved in stomatal development: implications for the expansion of developmental complexity of stomata in land plants.

    Directory of Open Access Journals (Sweden)

    Jin-Hua Ran

    Full Text Available Stomata play significant roles in plant evolution. A trio of closely related basic Helix-Loop-Helix (bHLH subgroup Ia genes, SPCH, MUTE and FAMA, mediate sequential steps of stomatal development, and their functions may be conserved in land plants. However, the evolutionary history of the putative SPCH/MUTE/FAMA genes is still greatly controversial, especially the phylogenetic positions of the bHLH Ia members from basal land plants. To better understand the evolutionary pattern and functional diversity of the bHLH genes involved in stomatal development, we made a comprehensive evolutionary analysis of the homologous genes from 54 species representing the major lineages of green plants. The phylogenetic analysis indicated: (1 All bHLH Ia genes from the two basal land plants Physcomitrella and Selaginella were closely related to the FAMA genes of seed plants; and (2 the gymnosperm 'SPCH' genes were sister to a clade comprising the angiosperm SPCH and MUTE genes, while the FAMA genes of gymnosperms and angiosperms had a sister relationship. The revealed phylogenetic relationships are also supported by the distribution of gene structures and previous functional studies. Therefore, we deduce that the function of FAMA might be ancestral in the bHLH Ia subgroup. In addition, the gymnosperm "SPCH" genes may represent an ancestral state and have a dual function of SPCH and MUTE, two genes that could have originated from a duplication event in the common ancestor of angiosperms. Moreover, in angiosperms, SPCHs have experienced more duplications and harbor more copies than MUTEs and FAMAs, which, together with variation of the stomatal development in the entry division, implies that SPCH might have contributed greatly to the diversity of stomatal development. Based on the above, we proposed a model for the correlation between the evolution of stomatal development and the genes involved in this developmental process in land plants.

  13. EFFECT OF POLYPLOIDIZATION ON THE TRASCIPTOME AND METABOLOME IN SINTETHIC POLYPLOIDS OF SOLANUM spp

    OpenAIRE

    Fasano, Carlo

    2013-01-01

    Polyploidy is very common within angiosperms. Extensive studies are available only in synthetic allopolyploids. By contrast, less is known about the consequences of autopolyploidization. Our research aimed to assess the occurrence and extent of transcriptional and metabolomic changes occurring after oryzaline-induced polyploidization of Solanum commersonii and S. bulbocastanum, two diploid (2n=2×=24) potato species widely used in breeding programmes. Whole-genome expression profiling of diplo...

  14. Characterization of a Crabs Claw Gene in Basal Eudicot Species Epimedium sagittatum (Berberidaceae)

    OpenAIRE

    Wei Sun; Wenjun Huang; Zhineng Li; Haiyan Lv; Hongwen Huang; Ying Wang

    2013-01-01

    The Crabs Claw (CRC) YABBY gene is required for regulating carpel development in angiosperms and has played an important role in nectary evolution during core eudicot speciation. The function or expression of CRC-like genes has been explored in two basal eudicots, Eschscholzia californica and Aquilegia formosa. To further investigate the function of CRC orthologous genes related to evolution of carpel and nectary development in basal eudicots, a CRC ortholog, EsCRC, was isolated and character...

  15. Influence of arbuscular mycorrhizal fungi and the expression of K+/Cs+ transporters on the accumulation of caesium by plants

    OpenAIRE

    Wiesel, Lea

    2011-01-01

    Radiocaesium (134Cs, 137Cs) is of environmental concern because of its incorporation into the food chain and prolonged emission of harmful radiation. Plants take up caesium via cation transporters which cannot discriminate between radioactive and stable caesium (133Cs). Around 80% of angiosperms live in symbiosis with arbuscular mycorrhizal (AM) fungi that deliver mineral nutrients to their hosts. Contrasting effects of AM fungi on caesium accumulation by plants have been reported. The ultima...

  16. Asymmetric zygote division: A mystery starting point of embryogenesis.

    Science.gov (United States)

    Zhao, Jing; Sun, Meng-Xiang

    2016-10-02

    In angiosperm, asymmetric zygote division is critical for embryogenesis. The molecular mechanism underlying this process has gained a great attention recently. Some players involve in the control of both accurate position and correct orientation of zygote division plane have been found, which provide useful clues for the extensive investigations. It is getting clear that both internal and external factors are involved in this complex regulatory mechanism and the asymmetric zygote division seems with great impact in cell fate determination and embryo pattern formation.

  17. Recent advances in understanding of meiosis initiation and the apomictic pathway in plants

    OpenAIRE

    Chung-Ju Rachel Wang; Ching-Chih eTseng

    2014-01-01

    Meiosis, a specialized cell division to produce haploid cells, marks the transition from a sporophytic to a gametophytic generation in the life cycle of plants. In angiosperms, meiosis takes place in sporogenous cells that develop de novo from somatic cells in anthers or ovules. A successful transition from the mitotic cycle to the meiotic program in sporogenous cells is crucial for sexual reproduction. By contrast, when meiosis is bypassed or a mitosis-like division occurs to produce unreduc...

  18. Analysis of Acorus calamus chloroplast genome and its phylogenetic implications.

    Science.gov (United States)

    Goremykin, Vadim V; Holland, Barbara; Hirsch-Ernst, Karen I; Hellwig, Frank H

    2005-09-01

    Determining the phylogenetic relationships among the major lines of angiosperms is a long-standing problem, yet the uncertainty as to the phylogenetic affinity of these lines persists. While a number of studies have suggested that the ANITA (Amborella-Nymphaeales-Illiciales-Trimeniales-Aristolochiales) grade is basal within angiosperms, studies of complete chloroplast genome sequences also suggested an alternative tree, wherein the line leading to the grasses branches first among the angiosperms. To improve taxon sampling in the existing chloroplast genome data, we sequenced the chloroplast genome of the monocot Acorus calamus. We generated a concatenated alignment (89,436 positions for 15 taxa), encompassing almost all sequences usable for phylogeny reconstruction within spermatophytes. The data still contain support for both the ANITA-basal and grasses-basal hypotheses. Using simulations we can show that were the ANITA-basal hypothesis true, parsimony (and distance-based methods with many models) would be expected to fail to recover it. The self-evident explanation for this failure appears to be a long-branch attraction (LBA) between the clade of grasses and the out-group. However, this LBA cannot explain the discrepancies observed between tree topology recovered using the maximum likelihood (ML) method and the topologies recovered using the parsimony and distance-based methods when grasses are deleted. Furthermore, the fact that neither maximum parsimony nor distance methods consistently recover the ML tree, when according to the simulations they would be expected to, when the out-group (Pinus) is deleted, suggests that either the generating tree is not correct or the best symmetric model is misspecified (or both). We demonstrate that the tree recovered under ML is extremely sensitive to model specification and that the best symmetric model is misspecified. Hence, we remain agnostic regarding phylogenetic relationships among basal angiosperm lineages.

  19. Crown Group Lejeuneaceae and Pleurocarpous Mosses in Early Eocene (Ypresian) Indian Amber

    OpenAIRE

    2016-01-01

    Cambay amber originates from the warmest period of the Eocene, which is also well known for the appearance of early angiosperm-dominated megathermal forests. The humid climate of these forests may have triggered the evolution of epiphytic lineages of bryophytes; however, early Eocene fossils of bryophytes are rare. Here, we present evidence for lejeuneoid liverworts and pleurocarpous mosses in Cambay amber. The preserved morphology of the moss fossil is inconclusive for a detailed taxonomic t...

  20. Charcoal anatomy of forest species

    OpenAIRE

    Graciela Inés Bolzon de Muñiz; Silvana Nisgoski; Felipe Zatt Shardosin; Ramiro Faria França

    2012-01-01

    Vegetal charcoal retains the anatomical structure of the wood and may permit its botanical identification, which depends on species characteristics, the charcoal fragments size and preservation state. Anatomical characterization of ten forest species charcoal was done envisaging the identification and control of illegal charcoal. Differences between gymnosperms and angiosperms are evident in carbonized wood. Vessel diameter was statistically different between wood and charcoal in Vatairea gui...

  1. The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites.

    Science.gov (United States)

    Chaw, Shu-Miaw; Shih, Arthur Chun-Chieh; Wang, Daryi; Wu, Yu-Wei; Liu, Shu-Mei; Chou, The-Yuan

    2008-03-01

    The mtDNA of Cycas taitungensis is a circular molecule of 414,903 bp, making it 2- to 6-fold larger than the known mtDNAs of charophytes and bryophytes, but similar to the average of 7 elucidated angiosperm mtDNAs. It is characterized by abundant RNA editing sites (1,084), more than twice the number found in the angiosperm mtDNAs. The A + T content of Cycas mtDNA is 53.1%, the lowest among known land plants. About 5% of the Cycas mtDNA is composed of a novel family of mobile elements, which we designated as "Bpu sequences." They share a consensus sequence of 36 bp with 2 terminal direct repeats (AAGG) and a recognition site for the Bpu 10I restriction endonuclease (CCTGAAGC). Comparison of the Cycas mtDNA with other plant mtDNAs revealed many new insights into the biology and evolution of land plant mtDNAs. For example, the noncoding sequences in mtDNAs have drastically expanded as land plants have evolved, with abrupt increases appearing in the bryophytes, and then in the seed plants. As a result, the genomic organizations of seed plant mtDNAs are much less compact than in other plants. Also, the Cycas mtDNA appears to have been exempted from the frequent gene loss observed in angiosperm mtDNAs. Similar to the angiosperms, the 3 Cycas genes nad1, nad2, and nad5 are disrupted by 5 group II intron squences, which have brought the genes into trans-splicing arrangements. The evolutionary origin and invasion/duplication mechanism of the Bpu sequences in Cycas mtDNA are hypothesized and discussed.

  2. Growing knowledge: an overview of Seed Plant diversity in Brazil

    OpenAIRE

    Zappi, Daniela C.; Filardi,Fabiana L. Ranzato; Leitman,Paula; Souza, Vinícius C.; Bruno M. T. Walter; José R. Pirani; Morim,Marli P.; de Queiroz, Luciano P.; Cavalcanti,Taciana B.; Mansano, Vidal F.; Forzza,Rafaela C.; Abreu,Maria C.; Acevedo-Rodríguez, Pedro; Agra,Maria de F.; Almeida Jr.,Eduardo B.

    2016-01-01

    An updated inventory of Brazilian seed plants is presented and offers important insights into the country’s biodiversity. This work started in 2010, with the publication of the Plants and Fungi Catalogue, and has been updated since by more than 430 specialists working online. Brazil is home to 32,086 native Angiosperms and 23 native Gymnosperms, showing an increase of 3% in its species richness in relation to 2010. The Amazon Rainforest is the richest Brazilian biome for Gymnosperms, while th...

  3. Tension wood and opposite wood in 21 tropical rain forest species. 1. Occurence and efficiency of G-layer

    OpenAIRE

    Clair, Bruno; Ruelle, Julien; Beauchêne, Jacques; Prévost, Marie-Françoise; Fournier, Meriem

    2006-01-01

    Wood samples were taken from the upper and lower sides of 21 naturally tilted trees from 18 families of angiosperms in the tropical rainforest in French Guyana. The measurement of growth stresses ensured that the two samples were taken from wood tissues in a different mechanical state: highly tensile stressed wood on the upper side, called tension wood and lower tensile stressed wood on the lower side, called opposite wood. Eight species had tension wood fibres with a distinct gelatinous laye...

  4. STATUS TAKSONOMI, DISTRIBUSI DAN KATEGORI STATUS KONSERVASI MAGNOLIACEAE DI INDONESIA

    Directory of Open Access Journals (Sweden)

    Andes Hamuraby Rozak

    2012-07-01

    Full Text Available The Family of Magnoliaceae is one of the most primitive taxa in the world.  Knowledge of this family is essential for studies on the origin, evolution and systematics of Angiosperms.  There are 223 species belongs to this family in the world and 25 of them are found in Indonesia. This paper explains taxonomy, distribution, and conservation status of the family Magnoliaceae in Indonesia.

  5. Genome sequence and analysis of the tuber crop potato

    DEFF Research Database (Denmark)

    Xu, X.; Pan, S.; Cheng, S.;

    2011-01-01

    and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade...... contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop....

  6. A functional phylogenomic view of the seed plants.

    Science.gov (United States)

    Lee, Ernest K; Cibrian-Jaramillo, Angelica; Kolokotronis, Sergios-Orestis; Katari, Manpreet S; Stamatakis, Alexandros; Ott, Michael; Chiu, Joanna C; Little, Damon P; Stevenson, Dennis Wm; McCombie, W Richard; Martienssen, Robert A; Coruzzi, Gloria; Desalle, Rob

    2011-12-01

    A novel result of the current research is the development and implementation of a unique functional phylogenomic approach that explores the genomic origins of seed plant diversification. We first use 22,833 sets of orthologs from the nuclear genomes of 101 genera across land plants to reconstruct their phylogenetic relationships. One of the more salient results is the resolution of some enigmatic relationships in seed plant phylogeny, such as the placement of Gnetales as sister to the rest of the gymnosperms. In using this novel phylogenomic approach, we were also able to identify overrepresented functional gene ontology categories in genes that provide positive branch support for major nodes prompting new hypotheses for genes associated with the diversification of angiosperms. For example, RNA interference (RNAi) has played a significant role in the divergence of monocots from other angiosperms, which has experimental support in Arabidopsis and rice. This analysis also implied that the second largest subunit of RNA polymerase IV and V (NRPD2) played a prominent role in the divergence of gymnosperms. This hypothesis is supported by the lack of 24nt siRNA in conifers, the maternal control of small RNA in the seeds of flowering plants, and the emergence of double fertilization in angiosperms. Our approach takes advantage of genomic data to define orthologs, reconstruct relationships, and narrow down candidate genes involved in plant evolution within a phylogenomic view of species' diversification.

  7. Symplasmic transport and phloem loading in gymnosperm leaves.

    Science.gov (United States)

    Liesche, Johannes; Martens, Helle Juel; Schulz, Alexander

    2011-01-01

    Despite more than 130 years of research, phloem loading is far from being understood in gymnosperms. In part this is due to the special architecture of their leaves. They differ from angiosperm leaves among others by having a transfusion tissue between bundle sheath and the axial vascular elements. This article reviews the somewhat inaccessible and/or neglected literature and identifies the key points for pre-phloem transport and loading of photoassimilates. The pre-phloem pathway of assimilates is structurally characterized by a high number of plasmodesmata between all cell types starting in the mesophyll and continuing via bundle sheath, transfusion parenchyma, Strasburger cells up to the sieve elements. Occurrence of median cavities and branching indicates that primary plasmodesmata get secondarily modified and multiplied during expansion growth. Only functional tests can elucidate whether this symplasmic pathway is indeed continuous for assimilates, and if phloem loading in gymnosperms is comparable with the symplasmic loading mode in many angiosperm trees. In contrast to angiosperms, the bundle sheath has properties of an endodermis and is equipped with Casparian strips or other wall modifications that form a domain border for any apoplasmic transport. It constitutes a key point of control for nutrient transport, where the opposing flow of mineral nutrients and photoassimilates has to be accommodated in each single cell, bringing to mind the principle of a revolving door. The review lists a number of experiments needed to elucidate the mode of phloem loading in gymnosperms.

  8. Long-Proboscid Flies as Pollinators of Cretaceous Gymnosperms.

    Science.gov (United States)

    Peñalver, Enrique; Arillo, Antonio; Pérez-de la Fuente, Ricardo; Riccio, Mark L; Delclòs, Xavier; Barrón, Eduardo; Grimaldi, David A

    2015-07-20

    The great evolutionary success of angiosperms has traditionally been explained, in part, by the partnership of these plants with insect pollinators. The main approach to understanding the origins of this pervasive relationship has been study of the pollinators of living cycads, gnetaleans, and basal angiosperms. Among the most morphologically specialized living pollinators are diverse, long-proboscid flies. Early such flies include the brachyceran family Zhangsolvidae, previously known only as compression fossils from the Early Cretaceous of China and Brazil. It belongs to the infraorder Stratiomyomorpha, a group that includes the flower-visiting families Xylomyidae and Stratiomyidae. New zhangsolvid specimens in amber from Spain (ca. 105 mega-annum [Ma]) and Myanmar (100 Ma) reveal a detailed proboscis structure adapted to nectivory. Pollen clumped on a specimen from Spain is Exesipollenites, attributed to a Mesozoic gymnosperm, most likely the Bennettitales. Late Mesozoic scorpionflies with a long proboscis have been proposed as specialized pollinators of various extinct gymnosperms, but pollen has never been observed on or in their bodies. The new discovery is a very rare co-occurrence of pollen with its insect vector and provides substantiating evidence that other long-proboscid Mesozoic insects were gymnosperm pollinators. Evidence is thus now gathering that visitors and probable pollinators of early anthophytes, or seed plants, involved some insects with highly specialized morphological adaptations, which has consequences for interpreting the reproductive modes of Mesozoic gymnosperms and the significance of insect pollination in angiosperm success.

  9. Defining the limits of flowers: the challenge of distinguishing between the evolutionary products of simple versus compound strobili.

