WorldWideScience

Sample records for angiosperm evergreen species

  1. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests.

    Science.gov (United States)

    Augusto, Laurent; De Schrijver, An; Vesterdal, Lars; Smolander, Aino; Prescott, Cindy; Ranger, Jacques

    2015-05-01

    It has been recognized for a long time that the overstorey composition of a forest partly determines its biological and physical-chemical functioning. Here, we review evidence of the influence of evergreen gymnosperm (EG) tree species and deciduous angiosperm (DA) tree species on the water balance, physical-chemical soil properties and biogeochemical cycling of carbon and nutrients. We used scientific publications based on experimental designs where all species grew on the same parent material and initial soil, and were similar in stage of stand development, former land use and current management. We present the current state of the art, define knowledge gaps, and briefly discuss how selection of tree species can be used to mitigate pollution or enhance accumulation of stable organic carbon in the soil. The presence of EGs generally induces a lower rate of precipitation input into the soil than DAs, resulting in drier soil conditions and lower water discharge. Soil temperature is generally not different, or slightly lower, under an EG canopy compared to a DA canopy. Chemical properties, such as soil pH, can also be significantly modified by taxonomic groups of tree species. Biomass production is usually similar or lower in DA stands than in stands of EGs. Aboveground production of dead organic matter appears to be of the same order of magnitude between tree species groups growing on the same site. Some DAs induce more rapid decomposition of litter than EGs because of the chemical properties of their tissues, higher soil moisture and favourable conditions for earthworms. Forest floors consequently tend to be thicker in EG forests compared to DA forests. Many factors, such as litter lignin content, influence litter decomposition and it is difficult to identify specific litter-quality parameters that distinguish litter decomposition rates of EGs from DAs. Although it has been suggested that DAs can result in higher accumulation of soil carbon stocks, evidence from

  2. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests

    DEFF Research Database (Denmark)

    Augusto, Laurent; De Schrijver, An; Vesterdal, Lars;

    2015-01-01

    their tissues, higher soil moisture and favourable conditions for earthworms. Forest floors consequently tend to be thicker in EG forests compared to DA forests. Many factors, such as litter lignin content, influence litter decomposition and it is difficult to identify specific litter-quality parameters......, physical-chemical soil properties and biogeochemical cycling of carbon and nutrients. We used scientific publications based on experimental designs where all species grew on the same parent material and initial soil, and were similar in stage of stand development, former land use and current management. We...... present the current state of the art, define knowledge gaps, and briefly discuss how selection of tree species can be used to mitigate pollution or enhance accumulation of stable organic carbon in the soil. The presence of EGs generally induces a lower rate of precipitation input into the soil than DAs...

  3. Moisture availability constraints on the leaf area to sapwood area ratio: analysis of measurements on Australian evergreen angiosperm trees

    Science.gov (United States)

    Togashi, Henrique; Prentice, Colin; Evans, Bradley; Forrester, David; Drake, Paul; Feikema, Paul; Brooksbank, Kim; Eamus, Derek; Taylor, Daniel

    2014-05-01

    The leaf area to sapwood area ratio (LA:SA) is a key plant trait that links photosynthesis to transpiration. Pipe model theory states that the sapwood cross-sectional area of a stem or branch at any point should scale isometrically with the area of leaves distal to that point. Optimization theory further suggests that LA:SA should decrease towards drier climates. Although acclimation of LA:SA to climate has been reported within species, much less is known about the scaling of this trait with climate among species. We compiled LA:SA measurements from 184 species of Australian evergreen angiosperm trees. The pipe model was broadly confirmed, based on measurements on branches and trunks of trees from one to 27 years old. We found considerable scatter in LA:SA among species. However quantile regression showed strong (0.2

  4. Plant functional types are more efficient than climate in predicting spectrums of trait variation in evergreen angiosperm trees of tropical Australia and China

    Science.gov (United States)

    Togashi, H. F.; Prentice, I. C. C.; Atkin, O. K.; Bloomfield, K. J.; Bradford, M.; Weerasinghe, L. K.; Harrison, S. P.; Evans, B. J.; Liddell, M. J.; Wang, H.; Cao, K. F.; Fan, Z.

    2015-12-01

    The representation of Plant Functional Types (PFTs) in current generation of Dynamic Global Vegetation Models (DGVMs) is excessively simplistically. Key ecophysiological properties, such as photosynthesis biochemistry, are most times merely averaged and trade-off with other plant traits is often neglected. Validation of a PFT framework based in photosynthetic process is crucial to improve reliability of DGVMs. We present 431 leaf-biochemical and wood level measurements in evergreen angiosperm trees of tropical forests in Australia and China that were divided in four spectrums of plant trait variation: metabolic, structural, hydraulic and height dimensions. Plant traits divided in each of these dimensions adopt survival strategies reflected more clearly by trade-off within each spectrum, and in some extent across spectrums. Co-ordination theory (that Rubisco- and electron-transport limited rates of photosynthesis are co-limiting) and least-coast theory (that intercellular to ambient CO2 concentration minimizes the combined costs per unit carbon assimilation, regulating maximum height and wood density) expectations matched PFT (which takes in account canopy position and light access, and life spam) variation. Our findings suggest that climate (air moisture, air temperature, light) has lower power representing these dimensions, in comparison to the PFT framework.

  5. Hydraulic conductivity, photosynthesis and leaf water balance in six evergreen woody species from fall to winter.

    Science.gov (United States)

    Taneda, Haruhiko; Tateno, Masaki

    2005-03-01

    To confirm that freeze-thaw embolism is a primary stress for evergreen woody species in winter, hydraulic conductivity, photosynthesis and leaf water potential were measured during fall and winter in trees growing in a cool temperate zone (Nikko) and in a warm temperate zone (Tokyo). We examined two evergreen conifers that naturally occur in the cool temperate zone (Abies firma Siebold & Zucc. and Abies homolepis Siebold & Zucc.), and four evergreen broad-leaved woody species that are restricted to the warm temperate zone (Camellia japonica L., Cinnamomum camphora (L.) J. Presl, Ilex crenata Thunb. and Quercus myrsinaefolia Blume). In Tokyo, where no freeze-thaw cycles of xylem sap occurred, hydraulic conductivity, photosynthesis and water balance remained constant during the experimental period. In Nikko, where there were 38 daily freeze-thaw cycles by February, neither of the tracheid-bearing evergreen conifers showed xylem embolism or leaf water deficits. Similarly, the broad-leaved evergreen trees with small-diameter vessels did not exhibit severe embolism or water deficits and maintained CO(2) assimilation even in January. In contrast, the two broad-leaved evergreen trees with large-diameter vessels showed significantly reduced hydraulic conductivity and shoot die-back in winter. We conclude that freeze-thaw embolism restricts evergreen woody species with large-diameter vessels to the warm temperate zone, whereas other stresses limit the distribution of broad-leaved trees, that have small-diameter vessels, but which are restricted to the warm temperate zone. PMID:15631978

  6. Change in Species Diversity during Recovering Process of Evergreen Broad-leaved Fo rest

    Institute of Scientific and Technical Information of China (English)

    WenYuanguang; LiuShirong; ChenFang; HeTatping; LiangHongwen

    2005-01-01

    Evergreen broad-leaved forest is one of the most important vegetation types in China. Because of the human activities, evergreen broad-leaved forest has been destroyed extensively, leading to degraded ecosystem. It is urgent to conserve and restore these natural forests in China.tn this paper, the tendency and rate of species diversity restoration of the evergreen broad-lea ved forest in Darning Mountain has been studied. The main results are as follows:(a) in subtropical mid-mountain area, species diversity in degraded evergreen broad-leaved forest can be restored. Through analyzing b diversity index of communities in different time and space, it was found that the species composition of communities tend to be the same as that in the zonal evergreen broad-leaved forest. (b) The restoration rate of evergreen broad-leaved forest was very fast. Planting Chinese fir after clear-cutting and controlled burning of the forest 178 species appeared in a 60Om2, sample area after 20 years"" natural recovering. Among these species, 58 were tree layer and the height of community reached 18m, The survey suggested that it would take only 20 years for the degraded forest to develop into community composed of light demanding broad-leaved pioneer trees and rain-tolerance broad-leaved trees, and it need another 40-80 years to reach the stage consisting of min-tulerance evergreen broad-leaved trees, (c) Species number increased quickly at the early stage (2-20 years) during vegetation recovering process toward the climax, and decreased at the min-stage (50-60 years ), then maintained a relatively stable level at the late-stage (over 150 years).

  7. Leaf economics of evergreen and deciduous tree species along an elevational gradient in a subtropical mountain.

    Science.gov (United States)

    Bai, Kundong; He, Chengxin; Wan, Xianchong; Jiang, Debing

    2015-01-01

    The ecophysiological mechanisms underlying the pattern of bimodal elevational distribution of evergreen tree species remain incompletely understood. Here we used leaf economics spectrum (LES) theory to explain such patterns. We measured leaf economic traits and constructed an LES for the co-existing 19 evergreen and 15 deciduous species growing in evergreen broad-leaved forest at low elevation, beech-mixed forest at middle elevation and hemlock-mixed forest at high elevation in Mao'er Mountain, Guangxi, Southern China (25°50'N, 110°49'E). Leaf economic traits presented low but significant phylogenetic signal, suggesting trait similarity between closely related species. After considering the effects of phylogenetic history, deciduous species in general showed a more acquisitive leaf strategy with a higher ratio of leaf water to dry mass, higher leaf nitrogen and phosphorous contents, higher photosynthetic and respiratory rates and greater photosynthetic nitrogen-use efficiency. In contrast, evergreen species exhibited a more conservative leaf strategy with higher leaf mass per area, greater construction costs and longer leaf life span. With the elevation-induced decreases of temperature and soil fertility, both evergreen and deciduous species showed greater resource conservation, suggesting the increasing importance of environmental filtering to community assembly with increasing elevation. We found close inter-specific correlations between leaf economic traits, suggesting that there are strong genetic constraints limiting the independent evolution of LES traits. Phylogenetic signal increased with decreasing evolutionary rate across leaf economic traits, suggesting that genetic constraints are important for the process of trait evolution. We found a significantly positive relationship between primary axis species score (PASS) distance and phylogenetic distance across species pairs and an increasing average PASS distance between evergreen and deciduous species with

  8. A comparison of {sup 137}Cs radioactivity in localized evergreen and deciduous plant species

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, R.C.

    1996-05-01

    A vegetation study at the Comanche Peak Steam Electric Station (CPSES) near Glen Rose, Texas was conducted in 1991 and 1992. The CPSES is a commercial nuclear power plant owned and operated by Texas Utilities Electric of Dallas, Texas. The US Nuclear Regulatory Commission (USNRC) requires the CPSES to routinely sample broadleaf vegetation in place of milk samples. Few commercial dairies exist in the vicinity. Broadleaf tree species are scarce because the climate and local limestone geology have produced a dry rolling hill topography. An evergreen juniper is the dominant tree species. Few broadleaves during the winter season have hindered year-round sampling. This study compares the environmental {sup 137}Cs concentrations between broadleaf and evergreen foliage at CPSES. Soil {sup 137}Cs concentrations from each vegetation location were also compared to the foliage {sup 137}Cs concentrations. The study`s objective was to determine if the deciduous and evergreen vegetation {sup 137}Cs concentrations are statistically the same.

  9. A comparison of 137Cs radioactivity in localized evergreen and deciduous plant species

    International Nuclear Information System (INIS)

    A vegetation study at the Comanche Peak Steam Electric Station (CPSES) near Glen Rose, Texas was conducted in 1991 and 1992. The CPSES is a commercial nuclear power plant owned and operated by Texas Utilities Electric of Dallas, Texas. The US Nuclear Regulatory Commission (USNRC) requires the CPSES to routinely sample broadleaf vegetation in place of milk samples. Few commercial dairies exist in the vicinity. Broadleaf tree species are scarce because the climate and local limestone geology have produced a dry rolling hill topography. An evergreen juniper is the dominant tree species. Few broadleaves during the winter season have hindered year-round sampling. This study compares the environmental 137Cs concentrations between broadleaf and evergreen foliage at CPSES. Soil 137Cs concentrations from each vegetation location were also compared to the foliage 137Cs concentrations. The study's objective was to determine if the deciduous and evergreen vegetation 137Cs concentrations are statistically the same

  10. Darwin's second 'abominable mystery': Why are there so many angiosperm species?

    Science.gov (United States)

    Crepet, William L; Niklas, Karl J

    2009-01-01

    The rapid diversification and ecological dominance of the flowering plants beg the question "Why are there so many angiosperm species and why are they so successful?" A number of equally plausible hypotheses have been advanced in response to this question, among which the most widely accepted highlights the mutually beneficial animal-plant relationships that are nowhere better developed nor more widespread than among angiosperm species and their biotic vectors for pollination and dispersal. Nevertheless, consensus acknowledges that there are many other attributes unique to or characteristic of the flowering plants. In addition, the remarkable coevolution of the angiosperms and pollination/dispersal animal agents could be an effect of the intrinsic adaptability of the flowering plants rather than a primary cause of their success, suggesting that the search for underlying causes should focus on an exploration of the genetic and epigenetic mechanisms that might facilitate adaptive evolution and speciation. Here, we explore angiosperm diversity promoting attributes in their general form and draw particular attention to those that, either individually or collectively, have been shown empirically to favor high speciation rates, low extinction rates, or broad ecological tolerances. Among these are the annual growth form, homeotic gene effects, asexual/sexual reproduction, a propensity for hybrid polyploidy, and apparent "resistance" to extinction. Our survey of the literature suggests that no single vegetative, reproductive, or ecological feature taken in isolation can account for the evolutionary success of the angiosperms. Rather, we believe that the answer to Darwin's second "abominable mystery" lies in a confluence of features that collectively make the angiosperms unique among the land plants. PMID:21628194

  11. Inter- and intra-specific variation in stemflow for evergreen species and deciduous tree species in a subtropical forest

    Science.gov (United States)

    Su, Lei; Xu, Wenting; Zhao, Changming; Xie, Zongqiang; Ju, Hua

    2016-06-01

    Quantification of stemflow is necessary for the assessment of forest ecosystem hydrological effects. Nevertheless, variation of stemflow among plant functional groups is currently not well understood. Stemflow production of co-occurring evergreen broadleaved trees (Cyclobalanopsis multinervis and Cyclobalanopsis oxyodon) and deciduous broadleaved trees (Fagus engleriana and Quercus serrata var. brevipetiolata) was quantified through field observations in a mixed evergreen and deciduous broadleaved forest. The research results revealed that stemflow increased linearly with increasing rainfall magnitude, with precipitation depths of 6.9, 7.2, 10.0 and 14.8 mm required for the initiation of stemflow for C. multinervis, C. oxyodon, F. engleriana and Q. serrata, respectively. Stemflow percentage and funneling ratio (FR) increased with increasing rainfall in a logarithmic fashion. Stemflow percentage and FR tended to grow rapidly with increasing rainfall magnitude up to a rainfall threshold of 50 mm, above which, further rainfall increases brought about only small increases. For C. multinervis, C. oxyodon, F. engleriana and Q. serrata, FR averaged 19.8, 14.8, 8.9 and 2.8, respectively. The stemflow generating rainfall thresholds for evergreen species were smaller than for deciduous species. Furthermore, stemflow percentage and FR of the former was greater than the latter. For both evergreen species and deciduous species, overall funneling ratio (FRs) decreased with increasing basal area. We concluded that: (1) although stemflow partitioning represented a fairly low percentage of gross rainfall in mixed evergreen and deciduous broadleaved forests, it was capable of providing substantial amount of rainwater to tree boles; (2) the evergreen species were more likely to generate stemflow than deciduous species, and directed more intercepted rainwater to the root zone; (3) small trees were more productive in funneling stemflow than larger trees, which may provide a favorable

  12. Genome size and ploidy influence angiosperm species' biomass under nitrogen and phosphorus limitation.

    Science.gov (United States)

    Guignard, Maïté S; Nichols, Richard A; Knell, Robert J; Macdonald, Andy; Romila, Catalina-Andreea; Trimmer, Mark; Leitch, Ilia J; Leitch, Andrew R

    2016-06-01

    Angiosperm genome sizes (GS) range c. 2400-fold, and as nucleic acids are amongst the most phosphorus- (P) and nitrogen (N)-demanding cellular biomolecules, we test the hypothesis that a key influence on plant biomass and species composition is the interaction between N and P availability and plant GS. We analysed the impact of different nutrient regimes on above-ground biomass of angiosperm species with different GS, ploidy level and Grime's C-S-R (competitive, stress-tolerant, ruderal) plant strategies growing at the Park Grass Experiment (Rothamsted, UK), established in 1856. The biomass-weighted mean GS of species growing on plots with the addition of both N and P fertilizer were significantly higher than that of plants growing on control plots and plots with either N or P. The plants on these N + P plots are dominated by polyploids with large GS and a competitive plant strategy. The results are consistent with our hypothesis that large genomes are costly to build and maintain under N and P limitation. Hence GS and ploidy are significant traits affecting biomass growth under different nutrient regimes, influencing plant community composition and ecosystem dynamics. We propose that GS is a critical factor needed in models that bridge the knowledge gap between biodiversity and ecosystem functioning. PMID:26875784

  13. Whole-plant allocation to storage and defense in juveniles of related evergreen and deciduous shrub species.

    Science.gov (United States)

    Wyka, T P; Karolewski, P; Żytkowiak, R; Chmielarz, P; Oleksyn, J

    2016-05-01

    In evergreen plants, old leaves may contribute photosynthate to initiation of shoot growth in the spring. They might also function as storage sites for carbohydrates and nitrogen (N). We hence hypothesized that whole-plant allocation of carbohydrates and N to storage in stems and roots may be lower in evergreen than in deciduous species. We selected three species pairs consisting of an evergreen and a related deciduous species: Mahonia aquifolium (Pursh) Nutt. and Berberis vulgaris L. (Berberidaceae), Prunus laurocerasus L. and Prunus serotina Ehrh. (Rosaceae), and Viburnum rhytidophyllum Hemsl. and Viburnum lantana L. (Adoxaceae). Seedlings were grown outdoors in pots and harvested on two dates during the growing season for the determination of biomass, carbohydrate and N allocation ratios. Plant size-adjusted pools of nonstructural carbohydrates in stems and roots were lower in the evergreen species of Berberidaceae and Adoxaceae, and the slope of the carbohydrate pool vs plant biomass relationship was lower in the evergreen species of Rosaceae compared with the respective deciduous species, consistent with the leading hypothesis. Pools of N in stems and roots, however, did not vary with leaf habit. In all species, foliage contained more than half of the plant's nonstructural carbohydrate pool and, in late summer, also more than half of the plant's N pool, suggesting that in juvenile individuals of evergreen species, leaves may be a major storage site. Additionally, we hypothesized that concentration of defensive phenolic compounds in leaves should be higher in evergreen than in deciduous species, because the lower carbohydrate pool in stems and roots of the former restricts their capacity for regrowth following herbivory and also because of the need to protect their longer-living foliage. Our results did not support this hypothesis, suggesting that evergreen plants may rely predominantly on structural defenses. In summary, our study indicates that leaf habit has

  14. Propagation of Native Tree Species to Restore Subtropical Evergreen Broad-Leaved Forests in SW China

    Directory of Open Access Journals (Sweden)

    Yang Lu

    2016-01-01

    Full Text Available Subtropical evergreen broad-leaved forest (EBLF is a widespread vegetation type throughout East Asia that has suffered extensive deforestation and fragmentation. Selection and successful propagation of native tree species are important for improving ecological restoration of these forests. We carried out a series of experiments to study the propagation requirements of indigenous subtropical tree species in Southwest China. Seeds of 21 tree species collected from the natural forest were materials for the experiment. This paper examines the seed germination and seedling growth performance of these species in a nursery environment. Germination percentages ranged from 41% to 96% and were ≥50% for 19 species. The median length of germination time (MLG ranged from 24 days for Padus wilsonii to 144 days for Ilex polyneura. Fifteen species can reach the transplant size (≥15 cm in height within 12 months of seed collection. Nursery-grown seedlings for each species were planted in degraded site. Two years after planting, the seedling survival rate was >50% in 18 species and >80% in 12 species. Based on these results, 17 species were recommended as appropriate species for nursery production in forest restoration projects. Our study contributes additional knowledge regarding the propagation techniques for various native subtropical tree species in nurseries for forest restoration.

  15. Evolutionary dynamics of microsatellite distribution in plants: insight from the comparison of sequenced brassica, Arabidopsis and other angiosperm species.

    Directory of Open Access Journals (Sweden)

    Jiaqin Shi

    Full Text Available Despite their ubiquity and functional importance, microsatellites have been largely ignored in comparative genomics, mostly due to the lack of genomic information. In the current study, microsatellite distribution was characterized and compared in the whole genomes and both the coding and non-coding DNA sequences of the sequenced Brassica, Arabidopsis and other angiosperm species to investigate their evolutionary dynamics in plants. The variation in the microsatellite frequencies of these angiosperm species was much smaller than those for their microsatellite numbers and genome sizes, suggesting that microsatellite frequency may be relatively stable in plants. The microsatellite frequencies of these angiosperm species were significantly negatively correlated with both their genome sizes and transposable elements contents. The pattern of microsatellite distribution may differ according to the different genomic regions (such as coding and non-coding sequences. The observed differences in many important microsatellite characteristics (especially the distribution with respect to motif length, type and repeat number of these angiosperm species were generally accordant with their phylogenetic distance, which suggested that the evolutionary dynamics of microsatellite distribution may be generally consistent with plant divergence/evolution. Importantly, by comparing these microsatellite characteristics (especially the distribution with respect to motif type the angiosperm species (aside from a few species all clustered into two obviously different groups that were largely represented by monocots and dicots, suggesting a complex and generally dichotomous evolutionary pattern of microsatellite distribution in angiosperms. Polyploidy may lead to a slight increase in microsatellite frequency in the coding sequences and a significant decrease in microsatellite frequency in the whole genome/non-coding sequences, but have little effect on the microsatellite

  16. Responses of evergreen and deciduous Quercus species to enhanced ozone levels

    International Nuclear Information System (INIS)

    Plants of one evergreen oak (Quercus ilex) and three deciduous oaks (Q. faginea, with small leaves; Q. pyrenaica and Q. robur, with large leaves) were exposed both to filtered air and to enhanced ozone levels in Open-Top Chambers. Q. faginea and Q. pyrenaica were studied for the first time. Based on visible injury, gas exchange, chlorophyll content and biomass responses, Q. pyrenaica was the most sensitive species, and Q. ilex was the most tolerant, followed by Q. faginea. Functional leaf traits of the species were related to differences in sensitivity, while accumulated ozone flux via stomata (POD1.6) partly contributed to the observed differences. For risk assessment of Mediterranean vegetation, the diversity of responses detected in this study should be taken into account, applying appropriate critical levels. - Ozone tolerance overlapped with leaf traits in four Quercus species.

  17. Responses of evergreen and deciduous Quercus species to enhanced ozone levels

    Energy Technology Data Exchange (ETDEWEB)

    Calatayud, Vicent, E-mail: calatayud_viclor@gva.e [Instituto Universitario CEAM-UMH, Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain); Cervero, Julia; Calvo, Esperanza [Instituto Universitario CEAM-UMH, Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain); Garcia-Breijo, Francisco-Jose [Laboratorio de Anatomia e Histologia Vegetal ' Julio Iranzo' , Jardin Botanico, Universitat de Valencia, c/Quart 80, 46008 Valencia (Spain); Departamento de Ecosistemas Agroforestales, Escuela Tecnica Superior del Medio Rural y Enologia, Universidad Politecnica de Valencia, Avda. Blasco Ibanez 21, 46010 Valencia (Spain); Reig-Arminana, Jose [Departamento de Ecosistemas Agroforestales, Escuela Tecnica Superior del Medio Rural y Enologia, Universidad Politecnica de Valencia, Avda. Blasco Ibanez 21, 46010 Valencia (Spain); Sanz, Maria Jose [Instituto Universitario CEAM-UMH, Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain)

    2011-01-15

    Plants of one evergreen oak (Quercus ilex) and three deciduous oaks (Q. faginea, with small leaves; Q. pyrenaica and Q. robur, with large leaves) were exposed both to filtered air and to enhanced ozone levels in Open-Top Chambers. Q. faginea and Q. pyrenaica were studied for the first time. Based on visible injury, gas exchange, chlorophyll content and biomass responses, Q. pyrenaica was the most sensitive species, and Q. ilex was the most tolerant, followed by Q. faginea. Functional leaf traits of the species were related to differences in sensitivity, while accumulated ozone flux via stomata (POD{sub 1.6}) partly contributed to the observed differences. For risk assessment of Mediterranean vegetation, the diversity of responses detected in this study should be taken into account, applying appropriate critical levels. - Ozone tolerance overlapped with leaf traits in four Quercus species.

  18. Root productivity of deciduous and evergreen species identified using a molecular approach

    Science.gov (United States)

    Ellsworth, P.; Sternberg, L. O.

    2012-12-01

    The linkage between leaf traits and root structure may explain how plants integrate above and belowground traits into whole plant adaptations to environmental stresses. In dry seasonal forests, the lack of dry season precipitation dries out the relatively nutrient-rich shallow soil, leaving shallow soil water and nutrients inaccessible to uptake until the wet season. In tropical or subtropical seasonal dry forests, deciduousness may allow for the survival of shallow fine roots during the dry season. Losing leaves during the dry season reduces aboveground plant water demand, and a greater proportion of water extracted from deep soil can be used to maintain shallow roots until the wet season. Higher shallow root survival through the dry season than evergreen species means that deciduous species can take advantage of the nutrient pulse associated with the onset of the wet season. To test the above hypothesis, fine roots were collected from soil cores in a seasonally dry forest during the dry season, onset of the wet season, and the wet season and were identified to selected evergreen and deciduous study species. The fine roots of two of the selected species (Lyonia ferruginea and Carya floridana) could be identified from visual characteristics. The other three study species, which were all from the genus Quercus (Q. geminata, Q. myrtifolia, and Q. laevis), were impossible to separate visually. We developed a PCR-based restriction fragment length polymorphism (PCR-RFLP) technique, which provided a quick, simple, low-cost way to identify the species of all fine roots of our study species. We extracted DNA from all roots that were not visually identified, amplified the internal transcribed spacer region (ITS), digested the ITS region with the restriction enzyme TaqαI, and used gel electrophoresis to separate DNA fragments. Using a PCR-RFLP based root identification key that we developed for the species at Archbold Biological Station, all species that could not be

  19. Effects of plant diversity on primary production and species interactions in brackish water angiosperm communities

    DEFF Research Database (Denmark)

    Salo, Tiina; Gustafsson, Camilla; Boström, Christoffer

    2009-01-01

    plant productivity in brackish water angiosperm communities, a 14 wk field experiment was conducted. Using a replacement design with a standardized initial aboveground biomass, shoots of Zostera marina, Potamogeton filiformis and P. perfoliatus were planted on a shallow, sandy bottom in replicated...

  20. Cachar tropical semi–evergreen forest type of Northeast India: status of species diversity, distribution and population structure

    OpenAIRE

    Koushik Majumdar; B. K. Datta

    2015-01-01

    Conservation of threatened species in most cases is difficult because of incomplete knowledge about their actual distribution, population and habitat ecology. Quantitative vegetation inventory was applied to analyse phytosociological structure of Cachar tropical semi-evergreen forest type in Northeast India, which is consider as a rare forest sub-type. Total 9, 500 by 10m (0.5 ha) sized line transects were laid in Tripura. Overall 3,391 individuals of woody species were measured in 4.5 ha ana...

  1. Cachar tropical semi–evergreen forest type of Northeast India: status of species diversity, distribution and population structure

    Directory of Open Access Journals (Sweden)

    Koushik Majumdar

    2015-09-01

    Full Text Available Conservation of threatened species in most cases is difficult because of incomplete knowledge about their actual distribution, population and habitat ecology. Quantitative vegetation inventory was applied to analyse phytosociological structure of Cachar tropical semi-evergreen forest type in Northeast India, which is consider as a rare forest sub-type. Total 9, 500 by 10m (0.5 ha sized line transects were laid in Tripura. Overall 3,391 individuals of woody species were measured in 4.5 ha analysis, which represented total 167 species. Out of 167 species, 138 species were tree, 14 were shrubs, 10 woody climbers, 3 bamboos and 2 palm species. Again, taxonomically out of 167 species only 6 species was monocot; deciduous and evergreen ratio was 98: 69. Further, out of 167 species 95 species showed aggregated distribution than 72 random distributions. Stem density was ranged 566-964 ha-1, basal area 19.22-52.82 m2ha-1; but most species listed with very low Important Value Index (IVI, where 51 species identified as very rare (0.05 from predominant to very rare population group (r2adj is adjusted correlation co-efficient. Stem density-girth relation was significantly quadratic and showed highest coefficient value for sapling (r2adj=0.99; p<0.05 than adult density (r2adj=0.96; p<0.001; however, stem density was declined across the height classes (r2adj=0.56; p<0.05. Present findings demonstrate the high conservation value of this habitat, as umbrella species (Dipterocarpus turbinatus was red listed as critically endangered by International Union for Conservation of Nature and Natural Resources (IUCN with 13 globally threatened plants. Present analysis offers easy scope for effective habitat management and strategies for species conservation and restoration through ecological niche modeling tool.

  2. [Seasonal release characteristics of Ca, Mg and Mn of foliar litter of six tree species in subtropical evergreen broadleaved forest].

    Science.gov (United States)

    Ma, Zhi-liang; Gao, Shun; Yang, Wan-qin; Wu, Fu-zhong

    2015-10-01

    Seasonal release dynamics of Ca, Mg and Mn during decomposition of foliar litter of Pinus massoniana, Cryptomeria fortunei, Cunninghamia lanceolata, Cinnamomum camphora, Toona ciliate, and Quercus acutissima were investigated in subtropical evergreen broad-leaved forest employing the method of litterbag. After one-year decomposition, the release rates of Ca, Mg and Mn in foliar litter of the studied tree species ranged from -13.8% to 92.3%, from 4.0% to 64.8%, and from 41.6% to 81.1%, respectively. Ca dynamics in foliar litter of P. massoniana, C. camphora exhibited the pattern of accumulating early and releasing later, while that of the other four tree species showed direct release. Similarly, the dynamics of Mg released from foliar litter of C. camphora showed the pattern of accumulating early and then releasing, while that of the other five tree species exhibited continuous release. Meanwhile, the dynamics of Mn released from foliar litter of C. fortunei and T. ciliate exhibited early accumulation, and subsequent release, while that of the other four tree species showed continuous release. The releases of Ca, Mg and Mn in foliar litter were greatly influenced by seasonal rainfall, and varied with tree species. Furthermore, the rates and amounts of Ca, Mg and Mn released from foliar litter were higher in rainy season than in dry season. In conclusion, the initial nutrient concentrations and precipitation were two key factors influencing the release dynamics of Ca, Mg and Mn during decomposition of foliar litter in the subtropical evergreen broad-leaved forest. PMID:26995897

  3. Physiological basis of seasonal trend in leaf photosynthesis of five evergreen broad-leaved species in a temperate deciduous forest.

    Science.gov (United States)

    Miyazawa, Yoshiyuki; Kikuzawa, Kihachiro

    2006-02-01

    The physiological basis of photosynthesis during winter was investigated in saplings of five evergreen broad-leaved species (Camellia japonica L., Cleyera japonica Thunb., Photinia glabra (Thunb.) Maxim., Castanopsis cuspidata (Thunb.) Schottky and Quercus glauca Thunb.) co-occurring under deciduous canopy trees in a temperate forest. We focused on temperature dependence of photosynthetic rate and capacity as important physiological parameters that determine light-saturated rates of net photosynthesis at low temperatures during winter. Under controlled temperature conditions, maximum rates of ribulose bisphosphate carboxylation and electron transport (Vcmax) and Jmax, respectively) increased exponentially with increasing leaf temperature. The temperature dependence of photosynthetic rate did not differ among species. In the field, photosynthetic capacity, determined as Vcmax and Jmax at a common temperature of 25 degrees C (Vcmax(25) and Jmax(25)), increased until autumn and then decreased in species-specific patterns. Values of Vcmax(25) and Jmax(25) differed among species during winter. There was a positive correlation of Vcmax(25) with area-based nitrogen concentration among leaves during winter in Camellia and Photinia. Interspecific differences in Vcmax(25) were responsible for interspecific differences in light-saturated rates of net photosynthesis during winter. PMID:16356922

  4. Study on successions sequence of evergreen broad-leaved forest in Gutian Mountain of Zhejiang, Eastern China:species diversity

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using the widely adopted scheme of space-for-time substitution for investigating 16 typical plots distri-buted as a pattern of contiguous grid quadrates within a sampling plot, the expressions of Shannon-Wiener index (H) for species diversity, Pielou index (Jsw, JSI) for evenness and Simpson index (D) for ecological dominance are employed to investigate the species diversity (SD) of four evergreen broadleaved communities in the successions sequence within the Nature Reserve of the Gutian Mountains. Results showed that in the successions process from the coniferous to the mixed coniferous-broadleaved, then to Schima superba and finally to Castanopsis eyrei forest, the arbor layer SD showed the Shannon-Wiener index (H) as 1.9670, 2.4975, 2.6140 and 2.4356, respectively, characterized by their rise before drop and the shrub (herb) layer SD shows the maximum to be in the mixed coniferous-broadleaved (coniferous) forest (H arriving at 2.8625 (1.5334)). In the vertical structure, on the other hand, for the sequenced coniferous forest, coniferous-broad mixed forest and Castnaopsis eyrei forest, the number of SD ranges in a decreasing order from the shrub, arbor to herb layer in contrast to the SD in a decreasing order of Schima superba forest ranging from the arbor to shrub and then to herb layer, and during the succession, the herb layer exhibits the maximum range of SD change among these layers, with its variation coefficients of 0.1572, 0.0806, 0.0899 and 0.1884 for H, Jsw, JSI and D, in order, in sharp contrast to the minimal SD range in the shrub layer, with the corresponding figures of 0.0482, 0.0385, 0.0142, and 0.1553.

  5. Light acclimation potential and carry-over effects vary among three evergreen tree species with contrasting patterns of leaf emergence and maturation.

    Science.gov (United States)

    Ishii, Hiroaki; Ohsugi, Yoshihiro

    2011-08-01

    We compared light acclimation potential among three evergreen broadleaved species with contrasting patterns of shoot elongation, leaf emergence and leaf maturation. Understory saplings were transferred to a high-light environment before bud break, grown for 13 months, and then transferred back to the understory to observe subsequent carry-over effects. Acclimation potential was highest and sapling mortality was lowest for Cinnamomum japonicum Sieb. ex Nakai. Indeterminate growth and successive leaf emergence allowed this species to acclimate to both high and low light by adjusting leaf production as well as leaf properties. Sapling mortality occurred after both transfers for Camellia japonica L., which also has indeterminate growth and successive leaf emergence. In this species, carry-over effects were observed at the individual level, but leaf-level acclimation potential was high. Acclimation potential was lowest and sapling mortality occurred soon after the transfer to high light for Quercus glauca Thunb. ex Murray. Determinate growth and flush-type leaf emergence resulted in significant carry-over effects in this species. Indeterminate growth and successive leaf emergence increase whole-plant acclimation potential by extending the period of growth and architectural development during the growing season. Similarly, we inferred that delayed leaf maturation, observed in many evergreen species, increases the acclimation potential of current-year leaves by extending the period of leaf development. In evergreen species, the acclimation potential of preexisting leaves determines the role that leaf turnover plays in whole-plant light acclimation, resulting in diverse strategies for light acclimation among species, as observed in this study. PMID:21868403

  6. Genetic differentiation and genetic diversity of Castanopsis (Fagaceae, the dominant tree species in Japanese broadleaved evergreen forests, revealed by analysis of EST-associated microsatellites.

    Directory of Open Access Journals (Sweden)

    Kyoko Aoki

    Full Text Available The broadleaved evergreen forests of the East Asian warm temperate zone are characterised by their high biodiversity and endemism, and there is therefore a need to extend our understanding of its genetic diversity and phylogeographic patterns. Castanopsis (Fagaceae is one of the dominant tree species in the broadleaved evergreen forests of Japan. In this study we investigate the genetic diversity, genetic structure and leaf epidermal morphology of 63 natural populations of C. sieboldii and C. cuspidata, using 32 Expressed Sequence Tag associated microsatellites. The overall genetic differentiation between populations was low (GST = 0.069 in C. sieboldii and GST = 0.057 in C. cuspidata. Neighbor-joining tree and Bayesian clustering analyses revealed that the populations of C. sieboldii and C. cuspidata were genetically clearly differentiated, a result which is consistent with the morphology of their epidermal cell layers. This suggests that C. sieboldii and C. cuspidata should be treated as independent species, although intermediate morphologies are often observed, especially at sites where the two species coexist. The higher level of genetic diversity observed in the Kyushu region (for both species and the Ryukyu Islands (for C. sieboldii is consistent with the available fossil pollen data for Castanopsis-type broadleaved evergreen trees during the Last Glacial Maximum and suggests the existence of refugia for Castanopsis forests in southern Japan. Within the C. sieboldii populations, Bayesian clustering analyses detected three clusters, in the western and eastern parts of the main islands and in the Ryukyu Islands. The west-east genetic differentiation observed for this species in the main islands, a pattern which is also found in several plant and animal species inhabiting Castanopsis forests in Japan, suggests that they have been isolated from each other in the western and eastern populations for an extended period of time, and may

  7. Change in Species Diversity during Recovering Process of Evergreen Broad-leaved Forest%常绿阔叶林恢复过程植物物种多样性的变化

    Institute of Scientific and Technical Information of China (English)

    温远光

    2005-01-01

    Evergreen broad-leaved forest is one of the most important vegetation types in China. Because of the human activities, evergreen broad-leaved forest has been destroyed extensively, leading to degraded ecosystem. It is urgent to conserve and restore these natural forests in China.In this paper, the tendency and rate of species diversity restoration of the evergreen broad-leaved forest in Daming Mountain has been studied. The main results are as follows: (a) In subtropical mid-mountain area, species diversity in degraded evergreen broad-leaved forest can be restored. Through analyzing b diversity index of communities in different time and space, it was found that the species composition of communities tend to be the same as that in the zonal evergreen broad-leaved forest. (b) The restoration rate of evergreen broad-leaved forest was very fast. Planting Chinese fir after clear-cutting and controlled burning of the forest, 178 species appeared in a 600m2 sample area after 20years'natural recovering. Among these species, 58 were tree layer and the height of community reached 18m. The survey suggested that it would take only 20 years for the degraded forest to develop into community composed of light demanding broad-leaved pioneer trees and min-tolerance broad-leaved trees, and it need another 40~80 years to reach the stage consisting of min-tolerance evergreen broad-leaved trees. (c) Species number increased quickly at the early stage (2-20 years) during vegetation recovering process toward the climax, and decreased at the min-stage (50-60 years ), then maintained a relatively stable level at the late-stage (over 150 years).

  8. Phylogeography of Phytophagous Weevils and Plant Species in Broadleaved Evergreen Forests: A Congruent Genetic Gap between Western and Eastern Parts of Japan

    Directory of Open Access Journals (Sweden)

    Kyoko Aoki

    2011-04-01

    Full Text Available The Quaternary climate cycles played an important role in shaping the distribution of biodiversity among current populations, even in warm-temperate zones, where land was not covered by ice sheets. We focused on the Castanopsis-type broadleaved evergreen forest community in Japan, which characterizes the biodiversity and endemism of the warm-temperate zone. A comparison of the phylogeographic patterns of three types of phytophagous weevils associated with Castanopsis (a host-specific seed predator, a generalist seed predator, and a host-specific leaf miner and several other plant species inhabiting the forests revealed largely congruent patterns of genetic differentiation between western and eastern parts of the main islands of Japan. A genetic gap was detected in the Kii Peninsula to Chugoku-Shikoku region, around the Seto Inland Sea. The patterns of western-eastern differentiation suggest past fragmentation of broadleaved evergreen forests into at least two separate refugia consisting of the southern parts of Kyushu to Shikoku and of Kii to Boso Peninsula. Moreover, the congruent phylogeographic patterns observed in Castanopsis and the phytophagous insect species imply that the plant-herbivore relationship has been largely maintained since the last glacial periods. These results reinforce the robustness of the deduced glacial and postglacial histories of Castanopsis-associated organisms.

  9. Species composition, diversity and stratification in subtropical evergreen broadleaf forests along a latitudinal thermal gradient in the Ryukyu Archipelago, Japan

    Directory of Open Access Journals (Sweden)

    S.M. Feroz

    2015-07-01

    Full Text Available A well-developed evergreen broadleaf forest exists in the northern part of Okinawa and in the central part of the Ishigaki Islands in the Ryukyu Archipelago, Japan. All woody plants were identified to species level and their heights and diameters were measured in a 750m2 plot in Okinawa and a 400m2 plot in the Ishigaki Islands. Species overlap, dominance, diversity, multi-strata structure, and spatial distribution were calculated. The floristic composition in Okinawa was found to be different from that in Ishigaki. The species overlap between strata was higher in Okinawa than in Ishigaki. Species diversity and evenness tended to increase from the top down in Okinawa and the reverse in Ishigaki. Mean tree weight of each stratum decreased and tree density increased from top down in both forests. This trend resembled the mean weight–density trajectory of self-thinning plant populations. The degree of stand stratification, species richness and species diversity for trees with DBH ⩾4.5  cm increased along the latitudinal thermal gradient in the Ryukyu Archipelago. Thus, trees in the lower strata of Okinawa and upper strata of Ishigaki are important for sustainable maintenance of higher woody species diversity in the Ryukyu Archipelago.

  10. Physiological Effects of Smoke Exposure on Deciduous and Conifer Tree Species

    International Nuclear Information System (INIS)

    Smoke from forest fires can persist in the environment for weeks and while there is a substantial amount of literature examining the effects of smoke exposure on seed germination, the effects of smoke on leaf function are nearly un investigated. The objective of this study was to compare growth and primary and secondary metabolic responses of deciduous angiosperm and evergreen conifer tree species to short smoke exposure. Twenty minutes of smoke exposure resulted in a greater than 50% reduction in photosynthetic capacity in five of the six species we examined. Impairment of photosynthesis in response to smoke was a function of reductions in stomatal conductance and biochemical limitations. In general, deciduous angiosperm species showed a greater sensitivity than evergreen conifers. While there were significant decreases in photosynthesis and stomatal conductance, smoke had no significant effect on growth or secondary defense compound production in any of the tree species examined.

  11. Physiological Effects of Smoke Exposure on Deciduous and Conifer Tree Species

    Directory of Open Access Journals (Sweden)

    Max A. Moritz

    2010-01-01

    Full Text Available Smoke from forest fires can persist in the environment for weeks and while there is a substantial amount of literature examining the effects of smoke exposure on seed germination, the effects of smoke on leaf function are nearly uninvestigated. The objective of this study was to compare growth and primary and secondary metabolic responses of deciduous angiosperm and evergreen conifer tree species to short smoke exposure. Twenty minutes of smoke exposure resulted in a greater than 50% reduction in photosynthetic capacity in five of the six species we examined. Impairment of photosynthesis in response to smoke was a function of reductions in stomatal conductance and biochemical limitations. In general, deciduous angiosperm species showed a greater sensitivity than evergreen conifers. While there were significant decreases in photosynthesis and stomatal conductance, smoke had no significant effect on growth or secondary defense compound production in any of the tree species examined.

  12. Different Patterns of Changes in the Dry Season Diameter at Breast Height of Dominant and Evergreen Tree Species in a Mature Subtropical Forest in South China

    Institute of Scientific and Technical Information of China (English)

    Jun-Hua Yan; Guo-Yi Zhou; De-Qiang Zhang; Xu-Li Tang; Xu Wang

    2006-01-01

    Information on changes in diameter at breast height (DBH) is important for net primary production (NPP)estimates, timing of forest inventory, and forest management. In the present study, patterns of DBH change were measured under field conditions during the dry season for three dominant and native tree species in a monsoon evergreen broad-leaved forest in the Dinghushan Biosphere Reserve. For each tree species,different patterns of DBH change were observed. In the case of the fast-growing tree species Castanopsis chinensis Hance, large diurnal fluctuations occur, with a peak DBH in the early morning (around 05:00 h) that decreases to a minimum by about 14:00 h. Both Schima superba Gardn. et Chemp and Cryptocarya chinensis (Hance) Hemsl. exhibited less diurnal swelling and shrinkage. Diurnal fluctuations for these species were observed on a few occasions over the period of observation. Graphical comparisons and statistical analysis of changes in DBH with meteorological variables indicate that for different trees, the different changes in DBH observed responded to different meteorological variables. Large stem changes were found to occur for Ca. chinensis trees that were associated with variations in solar radiation. However, both S. superba and Cr. chinensis were found to be less sensitive to solar radiation. Changes in the DBH of these two species were found to be controlled mainly by soil temperature and soil moisture. During the later dry season, with a lower soil temperature and soil moisture, all three tree species stopped growing and only negligible shrinkage, expansion, or fluctuation occurred, suggesting that the optimum time to measure tree growth in the Dinghushan Biosphere Reserve is the later dry season.

  13. Five Little Evergreens

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Five Little Evergreens outside in a row.The first one said,"Let's look at the snow."The second one said,"Oh-oh,it's getting cold."The third one said,"Chiristmas is coming so I'm told."The4fourth one said,"I hope someone decorates me."The fifth one said,"We'll just have to wait and see."Five Little Evergreens

  14. 徐州市城区常绿阔叶树种及其应用调查研究%Investigation and Study of Evergreen Broadleaved Trees Species and Their Landscape Application in Urban Area of Xuzhou

    Institute of Scientific and Technical Information of China (English)

    卢芳; 周瑞玲

    2012-01-01

    The state of the evergreen broadleaved tree species was investigated.The result showed that there are 43 species of evergreen broadleaved species from 32 genera and 22 families in urban gardens and parks of Xuzhou.Their application mainly takes the form of street trees,landscaping trees,basic tree planting,green hedge and land virescence.The present situation of evergreen broadleaved species was analyzed.%对徐州市城区常绿阔叶树种资源现状进行了实地调查。结果表明,在徐州城区园林中应用的能够露地越冬的常绿阔叶树种共计约43种,隶属于22科、32属,应用形式主要有行道树、园景树、基础种植、绿篱、地被。文中还分析了徐州市常绿阔叶树种应用现状。

  15. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis

    OpenAIRE

    Kerkhoff, Andrew J.; Moriarty, Pamela E.; Weiser, Michael D.

    2014-01-01

    The diversity of living things generally peaks in the tropics and declines toward the poles. This “latitudinal gradient” is Earth’s most prevalent biogeographic pattern, but biologists do not agree about its cause. Here, we use geographic and evolutionary data for over 12,500 species of woody flowering plants to test the “tropical conservatism hypothesis,” which attributes the phenomenal diversity of tropical environments to their large extent over the past 55 million years (My) and the evolu...

  16. Effect of Disturbance Regimes on Spatial Patterns of Tree Species in Three Sites in a Tropical Evergreen Forest in Vietnam

    Directory of Open Access Journals (Sweden)

    Do Thi Ngoc Le

    2016-01-01

    Full Text Available The effects of disturbance regimes on the spatial patterns of the five most abundant species were investigated in three sites in a tropical forest at Xuan Nha Nature Reserve, Vietnam. Three permanent one-ha plots were established in undisturbed forest (UDF, lightly disturbed forest (LDF, and highly disturbed forest (HDF. All trees ≥5 cm DBH were measured in twenty-five 20 m × 20 m subplots. A total of 57 tree species belonging to 26 families were identified in the three forest types. The UDF had the highest basal area (30 m2 ha−1, followed by the LDF (17 m2 ha−1 and the HDF (13.0 m2 ha−1. The UDF also had the highest tree density (751 individuals ha−1 while the HDF held the lowest (478 individuals ha−1. Across all species, there were 417 “juveniles,” 267 “subadults,” and 67 “adults” in the UDF, while 274 “juveniles,” 230 “subadults,” and 36 “adults” were recorded in the LDF. 238 “juveniles,” 227 “subadults,” and 13 “adults” were obtained in the HDF. The univariate and bivariate data with pair- and mark-correlation functions of intra- and interspecific interactions of the five most abundant species changed in the three forest types. Most species indicated clumping or regular distributions at small scale, but a high ratio of negative interspecific small-scale associations was recorded in both the LDF and HDF sites. These were, however, rare in the UDF.

  17. Early evolution of angiosperms

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ While many characters have been used to define the nature of the angiosperms in living plants, the list must be reduced to a single character that can be found in the fossil record in order to proceed with our search for the earliest flowering plants.

  18. Relationship and its ecological significance between plant species diversity and ecosystem function of soil conservation in semi-humid evergreen forests, Yunnan Province, China

    Institute of Scientific and Technical Information of China (English)

    WANG Zhenhong; YANG Chengbo; YANG Limei; ZHOU Zizong; RAO Jing; YUAN Li; LI Ju

    2007-01-01

    In recent years,the relationship between biodiversity and ecosystem stability,productivity,and other ecosystem functions has been extensively studied by using theoretical approaches,experimental investigations,andobservations in natural ecosystems;however,results are controversial.For example,simple systems were more stable than complex systems in theoretical studies,and higher productivity was observed in human-made ecosystems with poorer species composition,etc.The role of biodiversity in the ecosystem,such as its influence on sustainability,stability,and productivity,is still not understood.Because accelerated soil-erosion in various ecosystems has caused a decrease of primary productivity,a logical way used in the study of the relationship between biodiversity and ecosystem function can be used to study the relationship between plant species diversity and soil conservation.In addition,biodiversity is a product of evolutionary history,and soil erosion is a key factor controlling the evolution of modern environment on the surface of the Earth.A study on the relationship between biodiversity and soil-erosion processes could help us understand the environmental evolution of Earth.Fifteen 10m × 40m standard nmoffplots were established to measure surface runoff,soil erosion,and total P loss in different secondary communities of semi-humid evergreen broad-leaved forests that varied in composition,diversity,and level of disturbance and soil erosion.The following five communities were studied:AEI (Ass.Elsholtzia fruticosa+Imperata cylindrical),APMO (Ass.Pinus yunnanensis + Myrsine africana + Oplismenus compsitus), APLO (Ass.Pinus yunnanensis + Lithocarpus confines + Oplismenus compsitus),AEME (Ass.Eucalyptus smith + Myrsine africana +Eupatorium adenophorum),and ACKV (Ass.Cyclobalanopsis glaucoides + Keteleeria evelyniana + Viola duelouxii).Tree density,the diameter of the tree at breast height,and the hygroscopic volume of plant leaves were determined in each plot

  19. Soil fauna abundance and diversity in a secondary semi-evergreen forest in Guadeloupe (Lesser Antilles): influence of soil type and dominant tree species

    OpenAIRE

    Loranger-Merciris, Gladys; Imbert, Daniel; Bernhard-Reversat, France; PONGE, Jean-François; Lavelle, Patrick

    2007-01-01

    International audience The importance of secondary tropical forests regarding the maintenance of soil fauna abundance and diversity is poorly known. The aims of this study were (1) to describe soil fauna abundance and diversity and (2) to assess the determinants of soil fauna abundance and diversity in two stands of a tropical semi-evergreen secondary forest. Soil macrofauna and microarthropod abundance and soil macrofauna diversity were described at two sites developed on different soils ...

  20. Formation and development of sperms in angiosperms

    OpenAIRE

    S. Tatintseva

    2014-01-01

    Spermiogelnesis has been studied in a large number of Angiosperm species characterizing different levels of phylogenetic system. The formation and development of male gamets can be described as formation of sperm cells that undergo ontogenesis which stimulates changes up to full maturity of the pollen grain. The process of ontogenesis is aimed at creating a suitable delivery system by the pollen tube to a female gamete.

  1. Why does biparental plastid inheritance revive in angiosperms?

    Science.gov (United States)

    Zhang, Quan; Sodmergen

    2010-03-01

    It is widely believed that plastid and mitochondrial genomes are inherited through the maternal parent. In plants, however, paternal transmission of these genomes is frequently observed, especially for the plastid genome. A male gametic trait, called potential biparental plastid inheritance (PBPI), occurs in up to 20% of angiosperm genera, implying a strong tendency for plastid transmission from the male lineage. Why do plants receive organelles from the male parents? Are there clues in plastids that will help to elucidate the evolution of plants? Reconstruction of the ancestral state of plastid inheritance patterns in a phylogenetic context provides insights into these questions. In particular, a recent report demonstrated the unilateral occurrence of PBPI in angiosperms. This result implies that nuclear cytoplasmic conflicts, a basic driving force for altering the mode of organelle inheritance, might have arisen specifically in angiosperms. Based on existing evidence, it is likely that biparental inheritance may have occurred to rescue angiosperm species with defective plastids. PMID:20052516

  2. Leaf evolution in Southern Hemisphere conifers tracks the angiosperm ecological radiation

    OpenAIRE

    Biffin, Ed; Brodribb, Timothy J.; Hill, Robert S.; Thomas, Philip; Lowe, Andrew J.

    2011-01-01

    The angiosperm radiation has been linked to sharp declines in gymnosperm diversity and the virtual elimination of conifers from the tropics. The conifer family Podocarpaceae stands as an exception with highest species diversity in wet equatorial forests. It has been hypothesized that efficient light harvesting by the highly flattened leaves of several podocarp genera facilitates persistence with canopy-forming angiosperms, and the angiosperm ecological radiation may have preferentially favour...

  3. Megastigmus seed chalcids (Hymenoptera, Torymidae) radiated much more on Angiosperms than previously considered. I- Description of 8 new species from Kenya, with a key to the females of Eastern and Southern Africa

    Science.gov (United States)

    Roques, Alain; Copeland, Robert S.; Soldati, Laurent; Denux, Olivier; Auger-Rozenberg, Marie-Anne

    2016-01-01

    Abstract A survey of seed chalcids from woody plants in Kenya revealed 12 species belonging to the genus Megastigmus Dalman, 1820, and has increased to 16 the number of Megastigmus species presently recorded from the Afrotropical Region, of which at least 13 are seed feeders. A key to female Megastigmus of the Afrotropical Region is provided. Eight new species are described from morphological evidence: Megastigmus lanneae Roques & Copeland, Megastigmus laventhali Roques & Copeland, Megastigmus ozoroae Roques & Copeland, and Megastigmus smithi Roques & Copeland in seeds of species of the family Anacardiaceae, Megastigmus copelandi Roques & Copeland and Megastigmus grewianae Roques & Copeland in seeds of Malvaceae, Megastigmus helinae Roques & Copeland in seeds of Rhamnaceae, and Megastigmus icipeensis Roques & Copeland for which no host is known. These collections include the first records of Malvaceae and Rhamnaceae as hosts of Megastigmus seed chalcids, which appear to have radiated in Angiosperms much more than previously considered. Analyses of the mitochondrial (cytochrome oxidase subunit one – COI) and nuclear DNA (28S ribosomal region) could be carried out on 8 of the 16 African species of which 5 were newly described ones. The species associated with Anacardiaceae always clustered together in phylogenies, confirming the existence of a strong and ancestral monophyletic clade, unlike the ones associated with Malvaceae and Rhamnaceae, whose position remains unclear. All holotypes are deposited in the National Museums of Kenya. PMID:27199604

  4. STUDY OF AQUATIC ANGIOSPERMIC PLANTS OF ANAND CITY, GUJARAT, INDIA

    Directory of Open Access Journals (Sweden)

    K. R. PATEL1 AND N. K. PATEL2

    2014-06-01

    Full Text Available The present study deals with the taxonomic study of Aquatic Angiosperms growing throughout the Anand city. The plants are listed along with their brief taxonomic account of each species with current nomenclature, vernacular name, family and uses. The  collected plants are systematically observed during present work, During my study I observed various aquatic angiospermic plants such as   Ceratophyllum demersum, Colocasia esculenta, Eichhornia crassipes, Ipomoea aquatica, Nymphoides indicum, Ludwigia repens, Polygonum orientale, Typha elephantina, Lemna perpusilla, Spirodella polyrrhiza, Xanthium indicum, Phyllanthus reticulatus, Cynodon dactylon, Hydrilla verticillata were very common. Whereas Nymphaea nouchali, Polygonum barbatum, Scirpus articulatus were very rare in the study area.

  5. Contrasting ozone sensitivity in related evergreen and deciduous shrubs

    International Nuclear Information System (INIS)

    Plant responses to enhanced ozone levels have been studied in two pairs of evergreen-deciduous species (Pistacia terebinthus vs. P. lentiscus; Viburnum lantana vs. V. tinus) in Open Top Chambers. Ozone induced widespread visible injury, significantly reduced CO2 assimilation and stomatal conductance (gs), impaired Rubisco efficiency and regeneration capacity (Vc,max,Jmax) and altered fluorescence parameters only in the deciduous species. Differences in stomatal conductance could not explain the observed differences in sensitivity. In control plants, deciduous species showed higher superoxide dismutase (SOD) activity than their evergreen counterparts, suggesting metabolic differences that could make them more prone to redox imbalances. Ozone induced increases in SOD and/or peroxidase activities in all the species, but only evergreens were able to cope with the oxidative stress. The relevancy of these results for the effective ozone flux approach and for the current ozone Critical Levels is also discussed. - Mediterranean evergreen shrubs have a constitutively higher capacity to tolerate ozone stress than their deciduous relatives.