    Science.gov (United States)

    Rudall, Paula J; Bateman, Richard M

    2010-02-12

    Recent phylogenetic reconstructions suggest that axially condensed flower-like structures evolved iteratively in seed plants from either simple or compound strobili. The simple-strobilus model of flower evolution, widely applied to the angiosperm flower, interprets the inflorescence as a compound strobilus. The conifer cone and the gnetalean 'flower' are commonly interpreted as having evolved from a compound strobilus by extreme condensation and (at least in the case of male conifer cones) elimination of some structures present in the presumed ancestral compound strobilus. These two hypotheses have profoundly different implications for reconstructing the evolution of developmental genetic mechanisms in seed plants. If different flower-like structures evolved independently, there should intuitively be little commonality of patterning genes. However, reproductive units of some early-divergent angiosperms, including the extant genus Trithuria (Hydatellaceae) and the extinct genus Archaefructus (Archaefructaceae), apparently combine features considered typical of flowers and inflorescences. We re-evaluate several disparate strands of comparative data to explore whether flower-like structures could have arisen by co-option of flower-expressed patterning genes into independently evolved condensed inflorescences, or vice versa. We discuss the evolution of the inflorescence in both gymnosperms and angiosperms, emphasising the roles of heterotopy in dictating gender expression and heterochrony in permitting internodal compression.

  10. Universality of phloem transport in seed plants.

    Science.gov (United States)

    Jensen, Kåre Hartvig; Liesche, Johannes; Bohr, Tomas; Schulz, Alexander

    2012-06-01

    Since Münch in the 1920s proposed that sugar transport in the phloem vascular system is driven by osmotic pressure gradients, his hypothesis has been strongly supported by evidence from herbaceous angiosperms. Experimental constraints made it difficult to test this proposal in large trees, where the distance between source and sink might prove incompatible with the hypothesis. Recently, the theoretical optimization of the Münch mechanism was shown to lead to surprisingly simple predictions for the dimensions of the phloem sieve elements in relation to that of fast growing angiosperms. These results can be obtained in a very transparent way using a simple coupled resistor model. To test the universality of the Münch mechanism, we compiled anatomical data for 32 angiosperm and 38 gymnosperm trees with heights spanning 0.1-50 m. The species studied showed a remarkable correlation with the scaling predictions. The compiled data allowed calculating stem sieve element conductivity and predicting phloem sap flow velocity. The central finding of this work is that all vascular plants seem to have evolved efficient osmotic pumping units, despite their huge disparity in size and morphology. This contribution extends the physical understanding of phloem transport, and will facilitate detailed comparison between theory and field experiments.

  11. Molecular evolution of plant haemoglobin: two haemoglobin genes in Nymphaeaceae Euryale ferox.

    Science.gov (United States)

    Guldner, E; Desmarais, E; Galtier, N; Godelle, B

    2004-01-01

    We isolated and sequenced two haemoglobin genes from the early-branching angiosperm Euryale ferox (Nymphaeaceae). The two genes belong to the two known classes of plant haemoglobin. Their existence in Nymphaeaceae supports the theory that class 1 haemoglobin was ancestrally present in all angiosperms, and is evidence for class 2 haemoglobin being widely distributed. These sequences allowed us to unambiguously root the angiosperm haemoglobin phylogeny, and to corroborate the hypothesis that the class 1/class 2 duplication event occurred before the divergence between monocots and eudicots. We addressed the molecular evolution of plant haemoglobin by comparing the synonymous and nonsynonymous substitution rates in various groups of genes. Class 2 haemoglobin genes of legumes (functionally involved in a symbiosis with nitrogen-fixing bacteria) show a higher nonsynonymous substitution rate than class 1 (nonsymbiotic) haemoglobin genes. This suggests that a change in the selective forces applying to plant haemoglobins has occurred during the evolutionary history of this gene family, potentially in relation with the evolution of symbiosis.

  12. Extending the generality of leaf economic design principles in the cycads, an ancient lineage.

    Science.gov (United States)

    Zhang, Yong-Jiang; Cao, Kun-Fang; Sack, Lawren; Li, Nan; Wei, Xue-Mei; Goldstein, Guillermo

    2015-04-01

    Cycads are the most ancient lineage of living seed plants, but the design of their leaves has received little study. We tested whether cycad leaves are governed by the same fundamental design principles previously established for ferns, conifers and angiosperms, and characterized the uniqueness of this relict lineage in foliar trait relationships. Leaf structure, photosynthesis, hydraulics and nutrient composition were studied in 33 cycad species from nine genera and three families growing in two botanical gardens. Cycads varied greatly in leaf structure and physiology. Similarly to other lineages, light-saturated photosynthetic rate per mass (Am ) was related negatively to leaf mass per area and positively to foliar concentrations of chlorophyll, nitrogen (N), phosphorus and iron, but unlike angiosperms, leaf photosynthetic rate was not associated with leaf hydraulic conductance. Cycads had lower photosynthetic N use efficiency and higher photosynthetic performance relative to hydraulic capacity compared with other lineages. These findings extend the relationships shown for foliar traits in angiosperms to the cycads. This functional convergence supports the modern synthetic understanding of leaf design, with common constraints operating across lineages, even as they highlight exceptional aspects of the biology of this key relict lineage.

  13. Rapid response of leaf photosynthesis in two fern species Pteridium aquilinum and Thelypteris dentata to changes in CO2 measured by tunable diode laser absorption spectroscopy.

    Science.gov (United States)

    Nishida, Keisuke; Kodama, Naomi; Yonemura, Seiichiro; Hanba, Yuko T

    2015-09-01

    We investigated stomatal conductance (g(s)) and mesophyll conductance (g(m)) in response to atmospheric CO2 concentration [CO2] in two primitive land plants, the fern species Pteridium aquilinum and Thelypteris dentata, using the concurrent measurement of leaf gas exchange and carbon isotope discrimination. [CO2] was initially decreased from 400 to 200 μmol mol(-1), and then increased from 200 to 700 μmol mol(-1), and finally decreased from 700 to 400 μmol mol(-1). Analysis by tunable diode laser absorption spectroscopy (TDLAS) revealed a rapid and continuous response in g m within a few minutes. In most cases, both ferns showed rapid and significant responses of g m to changes in [CO2]. The largest changes (quote % decrease) were obtained when [CO2] was decreased from 400 to 200 μmol mol(-1). This is in contrast to angiosperms where an increase in g(m) is commonly observed at low [CO2]. Similarly, fern species observed little or no response of g(s) to changes in [CO2] whereas, a concomitant decline of g(m) and g(s) with [CO2] is often reported in angiosperms. Together, these results suggest that regulation of g(m) to [CO2] may differ between angiosperms and ferns.

  14. Interannual variation and host affiliations of endophytic fungi associated with ferns at La Selva, Costa Rica.

    Science.gov (United States)

    Del Olmo-Ruiz, Mariana; Arnold, A Elizabeth

    2014-01-01

    Ferns are an ancient and diverse lineage of vascular plants that differ morphologically, chemically and in growth habits from the angiosperms with which they co-occur. We used a culture-based approach coupled with phylogenetic analyses to characterize the incidence, diversity and composition of fungal endophyte assemblages in ferns, with a focus on healthy aboveground tissues of seven species of eupolypods at La Selva, Costa Rica. Endophytes were isolated from every individual plant and were similarly abundant and diverse in frond blades and stalks, in different vegetation types, in epiphytic vs. terrestrial species, and between sampling years. However, abundance, diversity and community structure differed significantly among fern species, and composition differed markedly between sampling years. Phylogenetic classification using separate and combined datasets revealed that as for many Neotropical angiosperms, the majority (95%) of endophyte taxa were Ascomycota, with particular dominance by Sordariomycetes, Eurotiomycetes and Dothideomycetes. However, our data suggest higher phylogenetic richness and stronger host affinities in fern associated endophytes relative to those studied in angiosperms thus far.

  15. Evolution and genetics of root hair stripes in the root epidermis.

    Science.gov (United States)

    Dolan, L; Costa, S

    2001-03-01

    Root hair pattern develops in a number of different ways in angiosperm. Cells in the epidermis of some species undergo asymmetric cell divisions to form a smaller daughter cell from which a hair grows, and a larger cell that forms a non-hair epidermal cell. In other species any cell in the epidermis can form a root hair. Hair cells are arranged in files along the Arabidopsis root, located in the gaps between underlying cortical cell files. Epidermal cells overlying a single cortical cell file develop as non-hair epidermal cells. Genetic analysis has identified a transcription factor cascade required for the formation of this pattern. WEREWOLF (WER) and GLABRA2 (GL2) are required for the formation of non-hair epidermal cells while CAPRICE (CPC) is required for hair cell development. Recent analyses of the pattern of epidermal cells among the angiosperms indicate that this striped pattern of cell organization evolved from non-striped ancestors independently in a number of diverse evolutionary lineages. The genetic basis for the evolution of epidermal pattern in angiosperms may now be examined.

  16. Evolution of the Plant Reproduction Master Regulators LFY and the MADS Transcription Factors: The Role of Protein Structure in the Evolutionary Development of the Flower.

    Science.gov (United States)

    Silva, Catarina S; Puranik, Sriharsha; Round, Adam; Brennich, Martha; Jourdain, Agnès; Parcy, François; Hugouvieux, Veronique; Zubieta, Chloe

    2015-01-01

    Understanding the evolutionary leap from non-flowering (gymnosperms) to flowering (angiosperms) plants and the origin and vast diversification of the floral form has been one of the focuses of plant evolutionary developmental biology. The evolving diversity and increasing complexity of organisms is often due to relatively small changes in genes that direct development. These "developmental control genes" and the transcription factors (TFs) they encode, are at the origin of most morphological changes. TFs such as LEAFY (LFY) and the MADS-domain TFs act as central regulators in key developmental processes of plant reproduction including the floral transition in angiosperms and the specification of the male and female organs in both gymnosperms and angiosperms. In addition to advances in genome wide profiling and forward and reverse genetic screening, structural techniques are becoming important tools in unraveling TF function by providing atomic and molecular level information that was lacking in purely genetic approaches. Here, we summarize previous structural work and present additional biophysical and biochemical studies of the key master regulators of plant reproduction - LEAFY and the MADS-domain TFs SEPALLATA3 and AGAMOUS. We discuss the impact of structural biology on our understanding of the complex evolutionary process leading to the development of the bisexual flower.

  17. Floristic and phytosociological analysis of palm swamps in the central part of the Brazilian savanna

    Directory of Open Access Journals (Sweden)

    Isa Lucia de Morais Resende

    2013-03-01

    Full Text Available We analyzed the floristics and phytosociology of three palm swamps in the municipality of Bela Vista de Goiás, located in the state of Goiás, Brazil, in the central part of the Brazilian savanna (Cerrado. The floristic surveys were conducted monthly from May 2008 to April 2009, and 310 species were recorded (seven bryophytes, 15 ferns and 288 angiosperms. Bryophytes belonged to five genera and five families; ferns belonged to nine genera and nine families; and angiosperms belonged to 134 genera and 45 families. The angiosperm families with the highest species richness were Poaceae, Cyperaceae, Asteraceae, Eriocaulaceae, Xyridaceae, Lentibulariaceae, Melastomataceae, Rubiaceae and Fabaceae. The palm swamps were divided into three zones of increasing humidity: edge, middle and core. The number of species was higher in the middle than at the edge and the core. The families with the highest cover values were Cyperaceae, Melastomataceae, Arecaceae and Poaceae. Although the palm swamps had been disturbed to varying degrees, those disturbances did not affect the flora in the middle or the core. Floristic similarity was high between these two zones within a given palm swamp and low between the edges of different palm swamps.

  18. Evolution of fruit types and seed dispersal: A phylogenetic and ecological snapshot%果实类型和种子传播的进化:系统发育和生态学简论

    Institute of Scientific and Technical Information of China (English)

    Claire M. LORTS; Trevor BRIGGEMAN; 桑涛

    2008-01-01

    Success of flowering plants is greatly dependent on effective seed dispersal. Specific fruit types aid different mechanisms of seed dispersal. However, little is known about what evolutionary forces have driven the diversification of fruit types and whether there were phylogenetic constraints on fruit evolution among angiosperm lineages. To address these questions, we first surveyed the orders and families of angiosperms for fruit types and found no clear association between fruit types and major angiosperm lineages, suggesting there was little phylogenetic constraint on fruit evolution at this level. We then surveyed fruit types found in two contrasting habitats: an open habitat including the Indian desert and North American plains and prairies, and a closed forest habitat of Australian tropical forest. The majority of genera in the survey of tropical forests in Australia were fleshy fruit trees, whereas the majority of genera in the survey of prairies and plains in central North America were herbs with capsules and achenes. Both capsules and achenes are frequently dispersed by wind in the open, arid habitat, whereas fleshy fruits are generally dispersed by animals. Since desert and plains tend to provide continuous wind to aid dispersal and there are more abundant mammal and bird dispersers in the closed forest, this survey suggests that fruit evolution was driven at least in part by dispersal agents abundant in particular habitats.

  19. Occurrence and palaeoenvironmental significance of aromatic hydrocarbon biomarkers in Oligocene sediments from the Mallik 5L-38 Gas Hydrate Production Research Well (Canada)

    Energy Technology Data Exchange (ETDEWEB)

    Haberer, R.M.; Mangelsdorf, K.; Wilkes, H.; Horsfield, B. [Geoforschungszentrum Potsdam, Potsdam (Germany)

    2006-07-01

    The aromatic hydrocarbon biomarker distributions of thirty Oligocene sediment samples with different lithology (lignite, clay and sand) from the JAPEX/JNOC/GSC et al. Mallik 5L-38 Gas Hydrate Production Research Well, Canada, were analyzed using gas chromatography-mass spectrometry (GC-MS). The compositions vary with lithology, indicating a change in palaeoenvironmental conditions at the time of deposition. Aromatic diterpenoids of the abietane type are more abundant in the lignite samples than in the clay samples and represent a gymnosperm (e.g., conifer) dominated palaeovegetation. In contrast, in the clay samples aromatic triterpenoids are generally preserved as major constituents, indicating angiosperm dominated vegetation. The sand samples contain only minor amounts of aromatic terpenoids, but show a preference for diterpenoid gymnosperm markers. To recognise gymnosperm versus angiosperm dominated palaeoenvironments a new ratio, termed the angiosperm-gymnosperm aromatic ratio (AGAR), has been developed. Thus, the terpenoid distribution in the deltaic sediments provides information on the compositional changes in the plant community at the Mallik site (lignites) and the hinterland (clays) over time. Concomitantly, the changing dominance in the plant communities allows an insight into varying climatic conditions during the late Oligocene in the area.

  20. Plants, Weathering, and the Evolution of Atmospheric Carbon Dioxide and Oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Robert A

    2008-02-05

    Over the past six years we have published 24 papers that can be divided into three sections: (1) Study of plants and weathering, (2) modeling the evolution of atmospheric CO2 over Phanerozoic time (past 550 million years). (3) Modeling of atmospheric O2 over Phanerozoic time. References to papers published acknowledging this grant can be found at the end of this report and almost all are supplied in pdf form. (1) In the temperate forests of the Cascade Mountains, USA, calcium and magnesium meet vastly different fates beneath angiosperms vs gymnosperms. Calcium is leached beneath both groves of trees, but leached 20-40% more beneath the angiosperms. Magnesium is retained in the forest system beneath the angiosperms and leached from beneath the gymnosperms. (2) We have shown that climate and CO2, based on both carbon cycle modeling and hundreds of independent proxies for paleo-CO2, correlate very well over the past 550 million year. In a recent paper we use this correlation to deduce the sensitivity of global mean temperature to a doubling of atmospheric CO2, and results are in excellent agreement with the results of climatologists based on the historical record and on theoretical climate models (GCM’s).(3) We have shown that concentrations of atmospheric oxygen, calculated by a combined carbon-sulfur cycle model, over the past 550 million years have varied with and influenced biological evolution.

  1. Diversity in neotropical wet forests during the Cenozoic is linked more to atmospheric CO2 than temperature.

    Science.gov (United States)

    Royer, Dana L; Chernoff, Barry

    2013-08-01

    Models generally predict a response in species richness to climate, but strong climate-diversity associations are seldom observed in long-term (more than 10(6) years) fossil records. Moreover, fossil studies rarely distinguish between the effects of atmospheric CO2 and temperature, which limits their ability to identify the causal controls on biodiversity. Plants are excellent organisms for testing climate-diversity hypotheses owing to their strong sensitivity to CO2, temperature and moisture. We find that pollen morphospecies richness in an angiosperm-dominated record from the Palaeogene and early Neogene (65-20 Ma) of Colombia and Venezuela correlates positively to CO2 much more strongly than to temperature (both tropical sea surface temperatures and estimates of global mean surface temperature). The weaker sensitivity to temperature may be due to reduced variance in long-term climate relative to in higher latitudes, or to the occurrence of lethal or sub-lethal temperatures during the warmest times of the Eocene. Physiological models predict that productivity should be the most sensitive to CO2 within the angiosperms, a prediction supported by our analyses if productivity is linked to species richness; however, evaluations of non-angiosperm assemblages are needed to more completely test this idea.

  2. Gravitropisms and reaction woods of forest trees - evolution, functions and mechanisms.

    Science.gov (United States)

    Groover, Andrew

    2016-08-01

    Contents 790 I. 790 II. 792 III. 795 IV. 797 V. 798 VI. 800 VII. 800 800 References 800 SUMMARY: The woody stems of trees perceive gravity to determine their orientation, and can produce reaction woods to reinforce or change their position. Together, graviperception and reaction woods play fundamental roles in tree architecture, posture control, and reorientation of stems displaced by wind or other environmental forces. Angiosperms and gymnosperms have evolved strikingly different types of reaction wood. Tension wood of angiosperms creates strong tensile force to pull stems upward, while compression wood of gymnosperms creates compressive force to push stems upward. In this review, the general features and evolution of tension wood and compression wood are presented, along with descriptions of how gravitropisms and reaction woods contribute to the survival and morphology of trees. An overview is presented of the molecular and genetic mechanisms underlying graviperception, initial graviresponse and the regulation of tension wood development in the model angiosperm, Populus. Critical research questions and new approaches are discussed.