  6. Contrasting ozone sensitivity in related evergreen and deciduous shrubs

    Energy Technology Data Exchange (ETDEWEB)

    Calatayud, Vicent, E-mail: vicent@ceam.e [Fundacion CEAM, c/ Charles R. Darwin 14, Parque Tecnologico, 46980 Paterna, Valencia (Spain); Marco, Francisco; Cervero, Julia [Fundacion CEAM, c/ Charles R. Darwin 14, Parque Tecnologico, 46980 Paterna, Valencia (Spain); Sanchez-Pena, Gerardo [SPCAN, Dir. Gral. de Medio Natural y Politica Forestal, Ministerio de Medio Ambiente, y Medio Rural y Marino, Rios Rosas 24, 28003 Madrid (Spain); Sanz, Maria Jose [Fundacion CEAM, c/ Charles R. Darwin 14, Parque Tecnologico, 46980 Paterna, Valencia (Spain)

    2010-12-15

    Plant responses to enhanced ozone levels have been studied in two pairs of evergreen-deciduous species (Pistacia terebinthus vs. P. lentiscus; Viburnum lantana vs. V. tinus) in Open Top Chambers. Ozone induced widespread visible injury, significantly reduced CO{sub 2} assimilation and stomatal conductance (g{sub s}), impaired Rubisco efficiency and regeneration capacity (V{sub c,max,}J{sub max}) and altered fluorescence parameters only in the deciduous species. Differences in stomatal conductance could not explain the observed differences in sensitivity. In control plants, deciduous species showed higher superoxide dismutase (SOD) activity than their evergreen counterparts, suggesting metabolic differences that could make them more prone to redox imbalances. Ozone induced increases in SOD and/or peroxidase activities in all the species, but only evergreens were able to cope with the oxidative stress. The relevancy of these results for the effective ozone flux approach and for the current ozone Critical Levels is also discussed. - Mediterranean evergreen shrubs have a constitutively higher capacity to tolerate ozone stress than their deciduous relatives.

  7. 亚热带阔叶林植物叶片虫食特征研究%Insect herbivory characteristic on leaves of plant species in the evergreen broad-leaved forests

    Institute of Scientific and Technical Information of China (English)

    刘志国; 景军; 李恺; 蔡永立

    2013-01-01

      植物与昆虫是森林生态系统的重要组成成分,两者通过长期的协同进化形成了密切的相互关系,在森林生态系统中发挥着承上启下的作用,连接了初级生产和高级消费,是森林生态系统中重要的动态中心.植物叶片的虫食特征是植物与昆虫相互作用关系的重要表征.选取福建梅花山和浙江天童两地76种常绿阔叶林植物为研究对象,采用野外调查与室内统计分析相结合的方式对植物叶片的虫食率和虫食频度进行了研究,以期了解亚热带常绿阔叶林植物叶片所面临的食叶昆虫取食压力.结果表明:76种植物平均虫食率为7.21%,虫食频度为32.95%.多数植物的叶片虫食率低于10%,叶片虫食频度主要分布在10%~60%之间.乔木种与灌木种、优势植物与伴生植物之间的叶片虫食率和虫食频度均不存在显著差异(P>0.05).超过60%的叶片虫食率和虫食频度发生在展叶期.福建梅花山常绿阔叶林植物的叶片虫食率(P=0.012)和虫食频度(P=0.74)均高于浙江天童.植物幼叶的虫食率随着海拔的升高而下降.以上结果表明,常绿阔叶林植物的叶片虫食强度介于热带雨林(11.1%)和温带森林(7.1%)之间,展叶期是叶片虫食发生的主要阶段,表现出过渡性特征;叶片的虫食在不同生活型和优势程度的植物间存在差异;叶片虫食率随纬度的升高和海拔的上升而降低.%Plants and insect herbivores play a major role in nutrient cycling and energy transfer in forest ecosystem, who formed close relationships through a long term evolution process, and connected with primary production and consumption. For the purpose of determine the patterns of herbivory in subtropical evergreen broad-leaved forest the study investigated herbivory rate and frequency on leaves of 76 evergreen plant species in Mt. Meihuashan, Fujian province and Tiantong National Forest Park, Zhejiang province. In

  8. Angiosperm phylogeny inferred from sequences of four mitochondrial genes

    Institute of Scientific and Technical Information of China (English)

    Yin-Long QIU; Zhi-Duan CHEN; Libo LI; Bin WANG; Jia-Yu XUE; Tory A. HENDRY; Rui-Qi LI; Joseph W. BROWN; Yang LIU; Geordan T. HUDSON

    2010-01-01

    An angiosperm phylogeny was reconstructed in a maximum likelihood analysis of sequences of four mitochondrial genes, atpl, matR, had5, and rps3, from 380 species that represent 376 genera and 296 families of seed plants. It is largely congruent with the phylogeny of angiosperms reconstructed from chloroplast genes atpB, matK, and rbcL, and nuclear 18S rDNA. The basalmost lineage consists of Amborella and Nymphaeales (including Hydatellaceae). Austrobaileyales follow this clade and are sister to the mesangiosperms, which include Chloranthaceae, Ceratophyllum, magnoliids, monocots, and eudicots. With the exception of Chloranthaceae being sister to Ceratophyllum, relationships among these five lineages are not well supported. In eudicots, Ranunculales, Sabiales, Proteales, Trochodendrales, Buxales, Gunnerales, Saxifragales, Vitales, Berberidopsidales, and Dilleniales form a basal grade of lines that diverged before the diversification of rosids and asterids. Within rosids, the COM (Celastrales-Oxalidales-Malpighiales) clade is sister to malvids (or rosid Ⅱ), instead of to the nitrogen-fixing clade as found in all previous large-scale molecular analyses of angiosperms. Santalales and Caryophyllales are members of an expanded asterid clade. This study shows that the mitochondrial genes are informative markers for resolving relationships among genera, families, or higher rank taxa across angiosperms. The low substitution rates and low homoplasy levels of the mitochondrial genes relative to the chloroplast genes, as found in this study, make them particularly useful for reconstructing ancient phylogenetic relationships. A mitochondrial gene-based angiosperm phylogeny provides an independent and essential reference for comparison with hypotheses of angiosperm phylogeny based on chloroplast genes, nuclear genes, and non-molecular data to reconstruct the underlying organismal phylogeny.

  9. Effects of micro-topographies on stand structure and tree species diversity in an old-growth evergreen broad-leaved forest, southwestern Japan

    Directory of Open Access Journals (Sweden)

    Tran Van Do

    2015-07-01

    Full Text Available Stand structure and species diversity were studied in correspondence with micro-topographies in an old-growth forest in southwestern Japan. The study was conducted in a 200×200m2 permanent plot, which were divided into 400 subplots using grids of 10m×10m. Subplots were categorized to four micro-topographies as crest slope (CS, head hollow (HH, upper slope (US and lower slope (LS, basing on slope of forest floor and plot position, and to two elevational zones as below 450 m and above 450 m. Tree censuses for all individuals with diameter at breast height (DBH ⩾ 5 cm were conducted in 2009 and 2013. The results indicated that CS had subplot means of living stems, dead stems, DBH, basal area (G, and basal area increment (▵G significantly higher than that in LS. While, means of recruited stems and Shannon diversity index were significantly lower. Comparing between below and above 450 m elevational zones indicated the significantly higher parameters of stand structure and species diversity in above 450 m elevational zone. The differences of edaphic conditions led to difference of density of living stems, species density, DBH, G, and ▵G among micro-topographies. Therefore, crest slope, upper slope, and higher elevational zones should be encouraged for the purposes of carbon accumulation and storage. While, the lower elevational zones should be used for the purposes of species diversity conservation.

  10. Schmeissneria: A missing link to angiosperms?

    Directory of Open Access Journals (Sweden)

    Cui Jinzhong

    2007-02-01

    Full Text Available Abstract Background The origin of angiosperms has been under debate since the time of Darwin. While there has been much speculation in past decades about pre-Cretaceous angiosperms, including Archaefructus, these reports are controversial. The earliest reliable fossil record of angiosperms remains restricted to the Cretaceous, even though recent molecular phylogenetic studies suggest an origin for angiosperms much earlier than the current fossil record. Results In this paper, after careful SEM and light microscopic work, we report fossils with angiospermous traits of the Jurassic age. The fossils were collected from the Haifanggou Formation (middle Jurassic in western Liaoning, northeast China. They include two female structures and an associated leaf on the same slab. One of the female structures is physically connected to the apex of a short shoot. The female organs are borne in pairs on short peduncles that are arranged along the axis of the female structure. Each of the female organs has a central unit that is surrounded by an envelope with characteristic longitudinal ribs. Each central unit has two locules completely separated by a vertical septum. The apex of the central unit is completely closed. The general morphology places these fossils into the scope of Schmeissneria, an early Jurassic genus that was previously attributed to Ginkgoales. Conclusion Because the closed carpel is a character only found in angiosperms, the closed apex of the central unit suggests the presence of angiospermy in Schmeissneria. This angiospermous trait implies either a Jurassic angiosperm or a new seed plant group parallel to angiosperms and other known seed plants. As an angiosperm, the Liassic age (earliest Jurassic of Schmeissneria microstachys would suggest an origin of angiosperms during the Triassic. Although still uncertain, this could have a great impact on our perspective of the history, diversity and systematics of seed plants and angiosperms.

  11. Angiosperms additions to flora of Peru

    Directory of Open Access Journals (Sweden)

    Eric F. Rodríguez

    2006-10-01

    Full Text Available We present here 131 new additions to the angiosperm flora of Peru from recent collections in the north of Peru, mostly from department of Amazonas (provinces of Bagua and Condorcanqui and department of Cajamarca (province of San Ignacio. This new contribution is the result of field and herbarium studies by the various authors in this region from 1993 to 2002, and represents the combined effort of personnel from the Herbarium Truxillense (HUT and the Herbarium of the Missouri Botanical Garden (MO as part of the Flora of Peru Project. The species reported here were compared against the list of species documented in the «Catalogue of Flowering Plants and Gymnosperms of Peru» (Brako & Zarucchi, 1993 and «Ten years of additions to the flora of Peru: 1993- 2003» (Ulloa Ulloa et al., 2004. The new taxa are organized in three categories: 18 species new to science, six new nomenclatural combinations and 107 new records, thereby enlarging their geographical distribution towards to Peru. Considering the new species and the new records, this contribution adds 125 species to the Peruvian Flora.

  12. Different responses to shade of evergreen and deciduous oak seedlings and the effect of acorn size

    Science.gov (United States)

    Ke, Guo; Werger, Marinus J. A.

    1999-11-01

    An evergreen oak species, Cyclobalanopsis multinervis, and a deciduous oak species, Quercus aliena var. acuteserrata were grown from acorns under two light levels (full sunlight and shade at about 18 % of full sunlight, simulating the light intensities in forest clearings and gaps, respectively) for one growing season. Three hypotheses were tested: (i) the deciduous species grows faster than the evergreen species in forest gaps and clearings; (ii) the deciduous species responds more strongly in terms of growth and morphology to variation in light climate than the evergreen species; and (iii) seedling size is positively correlated to acorn size. The results showed: (i) at both light levels, the deciduous seedlings gained significantly more growth in biomass and height than the evergreen seedlings; (ii) both species produced significantly more biomass in full sunlight than in shade, without showing any significant difference in height between treatments. Increase in light intensity improved the growth of the deciduous seedlings more strongly; (iii) at a similar age, the deciduous seedlings showed a greater response in leaf morphology and biomass allocation to variation in light levels, but when compared at a similar size, biomass allocation patterns did not differ significantly between species; (iv) bigger acorns tended to produce larger seedlings, larger leaf sizes and more leaf area, between and within species. These differences demonstrate that the deciduous species is gap-dependent and has the advantage over the evergreen species in forest gaps and clearings.

  13. Cellulose Orientation in the Outer Epidermal Wall of Angiosperm Roots: Implications for Biosystematics

    OpenAIRE

    KERSTENS, SVEN; VERBELEN, JEAN‐PIERRE

    2002-01-01

    The net orientation of cellulose fibrils in the outer epidermal wall of the root elongation zone of 57 angiosperm species belonging to 29 families was determined by means of Congo Red fluorescence and polarization confocal microscopy. The angiosperms can be divided in three groups. In all but four plant families, the net orientation of the cellulose fibrils is transverse to the root axis. Three families, the Poaceae, Juncaceae and Cyperaceae, have a totally different organization. In the root...

  14. Species diversity of natural evergreen broadleaf forest community in Danxia landform area of Langshan Mountain%良山丹霞地貌区天然常绿阔叶林群落物种多样性研究

    Institute of Scientific and Technical Information of China (English)

    旷建军; 旷柏根; 彭珍宝; 谢振华; 刘玲; 袁正科; 王海昀

    2011-01-01

    Using the sampling method to collect data, the important values for measure indicators, and using richness the index D2, Simpsom index D1, Shannon-Wiener index H', Sheldon evenness index JSW and Pielou evenness index E as the measurement index, the community species diversity of 14 natural evergreen broad-leaved forest in Danxia landform area of Langshan Mountain were studied. The results showed that: 1 ) In similar habitat, along with the syngenesis to the subclimax stage, the change tendency of species diversity is increasable. In the climax community, the change tendency of species diversity of shrubs and herbs was increasable, but arbor have no obvious change. 2) Community species diversity was changed with elevation change, besides general common change pattern, but also presents one kind of bimodal curve pattern. 3 ) H' and E have higher sensitivity than D1 and JSW. There is a significant similar function among with descries species diversity of arbors, shrubs, and herbs with D1 and H', and descries species diversity of arbors with H' and E, D1, and E, JSW and E, and descries species diversity of herb with JSW and E. It was concluded that elevation, habitat and succession affect community species diversity in Danxia landform, H'、D1 、JSW and E can individually express Danxia landform community species diversity.%采用样方法采集数据,以重要值为测度指标,以丰富度指数D2、Simpsom指数D1、Shannon.Wiener指数H'、Sheldon均匀度指数Jsw和Pielou均匀度指数E为测度指数,研究了崀山丹霞地貌14个天然常绿阔叶林群落物种多样性.结果表明:1)在相似生境中,随着群落演替至亚顶极阶段,物种多样性的变化趋势是增加的,顶极群落中,生境变优,灌、草层物种多样性的变化趋势为增加,而乔木层无明显变化规律;2)群落物种多样性随海拔的变化,除一般常见的变化模式外,还出现一种双峰曲线模式;3)H'较D1,E较Jsw具有较高的敏感度.D1与H'在

  15. Spatial patterns of dominant species in secondary evergreen broad-leaved forest in central Yunnan, Southwest China.%滇中次生常绿阔叶林优势树种的空间格局

    Institute of Scientific and Technical Information of China (English)

    刘保双; 付登高; 吴晓妮; 王洪娇; 王琪; 段昌群

    2013-01-01

    By using Ripley' s point pattern analysis, the spatial patterns of the dominant species Cyclobalanopsis glaucoides and Keteleeria evelyniana in the secondary evergreen broad-leaved forest in central Yunnan of Southwest China as well as the spatial associations among the individuals of the two species with different DBH classes were analyzed. Overall, the individuals of the two species with different DBH classes were in uniform distribution, indicating that the growth of the two populations was in stable period. The two species and their individuals with different DBH classes had a clumped distribution. With the increase of DBH class, the aggregation degree of C. glaucoides had a decreasing trend, while that of K. evelyniana decreased first, increased then, and decreased at last. A positive or no significant spatial association was observed among the saplings, juvenile trees, and adult trees of the two species. At different spatial scales, the two species of different DBH classes had less association, possibly because of the greater differences in the survival strategies of the two species. It was suggested that in the restoration of the forests in central Yunnan, it would be essential to control the plant population density and attend to the interspecific interaction to build an appropriate structure of the community.%采用Ripley的点格局分析方法对滇中次生常绿阔叶林中优势种滇青冈(Cyclobalanopsis glaucoides)和滇油杉(Keteleeria evelyniana)的分布格局以及不同径级分株之间的相互关系进行了分析.结果表明:(1)总体来看,两个优势物种各径级株数分布较均匀,二者的增长处于稳定期.(2)两个优势物种在总体上及不同径级阶段主要呈聚集分布.随径级的增加,滇青冈种群的聚集程度逐渐降低,而滇油杉种群的聚集程度呈现降低-增加-降低的趋势.两个优势物种的幼树、中树和大树主要呈空间正相关或无空间关联性.(3)两优势种群不同

  16. Humus forms in two secondary semi-evergreen tropical forests

    OpenAIRE

    Loranger, Gladys; PONGE, Jean-François; Lavelle, Patrick

    2003-01-01

    International audience The dynamics and function of humus forms in tropical forests are still poorly understood. Humus profiles in two secondary semi-evergreen woodlands in Guadeloupe (French West Indies) were analysed micromorphologically. The humus forms are described under the canopy of five dominant tree species at two sites: under Pisonia subcordata and Bursera simaruba in a secondary forest on a Leptosol (Rendzina), and under Swietenia macrophylla, Tabebuia heterophylla and B. simaru...

  17. Protected Areas: Mixed Success in Conserving East Africa's Evergreen Forests

    OpenAIRE

    Pfeifer, Marion; Neil D. Burgess; Swetnam, Ruth D.; Platts, Philip J; Willcock, Simon; Marchant, Robert

    2012-01-01

    In East Africa, human population growth and demands for natural resources cause forest loss contributing to increased carbon emissions and reduced biodiversity. Protected Areas (PAs) are intended to conserve habitats and species. Variability in PA effectiveness and 'leakage' (here defined as displacement of deforestation) may lead to different trends in forest loss within, and adjacent to, existing PAs. Here, we quantify spatial variation in trends of evergreen forest coverage in East Africa ...

  18. New universal matK primers for DNA barcoding angiosperms

    Institute of Scientific and Technical Information of China (English)

    Jing YU; Jian-Hua XUE; Shi-Liang ZHOU

    2011-01-01

    The chloroplast maturase K gene (matK) is one of the most variable coding genes of angiosperms and has been suggested to be a "barcode" for land plants. However, matK exhibits low amplification and sequencing rates due to low universality of currently available primers and mononucleotide repeats. To resolve these technical problems, we evaluated the entire matK region to find a region of 600-800 bp that is highly variable, represents the best of all matK regions with priming sites conservative enough to design universal primers, and avoids the mononucleotide repeats. After careful evaluation, a region in the middle was chosen and a pair of primers named natK472F and matK1248R was designed to amplify and sequence the matK fragment of approximately 776 bp. This region encompasses the most variable sites, represents the entire matK region best, and also exhibits high amplification rates and quality of sequences. The universality of this primer pair was tested using 58 species from 47 families of angiosperm plants. The primers showed a strong amplification (93.1%) and sequencing (92.6%)successes in the species tested. We propose that the new primers will solve, in part, the problems encountered when using matK and promote the adoption of matK as a DNA barcode for angiosperms.

  19. [Frost-resistance of subtropical evergreen woody plants: an evaluation based on plant functional traits].

    Science.gov (United States)

    Xu, Yi-Lu; Yang, Xiao-Dong; Xu, Yue; Xie, Yi-Ming; Wang, Liang-Yan; Yan, En-Rong

    2012-12-01

    Evaluating the frost-resistance of evergreen woody plants is of significance in guiding the species selection in forest management in subtropical region. In this paper, an investigation was made on the functional traits (including specific leaf area, stem wood density, leaf area, leaf dry matter content, leaf relative electrical conductance, and twig wood density) of 64 common evergreen broad-leaved and coniferous woody plant species in the Ningbo region of Zhejiang Province, East China, after a severe snowstorm in early 2008, aimed to select the evergreen woody plants with high ability of freeze-tolerance, and to establish a related evaluation system. By using a hierarchy analysis approach, the weight values of the functional traits of each species were determined, and an index system for evaluating the plants tolerance ability against freeze and mechanical damage was established. Based on this system, 23 evergreen plant species with high tolerance ability against freeze and mechanical damage, such as Cyclobalanopsis gilva, Cyclobalanopsis nubium, Neolitsea aurata, and Vacciniuim mandarinorum, were selected. In the meantime, on the basis of the ordering with each of the functional traits, the ordering of the tolerance ability of the 64 plant species against freeze and mechanical damage was made, and a list for the frost-resistance ability of the subtropical evergreen woody plant species in Ningbo region was constituted. PMID:23479868

  20. Evergreen sclerophyllous Quercus forests in northwestern Yunnan, China as compared to the Mediterranean evergreen Quercus forests in California, USA and northeastern Spain

    Directory of Open Access Journals (Sweden)

    C. Q. Tang

    2006-12-01

    Full Text Available Evergreen sclerophyllous Quercus forests in NW Yunnan (China were studied and compared with the Mediterranean evergreen sclerophyllous Quercus forests in central coastal California (USA and Catalonia (NE Spain. Forests of Q. aquifolioides, Q. pannosa, Q. longispica of NW Yunnan, Q. agrifolia of California and Q. ilex of NE Spain were analyzed as representative communities. The similarities and differences at the community level in the contemporary vegetation of the sclerophyllous Quercus forest found in the three regions are clarified. The general patterns of the evergreen Quercus forest in the three regions were similar, though different assemblages of species were involved. The species diversity in all three regions was rather low. The species richness did not significantly differ among the forests, although in the Q. longispica forest it is somewhat higher than the others. The three representative species of evergreen Quercus in NW Yunnan reached the greatest maximum height, while Q. agrifolia of California had the largest basal area per ha. The Q. ilex forest of Spain had the lowest values for maximum tree height and dbh and the highest density per ha. Frequency of dbh size classes indicated that Q. aquifolioides, Q. pannosa, and Q. agrifolia had potentially good regeneration of the sporadic type with highest values for the intermediate size classes, and the regeneration of Q. longispica and Q. ilex was strong as indicated by a reverse-J pattern. Still, in each area, most regeneration was from sprouting. In all three regions the evergreen Quercus species have adapted to environmental changes, for instance by development of sprouting and rooting abilities to resist drought, cold conditions and various disturbances. The evergreen Quercus forests in NW Yunnan were structurally more similar to the Q. agrifolia forest of central coastal California than to the Q. ilex forest of NE Spain.

  1. Seasonal changes in the photosynthetic performance of two evergreen Nothofagus species in south central Chile Cambios estacionales en el desempeño fotosintético de dos especies siempreverdes de Nothofagus en el centro sur de Chile

    Directory of Open Access Journals (Sweden)

    RAFAEL ZÚÑIGA

    2006-12-01

    Full Text Available The evergreen Nothofagus dombeyi and Nothofagus nitida are important members of the temperate Chilean rainforest. They seldom grow together in nature. Nothofagus nitida is more susceptible to excess light and drought than N. dombeyi. We postulate that the different properties of the photosynthetic apparatus under common garden conditions of these species could explain their contrasting habitat preferences. The two species growing in a common garden in south central Chile were studied. The optimal photochemical efficiency (Fv/Fm of both species remained within normal values (»0.8 with the exception of a decrease in N. dombeyi at midday in summer, suggesting reversible reduction in photochemical efficiency of photosystem II (PSII. During summer the effective photochemical efficiency (F PSII, photochemical quenching (qP, photosynthesis (Amax, stomatal conductance (gs and transpiration rates (E in N. dombeyi were higher than in N. nitida. The highest increments in photoprotective pigments (zeaxanthin + antheraxanthin and lutein contents between predawn and midday were obtained in summer in N. dombeyi. In N. nitida a nocturnal retention of dissipative pigments, without a decrease in Fv/Fm, was found in winter. The results suggest that N. dombeyi showed a better photosynthetic performance than N. nitida under high light, high temperature, and drier conditions. These data support are consistent with the pioneer character of N. dombeyi and the semi-tolerant shade properties and more restricted distribution of N. nitida. These photosynthetic characteristics, along with their freezing and flooding resistance differences, may result from their habitat separationLas siempreverdes, Nothofagus dombeyi y Nothofagus nitida, representantes importantes de los bosques lluviosos templados de Chile, raramente crecen juntos en forma natural. Nothofagus nitida es más sensible al exceso de luz y déficit de agua que N. dombeyi. Se postula que diferentes propiedades

  2. A combinatorial morphospace for angiosperm pollen

    Science.gov (United States)

    Mander, Luke

    2016-04-01

    The morphology of angiosperm (flowering plant) pollen is extraordinarily diverse. This diversity results from variations in the morphology of discrete anatomical components. These components include the overall shape of a pollen grain, the stratification of the exine, the number and form of any apertures, the type of dispersal unit, and the nature of any surface ornamentation. Different angiosperm pollen morphotypes reflect different combinations of these discrete components. In this talk, I ask the following question: given the anatomical components of angiosperm pollen that are known to exist in the plant kingdom, how many unique biologically plausible combinations of these components are there? I explore this question from the perspective of enumerative combinatorics using an algorithm I have written in the Python programming language. This algorithm (1) calculates the number of combinations of these components; (2) enumerates those combinations; and (3) graphically displays those combinations. The result is a combinatorial morphospace that reflects an underlying notion that the process of morphogenesis in angiosperm pollen can be thought of as an n choose k counting problem. I compare the morphology of extant and fossil angiosperm pollen grains to this morphospace, and suggest that from a combinatorial point of view angiosperm pollen is not as diverse as it could be, which may be a result of developmental constraints.

  3. Unique responsiveness of angiosperm stomata to elevated CO2 explained by calcium signalling.

    Directory of Open Access Journals (Sweden)

    Timothy J Brodribb

    Full Text Available Angiosperm and conifer tree species respond differently when exposed to elevated CO2, with angiosperms found to dynamically reduce water loss while conifers appear insensitive. Such distinct responses are likely to affect competition between these tree groups as atmospheric CO2 concentration rises. Seeking the mechanism behind this globally important phenomenon we targeted the Ca(2+-dependent signalling pathway, a mediator of stomatal closure in response to elevated CO2, as a possible explanation for the differentiation of stomatal behaviours. Sampling across the diversity of vascular plants including lycophytes, ferns, gymnosperms and angiosperms we show that only angiosperms possess the stomatal behaviour and prerequisite genetic coding, linked to Ca(2+-dependent stomatal signalling. We conclude that the evolution of Ca(2+-dependent stomatal signalling gives angiosperms adaptive benefits in terms of highly efficient water use, but that stomatal sensitivity to high CO2 may penalise angiosperm productivity relative to other plant groups in the current era of soaring atmospheric CO2.

  4. Inflatable Evergreen Polar Zone Dome (EPZD) Settlements

    OpenAIRE

    Bolonkin, Alexander; Cathcart, Richard

    2007-01-01

    Sustaining human life at the Earth antipodal Polar Regions is very difficult especially during Winter when water-freezing air temperature, blizzards and whiteouts make normal human existence dangerous. To counter these environmental stresses, we offer the innovative artificial Evergreen Polar Zone Dome (EPZD), an inflated half-hemisphere with interiors continuously providing a Mediterranean Sea-like climate. The Evergreen EPZD structural theory is developed, substantiated by key computations ...

  5. Responses of two températe evergreen Nothofagus species to sudden and gradual waterlogging: relationships with distribution patterns Respuestas de dos especies siempreverdes de Nothofagus al anegamiento gradual y repentino: relaciones con patrones de distribución

    Directory of Open Access Journals (Sweden)

    FRIDA PIPER

    2008-06-01

    Full Text Available The effects of gradual waterlogging on trees have been little studied. The températe evergreens Nothofagus nítida and N. dombeyi are differentially distributed on soil moisture gradients, only the former being common on poorly-drained sites. We compared the relative height growth rate (RGR H and foliage loss of seedlings subjected experimentally to normal drainage (soil at field capacity, sudden waterlogging and gradual waterlogging for two months to determine which waterlogging regime more accurately predicts interspecific differences in tolerance, as evident from natural distributions. RGR H was similar between species but differed between treatments (normal watering > gradual waterlogging = sudden waterlogging. Sudden waterlogging caused massive foliage loss in the two species, but gradual waterlogging caused much greater foliage loss in N. dombeyi than in N. nítida, indicating some degree of acclimation by the latter species. Linear regressions indicated that RGR H was negatively affected by foliage loss in both species, without differences between them. Since no difference in RGR H was found between species in the waterlogging treatments, but yet in foliage loss, other mechanisms may be in volved in the short term growth reduction of N. nítida. Effects of waterlogging on long-term performance in the field were evaluated by reciprocal transplants between a poorly-drained site naturally occupied by N. nítida, and a well drained site naturally occupied by N. dombeyi. After two growing seasons, N. dombeyi had significantly lower specific leaf área (SLA and RGR H, at the poorly drained site than at its original site. At the poorly drained site N. nítida achieved 100 % survival, compared with 73.5 % in N. dombeyi. Reduced growth and survival of N. dombeyi associated with the negative effects on carbón gain of extensive foliage loss and reduced SLA may thus exelude it from the wetter sites. We conclude that tolerance may be better

  6. Ecological determinants of mean family age of angiosperm trees in forest communities in China

    Science.gov (United States)

    Qian, Hong; Chen, Shengbin

    2016-01-01

    Species assemblage in a local community is determined by the interplay of evolutionary and ecological processes. The Tropical Niche Conservatism hypothesis proposes mechanisms underlying patterns of biodiversity in biological communities along environmental gradients. This hypothesis predicts that, among other things, clades in areas with warm or wet environments are, on average, older than those in areas with cold or dry environments. Focusing on angiosperm trees in forests, this study tested the age-related prediction of the Tropical Niche Conservatism hypothesis. We related the mean family age of angiosperm trees in 57 local forests from across China with 23 current and paleo-environmental variables, which included all major temperature- and precipitation-related variables. Our study shows that the mean family age of angiosperm trees in local forests was positively correlated with temperature and precipitation. This finding is consistent with the age-related prediction of the Tropical Niche Conservatism hypothesis. Approximately 85% of the variance in the mean family age of angiosperm trees was explained by temperature-related variables, and 81% of the variance in the mean family age of angiosperm trees was explained by precipitation-related variables. Climatic conditions at the Last Glacial Maximum did not explain additional variation in mean family age after accounting for current environmental conditions. PMID:27354109

  7. Forest Typification to Characterize the Structure and Composition of Old-growth Evergreen Forests on Chiloe Island, North Patagonia (Chile

    Directory of Open Access Journals (Sweden)

    Jan R. Bannister

    2013-11-01

    Full Text Available The Evergreen forest type develops along the Valdivian and North-Patagonian phytogeographical regions of the south-central part of Chile (38° S–46° S. These evergreen forests have been scarcely studied south of 43° S, where there is still a large area made up of old-growth forests. Silvicultural proposals for the Evergreen forest type have been based on northern Evergreen forests, so that the characterization of the structure and composition of southern Evergreen forests, e.g., their typification, would aid in the development of appropriate silvicultural proposals for these forests. Based on the tree composition of 46 sampled plots in old-growth forests in an area of >1000 ha in southern Chiloé Island (43° S, we used multivariate analyses to define forest groups and to compare these forests with other evergreen forests throughout the Archipelago of North-Patagonia. We determined that evergreen forests of southern Chiloé correspond to the North-Patagonian temperate rainforests that are characterized by few tree species of different shade tolerance growing on fragile soils. We discuss the convenience of developing continuous cover forest management for these forests, rather than selective cuts or even-aged management that is proposed in the current legislation. This study is a contribution to forest classification for both ecologically- and forestry-oriented purposes.

  8. Ontogenetic shifts in plant-plant interactions in a rare cycad within angiosperm communities.

    Science.gov (United States)

    Álvarez-Yépiz, Juan C; Búrquez, Alberto; Dovčiak, Martin

    2014-06-01

    Gymnosperms and angiosperms can co-occur within the same habitats but key plant traits are thought to give angiosperms an evolutionary competitive advantage in many ecological settings. We studied ontogenetic changes in competitive and facilitative interactions between a rare gymnosperm (Dioon sonorense, our target species) and different plant and abiotic neighbours (conspecific-cycads, heterospecific-angiosperms, or abiotic-rocks) from 2007 to 2010 in an arid environment of northwestern Mexico. We monitored survival and growth of seedlings, juveniles, and adults of the cycad Dioon sonorense to evaluate how cycad survival and relative height growth rate (RHGR) responded to intra- and interspecific competition, canopy openness, and nearest neighbour. We tested spatial associations among D. sonorense life stages and angiosperm species and measured ontogenetic shifts in cycad shade tolerance. Canopy openness decreased cycad survival while intraspecific competition decreased survival and RHGR during early ontogeny. Seedling survival was higher in association with rocks and heterospecific neighbours where intraspecific competition was lower. Shade tolerance decreased with cycad ontogeny reflecting the spatial association of advanced stages with more open canopies. Interspecific facilitation during early ontogeny of our target species may promote its persistence in spite of increasing interspecific competition in later stages. We provide empirical support to the long-standing assumption that marginal rocky habitats serve as refugia from angiosperm competition for slow-growing gymnosperms such as cycads. The lack of knowledge of plant-plant interactions in rare or endangered species may hinder developing efficient conservation strategies (e.g. managing for sustained canopy cover), especially under the ongoing land use and climatic changes. PMID:24652529

  9. Angiosperms, Los Tuxtlas Biosphere Reserve, Veracruz, Mexico

    OpenAIRE

    S. Mandujano; Dunn, J. C.; Benítez-Malvido, J.; Arroyo-Rodríguez, V.

    2009-01-01

    The Los Tuxtlas Reserve has been heavily deforested and fragmented since the 1970’s. Although the floraof Los Tuxtlas has been described previously, most floristic lists come from the large forest reserve of the Los Tuxtlasfield station. Here we present a check list of Angiosperms recorded in 45 rainforest fragments (< 1 to 266 ha) located inthree landscapes with different levels of deforestation. We sampled all trees, shrubs, lianas, palms and herbs withdiameter at breast height (dbh)

  10. Angiosperms, Los Tuxtlas Biosphere Reserve, Veracruz, Mexico

    Directory of Open Access Journals (Sweden)

    Mandujano, S.

    2009-01-01

    Full Text Available The Los Tuxtlas Reserve has been heavily deforested and fragmented since the 1970’s. Although the floraof Los Tuxtlas has been described previously, most floristic lists come from the large forest reserve of the Los Tuxtlasfield station. Here we present a check list of Angiosperms recorded in 45 rainforest fragments (< 1 to 266 ha located inthree landscapes with different levels of deforestation. We sampled all trees, shrubs, lianas, palms and herbs withdiameter at breast height (dbh

  11. The Early Flowers and Angiosperm Evolution

    DEFF Research Database (Denmark)

    Friis, Else Marie; Crane, P.R.; Pedersen, Kaj Raunsgaard

    based on research into Early and Late Cretaceous fossil floras from Europe and North America, the authors draw on direct palaeontological evidence of the pattern of angiosperm evolution through time. Synthesising palaeobotanical data with information from living plants, this unique book explores the...... evolutionary history of flowering plants from their earliest phases in obscurity to their dominance in modern vegetation. The discussion provides comprehensive biological and geological background information, before moving on to summarise the fossil record in detail. Including previously unpublished results...

  12. 'Linkage' pharmaceutical evergreening in Canada and Australia

    OpenAIRE

    Faunce, Thomas A; Lexchin, Joel

    2007-01-01

    'Evergreening' is not a formal concept of patent law. It is best understood as a social idea used to refer to the myriad ways in which pharmaceutical patent owners utilise the law and related regulatory processes to extend their high rent-earning intellectual monopoly privileges, particularly over highly profitable (either in total sales volume or price per unit) 'blockbuster' drugs. Thus, while the courts are an instrument frequently used by pharmaceutical brand name manufacturers to prolong...

  13. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence.

    Science.gov (United States)

    Hasselquist, Niles J; Allen, Michael F; Santiago, Louis S

    2010-12-01

    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (Ψ(L)) relative to late-seral trees (-1.01 ± 0.14 and -0.54 ± 0.07 MPa, respectively). Although Ψ(L) did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ(18)O values relative to drought-deciduous trees (-2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar (18)O (∆(18)O(l)) and (13)C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season. PMID:20658152

  14. Contrasting seasonal leaf habits of canopy trees between tropical dry-deciduous and evergreen forests in Thailand.

    Science.gov (United States)

    Ishida, Atsushi; Diloksumpun, Sapit; Ladpala, Phanumard; Staporn, Duriya; Panuthai, Samreong; Gamo, Minoru; Yazaki, Kenichi; Ishizuka, Moriyoshi; Puangchit, Ladawan

    2006-05-01

    We compared differences in leaf properties, leaf gas exchange and photochemical properties between drought-deciduous and evergreen trees in tropical dry forests, where soil nutrients differed but rainfall was similar. Three canopy trees (Shorea siamensis Miq., Xylia xylocarpa (Roxb.) W. Theob. and Vitex peduncularis Wall. ex Schauer) in a drought-deciduous forest and a canopy tree (Hopea ferrea Lanessan) in an evergreen forest were selected. Soil nutrient availability is lower in the evergreen forest than in the deciduous forest. Compared with the evergreen tree, the deciduous trees had shorter leaf life spans, lower leaf masses per area, higher leaf mass-based nitrogen (N) contents, higher leaf mass-based photosynthetic rates (mass-based P(n)), higher leaf N-based P(n), higher daily maximum stomatal conductance (g(s)) and wider conduits in wood xylem. Mass-based P(n) decreased from the wet to the dry season for all species. Following onset of the dry season, daily maximum g(s) and sensitivity of g(s) to leaf-to-air vapor pressure deficit remained relatively unchanged in the deciduous trees, whereas both properties decreased in the evergreen tree during the dry season. Photochemical capacity and non-photochemical quenching (NPQ) of photosystem II (PSII) also remained relatively unchanged in the deciduous trees even after the onset of the dry season. In contrast, photochemical capacity decreased and NPQ increased in the evergreen tree during the dry season, indicating that the leaves coped with prolonged drought by down-regulating PSII. Thus, the drought-avoidant deciduous species were characterized by high N allocation for leaf carbon assimilation, high water use and photoinhibition avoidance, whereas the drought-tolerant evergreen was characterized by low N allocation for leaf carbon assimilation, conservative water use and photoinhibition tolerance. PMID:16452078

  15. Ectomycorrhizas from a Lower Eocene angiosperm forest.

    Science.gov (United States)

    Beimforde, Christina; Schäfer, Nadine; Dörfelt, Heinrich; Nascimbene, Paul C; Singh, Hukam; Heinrichs, Jochen; Reitner, Joachim; Rana, Rajendra S; Schmidt, Alexander R

    2011-12-01

    The development of mycorrhizal associations is considered a key innovation that enabled vascular plants to extensively colonize terrestrial habitats. Here, we present the first known fossil ectomycorrhizas from an angiosperm forest. Our fossils are preserved in a 52 million-yr-old piece of amber from the Tadkeshwar Lignite Mine of Gujarat State, western India. The amber was produced by representatives of Dipterocarpaceae in an early tropical broadleaf forest. The ectomycorrhizas were investigated using light microscopy and field emission scanning electron microscopy. Dissolving the amber surrounding one of the fossils allowed ultrastructural analyses and Raman spectroscopy. Approx. 20 unramified, cruciform and monopodial-pinnate ectomycorrhizas are fossilized adjacent to rootlets, and different developmental stages of the fossil mycorrhizas are delicately preserved in the ancient resin. Compounds of melanins were detectable in the dark hyphae. The mycobiont, Eomelanomyces cenococcoides gen. et spec. nov., is considered to be an ascomycete; the host is most likely a dipterocarp representative. An early ectomycorrhizal association may have conferred an evolutionary advantage on dipterocarps. Our find indicates that ectomycorrhizas occurred contemporaneously within both gymnosperms (Pinaceae) and angiosperms (Dipterocarpaceae) by the Lower Eocene. PMID:22074339

  16. CenH3 evolution in diploids and polyploids of three angiosperm genera

    OpenAIRE

    Masonbrink, Rick E.; Gallagher, Joseph P.; Jareczek, Josef J; Renny-Byfield, Simon; Grover, Corrinne E.; Gong, Lei; Wendel, Jonathan F.

    2014-01-01

    Background Centromeric DNA sequences alone are neither necessary nor sufficient for centromere specification. The centromere specific histone, CenH3, evolves rapidly in many species, perhaps as a coevolutionary response to rapidly evolving centromeric DNA. To gain insight into CenH3 evolution, we characterized patterns of nucleotide and protein diversity among diploids and allopolyploids within three diverse angiosperm genera, Brassica, Oryza, and Gossypium (cotton), with a focus on evidence ...

  17. Chinese Localisation of Evergreen: An Open Source Integrated Library System

    Science.gov (United States)

    Zou, Qing; Liu, Guoying

    2009-01-01

    Purpose: The purpose of this paper is to investigate various issues related to Chinese language localisation in Evergreen, an open source integrated library system (ILS). Design/methodology/approach: A Simplified Chinese version of Evergreen was implemented and tested and various issues such as encoding, indexing, searching, and sorting…

  18. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence

    OpenAIRE

    Hasselquist, Niles J.; Allen, Michael F; Santiago, Louis S.

    2010-01-01

    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought...

  19. Edge effects on epiphytes in montane moist evergreen broad-leaved forest

    OpenAIRE

    Wenzhang Ma; Wenyao Liu; Lipan Yang; Guoping Yang

    2008-01-01

    Epiphytes are important components in tropical and subtropical forest ecosystems, and are well-known for their sensitivity to environmental changes. To understand epiphyte’s response to forest fragmentation and edge effects, we established four plots at the edges of a montane moist evergreen broad-leaved forest in the Ailao Mountains of Yunnan. Within each plot, we established four transects at 10, 20, 40, and 80 m from forest edge to study the species composition, biomass, and life form of e...

  20. Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants

    Directory of Open Access Journals (Sweden)

    Croom Henrietta B

    2007-12-01

    Full Text Available Abstract Background Some of the most difficult phylogenetic questions in evolutionary biology involve identification of the free-living relatives of parasitic organisms, particularly those of parasitic flowering plants. Consequently, the number of origins of parasitism and the phylogenetic distribution of the heterotrophic lifestyle among angiosperm lineages is unclear. Results Here we report the results of a phylogenetic analysis of 102 species of seed plants designed to infer the position of all haustorial parasitic angiosperm lineages using three mitochondrial genes: atp1, coxI, and matR. Overall, the mtDNA phylogeny agrees with independent studies in terms of non-parasitic plant relationships and reveals at least 11 independent origins of parasitism in angiosperms, eight of which consist entirely of holoparasitic species that lack photosynthetic ability. From these results, it can be inferred that modern-day parasites have disproportionately evolved in certain lineages and that the endoparasitic habit has arisen by convergence in four clades. In addition, reduced taxon, single gene analyses revealed multiple horizontal transfers of atp1 from host to parasite lineage, suggesting that parasites may be important vectors of horizontal gene transfer in angiosperms. Furthermore, in Pilostyles we show evidence for a recent host-to-parasite atp1 transfer based on a chimeric gene sequence that indicates multiple historical xenologous gene acquisitions have occurred in this endoparasite. Finally, the phylogenetic relationships inferred for parasites indicate that the origins of parasitism in angiosperms are strongly correlated with horizontal acquisitions of the invasive coxI group I intron. Conclusion Collectively, these results indicate that the parasitic lifestyle has arisen repeatedly in angiosperm evolutionary history and results in increasing parasite genomic chimerism over time.

  1. Effect of precipitation condition on photosynthesis and biomass accumulation and referring to splash erosion status in five typical evergreen tree species in humid monsoon climatic region of subtropical hill-land

    Institute of Scientific and Technical Information of China (English)

    余蔚青; 王云琦; 王玉杰; 张会兰; 王彬; 刘勇

    2015-01-01

    Negative effect of precipitation on plant photosynthesis was investigated in this work. Stomatal conductance, transpiration rate and net photosynthetic rate were measured before and after each precipitation event, respectively, and the corresponding precipitation was recorded as well. Moreover, plant dry matter accumulation was counted at the end of our entire experiment. The results show that precipitation fully demonstrates its negative effect on plant photosynthesis under the condition of without water shortage. Although it has not been proved, leaf shape seems to be associated with this effect. Broad-leaved species are less influenced than coniferous and lanceleaf species no matter on the length of variation time or changes in variation values. The different situation among three broad-leaved species seems to illustrate that the effect is also related to the size of single leaf area. The correlation between precipitation and photosynthetic rate variation is analogous to the relationship between precipitation and splash erosion, and in the view of the relationship between plant photosynthetic characteristics and dry mass accumulation, it can be thought that it can reflect the negative impact of precipitation on plant growth by making use of splash erosion. Therefore, a section was added in the traditional plant biomass estimation algorithms by using eco-physiological models, and this was proved to enhance the accuracy of traditional estimation from preliminary verifications.

  2. Design of biomimetic camouflage materials based on angiosperm leaf organs

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The micro structures and reflectance spectra of angiosperm leaves were compared with those of angiosperm petals. The study indicated that angiosperm leaf organs had identical micro structures and reflectance characteristics in the wave band of near infrared. Micro structures and compositions of leaf organs were the crucial factors influencing their reflectance spectra. The model of biomimetic materials based on angiosperm leaf organs was introduced and verified. From 300 to 2600 nm, the similarity coefficients of reflectance spectra of the foam containing water and Platanus Orientalis Linn. leaves were all above 0.969. The biomimetic camou- flage material exhibited almost the same reflectance spectra with those of green leaves in ultraviolet, visible and near infrared wave bands. And its "concolor and conspectrum" effect might take on reconnaissance of hyperspectral and ultra hy- perspectral imaging.

  3. The SLEEPER genes: a transposase-derived angiosperm-specific gene family

    Directory of Open Access Journals (Sweden)

    Knip Marijn

    2012-10-01

    Full Text Available Abstract Background DAYSLEEPER encodes a domesticated transposase from the hAT-superfamily, which is essential for development in Arabidopsis thaliana. Little is known about the presence of DAYSLEEPER orthologs in other species, or how and when it was domesticated. We studied the presence of DAYSLEEPER orthologs in plants and propose a model for the domestication of the ancestral DAYSLEEPER gene in angiosperms. Results Using specific BLAST searches in genomic and EST libraries, we found that DAYSLEEPER-like genes (hereafter called SLEEPER genes are unique to angiosperms. Basal angiosperms as well as grasses (Poaceae and dicotyledonous plants possess such putative orthologous genes, but SLEEPER-family genes were not found in gymnosperms, mosses and algae. Most species contain more than one SLEEPER gene. All SLEEPERs contain a C2H2 type BED-zinc finger domain and a hATC dimerization domain. We designated 3 motifs, partly overlapping the BED-zinc finger and dimerization domain, which are hallmark features in the SLEEPER family. Although SLEEPER genes are structurally conserved between species, constructs with SLEEPER genes from grapevine and rice did not complement the daysleeper phenotype in Arabidopsis, when expressed under control of the DAYSLEEPER promoter. However these constructs did cause a dominant phenotype when expressed in Arabidopsis. Rice plant lines with an insertion in the RICESLEEPER1 or 2 locus displayed phenotypic abnormalities, indicating that these genes are functional and important for normal development in rice. We suggest a model in which we hypothesize that an ancestral hAT transposase was retrocopied and stably integrated in the genome during early angiosperm evolution. Evidence is also presented for more recent retroposition events of SLEEPER genes, such as an event in the rice genome, which gave rise to the RICESLEEPER1 and 2 genes. Conclusions We propose the ancestral SLEEPER gene was formed after a process of retro

  4. The impact of boreal deciduous and evergreen forests on atmospheric CO2 seasonality

    Science.gov (United States)

    Welp, L.; Graven, H. D.; Keeling, R. F.; Bi, J.

    2015-12-01

    The seasonal cycle of atmospheric CO2 is largely controlled by the terrestrial biosphere. It is well known that the seasonal amplitude of net ecosystem productivity (NEP) is the largest in the far north, where forest productivity is compressed into a short growing season. Since 1960, the seasonal amplitude of atmospheric CO2 north of 45N has increased by 35-55%. The increase in the seasonal amplitude is a difficult benchmark for coupled climate-carbon models to replicate. In fact, the models vary widely in their mean seasonal cycle representation. The boreal region has a strong influence on CO2 seasonality at Barrow. Deciduous and evergreen plant functional types (PFTs) have different patterns of NEP. We identified four pairs of nearby deciduous and evergreen forest PFTs with eddy covariance measurements. Evergreen forests show an early peak in NEP in May-June, while deciduous forests have a larger peak in NEP later in June-July. The influence of each PFT on the seasonal cycle at Barrow was computed from atmospheric transport results. We normalized the amplitude influence by the growing season NEP of the tower-based PFT flux and found that deciduous forests have 1.4 to 1.8 times more influence (per unit of growing season NEP) at Barrow than evergreen PFT. This diagnosis depends on the timing of the sharp seasonal draw-down at Barrow, which occurs too late to be explained by evergreen forests. The cycle at Barrow therefore appears to be strongly influenced by deciduous PFT, despite the dominance of evergreen PFTs in boreal forests. This paradoxical conclusion is also reached when examining the seasonality of land surface fluxes calculated using atmospheric inverse methods. We examine how these different PFTs, and possible trends in relative abundance, affect the seasonality of atmosphere CO2 using FluxNet data and atmospheric transport modelling. Our results highlight the importance of parameterizing multiple PFTs or individual species within grid cells in models in

  5. Divergence of RNA polymerase α subunits in angiosperm plastid genomes is mediated by genomic rearrangement

    Science.gov (United States)

    Blazier, J. Chris; Ruhlman, Tracey A.; Weng, Mao-Lun; Rehman, Sumaiyah K.; Sabir, Jamal S. M.; Jansen, Robert K.

    2016-01-01

    Genes for the plastid-encoded RNA polymerase (PEP) persist in the plastid genomes of all photosynthetic angiosperms. However, three unrelated lineages (Annonaceae, Passifloraceae and Geraniaceae) have been identified with unusually divergent open reading frames (ORFs) in the conserved region of rpoA, the gene encoding the PEP α subunit. We used sequence-based approaches to evaluate whether these genes retain function. Both gene sequences and complete plastid genome sequences were assembled and analyzed from each of the three angiosperm families. Multiple lines of evidence indicated that the rpoA sequences are likely functional despite retaining as low as 30% nucleotide sequence identity with rpoA genes from outgroups in the same angiosperm order. The ratio of non-synonymous to synonymous substitutions indicated that these genes are under purifying selection, and bioinformatic prediction of conserved domains indicated that functional domains are preserved. One of the lineages (Pelargonium, Geraniaceae) contains species with multiple rpoA-like ORFs that show evidence of ongoing inter-paralog gene conversion. The plastid genomes containing these divergent rpoA genes have experienced extensive structural rearrangement, including large expansions of the inverted repeat. We propose that illegitimate recombination, not positive selection, has driven the divergence of rpoA. PMID:27087667

  6. Bark thickness across the angiosperms: more than just fire.

    Science.gov (United States)

    Rosell, Julieta A

    2016-07-01

    Global variation in total bark thickness (TBT) is traditionally attributed to fire. However, bark is multifunctional, as reflected by its inner living and outer dead regions, meaning that, in addition to fire protection, other factors probably contribute to TBT variation. To address how fire, climate, and plant size contribute to variation in TBT, inner bark thickness (IBT) and outer bark thickness (OBT), I sampled 640 species spanning all major angiosperm clades and 18 sites with contrasting precipitation, temperature, and fire regime. Stem size was by far the main driver of variation in thickness, with environment being less important. IBT was closely correlated with stem diameter, probably for metabolic reasons, and, controlling for size, was thicker in drier and hotter environments, even fire-free ones, probably reflecting its water and photosynthate storage role. OBT was less closely correlated with size, and was thicker in drier, seasonal sites experiencing frequent fires. IBT and OBT covaried loosely and both contributed to overall TBT variation. Thickness variation was higher within than across sites and was evolutionarily labile. Given high within-site diversity and the multiple selective factors acting on TBT, continued study of the different drivers of variation in bark thickness is crucial to understand bark ecology. PMID:26890029

  7. Evolution of angiosperm seed disperser mutualisms: the timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores.

    Science.gov (United States)

    Eriksson, Ove

    2016-02-01

    The origins of interactions between angiosperms and fruit-eating seed dispersers have attracted much attention following a seminal paper on this topic by Tiffney (1984). This review synthesizes evidence pertaining to key events during the evolution of angiosperm-frugivore interactions and suggests some implications of this evidence for interpretations of angiosperm-frugivore coevolution. The most important conclusions are: (i) the diversification of angiosperm seed size and fleshy fruits commenced around 80 million years ago (Mya). The diversity of seed sizes, fruit sizes and fruit types peaked in the Eocene around 55 to 50 Mya. During this first phase of the interaction, angiosperms and animals evolving frugivory expanded into niche space not previously utilized by these groups, as frugivores and previously not existing fruit traits appeared. From the Eocene until the present, angiosperm-frugivore interactions have occurred within a broad frame of existing niche space, as defined by fruit traits and frugivory, motivating a separation of the angiosperm-frugivore interactions into two phases, before and after the peak in the early Eocene. (ii) The extinct multituberculates were probably the most important frugivores during the early radiation phase of angiosperm seeds and fleshy fruits. Primates and rodents are likely to have been important in the latter part of this first phase. (iii) Flying frugivores, birds and bats, evolved during the second phase, mainly during the Oligocene and Miocene, thus exploiting an existing diversity of fleshy fruits. (iv) A drastic climate shift around the Eocene-Oligocene boundary (around 34 Mya) resulted in more semi-open woodland vegetation, creating patchily occurring food resources for frugivores. This promoted evolution of a 'flying frugivore niche' exploited by birds and bats. In particular, passerines became a dominant frugivore group worldwide. (v) Fleshy fruits evolved at numerous occasions in many angiosperm families

  8. The seasonality of butterflies in a semi-evergreen forest: Gibbon Wildlife Sanctuary, Assam, northeastern India

    Directory of Open Access Journals (Sweden)

    Arun P. Singh

    2015-01-01

    Full Text Available A study spanning 3.7 years on the butterflies of Gibbon Wildlife Sanctuary GWS (21km2, a semi-evergreen forest, in Jorhat District of Assam, northeastern India revealed 211 species of butterflies belonging to 115 genera including 19 papilionids and seven ‘rare’ and ‘very rare’ species as per Evans list of the Indian sub-continent (Great Blue Mime Papilio paradoxa telearchus; Brown Forest BobScobura woolletti; Snowy Angle Darpa pteria dealbatahas; Constable Dichorragia nesimachus; Grey Baron Euthalia anosia anosia; Sylhet Oakblue Arhopala silhetensis; Branded Yamfly Yasoda tripunctata. The butterflies showed a strong seasonality pattern in this forest with only one significant peak during the post monsoon (September-October when 118 species were in flight inside the forest which slowly declined to 92 species in November-December. Another peak (102 species was visible after winter from March to April. Species composition showed least similarity between pre-monsoon (March-May and post-monsoon (October-November seasons. The number of papilionid species were greater from July to December as compared from January to June. The findings of this study suggest that the pattern of seasonality in a semi-evergreen forest in northeastern India is distinct from that of the sub-tropical lowland forest in the Himalaya. Favourable logistics and rich diversity in GWS points to its rich potential in promoting ‘butterfly inclusive ecotourism’ in this remnant forest.

  9. The transitional semi-evergreen bushland in Ethiopia

    DEFF Research Database (Denmark)

    van Breugel, Paulo; Friis, Ib; Sebsebe, Demissew

    2016-01-01

    Question: Evergreen bushlands in Ethiopia have been inadequately studied and mapped. We address the question whether there is a transitional semi-ever-green bushland on the eastern escarpment of the Ethiopian Highlands, with unique floristic characteristics that distinguish it from the evergreen...... bushlands in other parts of Ethiopia and eastern Africa. Methods: Based on a review of the recent descriptions of evergreen bushlands in Ethiopia, we hypothesize that there is a distinct zone of natural semi-ever-green bushland, which is restricted to the eastern and southeastern escarpment of the Ethiopian...... Highlands. In contrast, evergreen bushlands in other parts of Ethiopia are considered to be of a secondary nature. To test this hypothesis, we carried out qualitative vegetation surveys in 354 locations across Ethiopia and classified the vegetation in these locations based on the occurrences of indicator...

  10. The seasonality of butterflies in a semi-evergreen forest: Gibbon Wildlife Sanctuary, Assam, northeastern India

    OpenAIRE

    Singh, Arun P.; Lina Gogoi; Jis Sebastain

    2015-01-01

    A study spanning 3.7 years on the butterflies of Gibbon Wildlife Sanctuary GWS (21km2), a semi-evergreen forest, in Jorhat District of Assam, northeastern India revealed 211 species of butterflies belonging to 115 genera including 19 papilionids and seven ‘rare’ and ‘very rare’ species as per Evans list of the Indian sub-continent (Great Blue Mime Papilio paradoxa telearchus; Brown Forest BobScobura woolletti; Snowy Angle Darpa pteria dealbatahas; Constable Dichorragia nesimachus; Grey Baron ...

  11. Unravelling carbon allocation dynamics in an evergreen temperate forest

    Science.gov (United States)

    Griebel, Anne; Bennett, Lauren T.; Arndt, Stefan K.

    2015-04-01

    Eucalypt trees have the potential to sequester carbon from the atmosphere year-round by maintaining evergreen leaves with a prolonged multi-year lifetime. Unlike deciduous trees, eucalypts are generally known to grow opportunistic resulting in a lack of defined growth rings and no distinct seasonal crown turnover events. Stem expansion has been successfully measured with micro-dendrometers, however, it remains challenging to monitor crown dynamics at a similarly high temporal resolution. Hence, carbon allocation dynamics and seasonal variations of carbon distribution between stem and crown biomass remain largely unknown for evergreen species. Ecosystem scale observations of net ecosystem exchange (NEE) from a flux tower located in a predominantly temperature and moisture regulated environment in south-eastern Australia have demonstrated that the ecosystem is a constant terrestrial sink for carbon. Intra-annual variations in temperature and moisture and prolonged heat waves and dry spells result in a wide range of annual sums (e.g. 2013: NEE~4 t C ha-1yr-1, 2012: NEE~12 t C ha-1yr-1). Newly developed low-cost terrestrial lidar sensors (VEGNET) now allow for automated daily monitoring of crown dynamics, enabling more detailed observations on the duration of crown biomass changes. In addition to leaf area index (LAI), VEGNET sensors define the location within the crown strata of the gains and losses in plant volume across the vertical forest structure. With the development of VEGNET sensors, combined with ecosystem carbon fluxes from eddy covariance measurements and with micro-dendrometers, we are able to quantify the dynamics of carbon allocation to above ground biomass pools. Our results demonstrate that stem growth dominates in spring and in autumn, and is strongly associated with water availability. Leaf turnover predominantly takes place in summer and is initiated by prolonged heat stress and isolated storm events, yet crown biomass remains stable throughout the

  12. DNA Barcode Authentication of Wood Samples of Threatened and Commercial Timber Trees within the Tropical Dry Evergreen Forest of India

    OpenAIRE

    Nithaniyal, Stalin; Newmaster, Steven G; Ragupathy, Subramanyam; Krishnamoorthy, Devanathan; Vassou, Sophie Lorraine; Parani, Madasamy

    2014-01-01

    Background India is rich with biodiversity, which includes a large number of endemic, rare and threatened plant species. Previous studies have used DNA barcoding to inventory species for applications in biodiversity monitoring, conservation impact assessment, monitoring of illegal trading, authentication of traded medicinal plants etc. This is the first tropical dry evergreen forest (TDEF) barcode study in the World and the first attempt to assemble a reference barcode library for the trees o...