  3. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP

    Science.gov (United States)

    Dugas, Diana V.; Hernandez, David; Koenen, Erik J.M.; Schwarz, Erika; Straub, Shannon; Hughes, Colin E.; Jansen, Robert K.; Nageswara-Rao, Madhugiri; Staats, Martijn; Trujillo, Joshua T.; Hajrah, Nahid H.; Alharbi, Njud S.; Al-Malki, Abdulrahman L.; Sabir, Jamal S. M.; Bailey, C. Donovan

    2015-01-01

    The Leguminosae has emerged as a model for studying angiosperm plastome evolution because of its striking diversity of structural rearrangements and sequence variation. However, most of what is known about legume plastomes comes from few genera representing a subset of lineages in subfamily Papilionoideae. We investigate plastome evolution in subfamily Mimosoideae based on two newly sequenced plastomes (Inga and Leucaena) and two recently published plastomes (Acacia and Prosopis), and discuss the results in the context of other legume and rosid plastid genomes. Mimosoid plastomes have a typical angiosperm gene content and general organization as well as a generally slow rate of protein coding gene evolution, but they are the largest known among legumes. The increased length results from tandem repeat expansions and an unusual 13 kb IR-SSC boundary shift in Acacia and Inga. Mimosoid plastomes harbor additional interesting features, including loss of clpP intron1 in Inga, accelerated rates of evolution in clpP for Acacia and Inga, and dN/dS ratios consistent with neutral and positive selection for several genes. These new plastomes and results provide important resources for legume comparative genomics, plant breeding, and plastid genetic engineering, while shedding further light on the complexity of plastome evolution in legumes and angiosperms. PMID:26592928

  4. Arman' Flora of the magadan region and development of floras in the North Pacific during the Albian-Paleocene

    Science.gov (United States)

    Herman, A. B.

    2011-02-01

    The Arman' Flora from volcanogenic-sedimentary deposits in the Arman' River basin and Naraula Formation in the Nel'kandzha-Khasyn interfluve includes 82 species of fossil plants comprising liverworts, horsetails, ferns, caytonealeans, cycadaleans, ginkgoaleans, czekanowskialeans, conifers, gymnosperms incertae sedis, and angiosperms. The Arman' Flora appears to be of Turonian-Coniacian age, as it is close to the reliably dated Penzhina and Kaivayam floras from the Northwest Kamchatka and to Tyl'pegyrgynai Flora of the Pekul'nei Ridge. The dating is consistent with isotopic dates (40Ar/39Ar and U-Pb SHRIMP) characterizing the age of plant-bearing sequences. Based on the considered position of the Arman' Flora in the scheme of Cretaceous florogenesis, a leading role in that florogenesis was played by the gradual invasion of floras by new, angiosperm dominated, plant communities. These communities initially populated unstable habitats in the coastal lowlands of Northeast Asia and Alaska, gradually invading with time the Asiatic intracontinental areas. The peculiar combination of Early and Late Cretaceous plants characteristic of the Arman' Flora is strong evidence that Cenophytic plant communities dominated by angiosperms colonized areas still populated in the Late Cretaceous by Mesophytic communities. Absence of Mesophytic and Cenophytic taxa mixing in the Arman' Flora burials suggests a replacement of plant communities as whole rather than of separate plants by more advanced taxa.

  5. Timing and patterns in the taxonomic diversification of Lepidoptera (butterflies and moths.

    Directory of Open Access Journals (Sweden)

    Niklas Wahlberg

    Full Text Available The macroevolutionary history of the megadiverse insect order Lepidoptera remains little-known, yet coevolutionary dynamics with their angiospermous host plants are thought to have influenced their diversification significantly. We estimate the divergence times of all higher-level lineages of Lepidoptera, including most extant families. We find that the diversification of major lineages in Lepidoptera are approximately equal in age to the crown group of angiosperms and that there appear to have been three significant increases in diversification rates among Lepidoptera over evolutionary time: 1 at the origin of the crown group of Ditrysia about 150 million years ago (mya, 2 at the origin of the stem group of Apoditrysia about 120 mya and finally 3 a spectacular increase at the origin of the stem group of the quadrifid noctuoids about 70 mya. In addition, there appears to be a significant increase in diversification rate in multiple lineages around 90 mya, which is concordant with the radiation of angiosperms. Almost all extant families appear to have begun diversifying soon after the Cretaceous/Paleogene event 65.51 mya.

  6. Putative floral brood-site mimicry, loss of autonomous selfing, and reduced vegetative growth are significantly correlated with increased diversification in Asarum (Aristolochiaceae).

    Science.gov (United States)

    Sinn, Brandon T; Kelly, Lawrence M; Freudenstein, John V

    2015-08-01

    The drivers of angiosperm diversity have long been sought and the flower-arthropod association has often been invoked as the most powerful driver of the angiosperm radiation. We now know that features that influence arthropod interactions cannot only affect the diversification of lineages, but also expedite or constrain their rate of extinction, which can equally influence the observed asymmetric richness of extant angiosperm lineages. The genus Asarum (Aristolochiaceae; ∼100 species) is widely distributed in north temperate forests, with substantial vegetative and floral divergence between its three major clades, Euasarum, Geotaenium, and Heterotropa. We used Binary-State Speciation and Extinction Model (BiSSE) Net Diversification tests of character state distributions on a Maximum Likelihood phylogram and a Coalescent Bayesian species tree, inferred from seven chloroplast markers and nuclear rDNA, to test for signal of asymmetric diversification, character state transition, and extinction rates of floral and vegetative characters. We found that reduction in vegetative growth, loss of autonomous self-pollination, and the presence of putative fungal-mimicking floral structures are significantly correlated with increased diversification in Asarum. No significant difference in model likelihood was identified between symmetric and asymmetric rates of character state transitions or extinction. We conclude that the flowers of the Heterotropa clade may have converged on some aspects of basidiomycete sporocarp morphology and that brood-site mimicry, coupled with a reduction in vegetative growth and the loss of autonomous self-pollination, may have driven diversification within Asarum.

  7. The susceptibility of soil enzymes to inhibition by leaf litter tannins is dependent on the tannin chemistry, enzyme class and vegetation history.

    Science.gov (United States)

    Triebwasser, Daniella J; Tharayil, Nishanth; Preston, Caroline M; Gerard, Patrick D

    2012-12-01

    By inhibiting soil enzymes, tannins play an important role in soil carbon (C) and nitrogen (N) mineralization. The role of tannin chemistry in this inhibitory process, in conjunction with enzyme classes and isoforms, is less well understood. Here, we compared the inhibition efficiencies of mixed tannins (MTs, mostly limited to angiosperms) and condensed tannins (CTs, produced mostly by gymnosperms) against the potential activity of β-glucosidase (BG), N-acetyl-glucosaminidase (NAG), and peroxidase in two soils that differed in their vegetation histories. Compared with CTs, MTs exhibited 50% more inhibition of almond (Prunus dulcis) BG activity and greater inhibition of the potential NAG activity in the gymnosperm-acclimatized soils. CTs exhibited lower BG inhibition in the angiosperm-acclimated soils, whereas both types of tannins exhibited higher peroxidase inhibition in the angiosperm soils than in gymnosperm soils. At all of the tested tannin concentrations, irrespective of the tannin type and site history, the potential peroxidase activity was inhibited two-fold more than the hydrolase activity and was positively associated with the redox-buffering efficiency of tannins. Our finding that the inhibitory activities and mechanisms of MTs and CTs are dependent on the vegetative history and enzyme class is novel and furthers our understanding of the role of tannins and soil isoenzymes in decomposition.

  8. Riverine Dissolved Organic Matter Degradation Modeled Through Microbial Incubations of Vascular Plant Leachates

    Science.gov (United States)

    Harfmann, J.; Hernes, P.; Chuang, C. Y.

    2015-12-01

    Dissolved organic matter (DOM) contains as much carbon as is in the atmosphere, provides the main link between terrestrial and marine carbon reservoirs, and fuels the microbial food web. The fate and removal of DOM is a result of several complex conditions and processes, including photodegradation, sorption/desorption, dominant vascular plant sources, and microbial abundance. In order to better constrain factors affecting microbial degradation, laboratory incubations were performed using Sacramento River water for microbial inoculums and vascular plant leachates. Four vascular plant sources were chosen based on their dominance in the Sacramento River Valley: gymnosperm needles from Pinus sabiniana (foothill pine), angiosperm dicot leaves from Quercus douglassi (blue oak), angiosperm monocot mixed annual grasses, and angiosperm monocot mixed Schoenoplectus acutus (tule) and Typha spp. (cattails). Three concentrations of microbial inoculum were used for each plant material, ranging from 0.2% to 10%. Degradation was monitored as a function of time using dissolved organic carbon (DOC), UV-Vis absorbance, and fluorescent dissolved organic matter (fDOM), and was compared across vascular plant type and inoculum concentration.

  9. The evolution of floral scent and insect chemical communication.

    Science.gov (United States)

    Schiestl, Florian P

    2010-05-01

    Plants have evolved a range of strategies to manipulate the behaviour of their insect partners. One powerful strategy is to produce signals that already have a role in the animals' own communication systems. To investigate to what extent the evolution of floral scents is correlated with chemical communication in insects, I analyse the occurrence, commonness, and evolutionary patterns of the 71 most common 'floral' volatile organic compounds (VOCs) in 96 plant families and 87 insect families. I found an overlap of 87% in VOCs produced by plants and insects. 'Floral' monoterpenes showed strong positive correlation in commonness between plants (both gymnosperms and angiosperms) and herbivores, whereas the commonness of 'floral' aromatics was positively correlated between angiosperms and both pollinators and herbivores. According to a multivariate regression analysis the commonness of 'floral' aromatics was best explained by their commonness in pollinators, whereas monoterpenes were best explained by herbivores. Among pollinator orders, aromatics were significantly more common in Lepidoptera than in Hymenoptera, whereas monoterpenes showed no difference among the two orders. Collectively, these patterns suggest that plants and insects converge in overall patterns of volatile production, both for attraction and defence. Monoterpenes seem to have evolved primarily for defence under selection by herbivores, whereas aromatics evolved signalling functions in angiosperms, primarily for pollinator attraction.

  10. The multifaceted roles of FLOWERING LOCUS T in plant development.

    Science.gov (United States)

    Pin, P A; Nilsson, O

    2012-10-01

    One of the key developmental processes in flowering plants is the differentiation of the shoot apical meristem into a floral meristem. This transition is regulated through the integration of environmental and endogenous stimuli, involving a complex, hierarchical signalling network. In arabidopsis, the FLOWERING LOCUS T (FT) protein, a mobile signal recognized as a major component of florigen, has a central position in mediating the onset of flowering. FT-like genes seem to be involved in regulating the floral transition in all angiosperms examined to date. Evidence from molecular evolution studies suggests that the emergence of FT-like genes coincided with the evolution of the flowering plants. Hence, the role of FT in floral promotion is conserved, but appears to be restricted to the angiosperms. Besides flowering, FT-like proteins have also been identified as major regulatory factors in a wide range of developmental processes including fruit set, vegetative growth, stomatal control and tuberization. These multifaceted roles of FT-like proteins have resulted from extensive gene duplication events, which occurred independently in nearly all modern angiosperm lineages, followed by sub- or neo-functionalization. This review assesses the plethora of roles that FT-like genes have acquired during evolution and their implications in plant diversity, adaptation and domestication.

  11. A functional phylogenomic view of the seed plants.

    Directory of Open Access Journals (Sweden)

    Ernest K Lee

    2011-12-01

    Full Text Available A novel result of the current research is the development and implementation of a unique functional phylogenomic approach that explores the genomic origins of seed plant diversification. We first use 22,833 sets of orthologs from the nuclear genomes of 101 genera across land plants to reconstruct their phylogenetic relationships. One of the more salient results is the resolution of some enigmatic relationships in seed plant phylogeny, such as the placement of Gnetales as sister to the rest of the gymnosperms. In using this novel phylogenomic approach, we were also able to identify overrepresented functional gene ontology categories in genes that provide positive branch support for major nodes prompting new hypotheses for genes associated with the diversification of angiosperms. For example, RNA interference (RNAi has played a significant role in the divergence of monocots from other angiosperms, which has experimental support in Arabidopsis and rice. This analysis also implied that the second largest subunit of RNA polymerase IV and V (NRPD2 played a prominent role in the divergence of gymnosperms. This hypothesis is supported by the lack of 24nt siRNA in conifers, the maternal control of small RNA in the seeds of flowering plants, and the emergence of double fertilization in angiosperms. Our approach takes advantage of genomic data to define orthologs, reconstruct relationships, and narrow down candidate genes involved in plant evolution within a phylogenomic view of species' diversification.

  12. The meaning of Darwin's 'abominable mystery'.

    Science.gov (United States)

    Friedman, William E

    2009-01-01

    Charles Darwin's "abominable mystery" has come to symbolize just about all aspects of the origin and early evolution of flowering plants. Yet, there has never been an analysis of precisely what Darwin thought was so abominably mysterious. Here I explicate Darwin's thoughts and frustrations with the fossil record of flowering plants as revealed in correspondence with Joseph Hooker, Gaston de Saporta, and Oswald Heer between 1875 and 1881. I also examine the essay by John Ball that prompted Darwin to write his "abominable mystery" letter to Hooker in July of 1879. Contrary to what is generally believed, Darwin's abominable mystery has little if anything to do with the fossil prehistory of angiosperms, identification of the closest relatives of flowering plants, questions of the homologies (and character transformations) of defining features of flowering plants, or the phylogeny of flowering plants themselves. Darwin's abominable mystery and his abiding interest in the radiation of angiosperms were never driven primarily by a need to understand the literal text of the evolutionary history of flowering plants. Rather, Darwin was deeply bothered by what he perceived to be an abrupt origin and highly accelerated rate of diversification of flowering plants in the mid-Cretaceous. This led Darwin to create speculative arguments for a long, gradual, and undiscovered pre-Cretaceous history of flowering plants on a lost island or continent. Darwin also took refuge in the possibility that a rapid diversification of flowering plants in the mid-Cretaceous might, if real, have a biological explanation involving coevolutionary interactions between pollinating insects and angiosperms. Nevertheless, although generations of plant biologists have seized upon Darwin's abominable mystery as a metaphor for their struggle to understand angiosperm history, the evidence strongly suggests that the abominable mystery is not about angiosperms per se. On the contrary, Darwin's abominable mystery

  13. Evolution of plant senescence

    Directory of Open Access Journals (Sweden)

    Young Mike

    2009-07-01

    Full Text Available Abstract Background Senescence is integral to the flowering plant life-cycle. Senescence-like processes occur also in non-angiosperm land plants, algae and photosynthetic prokaryotes. Increasing numbers of genes have been assigned functions in the regulation and execution of angiosperm senescence. At the same time there has been a large expansion in the number and taxonomic spread of plant sequences in the genome databases. The present paper uses these resources to make a study of the evolutionary origins of angiosperm senescence based on a survey of the distribution, across plant and microbial taxa, and expression of senescence-related genes. Results Phylogeny analyses were carried out on protein sequences corresponding to genes with demonstrated functions in angiosperm senescence. They include proteins involved in chlorophyll catabolism and its control, homeoprotein transcription factors, metabolite transporters, enzymes and regulators of carotenoid metabolism and of anthocyanin biosynthesis. Evolutionary timelines for the origins and functions of particular genes were inferred from the taxonomic distribution of sequences homologous to those of angiosperm senescence-related proteins. Turnover of the light energy transduction apparatus is the most ancient element in the senescence syndrome. By contrast, the association of phenylpropanoid metabolism with senescence, and integration of senescence with development and adaptation mediated by transcription factors, are relatively recent innovations of land plants. An extended range of senescence-related genes of Arabidopsis was profiled for coexpression patterns and developmental relationships and revealed a clear carotenoid metabolism grouping, coordinated expression of genes for anthocyanin and flavonoid enzymes and regulators and a cluster pattern of genes for chlorophyll catabolism consistent with functional and evolutionary features of the pathway. Conclusion The expression and phylogenetic

  14. Developmental evolution of flowering plant pollen tube cell walls: callose synthase (CalS gene expression patterns

    Directory of Open Access Journals (Sweden)

    Abercrombie Jason M

    2011-07-01

    Full Text Available Abstract Background A number of innovations underlie the origin of rapid reproductive cycles in angiosperms. A critical early step involved the modification of an ancestrally short and slow-growing pollen tube for faster and longer distance transport of sperm to egg. Associated with this shift are the predominantly callose (1,3-β-glucan walls and septae (callose plugs of angiosperm pollen tubes. Callose synthesis is mediated by callose synthase (CalS. Of 12 CalS gene family members in Arabidopsis, only one (CalS5 has been directly linked to pollen tube callose. CalS5 orthologues are present in several monocot and eudicot genomes, but little is known about the evolutionary origin of CalS5 or what its ancestral function may have been. Results We investigated expression of CalS in pollen and pollen tubes of selected non-flowering seed plants (gymnosperms and angiosperms within lineages that diverged below the monocot/eudicot node. First, we determined the nearly full length coding sequence of a CalS5 orthologue from Cabomba caroliniana (CcCalS5 (Nymphaeales. Semi-quantitative RT-PCR demonstrated low CcCalS5 expression within several vegetative tissues, but strong expression in mature pollen. CalS transcripts were detected in pollen tubes of several species within Nymphaeales and Austrobaileyales, and comparative analyses with a phylogenetically diverse group of sequenced genomes indicated homology to CalS5. We also report in silico evidence of a putative CalS5 orthologue from Amborella. Among gymnosperms, CalS5 transcripts were recovered from germinating pollen of Gnetum and Ginkgo, but a novel CalS paralog was instead amplified from germinating pollen of Pinus taeda. Conclusion The finding that CalS5 is the predominant callose synthase in pollen tubes of both early-diverging and model system angiosperms is an indicator of the homology of their novel callosic pollen tube walls and callose plugs. The data suggest that CalS5 had transient expression

  15. The role of fire in deep time ecosystems

    Science.gov (United States)

    Scott, Andrew C.; Bond, William J.; Collinson, Margaret E.; Glasspool, Ian J.; Brown, Sarah; Braman, Dennis R.

    2010-05-01

    Fires are very widespread in the world today and fire has also been common in the deep past. Fire is important in structuring contemporary World vegetation maintaining extensive open vegetation where the climate has the potential to support closed forests. The influence of fire on the structure of vegetation and plant traits present in a community vary depending on the fire regime. The fire regime is the characteristic pattern of fire frequency, severity (amount of biomass removed) and spatial extent. Fire regimes depend on the synergy between external physical factors and the properties of vegetation. Changes in the fire regime can be brought about by changes in external conditions such as climate, but also by changes in vegetation such as changes in flammability or productivity that influence the amount of fuel. For example, invasion of grasses into closed wooded habitats has initiated a ‘grass fire cycle' in many parts of the world triggering cascading changes in vegetation structure and composition from forest to open grassland or savanna woodland. The spread of flammable invasive species, especially grasses, has even altered fire regimes of fire-dependent flammable communities causing catastrophic ecosystem changes. We suggest that the spread of angiosperms in the Cretaceous was promoted by the development of novel fire regimes linked to the evolution of novel, highly productive (and flammable) plants. Within the limits of physical constraints on fire occurrence, Cretaceous angiosperms would have initiated a positive feedback analogous to the grass-fire cycle rapidly accumulating fuel that promoted more frequent fires, which maintained open habitats in which rapid growth-traits of angiosperms would be most favoured promoting rapid fuel accumulation etc. Frequent fires would have altered vegetation structure and composition both by increasing mortality rates of fire-damaged trees and reducing recruitment rates of seedlings and saplings where fires recurred

  16. The adaptive value of shoot differentiation in deciduous trees and its evolutionary relevance Valor adaptativo de la diferenciación de brotes en árboles deciduos y su relevancia evolutiva

    Directory of Open Access Journals (Sweden)

    Veit M. Dörken

    2009-12-01

    Full Text Available Pronounced long shoot/short shoot differentiation is typical for deciduous angiosperm trees. It also occurs in a number of gymnosperms and very few evergreen angiosperm trees. The study of 719 angiosperm tree species (602 deciduous and 117 evergreen species demonstrated that the deciduous condition is nearly always associated with shoot differentiation. Detailed measurements in 38 angiosperms showed that the leaf area of an entire short shoot equals the leaf area of a single long shoot leaf of the same species and individual. In the few cases where the leaf area of the short shoot is slightly larger than that of a single long-shoot leaf, the short shoot leaves shade each other and the projection of the short shoot equals the area of a single long shoot leaf. Calculations of the stem biomass needed to expose a given assimilatory surface show two interesting aspects. First, the stem biomass (dry weight to expose leaf surface is about 10 times less in short shoots than in long shoots. Second, this biomass in long shoots and short shoots appears to be species independent. Regarding shoot structure efficiency, leaf size and shape do not matter. Some evergreen species resemble in all parameters more to deciduous species than to typical evergreen species. Phytogeographical data as well as morphological data suggest that these atypical evergreen species are derived from deciduous ancestors. As measured parameters differ markedly between all gymnosperms, except Ginkgo, and angiosperms, we suppose that the evolutionary pathway leading to shoot differentiation was different for gymnosperms and angiosperms.En Angiospermas arbóreas deciduas, es común encontrar un alto grado de diferenciación entre brotes largos y brotes cortos. También se presenta esta característica en un número de gimnospermas y en muy pocas angiospermas arbóreas siempreverdes. El estudio de 719 especies de angiospermas arbóreas (602 deciduas y 117 siempreverdes demostró que la

  17. Genetically based polymorphisms in morphology and life history associated with putative host races of the water lily leaf beetle, Galerucella nymphaeae.

    Science.gov (United States)

    Pappers, Stephanie M; van der Velde, Gerard; Ouborg, N Joop; van Groenendael, Jan M

    2002-08-01

    A host race is a population that is partially reproductively isolated from other conspecific populations as a direct consequence of adaptation to a specific host. The initial step in host race formation is the establishment of genetically based polymorphisms in, for example, morphology, preference, or performance. In this study we investigated whether polymorphisms observed in Galerucella nymphaeae have a genetic component. Galerucella nymphaeae, the water lily leaf beetle, is a herbivore which feeds and oviposits on the plant hosts Nuphar lutea and Nymphaea alba (both Nymphaeaceae) and Rumex hydrolapathum and Polygonum amphibium (both Polygonaceae). A full reciprocal crossing scheme (16 crosses, each replicated 10 times) and subsequent transplantation of 1,001 egg clutches revealed a genetic basis for differences in body length and mandibular width. The heritability value of these traits, based on midparent-offspring regression, ranged between 0.53 and 0.83 for the different diets. Offspring from Nymphaeaceae parents were on average 12% larger and had on average 18% larger mandibles than offspring from Polygonaceae parents. Furthermore, highly significant correlations were found between feeding preference of the offspring and the feeding preference of their parents. Finally, two fitness components were measured: development time and survival. Development time was influenced by diet, survival both by cross type and diet, the latter of which suggest adaptation of the beetles. This suggestion is strengthened by a highly significant cross x diet interaction effect for development time as well as for survival, which is generally believed to indicate local adaptation. Although no absolute genetic incompatibility among putative host races was observed, survival of the between-host family offspring, on each diet separately, was lower than the survival of the within-host family offspring on that particular host. Survival of offspring of two Nymphaeaceae parents was about

  18. Behavior of Sr-90 and transuranic elements in three areas in Finland[Radioecology

    Energy Technology Data Exchange (ETDEWEB)

    Ikaeheimonen, T.K.; Vartti, V.P.; Ilus, E. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-04-15

    The study was carried out in three areas (both terrestrial and aquatic): in the Maenttae area in Central Finland and in the environs of the Loviisa and Olkiluoto Nuclear Power Plants. The highest Sr-90 concentrations were found in Ebilobium angustifolium, being 70 - 90 Bq/kg d.w., and Empetrum nigrum, 15 - 60 Bq/kg d.w. Concentrations of more than 10 Bq/kg d.w. were also detected in leaves of birch (Betula pendula), in berries of Empetrum nigrum and in ferns (Dryopteris carthusiana, Dryopteris expansa, Polypodium vulgare). The Sr-90 concentrations in mushrooms were less than 10 Bq/kg d.w. and varied considerably from one species to another. The concentrations of Pu-239,240 were below the detection limits in mushrooms and berries. Detectable amounts of Pu-239,240 were found in ferns. Am-241 was detected in ferns, but also in a Cantharellus tubaeformis sample and in Calluna vulgaris, in which the Pu-239,240 concentrations were below the detection limits. The highest concentrations of Sr-90 in fresh water environment were detected in shells and flesh of freshwater clam, Anodonta sp., and in marine environment in Saduria entomon and Macoma balthica. In Anodonta sp. (both shells and flesh), also Pu-239,240 and Am-241 were detected. Pu-239,240 was detectable in almost all the marine samples. Concentration factors (CF) of Pu-239,240 were roughly at the same level or greater than those of Sr-90, especially in the marine environment. Best indicator organism for Sr in the fresh water environment was Anodonta sp., and then Nuphar lutea (CFs 10{sup 3} - 10{sup 4}); and Macoma balthica and Fucus vesiculosus in the marine environment. Roots of Nymphaea candida and flesh of Anodonta sp. accumulated best Pu-239,240 in fresh water environment; The CFs of Pu-239,240 were greater in the marine environment compared to those in fresh water environment. Phytoplankton and periphyton accumulate most efficiently Pu-239,240 in the marine environment. The behavior of plutonium and americium

  19. Evolving Ideas on the Origin and Evolution of Flowers: New Perspectives in the Genomic Era.

    Science.gov (United States)

    Chanderbali, Andre S; Berger, Brent A; Howarth, Dianella G; Soltis, Pamela S; Soltis, Douglas E

    2016-04-01

    The origin of the flower was a key innovation in the history of complex organisms, dramatically altering Earth's biota. Advances in phylogenetics, developmental genetics, and genomics during the past 25 years have substantially advanced our understanding of the evolution of flowers, yet crucial aspects of floral evolution remain, such as the series of genetic and morphological changes that gave rise to the first flowers; the factors enabling the origin of the pentamerous eudicot flower, which characterizes ∼70% of all extant angiosperm species; and the role of gene and genome duplications in facilitating floral innovations. A key early concept was the ABC model of floral organ specification, developed by Elliott Meyerowitz and Enrico Coen and based on two model systems,Arabidopsis thalianaandAntirrhinum majus Yet it is now clear that these model systems are highly derived species, whose molecular genetic-developmental organization must be very different from that of ancestral, as well as early, angiosperms. In this article, we will discuss how new research approaches are illuminating the early events in floral evolution and the prospects for further progress. In particular, advancing the next generation of research in floral evolution will require the development of one or more functional model systems from among the basal angiosperms and basal eudicots. More broadly, we urge the development of "model clades" for genomic and evolutionary-developmental analyses, instead of the primary use of single "model organisms." We predict that new evolutionary models will soon emerge as genetic/genomic models, providing unprecedented new insights into floral evolution.

  20. Selaginella genome analysis – entering the ‘homoplasy heaven’ of the MADS world

    Directory of Open Access Journals (Sweden)

    Lydia eGramzow

    2012-09-01

    Full Text Available In flowering plants, arguably the most significant transcription factors regulating development are MADS-domain proteins, encoded by Type I and Type II MADS-box genes. Type II genes are divided into the MIKCC and MIKC* groups. In angiosperms, these types and groups play distinct roles in the development of female gametophytes, embryos, and seeds (Type I; vegetative and floral tissues in sporophytes (MIKCC; and male gametophytes (MIKC*, but their functions in other plants are largely unknown. The complete set of MADS-box genes has been described for several angiosperms and a moss, Physcomitrella patens. Our examination of the complete genome sequence of a lycophyte, Selaginella moellendorffii, revealed 19 putative MADS-box genes (13 Type I, 3 MIKCC, and 3 MIKC*. Our results suggest that the most recent common ancestor of vascular plants possessed at least two Type I and two Type II genes. None of the S. moellendorffii MIKCC genes were identified as orthologs of any floral organ identity genes. This strongly corroborates the view that the clades of floral organ identity genes originated in a common ancestor of seed plants after the lineage that led to lycophytes had branched off, and that expansion of MIKCC genes in the lineage leading to seed plants facilitated the evolution of their unique reproductive organs. The number of MIKC* genes and the ratio of MIKC* to MIKCC genes is lower in S. moellendorffii and angiosperms than in P. patens, correlated with reduction of the gametophyte in vascular plants. Our data indicate that Type I genes duplicated and diversified independently within lycophytes and seed plants. Our observations on MADS-box gene evolution echo morphological evolution since the two lineages of vascular plants appear to have arrived independently at similar body plans. Our annotation of MADS-box genes in S. moellendorffii provides the basis for functional studies to reveal the roles of this crucial gene family in basal vascular

  1. TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders

    Directory of Open Access Journals (Sweden)

    Tarr D Ellen K

    2009-09-01

    Full Text Available Abstract Background Plant resistance (R gene products recognize pathogen effector molecules. Many R genes code for proteins containing nucleotide binding site (NBS and C-terminal leucine-rich repeat (LRR domains. NBS-LRR proteins can be divided into two groups, TIR-NBS-LRR and non-TIR-NBS-LRR, based on the structure of the N-terminal domain. Although both classes are clearly present in gymnosperms and eudicots, only non-TIR sequences have been found consistently in monocots. Since most studies in monocots have been limited to agriculturally important grasses, it is difficult to draw conclusions. The purpose of our study was to look for evidence of these sequences in additional monocot orders. Findings Using degenerate PCR, we amplified NBS sequences from four monocot species (C. blanda, D. marginata, S. trifasciata, and Spathiphyllum sp., a gymnosperm (C. revoluta and a eudicot (C. canephora. We successfully amplified TIR-NBS-LRR sequences from dicot and gymnosperm DNA, but not from monocot DNA. Using databases, we obtained NBS sequences from additional monocots, magnoliids and basal angiosperms. TIR-type sequences were not present in monocot or magnoliid sequences, but were present in the basal angiosperms. Phylogenetic analysis supported a single TIR clade and multiple non-TIR clades. Conclusion We were unable to find monocot TIR-NBS-LRR sequences by PCR amplification or database searches. In contrast to previous studies, our results represent five monocot orders (Poales, Zingiberales, Arecales, Asparagales, and Alismatales. Our results establish the presence of TIR-NBS-LRR sequences in basal angiosperms and suggest that although these sequences were present in early land plants, they have been reduced significantly in monocots and magnoliids.

  2. Patterns of species richness in relation to temperature, taxonomy and spatial scale in eastern China

    Science.gov (United States)

    Zhang, Qiang; Wang, Zhiqiang; Ji, Mingfei; Fan, Zhexuan; Deng, Jianming

    2011-07-01

    The species richness increases with area is well known in ecology. However, the Metabolic Theory of Biodiversity (MTB) is used to predict diversity patterns without taking account of the area covered by the community addressed. In this study, we developed a new model to integrate the temperature and community area based on the MTB. We collected plant species distribution information from 270 natural reserves and 11 floristic regions in eastern China, including that of three main plant divisions: pteridophytes, gymnosperms and angiosperms, and five broadly distributed angiosperm families, to explore the patterns of species richness in relation to temperature and community area size at two spatial scales (floristic region and nature reserve). Our results show that at the floristic region scale, the species richness is independent of the area size of the community and the regression slopes of the natural logarithm of richness vs. the inverse transformed temperature are close to the theoretical value of -0.65 for the three main plant divisions as well as the five angiosperm families. However, at the nature reserve scale, the number of species depends significantly upon the area size of nature reserves, and the regression slopes deviate strongly from the expected slope for all the taxonomic groups, except the pteridophyte division. Therefore, the MTB would be fairly robust only under a presumption that the area size of the community addressed has no significant effect on species richness (e.g. at the floristic region scale). Otherwise, the predictions of diversity patterns by MTB tend to be inaccurate (e.g. at the nature reserve scale).

  3. Identification and functional characterization of monofunctional ent-copalyl diphosphate and ent-kaurene synthases in white spruce reveal different patterns for diterpene synthase evolution for primary and secondary metabolism in gymnosperms.

    Science.gov (United States)

    Keeling, Christopher I; Dullat, Harpreet K; Yuen, Mack; Ralph, Steven G; Jancsik, Sharon; Bohlmann, Jörg

    2010-03-01

    The biosynthesis of the tetracyclic diterpene ent-kaurene is a critical step in the general (primary) metabolism of gibberellin hormones. ent-Kaurene is formed by a two-step cyclization of geranylgeranyl diphosphate via the intermediate ent-copalyl diphosphate. In a lower land plant, the moss Physcomitrella patens, a single bifunctional diterpene synthase (diTPS) catalyzes both steps. In contrast, in angiosperms, the two consecutive cyclizations are catalyzed by two distinct monofunctional enzymes, ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). The enzyme, or enzymes, responsible for ent-kaurene biosynthesis in gymnosperms has been elusive. However, several bifunctional diTPS of specialized (secondary) metabolism have previously been characterized in gymnosperms, and all known diTPSs for resin acid biosynthesis in conifers are bifunctional. To further understand the evolution of ent-kaurene biosynthesis as well as the evolution of general and specialized diterpenoid metabolisms in gymnosperms, we set out to determine whether conifers use a single bifunctional diTPS or two monofunctional diTPSs in the ent-kaurene pathway. Using a combination of expressed sequence tag, full-length cDNA, genomic DNA, and targeted bacterial artificial chromosome sequencing, we identified two candidate CPS and KS genes from white spruce (Picea glauca) and their orthologs in Sitka spruce (Picea sitchensis). Functional characterization of the recombinant enzymes established that ent-kaurene biosynthesis in white spruce is catalyzed by two monofunctional diTPSs, PgCPS and PgKS. Comparative analysis of gene structures and enzyme functions highlights the molecular evolution of these diTPSs as conserved between gymnosperms and angiosperms. In contrast, diTPSs for specialized metabolism have evolved differently in angiosperms and gymnosperms.