  13. First and second sets of shoots in five evergreen woody species from Tiantong National Forest Park of Zhejiang, China%浙江天童国家森林公园5种常绿阔叶植物的一次和二次抽枝进程

    Institute of Scientific and Technical Information of China (English)

    夏洋洁; 唐坚强; 张光富; 黄超; 蒙凤群; 孙书存

    2013-01-01

    第二次抽枝中的叶片虫食率、现叶速率和展叶速率都不小于第一次抽枝,而第二次抽枝小枝投资总量较小,这些可能是物种对相对较大的昆虫取食压力和即将来临的冬天不利条件等的适应.%Aims Some woody species of subtropical evergreen broad-leaved forests in Eastern China form a second set of shoots in late summer or autumn after a first set in spring. Our objective is to elucidate features of this second set of shoots, including their adaptive significance. Methods We investigated differences between the first and second sets of shoots for five evergreen woody species {Symplocos lancifolia, Loropetalum chinense, Eurya rubiginosa var. attenuata, Myrica rubra, and Castanop-sis fargesii) from an evergreen broad-leaved forest in Tiantong National Forest Park of Zhejiang, China. Herbivore damage of leaves was estimated, leaf emergence rate, leaf expansion rate and duration were calculated, and twig investment (leaf number and individual leaf area within twigs, twig stem length and diameter) was measured for both sets of shoots. Important findings Leaves of M. rubra and C. fargesii suffered greater herbivore damage to the second shoots compared with the first, and no significant difference was found in damage between the two sets of shoots for S. lancifolia, L. chinense and E. rubiginosa var. attenuata. The first and second sets of shoots shared the same leaf emergence pattern. Symplocos lancifolia, L. chinense, E. rubiginosa var. attenuata, and M. rubra showed a succeeding type of leaf emergence, and C. fargesii showed a flushing type of leaf emergence. However, duration of leaf emergence was much shorter in the second set of shoots for S. lancifolia, E. rubiginosa var. attenuata and M. rubra than in the first but not for the other two species. Leaf expansion rate was significantly higher for the second set of shoots for S. lancifolia, L. chinense and E. rubiginosa var. attenuata and was indistinguishable for M

  14. Comparative Study of Carbon Storage and Allocation Characteristics of Mature Evergreen Broad-leaved Forest

    Institute of Scientific and Technical Information of China (English)

    Zhangquan; ZENG; Canming; ZHANGY; Yandong; NIU; Xiquan; LI; Zijian; WU; Jia; LUO

    2014-01-01

    Evergreen broad-leaved forest is an important forest type in China.This paper analyzes the allocation characteristics of vegetation and soil carbon pool of evergreen broad-leaved forest,to understand the current status of research on the carbon storage of evergreen broadleaved forest as well as shortcomings.In the context of global climate change,it is necessary to carry out the long-term research of evergreen broad-leaved forest,in order to grasp the formation mechanism of evergreen broad-leaved forest productivity,and the impact of climate change on the carbon sequestration function of evergreen broad-leaved forest ecosystem.

  15. Habitat fragmentation impacts on biodiversity of evergreen broadleaved forests in Jinyun Mountains,China

    Institute of Scientific and Technical Information of China (English)

    YAN Ming; ZHONG Zhangcheng; LIU Jinchun

    2007-01-01

    The plant communities and their microclimates were surveyed and observed,and the soil fertilities were determined in six plots of evergreen broadleaved forests of different sizes and similar slope aspects on Jinyun Mountains of Chongqing in China from April to October,2003.The relationships of biotic and abiotic factors were analyzed using the Simpson,Shannon-Wiener,and Hill diversity indices,and stepwise multilinear regression analyses techniques.The results showed that compared with continuous evergreen broadleaved forests,five fragmentations had a lower species diversity index,and different life forms showed differences in diversity index.With the decrease in patch areas,the daily differences in air temperature (△Ta),ground surface temperature (△Ts),daily differences in relative humidity (△RH),maximum wind velocity (Vmax),differences in photosynthetic available radiation (△PAR)(at noon)of both edges and interiors,all tended to increase.Maximum wind velocity (Vmax)and photo effective radiation in forest edges were higher than those in interior forest,which presented a stronger temperature-gained edge effect.In all the fragmentations of evergreen broadleaved forests,the depth of the edge effect was the nearest from interior forest in the biggest patch (about 15 meters away from interior forest),while the depth of the edge effect was the farthest from interior forest in the smallest patch (about 25 meters away from interior forest).With regard to the water conservation function,soil water content improved along with increasing species diversity.Some of the nutritional function substances of soil increased with increasing species diversity.The elements of microclimate,such as Ta,△Ta,△Ts,ARH,Vmax,and PAR,changed along with the extent of fragmented forest.

  16. Recent Acceleration of Plastid Sequence and Structural Evolution Coincides with Extreme Mitochondrial Divergence in the Angiosperm Genus Silene

    OpenAIRE

    Sloan, Daniel B; Alverson, Andrew J; Wu, Martin; Palmer, Jeffrey D.; Taylor, Douglas R.

    2012-01-01

    The angiosperm genus Silene exhibits some of the most extreme and rapid divergence ever identified in mitochondrial genome architecture and nucleotide substitution rates. These patterns have been considered mitochondrial specific based on the absence of correlated changes in the small number of available nuclear and plastid gene sequences. To better assess the relationship between mitochondrial and plastid evolution, we sequenced the plastid genomes from four Silene species with fully sequenc...

  17. Modes of Gene Duplication Contribute Differently to Genetic Novelty and Redundancy, but Show Parallels across Divergent Angiosperms

    OpenAIRE

    Wang, Yupeng; Wang, Xiyin; Tang, Haibao; Tan, Xu; Ficklin, Stephen P.; Feltus, F. Alex; Andrew H. Paterson

    2011-01-01

    Background Both single gene and whole genome duplications (WGD) have recurred in angiosperm evolution. However, the evolutionary effects of different modes of gene duplication, especially regarding their contributions to genetic novelty or redundancy, have been inadequately explored. Results In Arabidopsis thaliana and Oryza sativa (rice), species that deeply sample botanical diversity and for which expression data are available from a wide range of tissues and physiological conditions, we ha...

  18. Protected areas: mixed success in conserving East Africa's evergreen forests.

    Directory of Open Access Journals (Sweden)

    Marion Pfeifer

    Full Text Available In East Africa, human population growth and demands for natural resources cause forest loss contributing to increased carbon emissions and reduced biodiversity. Protected Areas (PAs are intended to conserve habitats and species. Variability in PA effectiveness and 'leakage' (here defined as displacement of deforestation may lead to different trends in forest loss within, and adjacent to, existing PAs. Here, we quantify spatial variation in trends of evergreen forest coverage in East Africa between 2001 and 2009, and test for correlations with forest accessibility and environmental drivers. We investigate PA effectiveness at local, landscape and national scales, comparing rates of deforestation within park boundaries with those detected in park buffer zones and in unprotected land more generally. Background forest loss (BFL was estimated at -9.3% (17,167 km(2, but varied between countries (range: -0.9% to -85.7%; note: no BFL in South Sudan. We document high variability in PA effectiveness within and between PA categories. The most successful PAs were National Parks, although only 26 out of 48 parks increased or maintained their forest area (i.e. Effective parks. Forest Reserves (Ineffective parks, i.e. parks that lose forest from within boundaries: 204 out of 337, Nature Reserves (six out of 12 and Game Parks (24 out of 26 were more likely to lose forest cover. Forest loss in buffer zones around PAs exceeded background forest loss, in some areas indicating leakage driven by Effective National Parks. Human pressure, forest accessibility, protection status, distance to fires and long-term annual rainfall were highly significant drivers of forest loss in East Africa. Some of these factors can be addressed by adjusting park management. However, addressing close links between livelihoods, natural capital and poverty remains a fundamental challenge in East Africa's forest conservation efforts.

  19. Protected areas: mixed success in conserving East Africa's evergreen forests.

    Science.gov (United States)

    Pfeifer, Marion; Burgess, Neil D; Swetnam, Ruth D; Platts, Philip J; Willcock, Simon; Marchant, Robert

    2012-01-01

    In East Africa, human population growth and demands for natural resources cause forest loss contributing to increased carbon emissions and reduced biodiversity. Protected Areas (PAs) are intended to conserve habitats and species. Variability in PA effectiveness and 'leakage' (here defined as displacement of deforestation) may lead to different trends in forest loss within, and adjacent to, existing PAs. Here, we quantify spatial variation in trends of evergreen forest coverage in East Africa between 2001 and 2009, and test for correlations with forest accessibility and environmental drivers. We investigate PA effectiveness at local, landscape and national scales, comparing rates of deforestation within park boundaries with those detected in park buffer zones and in unprotected land more generally. Background forest loss (BFL) was estimated at -9.3% (17,167 km(2)), but varied between countries (range: -0.9% to -85.7%; note: no BFL in South Sudan). We document high variability in PA effectiveness within and between PA categories. The most successful PAs were National Parks, although only 26 out of 48 parks increased or maintained their forest area (i.e. Effective parks). Forest Reserves (Ineffective parks, i.e. parks that lose forest from within boundaries: 204 out of 337), Nature Reserves (six out of 12) and Game Parks (24 out of 26) were more likely to lose forest cover. Forest loss in buffer zones around PAs exceeded background forest loss, in some areas indicating leakage driven by Effective National Parks. Human pressure, forest accessibility, protection status, distance to fires and long-term annual rainfall were highly significant drivers of forest loss in East Africa. Some of these factors can be addressed by adjusting park management. However, addressing close links between livelihoods, natural capital and poverty remains a fundamental challenge in East Africa's forest conservation efforts. PMID:22768074

  20. The Pace and Shape of Senescence in Angiosperms

    DEFF Research Database (Denmark)

    Baudisch, Annette; Salguero-Gómez, Roberto; Jones, Owen; Wrycza, Tomasz; Mbeau-Ache, Cyril; Franco, Miguel; Colchero, Fernando

    2013-01-01

    phylogenetic relationships using a resolved supertree. 4. In contrast to the animal kingdom, most angiosperms (93%) show no senescence. Senescence is observed among phanerophytes (i.e. trees), but not among any other growth form (e.g. epiphytes, chamaephytes or cryptopyhtes). Yet, most phanerophytes (81%) do...

  1. Evolutionary aspects of life forms in angiosperm families

    NARCIS (Netherlands)

    Kremer, P; VanAndel, J

    1995-01-01

    The distribution patterns of life forms among extant families, subclasses and classes are described with the aim of detecting evolutionary trends. The explosive diversification of angiosperms constrains the possibilities for detecting such trends. Moreover, the extant groups of seed plants are only

  2. PRELIMINARY PHOTOSYNTHESIS EXAMINATIONS OF THERMOFIL EVERGREEN ORNAMENTAL SHRUBS IN HUNGARY

    OpenAIRE

    MARÁCZI, Kata; Gáspár, László; BARACSI, Eva

    2012-01-01

    The purpose of this research was to determine the climatic- ecological demand of thermofil broadleaf evergreen ornamental shrubs. On three different habitats: in field conditions, in container and on hillside was investigated the fluorescence induction experiments with PAM-2000 chlorophyll-fluorimetry, which was used to measure the photosynthesis 2 quantum yield of the plant.

  3. Fragmentation patterns of evergreen oak woodlands in Southwestern Iberia

    DEFF Research Database (Denmark)

    Costa, A.; Madeira, M.; Lima Santos, J.;

    2014-01-01

    Mediterranean evergreen oak woodlands (composed of Quercus suber L. and Quercus rotundifolia Lam.) are becoming increasingly fragmented in the human-modified landscapes of Southwestern Portugal and Spain. Previous studies have largely neglected to assess the spatial changes of oak woodlands in...... patterns of oak recruitment and therefore, its study may be helpful in highlighting future baselines for the sustainable management of oak woodlands....

  4. Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies).

    Science.gov (United States)

    Pellicer, J; Kelly, L J; Magdalena, C; Leitch, I J

    2013-08-01

    Nymphaeales are the most species-rich lineage of the earliest diverging angiosperms known as the ANA grade (Amborellales, Nymphaeales, Austrobaileyales), and they have received considerable attention from morphological, physiological, and ecological perspectives. Although phylogenetic relationships between these three lineages of angiosperms are mainly well resolved, insights at the whole genome level are still limited because of a dearth of information. To address this, genome sizes and chromosome numbers in 34 taxa, comprising 28 species were estimated and analysed together with previously published data to provide an overview of genome size and chromosome diversity in Nymphaeales. Overall, genome sizes were shown to vary 10-fold and chromosome numbers and ploidy levels ranged from 2n = 2x = 18 to 2n = 16x = ∼224. Distinct patterns of genome diversity were apparent, reflecting the differential incidence of polyploidy, changes in repetitive DNA content, and chromosome rearrangements within and between genera. Using model-based approaches, ancestral genome size and basic chromosome numbers were reconstructed to provide insights into the dynamics of genome size and chromosome number evolution. Finally, by combining additional data from Amborellales and Austrobaileyales, a comprehensive overview of genome sizes and chromosome numbers in these early diverging angiosperms is presented. PMID:24168627

  5. Seasonal variations of gas exchange and water relations in deciduous and evergreen trees in monsoonal dry forests of Thailand.

    Science.gov (United States)

    Ishida, Atsushi; Harayama, Hisanori; Yazaki, Kenichi; Ladpala, Phanumard; Sasrisang, Amornrat; Kaewpakasit, Kanokwan; Panuthai, Samreong; Staporn, Duriya; Maeda, Takahisa; Gamo, Minoru; Diloksumpun, Sapit; Puangchit, Ladawan; Ishizuka, Moriyoshi

    2010-08-01

    This study compared leaf gas exchange, leaf hydraulic conductance, twig hydraulic conductivity and leaf osmotic potential at full turgor between two drought-deciduous trees, Vitex peduncularis Wall. and Xylia xylocarpa (Roxb.) W. Theob., and two evergreen trees, Hopea ferrea Lanessan and Syzygium cumini (L.) Skeels, at the uppermost canopies in tropical dry forests in Thailand. The aims were to examine (i) whether leaf and twig hydraulic properties differ in relation to leaf phenology and (ii) whether xylem cavitation is a determinant of leaf shedding during the dry season. The variations in almost all hydraulic traits were more dependent on species than on leaf phenology. Evergreen Hopea exhibited the lowest leaf-area-specific twig hydraulic conductivity (leaf-area-specific K(twig)), lamina hydraulic conductance (K(lamina)) and leaf osmotic potential at full turgor (Ψ(o)) among species, whereas evergreen Syzygium exhibited the highest leaf-area-specific K(twig), K(lamina) and Ψ(o). Deciduous Xylia had the highest sapwood-area-specific K(twig), along with the lowest Huber value (sapwood area/leaf area). More negative osmotic Ψ(o) and leaf osmotic adjustment during the dry season were found in deciduous Vitex and evergreen Hopea, accompanied by low sapwood-area-specific K(twig). Regarding seasonal changes in hydraulics, no remarkable decrease in K(lamina) and K(twig) was found during the dry season in any species. Results suggest that leaf shedding during the dry season is not always associated with extensive xylem cavitation. PMID:20581012

  6. Epiphytic leafy liverworts diversified in angiosperm-dominated forests

    Science.gov (United States)

    Feldberg, Kathrin; Schneider, Harald; Stadler, Tanja; Schäfer-Verwimp, Alfons; Schmidt, Alexander R.; Heinrichs, Jochen

    2014-08-01

    Recent studies have provided evidence for pulses in the diversification of angiosperms, ferns, gymnosperms, and mosses as well as various groups of animals during the Cretaceous revolution of terrestrial ecosystems. However, evidence for such pulses has not been reported so far for liverworts. Here we provide new insight into liverwort evolution by integrating a comprehensive molecular dataset with a set of 20 fossil age constraints. We found evidence for a relative constant diversification rate of generalistic liverworts (Jungermanniales) since the Palaeozoic, whereas epiphytic liverworts (Porellales) show a sudden increase of lineage accumulation in the Cretaceous. This difference is likely caused by the pronounced response of Porellales to the ecological opportunities provided by humid, megathermal forests, which were increasingly available as a result of the rise of the angiosperms.

  7. Elevated ozone negatively affects photosynthesis of current-year leaves but not previous-year leaves in evergreen Cyclobalanopsis glauca seedlings

    International Nuclear Information System (INIS)

    To assess the effects of leaf age/layer on the response of photosynthesis to chronic ozone (O3), Cyclobalanopsis glauca seedlings, a dominant evergreen broadleaf tree species in sub-tropical regions, were exposed to either ambient air (AA) or elevated O3 (AA + 60 ppb O3, E-O3) for two growing seasons in open-top chambers. Chlorophyll content, gas exchange and chlorophyll a fluorescence were investigated three times throughout the 2nd year of O3 exposure. Results indicated that E-O3 decreased photosynthetic parameters, particularly light-saturated photosynthesis rate, stomatal conductance and effective quantum yield of PSII photochemistry of current-year leaves but not previous-year leaves. Stomatal conductance of plants grown under ambient conditions partially contributed to the different response to E-O3 between leaf layers. Light radiation or other physiological and biochemical processes closely related to photosynthesis might play important roles. All suggested that leaf ages or layers should be considered when assessing O3 risk on evergreen woody species. -- Highlights: • Response of evergreen Cyclobalanopsis glauca to O3 was investigated. • Elevated O3 significantly reduced photosynthesis of current-year leaves. • Previous-year leaves showed little response to O3. • Stomatal conductance contributes to the response difference to O3 among leaf ages. -- Impacts of elevated O3 on photosynthesis of evergreen woody species depend on leaf ages

  8. Angiosperm polyploids and their road to evolutionary success

    OpenAIRE

    Fawcett, Jeffrey A.; Van de Peer, Yves; Jeffrey A, FAWCETT

    2010-01-01

    The abundance of polyploidy among flowering plants has long been recognized, and recent studies have uncovered multiple ancient polyploidization events in the evolutionary history of several angiosperm lineages. Once polyploids are formed they must get locally established and then propagate and survive while adapting to different environments and avoiding extinction. This might ultimately lead to their long-term evolutionary success, where their descendant lineages survive for tens of million...

  9. Role of proline and GABA in sexual reproduction of angiosperms

    OpenAIRE

    Biancucci, Marco; Mattioli, Roberto; Forlani, Giuseppe; Funck, Dietmar; Costantino, Paolo; Trovato, Maurizio

    2015-01-01

    Two glutamate derivatives, proline and γ-aminobutyric acid (GABA), appear to play pivotal roles in different aspects of sexual reproduction in angiosperms, although their precise function in plant reproduction and the molecular basis of their action are not yet fully understood. Proline and GABA have long been regarded as pivotal amino acids in pollen vitality and fertility. Proline may constitute up to 70% of the free amino acid pool in pollen grains and it has been recently shown that Arabi...

  10. Cucumber: a model angiosperm for mitochondrial transformation?

    Science.gov (United States)

    Havey, Michael J; Lilly, Jason W; Bohanec, Borut; Bartoszewski, Grzegorz; Malepszy, Stefan

    2002-01-01

    Plants possess three major genomes, carried in the chloroplast, mitochondrion, and nucleus. The chloroplast genomes of higher plants tend to be of similar sizes and structure. In contrast both the nuclear and mitochondrial genomes show great size differences, even among closely related species. The largest plant mitochondrial genomes exist in the genus Cucumis at 1500 to 2300 kilobases, over 100 times the sizes of the yeast or human mitochondrial genomes. Biochemical and molecular analyses have established that the huge Cucumis mitochondrial genomes are due to extensive duplication of short repetitive DNA motifs. The organellar genomes of almost all organisms are maternally transmitted and few methods exist to manipulate these important genomes. Although chloroplast transformation has been achieved, no routine method exists to transform the mitochondrial genome of higher plants. A mitochondrial-transformation system for a higher plant would allow geneticists to use reverse genetics to study mitochondrial gene expression and to establish the efficacy of engineered mitochondrial genes for the genetic improvement of the mitochondrial genome. Cucumber possesses three unique attributes that make it a potential model system for mitochondrial transformation of a higher plant. Firstly, its mitochondria show paternal transmission. Secondly, microspores possess relatively few, huge mitochondria. Finally, there exists in cucumber unique mitochondrial mutations conditioning strongly mosaic (msc) phenotypes. The msc phenotypes appear after regeneration of plants from cell culture and sort with specific rearranged and deleted regions in the mitochondrial genome. These mitochondrial deletions may be a useful genetic tool to develop selectable markers for mitochondrial transformation of higher plants. PMID:12084966

  11. Molecular diversity of phospholipase D in angiosperms

    Directory of Open Access Journals (Sweden)

    Cvrčková Fatima

    2002-02-01

    Full Text Available Abstract Background The phospholipase D (PLD family has been identified in plants by recent molecular studies, fostered by the emerging importance of plant PLDs in stress physiology and signal transduction. However, the presence of multiple isoforms limits the power of conventional biochemical and pharmacological approaches, and calls for a wider application of genetic methodology. Results Taking advantage of sequence data available in public databases, we attempted to provide a prerequisite for such an approach. We made a complete inventory of the Arabidopsis thaliana PLD family, which was found to comprise 12 distinct genes. The current nomenclature of Arabidopsis PLDs was refined and expanded to include five newly described genes. To assess the degree of plant PLD diversity beyond Arabidopsis we explored data from rice (including the genome draft by Monsanto as well as cDNA and EST sequences from several other plants. Our analysis revealed two major PLD subfamilies in plants. The first, designated C2-PLD, is characterised by presence of the C2 domain and comprises previously known plant PLDs as well as new isoforms with possibly unusual features-catalytically inactive or independent on Ca2+. The second subfamily (denoted PXPH-PLD is novel in plants but is related to animal and fungal enzymes possessing the PX and PH domains. Conclusions The evolutionary dynamics, and inter-specific diversity, of plant PLDs inferred from our phylogenetic analysis, call for more plant species to be employed in PLD research. This will enable us to obtain generally valid conclusions.

  12. Evergreens favored by higher responsiveness to increased CO2

    OpenAIRE

    Niinemets, Ü.; Peñuelas, Josep; Flexas, Jaume

    2011-01-01

    Physical CO2 diffusion from sub-stomatal cavities to the chloroplasts where photosynthesis takes place is an important limitation of photosynthesis largely neglected in research related to global climate change. This limitation is particularly important in leaves with robust structures such as evergreen sclerophylls. In these leaves, photosynthesis is less sensitive to changes in stomatal openness, which is considered to be the primary limitation of photosynthesis. In this revi...

  13. Observations on arbuscular mycorrhiza associated with important edible tuberous plants grown in wet evergreen forest in Assam, India

    Directory of Open Access Journals (Sweden)

    RAJA RISHI

    2013-10-01

    Full Text Available Kumar R, Tapwal A, Pandey S, Rishi R, Borah D. 2013. Observations on arbuscular mycorrhiza associated with important edible tuberous plants grown in wet evergreen forest in Assam, India. Biodiversitas 14: 67-72. Non-timber forest products constitute an important source of livelihood for rural households from forest fringe communities across the world. Utilization of wild edible tuber plants is an integral component of their culture. Mycorrhizal associations influence the establishment and production of tuber plants under field conditions.The aim of present study is to explore the diversity and arbuscular mycorrhizal (AMF colonization of wild edible tuber plants grown in wet evergreen forest of Assam, India. A survey was conducted in 2009-10 in Sunaikuchi, Khulahat, and Bura Mayong reserved forest of Morigaon district of Assam to determine the AMF spore population in rhizosphere soils and root colonization of 14 tuberous edible plants belonging to five families. The results revealed AMF colonization of all selected species in all seasons. The percent colonization and spore count was less in summer, moderate in winter and highest in rainy season. Seventeen species of arbuscular mycorrhizal fungi were recorded in four genera viz. Acaulospora (7 species, Glomus (5 species, Sclerocystis (3 species and Gigaspora (2 species.

  14. Variation in ovule and seed size and associated size-number trade-offs in angiosperms.

    Science.gov (United States)

    Greenway, Carly A; Harder, Lawrence D

    2007-05-01

    Unlike pollen and seed size, the extent and causes of variation in ovule size remain unexplored. Based on 45 angiosperm species, we assessed whether intra- and interspecific variation in ovule size is consistent with cost minimization during ovule production or allows maternal plants to dominate conflict with their seeds concerning resource investment. Despite considerable intraspecific variation in ovule volume (mean CV = 0.356), ovule production by few species was subject to a size-number trade-off. Among the sampled species, ovule volume varied two orders of magnitude, whereas seed volume varied four orders of magnitude. Ovule volume varied positively among species with flower mass and negatively with ovule number. Tenuinucellate ovules were generally larger that crassinucellate ovules, and species with apical placentation (which mostly have uniovulate ovaries) had smaller ovules than those with other placentation types. Seed volume varied positively among species with fruit mass and seed development time, but negatively with seed number. Seeds grew a median 93-fold larger than the ovules from which they originated. Our results provide equivocal evidence that selection minimizes ovule size to allow efficient resource allocation after fertilization, but stronger evidence that ovule size affords maternal plants an advantage in parent-offspring conflict. PMID:21636453

  15. Angiosperms Are Unique among Land Plant Lineages in the Occurrence of Key Genes in the RNA-Directed DNA Methylation (RdDM) Pathway.

    Science.gov (United States)

    Ma, Lu; Hatlen, Andrea; Kelly, Laura J; Becher, Hannes; Wang, Wencai; Kovarik, Ales; Leitch, Ilia J; Leitch, Andrew R

    2015-09-01

    The RNA-directed DNA methylation (RdDM) pathway can be divided into three phases: 1) small interfering RNA biogenesis, 2) de novo methylation, and 3) chromatin modification. To determine the degree of conservation of this pathway we searched for key genes among land plants. We used OrthoMCL and the OrthoMCL Viridiplantae database to analyze proteomes of species in bryophytes, lycophytes, monilophytes, gymnosperms, and angiosperms. We also analyzed small RNA size categories and, in two gymnosperms, cytosine methylation in ribosomal DNA. Six proteins were restricted to angiosperms, these being NRPD4/NRPE4, RDM1, DMS3 (defective in meristem silencing 3), SHH1 (SAWADEE homeodomain homolog 1), KTF1, and SUVR2, although we failed to find the latter three proteins in Fritillaria persica, a species with a giant genome. Small RNAs of 24 nt in length were abundant only in angiosperms. Phylogenetic analyses of Dicer-like (DCL) proteins showed that DCL2 was restricted to seed plants, although it was absent in Gnetum gnemon and Welwitschia mirabilis. The data suggest that phases (1) and (2) of the RdDM pathway, described for model angiosperms, evolved with angiosperms. The absence of some features of RdDM in F. persica may be associated with its large genome. Phase (3) is probably the most conserved part of the pathway across land plants. DCL2, involved in virus defense and interaction with the canonical RdDM pathway to facilitate methylation of CHH, is absent outside seed plants. Its absence in G. gnemon, and W. mirabilis coupled with distinctive patterns of CHH methylation, suggest a secondary loss of DCL2 following the divergence of Gnetales. PMID:26338185

  16. [Applicability analysis of spatially explicit model of leaf litter in evergreen broad-leaved forests].

    Science.gov (United States)

    Zhao, Qing-Qing; Liu, He-Ming; Jonard, Mathieu; Wang, Zhang-Hua; Wang, Xi-Hua

    2014-11-01

    The spatially explicit model of leaf litter can help to understand its dispersal process, which is very important to predict the distribution pattern of leaves on the surface of the earth. In this paper, the spatially explicit model of leaf litter was developed for 20 tree species using litter trap data from the mapped forest plot in an evergreen broad-leaved forest in Tiantong, Zhejiang Pro- vince, eastern China. Applicability of the model was analyzed. The model assumed an allometric equation between diameter at breast height (DBH) and leaf litter amount, and the leaf litter declined exponentially with the distance. Model parameters were estimated by the maximum likelihood method. Results showed that the predicted and measured leaf litter amounts were significantly correlated, but the prediction accuracies varied widely for the different tree species, averaging at 49.3% and ranging from 16.0% and 74.0%. Model qualities of tree species significantly correlated with the standard deviations of the leaf litter amount per trap, DBH of the tree species and the average leaf dry mass of tree species. There were several ways to improve the forecast precision of the model, such as installing the litterfall traps according to the distribution of the tree to cover the different classes of the DBH and distance apart from the parent trees, determining the optimal dispersal function of each tree species, and optimizing the existing dispersal function. PMID:25898606

  17. Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica

    Directory of Open Access Journals (Sweden)

    Neus eGarcias-Bonet

    2012-09-01

    Full Text Available Bacterial endophytes are crucial for the survival of many terrestrial plants, but little is known about the presence and importance of bacterial endophytes of marine plants. We conducted a survey of the endophytic bacterial community of the long-living Mediterranean marine angiosperm Posidonia oceanica in surface-sterilized tissues (roots, rhizomes and leaves by DGGE. A total of 26 Posidonia oceanica meadows around the Balearic Islands were sampled, and the band patterns obtained for each meadow were compared for the three sampled tissues. Endophytic bacterial sequences were detected in most of the samples analyzed. A total of 34 OTUs (Operational Taxonomic Units were detected. The main OTUs of endophytic bacteria present in P. oceanica tissues belonged primarily to Proteobacteria (α, γ and δ subclasses and Bacteroidetes. The OTUs found in roots significantly differed from those of rhizomes and leaves. Moreover, some OTUs were found to be associated to each type of tissue. Bipartite network analysis revealed differences in the bacterial endophyte communities present on different islands. The results of this study provide a pioneering step toward the characterization of the endophytic bacterial community associated with tissues of a marine angiosperm and reveal the presence of bacterial endophytes that differed among locations and tissue types.

  18. Floristic composition and community structure of epiphytic angiosperms in a terra firme forest in central Amazonia

    Directory of Open Access Journals (Sweden)

    Mariana Victória Irume

    2013-06-01

    Full Text Available This survey aimed to describe the floristic composition and structure of the epiphytic community occurring in a terra firme forest in the city of Coari, Brazil, in the Amazon region. Data collection was performed with a 1.5 ha plot method, with which upland, slope and lowland habitats were sampled. All angiosperm epiphytes and their host plants (diameter at breast height > 10 cm were sampled. We recorded 3.528 individuals in 13 families, 48 genera and 164 species. Araceae was the most prevalent family with regard to the importance value and stood out in all related parameters, followed by Bromeliaceae, Cyclanthaceae and Orchidaceae. The species with the highest epiphytic importance values were Guzmania lingulata (L. Mez. and Philodendron linnaei Kunth. The predominant life form was hemiepiphytic. Estimated floristic diversity was 3.2 (H'. The studied epiphytic community was distributed among 727 host plants belonging to 40 families, 123 genera and 324 species. One individual of Guarea convergens T.D. Penn. was the host with the highest richness and abundance of epiphytes. Stems/trunks of host plants were the most colonized segments, and the most favorable habitat for epiphytism was the lowlands, where 84.1% of species and 48.2% of epiphytic specimens were observed.

  19. Structure and floristic composition of old-growth wet evergreen forests of Nelliampathy Hills, Southern Western Ghats

    Institute of Scientific and Technical Information of China (English)

    V.S.Ramachandran; K.Swarupanandan

    2013-01-01

    We analyze the structure and composition of old-growth wet evergreen forest of Nelliampathy hills,the chain of hills lying immediately south of Palghat Gap,in the southern Western Ghats of India.We sampled 30 plots of 0.1 ha each (50 m × 20 m) at six locations enumerating all plants ≥ 10 cm girth at breast height.We pooled the data and computed various structural parameters.There were 152 species of 120genera and 51 families of the study area.Of these,118 (77%) were trees,24 were climbers (16%) and 10 were shrubs (7%).Species richness varied from 58-99 per 0.5 ha sample and Shannon indices of diversity ranged from 4.4 to 5.2.Fifty-nine per cent (89 species) of the species were Indian Sub-continent elements and 34% (51 species) are endemic to the Western Ghats.Fifteen species are listed in various threat categories.Aglaia and Litsea were the most species-rich genera.Numbers of families ranged from 27-43 per 0.5 ha sample.Euphorbiaceae and Lauraceae were the most species-rich families.Stand density varied from 1714 to 2244 stems·ha-1 and basal area from 53.6 to 102.1 m2·ha-1.The vegetation was dominated by 3-6 species and six dominance patterns characterized the species composition within the hill complex.The old-growth evergreen forests of Nelliampathy exist as small fragments rich in biodiversity and can be used as benchmarks for comparison with disturbed forests.

  20. Divergent expression patterns of miR164 and CUP-SHAPED COTYLEDON genes in palms and other monocots : implication for the evolution of meristem function in angiosperms

    OpenAIRE

    Adam, Hélène; Marguerettaz, M.; Qadri, R.; Adroher, B.; Richaud, F; Collin, Myriam; Thuillet, Anne-Céline; Vigouroux, Yves; Laufs, P.; Tregear, James; Jouannic, Stefan

    2011-01-01

    In order to understand how the morphology of plant species has diversified over time, it is necessary to decipher how the underlying developmental programs have evolved. The regulatory network controlling shoot meristem activity is likely to have played an important role in morphological diversification and useful insights can be gained by comparing monocots and eudicots. These two distinct monophyletic groups of angiosperms diverged 130 Ma and are characterized by important differences in th...

  1. DNA Barcode Authentication of Wood Samples of Threatened and Commercial Timber Trees within the Tropical Dry Evergreen Forest of India

    Science.gov (United States)

    Nithaniyal, Stalin; Newmaster, Steven G.; Ragupathy, Subramanyam; Krishnamoorthy, Devanathan; Vassou, Sophie Lorraine; Parani, Madasamy

    2014-01-01

    Background India is rich with biodiversity, which includes a large number of endemic, rare and threatened plant species. Previous studies have used DNA barcoding to inventory species for applications in biodiversity monitoring, conservation impact assessment, monitoring of illegal trading, authentication of traded medicinal plants etc. This is the first tropical dry evergreen forest (TDEF) barcode study in the World and the first attempt to assemble a reference barcode library for the trees of India as part of a larger project initiated by this research group. Methodology/Principal Findings We sampled 429 trees representing 143 tropical dry evergreen forest (TDEF) species, which included 16 threatened species. DNA barcoding was completed using rbcL and matK markers. The tiered approach (1st tier rbcL; 2nd tier matK) correctly identified 136 out of 143 species (95%). This high level of species resolution was largely due to the fact that the tree species were taxonomically diverse in the TDEF. Ability to resolve taxonomically diverse tree species of TDEF was comparable among the best match method, the phylogenetic method, and the characteristic attribute organization system method. Conclusions We demonstrated the utility of the TDEF reference barcode library to authenticate wood samples from timber operations in the TDEF. This pilot research study will enable more comprehensive surveys of the illegal timber trade of threatened species in the TDEF. This TDEF reference barcode library also contains trees that have medicinal properties, which could be used to monitor unsustainable and indiscriminate collection of plants from the wild for their medicinal value. PMID:25259794

  2. DNA barcode authentication of wood samples of threatened and commercial timber trees within the tropical dry evergreen forest of India.

    Directory of Open Access Journals (Sweden)

    Stalin Nithaniyal

    Full Text Available BACKGROUND: India is rich with biodiversity, which includes a large number of endemic, rare and threatened plant species. Previous studies have used DNA barcoding to inventory species for applications in biodiversity monitoring, conservation impact assessment, monitoring of illegal trading, authentication of traded medicinal plants etc. This is the first tropical dry evergreen forest (TDEF barcode study in the World and the first attempt to assemble a reference barcode library for the trees of India as part of a larger project initiated by this research group. METHODOLOGY/PRINCIPAL FINDINGS: We sampled 429 trees representing 143 tropical dry evergreen forest (TDEF species, which included 16 threatened species. DNA barcoding was completed using rbcL and matK markers. The tiered approach (1st tier rbcL; 2nd tier matK correctly identified 136 out of 143 species (95%. This high level of species resolution was largely due to the fact that the tree species were taxonomically diverse in the TDEF. Ability to resolve taxonomically diverse tree species of TDEF was comparable among the best match method, the phylogenetic method, and the characteristic attribute organization system method. CONCLUSIONS: We demonstrated the utility of the TDEF reference barcode library to authenticate wood samples from timber operations in the TDEF. This pilot research study will enable more comprehensive surveys of the illegal timber trade of threatened species in the TDEF. This TDEF reference barcode library also contains trees that have medicinal properties, which could be used to monitor unsustainable and indiscriminate collection of plants from the wild for their medicinal value.

  3. Floral gene resources from basal angiosperms for comparative genomics research

    Directory of Open Access Journals (Sweden)

    Zhang Xiaohong

    2005-03-01

    Full Text Available Abstract Background The Floral Genome Project was initiated to bridge the genomic gap between the most broadly studied plant model systems. Arabidopsis and rice, although now completely sequenced and under intensive comparative genomic investigation, are separated by at least 125 million years of evolutionary time, and cannot in isolation provide a comprehensive perspective on structural and functional aspects of flowering plant genome dynamics. Here we discuss new genomic resources available to the scientific community, comprising cDNA libraries and Expressed Sequence Tag (EST sequences for a suite of phylogenetically basal angiosperms specifically selected to bridge the evolutionary gaps between model plants and provide insights into gene content and genome structure in the earliest flowering plants. Results Random sequencing of cDNAs from representatives of phylogenetically important eudicot, non-grass monocot, and gymnosperm lineages has so far (as of 12/1/04 generated 70,514 ESTs and 48,170 assembled unigenes. Efficient sorting of EST sequences into putative gene families based on whole Arabidopsis/rice proteome comparison has permitted ready identification of cDNA clones for finished sequencing. Preliminarily, (i proportions of functional categories among sequenced floral genes seem representative of the entire Arabidopsis transcriptome, (ii many known floral gene homologues have been captured, and (iii phylogenetic analyses of ESTs are providing new insights into the process of gene family evolution in relation to the origin and diversification of the angiosperms. Conclusion Initial comparisons illustrate the utility of the EST data sets toward discovery of the basic floral transcriptome. These first findings also afford the opportunity to address a number of conspicuous evolutionary genomic questions, including reproductive organ transcriptome overlap between angiosperms and gymnosperms, genome-wide duplication history, lineage

  4. Rapid and accurate pyrosequencing of angiosperm plastid genomes

    Directory of Open Access Journals (Sweden)

    Farmerie William G

    2006-08-01

    Full Text Available Abstract Background Plastid genome sequence information is vital to several disciplines in plant biology, including phylogenetics and molecular biology. The past five years have witnessed a dramatic increase in the number of completely sequenced plastid genomes, fuelled largely by advances in conventional Sanger sequencing technology. Here we report a further significant reduction in time and cost for plastid genome sequencing through the successful use of a newly available pyrosequencing platform, the Genome Sequencer 20 (GS 20 System (454 Life Sciences Corporation, to rapidly and accurately sequence the whole plastid genomes of the basal eudicot angiosperms Nandina domestica (Berberidaceae and Platanus occidentalis (Platanaceae. Results More than 99.75% of each plastid genome was simultaneously obtained during two GS 20 sequence runs, to an average depth of coverage of 24.6× in Nandina and 17.3× in Platanus. The Nandina and Platanus plastid genomes shared essentially identical gene complements and possessed the typical angiosperm plastid structure and gene arrangement. To assess the accuracy of the GS 20 sequence, over 45 kilobases of sequence were generated for each genome using conventional sequencing. Overall error rates of 0.043% and 0.031% were observed in GS 20 sequence for Nandina and Platanus, respectively. More than 97% of all observed errors were associated with homopolymer runs, with ~60% of all errors associated with homopolymer runs of 5 or more nucleotides and ~50% of all errors associated with regions of extensive homopolymer runs. No substitution errors were present in either genome. Error rates were generally higher in the single-copy and noncoding regions of both plastid genomes relative to the inverted repeat and coding regions. Conclusion Highly accurate and essentially complete sequence information was obtained for the Nandina and Platanus plastid genomes using the GS 20 System. More importantly, the high accuracy

  5. Internal habitat quality determines the effects of fragmentation on austral forest climbing and epiphytic angiosperms.

    Directory of Open Access Journals (Sweden)

    Ainhoa Magrach

    Full Text Available Habitat fragmentation has become one of the major threats to biodiversity worldwide, particularly in the case of forests, which have suffered enormous losses during the past decades. We analyzed how changes in patch configuration and habitat quality derived from the fragmentation of austral temperate rainforests affect the distribution of six species of forest-dwelling climbing and epiphytic angiosperms. Epiphyte and vine abundance is primarily affected by the internal characteristics of patches (such as tree size, the presence of logging gaps or the proximity to patch edges rather than patch and landscape features (such as patch size, shape or connectivity. These responses were intimately related to species-specific characteristics such as drought- or shade-tolerance. Our study therefore suggests that plant responses to fragmentation are contingent on both the species' ecology and the specific pathways through which the study area is being fragmented, (i.e. extensive logging that shaped the boundaries of current forest patches plus recent, unregulated logging that creates gaps within patches. Management practices in fragmented landscapes should therefore consider habitat quality within patches together with other spatial attributes at landscape or patch scales.

  6. Effect of coffee management and fragmentation on plant communities and regeneration patterns in Afromontane moist evergreen forests in South West Ethiopia

    OpenAIRE

    Geleta, Kitessa

    2013-01-01

    Tropical forests are deteriorating both in quality and quantity as a result of conversion to agricultural land and other land use systems. The remaining forests are either highly fragmented to small patches or suffer from species loss due to management (e.g. for coffee and cacao cultivation) and timber extraction. In Ethiopia, most of the remaining forests are Afromontane moist evergreen forests confined to the south western part of the country, a region which is also the cradle of the Arabic...

  7. 78 FR 45288 - Frank Sherman, Evergreen Trails, Inc., Cabana Coaches, LLC, TMS West Coast, Inc. and FSCS...

    Science.gov (United States)

    2013-07-26

    ... Surface Transportation Board Frank Sherman, Evergreen Trails, Inc., Cabana Coaches, LLC, TMS West Coast... Trails, Inc. (Evergreen), Cabana Coaches, LLC (Cabana), TMS West Coast, Inc. (TMS), and FSCS Corporation... shareholder of noncarrier holding companies FSCS and TMS. Cabana is owned directly by FSCS and Evergreen...

  8. Allometric Equations for Aboveground and Belowground Biomass Estimations in an Evergreen Forest in Vietnam.

    Directory of Open Access Journals (Sweden)

    Vu Thanh Nam

    Full Text Available Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for aboveground biomass (AGB and root biomass (RB based on 300 (of 45 species and 40 (of 25 species sample trees respectively, in an evergreen forest in Vietnam. The biomass estimations from these local models were compared to regional and pan-tropical models. For AGB we also compared local models that distinguish functional types to an aggregated model, to assess the degree of specificity needed in local models. Besides diameter at breast height (DBH and tree height (H, wood density (WD was found to be an important parameter in AGB models. Existing pan-tropical models resulted in up to 27% higher estimates of AGB, and overestimated RB by nearly 150%, indicating the greater accuracy of local models at the plot level. Our functional group aggregated local model which combined data for all species, was as accurate in estimating AGB as functional type specific models, indicating that a local aggregated model is the best choice for predicting plot level AGB in tropical forests. Finally our study presents the first allometric biomass models for aboveground and root biomass in forests in Vietnam.

  9. Allometric Equations for Aboveground and Belowground Biomass Estimations in an Evergreen Forest in Vietnam.

    Science.gov (United States)

    Nam, Vu Thanh; van Kuijk, Marijke; Anten, Niels P R

    2016-01-01

    Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for aboveground biomass (AGB) and root biomass (RB) based on 300 (of 45 species) and 40 (of 25 species) sample trees respectively, in an evergreen forest in Vietnam. The biomass estimations from these local models were compared to regional and pan-tropical models. For AGB we also compared local models that distinguish functional types to an aggregated model, to assess the degree of specificity needed in local models. Besides diameter at breast height (DBH) and tree height (H), wood density (WD) was found to be an important parameter in AGB models. Existing pan-tropical models resulted in up to 27% higher estimates of AGB, and overestimated RB by nearly 150%, indicating the greater accuracy of local models at the plot level. Our functional group aggregated local model which combined data for all species, was as accurate in estimating AGB as functional type specific models, indicating that a local aggregated model is the best choice for predicting plot level AGB in tropical forests. Finally our study presents the first allometric biomass models for aboveground and root biomass in forests in Vietnam. PMID:27309718

  10. Barcoding success as a function of phylogenetic relatedness in Viburnum, a clade of woody angiosperms

    Directory of Open Access Journals (Sweden)

    Clement Wendy L

    2012-05-01

    Full Text Available Abstract Background The chloroplast genes matK and rbcL have been proposed as a “core” DNA barcode for identifying plant species. Published estimates of successful species identification using these loci (70-80% may be inflated because they may have involved comparisons among distantly related species within target genera. To assess the ability of the proposed two-locus barcode to discriminate closely related species, we carried out a hierarchically structured set of comparisons within Viburnum, a clade of woody angiosperms containing ca. 170 species (some 70 of which are currently used in horticulture. For 112 Viburnum species, we evaluated rbcL + matK, as well as the chloroplast regions rpl32-trnL, trnH-psbA, trnK, and the nuclear ribosomal internal transcribed spacer region (nrITS. Results At most, rbcL + matK could discriminate 53% of all Viburnum species, with only 18% of the comparisons having genetic distances >1%. When comparisons were progressively restricted to species within major Viburnum subclades, there was a significant decrease in both the discriminatory power and the genetic distances. trnH-psbA and nrITS show much higher levels of variation and potential discriminatory power, and their use in plant barcoding should be reconsidered. As barcoding has often been used to discriminate species within local areas, we also compared Viburnum species within two regions, Japan and Mexico and Central America. Greater success in discriminating among the Japanese species reflects the deeper evolutionary history of Viburnum in that area, as compared to the recent radiation of a single clade into the mountains of Latin America. Conclusions We found very low levels of discrimination among closely related species of Viburnum, and low levels of variation in the proposed barcoding loci may limit success within other clades of long-lived woody plants. Inclusion of the supplementary barcodes trnH-psbA and nrITS increased discrimination rates but

  11. Study on Restoration of Evergreen Broad-leaved Forest from Pinus massoniana Forest.%马尾松林恢复为常绿阔叶林的研究

    Institute of Scientific and Technical Information of China (English)

    王希华; 宋永昌; 王良衍

    2001-01-01

    High coverage of Pinus massoniana forest on low mountains in Eastern China at present was studied in this paper. This forest is threatened by plant diseases, especially pines wilt, and needs to be restored urgently. Species of later successional stage or climax communities were retained or introduced to the forest through reconstruction according to vegetation ecology theory, so as to restore it quickly to zonal evergreen broad-leaved forest. It formed an evergreen broad-leaved sub-tree layer of 2~3m high dominated by Schima superba from a shrub layer of 57m high after 3 years of reconstruction. The questions of restoration were discussed in this paper.

  12. Effects of Coffee Management Intensity on Composition, Structure, and Regeneration Status of Ethiopian Moist Evergreen Afromontane Forests

    Science.gov (United States)

    Hundera, Kitessa; Aerts, Raf; Fontaine, Alexandre; Van Mechelen, Maarten; Gijbels, Pieter; Honnay, Olivier; Muys, Bart

    2013-03-01

    The effect of arabica coffee management intensity on composition, structure, and regeneration of moist evergreen Afromontane forests was studied in three traditional coffee-management systems of southwest Ethiopia: semiplantation coffee, semiforest coffee, and forest coffee. Vegetation and environmental data were collected in 84 plots from forests varying in intensity of coffee management. After controlling for environmental variation (altitude, aspect, slope, soil nutrient availability, and soil depth), differences in woody species composition, forest structure, and regeneration potential among management systems were compared using one way analysis of variance. The study showed that intensification of forest coffee cultivation to maximize coffee production negatively affects diversity and structure of Ethiopian moist evergreen Afromontane forests. Intensification of coffee productivity starts with the conversion of forest coffee to semiforest coffee, which has significant negative effects on tree seedling abundance. Further intensification leads to the conversion of semiforest to semiplantation coffee, causing significant diversity losses and the collapse of forest structure (decrease of stem density, basal area, crown closure, crown cover, and dominant tree height). Our study underlines the need for shade certification schemes to include variables other than canopy cover and that the loss of species diversity in intensively managed coffee systems may jeopardize the sustainability of coffee production itself through the decrease of ecosystem resilience and disruption of ecosystem services related to coffee yield, such as pollination and pest control.

  13. Fossil evidence for a herbaceous diversification of early eudicot angiosperms during the Early Cretaceous.

    Science.gov (United States)

    Jud, Nathan A

    2015-09-01

    Eudicot flowering plants comprise roughly 70% of land plant species diversity today, but their early evolution is not well understood. Fossil evidence has been largely restricted to their distinctive tricolpate pollen grains and this has limited our understanding of the ecological strategies that characterized their primary radiation. I describe megafossils of an Early Cretaceous eudicot from the Potomac Group in Maryland and Virginia, USA that are complete enough to allow reconstruction of important life-history traits. I draw on quantitative and qualitative analysis of functional traits, phylogenetic analysis and sedimentological evidence to reconstruct the biology of this extinct species. These plants were small and locally rare but widespread, fast-growing herbs. They had complex leaves and they were colonizers of bright, wet, disturbance-prone habitats. Other early eudicot megafossils appear to be herbaceous rather than woody, suggesting that this habit was characteristic of their primary radiation. A mostly herbaceous initial diversification of eudicots could simultaneously explain the heretofore sparse megafossil record as well as their rapid diversification during the Early Cretaceous because the angiosperm capacity for fast reproduction and fast evolution is best expressed in herbs. PMID:26336172

  14. Scaling of stomatal size and density optimizes allocation of leaf epidermal space for gas exchange in angiosperms

    Science.gov (United States)

    de Boer, Hugo Jan; Price, Charles A.; Wagner-Cremer, Friederike; Dekker, Stefan C.; Franks, Peter J.; Veneklaas, Erik J.

    2015-04-01

    Stomata on plant leaves are key traits in the regulation of terrestrial fluxes of water and carbon. The basic morphology of stomata consists of a diffusion pore and two guard cells that regulate the exchange of CO2 and water vapour between the leaf interior and the atmosphere. This morphology is common to nearly all land plants, yet stomatal size (defined as the area of the guard cell pair) and stomatal density (the number of stomata per unit area) range over three orders of magnitude across species. Evolution of stomatal sizes and densities is driven by selection pressure on the anatomical maximum stomatal conductance (gsmax), which determines the operational range of leaf gas exchange. Despite the importance of stomata traits for regulating leaf gas exchange, a quantitative understanding of the relation between adaptation of gsmax and the underlying co-evolution of stomatal sizes and densities is still lacking. Here we develop a theoretical framework for a scaling relationship between stomatal sizes and densities within the constraints set by the allocation of epidermal space and stomatal gas exchange. Our theory predicts an optimal scaling relationship that maximizes gsmax and minimizes epidermal space allocation to stomata. We test whether stomatal sizes and densities reflect this optimal scaling with a global compilation of stomatal trait data on 923 species reflecting most major clades. Our results show optimal scaling between stomatal sizes and densities across all species in the compiled data set. Our results also show optimal stomatal scaling across angiosperm species, but not across gymnosperm and fern species. We propose that the evolutionary flexibility of angiosperms to adjust stomatal sizes underlies their optimal allocation of leaf epidermal space to gas exchange.

  15. Forest Typification to Characterize the Structure and Composition of Old-growth Evergreen Forests on Chiloe Island, North Patagonia (Chile)

    OpenAIRE

    Jan R. Bannister; Pablo J. Donoso

    2013-01-01

    The Evergreen forest type develops along the Valdivian and North-Patagonian phytogeographical regions of the south-central part of Chile (38° S–46° S). These evergreen forests have been scarcely studied south of 43° S, where there is still a large area made up of old-growth forests. Silvicultural proposals for the Evergreen forest type have been based on northern Evergreen forests, so that the characterization of the structure and composition of southern Evergreen forests, e.g., their typific...

  16. Growing up with stress - carbon sequestration and allocation dynamics of a broadleaf evergreen forest

    Science.gov (United States)

    Griebel, Anne; Bennett, Lauren T.; Arndt, Stefan K.

    2016-04-01

    Evergreen forests have the potential to sequester carbon year-round due to the presence of leaves with a multi-year lifespan. Eucalypt forests occur in warmer climates where temperature and radiation are not imposing a strong seasonality. Thus, unlike deciduous or many coniferous trees, many eucalypts grow opportunistically as conditions allow. As such, many eucalypts do not produce distinct growth rings, which present challenges to the implementation of standard methods and data interpretation approaches for monitoring and explaining carbon allocation dynamics in response to climatic stress. As a consequence, there is a lack of detailed understanding of seasonal growth dynamics of evergreen forests as a whole, and, in particular, of the influence of climatic drivers on carbon allocation to the various biomass pools. We used a multi-instrument approach in a mixed species eucalypt forest to investigate the influence of climatic drivers on the seasonal growth dynamics of a predominantly temperate and moisture-regulated environment in south-eastern Australia. Ecosystem scale observations of net ecosystem exchange (NEE) from a flux tower in the Wombat forest near Melbourne indicated that the ecosystem is a year-round carbon sink, but that intra-annual variations in temperature and moisture along with prolonged heat waves and dry spells resulted in a wide range of annual sums over the past three years (NEE ranging from ~4 to 12 t C ha-1 yr-1). Dendrometers were used to monitor stem increments of the three dominant eucalypt species. Stem expansion was generally opportunistic with the greatest increments under warm but moist conditions (often in spring and autumn), and the strongest indicators of stem growth dynamics being radiation, vapour pressure deficit and a combined heat-moisture index. Differences in the seasonality of stem increments between species were largely due to differences in the canopy position of sampled individuals. The greatest stem increments were

  17. Putting scales into evolutionary time: the divergence of major scale insect lineages (Hemiptera) predates the radiation of modern angiosperm hosts

    Science.gov (United States)

    Vea, Isabelle M.; Grimaldi, David A.

    2016-01-01

    The radiation of flowering plants in the mid-Cretaceous transformed landscapes and is widely believed to have fuelled the radiations of major groups of phytophagous insects. An excellent group to test this assertion is the scale insects (Coccomorpha: Hemiptera), with some 8,000 described Recent species and probably the most diverse fossil record of any phytophagous insect group preserved in amber. We used here a total-evidence approach (by tip-dating) employing 174 morphological characters of 73 Recent and 43 fossil taxa (48 families) and DNA sequences of three gene regions, to obtain divergence time estimates and compare the chronology of the most diverse lineage of scale insects, the neococcoid families, with the timing of the main angiosperm radiation. An estimated origin of the Coccomorpha occurred at the beginning of the Triassic, about 245 Ma [228–273], and of the neococcoids 60 million years later [210–165 Ma]. A total-evidence approach allows the integration of extinct scale insects into a phylogenetic framework, resulting in slightly younger median estimates than analyses using Recent taxa, calibrated with fossil ages only. From these estimates, we hypothesise that most major lineages of coccoids shifted from gymnosperms onto angiosperms when the latter became diverse and abundant in the mid- to Late Cretaceous. PMID:27000526

  18. A cold-tolerant evergreen interspecific hybrid of Ocimum kilimandscharicum and Ocimum basilicum: analyzing trichomes and molecular variations.