  4. Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca

    Directory of Open Access Journals (Sweden)

    Grima-Pettenati Jacqueline

    2007-03-01

    Full Text Available Abstract Background Several members of the R2R3-MYB family of transcription factors act as regulators of lignin and phenylpropanoid metabolism during wood formation in angiosperm and gymnosperm plants. The angiosperm Arabidopsis has over one hundred R2R3-MYBs genes; however, only a few members of this family have been discovered in gymnosperms. Results We isolated and characterised full-length cDNAs encoding R2R3-MYB genes from the gymnosperms white spruce, Picea glauca (13 sequences, and loblolly pine, Pinus taeda L. (five sequences. Sequence similarities and phylogenetic analyses placed the spruce and pine sequences in diverse subgroups of the large R2R3-MYB family, although several of the sequences clustered closely together. We searched the highly variable C-terminal region of diverse plant MYBs for conserved amino acid sequences and identified 20 motifs in the spruce MYBs, nine of which have not previously been reported and three of which are specific to conifers. The number and length of the introns in spruce MYB genes varied significantly, but their positions were well conserved relative to angiosperm MYB genes. Quantitative RTPCR of MYB genes transcript abundance in root and stem tissues revealed diverse expression patterns; three MYB genes were preferentially expressed in secondary xylem, whereas others were preferentially expressed in phloem or were ubiquitous. The MYB genes expressed in xylem, and three others, were up-regulated in the compression wood of leaning trees within 76 hours of induction. Conclusion Our survey of 18 conifer R2R3-MYB genes clearly showed a gene family structure similar to that of Arabidopsis. Three of the sequences are likely to play a role in lignin metabolism and/or wood formation in gymnosperm trees, including a close homolog of the loblolly pine PtMYB4, shown to regulate lignin biosynthesis in transgenic tobacco.

  5. Stomatal and mesophyll conductances to CO₂ in different plant groups: underrated factors for predicting leaf photosynthesis responses to climate change?

    Science.gov (United States)

    Flexas, Jaume; Carriquí, Marc; Coopman, Rafael E; Gago, Jorge; Galmés, Jeroni; Martorell, Sebastià; Morales, Fermín; Diaz-Espejo, Antonio

    2014-09-01

    The climate change conditions predicted for the end of the current century are expected to have an impact on the performance of plants under natural conditions. The variables which are foreseen to have a larger effect are increased CO2 concentration and temperature. Although it is generally considered CO2 assimilation rate could be increased by the increasing levels of CO2, it has been reported in previous studies that acclimation to high CO2 results in reductions of physiological parameters involved in photosynthesis, like the maximum carboxylation rate (Vc,max), stomatal conductance (gs) and mesophyll conductance to CO2 (gm). On the one hand, most of the previous modeling efforts have neglected the potential role played by the acclimation of gm to high CO2 and temperature. On the other hand, the effect of climate change on plant clades other than angiosperms, like ferns, has received little attention, and there are no studies evaluating the potential impact of increasing CO2 and temperature on these species. In this study we predicted responses of several representative species among angiosperms, gymnosperms and ferns to increasing CO2 and temperature. Our results show that species with lower photosynthetic capacity - such as some ferns and gymnosperms - would be proportionally more favored under these foreseen environmental conditions. The main reason for this difference is the lower diffusion limitation imposed by gs and gm in plants having high capacity for photosynthesis among the angiosperms, which reduces the positive effect of increasing CO2. However, this apparent advantage of low-diffusion species would be canceled if the two conductances - gs and gm - acclimate and are down regulated to high CO2, which is basically unknown, especially for gymnosperms and ferns. Hence, for a better understanding of different plant responses to future climate, studies are urged in which the actual photosynthetic response/acclimation to increased CO2 and temperature of

  6. Pseudo-response regulator (PRR) homologues of the moss Physcomitrella patens: insights into the evolution of the PRR family in land plants.

    Science.gov (United States)

    Satbhai, Santosh B; Yamashino, Takafumi; Okada, Ryo; Nomoto, Yuji; Mizuno, Takeshi; Tezuka, Yuki; Itoh, Tomonori; Tomita, Mitsuru; Otsuki, Susumu; Aoki, Setsuyuki

    2011-02-01

    The pseudo-response regulators (PRRs) are the circadian clock component proteins in the model dicot Arabidopsis thaliana. They contain a receiver-like domain (RLD) similar to the receiver domains of the RRs in the His-Asp phosphorelay system, but the RLDs lack the phosphoacceptor aspartic acid residue invariably conserved in the receiver domains. To study the evolution of PRR genes in plants, here we characterize their homologue genes, PpPRR1, PpPRR2, PpPRR3 and PpPRR4, from the moss Physcomitrella patens. In the phylogenetic analysis, PpPRRs cluster together, sister to an angiosperm PRR gene subfamily, illustrating their close relationships with the angiosperm PRRs. However, distinct from the angiosperm sequences, the RLDs of PpPRR2/3/4 exhibit a potential phosphoacceptor aspartic acid-aspartic acid-lysine (DDK) motif. Consistently, the PpPRR2 RLD had phosphotransfer ability in vitro, suggesting that PpPRR2 functions as an RR. The PpPRR1 RLD, on the other hand, shows a partially diverged DDK motif, and it did not show phosphotransfer ability. All PpPRRs were expressed in a circadian and light-dependent manner, with differential regulation between PpPRR2/4 and PpPRR1/3. Altogether, our results illustrate that PRRs originated from an RR(s) and that there are intraspecific divergences among PpPRRs. Finally, we offer scenarios for the evolution of the PRR family in land plants.

  7. Origin and differentiation of endemism in the flora of China

    Institute of Scientific and Technical Information of China (English)

    WU Zhengyi; SUN Hang; ZHOU Zhekun; PENG Hua; LI Dezhu

    2007-01-01

    The present paper analyzed 239 endemic genera in 67 families in the flora of seed plants in China.The results showed that there are five families containing more than ten endemic genera,namely,Gesneriaceae (27),which hereafter refers to the number of endemic genera in China,Composite (20),Labiatae (12),Cruciferae (11),and Umbelliferae (10),15 families with two endemic genera,and another 30 families with only one endemic genus.Four monotypic families (Ginkgoaceae,Davidiaceae,Eucommiaceae and Acanthochlamydaceae)are the most ancient,relict and characteristic in the flora of seed plants in China.Based on integrative data of systematics,fossil history,and morphological and molecular evidence of these genera,their origin,evolution and relationships were discussed.In gymnosperms,all endemic genera are relicts of the Arctic-Tertiary flora,having earlier evolutionary history,and can be traced back to the Cretaceous or to the Jurassic and even earlier.In angiosperms,the endemic genera are mostly relicts,and are represented in all lineages in the"Eight-Class System ofClassification of Angiosperms",and endemism can be found in almost every evolutionary stage of extant angiosperms.The relict genera once occupied huge areas in the northern hemisphere in the Tertiary or the late Cretaceous,while neo-endemism mostly originated in the late Tertiary.They came from Arctic-Tertiary,Paleo-tropical-Tertiary and Tethys-Tertiary florisitic elements,and the blend of the three elements with many genera of autochthonous origin.The endemism was formed when some dispersal routes such as the North Atlantic Land Bridge,and the Bering Bridge became discontinuous during the Tertiary,as well as the climate change and glaciations in the late Tertiary and the Quaternary.Therefore,the late Tertiary is the starting point of extant endemism of the flora in China.

  8. The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants.

    Science.gov (United States)

    Sugiyama, Y; Watase, Y; Nagase, M; Makita, N; Yagura, S; Hirai, A; Sugiura, M

    2005-02-01

    Tobacco is a valuable model system for investigating the origin of mitochondrial DNA (mtDNA) in amphidiploid plants and studying the genetic interaction between mitochondria and chloroplasts in the various functions of the plant cell. As a first step, we have determined the complete mtDNA sequence of Nicotiana tabacum. The mtDNA of N. tabacum can be assumed to be a master circle (MC) of 430,597 bp. Sequence comparison of a large number of clones revealed that there are four classes of boundaries derived from homologous recombination, which leads to a multipartite organization with two MCs and six subgenomic circles. The mtDNA of N. tabacum contains 36 protein-coding genes, three ribosomal RNA genes and 21 tRNA genes. Among the first class, we identified the genes rps1 and psirps14, which had previously been thought to be absent in tobacco mtDNA on the basis of Southern analysis. Tobacco mtDNA was compared with those of Arabidopsis thaliana, Beta vulgaris, Oryza sativa and Brassica napus. Since repeated sequences show no homology to each other among the five angiosperms, it can be supposed that these were independently acquired by each species during the evolution of angiosperms. The gene order and the sequences of intergenic spacers in mtDNA also differ widely among the five angiosperms, indicating multiple reorganizations of genome structure during the evolution of higher plants. Among the conserved genes, the same potential conserved nonanucleotide-motif-type promoter could only be postulated for rrn18-rrn5 in four of the dicotyledonous plants, suggesting that a coding sequence does not necessarily move with the promoter upon reorganization of the mitochondrial genome.

  9. Reaction wood – a key cause of variation in cell wall recalcitrance in willow

    Directory of Open Access Journals (Sweden)

    Brereton Nicholas JB

    2012-11-01

    Full Text Available Abstract Background The recalcitrance of lignocellulosic cell wall biomass to deconstruction varies greatly in angiosperms, yet the source of this variation remains unclear. Here, in eight genotypes of short rotation coppice willow (Salix sp. variability of the reaction wood (RW response and the impact of this variation on cell wall recalcitrance to enzymatic saccharification was considered. Results A pot trial was designed to test if the ‘RW response’ varies between willow genotypes and contributes to the differences observed in cell wall recalcitrance to enzymatic saccharification in field-grown trees. Biomass composition was measured via wet chemistry and used with glucose release yields from enzymatic saccharification to determine cell wall recalcitrance. The levels of glucose release found for pot-grown control trees showed no significant correlation with glucose release from mature field-grown trees. However, when a RW phenotype was induced in pot-grown trees, glucose release was strongly correlated with that for mature field-grown trees. Field studies revealed a 5-fold increase in glucose release from a genotype grown at a site exposed to high wind speeds (a potentially high RW inducing environment when compared with the same genotype grown at a more sheltered site. Conclusions Our findings provide evidence for a new concept concerning variation in the recalcitrance to enzymatic hydrolysis of the stem biomass of different, field-grown willow genotypes (and potentially other angiosperms. Specifically, that genotypic differences in the ability to produce a response to RW inducing conditions (a ‘RW response’ indicate that this RW response is a primary determinant of the variation observed in cell wall glucan accessibility. The identification of the importance of this RW response trait in willows, is likely to be valuable in selective breeding strategies in willow (and other angiosperm biofuel crops and, with further work to dissect

  10. A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers

    Directory of Open Access Journals (Sweden)

    Pavy Nathalie

    2012-10-01

    Full Text Available Abstract Background Seed plants are composed of angiosperms and gymnosperms, which diverged from each other around 300 million years ago. While much light has been shed on the mechanisms and rate of genome evolution in flowering plants, such knowledge remains conspicuously meagre for the gymnosperms. Conifers are key representatives of gymnosperms and the sheer size of their genomes represents a significant challenge for characterization, sequencing and assembling. Results To gain insight into the macro-organisation and long-term evolution of the conifer genome, we developed a genetic map involving 1,801 spruce genes. We designed a statistical approach based on kernel density estimation to analyse gene density and identified seven gene-rich isochors. Groups of co-localizing genes were also found that were transcriptionally co-regulated, indicative of functional clusters. Phylogenetic analyses of 157 gene families for which at least two duplicates were mapped on the spruce genome indicated that ancient gene duplicates shared by angiosperms and gymnosperms outnumbered conifer-specific duplicates by a ratio of eight to one. Ancient duplicates were much more translocated within and among spruce chromosomes than conifer-specific duplicates, which were mostly organised in tandem arrays. Both high synteny and collinearity were also observed between the genomes of spruce and pine, two conifers that diverged more than 100 million years ago. Conclusions Taken together, these results indicate that much genomic evolution has occurred in the seed plant lineage before the split between gymnosperms and angiosperms, and that the pace of evolution of the genome macro-structure has been much slower in the gymnosperm lineage leading to extent conifers than that seen for the same period of time in flowering plants. This trend is largely congruent with the contrasted rates of diversification and morphological evolution observed between these two groups of seed

  11. Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa.

    Science.gov (United States)

    Morin, Ryan D; Aksay, Gozde; Dolgosheina, Elena; Ebhardt, H Alexander; Magrini, Vincent; Mardis, Elaine R; Sahinalp, S Cenk; Unrau, Peter J

    2008-04-01

    The diversity of microRNAs and small-interfering RNAs has been extensively explored within angiosperms by focusing on a few key organisms such as Oryza sativa and Arabidopsis thaliana. A deeper division of the plants is defined by the radiation of the angiosperms and gymnosperms, with the latter comprising the commercially important conifers. The conifers are expected to provide important information regarding the evolution of highly conserved small regulatory RNAs. Deep sequencing provides the means to characterize and quantitatively profile small RNAs in understudied organisms such as these. Pyrosequencing of small RNAs from O. sativa revealed, as expected, approximately 21- and approximately 24-nt RNAs. The former contained known microRNAs, and the latter largely comprised intergenic-derived sequences likely representing heterochromatin siRNAs. In contrast, sequences from Pinus contorta were dominated by 21-nt small RNAs. Using a novel sequence-based clustering algorithm, we identified sequences belonging to 18 highly conserved microRNA families in P. contorta as well as numerous clusters of conserved small RNAs of unknown function. Using multiple methods, including expressed sequence folding and machine learning algorithms, we found a further 53 candidate novel microRNA families, 51 appearing specific to the P. contorta library. In addition, alignment of small RNA sequences to the O. sativa genome revealed six perfectly conserved classes of small RNA that included chloroplast transcripts and specific types of genomic repeats. The conservation of microRNAs and other small RNAs between the conifers and the angiosperms indicates that important RNA silencing processes were highly developed in the earliest spermatophytes. Genomic mapping of all sequences to the O. sativa genome can be viewed at http://microrna.bcgsc.ca/cgi-bin/gbrowse/rice_build_3/.

  12. Identification and Functional Characterization of Monofunctional ent-Copalyl Diphosphate and ent-Kaurene Synthases in White Spruce Reveal Different Patterns for Diterpene Synthase Evolution for Primary and Secondary Metabolism in Gymnosperms1[W][OA

    Science.gov (United States)

    Keeling, Christopher I.; Dullat, Harpreet K.; Yuen, Mack; Ralph, Steven G.; Jancsik, Sharon; Bohlmann, Jörg

    2010-01-01

    The biosynthesis of the tetracyclic diterpene ent-kaurene is a critical step in the general (primary) metabolism of gibberellin hormones. ent-Kaurene is formed by a two-step cyclization of geranylgeranyl diphosphate via the intermediate ent-copalyl diphosphate. In a lower land plant, the moss Physcomitrella patens, a single bifunctional diterpene synthase (diTPS) catalyzes both steps. In contrast, in angiosperms, the two consecutive cyclizations are catalyzed by two distinct monofunctional enzymes, ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). The enzyme, or enzymes, responsible for ent-kaurene biosynthesis in gymnosperms has been elusive. However, several bifunctional diTPS of specialized (secondary) metabolism have previously been characterized in gymnosperms, and all known diTPSs for resin acid biosynthesis in conifers are bifunctional. To further understand the evolution of ent-kaurene biosynthesis as well as the evolution of general and specialized diterpenoid metabolisms in gymnosperms, we set out to determine whether conifers use a single bifunctional diTPS or two monofunctional diTPSs in the ent-kaurene pathway. Using a combination of expressed sequence tag, full-length cDNA, genomic DNA, and targeted bacterial artificial chromosome sequencing, we identified two candidate CPS and KS genes from white spruce (Picea glauca) and their orthologs in Sitka spruce (Picea sitchensis). Functional characterization of the recombinant enzymes established that ent-kaurene biosynthesis in white spruce is catalyzed by two monofunctional diTPSs, PgCPS and PgKS. Comparative analysis of gene structures and enzyme functions highlights the molecular evolution of these diTPSs as conserved between gymnosperms and angiosperms. In contrast, diTPSs for specialized metabolism have evolved differently in angiosperms and gymnosperms. PMID:20044448

  13. Ferns and flowering plants of Klaserie Private Nature Reserve, eastern Transvaal: an annotated checklist

    Directory of Open Access Journals (Sweden)

    N. Zambatis

    1994-12-01

    Full Text Available An annotated checklist of the plant taxa of the Klaserie Private Nature Reserve, eastern Transvaal Lowveld, is presented. Of the 618 infrageneric taxa recorded, six are pteridophytes and the remainder angiosperms. Of these, 161 are monocotyledons and 451 dicotyledons. Five of the latter are currently listed in the Red Data List of the Transvaal, two of which are first records for the Transvaal Lowveld. The vegetation of the reserve shows strong affinities with the Savanna Biome, and to a lesser degree, with the Grassland Biome.

  14. Phylogenic points of view on the sexuality of cormophytes

    Directory of Open Access Journals (Sweden)

    Michael Favre-Duchartre

    2014-01-01

    Full Text Available 1 Unisexuality is spreading from gametes, through gametophytes, to sporangia and sporaphytes, individual hermaphradite plants finally becoming the ground for sex separation with cross fertilization processes; 2 male and female gametogeneses are abbreviated down to the production of 3- and 4-cell gametophytes respectively; 3 inter-archegonial double fertilizations are found elsewhere than in angiosperms; 4 in the embryo sacs of the latter the disparity of female structures linked with disyncihronic post-fertilization developments might explain the differences between the endosiperm and the embryo.

  15. Plant macrofossils of the upper Cretaceous Kaitangata coalfield, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Pole, M.; Douglas, B. [University of Queensland, Brisbane, Qld. (Australia). Dept. of Botany

    1999-08-15

    Uppermost Cretaceous sediments from the Cretaceous Kaitangata Coal Mine and the Wangaloa coast (south of Dunedin, New Zealand) were investigated for dispersed plant macrofossils. The gymnosperms include two cycads (Macrozamia sp. and Pterostoma sp.), Ginkgo sp., three further possible ginkgophyte taxa, and ten conifer taxa. The conifers include two new conifer genera and species, Maikuku stephaniae and Ware riderensis, which are placed in the Taxodiaceae s.l. There are also 13 types of angiosperm cuticle. Sample heterogeneity as regards taxa present and their abundance suggests taxonomic heterogeneity in the original vegetation.