    Science.gov (United States)

    Dhawan, Sunita Singh; Shukla, Preeti; Gupta, Pankhuri; Lal, R K

    2016-05-01

    and cold. The analysis showed that O. kilimandscharicum and the hybrid were very close to each other but O. basilicum was more distinct in all respects. The overexpression of the WRKY coding gene showed high expression in the hybrid as compared to O. kilimandscharicum and O. basilicum and the transcription factor microspore-specific (MPS) promoter has also shown overexpression in the hybrid for its response against cold stress. The developed evergreen interspecific hybrid may thus provide a base to various industries which are dependent upon the bioactive constituents of Ocimum species. PMID:26156173

  19. Role of proline and GABA in sexual reproduction of angiosperms.

    Science.gov (United States)

    Biancucci, Marco; Mattioli, Roberto; Forlani, Giuseppe; Funck, Dietmar; Costantino, Paolo; Trovato, Maurizio

    2015-01-01

    Two glutamate derivatives, proline and γ-aminobutyric acid (GABA), appear to play pivotal roles in different aspects of sexual reproduction in angiosperms, although their precise function in plant reproduction and the molecular basis of their action are not yet fully understood. Proline and GABA have long been regarded as pivotal amino acids in pollen vitality and fertility. Proline may constitute up to 70% of the free amino acid pool in pollen grains and it has been recently shown that Arabidopsis mutants affected in the first and rate-limiting step in proline synthesis produce aberrant and infertile pollen grains, indicating that proline synthesis is required for pollen development and fertility. Concerning GABA, a large body of evidence points to this glutamate derivative as a key determinant of post-pollination fertilization. Intriguingly, proline has also been associated with pollination, another aspect of sexual reproduction, since honeybees were reported to show a strong preference for proline-enriched nectars. In this review, we survey current knowledge on the roles of proline and GABA in plant fertility, and discuss future perspectives potentially capable to improve our understanding on the functions of these amino acids in pollen development, pollination, and pollen tube guidance. PMID:26388884

  20. Patterns and determinants of potential carbon gain in the C3 evergreen Yucca glauca (Liliaceae) in a C4 grassland.

    Science.gov (United States)

    Maragni, L A; Knapp, A K; McAllister, C A

    2000-02-01

    Yucca glauca is a C(3) evergreen rosette species locally common in the C(4)-dominated grasslands of the central Great Plains. Most congeners of Y. glauca are found in deserts, and Y. glauca's morphological similarities to desert species (steeply angled leaves, evergreen habit) may be critical to its success in grasslands. We hypothesized that the evergreen habit of Y. glauca, coupled with its ability to remain physiologically active at cool temperatures, would allow this species to gain a substantial portion of its annual carbon budget when the C(4) grasses are dormant. Leaf-level gas exchange was measured over an 18-mo period at Konza Prairie in northeast Kansas to assess the annual pattern of potential C gain. Two short-term experiments also were conducted in which nighttime temperatures were manipulated to assess the cold tolerance of this species. The annual pattern of C gain in Y. glauca was bimodal, with a spring productive period (maximum monthly photosynthetic rate = 21.1 ± 1.97 μmol·m·s) in March through June, a period of midseason photosynthetic depression, and a fall productive period in October (15.6 ± 1.25 μmol·m·s). The steeply angled leaves resulted in interception of photon flux density at levels above photosynthetic saturation throughout the year. Reduced photosynthetic rates in the summer may have been caused by low soil moisture, but temperature was strongly related (r = 0.37) to annual variations in photosynthesis, with nocturnal air temperatures below -5°C in the late fall and early spring, and high air temperatures (>32°C) in the summer, limiting gas exchange. Overall, 31% of the potential annual carbon gain in Y. glauca occurred outside the "frost-free" period (April-October) at Konza Prairie and 43% occurred when the dominant C(4) grasses were dormant. Future climates that include warmer minimum temperatures in the spring and fall may enhance the success of Y. glauca relative to the C(4) dominants in these grasslands. PMID:10675310

  1. An observational study of the carbon-sink strength of East Asian subtropical evergreen forests

    International Nuclear Information System (INIS)

    Relatively little is known about the effects of regional warming on the carbon cycle of subtropical evergreen forest ecosystems, which are characterized by year-round growing season and cold winters. We investigated the carbon balance in three typical East Asia subtropical evergreen forests, using eddy flux, soil respiration and leaf-level measurements. Subtropical evergreen forests maintain continuous, high rates of photosynthetic activity, even during winter cold periods. Warm summers enhance photosynthetic rates in a limited way, because overall ecosystem productivity is primarily restrained by radiation levels during the warm period. Conversely, warm climates significantly enhance the respiratory carbon efflux. The finding of lower sensitivity of photosynthesis relative to that of respiration suggests that increased temperature will weaken the carbon-sink strength of East Asia subtropical evergreen forests. (letter)

  2. Canopy structure, vertical radiation profile and photosynthetic function in a Quercus ilex evergreen forest

    International Nuclear Information System (INIS)

    The studied evergreen forest dominated by Quercus ilex showed a leaf area index (LAI) of 4.5, of which 61 % was accumulated within the tree layer, 30 % within the shrub layer, and 9 % within the herb layer. The leaves of all the species were ± horizontally oriented (41°), absorbing a relevant percentage of incident irradiance. The high LAI drastically modified the quality and quantity of solar radiation on the forest underground. The spectral distribution of the radiation under the forest was markedly deficient in blue and red wavelengths. The maximum absorption in these spectral bands was found in spring, when net photosynthetic rate (P N ) was at its maximum, and in summer, when new leaves reached 90 % of their definitive structure. The vertical radiation profile showed an evident reduction of the red-far red ratio (R/FR). Radiation quality and quantity influenced leaf physiology and morphology. Clear differences in leaf size, leaf water content per area (LWC) and specific leaf area (SLA) on the vertical profile of the forest were observed. All the shrub species showed similar SLA (12.02 m2 kg-1, mean value). The ability to increase SLA whilst simultaneously reducing leaf thickness maximized the carbon economy. The high chlorophyll (Chl) content of shrub layer leaves (1.41 g kg-1, mean value) was an expression of shade adaptation. Both leaf morphology and leaf physiology expressed the phenotypic plasticity. Q. ilex, Phillyrea latifolia and Pistacia lentiscus of the forest shrub layer showed wide differences in leaf structure and function with respect to the same species developing under strong irradiance (low maquis): a 57 % mean increase of SLA and a 86 % mean decrease of PN. They showed high leaf plasticity. Leaf plasticity implies that the considered sclerophyllous species has an optimum developmental pattern achieving adaptation to environments. (author)

  3. Comparative Genomics of NAC Transcriptional Factors in Angiosperms: Implications for the Adaptation and Diversification of Flowering Plants

    Science.gov (United States)

    Pereira-Santana, Alejandro; Alcaraz, Luis David; Castaño, Enrique; Sanchez-Calderon, Lenin; Sanchez-Teyer, Felipe; Rodriguez-Zapata, Luis

    2015-01-01

    NAC proteins constitute one of the largest groups of plant-specific transcription factors and are known to play essential roles in various developmental processes. They are also important in plant responses to stresses such as drought, soil salinity, cold, and heat, which adversely affect growth. The current knowledge regarding the distribution of NAC proteins in plant lineages comes from relatively small samplings from the available data. In the present study, we broadened the number of plant species containing the NAC family origin and evolution to shed new light on the evolutionary history of this family in angiosperms. A comparative genome analysis was performed on 24 land plant species, and NAC ortholog groups were identified by means of bidirectional BLAST hits. Large NAC gene families are found in those species that have experienced more whole-genome duplication events, pointing to an expansion of the NAC family with divergent functions in flowering plants. A total of 3,187 NAC transcription factors that clustered into six major groups were used in the phylogenetic analysis. Many orthologous groups were found in the monocot and eudicot lineages, but only five orthologous groups were found between P. patens and each representative taxa of flowering plants. These groups were called basal orthologous groups and likely expanded into more recent taxa to cope with their environmental needs. This analysis on the angiosperm NAC family represents an effort to grasp the evolutionary and functional diversity within this gene family while providing a basis for further functional research on vascular plant gene families. PMID:26569117

  4. Non-woody life-form contribution to vascular plant species richness in a tropical American forest

    OpenAIRE

    Linares-Palomino, Reynaldo; Cardona, Victor; Hennig, Ernest; Hensen, Isabell; Hoffmann, Doreen; Lendzion, Jasmin; Soto, Daniel; Herzog, Sebastian; Kessler, Michael

    2008-01-01

    We provide total vascular plant species counts for three 1-ha plots in deciduous, semi-deciduous and evergreen forests in central Bolivia. Species richness ranged from 297 species and 22,360 individuals/ha in the dry deciduous forest to 382 species and 31,670 individuals/ha in the evergreen forest. Orchidaceae, Pteridophyta and Leguminosae were among the most species-rich major plant groups in each plot, and Peperomia (Piperaceae), Pleurothallis (Orchidaceae) and Tillandsia (Bromeliaceae), al...

  5. EVERGREEN (envisat for environmental regulation of greenhouse gases)

    Science.gov (United States)

    Goede, A.

    The Kyoto Protocol calls for a quantitative reduction in greenhouse gas emissions by the year 2010. However global emissions, sources and sinks, are not accurately known. EVERGREEN, a recently selected project of the European Commission 5th Framework Programme for Environment and Sustainable Development, proposes to use the measurements of ENVISAT to produce improved greenhouse gas emission inventories. A combination of measurement and (inverse) modelling will be employed to derive emission estimates. Measurements include (partial) columns of CO2, CH4, N2O, CO, O3, NO2 and H2O. The focus will be on methane and carbon monoxide and on regional and seasonal variations. End-user involvement is arranged through participation of one coal industry and several national/European institutes, with responsibility for greenhouse gas issues. Specific objectives are: -Quality assessment and improvement of geenhouse (CO2,CH4) and related gasr (CO) measurements from ENVISAT instruments SCIAMACHY and MIPAS. -Assessment of the role of constituent parts in the radiative forcing based on ENVISAT measurements and atmospheric radiative transfer modelling -Quantification of greenhouse and related biospheric gas fluxes through inverse modelling constrained by ENVISAT measurements, with focus on CH4 and CO. -Provision of greenhouse gas emission data to National and European institutes as a value added product from ENVIS T .A The paper will present progress of the project achieved to date. The project will run until the end of 2005.

  6. Hydroponic Screening for Iron Deficiency Tolerance in Evergreen Azaleas

    Directory of Open Access Journals (Sweden)

    Sonia DEMASI

    2015-04-01

    Full Text Available Evergreen azaleas grow in acid soil and suffer from iron deficiency when cultivated in substrate with pH higher than 6.0. In order to select tolerant plants, 11 azalea genotypes were tested for 21 days in alkaline solution (pH 9, buffered with sodium hydrogen carbonate (1 g·l-1. Leaf damage, root length and mortality rate were recorded. While leaf damage and mortality rate allowed to discriminate genotypes, root development appeared not directly linked to iron deficiency tolerance. Rhododendron ‘Juko’, R. scabrum, R. macrosepalum ‘Hanaguruma’, R. x pulchrum ‘Oomurasaki’, and R. x pulchrum ‘Sen-e-oomurasaki’ resulted iron efficient genetic resources, useful for azalea cultivation and gardening in calcareous soils. On the contrary, R. obtusum ‘Kirin’, R. tosaense, R.x mucronatum ‘Fujimanyo’ and R. obtusum ‘Susogo-no-ito’ resulted iron deficiency sensitive genotypes. R. x mucronatum ‘Ryukyushibori’ and R. indicum ‘Kinsai’ showed intermediate responses.

  7. Cytogenetics of Chilean angiosperms: Advances and prospects Citogenética de angiospermas chilenas: Avances y proyecciones

    Directory of Open Access Journals (Sweden)

    PEDRO JARA-SEGUEL

    2012-03-01

    Full Text Available Cytogenetic data on Chilean angiosperms have been reported since at least eight decades ago; however, much of this information is disperse in diverse sources and is not readily available as a comprehensive document that allows having a general vision on advances and gaps in this matter. The goal of this paper is to summarize the advances and prospets on cytogenetic studies of the Chilean angiosperms based on compiled publications from 1929 to 2010. We found 78 publications supplied by four groups of Chilean researchers and some foreign specialists. Cytogenetic data have been reported for 139 Chilean angiosperm species (2.8 % of the total, which belong to 58 genera and 34 families. During 2001-2010 there was an increase in the number of publications, being available 40 reports including 95 additional species. Based on these data, we hope that such a trend can be maintained in the next decade if the current research groups and young specialists continue to be interested in the study of native plants.Los datos citogenéticos sobre angiospermas chilenas han sido reportados desde al menos ocho décadas atrás; sin embargo, mucha de esta información está dispersa en diversas fuentes y no está disponible como un documento completo que permita tener una visión general sobre los avances y vacíos en esta materia. El objetivo de este trabajo es resumir los avances y proyecciones sobre los estudios citogenéticos disponibles para angiospermas chilenas, basado en publicaciones recopiladas desde 1929 hasta el 2010. Nosotros encontramos 78 publicaciones aportadas por cuatro grupos de investigadores chilenos y por algunos especialistas extranjeros. Datos citogenéticos han sido reportados para 139 especies de angiospermas chilenas (2.8 % del total, las cuales pertenecen a 58 géneros y 34 familias. Durante los años 2001-2010, existió un incremento en el número de publicaciones estando disponibles 40 reportes que incluyen 95 especies adicionales. Basados

  8. Utility of the Amborella trichopoda expansin superfamily in elucidating the history of angiosperm expansins.

    Science.gov (United States)

    Seader, Victoria H; Thornsberry, Jennifer M; Carey, Robert E

    2016-03-01

    Expansins form a superfamily of plant proteins that assist in cell wall loosening during growth and development. The superfamily is divided into four families: EXPA, EXPB, EXLA, and EXLB (Sampedro and Cosgrove in Genome Biol 6:242, 2005. doi: 10.1186/gb-2005-6-12-242 ). Previous studies on Arabidopsis, rice, and Populus trichocarpa have clarified the evolutionary history of expansins in angiosperms (Sampedro et al. in Plant J 44:409-419, 2005. doi: 10.1111/j.1365-313X.2005.02540.x ). Amborella trichopoda is a flowering plant that diverged very early. Thus, it is a sister lineage to all other extant angiosperms (Amborella Genome Project in 342:1241089, 2013. doi: 10.1126/science.1241089 ). Because of this relationship, comparing the A. trichopoda expansin superfamily with those of other flowering plants may indicate which expansin genes were present in the last common ancestor of all angiosperms. The A. trichopoda expansin superfamily was assembled using BLAST searches with angiosperm expansin queries. The search results were analyzed and annotated to isolate the complete A. trichopoda expansin superfamily. This superfamily is similar to other angiosperm expansin superfamilies, but is somewhat smaller. This is likely because of a lack of genome duplication events (Amborella Genome Project 2013). Phylogenetic and syntenic analyses of A. trichopoda expansins have improved our understanding of the evolutionary history of expansins in angiosperms. Nearly all of the A. trichopoda expansins were placed into an existing Arabidopsis-rice expansin clade. Based on the results of phylogenetic and syntenic analyses, we estimate there were 12-13 EXPA genes, 2 EXPB genes, 1 EXLA gene, and 2 EXLB genes in the last common ancestor of all angiosperms. PMID:26646380

  9. Equation to predict the 137Cs leaching dynamic from evergreen canopies after a radio-cesium deposit

    International Nuclear Information System (INIS)

    The Fukushima Daiishi nuclear power plant (FDNPP) accident led to a massive radionuclide deposition mainly onto Japanese forest canopies. In our previous study, an improved double exponential (IDE) equation including rainfall intensity was proposed to estimate the 137Cs hydrological transport from evergreen canopies to the ground. This equation used two types of parameters, kinetic (k1 and k2) and leachable stock (A1 and A2). Those parameters have been estimated by adjusting them in the IDE equation in order to accurately describe the measured cumulative leached 137Cs from canopies (k1 = 4.2E-04–5.0E-04 d−1, k2 = 1.2E-02–1.7E-02 d−1, A1 = 62–99 kBq/m2, A2 = 25–61 kBq/m2). In this study, we linked the total leachable stock (Aleachable, a parameter of the IDE equation corresponding to A1 + A2) to a physiological criteria (the canopy closure CC, which can be measured with a simple camera equipped with a fish-eye objective). Furthermore, the kinetic parameters measured for Japanese cedar (k1 = 5.0E-04 d−1, k2 = 1.2E-02 d−1, and r12 = 0.22 (r12 = A1/A2) could also be used for two other coniferous species: Japanese cypress and spruce. This suggests that these parameters could be constants for coniferous forests. - Highlights: • A double exponential equation including rainfall intensity was used to model leachable cesium loss from cedar canopies. • This equation used two types of parameters, kinetic (k1 and k2) and leachable stock (A1 and A2). • We linked the leachable stock to the canopy structure (canopy closure). • The kinetic parameters were similar for different evergreen stands after Chernobyl and Fukushima accident. • We propose an equation for predicting the leachable cesium dynamic in different evergreen species

  10. Patterns of ROS Accumulation in the Stigmas of Angiosperms and Visions into Their Multi-Functionality in Plant Reproduction.

    Science.gov (United States)

    Zafra, Adoración; Rejón, Juan D; Hiscock, Simon J; Alché, Juan de Dios

    2016-01-01

    Accumulation of reactive oxygen species (ROS) in the stigma of several plant species has been investigated. Four developmental stages (unopened flower buds, recently opened flowers, dehiscent anthers, and flowers after fertilization) were analyzed by confocal laser scanning microscopy using the ROS-specific probe DCFH2-DA. In all plants scrutinized, the presence of ROS in the stigmas was detected at higher levels during those developmental phases considered "receptive" to pollen interaction. In addition, these molecules were also present at early (unopened flower) or later (post-fertilization) stages, by following differential patterns depending on the different species. The biological significance of the presence ROS may differ between these stages, including defense functions, signaling and senescence. Pollen-stigma signaling is likely involved in the different mechanisms of self-incompatibility in these plants. The study also register a general decrease in the presence of ROS in the stigmas upon pollination, when NO is supposedly produced in an active manner by pollen grains. Finally, the distribution of ROS in primitive Angiosperms of the genus Magnolia was determined. The production of such chemical species in these plants was several orders of magnitude higher than in the remaining species evoking a massive displacement toward the defense function. This might indicate that signaling functions of ROS/NO in the stigma evolved later, as fine tune likely involved in specialized interactions like self-incompatibility. PMID:27547207

  11. Diversification rates and chromosome evolution in the most diverse angiosperm genus of the temperate zone (Carex, Cyperaceae).

    Science.gov (United States)

    Escudero, Marcial; Hipp, Andrew L; Waterway, Marcia J; Valente, Luis M

    2012-06-01

    The sedge family (Cyperaceae: Poales; ca. 5600 spp.) is a hyperdiverse cosmopolitan group with centres of species diversity in Africa, Australia, eastern Asia, North America, and the Neotropics. Carex, with ca. 40% of the species in the family, is one of the most species-rich angiosperm genera and the most diverse in temperate regions of the Northern Hemisphere, making it atypical among plants in that it inverts the latitudinal gradient of species richness. Moreover, Carex exhibits high rates of chromosome rearrangement via fission, fusion, and translocation, which distinguishes it from the rest of the Cyperaceae. Here, we use a phylogenetic framework to examine how the onset of contemporary temperate climates and the processes of chromosome evolution have influenced the diversification dynamics of Carex. We provide estimates of diversification rates and map chromosome transitions across the evolutionary history of the main four clades of Carex. We demonstrate that Carex underwent a shift in diversification rates sometime between the Late Eocene and the Oligocene, during a global cooling period, which fits with a transition in diploid chromosome number. We suggest that adaptive radiation to novel temperate climates, aided by a shift in the mode of chromosome evolution, may explain the large-scale radiation of Carex and its latitudinal pattern of species richness. PMID:22366369

  12. Critical loads of nitrogen deposition and critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands

    Directory of Open Access Journals (Sweden)

    P. Pinho

    2012-03-01

    Full Text Available Nitrogen (N has emerged in recent years as a key factor associated with global changes, with impacts on biodiversity, ecosystems functioning and human health. In order to ameliorate the effects of excessive N, safety thresholds such as critical loads (deposition fluxes and levels (concentrations can be established. Few studies have assessed these thresholds for semi-natural Mediterranean ecosystems. Our objective was therefore to determine the critical loads of N deposition and long-term critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands. We have considered changes in epiphytic lichen communities, one of the most sensitive comunity indicators of excessive N in the atmosphere. Based on a classification of lichen species according to their tolerance to N we grouped species into response functional groups, which we used as a tool to determine the critical loads and levels. This was done for a Mediterranean climate in evergreen cork-oak woodlands, based on the relation between lichen functional diversity and modelled N deposition for critical loads and measured annual atmospheric ammonia concentrations for critical levels, evaluated downwind from a reduced N source (a cattle barn. Modelling the highly significant relationship between lichen functional groups and annual atmospheric ammonia concentration showed the critical level to be below 1.9 μg m−3, in agreement with recent studies for other ecosystems. Modelling the highly significant relationship between lichen functional groups and N deposition showed that the critical load was lower than 26 kg (N ha−1 yr−1, which is within the upper range established for other semi-natural ecosystems. Taking into account the high sensitivity of lichen communities to excessive N, these values should aid development of policies to protect Mediterranean woodlands from the initial effects of excessive N.

  13. Monitoring Spring Recovery of Photosynthesis and Spectral Reflectance in Temperate Evergreen and Mixed Deciduous Forests

    Science.gov (United States)

    Wong, C. Y.; Arain, M. A.; Ensminger, I.

    2015-12-01

    Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which characterizes their photosynthetic activity with high activity in the growing season and downregulation during the winter season. Monitoring the timing of the transitions in evergreens is difficult since it's a largely invisible process, unlike deciduous trees that have a visible budding and senescence sequence. Spectral reflectance and the photochemical reflectance index (PRI), often used as a proxy for photosynthetic light-use efficiency, provides a promising tool to track the transition of evergreens between inactive and active photosynthetic states. To better understand the relationship between PRI and photosynthetic activity and to contrast this relationship between plant functional types, the spring recovery of an evergreen forest and mixed deciduous forest was monitored using spectral reflectance, chlorophyll fluorescence and gas exchange. All metrics indicate photosynthetic recovery during the spring season. These findings indicate that PRI can be used to observe the spring recovery of photosynthesis in evergreen conifers but may not be best suited for deciduous trees. These findings have implications for remote sensing, which provides a promising long-term monitoring system of whole ecosystems, which is important since their roles in the carbon cycle may shift in response to climate change.

  14. Does multiple paternity affect seed mass in angiosperms? An experimental test in Dalechampia scandens.

    Science.gov (United States)

    Pélabon, C; Albertsen, E; Falahati-Anbaran, M; Wright, J; Armbruster, W S

    2015-09-01

    Flowers fertilized by multiple fathers may be expected to produce heavier seeds than those fertilized by a single father. However, the adaptive mechanisms leading to such differences remain unclear, and the evidence inconsistent. Here, we first review the different hypotheses predicting an increase in seed mass when multiple paternity occurs. We show that distinguishing between these hypotheses requires information about average seed mass, but also about within-fruit variance in seed mass, bias in siring success among pollen donors, and whether siring success and seed mass are correlated. We then report the results of an experiment on Dalechampia scandens (Euphorbiaceae), assessing these critical variables in conjunction with a comparison of seed mass resulting from crosses with single vs. multiple pollen donors. Siring success differed among males when competing for fertilization, but average seed mass was not affected by the number of fathers. Furthermore, paternal identity explained only 3.8% of the variance in seed mass, and siring success was not correlated with the mass of the seeds produced. Finally, within-infructescence variance in seed mass was not affected by the number of fathers. These results suggest that neither differential allocation nor sibling rivalry has any effect on the average mass of seeds in multiply sired fruits in D. scandens. Overall, the limited paternal effects observed in most studies and the possibility of diversification bet hedging among flowers (but not within flowers), suggest that multiple paternity within fruits or infructescence is unlikely to affect seed mass in a large number of angiosperm species. PMID:26174371

  15. Two-year tree growth patterns investigated from monthly girth records using dendrometer bands in a wet evergreen forest in India

    OpenAIRE

    Pélissier, Raphaël; Pascal, J.P.

    2000-01-01

    With the aim of characterizing tree growth patterns, this paper reexamines the growth data of 100 selected trees belonging to 24 species that were recorded monthly in a 0.2-ha plot of a wet evergreen forest in the Western Ghats of India during the period 1980-82 using dendrometer bands. The mean growth profile, combining all of the selected trees, showed : (a) a significantly lower annual growth rate during the second year of survey which seemed to be negatively related to monsoon precipitati...

  16. The plastid genome of Najas flexilis: adaptation to submersed environments is accompanied by the complete loss of the NDH complex in an aquatic angiosperm.

    Directory of Open Access Journals (Sweden)

    Elena L Peredo

    Full Text Available The re-colonization of aquatic habitats by angiosperms has presented a difficult challenge to plants whose long evolutionary history primarily reflects adaptations to terrestrial conditions. Many aquatics must complete vital stages of their life cycle on the water surface by means of floating or emergent leaves and flowers. Only a few species, mainly within the order Alismatales, are able to complete all aspects of their life cycle including pollination, entirely underwater. Water-pollinated Alismatales include seagrasses and water nymphs (Najas, the latter being the only freshwater genus in the family Hydrocharitaceae with subsurface water-pollination. We have determined the complete nucleotide sequence of the plastid genome of Najas flexilis. The plastid genome of N. flexilis is a circular AT-rich DNA molecule of 156 kb, which displays a quadripartite structure with two inverted repeats (IR separating the large single copy (LSC from the small single copy (SSC regions. In N. flexilis, as in other Alismatales, the rps19 and trnH genes are localized in the LSC region instead of within the IR regions as in other monocots. However, the N. flexilis plastid genome presents some anomalous modifications. The size of the SSC region is only one third of that reported for closely related species. The number of genes in the plastid is considerably less. Both features are due to loss of the eleven ndh genes in the Najas flexilis plastid. In angiosperms, the absence of ndh genes has been related mainly to the loss of photosynthetic function in parasitic plants. The ndh genes encode the NAD(PH dehydrogenase complex, believed essential in terrestrial environments, where it increases photosynthetic efficiency in variable light intensities. The modified structure of the N. flexilis plastid genome suggests that adaptation to submersed environments, where light is scarce, has involved the loss of the NDH complex in at least some photosynthetic angiosperms.

  17. The plastid genome of Najas flexilis: adaptation to submersed environments is accompanied by the complete loss of the NDH complex in an aquatic angiosperm.

    Science.gov (United States)

    Peredo, Elena L; King, Ursula M; Les, Donald H

    2013-01-01

    The re-colonization of aquatic habitats by angiosperms has presented a difficult challenge to plants whose long evolutionary history primarily reflects adaptations to terrestrial conditions. Many aquatics must complete vital stages of their life cycle on the water surface by means of floating or emergent leaves and flowers. Only a few species, mainly within the order Alismatales, are able to complete all aspects of their life cycle including pollination, entirely underwater. Water-pollinated Alismatales include seagrasses and water nymphs (Najas), the latter being the only freshwater genus in the family Hydrocharitaceae with subsurface water-pollination. We have determined the complete nucleotide sequence of the plastid genome of Najas flexilis. The plastid genome of N. flexilis is a circular AT-rich DNA molecule of 156 kb, which displays a quadripartite structure with two inverted repeats (IR) separating the large single copy (LSC) from the small single copy (SSC) regions. In N. flexilis, as in other Alismatales, the rps19 and trnH genes are localized in the LSC region instead of within the IR regions as in other monocots. However, the N. flexilis plastid genome presents some anomalous modifications. The size of the SSC region is only one third of that reported for closely related species. The number of genes in the plastid is considerably less. Both features are due to loss of the eleven ndh genes in the Najas flexilis plastid. In angiosperms, the absence of ndh genes has been related mainly to the loss of photosynthetic function in parasitic plants. The ndh genes encode the NAD(P)H dehydrogenase complex, believed essential in terrestrial environments, where it increases photosynthetic efficiency in variable light intensities. The modified structure of the N. flexilis plastid genome suggests that adaptation to submersed environments, where light is scarce, has involved the loss of the NDH complex in at least some photosynthetic angiosperms. PMID:23861923

  18. Modeling the early-phase redistribution of radiocesium fallouts in an evergreen coniferous forest after Chernobyl and Fukushima accidents

    Energy Technology Data Exchange (ETDEWEB)

    Calmon, P.; Gonze, M.-A.; Mourlon, Ch.

    2015-10-01

    Following the Chernobyl accident, the scientific community gained numerous data on the transfer of radiocesium in European forest ecosystems, including information regarding the short-term redistribution of atmospheric fallout onto forest canopies. In the course of international programs, the French Institute for Radiological Protection and Nuclear Safety (IRSN) developed a forest model, named TREE4 (Transfer of Radionuclides and External Exposure in FORest systems), 15 years ago. Recently published papers on a Japanese evergreen coniferous forest contaminated by Fukushima radiocesium fallout provide interesting and quantitative data on radioactive mass fluxes measured within the forest in the months following the accident. The present study determined whether the approach adopted in the TREE4 model provides satisfactory results for Japanese forests or whether it requires adjustments. This study focused on the interception of airborne radiocesium by forest canopy, and the subsequent transfer to the forest floor through processes such as litterfall, throughfall, and stemflow, in the months following the accident. We demonstrated that TREE4 quite satisfactorily predicted the interception fraction (20%) and the canopy-to-soil transfer (70% of the total deposit in 5 months) in the Tochigi forest. This dynamics was similar to that observed in the Höglwald spruce forest. However, the unexpectedly high contribution of litterfall (31% in 5 months) in the Tochigi forest could not be reproduced in our simulations (2.5%). Possible reasons for this discrepancy are discussed; and sensitivity of the results to uncertainty in deposition conditions was analyzed. - Highlights: • Transfer of radiocesium atmospheric fallout in evergreen forests was modeled. • The model was tested using observations from Chernobyl and Fukushima accidents. • Model predictions of canopy interception and depuration agree with measurements. • Unexpectedly high contribution of litterfall for the

  19. Modeling the early-phase redistribution of radiocesium fallouts in an evergreen coniferous forest after Chernobyl and Fukushima accidents

    International Nuclear Information System (INIS)

    Following the Chernobyl accident, the scientific community gained numerous data on the transfer of radiocesium in European forest ecosystems, including information regarding the short-term redistribution of atmospheric fallout onto forest canopies. In the course of international programs, the French Institute for Radiological Protection and Nuclear Safety (IRSN) developed a forest model, named TREE4 (Transfer of Radionuclides and External Exposure in FORest systems), 15 years ago. Recently published papers on a Japanese evergreen coniferous forest contaminated by Fukushima radiocesium fallout provide interesting and quantitative data on radioactive mass fluxes measured within the forest in the months following the accident. The present study determined whether the approach adopted in the TREE4 model provides satisfactory results for Japanese forests or whether it requires adjustments. This study focused on the interception of airborne radiocesium by forest canopy, and the subsequent transfer to the forest floor through processes such as litterfall, throughfall, and stemflow, in the months following the accident. We demonstrated that TREE4 quite satisfactorily predicted the interception fraction (20%) and the canopy-to-soil transfer (70% of the total deposit in 5 months) in the Tochigi forest. This dynamics was similar to that observed in the Höglwald spruce forest. However, the unexpectedly high contribution of litterfall (31% in 5 months) in the Tochigi forest could not be reproduced in our simulations (2.5%). Possible reasons for this discrepancy are discussed; and sensitivity of the results to uncertainty in deposition conditions was analyzed. - Highlights: • Transfer of radiocesium atmospheric fallout in evergreen forests was modeled. • The model was tested using observations from Chernobyl and Fukushima accidents. • Model predictions of canopy interception and depuration agree with measurements. • Unexpectedly high contribution of litterfall for the

  20. Life-history traits in an evergreen Mediterranean oak respond differentially to previous experimental environments

    Directory of Open Access Journals (Sweden)

    J. M. Rey Benayas

    2008-06-01

    Full Text Available Living organisms respond both to current and previous environments, which can have important consequences on population dynamics. However, there is little experimental evidence based on long-term field studies of the effects of previous environments on the performance of individuals. We tested the hypothesis that trees that establish under different environmental conditions perform differently under similar post-establishment conditions. We used the slow-growing, evergreen Mediterranean oak Quercus ilex subsp. rotundifolia as target species. We analyzed the effects of previous environments, competition effects and tradeoffs among life-history traits (survival, growth, and reproduction. We enhanced seedling establishment for three years by reducing abiotic environmental harshness by means of summer irrigation and artificial shading in 12 experimental plots, while four plots remained as controls. Then these treatments were interrupted for ten years. Seedlings under ameliorated environmental conditions survived and grew faster during early establishment. During the post-management period, previous treatments 1 did not have any effect on survival, 2 experienced a slower above-ground growth, 3 decreased root biomass as indicated from reflectivity of Ground Penetration Radar, 4 increased acorn production mostly through a greater canopy volume and 5 increased acorn production effort. The trees exhibited a combination of effects related to acclimation for coping with abiotic stress and effects of intra-specific competition. In accordance with our hypothesis, tree performance overall depended on previous environmental conditions, and the response was different for different life-history traits. We recommend early management because it increased plot cover, shortened the time to attain sexual maturity and increased the amount of acorn production. Plots such as those assessed in this study may act as sources of propagules in deforested

  1. Unequal plastid distribution during the development of the male gametophyte of angiosperms

    Directory of Open Access Journals (Sweden)

    R. Hagemann

    2014-02-01

    Full Text Available The difference between the uniparental maternal and biparental type of plastid inheritance is based upon a relatively simple mechanism. In the uniparental type plastids are excluded from the generative or siperm cells during the firts pollen mitosis or during pollen development. In some angiosperms this exclusion is completely lacking or carried out partially.

  2. Did homeodomain proteins duplicate before the origin of angiosperms, fungi, and metazoa?

    Science.gov (United States)

    Bharathan, G; Janssen, B J; Kellogg, E A; Sinha, N

    1997-12-01

    Homeodomain proteins are transcription factors that play a critical role in early development in eukaryotes. These proteins previously have been classified into numerous subgroups whose phylogenetic relationships are unclear. Our phylogenetic analysis of representative eukaryotic sequences suggests that there are two major groups of homeodomain proteins, each containing sequences from angiosperms, metazoa, and fungi. This result, based on parsimony and neighbor-joining analyses of primary amino acid sequences, was supported by two additional features of the proteins. The two protein groups are distinguished by an insertion/deletion in the homeodomain, between helices I and II. In addition, an amphipathic alpha-helical secondary structure in the region N terminal of the homeodomain is shared by angiosperm and metazoan sequences in one group. These results support the hypothesis that there was at least one duplication of homeobox genes before the origin of angiosperms, fungi, and metazoa. This duplication, in turn, suggests that these proteins had diverse functions early in the evolution of eukaryotes. The shared secondary structure in angiosperm and metazoan sequences points to an ancient conserved functional domain. PMID:9391098

  3. Did homeodomain proteins duplicate before the origin of angiosperms, fungi, and metazoa?

    Science.gov (United States)

    Bharathan, Geeta; Janssen, Bart-Jan; Kellogg, Elizabeth A.; Sinha, Neelima

    1997-01-01

    Homeodomain proteins are transcription factors that play a critical role in early development in eukaryotes. These proteins previously have been classified into numerous subgroups whose phylogenetic relationships are unclear. Our phylogenetic analysis of representative eukaryotic sequences suggests that there are two major groups of homeodomain proteins, each containing sequences from angiosperms, metazoa, and fungi. This result, based on parsimony and neighbor-joining analyses of primary amino acid sequences, was supported by two additional features of the proteins. The two protein groups are distinguished by an insertion/deletion in the homeodomain, between helices I and II. In addition, an amphipathic alpha-helical secondary structure in the region N terminal of the homeodomain is shared by angiosperm and metazoan sequences in one group. These results support the hypothesis that there was at least one duplication of homeobox genes before the origin of angiosperms, fungi, and metazoa. This duplication, in turn, suggests that these proteins had diverse functions early in the evolution of eukaryotes. The shared secondary structure in angiosperm and metazoan sequences points to an ancient conserved functional domain. PMID:9391098

  4. Darwin-Wallace Demons: survival of the fastest in populations of duckweeds and the evolutionary history of an enigmatic group of angiosperms.

    Science.gov (United States)

    Kutschera, U; Niklas, K J

    2015-01-01

    In evolutionary biology, the term 'Darwinian fitness' refers to the lifetime reproductive success of an individual within a population of conspecifics. The idea of a 'Darwinian Demon' emerged from this concept and is defined here as an organism that commences reproduction almost immediately after birth, has a maximum fitness, and lives forever. It has been argued that duckweeds (sub-family Lemnoideae, order Alismatales), a group containing five genera and 34 species of small aquatic monocotyledonous plants with a reduced body plan, can be interpreted as examples of 'Darwinian Demons'. Here we focus on the species Spirodela polyrhiza (Great duckweed) and show that these miniaturised aquatic angiosperms display features that fit the definition of the hypothetical organism that we will call a 'Darwin-Wallace Demon' in recognition of the duel proponents of evolution by natural selection. A quantitative analysis (log-log bivariate plot of annual growth in dry biomass versus standing dry body mass of various green algae and land plants) revealed that duckweeds are thus far the most rapidly growing angiosperms in proportion to their body mass. In light of this finding, we discuss the disposable soma and metabolic optimising theories, summarise evidence for and against the proposition that the Lemnoideae (family Araceae) reflect an example of reductive evolution, and argue that, under real-world conditions (environmental constraints and other limitations), 'Darwin-Wallace Demons' cannot exist, although the concept remains useful in much the same way that the Hardy-Weinberg law does. PMID:24674028

  5. Forest structure, productivity and soil properties in a subtropical evergreen broad-leaved forest in Okinawa, Japan

    Institute of Scientific and Technical Information of China (English)

    XU Xiao-niu; WANG Qin; Hideaki SHIBATA

    2008-01-01

    Structure,species composition,and soil properties of a subtropical evergreen broad-leaved forest in Okinawa,Japan,were examined by establishment of plots at thirty sites.The forest was characterized by a relatively low canopy and a large number of small-diameter trees.Mean canopy height for this forest was 10 m and stands contained an average of 5400 stems·ha-1 (≧ 3.0 cm DBH); 64% of those stems were smaller than 10 cm DBH.The total basal area was 54.4 m 2·ha-1,of which Castanopsis sieboldii contributed 48%.The forest showed high species diversity of trees.80 tree species (≧ 3.0 cm DBH) from 31 families was identified in the thirty sampling plots.C.sieboldii and Schima wallichii were the dominant and subdominant species in terms of importance value.The mean tree species diversity indices for the plots were,3.36 for Diversity index (H'),0.71 for Equitability index (J') and 4.72 for Species richness index (S'),all of which strongly declined with the increase of importance value of the dominant,C.sieboldii.Measures of soil nutrients indicated low fertility,extreme heterogeneity and possible Al toxicity.Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH.There was a significant positive relationship between species diversity index and soil exchangeable K+,Ca2+,and Ca2+/Al3+ ratio (all p values <0.001) and a negative relationship with N,C and P.The results suggest that soil property is a major factor influencing forest composition and structure within the subtropical forest in Okinawa.

  6. THE EVERGREEN ROOF PROJECT: STANDARDS, METHODS AND SOFTWARE FOR EVALUATING LIVING ROOF SYSTEMS

    Science.gov (United States)

    The Evergreen Roof Project set out four objectives for Phase I of our project and has made sufficient progress on all of those objectives to qualify this phase as a success. Through an extensive literature review and discussions with researchers, designers, inst...

  7. Analysis of the effect of evergreen and deciduous trees on urban nitrogen dioxide levels in the U.S. using land-use regression

    Science.gov (United States)

    Rao, M.; George, L. A.

    2012-12-01

    0.53 ppb in summer and 0.84 ppb in winter. Thus, the model indicates that deciduous trees are associated with a 30% smaller reduction in NO2 in winter as compared to summer, while evergreens are associated with a 60% increase in the reduction of NO2 in winter, for every square kilometer of deciduous or evergreen canopy within a 2 km buffer. Leaf- and local canopy-level studies have shown that trees are a sink for urban NO2 through deposition as well as stomatal and cuticular uptake. The winter time versus summer time effects suggest that leaf-level deposition may not be the only uptake mechanism and points to the need for a more holistic analysis of tree and canopy-level deposition for urban air pollution models. Since deposition velocities for NO2 vary by tree species, the reduction may also vary by species. These findings have implications for designing cities to reduce the impact of air pollution.

  8. Dynamics of the evergreen understory at Coweeta Hydrologic Laboratory, North Carolina

    Science.gov (United States)

    Dobbs, Marion Mcnamara

    Much attention today is directed toward vegetation dynamics and related issues of biotic diversity. Both environmental gradients and disturbance/land use history are important determinants of both the distributional pattern and the dynamics of many plant species. The southern Appalachian Mountains constitute a region of high plant and animal diversity and rapidly increasing development pressure with its consequent changes in land use. The remaining forested areas commonly include a significant evergreen understory (undergreen) composed of ericaceous shrubs, predominately Rhododendron maximum , which is believed to be expanding and exerting an inhibitory effect on the establishment of other species, thus impacting forest structure and composition. This study was an attempt to characterize this forest component, temporally and spatially, at the Coweeta Hydrologic Laboratory, North Carolina, in terms of a variety of topographic gradients as well as long-term (century) and short-term (decade) disturbance history, verify expansion, develop a surrogate soil moisture index for use in an explanatory model for undergreen pattern, and examine the feasibility of predicting the pattern of undergreen at one time based on knowledge of topographic relationships gained at an earlier time. A GIS was used for visual and areal comparisons; logistic regression was used for developing spatiotemporal explanatory models. Results indicate that aspect, stream proximity, and elevation are all important in explaining distributional pattern and dynamics of the undergreen at Coweeta, with R. maximum showing preference for moister areas and its common associate, Kalmia latifolia found more frequently in drier areas. The influence of these environmental factors differs between the larger Coweeta Basin, the site of experimental manipulations at the small watershed level since the 1930's, and the physically similar Dryman Fork Basin, relatively undisturbed since that time. There is an apparent

  9. The Effects of Tourists on Bird Diversity in Tourist Area Compared to Restricted Area of Seasonal Evergreen Forest at Tung Salang Luang National Park, Phetchabun Province, Thailand

    Directory of Open Access Journals (Sweden)

    Pornchai Srisak

    2008-01-01

    Full Text Available A survey of bird similarity, diversity and density were carried out at Tung Salang Luang National Park during March 2004 - February 2005, in 3 sites of seasonal evergreen forest, one site in a restricted area (SE1 and two sites in tourist areas (SE2 and SE3. Three sites were located in the same forest structure. The point count and line transect methods were used for data collection. The results revealed the following information: 133 species, 34 families and 11 orders of birds in SE1 (102 species, SE2 (100 species and SE3 (89 species were observed. Seven species of birds in all sites i.e. Criniger pallidus, Hypsipetes propinquus, Pycnonotus melanicterus, Irena puella, Garrulax leucolophus, Yuhina zantholeuca and Gracula religiosa were the co-dominant species in this forest that will be used indicator for future investigation. Base on similarity, tourist activities may be disturbed some bird groups in tourist area such as carnivorous and omnivorous (SE2 and SE3 and nectarivorous (SE3; base on densities, carnivorous (SE3, nectarivorous (SE2 and SE3 and garnivorous (SE3 were decreased 46-78 % in tourist sites compared with restricted site (SE1. Moreover, bird diversity index in restricted area was higher value than tourist area. This phenomenon indicated that some bird groups in tourist area at the seasonal evergreen forest had negative effect correlation with human activities and similarity, diversity and density indices were a proper indicator for further impact investigation for conservation and management strategies of avifauna. Finally, this result was the first report about avifauna dynamic of Tung Salang Luang National Park.

  10. Divergent expression patterns of miR164 and CUP-SHAPED COTYLEDON genes in palms and other monocots: implication for the evolution of meristem function in angiosperms.

    Science.gov (United States)

    Adam, Hélène; Marguerettaz, Mélanie; Qadri, Rashad; Adroher, Bernard; Richaud, Frédérique; Collin, Myriam; Thuillet, Anne-Céline; Vigouroux, Yves; Laufs, Patrick; Tregear, James W; Jouannic, Stefan

    2011-04-01

    In order to understand how the morphology of plant species has diversified over time, it is necessary to decipher how the underlying developmental programs have evolved. The regulatory network controlling shoot meristem activity is likely to have played an important role in morphological diversification and useful insights can be gained by comparing monocots and eudicots. These two distinct monophyletic groups of angiosperms diverged 130 Ma and are characterized by important differences in their morphology. Several studies of eudicot species have revealed a conserved role for NAM and CUC3 genes in meristem functioning and pattern formation through the definition of morphogenetic boundaries during development. In this study, we show that NAM- and CUC3-related genes are conserved in palms and grasses, their diversification having predated the radiation of monocots and eudicots. Moreover, the NAM-miR164 posttranscriptional regulatory module is also conserved in palm species. However, in contrast to the CUC3-related genes, which share a similar expression pattern between the two angiosperm groups, the expression domain of the NAM-miR164 module differs between monocot and eudicot species. In our studies of spatial expression patterns, we compared existing eudicot data with novel results from our work using two palm species (date palm and oil palm) and two members of the Poaceae (rice and millet). In addition to contrasting results obtained at the gene expression level, major differences were also observed between eudicot and monocot NAM-related genes in the occurrence of putative cis-regulatory elements in their promoter sequences. Overall, our results suggest that although NAM- and CUC3-related proteins are functionally equivalent between monocots and eudicots, evolutionary radiation has resulted in heterotopy through alterations in the expression domain of the NAM-miR164 regulatory module. PMID:21135149

  11. Exploring Early Angiosperm Fire Feedbacks using Coupled Experiments and Modelling Approaches to Estimate Cretaceous Palaeofire Behaviour

    Science.gov (United States)

    Belcher, Claire; Hudpsith, Victoria

    2016-04-01

    Using the fossil record we are typically limited to exploring linkages between palaeoecological changes and palaeofire activity by assessing the abundance of charcoals preserved in sediments. However, it is the behaviour of fires that primarily governs their ecological effects. Therefore, the ability to estimate variations in aspects of palaeofire behaviour such as palaeofire intensity and rate of spread would be of key benefit toward understanding the coupled evolutionary history of ecosystems and fire. The Cretaceous Period saw major diversification in land plants. Previously, conifers (gymnosperms) and ferns (pteridophytes) dominated Earth's ecosystems until flowering plants (angiosperms) appear in the fossil record of the Early Cretaceous (~135Ma). We have created surface fire behaviour estimates for a variety of angiosperm invasion scenarios and explored the influence of Cretaceous superambient atmospheric oxygen levels on the fire behaviour occurring in these new Cretaceous ecosystems. These estimates are then used to explore the hypothesis that the early spread of the angiosperms was promoted by the novel fire regimes that they created. In order to achieve this we tested the flammability of Mesozoic analogue fuel types in controlled laboratory experiments using an iCone calorimeter, which measured the ignitability as well as the effective heat of combustion of the fuels. We then used the BehavePlus fire behaviour modelling system to scale up our laboratory results to the ecosystem scale. Our results suggest that fire-angiosperm feedbacks may have occurred in two phases: The first phase being a result of weedy angiosperms providing an additional easily ignitable fuel that enhanced both the seasonality and frequency of surface fires. In the second phase, the addition of shrubby understory fuels likely expanded the number of ecosystems experiencing more intense surface fires, resulting in enhanced mortality and suppressed post-fire recruitment of gymnosperms

  12. Meiotic studies in some selected angiosperms from the Kashmir Himalayas

    Institute of Scientific and Technical Information of China (English)

    Syed Mudassir JEELANI; Santosh KUMARI; Raghbir Chand GUPTA

    2012-01-01

    As a part of our program to explore and evaluate genetic diversity of flowering plants of the Kashmir Himalayas,meiotic studies have been carried out on 150 wild species.Of these,Caltha alba (2n =32),Delphinium roylei (2n =16),D.uncinatum (2n =16),Ranunculus palmatifidus (2n =28),and Sedum heterodontum (2n =14) have been cytologically worked out for the first time.New intraspecific diploid or polyploid cytotypes have been recorded for Alchemilla vulgaris (2n =34,96),Arabis amplexicaulis (2n =16),Impatiens amphorata (2n =14),Ⅰ.racemosa (2n =12),Ⅰ.sutcata (2n =16,12),Meconopsis latifolia (2n =14),Potentilla supina (2n =14),Saxifraga cernua (2n =16),Sium latijugam (2n =24),and Vicatia coniifolia (2n =44).Four species,Arabidopsis thaliana (2n =10),Berberis vulgaris (2n =28),Potentilla nubicola (2n =14),and P.sericea (2n =28),have been cytologically reported for the first time from India.A large number of meiotic abnormalities have been observed in most of these species,leading to a reduction in pollen fertility and production of heterogeneous-sized pollen grains.

  13. Comparative chloroplast genomics: Analyses including new sequencesfrom the angiosperms Nuphar advena and Ranunculus macranthus

    Energy Technology Data Exchange (ETDEWEB)

    Raubeso, Linda A.; Peery, Rhiannon; Chumley, Timothy W.; Dziubek,Chris; Fourcade, H. Matthew; Boore, Jeffrey L.; Jansen, Robert K.

    2007-03-01

    The number of completely sequenced plastid genomes available is growing rapidly. This new array of sequences presents new opportunities to perform comparative analyses. In comparative studies, it is most useful to compare across wide phylogenetic spans and, within angiosperms, to include representatives from basally diverging lineages such as the new genomes reported here: Nuphar advena (from a basal-most lineage) and Ranunculus macranthus (from the basal group of eudicots). We report these two new plastid genome sequences and make comparisons (within angiosperms, seed plants, or all photosynthetic lineages) to evaluate features such as the status of ycf15 and ycf68 as protein coding genes, the distribution of simple sequence repeats (SSRs) and longer dispersed repeats (SDR), and patterns of nucleotide composition.

  14. Parameterization of the Stomatal Component of the DO3SE Model for Mediterranean Evergreen Broadleaf Species

    OpenAIRE

    Roccío Alonso; Susana Elvira; María J. Sanz; Lisa Emberson; Benjamín S. Gimeno

    2007-01-01

    An ozone (O3) deposition model (DO3SE) is currently used in Europe to define the areas where O3 concentrations lead to absorbed O3 doses that exceed the flux-based critical levels above which phytotoxic effects would be likely recorded. This mapping exercise relies mostly on the accurate estimation of O3 flux through plant stomata. However, the present parameterization of the modulation of stomatal conductance (gs) behavior by different environmental variables needs further adjustment if O3 p...

  15. Citogenética de Angiospermas coletadas em Pernambuco: V Cytogenetics of Angiosperms collected in the State of Pernambuco: V

    Directory of Open Access Journals (Sweden)

    Andrea Pedrosa

    1999-04-01

    Full Text Available Foram analisadas 33 espécies, entre nativas e introduzidas, pertencentes a 20 famílias de angiospermas ocorrentes no Estado de Pernambuco. A caracterização cariotípica da maioria das espécies foi baseada no número e morfologia cromossômica, padrão de condensação de cromossomos profásicos e estrutura de núcleo interfásico. Cinco espécies tiveram seus números cromossômicos determinados pela primeira vez, sendo elas: Cereus jamacaru (2n=22, Clitoria fairchildiana (2n=22, Eugenia luschnathiana (2n=22, Licania tomentosa (2n=22 e Spondias tuberosa (n=16. No caso de Licania tomentosa esta é a primeira citação de número cromossômico para o gênero. Das outras 28 espécies, três (Cecropia cf. palmata, 2n=26; Crinum erubescens, 2n=70; e Schinus terebentifolius, 2n=28 apresentaram números cromossômicos diferentes dos registrados previamente na literatura.Thirty three native and introduced species from 20 families of angiosperms collected in the State of Pernambuco were analysed. The karyotype description of the majority of the species was based on chromosome number and morphology, condensation pattern of prophase chromosomes as well as interphase nuclear structure. In five species (Cereus jamacaru, 2n=22; Clitoria fairchildiana, 2n=22; Eugenia luschnathiana, 2n=22; Licania tomentosa, 2n=22; and Spondias tuberosa, n=16 the chromosome number is reported here for the first time. In the case of Licania tomentosa, this is also the first report for the genus. Among the other 28 species, three (Cecropia cf. palmata, 2n=26; Crinum erubescens, 2n=70; and Schinus terebentifolius, 2n=28 showed chromosome numbers different from what has previously been reported.

  16. Testing the recent theories for the origin of the hermaphrodite flower by comparison of the transcriptomes of gymnosperms and angiosperms

    Directory of Open Access Journals (Sweden)

    Tavares Raquel

    2010-08-01

    Full Text Available Abstract Background Different theories for the origin of the angiosperm hermaphrodite flower make different predictions concerning the overlap between the genes expressed in the male and female cones of gymnosperms and the genes expressed in the hermaphrodite flower of angiosperms. The Mostly Male (MM theory predicts that, of genes expressed primarily in male versus female gymnosperm cones, an excess of male orthologs will be expressed in flowers, excluding ovules, while Out Of Male (OOM and Out Of Female (OOF theories predict no such excess. Results In this paper, we tested these predictions by comparing the transcriptomes of three gymnosperms (Ginkgo biloba, Welwitschia mirabilis and Zamia fisheri and two angiosperms (Arabidopsis thaliana and Oryza sativa, using EST data. We found that the proportion of orthologous genes expressed in the reproductive organs of the gymnosperms and in the angiosperms flower is significantly higher than the proportion of orthologous genes expressed in the reproductive organs of the gymnosperms and in the angiosperms vegetative tissues, which shows that the approach is correct. However, we detected no significant differences between the proportion of gymnosperm orthologous genes expressed in the male cone and in the angiosperms flower and the proportion of gymnosperm orthologous genes expressed in the female cone and in the angiosperms flower. Conclusions These results do not support the MM theory prediction of an excess of male gymnosperm genes expressed in the hermaphrodite flower of the angiosperms and seem to support the OOM/OOF theories. However, other explanations can be given for the 1:1 ratio that we found. More abundant and more specific (namely carpel and ovule expression data should be produced in order to further test these theories.

  17. Preferential fertilization in Plumbago: Ultrastructural evidence for gamete-level recognition in an angiosperm

    OpenAIRE

    Russell, Scott D.

    1985-01-01

    Gametic fusion patterns in the angiosperm Plumbago zeylanica were determined by using cytoplasmically dimorphic sperm cells differing in mitochondrion and plastid content and then identifying paternal organelles through their ultrastructural characteristics within the maternal cytoplasm at the time of fertilization. The virtual absence of plastids within the sperm cell that is physically associated with the vegetative nucleus allows paternal plastids to be used to trace the fate of the two ma...

  18. Did homeodomain proteins duplicate before the origin of angiosperms, fungi, and metazoa?

    OpenAIRE

    Bharathan, Geeta; Janssen, Bart-Jan; Kellogg, Elizabeth A.; Sinha, Neelima

    1997-01-01

    Homeodomain proteins are transcription factors that play a critical role in early development in eukaryotes. These proteins previously have been classified into numerous subgroups whose phylogenetic relationships are unclear. Our phylogenetic analysis of representative eukaryotic sequences suggests that there are two major groups of homeodomain proteins, each containing sequences from angiosperms, metazoa, and fungi. This result, based on parsimony and neighbor-joining analyses of primary ami...

  19. Oil biosynthesis in a basal angiosperm: transcriptome analysis of Persea Americana mesocarp

    OpenAIRE

    Kilaru, Aruna; Cao, Xia; Dabbs, Parker B.; Sung, Ha-Jung; Rahman, Md. Mahbubur; Thrower, Nicholas; Zynda, Greg; Podicheti, Ram; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Mockaitis, Keithanne; Ohlrogge, John B.

    2015-01-01

    Background The mechanism by which plants synthesize and store high amounts of triacylglycerols (TAG) in tissues other than seeds is not well understood. The comprehension of controls for carbon partitioning and oil accumulation in nonseed tissues is essential to generate oil-rich biomass in perennial bioenergy crops. Persea americana (avocado), a basal angiosperm with unique features that are ancestral to most flowering plants, stores ~ 70 % TAG per dry weight in its mesocarp, a nonseed tissu...

  20. A Targeted Enrichment Strategy for Massively Parallel Sequencing of Angiosperm Plastid Genomes

    Directory of Open Access Journals (Sweden)

    Gregory W. Stull

    2013-02-01

    Full Text Available Premise of the study: We explored a targeted enrichment strategy to facilitate rapid and low-cost next-generation sequencing (NGS of numerous complete plastid genomes from across the phylogenetic breadth of angiosperms. Methods and Results: A custom RNA probe set including the complete sequences of 22 previously sequenced eudicot plastomes was designed to facilitate hybridization-based targeted enrichment of eudicot plastid genomes. Using this probe set and an Agilent SureSelect targeted enrichment kit, we conducted an enrichment experiment including 24 angiosperms (22 eudicots, two monocots, which were subsequently sequenced on a single lane of the Illumina GAIIx with single-end, 100-bp reads. This approach yielded nearly complete to complete plastid genomes with exceptionally high coverage (mean coverage: 717×, even for the two monocots. Conclusions: Our enrichment experiment was highly successful even though many aspects of the capture process employed were suboptimal. Hence, significant improvements to this methodology are feasible. With this general approach and probe set, it should be possible to sequence more than 300 essentially complete plastid genomes in a single Illumina GAIIx lane (achieving 50× mean coverage. However, given the complications of pooling numerous samples for multiplex sequencing and the limited number of barcodes (e.g., 96 available in commercial kits, we recommend 96 samples as a current practical maximum for multiplex plastome sequencing. This high-throughput approach should facilitate large-scale plastid genome sequencing at any level of phylogenetic diversity in angiosperms.

  1. A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China.

    Science.gov (United States)

    Zhou, Guoyi; Peng, Changhui; Li, Yuelin; Liu, Shizhong; Zhang, Qianmei; Tang, Xuli; Liu, Juxiu; Yan, Junhua; Zhang, Deqiang; Chu, Guowei

    2013-04-01

    Recent studies have suggested that tropical forests may not be resilient against climate change in the long term, primarily owing to predicted reductions in rainfall and forest productivity, increased tree mortality, and declining forest biomass carbon sinks. These changes will be caused by drought-induced water stress and ecosystem disturbances. Several recent studies have reported that climate change has increased tree mortality in temperate and boreal forests, or both mortality and recruitment rates in tropical forests. However, no study has yet examined these changes in the subtropical forests that account for the majority of China's forested land. In this study, we describe how the monsoon evergreen broad-leaved forest has responded to global warming and drought stress using 32 years of data from forest observation plots. Due to an imbalance in mortality and recruitment, and changes in diameter growth rates between larger and smaller trees and among different functional groups, the average DBH of trees and forest biomass have decreased. Sap flow measurements also showed that larger trees were more stressed than smaller trees by the warming and drying environment. As a result, the monsoon evergreen broad-leaved forest community is undergoing a transition from a forest dominated by a cohort of fewer and larger individuals to a forest dominated by a cohort of more and smaller individuals, with a different species composition, suggesting that subtropical forests are threatened by their lack of resilience against long-term climate change. PMID:23504896

  2. Independence of stem and leaf hydraulic traits in six Euphorbiaceae tree species with contrasting leaf phenology

    OpenAIRE

    Chen, Jun-Wen; Qiang ZHANG; Li, Xiao-Shuang; Cao, Kun-Fang

    2009-01-01

    Hydraulic traits and hydraulic-related structural properties were examined in three deciduous (Hevea brasiliensis, Macaranga denticulate, and Bischofia javanica) and three evergreen (Drypetes indica, Aleurites moluccana, and Codiaeum variegatum) Euphorbiaceae tree species from a seasonally tropical forest in south-western China. Xylem water potential at 50% loss of stem hydraulic conductivity (P50stem) was more negative in the evergreen tree, but leaf water potential at 50% loss of leaf hydra...

  3. Life-history traits in an evergreen Mediterranean oak respond differentially to previous experimental environments

    OpenAIRE

    J. M. Rey Benayas; Cuesta, B; Villar-Salvador, P.; P. Jáuregui

    2008-01-01

    Living organisms respond both to current and previous environments, which can have important consequences on population dynamics. However, there is little experimental evidence based on long-term field studies of the effects of previous environments on the performance of individuals. We tested the hypothesis that trees that establish under different environmental conditions perform differently under similar post-establishment conditions. We used the slow-growing, evergreen Mediterranean oak ...

  4. Biocycle of nitrogen in a Cyclobalanopsis glauca-dominated evergreen broad-leaved forest in East China

    Institute of Scientific and Technical Information of China (English)

    YU Mingjian; XU Xuehong; LI Minghong; FU Hailong

    2006-01-01

    The nitrogen (N) cycling was elucidated in a 40-year-old subtropical evergreen broad-leaved forest dominated by Cyclobalanopsis glauca growing on red soil in Zhejiang Province,East China.The concentrations of N in the representative species ranged from 0.49% to 1.64%,the order of which in various layers was liana and herb layers>understory layer > tree and subtree layers;in various organs was leaf > branch > root > trunk;and aboveground parts > underground parts.The sequence of the concentrations of N in C.glauca was understory > tree > subtree layer;young and high-growing > old organs;reproductive >vegetative organs.Seasonal dynamics of the concentrations of N in C.glauca in the tree and subtree layers was comparatively stable.It was lower in autumn (October) in root,branch,and leaf in the tree layer,and low in January in the understory.There was no evident change in regularity of the concentrations of N in varying diameter classes.The concentrations of N in the litterfall,precipitation,throughfall,litter layer,and soil were 0.74%-2.30%,0.000,038%,0.000,09%,1.94%,and 0.59%,respectively.The standing crop of N in the plant community was 1,025.28 kg/hm2,accumulation in the litter layer was 224.88 kg/hm2,and reserve in the soil was 55,151 kg/hm2.Annual retention of N was 119.47 kg/hm2,return was about 84.13 kg/hm2,among which litterfall was 78.49 kg/hm2 and throughfall,5.64 kg/hm2.Annual absorption of N was 203.60 kg/hm2.Annual input of N through incident precipitation was 4.88 kg/hm2.Compared with other forest types,cycling rate of N in the community was lower than in deciduous broad-leaved forests,rain forests,and mangroves,and was moderate in evergreen broad-leaved forests.N use efficiency of this forest was moderate among the forest types cited.According to the characteristics of the biocycle of phosphorous,it was concluded that N availability in the soil of this forest was not lower,and phosphorous not N was the limiting factor in the growth

  5. A Simple Algorithm for Large-Scale Mapping of Evergreen Forests in Tropical America, Africa and Asia

    Directory of Open Access Journals (Sweden)

    Tunrayo Alabi

    2009-08-01

    Full Text Available The areal extent and spatial distribution of evergreen forests in the tropical zones are important for the study of climate, carbon cycle and biodiversity. However, frequent cloud cover in the tropical regions makes mapping evergreen forests a challenging task. In this study we developed a simple and novel mapping algorithm that is based on the temporal profile analysis of Land Surface Water Index (LSWI, which is calculated as a normalized ratio between near infrared and shortwave infrared spectral bands. The 8-day composites of MODIS Land Surface Reflectance data (MOD09A1 in 2001 at 500-m spatial resolution were used to calculate LSWI. The LSWI-based mapping algorithm was applied to map evergreen forests in tropical Africa, America and Asia (30°N–30°S. The resultant maps of evergreen forests in the tropical zone in 2001, as estimated by the LSWI-based algorithm, are compared to the three global forest datasets [FAO FRA 2000, GLC2000 and the standard MODIS Land Cover Product (MOD12Q1 produced by the MODIS Land Science Team] that are developed through complex algorithms and processes. The inter-comparison of the four datasets shows that the area estimate of evergreen forest from the LSWI-based algorithm fall within the range of forest area estimates from the FAO FRA 2000, GLC2000 and MOD12Q1 at a country level. The area and spatial distribution of evergreen forests from the LSWI-based algorithm is to a large degree similar to those of the MOD12Q1 produced by complex mapping algorithms. The results from this study demonstrate the potential of the LSWI-based mapping algorithm for large-scale mapping of evergreen forests in the tropical zone at moderate spatial resolution.

  6. Both water source and atmospheric water impact leaf wax n-alkane 2H/1H values of hydroponically grown angiosperm trees

    Science.gov (United States)

    Tipple, B. J.; Berke, M. A.; Hambach, B.; Roden, J. S.; Ehleringer, J. R.

    2013-12-01

    The extent to which both water source and leaf water 2H-enrichment affect the δ2H values of terrestrial plant leaf waxes is an area of active research as ecologists seek a mechanistic understanding of the environmental determinants of leaf wax isotope values before applying δ2H values of leaf waxes to reconstruct past hydrologic conditions. To elucidate the effects of both water source and atmospheric water vapor on δ2H values of leaf waxes for broad-leaved angiosperms, we analyzed hydrogen isotope ratios of high-molecular weight n-alkanes from two tree species that were grown throughout the spring and summer (five months) in a hydroponic system under controlled atmospheric conditions. Here, 12 subpopulations each of Populus fremontii and Betula occidentalis saplings were grown under one of six source different waters ranging in hydrogen isotope ratio values from -120 to +180 ‰ and under either 40 % or 75 % relative humidity conditions. We found n-alkane δ2H values of both species were linearly related to source water δ2H values with differences in slope associated with differing atmospheric humidity. A Craig-Gordon model was used to predict the δ2H values of leaf water and, by extension, n-alkane δ2H values under the range of growth conditions. The modeled leaf water values were found to be linearly related to observed n-alkane δ2H values with a statistically indistinguishable slope between the high and low humidity treatments. These leaf wax observations support a constant biosynthetic fractionation factor between evaporatively-enriched leaf water and n-alkanes for each species. However, we found the calculated biosynthetic fractionation between modeled leaf-water and n-alkane to be different between the two species. We submit that these dissimilarities were due to model inputs and not differences in the specific-species biochemistry. Nonetheless, these results are significant as they indicated that the δ2H value of atmospheric water vapor and

  7. Is Patent "Evergreening" Restricting Access to Medicine/Device Combination Products?

    Directory of Open Access Journals (Sweden)

    Reed F Beall

    Full Text Available Not all new drug products are truly new. Some are the result of marginal innovation and incremental patenting of existing products, but in such a way that confers no major therapeutic improvement. This phenomenon, pejoratively known as "evergreening", can allow manufacturers to preserve market exclusivity, but without significantly bettering the standard of care. Other studies speculate that evergreening is especially problematic for medicine/device combination products, because patents on the device component may outlast expired patents on the medicine component, and thereby keep competing, possibly less-expensive generic products off the market.We focused on four common conditions that are often treated by medicine/device product combinations: asthma and chronic obstructive pulmonary disease (COPD, diabetes, and severe allergic reactions. The patent data for a sample of such products (n = 49 for treating these conditions was extracted from the United States Food and Drug Administration's Orange Book. Additional patent-related data (abstracts, claims, etc were retrieved using LexisNexis TotalPatent. Comparisons were then made between each product's device patents and medicine patents.Unexpired device patents exist for 90 percent of the 49 medicine/device product combinations studied, and were the only sort of unexpired patent for 14 products. Overall, 55 percent of the 235 patents found by our study were device patents. Comparing the last-to-expire device patent to that of the last-to-expire active ingredient patent, the median additional years of patent protection afforded by device patents was 4.7 years (range: 1.3-15.2 years.Incremental, patentable innovation in devices to extend the overall patent protection of medicine/device product combinations is very common. Whether this constitutes "evergreening" depends on whether these incremental innovations and the years of extra patent protection they confer are proportionately matched by

  8. [Microclimate edge effects of evergreen broad-leaved forest fragments in Jinyun Mountain: a preliminary study].

    Science.gov (United States)

    Yan, Min; Zhong, Zhangchen; Qiao, Xiuhong

    2006-01-01

    This paper studied the microclimate of continuous and fragmental evergreen broad-leaved forests in Jinyun Mountain by determining the horizontal gradient distribution of microclimate elements near forest edges. The results showed that there existed clear edge effects of microclimate in every edge of fragmental forests. The distinctions of maximum and minimum air temperature, photosynthetic active radiation, and minimum relative humidity between edge forest and interior forest were higher or greater, while that of maximum ground surface temperature was lower or smaller in dry season than in rain season. The edge effect was the smallest in the biggest fragmental patch, but the greatest in the smallest fragmental patch in interior forest. PMID:16689226

  9. The complete chloroplast genome sequence of Ampelopsis: gene organization, comparative analysis and phylogenetic relationships to other angiosperms

    Directory of Open Access Journals (Sweden)

    Gurusamy eRaman

    2016-03-01

    Full Text Available Ampelopsis brevipedunculata is an economically important plant that belongs to the Vitaceae family of angiosperms. The phylogenetic placement of Vitaceae is still unresolved. Recent phylogenetic studies suggested that it should be placed in various alternative families including Caryophyllaceae, asteraceae, Saxifragaceae, Dilleniaceae, or with the rest of the rosid families. However, these analyses provided weak supportive results because they were based on only one of several genes. Accordingly, complete chloroplast genome sequences are required to resolve the phylogenetic relationships among angiosperms. Recent phylogenetic analyses based on the complete chloroplast genome sequence suggested strong support for the position of Vitaceae as the earliest diverging lineage of rosids and placed it as a sister to the remaining rosids. These studies also revealed relationships among several major lineages of angiosperms; however, they highlighted the significance of taxon sampling for obtaining accurate phylogenies. In the present study, we sequenced the complete chloroplast genome of A. brevipedunculata and used these data to assess the relationships among 32 angiosperms, including 18 taxa of rosids. The Ampelopsis chloroplast genome is 161,090 bp in length, and includes a pair of inverted repeats of 26,394 bp that are separated by small and large single copy regions of 19,036 bp and 89,266 bp, respectively. The gene content and order of Ampelopsis is identical to many other unrearranged angiosperm chloroplast genomes, including Vitis and tobacco. A phylogenetic tree constructed based on 70 protein-coding genes of 33 angiosperms showed that both Saxifragales and Vitaceae diverged from the rosid clade and formed two clades with 100% bootstrap value. The position of the Vitaceae is sister to Saxifragales, and both are the basal and earliest diverging lineages. Moreover, Saxifragales forms a sister clade to Vitaceae of rosids. Overall, the results of

  10. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea

    KAUST Repository

    Olsen, Jeanine L.

    2016-01-27

    Seagrasses colonized the sea1 on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet2. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes3, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae4 and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming5, 6, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants7.

  11. Mechanisms for independent cytoplasmic inheritance of mitochondria and plastids in angiosperms.

    Science.gov (United States)

    Nagata, Noriko

    2010-03-01

    The inheritance of mitochondria and plastids in angiosperms has been categorized into three modes:maternal, biparental and paternal. Many mechanisms have been proposed for maternal inheritance, including: (1) physical exclusion of the organelle itself during pollenmitosis I (PMI); (2) elimination of the organelle by formation of enucleated cytoplasmic bodies (ECB); (3) autophagic degradation of organelles during male gametophyte development; (4) digestion of the organelle after fertilization; and (5)--the most likely possibility--digestion of organellar DNA in generative cells just after PMI. In detailed cytological observations, the presence or absence of mitochondrial and plastid DNA in generative cells corresponds to biparental/paternal inheritance or maternal inheritance of the respective organelle examined genetically. These improved cytological observations demonstrate that the replication or digestion of organellar DNA in young generative cells just after PMI is a critical point determining the mode of cytoplasmic inheritance. This review describes the independent control mechanisms in mitochondria and plastids that lead to differences in cytoplasmic inheritance in angiosperms. PMID:20196234

  12. Recalibrated tree of leaf beetles (Chrysomelidae indicates independent diversification of angiosperms and their insect herbivores.

    Directory of Open Access Journals (Sweden)

    Jesús Gómez-Zurita

    Full Text Available BACKGROUND: The great diversity of the "Phytophaga" (weevils, longhorn beetles and leaf beetles has been attributed to their co-radiation with the angiosperms based on matching age estimates for both groups, but phylogenetic information and molecular clock calibrations remain insufficient for this conclusion. METHODOLOGY: A phylogenetic analysis of the leaf beetles (Chrysomelidae was conducted based on three partial ribosomal gene markers (mitochondrial rrnL, nuclear small and large subunit rRNA including over 3000 bp for 167 taxa representing most major chrysomelid lineages and outgroups. Molecular clock calibrations and confidence intervals were based on paleontological data from the oldest (K-T boundary leaf beetle fossil, ancient feeding traces ascribed to hispoid Cassidinae, and the vicariant split of Nearctic and Palearctic members of the Timarchini. PRINCIPAL FINDINGS: The origin of the Chrysomelidae was dated to 73-79 Mya (confidence interval 63-86 Mya, and most subfamilies were post-Cretaceous, consistent with the ages of all confirmed body fossils. Two major monocot feeding chrysomelid lineages formed widely separated clades, demonstrating independent colonization of this ancient (early Cretaceous angiosperm lineage. CONCLUSIONS: Previous calibrations proposing a much older origin of Chrysomelidae were not supported. Therefore, chrysomelid beetles likely radiated long after the origin of their host lineages and their diversification was driven by repeated radiaton on a pre-existing diverse resource, rather than ancient host associations.

  13. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea.

    Science.gov (United States)

    Olsen, Jeanine L; Rouzé, Pierre; Verhelst, Bram; Lin, Yao-Cheng; Bayer, Till; Collen, Jonas; Dattolo, Emanuela; De Paoli, Emanuele; Dittami, Simon; Maumus, Florian; Michel, Gurvan; Kersting, Anna; Lauritano, Chiara; Lohaus, Rolf; Töpel, Mats; Tonon, Thierry; Vanneste, Kevin; Amirebrahimi, Mojgan; Brakel, Janina; Boström, Christoffer; Chovatia, Mansi; Grimwood, Jane; Jenkins, Jerry W; Jueterbock, Alexander; Mraz, Amy; Stam, Wytze T; Tice, Hope; Bornberg-Bauer, Erich; Green, Pamela J; Pearson, Gareth A; Procaccini, Gabriele; Duarte, Carlos M; Schmutz, Jeremy; Reusch, Thorsten B H; Van de Peer, Yves

    2016-02-18

    Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants. PMID:26814964

  14. Useful ethnophytomedicinal recipes of angiosperms used against diabetes in South East Asian Countries (India, Pakistan & Sri Lanka).

    Science.gov (United States)

    Marwat, Sarfaraz Khan; Rehman, Fazalur; Khan, Ejaz Ahmad; Khakwani, Abdul Aziz; Ullah, Imdad; Khan, Kaleem Ullah; Khan, Inam Ullah

    2014-09-01

    This paper is based on data recorded from various literatures pertaining to ethnophytomedicinal recipes used against diabetes in South East Asia (India, Pakistan and Srilanka). Traditional plant treatments have been used throughout the world for the therapy of diabetes mellitus. In total 419 useful phytorecipes of 270 plant species belonging to 74 Angiospermic families were collected. From the review it was revealed that plants showing hypoglycemic potential mainly belong to the families, Cucurbitaceae (16 spp.), Euphorbiaceae (15 spp.), Caesalpiniaceae and Papilionaceae (13 spp. each), Moraceae (11 spp.), Acanthaceae (10 spp.), Mimosaceae (09 spp.), Asteraceae, Malvaceae and Poaceae (08 spp. each), Hippocrateaceae, Rutaceae and Zingiberaceae (07 spp. each), Apocynaceae, Asclepiadaceae and Verbenaceae (06 spp. each), Apiaceae, Convolvulaceae, Lamiaceae, Myrtaceae, Solanaceae (05 spp.each). The most active plants are Syzigium cumini (14 recipes), Phyllanthus emblica (09 recipes), Centella asiatica and Momordica charantia (08 recipes each), Azadirachta indica (07 recipes), Aegle marmelos, Catharanthus roseus, Ficus benghalensis, Ficus racemosa, Gymnema sylvestre (06 recipes each), Allium cepa, A. sativum, Andrographis paniculata, Curcuma longa (05 recipes each), Citrullus colocynthis, Justicia adhatoda, Nelumbo nucifera, Tinospora cordifolia, Trigonella foenum-graecum, Ziziphus mauritiana and Wattakaka volubilis (4 recipes each). These traditional recipes include extracts, leaves, powders, flour, seeds, vegetables, fruits and herbal mixtures. Data inventory consists of botanical name, recipe, vernacular name, English name. Some of the plants of the above data with experimentally confirmed antidiabetic properties have also been recorded. More investigations must be carried out to evaluate the mechanism of action of diabetic medicinal plants. Toxicity of these plants should also be explained. Scientific validation of these recipes may help in discovering new drugs from

  15. Radiocesium concentrations in the bark, sapwood and heartwood of three tree species collected at Fukushima forests half a year after the Fukushima Dai-ichi nuclear accident

    International Nuclear Information System (INIS)

    Radiocesium (134Cs and 137Cs) distribution in tree stems of Japanese cedar (aged 40–56 y), red pine (42 y), and oak (42 y) grown in Fukushima Prefecture were investigated approximately half a year after the Fukushima Dai-ichi nuclear accident. Japanese cedar, red pine, and oak were selected from five sites, one site, and one site, respectively. Three trees at each site were felled, and bark, sapwood (the outer layer of wood in the stem), and heartwood (the inner layer of wood in the stem) separately collected to study radiocesium concentrations measured by gamma-ray spectrometry. The radiocesium deposition densities at the five sites were within the range of 16–1020 kBq m−2. The radiocesium was distributed in bark, sapwood, and heartwood in three tree species, indicating that very rapid translocation of radiocesium into the wood. The concentration of radiocesium in oak (deciduous angiosperm) bark was higher than that in the bark of Japanese cedar and red pine (evergreen gymnosperms). Both sapwood and heartwood contained radiocesium, and the values were much lower than that in the bark samples. The results suggest that radiocesium contamination half a year after the accident was mainly attributable to the direct radioactive deposition. The radiocesium concentrations in the Japanese cedar samples taken from five sites rose with the density of radiocesium accumulation on the ground surface. To predict the future dynamics of radiocesium in tree stems, the present results taken half a year after the accident are important, and continuous study of radiocesium in tree stems is necessary. -- Highlights: ► Effect of the Fukushima nuclear accident 2011 on Fukushima forests was investigated. ► The concentrations of radiocesium in the tree stem were examined. ► Bark, sapwood, heartwood contained radiocesium half a year after the accident. ► The level of radiocesium related to the amount of the radiocesium deposition

  16. Community ecology and spatial distribution of trees in a tropical wet evergreen forest in Kaptai national park in Chittagong Hill Tracts, Bangladesh

    Institute of Scientific and Technical Information of China (English)

    S.M.Feroz; Md Rabiul Alam; Prokash Das; Abdullah Al Mamun

    2014-01-01

    We investigated the floristic composition, woody species diversity and spatial distribution of trees in a tropical wet evergreen forest in Kaptai national park in Chittagong Hill Tracks, Bangladesh. We recorded 25 families, 37 genera, 40 species and 1771 woody individuals in a 0.09 ha plot. Euphorbiaceae and Moraceae were the most species-rich families, and Castanopsis, Ficus and Terminalia were the most species-rich genera. Bursera serrata Wall. ex Colebr. was the dominant species in terms of highest importance value (13%). Trema orientalis (L.) Bl was typically a light demanding species as it appeared in the top can-opy with only one individual having the seventh highest IV, but had no regeneration. The expected maximum number of species (Smax) was 140, indicating that many species may invade the forest as the Smax is greater than the recorded total number of species. The nature of the disappear-ance and appearance of species in the present forest reflects instability of floristic composition. The values of Shannon’s index H′ and Pielou’s index J′ (evenness) were 3.36 bit and 0.63, respectively. These values show moderately high species diversity as compared to other subtropical forests in the tropics. In addition, a sample area of 200 m2 in this forest would be sufficient for measuring the diversity indices H′ and J′ , whereas the trend of J′may indicate the rate of equality of individuals among the different species decreased with increasing area. The distribu-tion pattern for the total stand was completely random. However, the dominant species showed aggregate distribution for small areas, but random distribution for large areas. The spatial association between species showed that the strongest positive interspecific association oc-curred between Streblus asper Lour. and Castanea indica Roxb. (ω =0.51). As a whole, most species were weakly associated with each other, of which 58%species associations were completely negative. The result of

  17. Evolution of plant phage-type RNA polymerases: the genome of the basal angiosperm Nuphar advena encodes two mitochondrial and one plastid phage-type RNA polymerases

    Directory of Open Access Journals (Sweden)

    Börner Thomas

    2010-12-01

    Full Text Available Abstract Background In mono- and eudicotyledonous plants, a small nuclear gene family (RpoT, RNA polymerase of the T3/T7 type encodes mitochondrial as well as chloroplast RNA polymerases homologous to the T-odd bacteriophage enzymes. RpoT genes from angiosperms are well characterized, whereas data from deeper branching plant species are limited to the moss Physcomitrella and the spikemoss Selaginella. To further elucidate the molecular evolution of the RpoT polymerases in the plant kingdom and to get more insight into the potential importance of having more than one phage-type RNA polymerase (RNAP available, we searched for the respective genes in the basal angiosperm Nuphar advena. Results By screening a set of BAC library filters, three RpoT genes were identified. Both genomic gene sequences and full-length cDNAs were determined. The NaRpoT mRNAs specify putative polypeptides of 996, 990 and 985 amino acids, respectively. All three genes comprise 19 exons and 18 introns, conserved in their positions with those known from RpoT genes of other land plants. The encoded proteins show a high degree of conservation at the amino acid sequence level, including all functional crucial regions and residues known from the phage T7 RNAP. The N-terminal transit peptides of two of the encoded polymerases, NaRpoTm1 and NaRpoTm2, conferred targeting of green fluorescent protein (GFP exclusively to mitochondria, whereas the third polymerase, NaRpoTp, was targeted to chloroplasts. Remarkably, translation of NaRpoTp mRNA has to be initiated at a CUG codon to generate a functional plastid transit peptide. Thus, besides AGAMOUS in Arabidopsis and the Nicotiana RpoTp gene, N. advena RpoTp provides another example for a plant mRNA that is exclusively translated from a non-AUG codon. In contrast to the RpoT of the lycophyte Selaginella and those of the moss Physcomitrella, which are according to phylogenetic analyses in sister positions to all other phage

  18. Evolution of Xylan Substitution Patterns in Gymnosperms and Angiosperms: Implications for Xylan Interaction with Cellulose.

    Science.gov (United States)

    Busse-Wicher, Marta; Li, An; Silveira, Rodrigo L; Pereira, Caroline S; Tryfona, Theodora; Gomes, Thiago C F; Skaf, Munir S; Dupree, Paul

    2016-08-01

    The interaction between cellulose and xylan is important for the load-bearing secondary cell wall of flowering plants. Based on the precise, evenly spaced pattern of acetyl and glucuronosyl (MeGlcA) xylan substitutions in eudicots, we recently proposed that an unsubstituted face of xylan in a 2-fold helical screw can hydrogen bond to the hydrophilic surfaces of cellulose microfibrils. In gymnosperm cell walls, any role for xylan is unclear, and glucomannan is thought to be the important cellulose-binding polysaccharide. Here, we analyzed xylan from the secondary cell walls of the four gymnosperm lineages (Conifer, Gingko, Cycad, and Gnetophyta). Conifer, Gingko, and Cycad xylan lacks acetylation but is modified by arabinose and MeGlcA. Interestingly, the arabinosyl substitutions are located two xylosyl residues from MeGlcA, which is itself placed precisely on every sixth xylosyl residue. Notably, the Gnetophyta xylan is more akin to early-branching angiosperms and eudicot xylan, lacking arabinose but possessing acetylation on alternate xylosyl residues. All these precise substitution patterns are compatible with gymnosperm xylan binding to hydrophilic surfaces of cellulose. Molecular dynamics simulations support the stable binding of 2-fold screw conifer xylan to the hydrophilic face of cellulose microfibrils. Moreover, the binding of multiple xylan chains to adjacent planes of the cellulose fibril stabilizes the interaction further. Our results show that the type of xylan substitution varies, but an even pattern of xylan substitution is maintained among vascular plants. This suggests that 2-fold screw xylan binds hydrophilic faces of cellulose in eudicots, early-branching angiosperm, and gymnosperm cell walls. PMID:27325663

  19. Constructing seasonal LAI trajectory by data-model fusion for global evergreen needle-leaf forests

    Science.gov (United States)

    Wang, R.; Chen, J.; Mo, G.

    2010-12-01

    For decades, advancements in optical remote sensors made it possible to produce maps of a biophysical parameter--the Leaf Area Index (LAI), which is critically necessary in regional and global modeling of exchanges of carbon, water, energy and other substances, across large areas in a fast way. Quite a few global LAI products have been generated since 2000, e.g. GLOBCARBON (Deng et al., 2006), MODIS Collection 5 (Shabanov et al., 2007), CYCLOPES (Baret et al., 2007), etc. Albeit these progresses, the basic physics behind the technology restrains it from accurate estimation of LAI in winter, especially for northern high-latitude evergreen needle-leaf forests. Underestimation of winter LAI in these regions has been reported in literature (Yang et al., 2000; Cohen et al., 2003; Tian et al., 2004; Weiss et al., 2007; Pisek et al., 2007), and the distortion is usually attributed to the variations of canopy reflectance caused by understory change (Weiss et al., 2007) as well as by the presence of ice and snow on leaves and ground (Cohen, 2003; Tian et al., 2004). Seasonal changes in leaf pigments can also be another reason for low LAI retrieved in winter. Low conifer LAI values in winter retrieved from remote sensing make them unusable for surface energy budget calculations. To avoid these drawbacks of remote sensing approaches, we attempt to reconstruct the seasonal LAI trajectory through model-data fusion. A 1-degree LAI map of global evergreen needle-leaf forests at 10-day interval is produced based on the carbon allocation principle in trees. With net primary productivity (NPP) calculated by the Boreal Ecosystems Productivity Simulator (BEPS) (Chen et al., 1999), carbon allocated to needles is quantitatively evaluated and then can be further transformed into LAI using the specific leaf area (SLA). A leaf-fall scheme is developed to mimic the carbon loss caused by falling needles throughout the year. The seasonally maximum LAI from remote sensing data for each pixel

  20. Molecular phylogeography and ecological niche modelling of a widespread herbaceous climber, Tetrastigma hemsleyanum (Vitaceae): insights into Plio-Pleistocene range dynamics of evergreen forest in subtropical China.

    Science.gov (United States)

    Wang, Yi-Han; Jiang, Wei-Mei; Comes, Hans Peter; Hu, Feng Sheng; Qiu, Ying-Xiong; Fu, Cheng-Xin

    2015-04-01

    Warm-temperate evergreen (WTE) forest represents the typical vegetation type of subtropical China, but how its component species responded to past environmental change remains largely unknown. Here, we reconstruct the evolutionary history of Tetrastigma hemsleyanum, an herbaceous climber restricted to the WTE forest. Twenty populations were genotyped using chloroplast DNA sequences and nuclear microsatellite loci to assess population structure and diversity, supplemented by phylogenetic dating, ancestral area reconstructions and ecological niche modeling (ENM) of the species distributions during the Last Glacial Maximum (LGM) and at present. Lineages in Southwest vs Central-South-East China diverged through climate/tectonic-induced vicariance of an ancestral southern range during the early Pliocene. Long-term stability in the Southwest contrasts with latitudinal range shifts in the Central-South-East region during the early-to-mid-Pleistocene. Genetic and ENM data strongly suggest refugial persistence in situ at the LGM. Pre-Quaternary environmental changes appear to have had a persistent influence on the population genetic structure of this subtropical WTE forest species. Our findings suggest relative demographic stability of this biome in China over the last glacial-interglacial cycle, in contrast with palaeobiome reconstructions showing that this forest biome retreated to areas of today's tropical South China during the LGM. PMID:25639152

  1. CARBON DYNAMICS OF MEXICAN TROPICAL EVERGREEN FORESTS: INFLUENCE OF FOREST MANAGEMENT OPTIONS AND REFINEMENT OF CARBON-FLUX ESTIMATES

    Science.gov (United States)

    Tropical evergreen forests (TEF) of southeast Mexico experienced a deforestation rate of approximately 206,000 ha/yr and an efflux of nearly 21 TgC/yr between 1980 and the present. and formerly occupied by these forests have potential to mitigate greenhouse gas emissions. his pap...

  2. 76 FR 51367 - China Shipping Container Lines Co., Ltd.; COSCO Container Lines Company Limited; Evergreen Line A...

    Science.gov (United States)

    2011-08-18

    ... China Shipping Container Lines Co., Ltd.; COSCO Container Lines Company Limited; Evergreen Line A Joint Service Agreement; Hanjin Shipping Co., Ltd.; Horizon Lines, LLC; Kawasaki Kisen Kaisha, Ltd.; Nippon Yusen Kaisha; United Arab Shipping Company (S.A.G.); and Yang Ming Marine Transport Corporation v....

  3. Report on the Visit to the Evergreen State College, Olympia, Washington. May, 1974. Unified Studies Report No. I:1.

    Science.gov (United States)

    Greeley, Warren; And Others

    The Evergreen State College seems to be working well as a nontraditional college committed to educational change and innovation. It provides a model for interdisciplinary education, developing basic cognitive skills and drawing all disciplines in probing specific problems. The necessary ingredients for a stimulating learning environment based on…

  4. Phytochemistry and Pharmacology of Berberis Species

    OpenAIRE

    Najmeh Mokhber-Dezfuli; Soodabeh Saeidnia; Ahmad Reza Gohari; Mahdieh Kurepaz-Mahmoodabadi

    2014-01-01

    The genus Berberis (Berberidaceae) includes about 500 species worldwide, some of which are widely cultivated in the north-eastern regions of Iran. This genus consists of spiny deciduous evergreen shrubs, characterized by yellow wood and flowers. The cultivation of seedless barberry in South Khorasan goes back to two hundred years ago. Medicinal properties for all parts of these plants have been reported, including: Antimicrobial, antiemetic, antipyretic, antioxidant, anti-inflammatory, anti-a...

  5. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests.

    Science.gov (United States)

    Wu, Jin; Albert, Loren P; Lopes, Aline P; Restrepo-Coupe, Natalia; Hayek, Matthew; Wiedemann, Kenia T; Guan, Kaiyu; Stark, Scott C; Christoffersen, Bradley; Prohaska, Neill; Tavares, Julia V; Marostica, Suelen; Kobayashi, Hideki; Ferreira, Mauricio L; Campos, Kleber Silva; da Silva, Rodrigo; Brando, Paulo M; Dye, Dennis G; Huxman, Travis E; Huete, Alfredo R; Nelson, Bruce W; Saleska, Scott R

    2016-02-26

    In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change. PMID:26917771

  6. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests

    Science.gov (United States)

    Wu, Jin; Albert, Lauren; Lopes, Aline; Restrepo-Coupe, Natalia; Hayek, Matthew; Wiedemann, Kenia T.; Guan, Kaiyu; Stark, Scott C.; Christoffersen, Bradley; Prohaska, Neill; Tavares, Julia V.; Marostica, Suelen; Kobayashi, Hideki; Ferreira, Maurocio L.; Campos, Kleber Silva; da Silva, Rodrigo; Brando, Paulo M.; Dye, Dennis G.; Huxman, Travis E.; Huete, Alfredo; Nelson, Bruce; Saleska, Scott

    2016-01-01

    In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.

  7. No evidence for enemy release during range expansion of an evergreen tree in northern Europe

    DEFF Research Database (Denmark)

    Skou, Anne-Marie Thonning; Markussen, Bo; Sigsgaard, Lene;

    2011-01-01

    ABSTRACT 1. Plant distributions are dynamic but the role of plantÐinsect interactions in controlling range dynamics is not well understood. Enemy release, for example could facilitate plant range expansion under climate change. 2. We conducted a transplant experiment with the evergreen tree Ilex...... aquifolium L. in both the historical and the expanding range in Denmark to study possible effects of geographical position, small-scale distance, and plant types on presence and performance of the monophagous insect leaf-miner Phytomyza ilicis Curtis. 3. The leaf miner was present in the entire range of I....... aquifolium in Denmark, and there were no differences in emergence success depending on geographical position. Small-scale distance to existing adult plants inßuenced the activity of the insect on the transplants, and oviposition density was negatively correlated with distance to adult plants. 4. Plant type...

  8. Seasonal photosynthetic activity in evergreen conifer leaves monitored with spectral reflectance

    Science.gov (United States)

    Wong, C. Y.; Gamon, J. A.

    2013-12-01

    Boreal evergreen conifers must maintain photosynthetic systems in environments where temperatures vary greatly across seasons from high temperatures in the summer to freezing levels in the winter. This involves seasonal downregulation and photoprotection during periods of extreme temperatures. To better understand this downregulation, seasonal dynamics of photosynthesis of lodgepole (Pinus contorta D.) and ponderosa pine (Pinus ponderosa D.) were monitored in Edmonton, Canada over two years. Spectral reflectance at the leaf and stand scales was measured weekly and the Photochemical Reflectance Index (PRI), often used as a proxy for chlorophyll and carotenoid pigment levels and photosynthetic light-use efficiency (LUE), was used to track the seasonal dynamics of photosynthetic activity. Additional physiological measurements included leaf pigment content, chlorophyll fluorescence, and gas exchange. All the metrics indicate large seasonal changes in photosynthetic activity, with a sharp transition from winter downregulation to active photosynthesis in the spring and a more gradual fall transition into winter. The PRI was a good indicator of several other variables including seasonally changing photosynthetic activity, chlorophyll fluorescence, photosynthetic LUE, and pigment pool sizes. Over the two-year cycle, PRI was primarily driven by changes in constitutive (chlorophyll:carotenoid) pigment levels correlated with seasonal photosynthetic activity, with a much smaller variation caused by diurnal changes in xanthophyll cycle activity (conversion between violaxanthin & zeaxanthin). Leaf and canopy scale PRI measurements exhibited parallel responses during the winter-spring transition. Together, our findings indicate that evergreen conifers photosynthetic system possesses a remarkable degree of resilience in response to large temperature changes across seasons, and that optical remote sensing can be used to observe the seasonal effects on photosynthesis and

  9. Contradiction between plastid gene transcription and function due to complex posttranscriptional splicing: an exemplary study of ycf15 function and evolution in angiosperms.

    Directory of Open Access Journals (Sweden)

    Chao Shi

    Full Text Available Plant chloroplast genes are usually co-transcribed while its posttranscriptional splicing is fairly complex and remains largely unsolved. On basis of sequencing the three complete Camellia (Theaceae chloroplast genomes for the first time, we comprehensively analyzed the evolutionary patterns of ycf15, a plastid gene quite paradoxical in terms of its function and evolution, along the inferred angiosperm phylogeny. Although many species in separate lineages including the three species reported here contained an intact ycf15 gene in their chloroplast genomes, the phylogenetic mixture of both intact and obviously disabled ycf15 genes imply that they are all non-functional. Both intracellular gene transfer (IGT and horizontal gene transfer (HGT failed to explain such distributional anomalies. While, transcriptome analyses revealed that ycf15 was transcribed as precursor polycistronic transcript which contained ycf2, ycf15 and antisense trnL-CAA. The transcriptome assembly was surprisingly found to cover near the complete Camellia chloroplast genome. Many non-coding regions including pseudogenes were mapped by multiple transcripts, indicating the generality of pseudogene transcriptions. Our results suggest that plastid DNA posttranscriptional splicing may involve complex cleavage of non-functional genes.

  10. LA DEFORESTACIÓN DEL BOSQUE SIEMPRE VERDE EN SOROA CANDELARIA, ARTEMISA, CUBA THE DEFORESTATION OF THE EVERGREEN FOREST IN SOROA CANDELARIA, ARTEMISA, CUBA

    Directory of Open Access Journals (Sweden)

    Seidel González Díaz

    2011-06-01

    Full Text Available La acción depredadora del hombre ha incidido en la desaparición de especies que identifican al bosque siempre verde. Este artículo demuestra el efecto de la deforestación del bosque en la comunidad de Soroa del municipio Candelaria, Artemisa, Cuba así como las potencialidades existentes en el área para revertir la actual situación, desde una perspectiva económica, social y ambiental. El objetivo es evaluar la incidencia de la proximidad a la comunidad sobre la afectación de las especies del bosque siempre verde en Soroa. Se seleccionaron al azar 20 parcelas en las cuales se contabilizó la abundancia de especies forestales, midiéndose también la distancia hasta la comunidad y el diámetro de árboles y arbustos. Se aplicó la regresión logística binaria para estimar la probabilidad de encontrar una proporción superior al 25% de las especies características de la zona, se calcularon los índices de diversidad y equidad, en los estratos arbóreos y arbustivos que fueron comparados con la aplicación de la prueba de rangos con signos de Wilcoxon. Se formaron así dos grupos, uno en que la distancia desde la comunidad es inferior a 2,5 km y el otro para una distancia mayor o igual a 2,5 km. Se realizó la prueba U de Mann Whitney para comparar los diámetros en los dos grupos, demostrándose con ello que la actividad antrópica es una de las causas que incide en la deforestación del bosque siempre verde del macizo montañoso en Candelaria.The negative man’s action on the forest has impacted in the disappearance of many species that belong to the evergreen forest. The present investigation demonstrate the grade of interference on the forest in the community of Soroa, Candelaria, Artemisa, Cuba and the existent potentialities in the area to revert this situation, from an economic, social and environmental perspective. The objective is to evaluate the influence of the proximity to community in the affectation of species to the

  11. Distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China, as compared with those of the eastern Chinese subtropical regions

    Directory of Open Access Journals (Sweden)

    Tang, C. Q.

    2015-12-01

    Full Text Available This paper analyzes the geographic distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China, and compares with other subtropical regions in the east of China in terms of forest types, pertinent species, and spatial distribution along latitudinal, longitudinal and altitudinal gradients. In general, for both the western and the eastern subtropical regions, the evergreen broad-leaved forests are dominated by species of Castanopsis, Lithocarpus, Cyclobalanopsis (Fagaceae, Machilus, Cinnamomum (Lauraceae, Schima (Theaceae, Manglietia, and Michelia, (Magnoliaceae, while in southwestern China there are more diverse forest types including semi-humid, monsoon, mid-montane moist and humid evergreen broad-leaved forests, but only monsoon and humid forests in the east. The Yunnan area has more varied species of Lithocarpus or Cyclobalanopsis or Castanopsis as dominants than does eastern China, where the chief dominant genus is Castanopsis. The upper limits of the evergreen broad-leaved forests are mainly 2400–2800 m in western Yunnan and western Sichuan, much higher than in eastern China (600–1500, but 2500 m in Taiwan. Also discussed are the environmental effects on plant diversity of the evergreen broad-leaved forest ecosystems exemplified by Yunnan and Taiwan.En este trabajo se analiza los patrones de distribución geográfica de los bosques subtropicales perennifolios de hoja ancha del suroeste de china, y se comparan con los de otras regiones subtropicales del este de China en términos de tipología de bosque, especies relevantes, y distribución espacial a lo largo de un gradiente latitudinal, longitudinal y altitudinal. De manera general, los bosques perennifolios de hoja ancha de la regiones subtropicales tanto orientales como occidentales presentan dominancia de especies de Castanopsis, Lithocarpus, Cyclobalanopsis (Fagaceae, Machilus, Cinnamomum (Lauraceae, Schima (Theaceae, Manglietia y Michelia

  12. Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues

    Directory of Open Access Journals (Sweden)

    Alessandra eMoscatelli

    2015-02-01

    Full Text Available In plants, actin filaments have an important role in organelle movement and cytoplasmic streaming. Otherwise microtubules have a role in restricting organelles to specific areas of the cell and in maintaining organelle morphology. In somatic plant cells, microtubules also participate in cell division and morphogenesis, allowing cells to take their definitive shape in order to perform specific functions. In the latter case, microtubules influence assembly of the cell wall, controlling the delivery of enzymes involved in cellulose synthesis and of wall modulation material to the proper sites.In angiosperm pollen tubes, organelle movement is generally attributed to the acto-myosin system, the main role of which is in distributing organelles in the cytoplasm and in carrying secretory vesicles to the apex for polarized growth. Recent data on membrane trafficking suggests a role of microtubules in fine delivery and repositioning of vesicles to sustain pollen tube growth. This review examines the role of microtubules in secretion and endocytosis, highlighting new research cues regarding cell wall construction and pollen tube-pistil crosstalk, that help unravel the role of microtubules in polarized growth.

  13. Coalescence vs. concatenation: Sophisticated analyses vs. first principles applied to rooting the angiosperms.

    Science.gov (United States)

    Simmons, Mark P; Gatesy, John

    2015-10-01

    It has recently been concluded that phylogenomic data from 310 nuclear genes support the clade of (Amborellales, Nymphaeales) as sister to the remaining angiosperms and that shortcut coalescent phylogenetic methods outperformed concatenation for these data. We falsify both of those conclusions here by demonstrating that discrepant results between the coalescent and concatenation analyses are primarily caused by the coalescent methods applied (MP-EST and STAR) not being robust to the highly divergent and often mis-rooted gene trees that were used. This result reinforces the expectation that low amounts of phylogenetic signal and methodological artifacts in gene-tree reconstruction can be more problematic for shortcut coalescent methods than is the assumption of a single hierarchy for all genes by concatenation methods when these approaches are applied to ancient divergences in empirical studies. We also demonstrate that a third coalescent method, ASTRAL, is more robust to mis-rooted gene trees than MP-EST or STAR, and that both Observed Variability (OV) and Tree Independent Generation of Evolutionary Rates (TIGER), which are two character subsampling procedures, are biased in favor of characters with highly asymmetrical distributions of character states when applied to this dataset. We conclude that enthusiastic application of novel tools is not a substitute for rigorous application of first principles, and that trending methods (e.g., shortcut coalescent methods applied to ancient divergences, tree-independent character subsampling), may be novel sources of previously under-appreciated, systematic errors. PMID:26002829

  14. General Botany of the Angiosperms in high school: a comparative analysis of textbooks

    Directory of Open Access Journals (Sweden)

    Lucas Cardoso Marinho

    2015-12-01

    Full Text Available Much of the textbooks content in Brazil is related to the historical period lived. With the advancement in the field of scientific research, the textbooks have become key pieces in the transfer/adaptation of this knowledge for the basic levels of education influencing positively or negatively in approach and presentation of content. The purpose of this study was to examine comparatively how the contents of General Botany of the Angiosperms are approached in three biology textbooks of high school (1974, 1999 and 2011. The 1974 book have long texts that include an elaborated discussion and there is a tendency to simplify the content. The book of the 1999 presents the content in the form of direct and specific concepts split into separate chapters. In this work, the reduced form compromises the discussion, giving up themes that enrich the study. The book of the 2011 separate the content into different chapters and keeps reducing the content but without losing the quality and clarity of their information. Over the years, from the best understanding of the textbooks objectives and scientific research involving these documents, it is clear that the most current book is more attractive and less dense, contributing of the deconstruct the idea of a boring and decorative Botany.

  15. Species-Specific Effects of Woody Litter on Seedling Emergence and Growth of Herbaceous Plants

    OpenAIRE

    Koorem, Kadri; Price, Jodi N.; Moora, Mari

    2011-01-01

    The effect of litter on seedling establishment can influence species richness in plant communities. The effect of litter depends on amount, and also on litter type, but relatively little is known about the species-specific effects of litter. We conducted a factorial greenhouse experiment to examine the effect of litter type, using two woody species that commonly co-occur in boreonemoral forest—evergreen spruce (Picea abies), deciduous hazel (Corylus avellana), and a mixture of the two species...

  16. Evergreen shrub traits and peatland carbon cycling under high nutrient load

    Science.gov (United States)

    Larmola, Tuula; Bui, Vi; Bubier, Jill L.; Wang, Meng; Murphy, Meaghan; Moore, Tim R.

    2016-04-01

    The reactive nitrogen (N) assimilated by plants is usually invested in chlorophyll to improve light harvesting capacity and in soluble proteins such as Rubisco to enhance carbon (C) assimilation. We studied the effects of simulated atmospheric N deposition on different traits of two evergreen shrubs Chamaedaphne calyculata and Rhododendron groenlandicum in a nutrient-poor Mer Bleue Bog, Canada that has been fertilized with N as NO3 and NH4 (2-8 times ambient annual wet deposition) with or without phosphorus (P) and potassium (K) for 7-12 years. We examined how nutrient addition influences the plant performance at leaf and canopy level and linked the trait responses with ecosystem C cycling. At the leaf level, we measured physiological and biochemical traits: CO2 exchange and chlorophyll fluorescence, an indicator of plant stress in terms of light harvesting capacity; and to study changes in photosynthetic nutrient use efficiency, we also determined the foliar chlorophyll, N, and P contents. At the canopy level, we examined morphological and phenological traits: growth responses and leaf longevity during two growing seasons. Regardless of treatment, the majority of leaves showed no signs of stress in terms of light harvesting capacity. The plants were N saturated: with increasing foliar N content, the higher proportion of N was not used in photosynthesis. Foliar net CO2 assimilation rates did not differ significantly among treatments, but the additions of N, P, and K together resulted in higher respiration rates. The analysis of the leaf and canopy traits showed that the two shrubs had different strategies: C. calyculata was more responsive to nutrient additions, more deciduous-like, whereas R. groenlandicum maintained evergreen features under nutrient load, shedding its leaves even later in the season. In all, simulated atmospheric N deposition did not benefit the photosynthetic apparatus of the dominant shrubs, but resulted in higher foliar respiration

  17. The phylogeny of C/S1 bZIP transcription factors reveals a shared algal ancestry and the pre-angiosperm translational regulation of S1 transcripts.

    Science.gov (United States)

    Peviani, Alessia; Lastdrager, Jeroen; Hanson, Johannes; Snel, Berend

    2016-01-01

    Basic leucine zippers (bZIPs) form a large plant transcription factor family. C and S1 bZIP groups can heterodimerize, fulfilling crucial roles in seed development and stress response. S1 sequences also harbor a unique regulatory mechanism, termed Sucrose-Induced Repression of Translation (SIRT). The conservation of both C/S1 bZIP interactions and SIRT remains poorly characterized in non-model species, leaving their evolutionary origin uncertain and limiting crop research. In this work, we explored recently published plant sequencing data to establish a detailed phylogeny of C and S1 bZIPs, investigating their intertwined role in plant evolution, and the origin of SIRT. Our analyses clarified C and S1 bZIP orthology relationships in angiosperms, and identified S1 sequences in gymnosperms. We experimentally showed that the gymnosperm orthologs are regulated by SIRT, tracing back the origin of this unique regulatory mechanism to the ancestor of seed plants. Additionally, we discovered an earlier S ortholog in the charophyte algae Klebsormidium flaccidum, together with a C ortholog. This suggests that C and S groups originated by duplication from a single algal proto-C/S ancestor. Based on our observations, we propose a model wherein the C/S1 bZIP dimer network evolved in seed plants from pre-existing C/S bZIP interactions. PMID:27457880

  18. New Distribution Record of Angiosperm in Fujian Province (IV)%福建被子植物分布新记录 IV

    Institute of Scientific and Technical Information of China (English)

    杨成梓; 刘小芬; 黄泽豪; 范世明; 吴锦忠

    2012-01-01

      According to the investigation on the vegetation in Fujian Province, 1 newly recorded genus, Arabis; and 5 newly recorded species, Arabis flagellosa, Sedum emarginatum, Sedum polytrichoides, Sedum tetractinum, Hylotelephium erythrostictum of angiosperms were reported. The voucher specimens were deposited in the Herbarium of FJTCM.%  在福建省药用植物资源调查中,陆续发现了福建省被子植物地理新分布记录属及种多个,经整理鉴定,本文继续报道1个新分布记录属(南芥属 Arabis)和5个新分布记录种(匍匐南芥 Arabis flagellosa、凹叶景天Sedum emarginatum、藓状景天 Sedum polytrichoides、四芒景天 Sedum tetractinum、八宝 Hylotelephium erythrostictum)。标本存放于福建中医药大学药用植物标本室。

  19. New Distribution Record of Angiosperm in Fujian Province (Ⅲ)%福建被子植物分布新记录Ⅲ

    Institute of Scientific and Technical Information of China (English)

    杨成梓; 刘小芬; 黄泽豪; 范世明; 吴锦忠

    2012-01-01

      在福建省药用植物资源调查中,陆续发现了福建省被子植物地理新分布记录属及种多个,经整理鉴定,本文继续报道新分布记录属4个,乳豆属 Galactia、米口袋属 Gueldenstaedtia、山靛属 Mercurialis、刺芹属Eryngium,以及乳豆 Galactia tenuiflora、少花米口袋 Gueldenstaedtia verna、山靛 Mercurialis leiocarpa、刺芹Eryngium foetidum、泡果苘 Herissantia crispa 等5个新分布记录种,标本存放于福建中医药大学药用植物标本室%  According to the investigation on the vegetation in Fujian Province, 4 Newly recorded genera, Galactia, Gueldenstaedtia, Mercurialis, Eryngium, and 5 newly recorded species, Galactia tenuiflora, Gueldenstaedtia verna, Mercurialis leiocarpa, Herissantia crispa, Eryngium foetidum of Angiosperm were found. The voucher specimens were deposited in the Herbarium of FJTCM.

  20. Effects of an ice storm on community structure of an evergreen broadleaved forest in Gutianshan National Nature Reserve, Zhejiang Province

    OpenAIRE

    Xingxing Man; Xiangcheng Mi; Keping Ma

    2011-01-01

    We inventoried tree damage within a 24-ha plot in Gutianshan National Nature Reserve immediately after the ice storm that affected south China in 2008. This ice storm caused severe damage to one third of trees and relatively slight damage to another third of trees in the plot. Results from our multinomial logistic regression analysis showed that all of the four examined factors, diameter at breast height (DBH), habitat type, plant life form and leaf habit (evergreen/deciduous), had close rela...

  1. Carbon-based Payments for Tropical Forest Conservation – A Case Study for Evergreen Forest in Cambodia

    OpenAIRE

    Sasaki, Nophea

    2010-01-01

    As negotiations to include reduced emissions from deforestation and degradation (REDD) in the post-Kyoto agreements are underway, study on carbon payments for the REDD projects become urgently important. Having experienced rapid degradation and deforestation, Cambodia’s highly stocked evergreen forest is the first priority forest to be conserved if carbon payments are available. Using inventory data and timber royalties in Cambodia, we analyze the costs for and revenues from timber harvesting...

  2. Study on carbon-fixing,oxygen-releasing,temperature-reducing and humidity-increasing effects of evergreen plants in south highway

    OpenAIRE

    Liu, Minmin; HUANG Manhong; YANG Zhenqian

    2014-01-01

    Li-6400 portable photosynthesis system,was used to test the diurnal variations of photosynthetic rate and stomatal conductance of evergreen plants in Southern Highway,and to calculate their ability of absorbing carbon dioxide and releasing oxygen and to calculate the transpiring water volume and absorbing heat quantity of plants.Results showed that Euonymus fortunei Hand-Mazz,Hedera helix.Aucuba eriobotryaefolia had better carbon-fixing and oxygen-releasing effects,while Photinia serrulata,T...

  3. Effects of coffee management intensity on composition, structure and regeneration status of Ethiopian moist evergreen Afromontane forests

    OpenAIRE

    Hundera, Kitessa; Aerts, Raf; Fontaine, M; Mechelen, M. van; Gijbels, Pieter; Honnay, Olivier; Muys, Bart

    2013-01-01

    The effect of arabica coffee management intensity on composition, structure and regeneration of moist evergreen Afromontane forests was studied in three traditional coffee management systems of Southwest Ethiopia: semi-plantation coffee (SPC), semi-forest coffee (SFC) and forest coffee (FC). Vegetation and environmental data were collected in 84 plots from forests varying in intensity of coffee management. After controlling for environmental variation (altitude, aspect, slope, soil nutrient a...

  4. Assessing atmospheric concentration of polychlorinated biphenyls (PCBs) by evergreen Rhododendron maximum next to a contaminated stream

    Science.gov (United States)

    Dang, Viet D.; Walters, David; Lee, Cindy M.

    2016-01-01

    Conifers are often used as an “air passive sampler”, but few studies have focused on the implication of broadleaf evergreens to monitor atmospheric semivolatile organic compounds such as polychlorinated biphenyls (PCBs). In this study, we used Rhododendron maximum (rhododendron) growing next to a contaminated stream to assess atmospheric PCB concentrations. The study area was located in a rural setting and approximately 2 km downstream of a former Sangamo-Weston (S-W) plant. Leaves from the same mature shrubs were collected in late fall 2010, and winter and spring 2011. PCBs were detected in the collected leaves suggesting that rhododendron can be used as air passive samplers in rural areas where active sampling is impractical. Estimated ΣPCB (47 congeners) concentrations in the atmosphere decreased from fall 2010 to spring 2011 with concentration means at 3990, 2850, and 931 pg m-3 in fall 2010, winter 2011, and spring 2011, respectively. These results indicate that the atmospheric concentrations at this location continue to be high despite termination of active discharge from the former S-W plant. Leaves had a consistent pattern of high concentrations of tetra- and penta-CBs similar to the congener distribution in polyethylene (PE) passive samplers deployed in the water column suggesting that volatilized PCBs from the stream were the primary source of contaminants in rhododendron leaves.

  5. Retention of available P in acid soils of tropical and subtropical evergreen broad-leaved forests

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianhui; ZOU Xiaoming; YANG Xiaodong

    2007-01-01

    Precipitation of mineral phosphate is often recognized as a factor of limiting the availability of P in acidic soils of tropical and subtropical forests.For this paper,we studied the extractable P pools and their transformation rates in soils of a tropical evergreen forest at Xishuangbanna and a subtropical montane wet forest at the Ailao Mountains in order to understand the biogeochemical processes regulating P availability in acidic soils.The two forests differ in forest humus layer;it is deep in the Ailao forest while little is present in the Xishuangbanna forest.The extractable P pools by resin and sodium-bicarbonate decreased when soil organic carbon content was reduced.The lowest levels of extractable P pools occurred in the surface (0-10 era) mineral soils of the Xishuangbanna forest.However,microbial P in the mineral soil of the Xishuangbauna forest was twice that in the Ailao forest.Potential rates of microbial P immobilization were greater than those of organic P mineralization in mineral soils for both forests.We suggest that microbial P immobilization plays an essential role in avoiding mineral P precipitation and retaining available P of plant in tropical acidic soils,whereas both floor mass accumulation and microbial P immobilization function benefit retaining plant available P in subtropical montane wet forests.

  6. Seasonal leaf dynamics for tropical evergreen forests in a process based global ecosystem model

    Directory of Open Access Journals (Sweden)

    M. De Weirdt

    2012-02-01

    Full Text Available The influence of seasonal phenology in tropical humid forests on canopy photosynthesis remains poorly understood and its representation in global vegetation models highly simplified, typically with no seasonal variability of canopy leaf area properties taken into account. However, recent flux tower and remote sensing studies suggest that seasonal phenology in tropical rainforests exerts a large influence over carbon and water fluxes, with feedbacks that can significantly influence climate dynamics. A more realistic description of the underlying mechanisms that drive seasonal tropical forest photosynthesis and phenology could improve the correspondence of global vegetation model outputs with the wet-dry season biogeochemical patterns measured at flux tower sites. Here, we introduce a leaf Net Primary Production (NPP based canopy dynamics scheme for evergreen tropical forests in the global terrestrial ecosystem model ORCHIDEE and validated the new scheme against in-situ carbon flux measurements. Modelled Gross Primary Productivity (GPP patterns are analyzed in details for a flux tower site in French Guiana, in a forest where the dry season is short and where the vegetation is considered to have developed adaptive mechanisms against drought stress. By including leaf litterfall seasonality and a coincident light driven leaf flush and seasonal change in photosynthetic capacity in ORCHIDEE, modelled carbon and water fluxes more accurately represent the observations. The fit to GPP flux data was substantially improved and the results confirmed that by modifying canopy dynamics to benefit from increased light conditions, a better representation of the seasonal carbon flux patterns was made.

  7. Assessing atmospheric concentration of polychlorinated biphenyls by evergreen Rhododendron maximum next to a contaminated stream.

    Science.gov (United States)

    Dang, Viet D; Walters, David M; Lee, Cindy M

    2016-09-01

    Conifers are often used as an air passive sampler, but few studies have focused on the implication of broadleaf evergreens to monitor atmospheric semivolatile organic compounds such as polychlorinated biphenyls (PCBs). In the present study, the authors used Rhododendron maximum (rhododendron) growing next to a contaminated stream to assess atmospheric PCB concentrations. The present study area was located in a rural setting and approximately 2 km downstream of a former capacitor plant. Leaves from the same mature shrubs were collected in late fall 2010 and winter and spring 2011. Polychlorinated biphenyls were detected in the collected leaves, suggesting that rhododendron can be used as air passive samplers in rural areas where active sampling is impractical. Estimated ΣPCB (47 congeners) concentrations in the atmosphere decreased from fall 2010 to spring 2011 with concentration means at 3990 pg m(-3) , 2850 pg m(-3) , and 931 pg m(-3) in fall 2010, winter 2011, and spring 2011, respectively. These results indicate that the atmospheric concentrations at this location continue to be high despite termination of active discharge from the former industrial source. Leaves had a consistent pattern of high concentrations of tetra-CBs and penta-CBs similar to the congener distribution in polyethylene passive samplers deployed in the water column, suggesting that volatilized PCBs from the stream were the primary source of contaminants in rhododendron leaves. Environ Toxicol Chem 2016;35:2192-2198. © 2016 SETAC. PMID:26889751

  8. Seed rain, soil seed bank, seed loss and regeneration of Castanopsis fargesii (Fagaceae) in a subtropical evergreen broad-leaved forest

    Science.gov (United States)

    Du, X.; Guo, Q.; Gao, X.; Ma, K.