  16. Influences of floral composition and environment on plant biomarkers across a Cretaceous landscape (Big Cedar Ridge)

    Science.gov (United States)

    Bush, R. T.; Diefendorf, A. F.; Wing, S. L.; McInerney, F. A.

    2013-12-01

    The Late Cretaceous fossil site at Big Cedar Ridge (BCR; late Campanian, 72.7 Ma), located in the Bighorn Basin, Wyoming, USA, contains a flora preserved in situ in a volcanic ash tuff over an organic-rich paleosol. The BCR flora is irregularly but extensively exposed along a ~4 km north-south transect and records a lowland flora that grew on a coastal delta on the western shore of the Cretaceous Interior Seaway (Meeteetse Formation). The transect spans a diverse landscape and a range of environmental gradients from very carbon-rich, swampy soils in the southern portion to less carbon-rich in the north; the landscape is also intersected by multiple inactive channel cuts that were filling with sediment and organic matter at the time of ash deposition. Recently Wing and others (2012, Ecological Monographs) described the composition of the local plant community at high resolution across the entire landscape, including identification and quantification of cover and richness for >122 taxonomic morphotypes, for each of 100 sites along the transect. Big Cedar Ridge captures an important time in the ecological development of plant communities: the site preserves ferns, gymnosperms, and angiosperms in 'fern thicket' floral assemblages, which are rare today, as well as disturbed habitats with abundant herbaceous 'dicot' angiosperms. During the Late Cretaceous angiosperms were globally increasing in abundance, displacing other plant groups as vegetational dominants. This setting allows for a novel analysis of plant biomarkers in the context of floral diversity, abundance, and landscape heterogeneity. We quantified leaf waxes (n-alkyl lipids), plant-derived terpenoids, bacterial hopanes, carbon isotope values (including bulk and compound-specific), and percent total organic carbon of the underlying paleosol for 36 sites along the transect in order to assess the influence of floral composition and soil environment on biomarker distributions and preservation. We compare lipid

  17. Pollen grain sporoderm and types of dispersal units

    Directory of Open Access Journals (Sweden)

    Ettore Pacini

    2014-01-01

    Full Text Available The pollen of gymnosperms and angiosperms may be dispersed in monads, tetrads, polyads, massulae or compact pollinia. The monads and tetrads may form larger clumps of pollen because filiform pollen is tangled while other kinds of pollen can be glued by means of different devices. Exine and intine modify their structure to adapt to pollen dispersing units, exine in some cases can be absent. An additional layer, a thin callosic wall, can be present in some species beneath the intine; this occurs when pollen grains are slightly dehydrated before dispersal.

  18. Identification of Carboniferous (320 million years old) class Ic amber.

    Science.gov (United States)

    Bray, P Sargent; Anderson, Ken B

    2009-10-02

    The presence of amber, the fossil form of the resins produced by many types of higher plants, has been reported from many localities in Mesozoic and Cenozoic rocks. We have found Class I (polylabdanoid) amber in Carboniferous sediments dating to approximately 320 million years ago. This result demonstrates that preconifer gymnosperms evolved the biosynthetic mechanisms to produce complex polyterpenoid resins earlier than previously believed and that the biosynthetic pathways leading to the types of polylabdanoid resins that are now typically found in conifers and those now typically found in angiosperms had already diverged by the Carboniferous.

  19. Arctic Late Cretaceous and Paleocene Plant Community Succession

    Science.gov (United States)

    Herman, Alexei; Spicer, Robert; Daly, Robert; Jolley, David; Ahlberg, Anders; Moiseeva, Maria

    2010-05-01

    The Arctic abounds with Late Cretaceous and Paleocene plant fossils attesting to a thriving, diverse, but now extinct polar ecosystem that sequestered vast amounts of carbon. Through detailed examination of plant remains and their distributions in time and space with respect to their entombing sedimentary facies, it has been possible to reconstruct changes in Arctic vegetation composition and dynamics through the Late Cretaceous and into the Paleocene. Based on over 10,000 leaf remains, fossil wood and palynomorph assemblages from northeastern Russia and northern Alaska and palynological data from elsewhere in the Arctic we identify a number of successional plant communities (SPCs) representing seral development from early (pioneer), through middle to late SPCs and climax vegetation. We recognise that (1) Equisetites and some ferns (typically Birisia, but after the beginning of the Maastrichtian, Onoclea) were obligatory components of the early SPCs; (2) first rare angiosperms (e.g. the dicot Vitiphyllum multifidum) appeared in the middle SPCs of the Arctic in the Early - Middle Albian; (3) from late Albian times onwards angiosperms became abundant in the middle SPCs of the Arctic, but were still rare in the earlier and later SPCs; (4) monocots appeared in the Maastrichtian early SPCs; (5) all Arctic Cretaceous late SPCs (and climax vegetation) were dominated by conifers; (6) Arctic SPCs were more numerous and diverse under warm climates than cold; (7) during the Albian and late Cretaceous, advanced (Cenophytic, angiosperm-dominated) plant communities coexisted with those of a more relictual (Mesophytic, dominated by ferns and gymnosperms) aspect, and plants composing these communities did not mix; (8) coal-forming environments (mires) remained conifer, fern and bryophyte dominated throughout the late Cretaceous and Paleocene with little penetration of woody angiosperm components and thus are conservative and predominantly Mesophytic in character; (9) bryophytes

  20. PLANTS IN AID OF FAMILY PLANNING PROGRAMME

    OpenAIRE

    Oommachan, Mathew; Khan, Shaukat Saeed

    1981-01-01

    A preliminary survey was conducted during the years 1978-’79 at Bhopal and its neighbourhood to find out the medicinal plants and their utility. From among a total number of 850 angiospermic plant species of this region, about 10% of them were found having poisonous principles. One fourth of these poisonous plants can be used for safe termination of pregnancy. Certain of these plants are used by the villagers for criminal abortions and even for suicidal purpose. A good number of them can be u...

  1. Universality of phloem transport in seed plants

    DEFF Research Database (Denmark)

    Jensen, Kåre Hartvig; Liesche, Johannes; Bohr, Tomas;

    2012-01-01

    predictions. The compiled data allowed calculating stem sieve element conductivity and predicting phloem sap flow velocity. The central finding of this work is that all vascular plants seem to have evolved efficient osmotic pumping units, despite their huge disparity in size and morphology. This contribution......Since Münch in the 1920s proposed that sugar transport in the phloem vascular system is driven by osmotic pressure gradients, his hypothesis has been strongly supported by evidence from herbaceous angiosperms. Experimental constraints made it difficult to test this proposal in large trees, where...... extends the physical understanding of phloem transport, and will facilitate detailed comparison between theory and field experiments....

  2. The causes and molecular consequences of polyploidy in flowering plants.

    Science.gov (United States)

    Moghe, Gaurav D; Shiu, Shin-Han

    2014-07-01

    Polyploidy is an important force shaping plant genomes. All flowering plants are descendants of an ancestral polyploid species, and up to 70% of extant vascular plant species are believed to be recent polyploids. Over the past century, a significant body of knowledge has accumulated regarding the prevalence and ecology of polyploid plants. In this review, we summarize our current understanding of the causes and molecular consequences of polyploidization in angiosperms. We also provide a discussion on the relationships between polyploidy and adaptation and suggest areas where further research may provide a better understanding of polyploidy.

  3. Accelerated Gene Evolution and Subfunctionalization in thePseudotetraploid Frog Xenopus Laevis

    Energy Technology Data Exchange (ETDEWEB)

    Hellsten, Uffe; Khokha, Mustafa K.; Grammar, Timothy C.; Harland,Richard M.; Richardson, Paul; Rokhsar, Daniel S.

    2007-03-01

    Ancient whole genome duplications have been implicated in the vertebrate and teleost radiations, and in the emergence of diverse angiosperm lineages, but the evolutionary response to such a perturbation is still poorly understood. The African clawed frog Xenopus laevis experienced a relatively recent tetraploidization {approx} 40 million years ago. Analysis of the considerable amount of EST sequence available for this species together with the genome sequence of the related diploid Xenopus tropicalis provides a unique opportunity to study the genomic response to whole genome duplication.

  4. First genome size estimations for some eudicot families and genera

    Directory of Open Access Journals (Sweden)

    Garcia, S.

    2010-12-01

    Full Text Available Genome size diversity in angiosperms varies roughly 2400-fold, although approximately 45% of angiosperm families lack a single genome size estimation, and therefore, this range could be enlarged. To contribute completing family and genera representation, DNA C-Values are here provided for 19 species from 16 eudicot families, including first values for 6 families, 14 genera and 17 species. The sample of species studied is very diverse, including herbs, weeds, vines, shrubs and trees. Data are discussed regarding previous genome size estimates of closely related species or genera, if any, their chromosome number, growth form or invasive behaviour. The present research contributes approximately 1.5% new values for previously unreported angiosperm families, being the current coverage around 55% of angiosperm families, according to the Plant DNA C-Values Database.

    La diversidad del tamaño del genoma en angiospermas es muy amplia, siendo el valor más elevado aproximadamente unas 2400 veces superior al más pequeño. Sin embargo, cerca del 45% de las familias no presentan ni una sola estimación, por lo que el rango real podría ser ampliado. Para contribuir a completar la representación de familias y géneros de angiospermas, este estudio contribuye con valores C para 19 especies de 16 familias de eudicoticotiledóneas, incluyendo los primeros valores para 6 familias, 14 géneros y 17 especies. La muestra estudiada es muy diversa, e incluye hierbas, malezas, enredaderas, arbustos y árboles. Se discuten los resultados en función de estimaciones previas del tamaño del genoma de especies o géneros estrechamente relacionados, del número de cromosomas, la forma de crecimiento o el comportamiento invasor de las especies analizadas. El presente estudio contribuye aproximadamente en un 1,5% de nuevos valores para familias de angiospermas no estudiadas previamente, de las que actualmente existe información para el 55%, según la base de datos

  5. A checklist of the plants of the forests and grasslands in the Weza district, southern KwaZulu-Natal and a review of their status in the Red Data List

    Directory of Open Access Journals (Sweden)

    Graham R.H. Grieve

    2015-03-01

    Full Text Available Eastern mistbelt forests are naturally fragmented forests with grassland which occur from the Eastern Cape to KwaZulu-Natal, South Africa. These were heavily logged by colonial settlers and continue to be harvested despite being protected. Consequently we documented a checklist of the plants of the forests and grasslands in the Weza district (3029DA WEZA, southern KwaZulu-Natal, including Ngeli Forest and nearby indigenous forest patches to highlight their biodiversity status and need for conservation. We also reviewed their status in the Red Data List. Of the 1554 records included in this summary of plant species for the Weza district, there were 6 lichens (0.4%, 46 bryophytes (3.0%, 58 pteridophytes (3.7%, 6 gymnosperms (0.4% and the remaining 1424 species angiosperms (92.5%. Of the angiosperms, 27.3% were monocotyledons and 72.7% were dicotyledons. The most species-rich family was Asteraceae (239 species followed by Fabaceae (115 species, Liliaceae (used for purposes of comparison against older studies – 89 species, Orchidaceae (89 species, Iridaceae (59 species, Poaceae (58 species, Asclepidaceae (again used for purposes of comparison against older studies – 57 species, Scrophulariaceae (42 species, Euphorbiaceae (32 species, Lamiaceae (32 species and Rubiaceae (27 species. These 10 families each comprised more than 2% of the species in the list. Together they contributed 55% of the angiosperm species and 34.1% of the angiosperm genera. The biodiversity and conservation value of the study area are conserved pockets of eastern mistbelt forest, Drakensberg foothill moist grassland and mistbelt grassland. More than 4% of the species are under some degree of threat, as was evidenced by the number of species regarded as endangered (5, vulnerable (18, near threatened (10, critically rare (1, rare (20 or declining (11 amongst the 1554 species covered in the list.Conservation implications: In terms of taxa under some degree of threat, number of

  6. Gamete Recognition in Higher Plants: An Abstruse but Charming Mystery

    Institute of Scientific and Technical Information of China (English)

    Xiong-Bo Peng; Meng-Xiang Sun

    2008-01-01

    Although much effort has been made to uncover the mechanism underlying double fertilization, little knowledge has been acquired for understanding the molecular base of gamete recognition, mainly because of technical limitations. Still,progress has been made in terms of the mechanism, including the identification of candidate molecules that are involved in gamete recognition in angiosperms. New cues for gamete recognition have been found by the successful separation of the gametes and construction of gamete-specific cDNA libraries in several species, and the application of molecular approaches for studying this process by mutations. Thus, the topic is considered an abstruse but charming mystery.

  7. ABC model and floral evolution

    Institute of Scientific and Technical Information of China (English)

    LI Guisheng; MENG Zheng; KONG Hongzhi; CHEN Zhiduan; LU Anming

    2003-01-01

    The paper introduces the classical ABC model of floral development and thereafter ABCD, ABCDE and quartet models, and presents achievements in the studies on floral evolution such as the improved understanding on the relationship of reproductive organs between gnetophytes and angiosperms, new results in perianth evolution and identified homology of floral organs between dicots and monocots. The evo-devo studies on plant taxa at different evolutionary levels are useful to better understanding the homology of floral organs, and to clarifying the mysteries of the origin and subsequent diversification of flowers.

  8. Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests.

    Science.gov (United States)

    Hawkins, Bradford A; Rueda, Marta; Rangel, Thiago F; Field, Richard; Diniz-Filho, José Alexandre F; Linder, Peter

    2014-01-01

    AimThe fossil record has led to a historical explanation for forest diversity gradients within the cool parts of the Northern Hemisphere, founded on a limited ability of woody angiosperm clades to adapt to mid-Tertiary cooling. We tested four predictions of how this should be manifested in the phylogenetic structure of 91,340 communities: (1) forests to the north should comprise species from younger clades (families) than forests to the south; (2) average cold tolerance at a local site should be associated with the mean family age (MFA) of species; (3) minimum temperature should account for MFA better than alternative environmental variables; and (4) traits associated with survival in cold climates should evolve under a niche conservatism constraint. LocationThe contiguous United States. MethodsWe extracted angiosperms from the US Forest Service's Forest Inventory and Analysis database. MFA was calculated by assigning age of the family to which each species belongs and averaging across the species in each community. We developed a phylogeny to identify phylogenetic signal in five traits: realized cold tolerance, seed size, seed dispersal mode, leaf phenology and height. Phylogenetic signal representation curves and phylogenetic generalized least squares were used to compare patterns of trait evolution against Brownian motion. Eleven predictors structured at broad or local scales were generated to explore relationships between environment and MFA using random forest and general linear models. ResultsConsistent with predictions, (1) southern communities comprise angiosperm species from older families than northern communities, (2) cold tolerance is the trait most strongly associated with local MFA, (3) minimum temperature in the coldest month is the environmental variable that best describes MFA, broad-scale variables being much stronger correlates than local-scale variables, and (4) the phylogenetic structures of cold tolerance and at least one other trait

  9. Palynology of Albian-Cenomanian strata in Mersa Matruh well, Western Desert, Egypt

    Science.gov (United States)

    Sultan, Ismail Z.

    Plant microfossils have been recovered from the Albian and lower Cenomanian strata encountered in Mersa Matruh well No. 1, drilled in the northern part of the Western Desert of Egypt. The microflora includes 56 miospore species belonging to 35 genera; most of them are derived from pteridophyte, gymnosperm and angiosperm vegetations. Differences in miospore assemblages of the Albian and Lower Cenomanian are described. Correlation with coeval palynofloral assemblages in West Africa and South and North America reveals that the Mersa Matruh area, Egypt belongs to the mid-Cretaceous African-South American phytogeoprovince.

  10. Economic strategies of plant absorptive roots vary with root diameter

    Science.gov (United States)

    Kong, D. L.; Wang, J. J.; Kardol, P.; Wu, H. F.; Zeng, H.; Deng, X. B.; Deng, Y.

    2016-01-01

    Plant roots typically vary along a dominant ecological axis, the root economics spectrum, depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root economic strategies differ with increasing root diameter. To test this hypothesis, we used seven plant species (a fern, a conifer, and five angiosperms from south China) for which we separated absorptive roots into two categories: thin roots (thickness of root cortex plus epidermis perspective on our understanding of the root economics spectrum.

  11. Implicações químicas na sistemática e filogenia de Bignoniaceae

    Directory of Open Access Journals (Sweden)

    Franciane Auxiliadora Cipriani

    2012-01-01

    Full Text Available Our solemn homage to the great Master Otto R. Gottlieb who knew how to teach the mystery of evolutionary relationships between chemistry and its natural sources. The micromolecular chemical study of the family Bignoniaceae shows a profile predominantly characterized by the occurrence of metabolites derived from acetic acid biosynthetic pathways such as terpenoids, quinones, flavonoids and special aromatic derivatives. Analysis of different chemosystematic parameters for the metabolite data collected, provided valuable information for the systematic characterization of the Bignoniaceae family within the Angiosperm derived taxa.

  12. Morpho-anatomical characteristics of the cork of Dracaena draco L. tree regarding the production of dragon’s blood

    OpenAIRE

    Joanna Jura-Morawiec; Mirela Tulik

    2014-01-01

    The monocotyledonous plant Dracaena draco L. belongs to so called dragon blood trees producing deep red resin (dragon’s blood) that has been used as a famous traditional medicine since ancient times by many cultures. Although resin’s chemistry and its diverse medical application have received much attention, our knowledge of the anatomical basis of the dragon’s blood secretion is scarce when compared with resin/sap secretion of gymnosperms and other angiosperms. The focus of our studies is to...