    2007-01-01

    Understanding the seed rain and seed loss dynamics in the natural condition has important significance for revealing the natural regeneration mechanisms. We conducted a 3-year field observation on seed rain, seed loss and natural regeneration of Castanopsis fargesii Franch., a dominant tree species in evergreen broad-leaved forests in Dujiangyan, southwestern China. The results showed that: (1) there were marked differences in (mature) seed production between mast (733,700 seeds in 2001) and regular (51,200 and 195,600 seeds in 2002 and 2003, respectively) years for C. fargesii. (2) Most seeds were dispersed in leaf litter, humus and 0-2 cm depth soil in seed bank. (3) Frequency distributions of both DBH and height indicated that C. fargesii had a relatively stable population. (4) Seed rain, seed ground density, seed loss, and leaf fall were highly dynamic and certain quantity of seeds were preserved on the ground for a prolonged time due to predator satiation in both the mast and regular years so that the continuous presence of seed bank and seedling recruitments in situ became possible. Both longer time observations and manipulative experiments should be carried out to better understand the roles of seed dispersal and regeneration process in the ecosystem performance. ?? 2006 Elsevier B.V. All rights reserved.

  9. Two photosynthetic mechanisms mediating the low photorespiratory state in submersed aquatic angiosperms.

    Science.gov (United States)

    Salvucci, M E; Bowes, G

    1983-10-01

    The submersed angiosperms Myriophyllum spicatum L. and Hydrilla verticillata (L.f.) Royal exhibited different photosynthetic pulse-chase labeling patterns. In Hydrilla, over 50% of the (14)C was initially in malate and aspartate, but the fate of the malate depended upon the photorespiratory state of the plant. In low photorespiration Hydrilla, malate label decreased rapidly during an unlabeled chase, whereas labeling of sucrose and starch increased. In contrast, for high photorespiration Hydrilla, malate labeling continued to increase during a 2-hour chase. Thus, malate formation occurs in both photorespiratory states, but reduced photorespiration results when this malate is utilized in the light. Unlike Hydrilla, in low photorespiration Myriophyllum, (14)C incorporation was via the Calvin cycle, and less than 10% was in C(4) acids.Ethoxyzolamide, a carbonic anhydrase inhibitor and a repressor of the low photorespiratory state, increased the label in glycolate, glycine, and serine of Myriophyllum. Isonicotinic acid hydrazide increased glycine labeling of low photorespiration Myriophyllum from 14 to 25%, and from 12 to 48% with high photorespiration plants. Similar trends were observed with Hydrilla. Increasing O(2) increased the per cent [(14)C]glycine and the O(2) inhibition of photosynthesis in Myriophyllum. In low photorespiration Myriophyllum, glycine labeling and O(2) inhibition of photosynthesis were independent of the CO(2) level, but in high photorespiration plants the O(2) inhibition was competitively decreased by CO(2). Thus, in low but not high photorespiration plants, glycine labeling and O(2) inhibition appeared to be uncoupled from the external [O(2)]/[CO(2)] ratio.These data indicate that the low photorespiratory states of Hydrilla and Myriophyllum are mediated by different mechanisms, the former being C(4)-like, while the latter resembles that of low CO(2)-grown algae. Both may require carbonic anhydrase to enhance the use of inorganic carbon for

  10. A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica

    Directory of Open Access Journals (Sweden)

    Krishnan Neeraja M

    2012-09-01

    Full Text Available Abstract Background The Azadirachta indica (neem tree is a source of a wide number of natural products, including the potent biopesticide azadirachtin. In spite of its widespread applications in agriculture and medicine, the molecular aspects of the biosynthesis of neem terpenoids remain largely unexplored. The current report describes the draft genome and four transcriptomes of A. indica and attempts to contextualise the sequence information in terms of its molecular phylogeny, transcript expression and terpenoid biosynthesis pathways. A. indica is the first member of the family Meliaceae to be sequenced using next generation sequencing approach. Results The genome and transcriptomes of A. indica were sequenced using multiple sequencing platforms and libraries. The A. indica genome is AT-rich, bears few repetitive DNA elements and comprises about 20,000 genes. The molecular phylogenetic analyses grouped A. indica together with Citrus sinensis from the Rutaceae family validating its conventional taxonomic classification. Comparative transcript expression analysis showed either exclusive or enhanced expression of known genes involved in neem terpenoid biosynthesis pathways compared to other sequenced angiosperms. Genome and transcriptome analyses in A. indica led to the identification of repeat elements, nucleotide composition and expression profiles of genes in various organs. Conclusions This study on A. indica genome and transcriptomes will provide a model for characterization of metabolic pathways involved in synthesis of bioactive compounds, comparative evolutionary studies among various Meliaceae family members and help annotate their genomes. A better understanding of molecular pathways involved in the azadirachtin synthesis in A. indica will pave ways for bulk production of environment friendly biopesticides.

  11. De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome

    Directory of Open Access Journals (Sweden)

    Iorizzo Massimo

    2012-05-01

    Full Text Available Abstract Background Sequence analysis of organelle genomes has revealed important aspects of plant cell evolution. The scope of this study was to develop an approach for de novo assembly of the carrot mitochondrial genome using next generation sequence data from total genomic DNA. Results Sequencing data from a carrot 454 whole genome library were used to develop a de novo assembly of the mitochondrial genome. Development of a new bioinformatic tool allowed visualizing contig connections and elucidation of the de novo assembly. Southern hybridization demonstrated recombination across two large repeats. Genome annotation allowed identification of 44 protein coding genes, three rRNA and 17 tRNA. Identification of the plastid genome sequence allowed organelle genome comparison. Mitochondrial intergenic sequence analysis allowed detection of a fragment of DNA specific to the carrot plastid genome. PCR amplification and sequence analysis across different Apiaceae species revealed consistent conservation of this fragment in the mitochondrial genomes and an insertion in Daucus plastid genomes, giving evidence of a mitochondrial to plastid transfer of DNA. Sequence similarity with a retrotransposon element suggests a possibility that a transposon-like event transferred this sequence into the plastid genome. Conclusions This study confirmed that whole genome sequencing is a practical approach for de novo assembly of higher plant mitochondrial genomes. In addition, a new aspect of intercompartmental genome interaction was reported providing the first evidence for DNA transfer into an angiosperm plastid genome. The approach used here could be used more broadly to sequence and assemble mitochondrial genomes of diverse species. This information will allow us to better understand intercompartmental interactions and cell evolution.

  12. First report of three redlisted tree species from swampy relics of Goa State, India

    OpenAIRE

    A. Prabhugaonkar; D.K. Mesta; M. K. Janarthanam

    2014-01-01

    Myristica swamps, one of the relic ecosystems of Western Ghats, are considered home for many rare and endemic angiosperms. During an inventory of Myristica swamps in Goa State, two critically endangered species and one endangered species, viz. Semecarpus kathalekanensis Dasappa and M.H.Swaminath, Syzygium travancoricum Gamble and Myristica fatua Houtt. var. magnifica (Bedd.) J. Sinclair respectively were recorded. Present report forms first record of these three tree species from the Goa Stat...

  13. Uncertainty analysis of CO2 flux components in subtropical evergreen coniferous plantation

    Institute of Scientific and Technical Information of China (English)

    LIU Min; HE HongLin; YU GuiRui; LUO YiQi; SUN XiaoMin; WANG HuiMin

    2009-01-01

    We present an uncertainty analysis of ecological process parameters and CO2 flux components (Reco, NEE and gross ecosystem exchange (GEE)) derived from 3 years continuous eddy covariance meas-urements of CO2 fluxes at subtropical evergreen coniferous plantation, Qianyanzhou of ChinaFlux. Daily-differencing approach was used to analyze the random error of CO2 fluxes measurements and bootstrapping method was used to quantify the uncertainties of three CO2 flux components. In addition, we evaluated different models and optimization methods in influencing estimation of key parameters and CO2 flux components. The results show that: (1) Random flux error more closely follows a dou-ble-exponential (Laplace), rather than a normal (Gaussian) distribution. (2) Different optimization meth-ods result in different estimates of model parameters. Uncertainties of parameters estimated by the maximum likelihood estimation (MLE) are lower than those derived from ordinary least square method (OLS). (3) The differences between simulated Rrco, NEE and GEE derived from MLE and those derived for a given parameter optimization method, e temperature-dependent model (T_model) and the models methods are more important than the ecological models in influencing uncertainty in estimated carbon fluxes. (4) The relative uncertainty of CO2 flux derived from OLS is higher than that from MLE, and the uncertainty is related to timescale, that is, the larger the timescale, the smaller the uncertainty. The relative uncertainties of Reco, NEE and GEE are 4%-8%, 7%-22% and 2%-4% respectively at annual timescale.

  14. An old-growth subtropical Asian evergreen forest as a large carbon sink

    Science.gov (United States)

    Tan, Zheng-Hong; Zhang, Yi-Ping; Schaefer, Douglas; Yu, Gui-Rui; Liang, Naishen; Song, Qing-Hai

    2011-03-01

    Old-growth forests are primarily found in mountain ranges that are less favorable or accessible for land use. Consequently, there are fewer scientific studies on old-growth forests. The eddy covariance method has been widely used as an alternative approach to studying an ecosystem's carbon balance, but only a few eddy flux sites are located in old-growth forest. This fact will hinder our ability to test hypotheses such as whether or not old-growth forests are carbon neutral. The eddy covariance approach was used to examine the carbon balance of a 300-year-old subtropical evergreen broadleaved forest that is located in the center of the largest subtropical land area in the world. The post-QA/QC (quality assurance and control) eddy covariance based NEP was ˜ 9 tC ha -1 yr -1, which suggested that this forest acts as a large carbon sink. The inventory data within the footprint of the eddy flux show that ˜6 tC ha -1 yr -1 was contributed by biomass and necromass. The large-and-old trees sequestered carbon. Approximately 60% of the biomass increment is contributed by the growth of large trees (DBH > 60 cm). The high-altitude-induced low temperature and the high diffusion-irradiation ratio caused by cloudiness were suggested as two reasons for the large carbon sink in the forest we studied. To analyze the complex structure and terrain of this old-growth forest, this study suggested that biometric measurements carried out simultaneously with eddy flux measurements were necessary.

  15. Inference of phylogenetic relationships among key angiosperm lineages using a compatibility method on a molecular data set

    Institute of Scientific and Technical Information of China (English)

    Yin-Long QIU; George F.ESTABROOK

    2008-01-01

    Phylogenetic relationships among the five key angiosperm lineages,Ceratophyllum,Chloranthaceae,eudicots,magnoliids,and monocots,have resisted resolution despite several large-scale analyses sampling taxa and characters extensively and using various analytical methods.Meanwhile,compatibility methods,which were explored together with parsimony and likelihood methods during the early development stage of phylogenetics.have been greatly under-appreciated and not been used to analyze the massive amount of sequence data to reconstruct thye basal angiosperm phylogeny.In this study,we used a compatibility method on a data set of eight genes (mitochondrial atp1,matR,and nad5,plastid atpB,marK,rbcL,and rpoC2,and nuclear 18S rDNA)gathered in an earlier study.We selected two sets of characters that are compatible with more of the other characters than a random character would be with at probabilities of pM<0.1 and p<0.5 respectively.The resulting data matrices were subjected to parsimony and likelihood bootstrap analyses.Our unrooted parsimony analyses showed that Ceratophyllum was immediately related to eudicots,this larger lineage was immediately related to magnoliids,and monocots were closely related to Chloranthaceae.All these relationships received 76%-96% bootstrap support.A likelihood analysis of the 8 gene pM<0.5 compatible site matrix recovered the same topology but with low support.Likelihood analyses of other compatible site matrices produced different topologies that were all weakly supported.The topology reconstructed in the parsimony analyses agrees with the one recovered in the previous study using both parsimony and likelihood methods when no character was eliminated.Parts of this topology have also been recovered in several earlier studies.Hence,this topology plausibly reflects the true relationships among the five key angiosperm lineages.

  16. Sequencing of the needle transcriptome from Norway spruce (Picea abies Karst L. reveals lower substitution rates, but similar selective constraints in gymnosperms and angiosperms

    Directory of Open Access Journals (Sweden)

    Chen Jun

    2012-11-01

    Full Text Available Abstract Background A detailed knowledge about spatial and temporal gene expression is important for understanding both the function of genes and their evolution. For the vast majority of species, transcriptomes are still largely uncharacterized and even in those where substantial information is available it is often in the form of partially sequenced transcriptomes. With the development of next generation sequencing, a single experiment can now simultaneously identify the transcribed part of a species genome and estimate levels of gene expression. Results mRNA from actively growing needles of Norway spruce (Picea abies was sequenced using next generation sequencing technology. In total, close to 70 million fragments with a length of 76 bp were sequenced resulting in 5 Gbp of raw data. A de novo assembly of these reads, together with publicly available expressed sequence tag (EST data from Norway spruce, was used to create a reference transcriptome. Of the 38,419 PUTs (putative unique transcripts longer than 150 bp in this reference assembly, 83.5% show similarity to ESTs from other spruce species and of the remaining PUTs, 3,704 show similarity to protein sequences from other plant species, leaving 4,167 PUTs with limited similarity to currently available plant proteins. By predicting coding frames and comparing not only the Norway spruce PUTs, but also PUTs from the close relatives Picea glauca and Picea sitchensis to both Pinus taeda and Taxus mairei, we obtained estimates of synonymous and non-synonymous divergence among conifer species. In addition, we detected close to 15,000 SNPs of high quality and estimated gene expression differences between samples collected under dark and light conditions. Conclusions Our study yielded a large number of single nucleotide polymorphisms as well as estimates of gene expression on transcriptome scale. In agreement with a recent study we find that the synonymous substitution rate per year (0.6 × 10

  17. Belowground carbon balance and carbon accumulation rate in the successional series of monsoon evergreen broad-leaved forest

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The balance, accumulation rate and temporal dynamics of belowground carbon in the successional series of monsoon evergreen broadleaved forest are obtained in this paper, based on long-term observations to the soil organic matter, input and standing biomass of litter and coarse woody debris, and dissolved organic carbon carried in the hydrological process of subtropical climax forest ecosystem-monsoon evergreen broad-leaved forest, and its two successional forests of natural restoration-coniferous and broad-leaved mixed forest and Pinus massoniana forest, as well as data of root biomass obtained once every five years and respiration measurement of soil, litter and coarse woody debris respiration for 1 year. The major results include: the belowground carbon pools of monsoon evergreen broad-leaved forest, coniferous and broad-leaved mixed forest, and Pinus massoniana forest are 23191 ± 2538 g·m?2, 16889 ± 1936 g·m?2 and 12680 ± 1854 g·m?2, respectively, in 2002. Mean annual carbon accumulation rates of the three forest types during the 24a from 1978 to 2002 are 383 ± 97 g·m?2·a?1, 193 ± 85 g·m?2·a?1 and 213 ± 86 g·m?2·a?1, respectively. The belowground carbon pools in the three forest types keep increasing during the observation period, suggesting that belowground carbon pools are carbon sinks to the atmosphere. There are seasonal variations, namely, they are strong carbon sources from April to June, weak carbon sources from July to September; while they are strong carbon sinks from October to November, weak carbon sinks from December to March.

  18. Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests.

    Science.gov (United States)

    Walther, Sophia; Voigt, Maximilian; Thum, Tea; Gonsamo, Alemu; Zhang, Yongguang; Köhler, Philipp; Jung, Martin; Varlagin, Andrej; Guanter, Luis

    2016-09-01

    Mid-to-high latitude forests play an important role in the terrestrial carbon cycle, but the representation of photosynthesis in boreal forests by current modelling and observational methods is still challenging. In particular, the applicability of existing satellite-based proxies of greenness to indicate photosynthetic activity is hindered by small annual changes in green biomass of the often evergreen tree population and by the confounding effects of background materials such as snow. As an alternative, satellite measurements of sun-induced chlorophyll fluorescence (SIF) can be used as a direct proxy of photosynthetic activity. In this study, the start and end of the photosynthetically active season of the main boreal forests are analysed using spaceborne SIF measurements retrieved from the GOME-2 instrument and compared to that of green biomass, proxied by vegetation indices including the Enhanced Vegetation Index (EVI) derived from MODIS data. We find that photosynthesis and greenness show a similar seasonality in deciduous forests. In high-latitude evergreen needleleaf forests, however, the length of the photosynthetically active period indicated by SIF is up to 6 weeks longer than the green biomass changing period proxied by EVI, with SIF showing a start-of-season of approximately 1 month earlier than EVI. On average, the photosynthetic spring recovery as signalled by SIF occurs as soon as air temperatures exceed the freezing point (2-3 °C) and when the snow on the ground has not yet completely melted. These findings are supported by model data of gross primary production and a number of other studies which evaluated in situ observations of CO2 fluxes, meteorology and the physiological state of the needles. Our results demonstrate the sensitivity of space-based SIF measurements to light-use efficiency of boreal forests and their potential for an unbiased detection of photosynthetic activity even under the challenging conditions interposed by evergreen

  19. MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-class floral homeotic genes in angiosperms.

    Science.gov (United States)

    Sundström, J; Carlsbecker, A; Svensson, M E; Svenson, M; Johanson, U; Theissen, G; Engström, P

    1999-09-01

    The reproductive organs of conifers, the pollen cones and seed cones, differ in morphology from the angiosperm flower in several fundamental respects. In this report we present evidence to suggest that the two plant groups, in spite of these morphological differences and the long evolutionary distance between them, share important features in regulating the development of the reproductive organs. We present the cloning of three genes, DAL11, DAL12, and DAL13, from Norway spruce, all of which are related to the angiosperm B-class of homeotic genes. The B-class genes determine the identities of petals and stamens. They are members of a family of MADS-box genes, which also includes C-class genes that act to determine the identity of carpels and, in concert with B genes specify stamens in the angiosperm flower. Phylogenetic analyses and the presence of B-class specific C-terminal motifs in the DAL protein sequences imply homology to the B-class genes. Specific expression of all three genes in developing pollen cones suggests that the genes are involved in one aspect of B function, the regulation of development of the pollen-bearing organs. The different temporal and spatial expression patterns of the three DAL genes in the developing pollen cones indicate that the genes have attained at least in part distinct functions. The DAL11, DAL12, and 13 expression patterns in the pollen cone partly overlap with that of the previously identified DAL2 gene, which is structurally and functionally related to the angiosperm C-class genes. This result supports the hypothesis that an interaction between B- and C-type genes is required for male organ development in conifers like in the angiosperms. Taken together, our data suggests that central components in the regulatory mechanisms for reproductive organ development are conserved between conifers and angiosperms and, thus, among all seed plants. PMID:10528266

  20. Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers

    Directory of Open Access Journals (Sweden)

    E.-D. Schulze

    2012-04-01

    Full Text Available The relative role of fire and of climate in determining canopy species composition and aboveground carbon stocks were investigated. Measurements were made along a transect extending from the dark taiga zone of central Siberia, where Picea and Abies dominate the canopy, into the Larix zone of eastern Siberia. We test the hypotheses that the change in canopy species composition is based (1 on climate-driven performance only, (2 on fire only, or (3 on fire-performance interactions. We show that the evergreen conifers Picea obovata and Abies sibirica are the natural late-successional species both in central and eastern Siberia, provided there has been no fire for an extended period of time. There are no changes in performance of the observed species along the transect. Fire appears to be the main factor explaining the dominance of Larix and of soil carbon. Of lesser influence were longitude as a proxy for climate, local hydrology and active-layer thickness. We can only partially explain fire return frequency, which is not only related to climate and land cover, but also to human behavior.

    Stand-replacing fires decreased from 300 to 50 yrs between the Yenisei Ridge and the upper Tunguska. Repeated non-stand-replacing surface fires eliminated the regeneration of Abies and Picea. With every 100 yrs since the last fire, the percentage of Larix decreased by 20%.

    Biomass of stems of single trees did not show signs of age-related decline. Relative diameter increment was 0.41 ± 0.20% at breast height and stem volume increased linearly over time with a rate of about 0.36 t C ha−1 yr−1 independent of age class and species. Stand biomass reached about 130 t C ha−1(equivalent to about 520 m3 ha−1. Individual trees of Larix were older than 600 yrs. The maximum age and biomass seemed to be limited by fungal rot of

  1. Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers

    Science.gov (United States)

    Schulze, E.-D.; Wirth, C.; Mollicone, D.; von Lüpke, N.; Ziegler, W.; Achard, F.; Mund, M.; Prokushkin, A.; Scherbina, S.

    2012-04-01

    The relative role of fire and of climate in determining canopy species composition and aboveground carbon stocks were investigated. Measurements were made along a transect extending from the dark taiga zone of central Siberia, where Picea and Abies dominate the canopy, into the Larix zone of eastern Siberia. We test the hypotheses that the change in canopy species composition is based (1) on climate-driven performance only, (2) on fire only, or (3) on fire-performance interactions. We show that the evergreen conifers Picea obovata and Abies sibirica are the natural late-successional species both in central and eastern Siberia, provided there has been no fire for an extended period of time. There are no changes in performance of the observed species along the transect. Fire appears to be the main factor explaining the dominance of Larix and of soil carbon. Of lesser influence were longitude as a proxy for climate, local hydrology and active-layer thickness. We can only partially explain fire return frequency, which is not only related to climate and land cover, but also to human behavior. Stand-replacing fires decreased from 300 to 50 yrs between the Yenisei Ridge and the upper Tunguska. Repeated non-stand-replacing surface fires eliminated the regeneration of Abies and Picea. With every 100 yrs since the last fire, the percentage of Larix decreased by 20%. Biomass of stems of single trees did not show signs of age-related decline. Relative diameter increment was 0.41 ± 0.20% at breast height and stem volume increased linearly over time with a rate of about 0.36 t C ha-1 yr-1 independent of age class and species. Stand biomass reached about 130 t C ha-1(equivalent to about 520 m3 ha-1). Individual trees of Larix were older than 600 yrs. The maximum age and biomass seemed to be limited by fungal rot of heart wood. 60% of old Larix and Picea and 30% of Pinus sibirica trees were affected by stem rot. Implications for the future role of fire and of plant diseases are

  2. Differential phylogenetic expansions in BAHD acyltransferases across five angiosperm taxa and evidence of divergent expression among Populus paralogues

    Directory of Open Access Journals (Sweden)

    Johnson Virgil E

    2011-05-01

    Full Text Available Abstract Background BAHD acyltransferases are involved in the synthesis and elaboration of a wide variety of secondary metabolites. Previous research has shown that characterized proteins from this family fall broadly into five major clades and contain two conserved protein motifs. Here, we aimed to expand the understanding of BAHD acyltransferase diversity in plants through genome-wide analysis across five angiosperm taxa. We focus particularly on Populus, a woody perennial known to produce an abundance of secondary metabolites. Results Phylogenetic analysis of putative BAHD acyltransferase sequences from Arabidopsis, Medicago, Oryza, Populus, and Vitis, along with previously characterized proteins, supported a refined grouping of eight major clades for this family. Taxon-specific clustering of many BAHD family members appears pervasive in angiosperms. We identified two new multi-clade motifs and numerous clade-specific motifs, several of which have been implicated in BAHD function by previous structural and mutagenesis research. Gene duplication and expression data for Populus-dominated subclades revealed that several paralogous BAHD members in this genus might have already undergone functional divergence. Conclusions Differential, taxon-specific BAHD family expansion via gene duplication could be an evolutionary process contributing to metabolic diversity across plant taxa. Gene expression divergence among some Populus paralogues highlights possible distinctions between their biochemical and physiological functions. The newly discovered motifs, especially the clade-specific motifs, should facilitate future functional study of substrate and donor specificity among BAHD enzymes.

  3. Environmental Drivers of Whole-Ecosystem Methane Fluxes from a Lowland Evergreen Forest

    Science.gov (United States)

    Shoemaker, J. K.; Keenan, T. F.; Hollinger, D. Y.; Richardson, A. D.

    2013-12-01

    Forests dominate the global carbon cycle, but their role in methane (CH4) biogeochemistry remains uncertain. Limitations in mesoscale sampling approaches has led to gaps in our knowledge of the dynamics of CH4 uptake and release from forested ecosystems and the environmental drivers that control these fluxes. Methane, a more potent greenhouse gas than carbon dioxide (CO2) over short timescales, may have an important role to play in determining the total climate influence of a forest system. Here we examine a time series of methane fluxes, obtained over 2 years by eddy flux covariance, from a lowland evergreen forest in central Maine, USA. During 2011, a wetter than average year, the forest was a net source of CH4 from the beginning of the measurement period in July through October. In 2012, a drier than average year, the forest was a small source only from early June through mid-July after which it transitioned to a weak sink for the remainder of the year. Using both a multiple linear regression and an artificial neural network approach, we find gross primary productivity (GPP, estimated from eddy covariance CO2 fluxes) to provide the strongest correlation with the seasonal trend in CH4 flux. While GPP alone provides the majority of the models' correlation during 2011, including soil moisture at 10cm significantly improves the fit of the model during 2012. Using a linear model of GPP and soil moisture, combined with Monte-Carlo resampling, we estimate that the total annual CH4 fluxes for 2011 and 2012 at Howland forest were 6900 +/- 4600 and -18000 +/- 2700 umol m-2 yr-1, respectively (means +/- 1sd). While these fluxes are very small compared to the annual CO2 consumption at this site (~300 g m-2 yr-1), these forest CH4 fluxes may contribute significantly to both short- and long-term variability in regional CH4 emissions. Understanding how environmental drivers influence CH4 fluxes at the landscape scale is critical to developing appropriate model structures for

  4. Uncertainty analysis of CO2 flux components in subtropical evergreen coniferous plantation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We present an uncertainty analysis of ecological process parameters and CO2 flux components (Reco, NEE and gross ecosystem exchange (GEE)) derived from 3 years’ continuous eddy covariance meas-urements of CO2 fluxes at subtropical evergreen coniferous plantation, Qianyanzhou of ChinaFlux. Daily-differencing approach was used to analyze the random error of CO2 fluxes measurements and bootstrapping method was used to quantify the uncertainties of three CO2 flux components. In addition, we evaluated different models and optimization methods in influencing estimation of key parameters and CO2 flux components. The results show that: (1) Random flux error more closely follows a dou-ble-exponential (Laplace), rather than a normal (Gaussian) distribution. (2) Different optimization meth-ods result in different estimates of model parameters. Uncertainties of parameters estimated by the maximum likelihood estimation (MLE) are lower than those derived from ordinary least square method (OLS). (3) The differences between simulated Reco, NEE and GEE derived from MLE and those derived from OLS are 12.18% (176 g C·m-2·a-1), 34.33% (79 g C·m-2·a-1) and 5.4% (92 g C·m-2·a-1). However, for a given parameter optimization method, a temperature-dependent model (T_model) and the models derived from a temperature and water-dependent model (TW_model) are 1.31% (17.8 g C·m-2·a-1), 2.1% (5.7 g C·m-2·a-1), and 0.26% (4.3 g C·m-2·a-1), respectively, which suggested that the optimization methods are more important than the ecological models in influencing uncertainty in estimated carbon fluxes. (4) The relative uncertainty of CO2 flux derived from OLS is higher than that from MLE, and the uncertainty is related to timescale, that is, the larger the timescale, the smaller the uncertainty. The relative uncertainties of Reco, NEE and GEE are 4%-8%, 7%-22% and 2%-4% respectively at annual timescale.

  5. Independence of stem and leaf hydraulic traits in six Euphorbiaceae tree species with contrasting leaf phenology.

    Science.gov (United States)

    Chen, Jun-Wen; Zhang, Qiang; Li, Xiao-Shuang; Cao, Kun-Fang

    2009-08-01

    Hydraulic traits and hydraulic-related structural properties were examined in three deciduous (Hevea brasiliensis, Macaranga denticulate, and Bischofia javanica) and three evergreen (Drypetes indica, Aleurites moluccana, and Codiaeum variegatum) Euphorbiaceae tree species from a seasonally tropical forest in south-western China. Xylem water potential at 50% loss of stem hydraulic conductivity (P50(stem)) was more negative in the evergreen tree, but leaf water potential at 50% loss of leaf hydraulic conductivity (P50(leaf)) did not function as P50(stem) did. Furthermore, P50(stem) was more negative than P50(leaf) in the evergreen tree; contrarily, this pattern was not observed in the deciduous tree. Leaf hydraulic conductivity overlapped considerably, but stem hydraulic conductivity diverged between the evergreen and deciduous tree. Correspondingly, structural properties of leaves overlapped substantially; however, structural properties of stem diverged markedly. Consequently, leaf and stem hydraulic traits were closely correlated with leaf and stem structural properties, respectively. Additionally, stem hydraulic efficiency was significantly correlated with stem hydraulic resistance to embolism; nevertheless, such a hydraulic pattern was not found in leaf hydraulics. Thus, these results suggest: (1) that the evergreen and deciduous tree mainly diverge in stem hydraulics, but not in leaf hydraulics, (2) that regardless of leaf or stem, their hydraulic traits result primarily from structural properties, and not from leaf phenology, (3) that leaves are more vulnerable to drought-induced embolism than stem in the evergreen tree, but not always in the deciduous tree and (4) that there exists a trade-off between hydraulic efficiency and safety for stem hydraulics, but not for leaf hydraulics. PMID:19495788

  6. Charcoal anatomy of forest species

    Directory of Open Access Journals (Sweden)

    Graciela Inés Bolzon de Muñiz1

    2012-09-01

    Full Text Available Vegetal charcoal retains the anatomical structure of the wood and may permit its botanical identification, which depends on species characteristics, the charcoal fragments size and preservation state. Anatomical characterization of ten forest species charcoal was done envisaging the identification and control of illegal charcoal. Differences between gymnosperms and angiosperms are evident in carbonized wood. Vessel diameter was statistically different between wood and charcoal in Vatairea guianensis, Mezilaurus itauba, Calophyllum brasiliense e Qualea cf. acuminata, and vessel frequency in Vatairea guianensis, Manilkara huberi, Qualea cf. acuminata e Simarouba amara. The anatomical structure from wood, in general aspects, is constant during carbonization process using temperature of 450°C, being possible to identify the material by using its cellular components.

  7. Fingerprinting the Asterid species using subtracted diversity array reveals novel species-specific sequences.

    Directory of Open Access Journals (Sweden)

    Nitin Mantri

    Full Text Available BACKGROUND: Asterids is one of the major plant clades comprising of many commercially important medicinal species. One of the major concerns in medicinal plant industry is adulteration/contamination resulting from misidentification of herbal plants. This study reports the construction and validation of a microarray capable of fingerprinting medicinally important species from the Asterids clade. METHODOLOGY/PRINCIPAL FINDINGS: Pooled genomic DNA of 104 non-asterid angiosperm and non-angiosperm species was subtracted from pooled genomic DNA of 67 asterid species. Subsequently, 283 subtracted DNA fragments were used to construct an Asterid-specific array. The validation of Asterid-specific array revealed a high (99.5% subtraction efficiency. Twenty-five Asterid species (mostly medicinal representing 20 families and 9 orders within the clade were hybridized onto the array to reveal its level of species discrimination. All these species could be successfully differentiated using their hybridization patterns. A number of species-specific probes were identified for commercially important species like tea, coffee, dandelion, yarrow, motherwort, Japanese honeysuckle, valerian, wild celery, and yerba mate. Thirty-seven polymorphic probes were characterized by sequencing. A large number of probes were novel species-specific probes whilst some of them were from chloroplast region including genes like atpB, rpoB, and ndh that have extensively been used for fingerprinting and phylogenetic analysis of plants. CONCLUSIONS/SIGNIFICANCE: Subtracted Diversity Array technique is highly efficient in fingerprinting species with little or no genomic information. The Asterid-specific array could fingerprint all 25 species assessed including three species that were not used in constructing the array. This study validates the use of chloroplast genes for bar-coding (fingerprinting plant species. In addition, this method allowed detection of several new loci that can be

  8. Congruence of intraspecific variability in leaf traits for two co-occurring estuarine angiosperms.

    Science.gov (United States)

    Ainley, Lara B; Vergés, Adriana; Bishop, Melanie J

    2016-08-01

    Studies seeking to identify sources of variability and trade-offs in leaf traits have done so by assembling large databases of traits, across species and time points. It is unclear to what extent interspecific patterns derived in such a manner apply to intraspecific variation, particularly at regional scales, and the extent to which interspecific patterns vary temporally. We tested the hypothesis that the leaf traits of two foundation species, the mangrove Avicennia marina and the eelgrass Zostera muelleri, would display similar patterns of intraspecific variability across gradients of latitude and estuarine condition, that match previously reported interspecific patterns, and that persist through time. We found intraspecific patterns of decreasing carbon to nitrogen ratio and mechanical elasticity, and increasing nitrogen content with latitude that were consistent between the two plant species, and with previously reported interspecific patterns for other groups of species. Specific leaf area, leaf toughness and total phenolics, by contrast, displayed species-specific patterns that varied markedly through time. Relationships between estuarine condition and leaf traits were highly variable temporally, and also displayed markedly different patterns of intraspecific variability between the two species. Our study highlights the considerable within-species variation in leaf traits that should be accounted for in regional to biome scale analyses. Although some intraspecific patterns mirrored those found across species, at global scales, the considerable variability in other leaf traits between species and through time highlights the need to better understand the drivers and constraints of this intraspecific variation. PMID:27098661

  9. 云南高黎贡山中山湿性常绿阔叶林的群落特征%Community Characteristics of the Mid-Montane Humid Ever-Green Broad-Leaved Forest in Gaoligong Mountains, Yunnan

    Institute of Scientific and Technical Information of China (English)

    孟广涛; 柴勇; 袁春明; 艾怀森; 李贵祥; 王骞; 李品荣; 蔺汝涛

    2013-01-01

    The dynamic observation of the mid - montane humid evergreen broad-leaved forest and the community characteristics analysis were conducted in a 4 - hm2 permanent plot located in ecological corridor in southern region of Gaoligong Mountains National Nature Reserve during 2009-2010. The results showed that there were 10 546 freestanding individuals with DBH ≥1. 0 cm in the 4 hm plot, belonging to 95 species, 64 genera and 35 families. The species richness was higher and the proportion of rare species was lower in the plot, compared with other plots of the same kind forest. Lauraceae, Theaceae, Araliaceae, Fagaceae, and Symplocaceae were dominant families in the plot and they comprised 44. 21 % of all species and 56. 70% of all individuals. Symplocas ramosissima, Eurya pseudocerasifera , Gordonia longicarpa, Neolitsea lunglingensis, Lithocarpus hancei, and Cyclobalanopsis lamellosa had more importance value in the plot, but no one had obvious advantage, namely the plot did not contain an obviously dominant species. Floristic characteristics of the community indicated that the tropical elements were much more than temperate elements, implying that this area could be an origin of tropics. The minimal area of the community is 1. 32 hm , which could comprise more than 80% of all species. The structure of DBH size class of all species and some dominant species in the plot showed a typical pyramid structure with a wide bottom and a narrow top, implying a good regeneration in the community. The survival curve of most of dominant species tended to be of the Deevey-Ⅲ type, with a high mortality rate at small DHB size class and a low and stable mortality rate at large DBH size class.

  10. Leaf Mass per Area (LMA and Its Relationship with Leaf Structure and Anatomy in 34 Mediterranean Woody Species along a Water Availability Gradient.

    Directory of Open Access Journals (Sweden)

    Enrique G de la Riva

    Full Text Available Leaf mass per area (LMA is a morphological trait widely used as a good indicator of plant functioning (i.e. photosynthetic and respiratory rates, chemical composition, resistance to herbivory, etc.. The LMA can be broken down into the leaf density (LD and leaf volume to area ratio (LVA or thickness, which in turn are determined by anatomical tissues and chemical composition. The aim of this study is to understand the anatomical and chemical characteristics related to LMA variation in species growing in the field along a water availability gradient. We determined LMA and its components (LD, LVA and anatomical tissues for 34 Mediterranean (20 evergreen and 14 deciduous woody species. Variation in LMA was due to variation in both LD and LVA. For both deciduous and evergreen species LVA variation was strongly and positively related with mesophyll volume per area (VA or thickness, but for evergreen species positive relationships of LVA with the VA of epidermis, vascular plus sclerenchyma tissues and air spaces were found as well. The leaf carbon concentration was positively related with mesophyll VA in deciduous species, and with VA of vascular plus sclerenchymatic tissues in evergreens. Species occurring at the sites with lower water availability were generally characterised by a high LMA and LD.

  11. Leaf Mass per Area (LMA) and Its Relationship with Leaf Structure and Anatomy in 34 Mediterranean Woody Species along a Water Availability Gradient.

    Science.gov (United States)

    de la Riva, Enrique G; Olmo, Manuel; Poorter, Hendrik; Ubera, José Luis; Villar, Rafael

    2016-01-01

    Leaf mass per area (LMA) is a morphological trait widely used as a good indicator of plant functioning (i.e. photosynthetic and respiratory rates, chemical composition, resistance to herbivory, etc.). The LMA can be broken down into the leaf density (LD) and leaf volume to area ratio (LVA or thickness), which in turn are determined by anatomical tissues and chemical composition. The aim of this study is to understand the anatomical and chemical characteristics related to LMA variation in species growing in the field along a water availability gradient. We determined LMA and its components (LD, LVA and anatomical tissues) for 34 Mediterranean (20 evergreen and 14 deciduous) woody species. Variation in LMA was due to variation in both LD and LVA. For both deciduous and evergreen species LVA variation was strongly and positively related with mesophyll volume per area (VA or thickness), but for evergreen species positive relationships of LVA with the VA of epidermis, vascular plus sclerenchyma tissues and air spaces were found as well. The leaf carbon concentration was positively related with mesophyll VA in deciduous species, and with VA of vascular plus sclerenchymatic tissues in evergreens. Species occurring at the sites with lower water availability were generally characterised by a high LMA and LD. PMID:26867213

  12. Study of Chemical Constituents and Medicinal Uses of Indicator Species of District Bannu

    OpenAIRE

    Rehman ullah khan; Saad Ullah khan; Sultan Mehmood; Ihsan ullah; Aziz Khan

    2013-01-01

    The present study was carried out to assess record and report the chemical constituents and ethnobotanical knowledge of indicator species of District Bannu. Medicinal outlines of about 57 plants were recorded through interview local people i.e. farmers, herbalists, hakims and Medicinal plants user dealers. The present investigation comprises the indigenous uses of 57 species belonging to 36 families of Angiosperms based upon their utility. Out of this rich Medicinal germplasm, 66.15% plants a...

  13. Attract them anyway: benefits of large, showy flowers in a highly autogamous, carnivorous plant species

    OpenAIRE

    Salces-Castellano, A.; Paniw, M.; Casimiro-Soriguer, R.; Ojeda, F.

    2016-01-01

    Reproductive biology of carnivorous plants has largely been studied on species that rely on insects as pollinators and prey, creating potential conflicts. Autogamous pollination, although present in some carnivorous species, has received less attention. In angiosperms, autogamous self-fertilization is expected to lead to a reduction in flower size, thereby reducing resource allocation to structures that attract pollinators. A notable exception is the carnivorous pyrophyte Drosophyllum lusitan...

  14. Species richness and phytogeography of the bryophyte flora of the Guianas, with special reference to the lowland forest

    OpenAIRE

    Gradstein, Stephan Robbert; Montfoort, D.; Cornelissen, J. Hans C.

    1990-01-01

    The Guianas (French Guiana, Suriname, Guyana) are probably one of the last areas of the world covered largely by virgin lowland rain forest. Species diversity of epiphytic bryophytes was investigated in dry evergreen forest and mixed forest using mountaineering techniques to ascend into the canopy. The results indicate that the lowland rain forest is richer in species than previously believed due to neglect of the canopy flora, which may hold more than 50% of the local species. The mixed fore...

  15. The complete nucleotide sequence of the coffee (Coffea arabica L.) chloroplast genome: organization and implications for biotechnology and phylogenetic relationships among angiosperms.

    Science.gov (United States)

    The chloroplast genome sequence of Coffea arabica L., first member of family Rubiaceae (fourth largest family of angiosperms) is reported. The genome is 155,189 bp in length, including a pair of inverted repeats of 25,943 bp, separated by a small single copy region of 18,137 bp and a large single co...

  16. Geranyllinalool synthases in solanaceae and other angiosperms constitute an ancient branch of diterpene synthases involved in the synthesis of defensive compounds

    NARCIS (Netherlands)

    V. Falara; J.M. Alba; M.R. Kant; R.C. Schuurink; E. Pichersky

    2014-01-01

    Many angiosperm plants, including basal dicots, eudicots, and monocots, emit (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene, which is derived from geranyllinalool, in response to biotic challenge. An Arabidopsis (Arabidopsis thaliana) geranyllinalool synthase (GLS) belonging to the e/f clade of the

  17. Carbon allocation to biomass production of leaves, fruits and woody organs at seasonal and annual scale in a deciduous- and evergreen temperate forest

    Directory of Open Access Journals (Sweden)

    M. Campioli

    2010-10-01

    of the growing season for pine. Seasonal differences in C allocation are likely due to functional differences between deciduous and evergreen species and temporal variability of the sink strength.

    The similar GPP and autotrophic respiration between stands and the remarkable larger C allocation to wood at the beech stand indicate that at the beech ecosystem C has a longer residence time than at the pine ecosystem. Further research on belowground production and particularly on fine roots and ectomycorrhizal fungi likely represents the most important step to progress our knowledge on C allocation dynamics.

  18. Measuring chlorophyll a and 14C-labeled photosynthate in aquatic angiosperms by the use of a tissue solubilizer

    International Nuclear Information System (INIS)

    A compound that quantitatively correlated with chlorophyll a could be measured fluorometrically in the extracts of leaves of three aquatic angiosperms (Myriophyllum heterophyllum Michx., Potamogeton crispus L., Elodea canadensis Michx.) treated with the tissue solubilizer BTS-450. Fluorescent characteristics of the solubilized plant tissues were stable for several weeks in the dark at temperatures up to 600C but rapidly degraded in sunlight or when acidified. 14C-Labeled photosynthate, which had been fixed by leaf discs during 1- to 10-hour exposure to H14CO3, was also readily extracted by the tissue solubilizer. Solubilizer extraction can, therefore, be use to determine both chlorophyll a content and 14C incorporation rates in the same leaf sample. The method is practical, because no grinding is required, the fluorescent characteristics of the extracts are stable, and analyses can be performed with very little plant material

  19. Measuring chlorophyll α and 14C-labeled photosynthate in aquatic angiosperms by the use of a tissue solubilizer

    International Nuclear Information System (INIS)

    A compound that quantitatively correlated with chlorophyll α could be measured fluorometrically in the extracts of leaves of three aquatic angiosperms (Myriophyllum heterophyllum Michx., Potamogeton crispus L., Elodea canadensis Michx.) treated with the tissue solubilizer BTS-450. Fluorescent characteristics of the solubilized plant tissues were stable for several weeks in the dark at temperatures up to 600C but rapidly degraded in sunlight or when acidified. 14C-Labeled photosynthate, which had been fixed by leaf discs during 1- to 10-hour exposure to H14CO3, was also readily extracted by the tissue solubilizer. Solubilizer extraction can, therefore, be used to determine both chlorophyll α content and 14C incorporation rates in the same leaf sample. The method is practical, because no grinding is required, the fluorescent characteristics of the extracts are stable, and analyses can be performed with very little plant material (about 3 milligrams)

  20. The complete chloroplast genome sequence of Citrus sinensis (L. Osbeck var 'Ridge Pineapple': organization and phylogenetic relationships to other angiosperms

    Directory of Open Access Journals (Sweden)

    Jansen Robert K

    2006-09-01

    Full Text Available Abstract Background The production of Citrus, the largest fruit crop of international economic value, has recently been imperiled due to the introduction of the bacterial disease Citrus canker. No significant improvements have been made to combat this disease by plant breeding and nuclear transgenic approaches. Chloroplast genetic engineering has a number of advantages over nuclear transformation; it not only increases transgene expression but also facilitates transgene containment, which is one of the major impediments for development of transgenic trees. We have sequenced the Citrus chloroplast genome to facilitate genetic improvement of this crop and to assess phylogenetic relationships among major lineages of angiosperms. Results The complete chloroplast genome sequence of Citrus sinensis is 160,129 bp in length, and contains 133 genes (89 protein-coding, 4 rRNAs and 30 distinct tRNAs. Genome organization is very similar to the inferred ancestral angiosperm chloroplast genome. However, in Citrus the infA gene is absent. The inverted repeat region has expanded to duplicate rps19 and the first 84 amino acids of rpl22. The rpl22 gene in the IRb region has a nonsense mutation resulting in 9 stop codons. This was confirmed by PCR amplification and sequencing using primers that flank the IR/LSC boundaries. Repeat analysis identified 29 direct and inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Comparison of protein-coding sequences with expressed sequence tags revealed six putative RNA edits, five of which resulted in non-synonymous modifications in petL, psbH, ycf2 and ndhA. Phylogenetic analyses using maximum parsimony (MP and maximum likelihood (ML methods of a dataset composed of 61 protein-coding genes for 30 taxa provide strong support for the monophyly of several major clades of angiosperms, including monocots, eudicots, rosids and asterids. The MP and ML trees are incongruent in three areas: the position of Amborella and

  1. Expansion and diversification of BTL ring-H2 ubiquitin ligases in angiosperms: putative Rabring7/BCA2 orthologs.

    Science.gov (United States)

    Aguilar-Hernández, Victor; Medina, Juliana; Aguilar-Henonin, Laura; Guzmán, Plinio

    2013-01-01

    RING finger E3 ligases are components of the ubiquitin proteasome system (UPS) that mediate the transfer of ubiquitin to substrates. Single-subunit RING finger E3s binds the E2 ubiquitin-conjugating enzyme and contains recognition sequences for the substrate within the same polypeptide. Here we describe the characterization of a class of RING finger E3 ligases that is conserved among eukaryotes. This class encodes a RING-H2 domain related in sequence to the ATL RING-H2 domain, another class of E3 ligases, and a C2/C2 zing finger at the amino-terminus, formerly described as BZF. In viridiplantae (green algae and land plants), we designed this family as BTL for BZF ATLs. BTLs are putative orthologs of the mammalian Rabring7/BCA2 RING-H2 E3s that have expanded in angiosperms. They are found in numbers ranging from three to thirty-one, which is in contrast to the one to three members normally found in animals, fungi, and protists. Furthermore, the number of sequence LOGOs generated in angiosperms is four times greater than that in other eukaryotes. In contrast to ATLs, which show expansion by tandem duplication, tandemly duplicated BTLs are scarce. The mode of action of Rabring7/BCA2 and BTLs may be similar since both the Rabring7/BCA2 BZF and the ath|BTL4 BZF are likely to mediate the binding of ubiquitin. This study introduces valuable information on the evolution and domain structure of the Rabring7/BCA2/BTL class of E3 ligases which may be important for core eukaryotic genes. PMID:23951330

  2. Identifying the Basal Angiosperm Node in Chloroplast GenomePhylogenies: Sampling One's Way Out of the Felsenstein Zone

    Energy Technology Data Exchange (ETDEWEB)

    Leebens-Mack, Jim; Raubeson, Linda A.; Cui, Liying; Kuehl,Jennifer V.; Fourcade, Matthew H.; Chumley, Timothy W.; Boore, JeffreyL.; Jansen, Robert K.; dePamphilis, Claude W.

    2005-05-27

    While there has been strong support for Amborella and Nymphaeales (water lilies) as branching from basal-most nodes in the angiosperm phylogeny, this hypothesis has recently been challenged by phylogenetic analyses of 61 protein-coding genes extracted from the chloroplast genome sequences of Amborella, Nymphaea and 12 other available land plant chloroplast genomes. These character-rich analyses placed the monocots, represented by three grasses (Poaceae), as sister to all other extant angiosperm lineages. We have extracted protein-coding regions from draft sequences for six additional chloroplast genomes to test whether this surprising result could be an artifact of long-branch attraction due to limited taxon sampling. The added taxa include three monocots (Acorus, Yucca and Typha), a water lily (Nuphar), a ranunculid(Ranunculus), and a gymnosperm (Ginkgo). Phylogenetic analyses of the expanded DNA and protein datasets together with microstructural characters (indels) provided unambiguous support for Amborella and the Nymphaeales as branching from the basal-most nodes in the angiospermphylogeny. However, their relative positions proved to be dependent on method of analysis, with parsimony favoring Amborella as sister to all other angiosperms, and maximum likelihood and neighbor-joining methods favoring an Amborella + Nympheales clade as sister. The maximum likelihood phylogeny supported the later hypothesis, but the likelihood for the former hypothesis was not significantly different. Parametric bootstrap analysis, single gene phylogenies, estimated divergence dates and conflicting in del characters all help to illuminate the nature of the conflict in resolution of the most basal nodes in the angiospermphylogeny. Molecular dating analyses provided median age estimates of 161 mya for the most recent common ancestor of all extant angiosperms and 145 mya for the most recent common ancestor of monocots, magnoliids andeudicots. Whereas long sequences reduce variance in

  3. Impact of evergreening on patients and health insurance: a meta analysis and reimbursement cost analysis of citalopram/escitalopram antidepressants

    Directory of Open Access Journals (Sweden)

    Alkhafaji Ali A

    2012-11-01

    Full Text Available Abstract Background "Evergreening" refers to the numerous strategies whereby owners of pharmaceutical products use patent laws and minor drug modifications to extend their monopoly privileges on the drug. We aimed to evaluate the impact of evergreening through the case study of the antidepressant citalopram and its chiral switch form escitalopram by evaluating treatment efficacy and acceptability for patients, as well as health insurance costs for society. Methods To assess efficacy and acceptability, we performed meta-analyses for efficacy and acceptability. We compared direct evidence (meta-analysis of results of head-to-head trials and indirect evidence (adjusted indirect comparison of results of placebo-controlled trials. To assess health insurance costs, we analyzed individual reimbursement data from a representative sample of the French National Health Insurance Inter-regime Information System (SNIIR-AM from 2003 to 2010, which allowed for projecting these results to the whole SNIIR-AM population (53 million people. Results In the meta-analysis of seven head-to-head trials (2,174 patients, efficacy was significantly better for escitalopram than citalopram (combined odds ratio (OR 1.60 (95% confidence interval 1.05 to 2.46. However, for the adjusted indirect comparison of 10 citalopram and 12 escitalopram placebo-controlled trials, 2,984 and 3,777 patients respectively, efficacy was similar for the two drug forms (combined indirect OR 1.03 (0.82 to 1.30. Because of the discrepancy, we could not combine direct and indirect data (test of inconsistency, P = 0.07. A similar discrepancy was found for treatment acceptability. The overall reimbursement cost burden for the citalopram, escitalopram and its generic forms was 120.6 million Euros in 2010, with 96.8 million Euros for escitalopram. Conclusions The clinical benefit of escitalopram versus citalopram remains uncertain. In our case of evergreening, escitalopram represented a substantially

  4. Estimation of above ground biomass by using multispectral data for Evergreen Forest in Phu Hin Rong Kla National Park, Thailand

    International Nuclear Information System (INIS)

    Tropical forest is the most important and largest source for stocking CO2 from the atmosphere which might be one of the main sources of carbon emission, global warming and climate change in recent decades. There are two main objectives of this study. The first one is to establish a relationship between above ground biomass and vegetation indices and the other is to evaluate above ground biomass and carbon sequestration for evergreen forest areas in Phu Hin Rong Kla National park, Thailand. Random sampling design based was applied for calculating the above ground biomass at stand level in the selected area by using Brown and Tsutsumi allometric equations. Landsat 7 ETM+ data in February 2009 was used. Support Vector Machine (SVM) was applied for identifying evergreen forest area. Forty-three of vegetation indices and image transformations were used for finding the best correlation with forest stand biomass. Regression analysis was used to investigate the relationship between the biomass volume at stand level and digital data from the satellite image. TM51 which derived from Tsutsumi allometric equation was the highest correlation with stand biomass. Normalized Difference Vegetation Index (NDVI) was not the best correlation in this study. The best biomass estimation model was from TM51 and ND71 (R2 =0.658). The totals of above ground biomass and carbon sequestration were 112,062,010 ton and 56,031,005 ton respectively. The application of this study would be quite useful for understanding the terrestrial carbon dynamics and global climate change. (author)

  5. Invasive Plant Species in the National Parks of Vietnam

    Directory of Open Access Journals (Sweden)

    Bernard Dell

    2012-10-01

    Full Text Available The impact of invasive plant species in national parks and forests in Vietnam is undocumented and management plans have yet to be developed. Ten national parks, ranging from uncut to degraded forests located throughout Vietnam, were surveyed for invasive plant species. Transects were set up along roads, trails where local people access park areas, and also tracks through natural forest. Of 134 exotic weeds, 25 were classified as invasive species and the number of invasive species ranged from 8 to 15 per park. An assessment of the risk of invasive species was made for three national parks based on an invasive species assessment protocol. Examples of highly invasive species were Chromolaena odorata and Mimosa diplotricha in Cat Ba National Park (island evergreen secondary forest over limestone; Mimosa pigra, Panicum repens and Eichhornia crassipes in Tram Chim National Park (lowland wetland forest dominated by melaleuca; and C. odorata, Mikania micrantha and M. diplotricha in Son Tra Nature Conservation area (peninsula evergreen secondary forest. Strategies to monitor and manage invasive weeds in forests and national parks in Vietnam are outlined.

  6. WHOLE-PLANT GROWTH STAGE ONTOLOGY FOR ANGIOSPERMS AND ITS APPLICATION IN PLANT BIOLOGY

    Science.gov (United States)

    Plant growth stages are identified as distinct morphological landmarks in a continuous developmental process. The terms describing these developmental stages record the morphological appearance of the plant at a specific point in its life cycle. The widely differing morphology of plant species conse...

  7. Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China.

    Directory of Open Access Journals (Sweden)

    Dunmei Lin

    Full Text Available The subtropical forest biome occupies about 25% of China, with species diversity only next to tropical forests. Despite the recognized importance of subtropical forest in regional carbon storage and cycling, uncertainties remain regarding the carbon storage of subtropical forests, and few studies have quantified within-site variation of biomass, making it difficult to evaluate the role of these forests in the global and regional carbon cycles. Using data for a 24-ha census plot in east China, we quantify aboveground biomass, characterize its spatial variation among different habitats, and analyse species relative contribution to the total aboveground biomass of different habitats. The average aboveground biomass was 223.0 Mg ha(-1 (bootstrapped 95% confidence intervals [217.6, 228.5] and varied substantially among four topographically defined habitats, from 180.6 Mg ha(-1 (bootstrapped 95% CI [167.1, 195.0] in the upper ridge to 245.9 Mg ha(-1 (bootstrapped 95% CI [238.3, 253.8] in the lower ridge, with upper and lower valley intermediate. In consistent with our expectation, individual species contributed differently to the total aboveground biomass of different habitats, reflecting significant species habitat associations. Different species show differently in habitat preference in terms of biomass contribution. These patterns may be the consequences of ecological strategies difference among different species. Results from this study enhance our ability to evaluate the role of subtropical forests in the regional carbon cycle and provide valuable information to guide the protection and management of subtropical broad-leaved forest for carbon sequestration and carbon storage.

  8. The role of ABC genes in shaping perianth phenotype in the basal angiosperm Magnolia.

    Science.gov (United States)

    Wróblewska, M; Dołzbłasz, A; Zagórska-Marek, B

    2016-03-01

    It is generally accepted that the genus Magnolia is characterised by an undifferentiated perianth, typically organised into three whorls of nearly identical tepals. In some species, however, we encountered interesting and significant perianth modifications. In Magnolia acuminata, M. liliiflora and M. stellata the perianth elements of the first whorl are visually different from the others. In M. stellata the additional, spirally arranged perianth elements are present above the first three whorls, which suggests that they have been formed within the domain of stamen primordia. In these three species, we analysed expression patterns of the key flower genes (AP1, AGL6, AP3, PI, AG) responsible for the identity of flower elements and correlated them with results of morphological and anatomical investigations. In all studied species the elements of the first whorl lacked the identity of petals (lack of AP3 and PI expression) but also that of leaves (presence of AGL6 expression), and this seems to prove their sepal character. The analysis of additional perianth elements of M. stellata, spirally arranged on the elongated floral axis, revealed overlapping and reduced activity of genes involved in specification of the identity of the perianth (AGL6) but also of generative parts (AG), even though no clear gradient of morphological changes could be observed. In conclusion, Magnolia genus is capable of forming, in some species, a perianth differentiated into a calyx (sepals) and corolla (petals). Spirally arranged, additional perianth elements of M. stellata, despite activity of AG falling basipetally, resemble petals. PMID:26359638

  9. Interspecific differences in the effects of sulfur dioxide on angiosperm sexual reproduction

    International Nuclear Information System (INIS)

    The major objective of this study was to test the potential direct effects of SO2 on sexual reproduction in several plant species with different reproductive structures and processes. In marked contrast to the sensitivity to SO2 reported by other investigators for pollen germination and pollen tube growth in vitro, and recorded for Lepidium virginicum in this study, 4 of 5 species tested were tolerant with respect to fruit and seed set after exposure to 0.6 ppm SO2 for 8 hours during flowering. Seed set in the one sensitive species, Geranium carolinianum, was reduced 40% from the control after exposure to SO2, but only when relative humidity (RH) was at or above 90%. The effect of SO2 on Lepidium pollen germination in vitro was greater than the effect of SO2 on sexual reproduction in vivo. Sulfur dioxide reduced pollen germination in vitro 94% from the control. The same concentration of SO2, at 90% Rh, reduced pollen germination in vivo 50% from the control, but had no effect on seed set. Predictions of effects of SO2 on reproduction in vivo based on effects of SO2 on pollen germination and pollen tube growth in vitro are not valid

  10. Photoprotection of evergreen and drought-deciduous tree leaves to overcome the dry season in monsoonal tropical dry forests in Thailand.