  13. United States Air Force Faculty Research Program 1989. Program Technical Report. Volume 4

    Science.gov (United States)

    1989-12-01

    8.1 19.0 4.5 ae9tntus sp. (gastrotrich) 21.8 24.7 2.9 Tardigrada 5.2 17.3 2.1 The data collected for the macrobenthic populations is summarized in...sensitive bioassay for certain higher plant hormones as well as provide a new tool for the study of biochemical evolution in plants. 165-2 ACKNOWLEDG...phototaxis. These studies also stimulate the intriguing question on biochemical evolution : did the angiosperm hormones only appear as chemicals after the

  14. Ethnobotanical bioprospection of candidates for potential antimicrobial drugs from Brazilian plants: state of art and perspectives.

    Science.gov (United States)

    Benko-Iseppon, Ana Maria; Crovella, Sergio

    2010-05-01

    Despite of the high biological diversity and traditional use of medicinal plants in Brazil, no comprehensive ethnobotanic review of plants with potential antimicrobial effects is available. In the present work own field information is aggregated with a literature review, identifying 433 Brazilian plant species potentially useful for identification of antimicrobial peptides. They included mainly woody species, distributed on 100 plant families (93 angiosperms and 7 pteridophytes) and 266 genera, covering all Brazilian regions and ecosystems. Main plant parts and indications for their use are presented and discussed, revealing the high potential that these plants present for the future planning strategies regarding the future development of antimicrobial drugs.

  15. 100 years of vegetation decline and recovery in Lake Fure, Denmark

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand; Pedersen, Niels Lagergaard; Thorsgaard, Inge;

    2008-01-01

    by reducing water transparency from a summer mean of 5-6 m in the early 1900s to a minimum of 1.6 m at the peak of eutrophication, followed by recovery to a recent maximum of 4.1 m. • Macrophyte occurrence and abundance changed in accordance with altered environmental conditions and species' life-history...... the probability of recolonization. Species reaching Lake Fure may fail to establish because sediments have become richer in nutrients and organic matter and less consolidated, while shading and competition have increased from emergent reeds, tall submerged angiosperms and fast-growing macroalgae....

  16. A conserved role for the NAM/miR164 developmental module reveals a common mechanism underlying carpel margin fusion in monocarpous and syncarpous eurosids.

    Directory of Open Access Journals (Sweden)

    Aurelie Chantal Marie Vialette-Guiraud

    2016-01-01

    Full Text Available The majority of angiosperms are syncarpous- their gynoecium is composed of two or more fused carpels. In Arabidopsis thaliana, this fusion is regulated through the balance of expression between CUP SHAPED COTYLEDON (CUC genes, which are orthologues of the Petunia hybrida transcription factor NO APICAL MERISTEM (NAM, and their post-transcriptional regulator miR164. Accordingly, the expression of a miR164-insensitive form of Ar. thaliana CUC2 causes a radical breakdown of carpel fusion. Here, we investigate the role of the NAM/miR164 genetic module in carpel closure in monocarpous plants. We show that the disruption of this module in monocarpous flowers of Ar. thaliana aux1-22 mutants causes a failure of carpel closure, similar to the failure of carpel fusion observed in the wild-type genetic background. This observation suggested that closely related mechanisms may bring about carpel closure and carpel fusion, at least in Ar. thaliana. We therefore tested whether these mechanisms were conserved in a eurosid species that is monocarpous in its wild-type form. We observed that expression of MtNAM, the NAM ortholog in the monocarpous eurosid Medicago truncatula, decreases during carpel margin fusion, suggesting a role for the NAM/miR164 module in this process. We transformed M. truncatula with a miR164-resistant form of MtNAM and observed, among other phenotypes, incomplete carpel closure in the resulting transformants. These data confirm the underlying mechanistic similarity between carpel closure and carpel fusion which we observed in Ar. thaliana. Our observations suggest that the role of the NAM/miR164 module in the fusion of carpel margins has been conserved at least since the most recent common ancestor of the eurosid clade, and open the possibility that a similar mechanism may have been responsible for carpel closure at much earlier stages of angiosperm evolution. We combine our results with studies of early-diverging angiosperms to speculate

  17. Terminal-repeat retrotransposons with GAG domain in plant genomes: a new testimony on the complex world of transposable elements.

    Science.gov (United States)

    Chaparro, Cristian; Gayraud, Thomas; de Souza, Rogerio Fernandes; Domingues, Douglas Silva; Akaffou, Sélastique; Laforga Vanzela, Andre Luis; Kochko, Alexandre de; Rigoreau, Michel; Crouzillat, Dominique; Hamon, Serge; Hamon, Perla; Guyot, Romain

    2015-01-07

    A novel structure of nonautonomous long terminal repeat (LTR) retrotransposons called terminal repeat with GAG domain (TR-GAG) has been described in plants, both in monocotyledonous, dicotyledonous and basal angiosperm genomes. TR-GAGs are relatively short elements in length (element into the virus-like particle. GAG precursors show similarities with both Copia and Gypsy GAG proteins, suggesting evolutionary relationships of TR-GAG elements with both families. Despite the lack of the enzymatic machinery required for their mobility, strong evidences suggest that TR-GAGs are still active. TR-GAGs represent ubiquitous nonautonomous structures that could be involved in the molecular diversities of plant genomes.

  18. Fossil history of Mesozoic weevils (Coleoptera:Curculionoidea)

    Institute of Scientific and Technical Information of China (English)

    Andrei A.Legalov

    2012-01-01

    The first synopsis of Mesozoic weevils (Curculionoidea: Coleoptera) is presented.Changes of family,genera and species abundance during the Mesozoic revealed three distributional patterns.The Jurassic (Karatau) fauna was dominated by the Nemonychidae.During the Early Cretaceous (beginning at the Jurassic/Cretaceous border),the Ithyceridae was the prevalent group with a significant role played by the Nemonychidae.In the Late Cretaceous (Cenomanian and Turonian),the major groups were the Curculionidae and Brentidae.Obviously,the change of weevil fauna during this period was due to the expansion of the angiosperms,which provided multiple niches in their vegetative and reproductive organs for weevil development.

  19. Reference: 387 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available Michael F et al. 2006 Jul. Plant Physiol. 141(3):957-65. Karyogamy, or nuclear fusion, is essential for sex...ual reproduction. In angiosperms, karyogamy occurs three times: twice during double fertilization of the egg...e two polar nuclei fuse to form the diploid central cell nucleus. The molecular mechanisms controlling karyoga...etected during megagametogenesis. nfd1 is also affected in karyogamy during double fertilization. Using tran...odes the Arabidopsis RPL21M protein and is required for karyogamy during female g

  20. Veronica: Iridoids and cornoside as chemosystematic markers

    DEFF Research Database (Denmark)

    Jensen, Søren Rosendal; Albach, Dirk C.; Ohno, Takao;

    2005-01-01

    (melittoside and globularifolin) and is so far the only species within the genus in which such compounds have been detected. These chemical differences are clearly reflected in the DNA-based phylogram of the subgenus. Subg. Chamaedrys appears homogeneous in lacking iridoids or only containing these in small...... amounts, but instead half of the investigated species contained the phenylethanoid glucoside cornoside. The distribution of this compound in angiosperms is reviewed; cornoside often substitutes iridoid glucosides in plants where these are expected to be present. The chemical results of Veronica fit...

  1. A set of 100 chloroplast DNA primer pairs to study population genetics and phylogeny in monocotylenons

    DEFF Research Database (Denmark)

    Scarcelli, Nora; Bernaud, Adeline; Eiserhardt, Wolf L.;

    2011-01-01

    Chloroplast DNA sequences are of great interest for population genetics and phylogenetic studies. However, only a small set of markers are commonly used. Most of them have been designed for amplification in a large range of Angiosperms and are located in the Large Single Copy (LSC). Here we...... developed a new set of 100 primer pairs optimized for amplification in Monocotyledons. Primer pairs amplify coding (exon) and non-coding regions (intron and intergenic spacer). They span the different chloroplast regions: 72 are located in the LSC, 13 in the Small Single Copy (SSC) and 15 in the Inverted...

  2. New Combinations for ChineseArgentina Hill (Rosaceae)%中国蔷薇科蕨麻属新组合

    Institute of Scientific and Technical Information of China (English)

    童毅华; 夏念和

    2016-01-01

    During the course of compilingSpecies Catalogue of China [Volume I-Spermatophytes, (V)-Angiosperms (Rosaceae–Phyllanthaceae)], twelve new combinations for ChineseArgentina Hill (Rosaceae) are proposed here based on the recent studies.%在编研《中国生物物种名录》第一卷第五分册(蔷薇科–叶下珠科)的过程中,根据最新的研究结果提出国产蔷薇科蕨麻属植物的12个新组合。

  3. Bacterial degradation of phenoxy herbicide mixtures 2,4-D and MCPP

    Energy Technology Data Exchange (ETDEWEB)

    Kyeheon Oh; Tuovinen, O.H. (Ohio State Univ., Columbus (United States))

    1991-08-01

    The phenoxy herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-(2-methyl-4-chlorophenoxy)propionic acid (MCPP) have auxin-like growth regulating properties and are extensively used for the control of broad-leaf angiosperm weeds. The microbiological degradation of 2,4-D by pure and mixed cultures has been examined in a number of studies. The authors have previously evaluated the concurrent microbiological degradation of 2,4-D and MCPP in stirred tank reactors. For the present paper, they examined the utilization of the two substrates by three mixed cultures that had a previous history of growth with the respective single phenoxy herbicide.

  4. Reinvestigation of the Miocene palynoflora from the Daotaiqiao Formation of north-eastern China using SEM

    Science.gov (United States)

    Akyurt, Elvan; Grímsson, Friðgeir; Zetter, Reinhard; Leng, Qin; Bouchal, Johannes Martin

    2016-04-01

    Here we report the first results of an ongoing study on the Miocene palynoflora from the Daotaiqiao Formation of north-eastern China. Using the single grain technique, we examined individual pollen and spores using both light and scanning electron microscopy. A previous study by Grímsson et al. (2012) on Onagraceae pollen grains from this locality, using the same technique identified five different species. Such a variety of Onagraceae from a single palynoflora is unknown elsewhere. The ongoing study suggests a remarkably rich pollen and spore flora with at least 15 different types of spores, one Ginkgo and one Ephedra type pollen, 11 conifer pollen types and approximately 145 angiosperm pollen types. Spores are very rare in the samples (≤1%). Conifer pollen grains are regularly observed but are not a dominant component (ca. 16 %). The samples yield a high quantity and diversity of angiosperm pollen (ca. 80%). The conifers include representatives of Cupressaceae (2 spp.), Pinaceae (Larix, Picea, Pinus, Tsuga) and Sciadopityaceae. The angiosperm pollen cover at least 40 families. Prominent elements are pollen of the Betulaceae (Alnus, Betula, Carpinus, Corylus), Cercidiphyllaceae (Cercidiphyllum), Ericaceae (8 spp.), Eucommiaceae (Eucommia), Fagaceae (Fagus, Quercus spp., Castaneoideae), Juglandaceae (Carya, Cyclocarya, Juglans, Pterocarya), Rosaceae (11 spp.), Sapindaceae (Acer, Aesculus) and Ulmaceae (Hemiptelia, Ulmus, Zelkova). The high angiosperm pollen diversity indicates a varying landscape with a relatively high variety of niches including riparian, dry and mesic forests. Most of the potential modern analogues of the fossil taxa are currently thriving under humid temperate (Cfa- and Cwa)-climates, pointing to paleoclimate conditions not unlike those found today in the lowlands and adjacent mountain regions of the (south-) eastern United States, the humid-meridional region of western Eurasia, and central and southern China, and Honshu (Japan). References

  5. Momilactone A and B as allelochemicals from moss Hypnum plumaeforme: first occurrence in bryophytes.

    Science.gov (United States)

    Nozaki, Hiroshi; Hayashi, Ken-ichiro; Nishimura, Naoki; Kawaide, Hiroshi; Matsuo, Akihiko; Takaoka, Daisuke

    2007-12-01

    Momilactones A (1) and B (2), which have been identified as phytoalexins in rice, were isolated from extracts of the moss Hypnum plumaeforme. This is the first isolation and identification of momilactones as allelochemicals from a bryophyte. H. plumaeforme produces considerable amounts of momilactones (isolated yield: 8.4 mg/Kg plant for 1; 4.2 mg/Kg for 2). EtOAc extracts from H. plumaeforme and 2 showed growth inhibitory activity against angiosperms, moss, and liverwort plants. On the other hand, the growth of H. plumaeforme was insensitive to its extract and 2. Our finding suggests that momilactones play an important role as allelochemicals in this moss.

  6. Changes of taxonomical composition of Late Jurassic Early Cretaceous palynofloras of Bureya Basin,Russia

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The changes of taxonomical composition of the Late Jurassic-Early Cretaceous palynofloras are revealed,in the upper stream of Bureya River in Bureya Basin.The palynofloras are dominated as follows:the Berriasian one by ferns (Cyatheaceae,Dicksoniaceae,Osmundaceae), Classopollis and bisaccate pollen;the Valanginian-Hauterivian one by ferns (Cyatheaceae,Dicksoniaceae), Ginkgocycadophytus and bisaccate pollen;the Barremian one by ferns(Cyatheaceae,Dieksoniaceae);the Aptian one by ferns(Cyatheaceae,Dieksoniaceae,Gleicheniaceae)and Ginkgocycadophytus;and the Albian one by ferns(Schizaeaceae)and bisaccate pollen.In the Albian the floral diversity raises with the angiosperms appearing.

  7. The complete chloroplast and mitochondrial genome sequences of Boea hygrometrica: insights into the evolution of plant organellar genomes.

    Directory of Open Access Journals (Sweden)

    Tongwu Zhang

    Full Text Available The complete nucleotide sequences of the chloroplast (cp and mitochondrial (mt genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147 with a 72% coding sequence, and the larger mitochondrial genome have less genes (65 with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage.

  8. Conservation of Male Sterility 2 function during spore and pollen wall development supports an evolutionarily early recruitment of a core component in the sporopollenin biosynthetic pathway.

    Science.gov (United States)

    Wallace, Simon; Chater, Caspar C; Kamisugi, Yasuko; Cuming, Andrew C; Wellman, Charles H; Beerling, David J; Fleming, Andrew J

    2015-01-01

    The early evolution of plants required the acquisition of a number of key adaptations to overcome physiological difficulties associated with survival on land. One of these was a tough sporopollenin wall that enclosed reproductive propagules and provided protection from desiccation and UV-B radiation. All land plants possess such walled spores (or their derived homologue, pollen). We took a reverse genetics approach, consisting of knock-out and complementation experiments to test the functional conservation of the sporopollenin-associated gene MALE STERILTY 2 (which is essential for pollen wall development in Arabidopsis thaliana) in the bryophyte Physcomitrella patens. Knock-outs of a putative moss homologue of the A. thaliana MS2 gene, which is highly expressed in the moss sporophyte, led to spores with highly defective walls comparable to that observed in the A. thaliana ms2 mutant, and extremely compromised germination. Conversely, the moss MS2 gene could not rescue the A. thaliana ms2 phenotype. The results presented here suggest that a core component of the biochemical and developmental pathway required for angiosperm pollen wall development was recruited early in land plant evolution but the continued increase in pollen wall complexity observed in angiosperms has been accompanied by divergence in MS2 gene function.

  9. Evolution of fruit development genes in flowering plants

    Directory of Open Access Journals (Sweden)

    Natalia ePabón-Mora

    2014-06-01

    Full Text Available The genetic mechanisms regulating dry fruit development and opercular dehiscence have been identified in Arabidopsis thaliana. In the bicarpellate silique, valve elongation and differentiation is controlled by FRUITFULL (FUL that antagonizes SHATTERPROOF1-2 (SHP1/ SHP2 and INDEHISCENT (IND at the dehiscence zone where they control normal lignification. SHP1/2 are also repressed by REPLUMLESS (RPL, responsible for replum formation. Similarly, FUL indirectly controls two other factors ALCATRAZ (ALC and SPATULA (SPT that function in the proper formation of the separation layer. FUL and SHP1/2 belong to the MADS-box family, IND and ALC belong to the bHLH family and RPL belongs to the homeodomain family, all of which are large transcription factor families. These families have undergone numerous duplications and losses in plants, likely accompanied by functional changes. Functional analyses of homologous genes suggest that this network is fairly conserved in Brassicaceae and less conserved in other core eudicots. Only the MADS box genes have been functionally characterized in basal eudicots and suggest partial conservation of the functions recorded for Brassicaceae. Here we do a comprehensive search of SHP, IND, ALC, SPT and RPL homologs across core-eudicots, basal eudicots, monocots and basal angiosperms. Based on gene-tree analyses we hypothesize what parts of the network for fruit development in Brassicaceae, in particular regarding direct and indirect targets of FUL, might be conserved across angiosperms.