    Science.gov (United States)

    Ishida, Atsushi; Yamazaki, Jun-Ya; Harayama, Hisanori; Yazaki, Kenichi; Ladpala, Phanumard; Nakano, Takashi; Adachi, Minaco; Yoshimura, Kenichi; Panuthai, Samreong; Staporn, Duriya; Maeda, Takahisa; Maruta, Emiko; Diloksumpun, Sapit; Puangchit, Ladawan

    2014-01-01

    In tropical dry forests, uppermost-canopy leaves of evergreen trees possess the ability to use water more conservatively compared with drought-deciduous trees, which may result from significant differences in the photoprotective mechanisms between functional types. We examined the seasonal variations in leaf gas exchange, chlorophyll fluorescence and the amounts of photosynthetic pigments within lamina of the uppermost-canopy leaves of three drought-deciduous trees (Vitex peduncularis Wall., Xylia xylocarpa (Roxb.) W. Theob., Shorea siamensis Miq.), a semi-deciduous tree (Irvingia malayana Miq.) and two evergreen trees (Hopea ferrea Lanessan and Syzygium cumini (L.) Skeels) in Thailand. Area-based maximum carbon assimilation rates (Amax) decreased during the dry season, except in S. siamensis. The electron transport rate (ETR) remained unchanged in deciduous trees, but decreased during the dry season in evergreen and semi-deciduous trees. In the principal component analysis, the first axis (Axis 1) accounted for 44.3% of the total variation and distinguished deciduous from evergreen trees. Along Axis 1, evergreen trees were characterized by a high Stern-Volmer non-photochemical quenching coefficient (NPQ), high xanthophyll cycle pigments/chlorophyll and a high de-epoxidation state of the xanthophyll cycle, whereas the deciduous trees were characterized by a high ETR, a high quantum yield of PSII (ΦPSII = (Fm(') -F)/Fm(')) and a high mass-based Amax under high-light conditions. These findings indicate that drought-deciduous trees showing less conservative water use tend to dissipate a large proportion of electron flow through photosynthesis or alternative pathways. In contrast, the evergreens showed more conservative water use, reduced Amax and ETR and enhanced NPQ and xanthophyll cycle pigments/chlorophyll during the dry season, indicating that down-regulated photosynthesis with enhanced thermal dissipation of excess light energy played an important role in

  11. Comparing growth phenology of co-occurring deciduous and evergreen conifers exposed to drought

    Science.gov (United States)

    Swidrak, Irene; Schuster, Roman; Oberhuber, Walter

    2013-01-01

    Plant phenological events are influenced by climate factors such as temperature and rainfall. To evaluate phenological responses to water availability in a Spring Heath-Pine wood (Erico-Pinetum typicum), the focus of this study was to determine intra-annual dynamics of apical and lateral growth of co-occurring early successional Larix decidua and Pinus sylvestris and late successional Picea abies exposed to drought. The effect of reduced plant water availability on growth phenology was investigated by conducting a rainfall exclusion experiment. Timing of key phenological dates (onset, maximum rate, end, duration) of growth processes were compared among species at the rain-sheltered and control plot during 2011 and 2012. Shoot and needle elongation were monitored on lateral branches in the canopy at c. 16 m height and radial growth was recorded by automatic dendrometers at c. 1.3 m height of > 120 yr old trees. Different sequences in aboveground growth phenology were detected among the three species under the same growing conditions. While onset of radial growth in April through early May was considerably preceded by onset of needle growth in Larix decidua (5 - 6 weeks) and shoot growth in Pinus sylvestris (c. 3 weeks), it occurred quite simultaneously with onset of shoot growth in Picea abies. Low water availability had a minor impact on onset of aboveground growth, which is related to utilization of stored water, but caused premature cessation of aboveground growth. At the control plot mean growing season length was 130 days in Pinus sylvestris, 95 days in Larix decidua and 73 days in Picea abies supporting the hypothesis that early successional species are resource expenders, while late successional species are more efficient in utilizing resources and develop safer life strategies. High synchronicity found in culmination of radial growth in late spring (mid-May through early June) prior to occurrence of more favourable environmental conditions in summer might

  12. Dispersal limitation at the expanding range margin of an evergreen tree in urban habitats?

    DEFF Research Database (Denmark)

    Møller, Linda Agerbo; Skou, Anne-Marie Thonning; Kollmann, Johannes Christian

    2012-01-01

    cultivars were offered to birds at the expanding range margin in urban habitats in eastern Denmark. The four fruit types were removed at different rates and red fruits were preferred over a yellow cultivar. Small fruit diameter was positively related to fruit removal, and removal was faster under tree...... canopies compared with open habitats. The preference for red cultivars compared with native I. aquifolium may contribute to naturalization and potential invasion of garden escapes. Preferential foraging under closed canopies indicates trees and shrubs as recruitment foci for fleshy-fruited plants in urban...... experiment with fruits of Ilex aquifolium, a species that is currently expanding its range margin in northern Europe in response to climate change. The species is also a popular ornamental tree and naturalization has been observed in many parts of its range. Fruits of native I. aquifolium and of three...

  13. Evolutionary patterns of volatile terpene emissions across 202 tropical tree species

    OpenAIRE

    Courtois, Elodie A.; Dexter, Kyle G; Paine, Charles Eliot Timothy; Stien, Didier; Engel, Julien; Baraloto, Christopher; Chave, Jérôme

    2015-01-01

    International audience Plant responses to natural enemies include formation of secondary metabolites acting as direct or indirect defenses. Volatile terpenes represent one of the most diverse groups of secondary metabolites. We aimed to explore evolutionary patterns of volatile terpene emission. We measured the composition of damage-induced volatile terpenes from 202 Amazonian tree species, spanning the angiosperm phylogeny. Volatile terpenes were extracted with solid-phase micro extractio...

  14. Carbohydrate storage and light requirements of tropical moist and dry forest tree species.

    Science.gov (United States)

    Poorter, Lourens; Kitajima, Kaoru

    2007-04-01

    In many plant communities, there is a negative interspecific correlation between relative growth rates and survival of juveniles. This negative correlation is most likely caused by a trade-off between carbon allocation to growth vs. allocation to defense and storage. Nonstructural carbohydrates (NSC) stored in stems allow plants to overcome periods of stress and should enhance survival. In order to assess how species differ in carbohydrate storage in relation to juvenile light requirements, growth, and survival, we quantified NSC concentrations and pool sizes in sapling stems of 85 woody species in moist semi-evergreen and dry deciduous tropical forests in the rainy season in Bolivia. Moist forest species averaged higher NSC concentrations than dry forest species. Carbohydrate concentrations and pool sizes decreased with the light requirements of juveniles of the species in the moist forest but not in the dry forest. Combined, these results suggest that storage is especially important for species that regenerate in persistently shady habitats, as in the understory of moist evergreen forests. For moist forest species, sapling survival rates increased with NSC concentrations and pool sizes while growth rates declined with the NSC concentrations and pool sizes. No relationships were found for dry forest species. Carbon allocation to storage contributes to the growth-survival trade-off through its positive effect on survival. And, a continuum in carbon storage strategies contributes to a continuum in light requirements among species. The link between storage and light requirements is especially strong in moist evergreen forest where species sort out along a light gradient, but disappears in dry deciduous forest where light is a less limiting resource and species sort out along drought and fire gradients. PMID:17536715

  15. A gene family derived from transposable elements during early angiosperm evolution has reproductive fitness benefits in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Zoé Joly-Lopez

    2012-09-01

    Full Text Available The benefits of ever-growing numbers of sequenced eukaryotic genomes will not be fully realized until we learn to decipher vast stretches of noncoding DNA, largely composed of transposable elements. Transposable elements persist through self-replication, but some genes once encoded by transposable elements have, through a process called molecular domestication, evolved new functions that increase fitness. Although they have conferred numerous adaptations, the number of such domesticated transposable element genes remains unknown, so their evolutionary and functional impact cannot be fully assessed. Systematic searches that exploit genomic signatures of natural selection have been employed to identify potential domesticated genes, but their predictions have yet to be experimentally verified. To this end, we investigated a family of domesticated genes called MUSTANG (MUG, identified in a previous bioinformatic search of plant genomes. We show that MUG genes are functional. Mutants of Arabidopsis thaliana MUG genes yield phenotypes with severely reduced plant fitness through decreased plant size, delayed flowering, abnormal development of floral organs, and markedly reduced fertility. MUG genes are present in all flowering plants, but not in any non-flowering plant lineages, such as gymnosperms, suggesting that the molecular domestication of MUG may have been an integral part of early angiosperm evolution. This study shows that systematic searches can be successful at identifying functional genetic elements in noncoding regions and demonstrates how to combine systematic searches with reverse genetics in a fruitful way to decipher eukaryotic genomes.

  16. Temperature profiles from XBT casts from the EVERGREEN, GRESHAM, and HAMILTON from Ocean Weather Station E (OWS-E) and H (OWS-H) in the North Atlantic Ocean from 06 December 1970 to 01 September 1971 (NODC Accession 7101267)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the EVERGREEN, GRESHAM, and HAMILTON within a 1-mile radius of Ocean Weather Station E (3500N 04800W), H (3800N 07100W),...

  17. Analyses on species composition and community structure of “Fengshui woods” in Luogang District in Guangzhou City%广州市萝岗区风水林植物组成及群落结构分析

    Institute of Scientific and Technical Information of China (English)

    易绮斐; 王发国; 刘东明; 陈红锋; 邢福武

    2012-01-01

    通过野外实地调查,对广州市萝岗区风水林的植物组成及群落结构进行了分析.结果表明:萝岗区单个风水林面积为40 ~600 hm2,共有维管植物112科255属387种;其中,蕨类植物15科21属35种,裸子植物1科1属2种,被子植物96科233属350种;草本和乔木种类较多,分别有122和111种;灌木和藤本种类较少,分别有84和70种;其中,包含国家级珍稀保护植物5种和一些需要关注的种类,以及林下凤尾蕨(Pteris grevilleana Wall.ex Agardh)和虎克鳞盖蕨[Microlepia hookeriana (Wall.) Presl]2种广州市新记录种.优势科较明显,包含茜草科(Rubiaceae)、菊科(Compositae)、大戟科(Euphorbiaceae)、禾本科(Poaceae)、蝶形花科(Papilionaceae)、樟科( Lauraceae)等;虽然寡属科和寡种科所占比例较大,但包含种数较少;寡种属所占比例较大,占总属数的90.59%.植被类型属于南亚热带季风常绿阔叶林,以南亚热带常绿树种为主,可分为乔木层、灌木层和草本层,层间有丰富的藤本植物;作为群落的主体结构,木本植物较草本植物有优势.群落优势建群种主要为樟科、大戟科、壳斗科(Fagaceae)、山茶科(Theaceae)、胡桃科(Juglandaceae)和苏木科(Caesalpiniaceae)等科的种类,依据优势种不同可划分为13个群系.根据调查结果,对广州市萝岗区风水林的保护和资源利用提出了建议.%The species composition and community structure of "Fengshui woods" in Luogang District in Guangzhou City were analyzed by field investigation. The results show that area of a "Fengshui woods" in Luogang District in Guangzhou City is 40-600 hm2 and there are 387 species of vascular plants belonging to 255 genera in 112 families. In which, there are 35 species of pteridophyte belonging to 21 genera in 15 families, 2 species of gymnosperm belonging to 1 genus in 1 family and 350 species of angiosperm belonging to 233 genera in 96 families. And among these species, herbs

  18. Effect of SO/sub 2/ on stomatal aperture and sulfur uptake of woody angiosperm seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Noland, T.L.; Kozlowski, T.T.

    1979-01-01

    Effects of SO/sub 2/ pollution on stomatal aperture and sulfur uptake varied with SO/sub 2/ dosage and plant species. Fumigation of Ulmus americana L. seedlings with 1 ppm SO/sub 2/ for 8 h inhibited stomatal closure and fumigation with 2 ppm SO/sub 2/ for 12 h induced stomatal closure. Sulfur uptake of fumigated Ulmus americana seedlings depended on stomatal aperture and was much higher in the light than in the dark. Fumigation of water-stressed Ginkgo biloba L. seedlings with 2 ppm SO/sub 2/ for 6.5 h tended to prevent stomatal closure. However, the effects of SO/sub 2/ on stomatal aperture were modulated and often overridden by environmental stresses such as low light intensity and drought.

  19. Tree-species diversification in Sub-Mediterranean pine forests: drivers, consequences and management options

    OpenAIRE

    Martín Alcón, Santiago

    2015-01-01

    Our results confirm that Sub-Mediterranean pinewoods in the eastern Pyrenees are currently undergoing a process of spontaneous diversification by broadleaved tree species (especially evergreen and marcescent oaks). The establishment of Quercus seedlings under the pine canopy was favored by the current levels of both canopy closure and shrub cover, which in contrast hampered pine recruitment and the established oaks (particularly Q. ilex) to reach more advanced developmental sta...

  20. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles

    Directory of Open Access Journals (Sweden)

    Emanuela eDattolo

    2013-06-01

    Full Text Available For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in the shallow (-5m and a deep (-25m portions of a single meadow, (i we generated two reciprocal EST (Expressed Sequences Tags libraries using a Suppressive Subtractive Hybridization (SSH approach, to obtain depth/specific transcriptional profiles, and (ii we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear o be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed.

  1. A copal-8-ol diphosphate synthase from the angiosperm Cistus creticus subsp. creticus is a putative key enzyme for the formation of pharmacologically active, oxygen-containing labdane-type diterpenes.

    Science.gov (United States)

    Falara, Vasiliki; Pichersky, Eran; Kanellis, Angelos K

    2010-09-01

    The resin of Cistus creticus subsp. creticus, a plant native to Crete, is rich in labdane-type diterpenes with significant antimicrobial and cytotoxic activities. The full-length cDNA of a putative diterpene synthase was isolated from a C. creticus trichome cDNA library. The deduced amino acid sequence of this protein is highly similar (59%-70% identical) to type B diterpene synthases from other angiosperm species that catalyze a protonation-initiated cyclization. The affinity-purified recombinant Escherichia coli-expressed protein used geranylgeranyl diphosphate as substrate and catalyzed the formation of copal-8-ol diphosphate. This diterpene synthase, therefore, was named CcCLS (for C. creticus copal-8-ol diphosphate synthase). Copal-8-ol diphosphate is likely to be an intermediate in the biosynthesis of the oxygen-containing labdane-type diterpenes that are abundant in the resin of this plant. RNA gel-blot analysis revealed that CcCLS is preferentially expressed in the trichomes, with higher transcript levels found in glands on young leaves than on fully expanded leaves, while CcCLS transcript levels increased after mechanical wounding. Chemical analyses revealed that labdane-type diterpene production followed a similar pattern, with higher concentrations in trichomes of young leaves and increased accumulation upon wounding. PMID:20595348

  2. Pollen tube development in two species of Trithuria (Hydatellaceae) with contrasting breeding systems.

    Science.gov (United States)

    Taylor, Mackenzie L; Williams, Joseph H

    2012-06-01

    Trithuria (Hydatellaceae; Nymphaeales) is unique among early-divergent angiosperms in that its species are extremely small and most have exceptionally short, annual life histories. Given the evolution of these extremes of size and development, we sought to understand whether post-pollination processes still varied predictably with breeding system in Trithuria. To address this question, we studied two Western Australian species, Trithuria austinensis (dioecious, obligately outcrossing) and Trithuria submersa (bisexual, highly selfing). To document developmental timing, carpels were hand-pollinated, collected at sequential time points, and examined with light and fluorescence microscopy. In both species, pollen tubes first entered ovulespollination, but the pollen tube pathway of outcrossing T. austinensis was almost four times longer and its pollen tube growth rates were up to six times faster (≤2,166 vs. 321 μm/h) than those of T. submersa. T. austinensis also exhibited greater male investment, slower pollen germination, and greater pollen tube attrition. These differences in male gametophyte development are predicted for outcrossers versus selfers in phylogenetically derived angiosperms. These new data for Hydatellaceae reinforce the idea that an acceleration of pollen tube development occurred in the Nymphaeales stem lineage, before the origin of Hydatellaceae. We infer that a recent evolutionary transition to selfing in T. submersa has been accompanied by predictable modifications to reproductive development, which, because of the ancient relationship between Hydatellaceae and all other angiosperms, suggests that traits underlying the lability of flowering plant post-pollination biology were present early in their history. PMID:22367232

  3. Distribution and carbon isotope patterns of diterpenoids and triterpenoids in modern temperate C3 trees and their geochemical significance

    Science.gov (United States)

    Diefendorf, Aaron F.; Freeman, Katherine H.; Wing, Scott L.

    2012-05-01

    Tricyclic diterpenoids and pentacyclic triterpenoids are nearly exclusively produced by gymnosperms and angiosperms, respectively. Even though both classes of terpenoids have long been recognized as plant biomarkers, their potential use as phylogenetically specific δ13C proxies remains largely unexplored. Little is known of how terpenoid abundance and carbon isotope composition vary either with plant phylogenetic position, functional group, or during synthesis. Here, we report terpenoid abundances and isotopic data for 44 tree species in 21 families, representing both angiosperms and gymnosperms, and both deciduous and evergreen leaf habits. Di- and triterpenoid abundances are significantly higher in evergreens compared to deciduous species, reflecting differences in growth strategies and increased chemical investment in longer-lived leaves. Carbon isotope abundances of terpenoid lipids are similar to leaf tissues, indicating biosynthetic isotope effects are small for both the MVA (-0.4‰) and MEP (-0.6‰) pathways. Leaf and molecular isotopic patterns for modern plants are consistent with observations of amber, resins and plant biomarkers in ancient sediments. The δ13C values of ancient diterpenoids are higher than triterpenoids by 2-5‰, consistent with observed isotopic differences between gymnosperms and angiosperms leaves, and support the relatively small lipid biosynthetic effects reported here. All other factors being equal, evergreen plants will dominate the abundance of terpenoids contributed to soils, sediments and ancient archives, with similar inputs estimated for angiosperm and gymnosperm trees when scaled by litter flux.

  4. Accuracy of LiDAR-based tree height estimation and crown recognition in a subtropical evergreen broad-leaved forest in Okinawa, Japan

    OpenAIRE

    Azita Ahmad Zawawi; Masami Shiba; Noor Janatun Naim Jemali

    2015-01-01

    Aim of study: To present an approach for estimating tree heights, stand density and crown patches using LiDAR data in a subtropical broad-leaved forest. Area of study: The study was conducted within the Yambaru subtropical evergreen broad-leaved forest, Okinawa main island, Japan. Materials and methods: A digital canopy height model (CHM) was extracted from the LiDAR data for tree height estimation and a watershed segmentation method was applied for the individual crown delineation....

  5. Fragmentation and Management of Ethiopian Moist Evergreen Forest Drive Compositional Shifts of Insect Communities Visiting Wild Arabica Coffee Flowers

    Science.gov (United States)

    Berecha, Gezahegn; Aerts, Raf; Muys, Bart; Honnay, Olivier

    2015-02-01

    Coffea arabica is an indigenous understorey shrub of the moist evergreen Afromontane forest of SW Ethiopia. Coffee cultivation here occurs under different forest management intensities, ranging from almost no intervention in the `forest coffee' system to far-reaching interventions that include the removal of competing shrubs and selective thinning of the upper canopy in the `semi-forest coffee' system. We investigated whether increasing forest management intensity and fragmentation result in impacts upon potential coffee pollination services through examining shifts in insect communities that visit coffee flowers. Overall, we netted 2,976 insect individuals on C. arabica flowers, belonging to sixteen taxonomic groups, comprising 10 insect orders. Taxonomic richness of the flower-visiting insects significantly decreased and pollinator community changed with increasing forest management intensity and fragmentation. The relative abundance of honey bees significantly increased with increasing forest management intensity and fragmentation, likely resulting from the introduction of bee hives in the most intensively managed forests. The impoverishment of the insect communities through increased forest management intensity and fragmentation potentially decreases the resilience of the coffee production system as pollination increasingly relies on honey bees alone. This may negatively affect coffee productivity in the long term as global pollination services by managed honey bees are expected to decline under current climate change scenarios. Coffee agroforestry management practices should urgently integrate pollinator conservation measures.

  6. Study on carbon-fixing,oxygen-releasing,temperature-reducing and humidity-increasing effects of evergreen plants in south highway

    Directory of Open Access Journals (Sweden)

    LIU Minmin

    2014-04-01

    Full Text Available Li-6400 portable photosynthesis system,was used to test the diurnal variations of photosynthetic rate and stomatal conductance of evergreen plants in Southern Highway,and to calculate their ability of absorbing carbon dioxide and releasing oxygen and to calculate the transpiring water volume and absorbing heat quantity of plants.Results showed that Euonymus fortunei Hand-Mazz,Hedera helix.Aucuba eriobotryaefolia had better carbon-fixing and oxygen-releasing effects,while Photinia serrulata,Trachycarpus fortunei,Radix Ophiopogonis had worse carbon-fixing and oxygen-releasing effects.Radix Ophiopogonis,Photinia glabra,Euonymus fortunei Hand.-Mazz had higher cooling and humidification ability,while Photinia serrulata,Trachycarpus fortunei did not act as well as them.Euonymus fortunei Hand.-Mazz and Hedera helix had higher leaf chlorophyll in per unit mass,values are 12.91、10.34、9.93 mg·g-1.Radix Ophiopogonis、Cinnamomum camphora(Linn. Presl and Trachycarpus fortunei had lower leaf chlorophyll in per unit mass,value is 3.55、2.67、2.06 mg·g-1.Releasing oxygen,fixing carbon,net assimilation and chlorophyll content has good correlation(P<0.05.

  7. Soil microbial activity and nutrients of evergreen broad-leaf forests in mid-subtropical region of China

    Institute of Scientific and Technical Information of China (English)

    Zhangquan Zeng; Silong Wang; Canming Zhang; Hong Tang; Xiquan Li; Zijian Wu; Jia Luo

    2015-01-01

    To better understand the effects of forest suc-cession on soil microbial activity, a comparison of soil microbial properties and nutrients was conducted between three forest types representing a natural forest succession chronosequence. The study compared a pine (Pinus mas-soniana) forest (PF), a pine and broadleaf mixed forest (MF) and an evergreen broadleaf forest (BF), in the Yingzuijie Biosphere Reserve, Hunan Province, China. Results showed that soil nutrients in the MF and BF plots were higher than in the PF plots. The range in microbial biomass carbon followed a similar pattern with BF having the greatest values, 522–1022 mg kg-1, followed by MF 368–569 mg kg-1, and finally, PF 193–449 mg kg-1. Soil nutrients were more strongly correlated with microbial biomass carbon than basal respiration or metabolic quo-tient. Overall, forest succession in the study site improved soil microbial properties and soil fertility, which in turn can increase primary productivity and carbon sequestration.

  8. Evergreen broadleaf forest transition zone changes in Japan from 1961 to 2008 detected by aerial ortho-photos

    Science.gov (United States)

    Nakazono, Etsuko; Tanaka, Nobuyuki; Yasuda, Masatsugu; Daimaru, Hiromu; Takeuchi, Wataru

    2016-06-01

    In order to detect the distribution change of evergreen broad-leaved trees (EBTs) in a old-growth forest on the transitional zone of cool-temperate and warm-temperate zones, we used the ortho-photo data conversed from the aerial photos. Comparing the crown map of EBTs in the 1-ha verification plot with the ground truth data of individual tree inventory, 14 out of 17 (82%) upper layer trees were found to be visually read on the aerial photo We chose two indices for detecting the distribution change of EBTs, crown number and total crown area. We made crown maps of the 20-ha plot based on ortho-photos in 1961, 1975, 1985, 2003, 2005 and 2008, and calculated crown number and total crown area for each photos. The crown number increased at a rate 0.18/year/ha from 1961 to 2000’s, and total crown area also increased at a rate 0.21% for the 20-ha plot. The total crow area increase was highly probable because errors of area in orthophotos were smaller than secular changes of the area.

  9. New forms of evergreening in Australia: misleading advertising, enantiomers and data exclusivity: Apotex v Servier and Alphapharm v Lundbeck.

    Science.gov (United States)

    Faunce, Thomas; Vines, Tim; Gibbons, Helen

    2008-10-01

    Two recent decisions of the Federal Court of Australia have provided interesting insights into the ongoing struggle between originator drug manufacturers and the public interest in Australia. In Apotex Pty Ltd (formerly GenRx Pty Ltd) v Les Laboratoires Servier (No 2) [2008] FCA 607 the court held that an advertising campaign by an originator pharmaceutical company, which sought to persuade doctors to issue prescriptions prohibiting substitution of "a-flagged" generics, constituted misleading and deceptive conduct under s 52 of the Trade Practices Act 1974 (Cth). The decision of the court in Alphapharm Pty Ltd v H Lundbeck A/S (2008) 76 IPR 618; [2008] FCA 559 limits the ability of the manufacturer of a drug based on a purified racemate enantiomer to claim a later registration date on the Australian Register of Therapeutic Goods and subsequently obtain an extension of its intellectual monopoly privileges as well as an exclusivity period for the data it had submitted to safety regulators. Importantly, this case is one of the first to consider recent allegedly pro- and anti-"evergreening" changes to the Therapeutic Goods Act 1989 (Cth) and Patents Act 1990 (Cth) as impacted by the intellectual property chapter (Ch 17) of the Australia-United States Free Trade Agreement. PMID:19010001

  10. Effects of canopy gaps on the genetic structure of Camellia japonica saplings in a Japanese old-growth evergreen forest.

    Science.gov (United States)

    Ueno, S; Tomaru, N; Yoshimaru, H; Manabe, T; Yamamoto, S

    2006-04-01

    The genetic structure of Camellia japonica saplings was investigated in relation to canopy conditions in an old-growth evergreen forest in Tsushima, Japan. To elucidate effects of canopy gaps on genetic structure, a 1 ha study site was divided into 20 x 20 m quadrats, which were classified into a gap quadrats (GAP), closed canopy quadrats (CLS) and mixed quadrats. Five GAP quadrats and six CLS quadrats were analyzed separately. Isolation-by-distance was tested by examining the correlation between genetic distance and geographic distance. A significant positive correlation was detected for GAP quadrats, whilst that for CLS quadrats was significantly smaller and not significantly different from zero. On the other hand, an analysis using Moran's I spatial autocorrelation coefficients indicates that the genetic structure is weaker in GAP quadrats than in CLS quadrats in short distance classes. The values were significantly positive for both types of quadrat. These results, along with our field observations on flowering, suggest that canopy gaps affect the genetic structure of C. japonica saplings in two distinct ways. First, canopy gaps may promote flowering and mating in an isolation-by-distance manner within canopy gaps. Second, canopy gaps may promote seed production and resulting overlap in seed shadows may weaken fine-scale genetic structures. PMID:16570095

  11. Biomass and efficiency of radiation utilization in monsoon evergreen broadleaved forest in Dinghushan biosphere reserve

    International Nuclear Information System (INIS)

    The biomass, productivity and efficiency of radiation utilization in Cryptocarya concinna community in Dinghushan Biosphere Reserve were investigated.The biomass, photosynthetic rate and respiration rate were measured by harvesting the sample plants of the main species in several layers and by CO2 infra-red analysis. After ward,the productivity and the efficiency of radiation utilization were calculated. The results show that the biomass, gross primary productivity and net primary productivity in the community were 208 t · hm-2, 128704 kJ · m-2 · a-1 and 30451 kJ · m-2 · a-1,respectively the utilization efficiency of available radiation for gross primary productivity and net primary productivity were 9.66% and 2.29%, respectively. These results explain the potential productivity of the forest community in southern subtropical zone. (author)

  12. Seasonal ozone uptake by a warm-temperate mixed deciduous and evergreen broadleaf forest in western Japan estimated by the Penman–Monteith approach combined with a photosynthesis-dependent stomatal model

    International Nuclear Information System (INIS)

    Canopy-level stomatal conductance over a warm-temperate mixed deciduous and evergreen broadleaf forest in Japan was estimated by the Penman–Monteith approach, as compensated by a semi-empirical photosynthesis-dependent stomatal model, where photosynthesis, relative humidity, and CO2 concentration were assumed to regulate stomatal conductance. This approach, using eddy covariance data and routine meteorological observations at a flux tower site, permits the continuous estimation of canopy-level O3 uptake, even when the Penman–Monteith approach is unavailable (i.e. in case of direct evaporation from soil or wet leaves). Distortion was observed between the AOT40 exposure index and O3 uptake through stomata, as AOT40 peaked in April, but with O3 uptake occurring in July. Thus, leaf pre-maturation in the predominant deciduous broadleaf tree species (Quercus serrata) might suppress O3 uptake in springtime, even when the highest O3 concentrations were observed. -- Highlights: • We estimate canopy-level O3 uptake in a warm-temperate mixed forest in Japan. • The Penman–Monteith approach is compensated by a photosynthesis-dependent model. • Stomatal conductance can be estimated, even in a partly-opened or wet canopy. • The estimated O3 dose peaks in summer though O3 exposure peaks in spring. -- Estimation of seasonal O3 uptake over a mixed-temperate forest compensated by a photosynthesis-dependent stomatal model

  13. Seasonal dynamics in the stable carbon isotope composition δ¹³C from non-leafy branch, trunk and coarse root CO₂ efflux of adult deciduous (Fagus sylvatica) and evergreen (Picea abies) trees.

    Science.gov (United States)

    Kuptz, Daniel; Matyssek, Rainer; Grams, Thorsten E E

    2011-03-01

    Respiration is a substantial driver of carbon (C) flux in forest ecosystems and stable C isotopes provide an excellent tool for its investigation. We studied seasonal dynamics in δ¹³C of CO₂ efflux (δ¹³C(E)) from non-leafy branches, upper and lower trunks and coarse roots of adult trees, comparing deciduous Fagus sylvatica (European beech) with evergreen Picea abies (Norway spruce). In both species, we observed strong and similar seasonal dynamics in the δ¹³C(E) of above-ground plant components, whereas δ¹³C(E) of coarse roots was rather stable. During summer, δ¹³C(E) of trunks was about -28.2‰ (Beech) and -26.8‰ (Spruce). During winter dormancy, δ¹³C(E) increased by 5.6-9.1‰. The observed dynamics are likely related to a switch from growth to starch accumulation during fall and remobilization of starch, low TCA cycle activity and accumulation of malate by PEPc during winter. The seasonal δ¹³C(E) pattern of branches of Beech and upper trunks of Spruce was less variable, probably because these organs were additionally supplied by winter photosynthesis. In view of our results and pervious studies, we conclude that the pronounced increases in δ¹³C(E) of trunks during the winter results from interrupted access to recent photosynthates. PMID:21054435

  14. First report of three redlisted tree species from swampy relics of Goa State, India

    Directory of Open Access Journals (Sweden)

    A. Prabhugaonkar

    2014-02-01

    Full Text Available Myristica swamps, one of the relic ecosystems of Western Ghats, are considered home for many rare and endemic angiosperms. During an inventory of Myristica swamps in Goa State, two critically endangered species and one endangered species, viz. Semecarpus kathalekanensis Dasappa and M.H.Swaminath, Syzygium travancoricum Gamble and Myristica fatua Houtt. var. magnifica (Bedd. J. Sinclair respectively were recorded. Present report forms first record of these three tree species from the Goa State. This report extends their distribution into Northern Western Ghats from central Western Ghats.

  15. Faunal diversity in a semi-evergreen forest of Bornadi-Khalingduar Complex of Assam, India

    Directory of Open Access Journals (Sweden)

    Pallabi Chakraborty

    2015-09-01

    Full Text Available The Bornadi-Khalingduar Complex under the Manas Tiger Reserve, Assam is known to be an important area for wildlife movement to and from India and Bhutan. The contiguous landscape encompassing the two neighbouring countries provides a good habitat for diversity of wildlife and also as an important corridor area.  We carried out an opportunistic camera-trapping exercise to document the faunal diversity in the area. A month-long exercise photo-captured a total of 19 species belonging to 12 families, including the Leopard, Wild Dog, Leopard Cat, Binturong, Elephant, Sambar, Barking Deer and various birds. These findings of the study reveal the importance, threats and potential of the area and recommendations have been made to secure this corridor for continuous animal movement. Anthropogenic disturbance is a major deterrent to undisturbed animal movement in this area with resultant forest fragmentation and degradation. This indicates the need for effective conservation strategies in order to maintain the remnants of this corridor complex.  

  16. Enhancement of Phloem Exudation from Fraxinus uhdei Wenz. (Evergreen Ash) using Ethylenediaminetetraacetic Acid.

    Science.gov (United States)

    Costello, L R; Bassham, J A; Calvin, M

    1982-01-01

    Ethylenediaminetetraacetic acid (EDTA) enhanced the exudation of (14)C-labeled assimilates from excised leaflets and whole plant specimens of Fraxinus uhdei Wenz. A 2 millimolar EDTA concentration was found to be most effective in promoting exudation from excised leaflets, while 10 millimolar EDTA was most effective in whole plants experiments. Exudation rate reached a maximum after 24 hours in both experiments. The continuous presence of EDTA throughout the treatment period was required for maximum exudation from excised leaflets. Stachyose, raffinose, verbascose, and sucrose were the principal compounds found to occur in exudate samples. These compounds are typically transported in sieve elements of various Fraxinus species suggesting the exudate was of phloem origin. Electron microscope studies of petiolule sieve plate pores from excised leaflets showed substantially less callose appearing after treatment with EDTA than after H(2)O treatment. It is suggested that EDTA enhances phloem exudation by inhibiting or reducing callose formation in sieve plate pores. The exudation enhancement technique described for whole plant specimens is suggested as a useful means of collecting phloem sap and studying translocation in woody plants. PMID:16662189

  17. Enhancement of phloem exudation from Fraxinus uhdei Wenz. (evergreen ash) using ethylenediaminetetraacetic acid

    International Nuclear Information System (INIS)

    Ethylenediaminetetraacetic acid (EDTA) enhanced the exudation of 14C-labeled assimilates from excised leaflets and whole plant specimens of Fraxinus uhdei Wenz. A 2 millimolar EDTA concentration was found to be most effective in promoting exudation from excised leaflets, while 10 millimolar EDTA was most effective in whole plants experiments. Exudation rate reached a maximum after 24 hours in both experiments. The continuous presence of EDTA throughout the treatment period was required for maximum exudation from excised leaflets. Stachyose, raffinose, verbascose, and sucrose were the principal compounds found to occur in exudate samples. These compounds are typically transported in sieve elements of various Fraxinus species suggesting the exudate was of phloem orgin. Electron microscope studies of petiolule sieve plate pores from excisd leaflets showed substantially less callose appearing after treatment with EDTA than after H2O treatment. It is suggested that EDTA enhances phloem exudation by inhibiting or reducing callose formation in sieve plate pores. The exudation enhancement technique described for whole plant specimens is suggested as a useful means of collecting phloem sap and studying translocation in woody plants

  18. Enhancement of phloem exudation from Fraxinus uhdei Wenz. (evergreen ash) using ethylenediaminetetraacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Costello, L.R.; Bassham, J.A., Calvin, M.

    1982-01-01

    Ethylenediaminetetraacetic acid (EDTA) enhanced the exudation of /sup 14/C-labeled assimilates from excised leaflets and whole plant specimens of Fraxinus uhdei Wenz. A 2 millimolar EDTA concentration was found to be most effective in promoting exudation from excised leaflets, while 10 millimolar EDTA was most effective in whole plants experiments. Exudation rate reached a maximum after 24 hours in both experiments. The continuous presence of EDTA throughout the treatment period was required for maximum exudation from excised leaflets. Stachyose, raffinose, verbascose, and sucrose were the principal compounds found to occur in exudate samples. These compounds are typically transported in sieve elements of various Fraxinus species suggesting the exudate was of phloem orgin. Electron microscope studies of petiolule sieve plate pores from excisd leaflets showed substantially less callose appearing after treatment with EDTA than after H/sub 2/O treatment. It is suggested that EDTA enhances phloem exudation by inhibiting or reducing callose formation in sieve plate pores. The exudation enhancement technique described for whole plant specimens is suggested as a useful means of collecting phloem sap and studying translocation in woody plants.

  19. Enhancement of Phloem Exudation from Fraxinus uhdei Wenz. (Evergreen Ash) using Ethylenediaminetetraacetic Acid 1

    Science.gov (United States)

    Costello, L. R.; Bassham, James A.; Calvin, Melvin

    1982-01-01

    Ethylenediaminetetraacetic acid (EDTA) enhanced the exudation of 14C-labeled assimilates from excised leaflets and whole plant specimens of Fraxinus uhdei Wenz. A 2 millimolar EDTA concentration was found to be most effective in promoting exudation from excised leaflets, while 10 millimolar EDTA was most effective in whole plants experiments. Exudation rate reached a maximum after 24 hours in both experiments. The continuous presence of EDTA throughout the treatment period was required for maximum exudation from excised leaflets. Stachyose, raffinose, verbascose, and sucrose were the principal compounds found to occur in exudate samples. These compounds are typically transported in sieve elements of various Fraxinus species suggesting the exudate was of phloem origin. Electron microscope studies of petiolule sieve plate pores from excised leaflets showed substantially less callose appearing after treatment with EDTA than after H2O treatment. It is suggested that EDTA enhances phloem exudation by inhibiting or reducing callose formation in sieve plate pores. The exudation enhancement technique described for whole plant specimens is suggested as a useful means of collecting phloem sap and studying translocation in woody plants. Images PMID:16662189

  20. Meaningful traits for grouping plant species across arid ecosystems.

    Science.gov (United States)

    Bär Lamas, Marlene Ivonne; Carrera, A L; Bertiller, M B

    2016-05-01

    Grouping species may provide some degree of simplification to understand the ecological function of plants on key ecosystem processes. We asked whether groups of plant species based on morpho-chemical traits associated with plant persistence and stress/disturbance resistance reflect dominant plant growth forms in arid ecosystems. We selected twelve sites across an aridity gradient in northern Patagonia. At each site, we identified modal size plants of each dominant species and assessed specific leaf area (SLA), plant height, seed mass, N and soluble phenol concentration in green and senesced leaves at each plant. Plant species were grouped according with plant growth forms (perennial grasses, evergreen shrubs and deciduous shrubs) and plant morphological and/or chemical traits using cluster analysis. We calculated mean values of each plant trait for each species group and plant growth form. Plant growth forms significantly differed among them in most of the morpho-chemical traits. Evergreen shrubs were tall plants with the highest seed mass and soluble phenols in leaves, deciduous shrubs were also tall plants with high SLA and the highest N in leaves, and perennial grasses were short plants with high SLA and low concentration of N and soluble phenols in leaves. Grouping species by the combination of morpho-chemical traits yielded 4 groups in which species from one growth form prevailed. These species groups differed in soluble phenol concentration in senesced leaves and plant height. These traits were highly correlated. We concluded that (1) plant height is a relevant synthetic variable, (2) growth forms adequately summarize ecological strategies of species in arid ecosystems, and (3) the inclusion of plant morphological and chemical traits related to defenses against environmental stresses and herbivory enhanced the potential of species grouping, particularly within shrubby growth forms. PMID:26897637

  1. EBBR Observation and fluctuation of evapotranspiration in a Cambodian evergreen forest

    Science.gov (United States)

    Shimizu, A.; Tanaka, K.; Nobuhiro, T.; Kabeya, N.; Tamai, K.; Chann, S.; Keth, N.

    2006-12-01

    In the Mekong River basin, the increase in farming associated with a rapidly growing population has lead to a dramatic reduction in forest area. The incidence of illegal logging and wood collection is also increasing throughout the entire Asian Monsoon area, including Cambodia. According to Cambodian government statistics, the proportion of forested area in Cambodia has declined from 74% in the 1970s to 58% in 1993. Despite this reduction, the area covered by forests in Cambodia remains high compared to that in adjacent countries. We measured several meteorological elements associated with evapotranspiration, runoff, and precipitation in the broadleaf forest watersheds in Kampong Thom Province of central Cambodia. The topography of the watershed studied was relatively gentle. Meteorological factors were observed with a 60-m-high meteorological observation tower to determine the amount of evapotranspiration. The Energy Balance Bowen Ratio (EBBR) system was used to calculate the energy budget above the forest canopy for estimating evapotranspiration. Moreover, an automatic rain gauge was placed at the top of the observation tower and an interception plot was established for calculating the rainfall interception ratio by forest coverage near the tower. The main vegetation species at the research site were Vatica odorata and Myristica iners. The mean tree height in the upper crown layer at the research site was 27 m, and the maximum tree height was 45 m. Meteorological data for estimation of evapotranspiration were collected from October 2003 to September 2004. The SPAC model, used for analyzing characteristics of evapotranspiration variation, is a multilayer model considering factors such as Reynolds stress, temperature and H2O exchanges of leaves and ground surface, radiation transfer within the canopy, atmospheric diffusion within and above the canopy, energy balance for leaves and ground surface, interception of rainfall, and water budget for leaves. Several

  2. First identification of the pathogen causing tumor malformations in evergreen oaks in Spain

    Directory of Open Access Journals (Sweden)

    María Martín-Santafé

    2014-08-01

    Full Text Available Aim of study: In recent years an increase in pests and diseases associated with truffle plantations has been detected in Spain. The appearance of tumor malformations in trunks and branches of Quercus ilex L. must be highlighted. These bumps have expanded dramatically since the increase in the number and density of truffle plantations. This pathology is not only found in plantations, but also in forests, and in trees of all ages.Area of study: the eastern mountains and the truffle plantations of the Iberian Peninsula.Material and methods: Positive results were obtained by using two types of PCR: Real-Time PCR and nested-PCR. They were carried out with primers that amplified 16S ribosomal gene sequences that are common to all known phytoplasmas.Main result: The disease manifests itself as an irregular thickening in branches of any age and in the trunk that results in the woody tissue cracking open, forming wounds. The affected branches usually undergo necrosis and in case of affecting the trunk, the tree will eventually die. After an extensive literature review and several failed attempts to isolate fungal and bacterial species from these tumors and wounds, the disease-causing organism has been identified as a Candidatus Phytoplasma.Research highlights: The appearance of this disease may endanger the profitability of an a priori profitable crop. Due to the intrinsic characteristics of the organism, and knowing that no phytosanitary treatment is able to control phytoplasmas, future works should be directed towards identifying the transmitter in order to control the disease.Key words: Candidatus Phytoplasma; PCR; Quercus ilex; black truffle; Tuber melanosporum.

  3. Eco-physiological adaptation of dominant tree species at two contrasting karst habitats in southwestern China [v1; ref status: indexed, http://f1000r.es/xt

    Directory of Open Access Journals (Sweden)

    Shouren Zhang

    2013-05-01

    Full Text Available The purpose of this study was to investigate the eco-physiological adaptation of indigenous woody species to their habitats in karst areas of southwestern China. Two contrasting forest habitats were studied: a degraded habitat in Daxiagu and a well-developed habitat in Tianlongshan, and the eco-physiological characteristics of the trees were measured for three growth seasons. Photosynthetic rate (Pn, stomatal conductance (gs, and transpiration rate (Tr of the tree species in Daxiagu were 2-3 times higher than those in Tianlongshan under ambient conditions. However, this habitat effect was not significant when measurements were taken under controlled conditions. Under controlled conditions, Pn, gs, and Tr of the deciduous species were markedly higher than those for the evergreen species. Habitat had no significant effect on water use efficiency (WUE or photochemical characteristics of PSII. The stomatal sensitivity of woody species in the degraded habitat was much higher than that in the well-developed habitat. Similarly, the leaf total nitrogen (N and phosphorus (P contents expressed on the basis of either dry mass or leaf area were also much higher in Daxiagu than they were in Tianlongshan. The mass-based leaf total N content of deciduous species was much higher than that of evergreen species, while leaf area-based total N and P contents of evergreens were significantly higher than those of deciduous species. The photosynthetic nitrogen- and phosphorus-use efficiencies (PNUE and PPUE of deciduous species were much higher than those of evergreens. Further, the PPUE of the woody species in Tianlongshan was much higher than that  of the woody species in Daxiagu. The results from three growth seasons imply that the tree species were able to adapt well to their growth habitats. Furthermore, it seems that so-called “temporary drought stress” may not occur, or may not be severe for most woody plants in karst areas of southwestern China.

  4. Eco-physiological adaptation of dominant tree species at two contrasting karst habitats in southwestern China [v2; ref status: indexed, http://f1000r.es/2d9

    Directory of Open Access Journals (Sweden)

    Shouren Zhang

    2013-11-01

    Full Text Available The purpose of this study was to investigate the eco-physiological adaptation of indigenous woody species to their habitats in karst areas of southwestern China. Two contrasting forest habitats were studied: a degraded habitat in Daxiagu and a well-developed habitat in Tianlongshan, and the eco-physiological characteristics of the trees were measured for three growth seasons. Photosynthetic rate (Pn, stomatal conductance (gs, and transpiration rate (Tr of the tree species in Daxiagu were 2-3 times higher than those in Tianlongshan under ambient conditions. However, this habitat effect was not significant when measurements were taken under controlled conditions. Under controlled conditions, Pn, gs, and Tr of the deciduous species were markedly higher than those for the evergreen species. Habitat had no significant effect on water use efficiency (WUE or photochemical characteristics of PSII. The stomatal sensitivity of woody species in the degraded habitat was much higher than that in the well-developed habitat. Similarly, the leaf total nitrogen (N and phosphorus (P contents expressed on the basis of either dry mass or leaf area were also much higher in Daxiagu than they were in Tianlongshan. The mass-based leaf total N content of deciduous species was much higher than that of evergreen species, while leaf area-based total N and P contents of evergreens were significantly higher than those of deciduous species. The photosynthetic nitrogen- and phosphorus-use efficiencies (PNUE and PPUE of deciduous species were much higher than those of evergreens. Further, the PPUE of the woody species in Tianlongshan was much higher than that  of the woody species in Daxiagu. The results from three growth seasons imply that the tree species were able to adapt well to their growth habitats. Furthermore, it seems that so-called “temporary drought stress” may not occur, or may not be severe for most woody plants in karst areas of southwestern China.

  5. [Characterization of mid-subtropical evergreen broad-leaved forest gap based on light detection and ranging (LiDAR)].

    Science.gov (United States)

    Liu, Feng; Tan, Chang; Wang, Hong; Zhang, Jiang; Wan, Ying; Long, Jiang-ping; Liu, Rui-xi

    2015-12-01

    Light Detection and Ranging (LiDAR) is an active remote sensing technology for acqui- ring three-dimensional structure parameters of vegetation canopy with high accuracy over multiple spatial scales, which is greatly important to the promotion of forest disturbance ecology and the ap- plication on gaps. This paper focused on mid-subtropical evergreen broadleaved forest in Hunan Province, and small footprint LiDAR point data were adopted to identify canopy gaps. and measure geomagnetic characteristics of gaps. The optimal grid model resolution and interpolation methods were chosen to generate canopy height model, and the computer graphics processing was adopted to estimate characteristics of gaps which involved gap size, canopy height and gap shape index, then field investigation was utilized to validate the estimation results. The results showed that the gap rec- ognition rate was 94.8%, and the major influencing factors were gap size and gap maker type. Line- ar correlation was observed between LiDAR estimation and field investigation, and the R² values of gap size and canopy height case were 0.962 and 0.878, respectively. Compared with field investiga- tion, the size of mean estimated gap was 19.9% larger and the mean estimated canopy height was 9.9% less. Gap density was 12.8 gaps · hm⁻² and the area of gaps occupied 13.3% of the forest area. The average gap size, canopy height and gap shape index were 85.06 m², 15.33 m and 1.71, respectively. The study site usually contained small gaps in which the edge effect was not obvious. PMID:27111996

  6. [Spatial analysis of LAIe of montane evergreen broad-leaved forest in southwest Sichuan, Northwest China, based on image texture].

    Science.gov (United States)

    Zhao, An-Jiu; Yang, Chang-Qing; Liao, Cheng-Yun

    2014-11-01

    Optical remote sensing is still one of the most attractive choices for obtaining leaf area index (LAI) information, but currently may be derived from remotely sensed data with limited accuracy. Effective leaf area index (LAIe) of montane evergreen broad-leaved forest in southwest Sichuan was inventoried and assessed in 83 sample field plots of 20 m x 20 m using different types of image processing techniques, including simple spectral band, simple spectral band ratios and principal component. Texture information was extracted by gray level co-occurrence matrices (GLCM) from different types of processing image. The results showed that there were correlations of different degrees between LAIe and texture parameters, and highly significant correlations were observed between LAIe with the homogeneity of the B1 band, B1/B4 band ratio or principal component PC1. Using texture information of remotely sensed data as auxiliary variables, we developed geostatistics models. Compared with the model based on NDVI auxiliary variable, the accuracy of LAIe were improved, presenting an increase by 5.3% with the homogeneity of the B1 band, 11.0% with the homogeneity B1/B4 band ratio, and 14.5% with the homogeneity principal component PC1, and the statistical errors were also reduced to some extent. The optimal LAIe model of spatial geostatistics was obtained when taking NDVI and homogeneity principal component PC1 as auxiliary variables (R2 = 0.840, RMSE = 0.212). Our results provided a new way to estimate regional spatial distribution of LAI using other auxiliary variables besides the vegetation index. PMID:25898622

  7. Biparental inbreeding depression, genetic relatedness and progeny vigour in a wind-pollinated treeline species in Argentina

    OpenAIRE

    Seltmann, Peggy; Hensen, Isabell; Renison, Daniel; Wesche, Karsten; Ploch, Sebastian; Dueñas, Juan; Cocucci, Andrea; Jung, Klaus

    2009-01-01

    Spatially restricted gene flow and resulting spatial genetic structure are generally considered as being the primary controlling factors in the dynamics of biparental inbreeding depression in a wide range of plant species. However, wind-pollinated angiosperm trees have not been studied adequately in this respect. The present study analyses the relationships among parental genetic similarity, outcrossing distances, progeny vigour and mortality in Polylepis australis (Rosaceae), a wind-pollinat...

  8. Geranyllinalool synthases in solanaceae and other angiosperms constitute an ancient branch of diterpene synthases involved in the synthesis of defensive compounds

    OpenAIRE

    Falara, V.; Alba, J.M.; Kant, M.R.; Schuurink, R. C.; Pichersky, E

    2014-01-01

    Many angiosperm plants, including basal dicots, eudicots, and monocots, emit (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene, which is derived from geranyllinalool, in response to biotic challenge. An Arabidopsis (Arabidopsis thaliana) geranyllinalool synthase (GLS) belonging to the e/f clade of the terpene synthase (TPS) family and two Fabaceae GLSs that belong to the TPS-g clade have been reported, making it unclear which is the main route to geranyllinalool in plants. We characterized a to...

  9. Unexpected Presence of Graminan- and Levan-Type Fructans in the Evergreen Frost-Hardy Eudicot Pachysandra terminalis (Buxaceae): Purification, Cloning, and Functional Analysis of a 6-SST/6-SFT Enzyme1[W

    Science.gov (United States)

    Van den Ende, Wim; Coopman, Marlies; Clerens, Stefan; Vergauwen, Rudy; Le Roy, Katrien; Lammens, Willem; Van Laere, André

    2011-01-01

    About 15% of flowering plants accumulate fructans. Inulin-type fructans with β(2,1) fructosyl linkages typically accumulate in the core eudicot families (e.g. Asteraceae), while levan-type fructans with β(2,6) linkages and branched, graminan-type fructans with mixed linkages predominate in monocot families. Here, we describe the unexpected finding that graminan- and levan-type fructans, as typically occurring in wheat (Triticum aestivum) and barley (Hordeum vulgare), also accumulate in Pachysandra terminalis, an evergreen, frost-hardy basal eudicot species. Part of the complex graminan- and levan-type fructans as accumulating in vivo can be produced in vitro by a sucrose:fructan 6-fructosyltransferase (6-SFT) enzyme with inherent sucrose:sucrose 1-fructosyltransferase (1-SST) and fructan 6-exohydrolase side activities. This enzyme produces a series of cereal-like graminan- and levan-type fructans from sucrose as a single substrate. The 6-SST/6-SFT enzyme was fully purified by classic column chromatography. In-gel trypsin digestion led to reverse transcription-polymerase chain reaction-based cDNA cloning. The functionality of the 6-SST/6-SFT cDNA was demonstrated after heterologous expression in Pichia pastoris. Both the recombinant and native enzymes showed rather similar substrate specificity characteristics, including peculiar temperature-dependent inherent 1-SST and fructan 6-exohydrolase side activities. The finding that cereal-type fructans accumulate in a basal eudicot species further confirms the polyphyletic origin of fructan biosynthesis in nature. Our data suggest that the fructan syndrome in P. terminalis can be considered as a recent evolutionary event. Putative connections between abiotic stress and fructans are discussed. PMID:21037113

  10. Unexpected presence of graminan- and levan-type fructans in the evergreen frost-hardy eudicot Pachysandra terminalis (Buxaceae): purification, cloning, and functional analysis of a 6-SST/6-SFT enzyme.

    Science.gov (United States)

    Van den Ende, Wim; Coopman, Marlies; Clerens, Stefan; Vergauwen, Rudy; Le Roy, Katrien; Lammens, Willem; Van Laere, André

    2011-01-01

    About 15% of flowering plants accumulate fructans. Inulin-type fructans with β(2,1) fructosyl linkages typically accumulate in the core eudicot families (e.g. Asteraceae), while levan-type fructans with β(2,6) linkages and branched, graminan-type fructans with mixed linkages predominate in monocot families. Here, we describe the unexpected finding that graminan- and levan-type fructans, as typically occurring in wheat (Triticum aestivum) and barley (Hordeum vulgare), also accumulate in Pachysandra terminalis, an evergreen, frost-hardy basal eudicot species. Part of the complex graminan- and levan-type fructans as accumulating in vivo can be produced in vitro by a sucrose:fructan 6-fructosyltransferase (6-SFT) enzyme with inherent sucrose:sucrose 1-fructosyltransferase (1-SST) and fructan 6-exohydrolase side activities. This enzyme produces a series of cereal-like graminan- and levan-type fructans from sucrose as a single substrate. The 6-SST/6-SFT enzyme was fully purified by classic column chromatography. In-gel trypsin digestion led to reverse transcription-polymerase chain reaction-based cDNA cloning. The functionality of the 6-SST/6-SFT cDNA was demonstrated after heterologous expression in Pichia pastoris. Both the recombinant and native enzymes showed rather similar substrate specificity characteristics, including peculiar temperature-dependent inherent 1-SST and fructan 6-exohydrolase side activities. The finding that cereal-type fructans accumulate in a basal eudicot species further confirms the polyphyletic origin of fructan biosynthesis in nature. Our data suggest that the fructan syndrome in P. terminalis can be considered as a recent evolutionary event. Putative connections between abiotic stress and fructans are discussed. PMID:21037113

  11. Patterns of nucleotide substitution in angiosperm cpDNA trnL (UAA)-F(GAA) regions

    NARCIS (Netherlands)

    Bakker, F.T.; Culham, A.; Gomez-Martinez, R.; Carvalho, J.; Compton, J.; Dawtrey, R.; Gibby, M.

    2000-01-01

    Patterns of substitution in chloroplast encoded trnL-F regions were compared between species of Actaea (Ranunculales), Digitalis (Scrophulariales), Drosera (Caryophyllales), Panicoideae (Poales), the small chromosome species clade of Pelargonium (Geraniales), each representing a different order of f

  12. Carbon storage in evergreen broad-leaf forests in mid-subtropical re-gion of China at four succession stages

    Institute of Scientific and Technical Information of China (English)

    ZENG Zhang-quan; WANG Si-long; ZHANG Can-ming; GONG Chao; HU Qing

    2013-01-01

    To better understand the effect of forest succession on carbon sequestration, we investigated carbon stock and allocation of evergreen broadleaf forest, a major zonal forest in subtropical China. We sought to quantify the carbon sequestration potential. We sampled four forest types, shrub (SR), pine (Pinus massoniana) forest (PF), pine and broadleaf mixed forest (MF) and evergreen broadleaf forest (BF). A regression equation was constructed using tree height and diameter at breast height (DBH) and elements of total tree biomass. The equation was subse-quently utilized to estimate tree carbon storage. The carbon storage of understory, litter, and soil was also estimated. Carbon storage in biomass increased significantly from the early succession stage SR (6.21 t⋅ha-1) to the late stage BF (134.87 t⋅ha-1). The biomass carbon stock of forest layers generally increased with succession except for the understory. The soil organic carbon storage for the total profile increased with forest succession, from 51.16 to 90.49 t⋅ha-1, but the contribution of SOC to the carbon stock of the forest ecosystem declined from 89.18% to 40.15%. The carbon stock at ecosystem scale increased significantly with succes-sion from SR (57.37 t⋅ha-1), to PF (154.20 t⋅ha-1), to MF (170.96 t⋅ha-1) and to BF (225.36 t⋅ha-1), with carbon stock of BF 3.93 times that of SR. The forests in our study have great potential for increasing carbon se-questration, and large areas of secondary or degraded evergreen broad-leaf forests in the subtropical zone of China could be a great carbon sink in future.

  13. Temporal dynamics of and effects of an ice storm on litter production in an evergreen broad-leaved forest in Gutianshan National Nature Reserve

    OpenAIRE

    Lei Zhang; Xiaohe Wang; Xiangcheng Mi; Jianhua Chen; Mingjian Yu

    2011-01-01

    To study litter production, composition, temporal dynamics, and the effects of an ice storm on litter production in a 24-ha evergreen broad-leaved forest dynamic plot in Gutianshan National Nature Reserve, Zhejiang, we set up 169 seed traps, and collected litterfall weekly from October 2006 to December 2009. Total annual litter production in 2007 and 2009 was 532.05 g/m2 and 375.17 g/m2, respectively. We attribute the remarkable drop in production due to an ice storm in February 2008. Leaves,...

  14. Phytochemistry and Pharmacology of Berberis Species

    Directory of Open Access Journals (Sweden)

    Najmeh Mokhber-Dezfuli

    2014-01-01

    Full Text Available The genus Berberis (Berberidaceae includes about 500 species worldwide, some of which are widely cultivated in the north-eastern regions of Iran. This genus consists of spiny deciduous evergreen shrubs, characterized by yellow wood and flowers. The cultivation of seedless barberry in South Khorasan goes back to two hundred years ago. Medicinal properties for all parts of these plants have been reported, including: Antimicrobial, antiemetic, antipyretic, antioxidant, anti-inflammatory, anti-arrhythmic, sedative, anti-cholinergic, cholagogic, anti-leishmaniasis, and anti-malaria. The main compounds found in various species of Berberis, are berberine and berbamine. Phytochemical analysis of various species of this genus revealed the presence of alkaloids, tannins, phenolic compounds, sterols and triterpenes. Although there are some review articles on Berberis vulgaris (as the most applied species, there is no review on the phytochemical and pharmacological activities of other well-known species of the genus Berberis. For this reason, the present review mainly focused on the diverse secondary metabolites of various species of this genus and the considerable pharmacological and biological activities together with a concise story of the botany and cultivation.