  10. Heterostyly accelerates diversification via reduced extinction in primroses.

    Science.gov (United States)

    de Vos, Jurriaan M; Hughes, Colin E; Schneeweiss, Gerald M; Moore, Brian R; Conti, Elena

    2014-06-01

    The exceptional species diversity of flowering plants, exceeding that of their sister group more than 250-fold, is especially evident in floral innovations, interactions with pollinators and sexual systems. Multiple theories, emphasizing flower-pollinator interactions, genetic effects of mating systems or high evolvability, predict that floral evolution profoundly affects angiosperm diversification. However, consequences for speciation and extinction dynamics remain poorly understood. Here, we investigate trajectories of species diversification focusing on heterostyly, a remarkable floral syndrome where outcrossing is enforced via cross-compatible floral morphs differing in placement of their respective sexual organs. Heterostyly evolved at least 20 times independently in angiosperms. Using Darwin's model for heterostyly, the primrose family, we show that heterostyly accelerates species diversification via decreasing extinction rates rather than increasing speciation rates, probably owing to avoidance of the negative genetic effects of selfing. However, impact of heterostyly appears to differ over short and long evolutionary time-scales: the accelerating effect of heterostyly on lineage diversification is manifest only over long evolutionary time-scales, whereas recent losses of heterostyly may prompt ephemeral bursts of speciation. Our results suggest that temporal or clade-specific conditions may ultimately determine the net effects of specific traits on patterns of species diversification.

  11. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus).

    Science.gov (United States)

    Ming, Ray; Hou, Shaobin; Feng, Yun; Yu, Qingyi; Dionne-Laporte, Alexandre; Saw, Jimmy H; Senin, Pavel; Wang, Wei; Ly, Benjamin V; Lewis, Kanako L T; Salzberg, Steven L; Feng, Lu; Jones, Meghan R; Skelton, Rachel L; Murray, Jan E; Chen, Cuixia; Qian, Wubin; Shen, Junguo; Du, Peng; Eustice, Moriah; Tong, Eric; Tang, Haibao; Lyons, Eric; Paull, Robert E; Michael, Todd P; Wall, Kerr; Rice, Danny W; Albert, Henrik; Wang, Ming-Li; Zhu, Yun J; Schatz, Michael; Nagarajan, Niranjan; Acob, Ricelle A; Guan, Peizhu; Blas, Andrea; Wai, Ching Man; Ackerman, Christine M; Ren, Yan; Liu, Chao; Wang, Jianmei; Wang, Jianping; Na, Jong-Kuk; Shakirov, Eugene V; Haas, Brian; Thimmapuram, Jyothi; Nelson, David; Wang, Xiyin; Bowers, John E; Gschwend, Andrea R; Delcher, Arthur L; Singh, Ratnesh; Suzuki, Jon Y; Tripathi, Savarni; Neupane, Kabi; Wei, Hairong; Irikura, Beth; Paidi, Maya; Jiang, Ning; Zhang, Wenli; Presting, Gernot; Windsor, Aaron; Navajas-Pérez, Rafael; Torres, Manuel J; Feltus, F Alex; Porter, Brad; Li, Yingjun; Burroughs, A Max; Luo, Ming-Cheng; Liu, Lei; Christopher, David A; Mount, Stephen M; Moore, Paul H; Sugimura, Tak; Jiang, Jiming; Schuler, Mary A; Friedman, Vikki; Mitchell-Olds, Thomas; Shippen, Dorothy E; dePamphilis, Claude W; Palmer, Jeffrey D; Freeling, Michael; Paterson, Andrew H; Gonsalves, Dennis; Wang, Lei; Alam, Maqsudul

    2008-04-24

    Papaya, a fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3x draft genome sequence of 'SunUp' papaya, the first commercial virus-resistant transgenic fruit tree to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for fruit-tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica's distinguishing morpho-physiological, medicinal and nutritional properties.

  12. The radial distribution of [sup 90]Sr and [sup 137]Cs in trees

    Energy Technology Data Exchange (ETDEWEB)

    Nomoshima, N. (Kyushu Univ., Fukuoka (Japan). Faculty of Science); Bondietti, E.A. (Oak Ridge National Lab., TN (United States). Environmental Sciences Div.)

    1994-01-01

    The distributions of [sup 90]Sr and [sup 137]Cs in tree trunks were measured for eight species. The concentration of [sup 137]Cs was relatively uniform in the wood xylem and did not show any correlation with the temporal record of cumulative deposition of fallout in the northern hemisphere, indicating that [sup 137]Cs was mobile in the wood xylem. The distributions of [sup 90]Sr were classified into three groups. All of the gymnosperms - red spruce, eastern hemlock and white pine - showed a maximum [sup 90]Sr specific activity in rings formed in the 1960s and the overall distribution was closely associated with the temporal record of the cumulative deposition of fallout. Three of five angiosperms -hickory, elm and American beech - showed similar distributions to the gymnosperms except that the maximum [sup 90]Sr specific activity corresponded to the 1970s. The other two angiosperms - yellow poplar and sugar maple - did not show any correlation with the cumulative fallout deposition. The radial distribution of [sup 90]Sr in gymnosperms was simulated considering a steady-state cycling of [sup 90]Sr in the forest ecosystem. The model suggested that a few per cent of stable Sr are replaced annually in the nutrient pool of gymnosperms. (Author).

  13. Carbon isotope biogeochemistry of plant resins and derived hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Murray, A.P.; Edwards, D.; Hope, J.M.; Boreham, C.J. [Australian Geological Survey Organisation, Canberra (Australia)] [and others

    1998-12-31

    Hydrocarbons derived from plant resins are major components of some terrigenous oils and bitumens. These compounds are structurally distinct and this makes then useful biomarkers applicable in petroleum exploration as well as sources of biogeochemical information about palaeoenvironment and palaeobotany. Although recent studies have elucidated the molecular structure of resinites, very little information has been available for the carbon isotope composition of resinites and no studies of resin-derived compounds in oils had been performed prior to the present study. Hence, carbon stable isotope analyses were carried out on a suite of modern and fossil resins of diverse origins, including compound specific isotope analysis of individual hydrocarbons produced during resin pyrolysis. Oils derived from resinite source organic matter were also analysed. The results showed that ``Class I`` resinites derived from gymnosperms were enriched in the heavy carbon isotope compared with those from angiosperms (``Class I`` resinites). Furthermore, both fossil resinites themselves and individual hydrocarbons derived from them were isotopically heavy compared with modern plant resins. The isotopic signatures of diterpanes and triterpanes in various early Tertiary oils from Australasia and Southeast Asia reflect their origins from gymnosperms and angiosperms, respectively. (author)

  14. Mesozoic palynology and continental sediments in NE Africa (Egypt and Sudan) - a review

    Science.gov (United States)

    Schrank, E.

    In Egypt and Sudan most palynogical data are derived from predominantly clastic sequences in research wells for oil, water and other sedimentary deposits. The partly coal-bearing Middle Jurassic is characterized by dominance of pteridophytes while increasing percentages of gymnosperms may be noted in the Late Jurassic. The Jurassic-Cretaceous boundary is difficult to define, but Ischyosporites-Cicatricosisporites assemblages have been interpreted as Late Jurassic and overlying assemblages with Impardecispora, Geicheniidites, Classopollis etc. as Neocomian. The appearance of rare early angiosperms and their subsequent rise is documented e.g. in the Six Hills (Barremian) and in the shallow marine Abu Ballas Formation (Aptian). More advanced angiosperm types (tricolpates, tricolporates, triporates) occur in the post-Aptian. Elater-bearing spores ( Elaterosporites) associated with Afropollis form a distinctive element of the Albian (to Early Cenomanian) palynofloras known from Northern Egypt and recently discovered in Northern Sudan. In the Coniacian-Santonian, the spinose tetrads of Droseridites senonicus and large tricolpate pollen of the Foveotricolpites giganteus group become the most characteristic members of the terrestrial palynofloras. Distinctly marine palynomorphs reach the middle latitudes of Egypt for the first time with the Campanian-Maastrichtian transgression. Reduced salinity in the Phosphate Formation is reflected by peridinoid (e.g. Andalusiella, Senegalinium) communities interfingering with pollen and spores dominated associations. More open marine conditions in the overlying Dakhla Shale are documented by the rise of cosmopolitan gonyaulacoids such as Spiniferites, Glaphyrocysta and Florentinia.

  15. Depositional Environment of Mio-Pliocene Siwalik Sedimentary Strata from the Darjeeling Himalayan Foothills, India: A Palynological Approach.

    Directory of Open Access Journals (Sweden)

    Sandip More

    Full Text Available A rich and diverse palynoassemblage recovered from the Churanthi River section (26°53' 59.3" N, 88°34' 17.2" E, Darjeeling foothills Eastern Himalaya, has yielded 87 species assigned to 69 genera. The palynoassemblage is rich in angiosperm taxa (45.63% followed by gymnosperms (0.45%, pteridophytes (18.49% and fungal remains (23.88%. Based on their nearest living relatives, a wet evergreen to semi-evergreen forest under a humid tropical to sub-tropical environment during the Mio-Pliocene age has been suggested. A lot of angiosperms such as Palaeosantalaceaepites, Araliaceoipollenites, Malvacearampollis, Zonocostites, Neocouperipollis, Dicolpopollis, Palmidites, Palmaepollenites, isolated salt glands of mangrove plant leaves (Heliospermopsis and Mediaverrunites type of fungal spores, along with ichnofossils like Planolites, Palaeophycus, Skolithos, Rosselia, Ophiomorpha and Teichichnus associated with rippled mudstone-siltstone suggest an environment strongly influenced by brackish water. Primary sedimentary structures in the associated strata indicate strong wave agitation common in shallow marine setting. Some high elevation components (5.14% such as Alnipollenites, cf. Corylus (Betulaceae, Juglanspollenites, Engelhardtioipollenites (Juglandaceae, Quercoides, Cupuliferoidaepollenites, Lithocarpus, Castanopsis (Fagaceae, Abietineaepollenites (Pinaceae represent hinterland vegetation possibly transported to the prograding deltaic coastline by the rivers. Reworked palynotaxa (Striatopodocarpites sp., Striatites sp., Faunipollenites sp., Circumstriatites sp., Crescentipollenites sp., Cuneatisporites sp., Parasaccites sp., Scheuringipollenites sp., Rhizomaspora sp., Marsupipollenites sp., Lophotriletes sp. of Permian age have also been recorded in the palynoassemblage (11.55% indicating the abundance of Permian Gondwana strata in the source area.

  16. Proton-dependent coniferin transport, a common major transport event in differentiating xylem tissue of woody plants.

    Science.gov (United States)

    Tsuyama, Taku; Kawai, Ryo; Shitan, Nobukazu; Matoh, Toru; Sugiyama, Junji; Yoshinaga, Arata; Takabe, Keiji; Fujita, Minoru; Yazaki, Kazufumi

    2013-06-01

    Lignin biosynthesis is an essential physiological activity of vascular plants if they are to survive under various environmental stresses on land. The biosynthesis of lignin proceeds in the cell wall by polymerization of precursors; the initial step of lignin polymerization is the transportation of lignin monomers from the cytosol to the cell wall, which is critical for lignin formation. There has been much debate on the transported form of the lignin precursor, either as free monolignols or their glucosides. In this study, we performed biochemical analyses to characterize the membrane transport mechanism of lignin precursors using angiosperms, hybrid poplar (Populus sieboldii × Populus grandidentata) and poplar (Populus sieboldii), as well gymnosperms, Japanese cypress (Chamaecyparis obtusa) and pine (Pinus densiflora). Membrane vesicles prepared from differentiating xylem tissues showed clear ATP-dependent transport activity of coniferin, whereas less than 4% of the coniferin transport activity was seen for coniferyl alcohol. Bafilomycin A1 and proton gradient erasers markedly inhibited coniferin transport in hybrid poplar membrane vesicles; in contrast, vanadate had no effect. Cis-inhibition experiments suggested that this transport activity was specific for coniferin. Membrane fractionation of hybrid poplar microsomes demonstrated that transport activity was localized to the tonoplast- and endomembrane-rich fraction. Differentiating xylem of Japanese cypress exhibited almost identical transport properties, suggesting the involvement of a common endomembrane-associated proton/coniferin antiport mechanism in the lignifying tissues of woody plants, both angiosperms and gymnosperms.

  17. Conserved function of core clock proteins in the gymnosperm Norway spruce (Picea abies L. Karst).

    Science.gov (United States)

    Karlgren, Anna; Gyllenstrand, Niclas; Källman, Thomas; Lagercrantz, Ulf

    2013-01-01

    From studies of the circadian clock in the plant model species Arabidopsis (Arabidopsis thaliana), a number of important properties and components have emerged. These include the genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), GIGANTEA (GI), ZEITLUPE (ZTL) and TIMING OF CAB EXPRESSION 1 (TOC1 also known as PSEUDO-RESPONSE REGULATOR 1 (PRR1)) that via gene expression feedback loops participate in the circadian clock. Here, we present results from ectopic expression of four Norway spruce (Picea abies) putative homologs (PaCCA1, PaGI, PaZTL and PaPRR1) in Arabidopsis, their flowering time, circadian period length, red light response phenotypes and their effect on endogenous clock genes were assessed. For PaCCA1-ox and PaZTL-ox the results were consistent with Arabidopsis lines overexpressing the corresponding Arabidopsis genes. For PaGI consistent results were obtained when expressed in the gi2 mutant, while PaGI and PaPRR1 expressed in wild type did not display the expected phenotypes. These results suggest that protein function of PaCCA1, PaGI and PaZTL are at least partly conserved compared to Arabidopsis homologs, however further studies are needed to reveal the protein function of PaPRR1. Our data suggest that components of the three-loop network typical of the circadian clock in angiosperms were present before the split of gymnosperms and angiosperms.

  18. Dr. Roberto Miguel Klein Herbarium (FURB, Blumenau, Southern Brazil

    Directory of Open Access Journals (Sweden)

    Andre de Gasper

    2014-10-01

    Full Text Available The premise of this study is to present the collection of the FURB herbarium, its collection area and type specimens, as well as its projects and contributions to the flora of the Subtropical Atlantic Forest. The FURB herbarium currently has nearly 41,000 records of vascular plants and has the largest collection of lycophytes and ferns in Southern Brazil, with more than 8,000 records. More than 4,500 scanned images of 4,436 species are available online, and it is expected that the whole collection will be scanned in less than one year. There are 198 families of angiosperms, 33 of ferns, three of lycophytes and six of gymnosperms. All collections of the Floristic and Forest Inventory of Santa Catarina project are recorded in FURB, which represents almost 35,000 herbarium specimens. The families with the largest number of species are: Cyperaceae (109 species, Rubiaceae (129, Solanaceae (131, Poaceae (155, Melastomataceae (157, Myrtaceae (257, Orchidaceae (288, Fabaceae (323, and Asteraceae (426, between angiosperms. Among the ferns and lycophytes are: Hymenophyllaceae (30, Thelypteridaceae (31, Aspleniaceae (32, Dryopteridaceae (43, Pteridaceae (54 and Polypodiaceae (60. There are five type specimens among them: one holotype, one isotype and three paratypes. To date, the FURB herbarium has donated 19,521 herbarium duplicates for identification or expansion of other herbaria.

  19. Chemostratigraphic evidence of higher-plant evolution in the Taranaki Basin, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Killops, S.D.; Raine, J.I.; Woolhouse, A.D.; Weston, R.J. [Institute of Geology and Nuclear Science, Lower Hutt (New Zealand)

    1995-05-01

    Correlation between palynological and biomarker records of higher-plant development during the Cretaceous and Paleogene in Taranaki Basin, New Zealand is good. Gymnosperms, particularly podocarps, were the chief members of coastal plain swamp flora during the Late Cretaceous, and contributed significant quantities of diterpanes, often dominated by isopimarane, to organic-rich sediments. Angiosperms increased in relative abundance through the Paleocene and became the dominant higher plants in the Eocene; their contributions to coaly sediments are characterized by various triterpanes, particularly 18 alpha(H)-oleanane and its C-24 A-ring degraded counterpart. This change in dominance of higher-land groups can be followed by the use of an angiosperm/gymnosperm index (AGI) based on the relative concentrations of selected triterpanes and diterpanes in m/z 191 and m/z 123 mass chromatograms. Plant biomarker distributions do not provide as precise age indications as do pollen assemblages, but they may be more representative of the vegetation growing in a particular area of a peat swamp.

  20. Ultraviolet absorption and epidermal-transmittance spectra in foliage

    Energy Technology Data Exchange (ETDEWEB)

    Day, T.A.; Howells, B.W.; Rice, W.J. (Dept. of Biology, West Virginia Univ., Morgantown, WV (United States))

    1994-01-01

    We examined the UV absorption spectra and the epidermal-transmittance spectra (280-350 nm) of foliage from 42 plant species. Sun foliage was sampled from naturally growing individuals of seven species in each of six life forms comprising two evergreen groups (gymnosperms and angiosperms) and four deciduous angiosperm groups (trees, shrubs and vines, herbaceous dicotyledons and grasses). There were large differences in absorption spectra of whole-leaf extracts among species. While absorbance declined with increasing wavelength in most woody species, there was a through in absorbance around 300 nm in many herbaceous species. Absorption spectra were negatively correlated with epidermal-transmittance spectra in 31 of the 42 species. Relationships between absorbance and transmittance did not follow the theoretical exponential function. Species rankings of UV-screening effectiveness were similar when we assessed it by using epidermal transmittance at single wavelengths (300 or 320 nm) or different UV-action spectra to weight epidermal-transmittance spectra and estimate the levels of biologically effective UV reaching the mesophyll. Thus, differences in absolute epidermal transmittance among species appeared to overshadow spectral differences. Nevertheless, the differences we found in the internal UV spectral regime in foliage suggest that whole-plant action spectra will differ among species. While species rankings of UV-screening effectiveness were similar when different action spectra were used, the absolute amounts of biologically effective UV reaching the mesophyll of species varied considerably when different action spectra were used. (au) (46 refs.)