  15. Phytochemistry and pharmacology of berberis species.

    Science.gov (United States)

    Mokhber-Dezfuli, Najmeh; Saeidnia, Soodabeh; Gohari, Ahmad Reza; Kurepaz-Mahmoodabadi, Mahdieh

    2014-01-01

    The genus Berberis (Berberidaceae) includes about 500 species worldwide, some of which are widely cultivated in the north-eastern regions of Iran. This genus consists of spiny deciduous evergreen shrubs, characterized by yellow wood and flowers. The cultivation of seedless barberry in South Khorasan goes back to two hundred years ago. Medicinal properties for all parts of these plants have been reported, including: Antimicrobial, antiemetic, antipyretic, antioxidant, anti-inflammatory, anti-arrhythmic, sedative, anti-cholinergic, cholagogic, anti-leishmaniasis, and anti-malaria. The main compounds found in various species of Berberis, are berberine and berbamine. Phytochemical analysis of various species of this genus revealed the presence of alkaloids, tannins, phenolic compounds, sterols and triterpenes. Although there are some review articles on Berberis vulgaris (as the most applied species), there is no review on the phytochemical and pharmacological activities of other well-known species of the genus Berberis. For this reason, the present review mainly focused on the diverse secondary metabolites of various species of this genus and the considerable pharmacological and biological activities together with a concise story of the botany and cultivation. PMID:24600191

  16. Photosynthetic Characteristics of Dominant Evergreen Broadleaf Trees in Tiantong Mountain and Its Role of Ecological Significance in Community Succession%天童山常绿阔叶林优势树种光合生理特性在其群落演替中的生态意义研究

    Institute of Scientific and Technical Information of China (English)

    李昊民; 李宁云; 喻庆国; 杨宇明

    2011-01-01

    The photosynthetic characteristics of 4 dominant trees, Castanopsis fargesii, Schima superb, Lithocarpus glaber, and Castanopsis sclerophylla, which consisted of sub climax succession in evergreen broadleaf forestry in Tiantong Mount in Zhejiang, were studied.We analyzed the photosynthetic response curve, light compensation point and light saturation point, CO2 compensation point, daily photosynthesis change, transpiration and water utilization rate in the seedlings, saplings and adult trees of aforementioned four types of trees.By analysis and comparison of these indices, we asserted the photosynthetic characteristics of these dominant evergreen broadleaf trees might reflect the important roles these trees played in the succession of community.We found that the tree of Castanopsis fargesii was mostly adopted to the climax community structure among the four types of trees by having lowest C02 compensation point, excellent water utilization ability and perfect self-conservation in light inhibition condition, thus it had become dominant species in the community of evergreen broadleaf forestry in Tiantong Mount.%对浙江天童山常绿阔叶林组成亚顶级群落的4个优势树种:栲树、木荷、石栎、苦槠的光合生理特性进行了研究.对此4个优势树种幼苗、幼树、成年树等生长阶段的光合响应曲线及其光补偿点和光饱和点、CO2补偿点、光合作用日变化曲线、蒸腾作用和水分利用率等进行了测定,对比分析了优势树种光合生理生态特性及其在天童山常绿阔叶林群落演替过程中的重要作用.结果发现栲树具有最低的光和CO2补偿点、优良的水分利用性能,完善的光抑制自我保护机制,幼苗适应弱光环境且代谢旺盛而利于更新,在4个优势树种中最适应于顶级群落的特殊生境,因此成为了天童山常绿阔叶林自然演替顶级群落中重要值最大的优势种.

  17. Implication of Intrastorm Rainfall-Canopy Interaction on Interception Performance of Broadleaf Evergreen Shrubs in Urban Setting

    Science.gov (United States)

    Yerk, W.; Montalto, F. A.

    2014-12-01

    Because of its ability to intercept a portion of rainfall, vegetated canopy has a significant influence on the urban hydrological cycle. In turn, urban watersheds, characterized by large impervious areas, have an enormous and often adverse impact on receiving waters. However, most historical interception research has been dedicated to forest canopies. The goal of our research was to quantify rainfall partitioning by isolated evergreen canopies in an urban setting. Two years of the field experiment involved three exemplars of Cherry Laurel (Prunus laurocerasus'Otto Luyken'.) Each plant had ten rain gauges to measure throughfall with a five second sampling frequency. A number of preventive techniques were introduced to minimize the gauges' errors (e.g., splash-in, splash-out and excessive wetting.) Leaf area index was measured manually. We estimated the canopy storage capacity to be less than 0.5 mm. An on-site automated weather station provided meteorological data. Cumulative interception loss for the periods of August-December 2013 and April-July 2014 was 51%. Phenological change did not show a stable pattern of influence on throughfall depths. Measurements in May and July 2014 showed a high variability of stemflow (2-16%) between rain events. Throughfall and precipitation intensities (mm/hr) expressed strong linear relationships (adjusted coefficient of determination R20.79) for the entire range of observed rainfall intensities. The ratio of throughfall to precipitation intensity was 0.49:1. The observations suggest that reduction of throughfall intensity by the canopy during a rainstorm determines the bulk of interception depth. In contrast, the amount of water stored on the canopy and evaporated between and after rain events contributes minimally to interception. Simulations of potential evaporation based on the Penman-Monteith method revealed a serious underestimation of evaporation from the wet canopy surfaces during the rain events. Mechanisms other than heat

  18. The Genome of a Southern Hemisphere Seagrass Species (Zostera muelleri).

    Science.gov (United States)

    Lee, HueyTyng; Golicz, Agnieszka A; Bayer, Philipp E; Jiao, Yuannian; Tang, Haibao; Paterson, Andrew H; Sablok, Gaurav; Krishnaraj, Rahul R; Chan, Chon-Kit Kenneth; Batley, Jacqueline; Kendrick, Gary A; Larkum, Anthony W D; Ralph, Peter J; Edwards, David

    2016-09-01

    Seagrasses are marine angiosperms that evolved from land plants but returned to the sea around 140 million years ago during the early evolution of monocotyledonous plants. They successfully adapted to abiotic stresses associated with growth in the marine environment, and today, seagrasses are distributed in coastal waters worldwide. Seagrass meadows are an important oceanic carbon sink and provide food and breeding grounds for diverse marine species. Here, we report the assembly and characterization of the Zostera muelleri genome, a southern hemisphere temperate species. Multiple genes were lost or modified in Z. muelleri compared with terrestrial or floating aquatic plants that are associated with their adaptation to life in the ocean. These include genes for hormone biosynthesis and signaling and cell wall catabolism. There is evidence of whole-genome duplication in Z. muelleri; however, an ancient pan-commelinid duplication event is absent, highlighting the early divergence of this species from the main monocot lineages. PMID:27373688

  19. Active transposable elements recover species boundaries and geographic structure in Madagascan coffee species.

    Science.gov (United States)

    Roncal, Julissa; Guyot, Romain; Hamon, Perla; Crouzillat, Dominique; Rigoreau, Michel; Konan, Olivier N'Guessan; Rakotomalala, Jean-Jacques; Nowak, Michael D; Davis, Aaron P; de Kochko, Alexandre

    2016-02-01

    The completion of the genome assembly for the economically important coffee plant Coffea canephora (Rubiaceae) has allowed the use of bioinformatic tools to identify and characterize a diverse array of transposable elements (TEs), which can be used in evolutionary studies of the genus. An overview of the copy number and location within the C. canephora genome of four TEs is presented. These are tested for their use as molecular markers to unravel the evolutionary history of the Millotii Complex, a group of six wild coffee (Coffea) species native to Madagascar. Two TEs from the Gypsy superfamily successfully recovered some species boundaries and geographic structure among samples, whereas a TE from the Copia superfamily did not. Notably, species occurring in evergreen moist forests of eastern and southeastern Madagascar were divergent with respect to species in other habitats and regions. Our results suggest that the peak of transpositional activity of the Gypsy and Copia TEs occurred, respectively, before and after the speciation events of the tested Madagascan species. We conclude that the utilization of active TEs has considerable potential to unravel the evolutionary history and delimitation of closely related Coffea species. However, the selection of TE needs to be experimentally tested, since each element has its own evolutionary history. Different TEs with similar copy number in a given species can render different dendrograms; thus copy number is not a good selection criterion to attain phylogenetic resolution. PMID:26231981

  20. Carbon of Woody Debris in Plateau-type Karst Evergreen and Deciduous Broad-leaved Mixed Forest of Central Guizhou Province

    Science.gov (United States)

    Wu, Y.; Ni, J.; Liu, L.; Guo, C.

    2014-12-01

    Woody debris (WD) is an essential structural and functional component of forest ecosystems, and plays very significant roles for the biogeochemical cycling of carbon and nutrients. Coarse woody debris (CWD) is considered to be the major part in forest WD and it is primarily composed of logs, snags, stumps and large branches, while fine woody debris (FWD) mainly consists of small twigs. Composition, spatial distribution and carbon storage of WD have been studied in plateau-type karst evergreen and deciduous broad-leaved mixed forest in Tianlong Mountain of central Guizhou Province. Results showed that the carbon storage of WD in karst forests was less than non-karst forests. The major components of WD were fallen trees and snags with 10-20 cm in diameter. Fallen trees and snags with diameter greater than 20 cm were the smallest part of WD. The situation of WD in this region reflects the structural characteristics of WD in mid-late stage of plateau-type karst evergreen and deciduous broad-leaved mixed forest succession. The potential contribution of WD to the regional carbon cycle, and its relationship with climate change were finally discussed. The WD (especially CWD) plays an important role in the carbon cycle of karst forest. Forest WD production and decay rates may partially depend on climatic conditions, the accumulation of CWD and FWD carbon stocks in forests may be correlated with climate. Key words: woody debris, karst forests, carbon storage, spatial distribution, CWD, FWD.

  1. Two new species of Tetrastigma (Miq. Planch. (Vitaceae from Thailand

    Directory of Open Access Journals (Sweden)

    Phongsakorn Kochaiphat

    2016-05-01

    Full Text Available Two new species of Tetrastigma from Thailand, T. calcicola Kochaiph. & Trias-Blasi sp. nov. and T. jaichagunii C.L.Li ex Kochaiph. & Trias-Blasi sp. nov. are described and illustrated. Tetrastigma calcicola sp. nov. is a slender climber restricted to the open areas on limestone mountains at high elevation in the northern part of Thailand. The other species, T. jaichagunii sp. nov., is similar to T. harmandii Planch., but differs from it by having more densely verrucose young branches, broader leaflets, 4-lobed thick discs, bigger globose berries and oblongoid seeds. This species occurs along streams or in forest margins in evergreen forest and it is widely distributed in several parts of Thailand.

  2. Leaf life span and nitrogen content in semideciduous forest tree species (Croton priscus and Hymenaea courbaril) Duração da vida da folha e conteúdo de nitrogênio em espécies arbóreas (Croton priscus e Hymenaea courbaril) de floresta semidecídua

    OpenAIRE

    Claudia Regina Baptista Haddad; Damiani Pereira Lemos; Paulo Mazzafera

    2004-01-01

    In comparison to deciduous species, evergreen plants have lower leaf nutrient contents and higher leaf life span, important mechanisms for nutrient economy, allowing the colonization of low fertility soils. Strategies to conserve nitrogen in two semideciduous tropical forest tree species, with different leaf life spans were analyzed. The hypothesis was the fact that the two species would present different nitrogen conservation mechanisms in relation to chemical (total nitrogen, protein, chlor...

  3. Leaf phenology and its associated traits in the wintergreen species Aristotelia chilensis (Mol.) Stuntz (Elaeocarpaceae) Fenología foliar y sus caracteres asociados en la especie invierno-verde Aristotelia chilensis (Mol.) Stuntz (Elaeocarpaceae)

    OpenAIRE

    MARÍA ANGÉLICA DAMASCOS; Carlos Henrique B. de A. Prado

    2001-01-01

    The post-summer leaf demography of the wintergreen species Aristotelia chilensis growing near San Carlos de Bariloche, Argentina, is described. Its specific leaf mass (SLM, g m-2) is compared to that of the deciduous and evergreen species of the Andean-Patagonian forests and to that of other communities abroad. The pattern of leaf emergence is intermediate, with leaf flush in spring (basal cohort, BC), followed by successive unfolding of the remaining leaves (distal cohort, DC) during summer....

  4. Water storage dynamics in the main stem of subtropical tree species differing in wood density, growth rate and life history traits.

    Science.gov (United States)

    Oliva Carrasco, Laureano; Bucci, Sandra J; Di Francescantonio, Débora; Lezcano, Oscar A; Campanello, Paula I; Scholz, Fabián G; Rodríguez, Sabrina; Madanes, N; Cristiano, Piedad M; Hao, Guang-You; Holbrook, N Michele; Goldstein, Guillermo

    2015-04-01

    Wood biophysical properties and the dynamics of water storage discharge and refilling were studied in the trunk of canopy tree species with diverse life history and functional traits in subtropical forests of northeast Argentina. Multiple techniques assessing capacitance and storage capacity were used simultaneously to improve our understanding of the functional significance of internal water sources in trunks of large trees. Sapwood capacitances of 10 tree species were characterized using pressure-volume relationships of sapwood samples obtained from the trunk. Frequency domain reflectometry was used to continuously monitor the volumetric water content in the main stems. Simultaneous sap flow measurements on branches and at the base of the tree trunk, as well as diurnal variations in trunk contraction and expansion, were used as additional measures of stem water storage use and refilling dynamics. All evidence indicates that tree trunk internal water storage contributes from 6 to 28% of the daily water budget of large trees depending on the species. The contribution of stored water in stems of trees to total daily transpiration was greater for deciduous species, which exhibited higher capacitance and lower sapwood density. A linear relationship across species was observed between wood density and growth rates with the higher wood density species (mostly evergreen) associated with lower growth rates and the lower wood density species (mostly deciduous) associated with higher growth rates. The large sapwood capacitance in deciduous species may help to avoid catastrophic embolism in xylem conduits. This may be a low-cost adaptation to avoid water deficits during peak water use at midday and under temporary drought periods and will contribute to higher growth rates in deciduous tree species compared with evergreen ones. Large capacitance appears to have a central role in the rapid growth patterns of deciduous species facilitating rapid canopy access as these species

  5. CHS基因起源初探及其在被子植物中的进化分析%A Preliminary Study on the Origin and Evolution of Chalcone Synthase (CHS) Gene in Angiosperms

    Institute of Scientific and Technical Information of China (English)

    黄金霞; 瞿礼嘉; 杨继; 银好; 顾红雅

    2004-01-01

    利用PCR与TAlL-PCR方法,从半月苔(Lunularia cructata(L.)Dum.ex Lindb)中获得了一段长约l 000 bp的基因片段,它与已知的CHS基因在核苷酸水平上的相似性大于56%,在氨基酸水平上的相似性大于60%,所推断的氨基酸序列中酶反应的4个催化位点与已知晶体结构的紫花苜蓿MCHS2A上的催化位点相同,首次证明了苔类植物中可能存在类CHS基因,将CHS基因的起源时间推到苔藓类植物出现之前.以该序列和两种蕨类植物(Psilotumnudum(L.)Griseb.和Equisetum arvense L.)的CHS序列作为外类群,应用邻接法、最大简约法和最大似然法分别构建了被子植物的CHS的分子系统树.结果表明,大部分科中的CHS分布在不同的分支上,而十字花科、可科和禾本科各自聚成一个单系类群.以邻接树为依据,对茄科、旋花科和菊科的CHS基因进行了相对碱基替换速率的检测,发现这三个科内或科间序列的替换速率不一致.被子植物的CHS基因在基因拷贝数目、碱基替换速率以及重复/丢失事件的发生上都存在较大的差异,这种差异可能与被子植物的生活史、生活环境、花的特性以及对外界的防御系统等的多样性相关.%By using Thermal Asymmetric Interlaced PCR (TAIL-PCR) method, a DNA fragment of about 1 000 bp was amplified and cloned from a liverwort species (Lunularia cruciata (L.) Dum. ex Lindb). The nucleotide sequence of this fragment and its deduced amino acid sequence shared about 56% and 60% identity with those of exon 2 of CHS genes from vascular plants respectively. The four characteristic catalyzing sites of CHS were found conserved in the deduced amino acid sequences of the fragment when compared with other CHS sequences. This is the first report of cloning a CHS-like gene from liverworts,suggesting that the origin of CHS genes may predate liverworts. Using the CHS-like sequence from L.cruciata and CHS sequences from two fern-alien species, Psilotum

  6. Effect of Bacillus spp. on seed germination of selected species of the genus Cuscuta (Convolvulaceae

    Directory of Open Access Journals (Sweden)

    Fatemeh Hadizadeh

    2014-04-01

    Full Text Available Species of the genus Cuscuta are annual angiospermic rootless and leafless (achlorophyllous parasitic plants. Bacillus is an example of PGPR bacteria exhibiting plant growth promoting activity. In this study the effects of bacterial suspension on germination of dodder’s seed has been determinated. Seeds of three Cuscuta species were collected from field for evaluating effects of three different Bacillus on its germination. Results show that seed germination of the C. monogyna and C. campestris is inhibited by all three bacterial species. Based on Tukey analysis, the highest inhibitory activity on seed germination of C. monogyna was shown with B. pumilus (68.88%; as well as C. campestris with B. megaterium (95.76% and B. pumilus (91.53%, whilst seed germination of C. europaea was almost identically inhibited by all three bacterial species. This paper reports the variable effects of Bacillus species on the seed germination of selected Cuscuta species.

  7. Occurrence of three Western Ghats elements in dry evergreen forest of Gingee Hills, Eastern Ghats of Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    N. Balachandran

    2015-11-01

    Full Text Available The botanical exploration of Gingee hills, Tamil Nadu, India resulted in collection of three species viz., Diospyros affinis Thwaites, Drypetes porteri (Gamble Pax & K. Hoffm. and Premna wightiana Schauer have showing their extended geographical distribution in Eastern Ghats. This study revealed about the disjunct distribution, ecology and the present status of these three species from the Eastern Ghats. 

  8. Reproductive ecology of Syzygium alternifolium (Myrtaceae), an endemic and endangered tropical tree species in the southern Eastern Ghats of India

    OpenAIRE

    A.J.S. Raju; J.R. Krishna; P.H. Chandra

    2014-01-01

    Syzygium alternifolium is a semi-evergreen mass-flowering tree species of dry deciduous forest in the southern Eastern Ghats of India. It is a mass bloomer with flowering during dry season. The floral traits suggest a mixed pollination syndrome involving entomophily and anemophily together called as ambophily. Further, the floral traits suggest generalist pollination system adapted for a guild of pollinating insects. The plant is self-incompatible and obligate out-crosser. The flowers are man...

  9. Vegetation response and landscape dynamics of Indian Summer Monsoon variations during Holocene: an eco-geomorphological appraisal of tropical evergreen forest subfossil logs.

    Science.gov (United States)

    Kumaran, Navnith K P; Padmalal, Damodaran; Nair, Madhavan K; Limaye, Ruta B; Guleria, Jaswant S; Srivastava, Rashmi; Shukla, Anumeha

    2014-01-01

    The high rainfall and low sea level during Early Holocene had a significant impact on the development and sustenance of dense forest and swamp-marsh cover along the southwest coast of India. This heavy rainfall flooded the coastal plains, forest flourishing in the abandoned river channels and other low-lying areas in midland.The coastline and other areas in lowland of southwestern India supply sufficient evidence of tree trunks of wet evergreen forests getting buried during the Holocene period under varying thickness of clay, silty-clay and even in sand sequences. This preserved subfossil log assemblage forms an excellent proxy for eco-geomorphological and palaeoclimate appraisal reported hitherto from Indian subcontinent, and complements the available palynological data. The bulk of the subfossil logs and partially carbonized wood remains have yielded age prior to the Holocene transgression of 6.5 k yrs BP, suggesting therein that flooding due to heavy rainfall drowned the forest cover, even extending to parts of the present shelf. These preserved logs represent a unique palaeoenvironmental database as they contain observable cellular structure. Some of them can even be compared to modern analogues. As these woods belong to the Late Pleistocene and Holocene, they form a valuable source of climate data that alleviates the lack of contemporaneous meteorological records. These palaeoforests along with pollen proxies depict the warmer environment in this region, which is consistent with a Mid Holocene Thermal Maximum often referred to as Holocene Climate Optimum. Thus, the subfossil logs of tropical evergreen forests constitute new indices of Asian palaeomonsoon, while their occurrence and preservation are attributed to eco-geomorphology and hydrological regimes associated with the intensified Asian Summer Monsoon, as recorded elsewhere. PMID:24727672

  10. Vegetation response and landscape dynamics of Indian Summer Monsoon variations during Holocene: an eco-geomorphological appraisal of tropical evergreen forest subfossil logs.

    Directory of Open Access Journals (Sweden)

    Navnith K P Kumaran

    Full Text Available The high rainfall and low sea level during Early Holocene had a significant impact on the development and sustenance of dense forest and swamp-marsh cover along the southwest coast of India. This heavy rainfall flooded the coastal plains, forest flourishing in the abandoned river channels and other low-lying areas in midland.The coastline and other areas in lowland of southwestern India supply sufficient evidence of tree trunks of wet evergreen forests getting buried during the Holocene period under varying thickness of clay, silty-clay and even in sand sequences. This preserved subfossil log assemblage forms an excellent proxy for eco-geomorphological and palaeoclimate appraisal reported hitherto from Indian subcontinent, and complements the available palynological data. The bulk of the subfossil logs and partially carbonized wood remains have yielded age prior to the Holocene transgression of 6.5 k yrs BP, suggesting therein that flooding due to heavy rainfall drowned the forest cover, even extending to parts of the present shelf. These preserved logs represent a unique palaeoenvironmental database as they contain observable cellular structure. Some of them can even be compared to modern analogues. As these woods belong to the Late Pleistocene and Holocene, they form a valuable source of climate data that alleviates the lack of contemporaneous meteorological records. These palaeoforests along with pollen proxies depict the warmer environment in this region, which is consistent with a Mid Holocene Thermal Maximum often referred to as Holocene Climate Optimum. Thus, the subfossil logs of tropical evergreen forests constitute new indices of Asian palaeomonsoon, while their occurrence and preservation are attributed to eco-geomorphology and hydrological regimes associated with the intensified Asian Summer Monsoon, as recorded elsewhere.

  11. Vegetation Response and Landscape Dynamics of Indian Summer Monsoon Variations during Holocene: An Eco-Geomorphological Appraisal of Tropical Evergreen Forest Subfossil Logs

    Science.gov (United States)

    Kumaran, Navnith K. P.; Padmalal, Damodaran; Nair, Madhavan K.; Limaye, Ruta B.; Guleria, Jaswant S.; Srivastava, Rashmi; Shukla, Anumeha

    2014-01-01

    The high rainfall and low sea level during Early Holocene had a significant impact on the development and sustenance of dense forest and swamp-marsh cover along the southwest coast of India. This heavy rainfall flooded the coastal plains, forest flourishing in the abandoned river channels and other low-lying areas in midland.The coastline and other areas in lowland of southwestern India supply sufficient evidence of tree trunks of wet evergreen forests getting buried during the Holocene period under varying thickness of clay, silty-clay and even in sand sequences. This preserved subfossil log assemblage forms an excellent proxy for eco-geomorphological and palaeoclimate appraisal reported hitherto from Indian subcontinent, and complements the available palynological data. The bulk of the subfossil logs and partially carbonized wood remains have yielded age prior to the Holocene transgression of 6.5 k yrs BP, suggesting therein that flooding due to heavy rainfall drowned the forest cover, even extending to parts of the present shelf. These preserved logs represent a unique palaeoenvironmental database as they contain observable cellular structure. Some of them can even be compared to modern analogues. As these woods belong to the Late Pleistocene and Holocene, they form a valuable source of climate data that alleviates the lack of contemporaneous meteorological records. These palaeoforests along with pollen proxies depict the warmer environment in this region, which is consistent with a Mid Holocene Thermal Maximum often referred to as Holocene Climate Optimum. Thus, the subfossil logs of tropical evergreen forests constitute new indices of Asian palaeomonsoon, while their occurrence and preservation are attributed to eco-geomorphology and hydrological regimes associated with the intensified Asian Summer Monsoon, as recorded elsewhere. PMID:24727672

  12. Evolutionary patterns of volatile terpene emissions across 202 tropical tree species.

    Science.gov (United States)

    Courtois, Elodie A; Dexter, Kyle G; Paine, Charles Eliot Timothy; Stien, Didier; Engel, Julien; Baraloto, Christopher; Chave, Jérôme

    2016-05-01

    Plant responses to natural enemies include formation of secondary metabolites acting as direct or indirect defenses. Volatile terpenes represent one of the most diverse groups of secondary metabolites. We aimed to explore evolutionary patterns of volatile terpene emission. We measured the composition of damage-induced volatile terpenes from 202 Amazonian tree species, spanning the angiosperm phylogeny. Volatile terpenes were extracted with solid-phase micro extraction and desorbed in a gas chromatography-mass spectrometry for compound identification. The chemical diversity of the terpene blend showed a strong phylogenetic signal as closely related species emitted a similar number of compounds. Closely related species also tended to have compositionally similar blends, although this relationship was weak. Meanwhile, the ability to emit a given compound showed no significant phylogenetic signal for 200 of 286 compounds, indicating a high rate of diversification in terpene synthesis and/or great variability in their expression. Three lineages (Magnoliales, Laurales, and Sapindales) showed exceptionally high rates of terpene diversification. Of the 70 compounds found in >10% of their species, 69 displayed significant correlated evolution with at least one other compound. These results provide insights into the complex evolutionary history of volatile terpenes in angiosperms, while highlighting the need for further research into this important class of compounds. PMID:27069586

  13. The phylogenetic signal of functional traits and their effects on community structure in an evergreen broad-leaved forest

    Directory of Open Access Journals (Sweden)

    Ke Cao

    2013-09-01

    Full Text Available The phylogenetic conservatism of plant functional traits and its association with community structure are important topics in ecological research. Plant functional traits are simultaneously affected by their evolutionary background, local habitat conditions and large-scale climate. In this study we asked whether functional traits have a significant phylogenetic signal and significantly affect species abundance in a community. For this objective, we used data from a 24 ha Gutianshan forest plot, which included species abundance and six functional traits of 156 woody species: leaf nitrogen content, leaf phosphorus content, leaf area, wood density, specific leaf area and seed mass. We found that all functional traits showed significant phylogenetic signal, suggesting that all functional traits are significantly affected by their evolutionary history. We also found that species abundance was correlated with leaf nitrogen content, leaf phosphorus content, leaf area, woody density and specific leaf area except seed mass, suggesting that resource acquisition significantly affects species abundance distribution in a community, and that these functional traits impact community structure in different ways.

  14. Responses of Dobera glabra and Eight Co-Occurring Species to Drought and Salinity Stress at a Savanna-Scrub Ecotone: Implications in the Face of Climate Change

    OpenAIRE

    Gebrekirstos, Aster; Teketay, Demel; Mitlöhner, R.

    2014-01-01

    To quantify the resistance of different co-occurring species to drought and osmotic stress (salinity stress), plant water (Ψ) and osmotic (Ψπ) potentials were measured during the dry season. We applied a pressure chamber and cryoscopy to measure Ψ and Ψπ, respectively. The species revealed a wide range of responses to water stress (−0.83 to −5.8 MPa) and osmotic stress (−1.3 to −3.2 MPa) and not all plants fit closely into one or the other category. Evergreen species tended to hav...

  15. Angiosperm flora used by meliponine guilds (Apidae, Meliponina) occurring at rainforest edges in the state of Ceará, Brazil.

    Science.gov (United States)

    Lima-Verde, Luiz W; Loiola, Maria I B; Freitas, Breno M

    2014-09-01

    Information about the use of floristic resources of the immediate edges of ombrophilous forest (Atlantic rainforest) fragments by stingless bees is not readily available in the scientific literature. Considering the importance of these plant species for local guilds of stingless bees, this study aimed to identify and characterize the flora of the immediate borders of four Atlantic rainforest fragments situated in Baturité massif, state of Ceará, used as food resource by stingless bees. We studied the growth-form of the plants, the floristic similarity between edges and the effect of rainfall on the flowering, and suggested simple techniques for handling these areas. We compiled a total of 82 plant species with a predominance of tree and shrub form. There were different floristic richness between areas and rainfall had differentiated influence on flowering, according to the edge. We concluded that the florist components of the studied edges are relevant to the stingless bee guilds, but alternative management practices are needed to conserve both plant and bee species. PMID:25004131

  16. Litterfall, litter decomposition and nitrogen mineralization in old-growth evergreen and secondary deciduous Nothofagus forests in south-central Chile Aporte, descomposición de hojarasca y mineralización de nitrógeno en bosques siempreverdes de antiguo crecimiento y bosques secundarios deciduos, centro-sur de Chile

    Directory of Open Access Journals (Sweden)

    JEROEN STAELENS

    2011-03-01

    Full Text Available South Chilean forest ecosystems represent one of the largest areas of old-growth temperate rainforests remaining in the Southern hemisphere and have a high ecological value, but suffer from deforestation, invasion by exotic species, fragmentation, and increasing atmospheric nitrogen (N deposition. To support sustainable forest management, more knowledge is required on nutrient cycling of these ecosystems. Therefore, a descriptive study of nutrient dynamics was done in four Valdivian rainforests in the lower Andes range of south Chile: old-growth and altered evergreen stands and unmanaged and managed secondary deciduous stands. Time series were measured for (i mass (four year and nutrient content (N, K, Ca, and Mg; one year of litterfall, (ii decomposition and nutrient dynamics (N, C, K, Ca, Mg, and P; one year of leaf litter and Saxegothaea conspicua bark litter, and (iii in situ topsoil net N mineralization (one year. Litterfall in the four stands ranged from 3.5 to 5.8 ton ha-1 yr-1, was temporarily lower in the managed than in the unmanaged deciduous stand and had a different seasonality in the evergreen stands than in the deciduous stands. Leaf litter decomposed faster (on average 32 % mass loss after one year than bark litter (8 % but without significant differences between leaf litter types. Net N in evergreen leaf litter decreased during decomposition but increased in deciduous leaf litter. Net soil N mineralization was fastest in the pristine evergreen stand, intermediate in the deciduous stands and slowest in the altered evergreen forest. Given the absence of replicated stands, the definite impact of forest type or management regime on the internal nutrient cycling cannot be demonstrated. Nevertheless, the results suggest that management can affect nutrient turnover by altering species composition and forest structure, while recent (five years selective logging in secondary deciduous forest did not affect litter decomposition or N

  17. The phylogenetic signal of functional traits and their effects on community structure in an evergreen broad-leaved forest

    OpenAIRE

    Ke Cao; Mide Rao; Jianzhong Yu; Xiaojuan Liu; Xiangcheng Mi; Jianhua Chen

    2013-01-01

    The phylogenetic conservatism of plant functional traits and its association with community structure are important topics in ecological research. Plant functional traits are simultaneously affected by their evolutionary background, local habitat conditions and large-scale climate. In this study we asked whether functional traits have a significant phylogenetic signal and significantly affect species abundance in a community. For this objective, we used data from a 24 ha Gutianshan forest plo...

  18. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra

    International Nuclear Information System (INIS)

    Deeper winter snow is hypothesized to favor shrub growth and may partly explain the shrub expansion observed in many parts of the arctic during the last decades, potentially triggering biophysical feedbacks including regional warming and permafrost thawing. We experimentally tested the effects of winter snow depth on shrub growth and ecophysiology by measuring stem length and stem hydrogen (δ2H), carbon (δ13C), nitrogen (δ15N) and oxygen (δ18O) isotopic composition of the circumarctic evergreen dwarf shrub Cassiope tetragona growing in high-arctic Svalbard, Norway. Measurements were carried out on C. tetragona individuals sampled from three tundra sites, each representing a distinct moisture regime (dry heath, meadow, moist meadow). Individuals were sampled along gradients of experimentally manipulated winter snow depths in a six-year old snow fence experiment: in ambient (c. 20 cm), medium (c. 100 cm), and deep snow (c. 150 cm) plots. The deep-snow treatment consistently and significantly increased C. tetragona growth during the 2008–2011 manipulation period compared to growth in ambient-snow plots. Stem δ15N and stem N concentration values were significantly higher in deep-snow individuals compared to individuals growing in ambient-snow plots during the course of the experiment, suggesting that soil N-availability was increased in deep-snow plots as a result of increased soil winter N mineralization. Although inter-annual growing season-precipitation δ2H and stem δ2H records closely matched, snow depth did not change stem δ2H or δ18O, suggesting that water source usage by C. tetragona was unaltered. Instead, the deep insulating snowpack may have protected C. tetragona shrubs against frost damage, potentially compensating the detrimental effects of a shortened growing season and associated phenological delay on growth. Our findings suggest that an increase in winter precipitation in the High Arctic, as predicted by climate models, has the potential to

  19. 城乡环境梯度下植物群落的区系成分分析%Floristic Analysis of the Evergreen Broadleaved Forest Community along an Urban-Rural Gradient in Guangzhou

    Institute of Scientific and Technical Information of China (English)

    朱纯; 熊咏梅; 柳泽鑫; 孙东; 苏志尧

    2012-01-01

      分别以白云山、帽峰山、莲塘风水林作为广州市区、城郊和郊区常绿阔叶林群落代表,分析其植物区系组成和多样性特征。结果显示,广州帽峰山常绿阔叶林群落种类最丰富,维管束植物有87科155属212种,优势科为茜草科、大戟科、樟科、禾亚科、芸香科、紫金牛科、壳斗科;白云山维管束植物有72科121属168种,优势科为茜草科、樟科、桑科、禾亚科、大戟科、冬青科;而莲塘风水林森林群落有55科88属102种,优势科为茜草科、樟科、大戟科。从属的地理分布区类型来看,三个群落皆以泛热带分布属的比例最高,其次为旧世界热带分布属和热带亚洲分布属,群落缺乏典型的热带成分,但具有南亚热带植物区系的基本特征。其中白云山的东亚分布类型有3属;帽峰山的东亚分布类型有4属,中国特有分布类型有1属;而莲塘风水林则没有东亚分布和中国特有分布类型。%  Floristic composition of the evergreen broadleaved forest in Maofeng Mountain, Baiyun Mountain, and Liantang, as an urban-to-rural gradient of Guangzhou, was analyzed based on community data. The results indicated that the community in Maofeng Mountain was the richest in species diversity, with 87 families of vascular plants including 155 genera and 212 species, dominant families of the flora were Rubiaceae, Euphorbiaceae, Lauraceae, Agrostidoideae, Rutaceae, Myrsinaceae, and Fagaceae. Vascular plants in Baiyun Mountain plot consisted of 168 species, belonging to 72 families, and 121 genera. Dominant families of the flora were Rubiaceae, Lauraceae, Moraceae, Agrostidoideae, Euphorbiaceae, and Aquifoliaceae. However, Liantang community included only 55 families, 88 genera and 102 species. Dominant families of the flora were Rubiaceae, Lauraceae, and Euphorbiaceae. As for generic distribution, the pantropic areal-type represented the majority of genera

  20. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra

    DEFF Research Database (Denmark)

    Blok, Daan; Weijers, Stef; Welker, Jeffrey M;

    2015-01-01

    ), medium ( c . 100 cm), and deep snow ( c . 150 cm) plots. The deep-snow treatment consistently and significantly increased C. tetragona growth during the 2008–2011 manipulation period compared to growth in ambient-snow plots. Stem δ 15 N and stem N concentration values were significantly higher in deep...... season and associated phenological delay on growth. Our findings suggest that an increase in winter precipitation in the High Arctic, as predicted by climate models, has the potential to alter the growth and ecophysiology of evergreen shrub C. tetragona through changes in plant mineral nutrition and...... winter snow depth on shrub growth and ecophysiology by measuring stem length and stem hydrogen ( δ2H), carbon ( δ13C), nitrogen ( δ15N) and oxygen ( δ18O) isotopic composition of the circumarctic evergreen dwarf shrub Cassiope tetragona growing in high-arctic Svalbard, Norway. Measurements were carried...

  1. The complete mitochondrial genome of mungbean Vigna radiata var. radiata NM92 and a phylogenetic analysis of crops in angiosperms.

    Science.gov (United States)

    Lin, Ching-Ping; Lo, Hsiao-Feng; Chen, Chien-Yu; Chen, Long-Fang Oliver

    2016-09-01

    The entire mitogenome of the Vigna radiata var. radiata NM92 was identified as a circular molecule of 401 262 bp length (DDBJ accession number: AP014716). The contents of A, T, C, and G in the NM92 mitogenome were found to be 27.48%, 27.41%, 22.63%, and 22.48%, respectively. The NM92 mitogenome encoded 3 rRNAs, 16 tRNAs and 33 proteins. Eight protein-coding genes (nad1, nad2, nad4, nad5, nad7, rps3, and rps10) centain introns. Among them, three (nad1, nad2, and nad5) are trans-spliced genes. A phylogenetic tree was reconstructed using the 21 protein-coding genes of 16 crops. A species of gymnosperms, Cycas, was selected as the outgroup. This complete mitogenome sequence provides useful information to understand the cultivation of Vigna radiata and other crops. PMID:26469726

  2. 雪灾后粤北山地常绿阔叶林优势树种幼苗更新动态%Dynamics ofdominant tree seedlings in montane evergreen broadleaved forest following a snow disaster in North Guangdong

    Institute of Scientific and Technical Information of China (English)

    区余端; 苏志尧; 解丹丹; 柯娴氡; 李镇魁

    2011-01-01

    Effects of a snowstorm on forest disturbance and the canopy changes caused by forest rehabilitation resulted in changes in tree seedling composition. The species and number of tree seedlings vary with the canopy-density dynamics and are embodied in the future species composition and structure of tree layer. With the aim of revealing the seedling regeneration pattern and its response to canopy changes (as indicated by changes in leaf area index [LAI] ) , a 3-year investigation from 2008 to 2010 was undertaken in Chebaling montane evergreen broadleaved forest. The dominant tree seedling dynamics under the recovering canopy was studied by establishing a 2 hm2 sampling area (comprised of fifty 20 m×20 m plots) following the snow storm in 2008. Data from sampling in 2008 identified the top 12 species ranked by their importance as the dominant tree seedling as follows : Castanopsis carlesii, Schima superba, Castanopsis fargesii, Neolitsea chuii, Styrax suberifolia, Alniphyllum fortunei, Cinnamomum porrectum, Randia canthioides, Machilus chinensis,Rhododendron moulmainense , Cinnamomum austrosinensis and Lithocarpus glaber. Dynamic analysis of these 12 species over the 3 years showed that fluctuation was detected in the ranking of the species' importance values, among which 2009 and 2010 shared similar trends while 2008 showed a different trend. Castanopsis carlesii, Schima superba, Randia canthioides and Rhododendron moulmainense showed an increase in their ranking by importance value, whereas Neolitsea chuii,Lithocarpus glaber , Cinnamomum porrectum and Alniphyllum fortunei showed a decrease in their ranking. Styrax suberifolia ,Cinnamomum austrosinensis and M. chinensis showed a decreased and then increased ranking while Castanopsis fargesii showed the opposite trend. The 12 dominant tree seedling species showed notable responses to canopy recovery.Permutation-based MANOVA (PerMANOVA) indicated that a highly significant difference was found in composition and

  3. Mixed Evergreen and Deciduous Broadleaved Forests Interference Characteristics Mulinzi Nature Reserve in Hubei%湖北木林子自然保护区常绿落叶阔叶混交林干扰特征

    Institute of Scientific and Technical Information of China (English)

    汤景明; 翟明普

    2011-01-01

    常绿落叶阔叶混交林是木林子自然保护区的1种主要植被类型。在各种自然干扰和人为干扰的协同作用下,形成了木林子常绿落叶阔叶混交林特有的干扰体系。在常绿落叶阔叶混交林的保护和经营中,要利用封山育林、森林抚育、合理择伐和人工促进天然更新等增益性人工干扰,坚决阻止过渡的森林采伐和毁林开荒等破坏性人工干扰。应参照以自然林窗干扰,采用择伐方式经营常绿落叶阔叶混交林。%The mixed evergreen and deciduous broadleaved forests is one of the main vegetation types of the Mulinzi Nature Reserve.In a variety of natural disturbance and human disturbance of synergies,unique disturbance system of mixed evergreen and deciduous broadleaved forests in Mulinzi was formed.In the protection and management of mixed evergreen and deciduous broadleaved forests should use all kinds of human disturbance of closed forest,forest tending,reasonable selection cutting and artificial natural regeneration of human disturbance such as gain,determined to prevent excessive deforestation and deforestation and other destructive human disturbance.We should refer to the natural forest gap disturbance,operate using selective cutting mixed evergreen and deciduous broad-leaved.

  4. Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in Northern Hemisphere temperate woody flora?

    Science.gov (United States)

    Hallik, Lea; Niinemets, Ulo; Wright, Ian J

    2009-01-01

    Leaf-level determinants of species environmental stress tolerance are still poorly understood. Here, we explored dependencies of species shade (T(shade)) and drought (T(drought)) tolerance scores on key leaf structural and functional traits in 339 Northern Hemisphere temperate woody species. In general, T(shade) was positively associated with leaf life-span (L(L)), and negatively with leaf dry mass (M(A)), nitrogen content (N(A)), and photosynthetic capacity (A(A)) per area, while opposite relationships were observed with drought tolerance. Different trait combinations responsible for T(shade) and T(drought) were observed among the key plant functional types: deciduous and evergreen broadleaves and evergreen conifers. According to principal component analysis, resource-conserving species with low N content and photosynthetic capacity, and high L(L) and M(A), had higher T(drought), consistent with the general stress tolerance strategy, whereas variation in T(shade) did not concur with the postulated stress tolerance strategy. As drought and shade often interact in natural communities, reverse effects of foliar traits on these key environmental stress tolerances demonstrate that species niche differentiation is inherently constrained in temperate woody species. Different combinations of traits among key plant functional types further explain the contrasting bivariate correlations often observed in studies seeking functional explanation of variation in species environmental tolerances. PMID:19674334

  5. Stomatal responses to drought at a Mediterranean site: a comparative study of co-occurring woody species differing in leaf longevity.

    Science.gov (United States)

    Mediavilla, Sonia; Escudero, Alfonso

    2003-10-01

    We studied stomatal responses to decreasing predawn water potential (Psipd) and increasing leaf-to-air water vapor pressure difference (VPD) of co-occurring woody Mediterranean species with contrasting leaf habits and growth form. The species included two evergreen oaks (Quercus ilex subsp. ballota (Desf.) Samp. and Q. suber L.), two deciduous oaks (Q. faginea Lam. and Q. pyrenaica Willd.) and two deciduous shrubs (Pyrus bourgaeana Decne. and Crataegus monogyna Jacq.). Our main objective was to determine if stomatal sensitivity is related to differences in leaf life span and leaf habit. The deciduous shrubs had the least conservative water-use characteristics, with relatively high stomatal conductance and low stomatal sensitivity to soil and atmospheric drought. As a result, Psipd decreased greatly in both species during the growing season, resulting in early leaf abscission in the summer. The deciduous oaks showed intermediate water-use characteristics, having maximum stomatal conductances and CO2 assimilation rates similar to or even higher than those of the deciduous shrubs. However, they had greater stomatal sensitivity to soil drying and showed less negative Psipd values than the deciduous shrubs. The evergreen oaks, and especially the species with the greatest leaf longevity, Q. ilex, exhibited the most conservative water-use behavior, having lower maximum stomatal conductances and greater sensitivity to VPD than the deciduous species. As a result, Psipd decreased less during the growing season in the evergreens than in the deciduous species, which may contribute to greater leaf longevity by avoiding irreversible damage during the summer drought. However, the combination of low maximum CO2 assimilation rates and high stomatal sensitivity to drought must have a negative impact on the final carbon budget of leaves with a long life span. PMID:12952785

  6. Size-class differences in genetic structure and individual distribution of Camellia japonica L. in a Japanese old-growth evergreen forest.

    Science.gov (United States)

    Ueno, S; Tomaru, N; Yoshimaru, H; Manabe, T; Yamamoto, S

    2002-08-01

    Size-class differences in genetic structure and individual spatial distribution were investigated for Camellia japonica within a 1-ha plot in a Japanese old-growth evergreen forest using microsatellite markers. Three size-classes were considered containing plants that were: 30-32.5 cm tall, 103.8 cm-200 cm tall and those that had a diameter at breast height > or =5 cm, designated JV1, JV2, and ADL, respectively. Each size-class contained 174 individuals. Morisita's index of dispersion indicated clumping of individuals was present within all size-classes, with JV2 displaying the highest level. The clumped distribution of JV1 individuals may be a result of limited seed dispersal, while that of JV2 may be attributed to heterogenieties of favourable microsites, such as canopy gaps. There were no significant differences in allele frequencies among size-classes. There were, however, some differences in spatial genetic structure among them. Moran's I spatial autocorrelation analysis revealed clear spatial genetic structure in class JV1 probably due to limited seed dispersal. In class JV2, genetic structure was not observed. Overlapping seed shadows, probably in canopy gaps, may lead to blurred genetic structure in JV2. PMID:12136414

  7. Contribution of species-specific chemical signatures to soil organic matter in Kohala, HI.

    Science.gov (United States)

    Stewart, C. E.; Amatangelo, K.; Neff, J. C.

    2008-12-01

    Soil organic matter (SOM) inherits much of its chemical structure from the dominant vegetation, including phenolic (lignin-derived), aromatic, and aliphatic (cutin and wax-derived) compounds. The Hawaiian fern species Dicranopteris decomposes more slowly than the angiosperm, Cheirodendron due to high concentrations of recalcitrant C compounds. These aliphatic fern leaf waxes are well-preserved and may comprise a large portion of the recalcitrant organic matter in these soils. Our objective was to determine the chemical signature of fern and angiosperm vegetation types and trace the preservation or loss of those compounds into the soil. We collected live tissue, litter, roots, and soil (tannin-derivatives. There was a general decrease of lignin-derived phenolic compounds from live to litter to soils and an increase in more recalcitrant, aromatic and aliphatic C. Recalcitrant fern-derived cutin and leaf waxes (alkene and alkanes structures) were evident in the soils, but clear species differences were not observed. Although ferns contain distinct lipid and wax-derived compounds, soils developed under fern do not appear to accumulate these compounds in SOM.

  8. Losses of leaf area owing to herbivory and early senescence in three tree species along a winter temperature gradient

    Science.gov (United States)

    González-Zurdo, P.; Escudero, A.; Nuñez, R.; Mediavilla, S.

    2016-03-01

    In temperate climates, evergreen leaves have to survive throughout low temperature winter periods. Freezing and chilling injuries can lead to accelerated senescence of part of the leaf surface, which contributes to a reduction of the lifespan of the photosynthetic machinery and of leaf lifetime carbon gain. Low temperatures are also associated with changes in foliar chemistry and morphology that affect consumption by herbivores. Therefore, the severity of foliar area losses caused by accelerated senescence and herbivory can change along winter temperature gradients. The aim of this study is to analyse such responses in the leaves of three evergreen species (Quercus ilex, Q. suber and Pinus pinaster) along a climatic gradient. The leaves of all three species presented increased leaf mass per area (LMA) and higher concentrations of structural carbohydrates in cooler areas. Only the two oak species showed visible symptoms of damage caused by herbivory, this being less intense at the coldest sites. The leaves of all three species presented chlorotic and necrotic spots that increased in size with leaf age. The foliar surface affected by chlorosis and necrosis was larger at the sites with the coldest winters. Therefore, the effects of the winter cold on the lifespan of the photosynthetic machinery were contradictory: losses of leaf area due to accelerated senescence increased, but there was a decrease in losses caused by herbivory. The final consequences for carbon assimilation strongly depend on the exact timing of the appearance of the damage resulting from low temperature and grazing by herbivores.

  9. The role of O2 as an electron acceptor alternative to CO2 in photosynthesis of the common marine angiosperm Zostera marina L.

    Science.gov (United States)

    Buapet, Pimchanok; Björk, Mats

    2016-07-01

    This study investigates the role of O2 as an electron acceptor alternative to CO2 in photosynthesis of the common marine angiosperm Zostera marina L. Electron transport rates (ETRs) and non-photochemical quenching (NPQ) of Z. marina were measured under saturating irradiance in synthetic seawater containing 2.2 mM DIC and no DIC with different O2 levels (air-equilibrated levels, 3 % of air equilibrium and restored air-equilibrated levels). Lowering O2 did not affect ETR when DIC was provided, while it caused a decrease in ETR and an increase in NPQ in DIC-free media, indicating that O2 acted as an alternative electron acceptor under low DIC. The ETR and NPQ as a function of irradiance were subsequently assessed in synthetic seawater containing (1) 2.2 mM DIC, air-equilibrated O2; (2) saturating CO2, no O2; and (3) no DIC, air-equilibrated O2. These treatments were combined with glycolaldehyde pre-incubation. Glycolaldehyde caused a marked decrease in ETR in DIC-free medium, indicating significant electron flow supported by photorespiration. Combining glycolaldehyde with O2 depletion completely suppressed ETR suggesting the operation of the Mehler reaction, a possibility supported by the photosynthesis-dependent superoxide production. However, no notable effect of suppressing the Mehler reaction on NPQ was observed. It is concluded that during DIC-limiting conditions, such as those frequently occurring in the habitats of Z. marina, captured light energy exceeds what is utilised for the assimilation of available carbon, and photorespiration is a major alternative electron acceptor, while the contribution of the Mehler reaction is minor. PMID:27125819

  10. Comparison of cold resistance among nine evergreenIlex cultivars%9个常绿杂交冬青的抗寒能力比较

    Institute of Scientific and Technical Information of China (English)

    曾雯; 金晓玲; 邢文; 胡曼筠

    2016-01-01

    In order to evaluate the cold resistance of nine evergreenIlex cultivars, the physiological mechanism of detached-leaf from nine evergreenIlex cultivars under low temperature stress was studied.Their semi-lethal temperatures were calculated by relative electric conductivity (Rec) and logistic equation. Meanwhile, the con-tents of SOD,MDA,free proline and soluble protein were determined to provide their cold resistance.The re-sults indicated that Rec increased as the droping of temperature, and LT50 was between –14.13°C and –34.91°C. With the temperature decreased, the contents of MDA increased, and the SOD activity and soluble protein con-tents increased ifrstly, then decreased, and the contents of free proline increased or increased ifrstly, then de-creased. Synthetic evaluation of LT50 and the membership function indicated that the ranking of cold tolerance ofIlex cultivars was: ‘Shamrock’>‘Forsteri’ > ‘Schworbel’s Compacta’ > ‘Anna’s Choice’ > ‘Tensaw’ > ‘Blue Maid’ > ‘Bronze Beauty’ > ‘Oscar Gray’ > ‘Savannah’.%以9个常绿杂交冬青品种的离体叶片为供试材料进行低温胁迫处理,用电导法配以Logistic方程计算出半致死温度(LT50),并测定了超氧化物歧化酶(SOD)、丙二醛(MDA)、脯氨酸和可溶性蛋白各项指标,运用隶属函数法进一步分析其抗寒能力。结果表明,杂交冬青的相对电导率(Rec)随着温度的降低而上升, LT50均在–34.91~–14.13°C之间;低温胁迫下,随着温度的降低, MDA含量逐渐上升, SOD活性和可溶性蛋白含量呈先上升后下降的趋势,而脯氨酸含量呈先升后降或上升的变化趋势。综合LT50和各指标隶属函数分析法得出抗寒性强弱顺序为:‘Shamrock’>‘Forsteri’>‘Schworbel’s Compacta’>‘Anna’s Choice’>‘Tensaw’>‘Blue Maid’>‘Bronze Beauty’>‘Oscar Gray’>‘Savannah’。

  11. Nitrogen in soils beneath 18-65 year old stands of subtropical evergreen broad-leaved forests in Laoshan Mountains in Eastern China

    Institute of Scientific and Technical Information of China (English)

    GU Feng; ZHANG Kai; ZHANG Yun-qi; WANG Qin; XU Xiao-niu

    2011-01-01

    Monitoring of soil nitrogen (N) cycling is useful to assess soil quality and to gauge the sustainability of management practices.We studied net N mineralization,nitrification,and soil N availability in the 0-10 cm and 11-30 cm soil horizons in east China during 2006-2007 using an in sito incubation method in four subtropical evergreen broad-leaved forest stands aged 18-,36-,48-,and 65-years.The properties of surface soil and forest floor varied between stand age classes.C:N ratios of surface soil and forest floor decreased,whereas soil total N and total organic C,available P,and soil microbial biomass N increased with stand age.The mineral N pool was small for the young stand and large for the older stands.NO3-N was less than 30% in all stands.Net rates of N mineralization and nitrification were higher in old stands than in younger stands,and higher in the 0-10 cm than in the 11-30 cm horizon.The differences were significant between old and young stands (p <0.031) and between soil horizons (p < 0.005).Relative nitrification was somewhat low in all forest stands and declined with stand age.N transformation seemed to be controlled by soil moisture,soil microbial biomass N,and forest floor C:N ratio.Our results demonstrate that analyses of N cycling can provide insight into the effects of management disturbances on forest ecosystems.

  12. I. Identification and characterization of dasheen mosaic virus in Chinese evergreen plants (Aglaonema commutatum) in California. II. New approaches for detecting plant viruses

    International Nuclear Information System (INIS)

    Chinese evergreen plants (Aglaonema commutatum) with symptoms of mild stunting, chlorosis, leaf distortion and mosaic, were observed in Southern California. Flexuous rods (ca. 750 nm) were detected in leaf dip and partially purified preparations. Dasheen mosac virus (DMV) was identified as the causal agent on the basis of host range, morphology and reaction with DMV antiserum in immunodouble diffusion and immunosorbent electron microscopy (ISEM) tests. Tetragonia expansa was found to be a new host of this virus. Surveys indicate that DMV is not widespread in cultivars of A. commutatum in Southern California. The virus was purified from leaves of seedling Philodendron selloum by clarification with CCl4, CHCl3, and Triton X-100, precipitation with PEG-8000 and centrifugation in either Cs2SO4-sucrose cushion gradients or Cs2SO4 equilibrium density gradients. Purified virions formed a single UV-absorbing infectious band with densities of 1.31 and 1.245 g/ml in CsCl2 and Cs2SO4 equilibrium density gradients, respectively, and a sedimentation coefficient of 154 S as determined by a linear-log sucrose density gradient centrifugation. Dasheen mosaic virus has a plus-sense ssRNA with the M.W. of 3.2 x 106 under denaturing conditions. Molecular hybridization analysis using 3H-complementary DNA specific to DMV-Ca RNA showed that DMV-Ca isolate was more closely related to DMV-Fiji isolate than to DMV-Fla isolate, and was very distantly related to ZYMV, TEV. PeMoC and PVY

  13. Pleiotropic phenotypes of the salt-tolerant and cytosine hypomethylated leafless inflorescence, evergreen dwarf and irregular leaf lamina mutants of Catharanthus roseus possessing Mendelian inheritance

    Indian Academy of Sciences (India)

    Renu Kumari; Vishakha Sharma; Vinay Sharma; Sushil Kumar

    2013-12-01

    In Catharanthus roseus, three morphological cum salt-tolerant chemically induced mutants ofMendelian inheritance and their wild-type parent cv Nirmal were characterized for overall cytosine methylation at DNA repeats, expression of 119 protein-coding and seven miRNA-coding genes and 50 quantitative traits. The mutants, named after their principal morphological feature(s), were leafless inflorescence (lli), evergreen dwarf (egd) and irregular leaf lamina (ill). The Southern-blot analysis of MspI digested DNAs of mutants probed with centromeric and 5S and 18S rDNA probes indicated that, in comparison to wild type, the mutants were extensively demethylated at cytosine sites. Among the 126 genes investigated for transcriptional expression, 85 were upregulated and 41 were downregulated in mutants. All of the five genes known to be stress responsive had increased expression in mutants. Several miRNA genes showed either increased or decreased expression in mutants. The C. roseus counterparts of CMT3, DRM2 and RDR2 were downregulated in mutants. Among the cell, organ and plant size, photosynthesis and metabolism related traits studied, 28 traits were similarly affected in mutants as compared to wild type. Each of the mutants also expressed some traits distinctively. The egd mutant possessed superior photosynthesis and water retention abilities. Biomass was hyperaccumulated in roots, stems, leaves and seeds of the lli mutant. The ill mutant was richest in the pharmaceutical alkaloids catharanthine, vindoline, vincristine and vinblastine. The nature of mutations, origins of mutant phenotypes and evolutionary importance of these mutants are discussed.

  14. Effect of Slash Burning on Nutrient Removal and Soil Fertility in Chinese Fir and Evergreen Broadleaved Forests of Mid-Subtropical China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A Chinese fir forest (Cunninghamia lanceolata, CF) and an evergreen broadleaved forest (EB) located inFujian Province, southeastern China, were examined following slash burning to compare nutrient capital andtopsoil properties with pre-burn levels. After fire, nutrient (N, P and K) removal from burning residues wasestimated at 302.5 kg ha-1 in the CF and 644.8 kg ha-1 in the EB. Fire reduced the topsoil capitals of totalN and P by about 20% and 10%, respectively, in both forests, while K capital was increased in the topsoils ofboth forests following fire. Total site nutrient loss through surface erosion was 28.4 kg (N) ha-1, 8.4 kg (P)ha-1 and 328.7 kg (K) ha-1 in the CF. In the EB, the losses of total N, P and K were 58.5, 10.5 and 396.3kg ha-1, respectively. Improvement of soil structure and increase in mineralization of nutrients associatedwith increased microbe number and enzyme activities and elevated soil respiration occurred 5 days after fire.However, organic matter and available nutrient contents and most of other soil parameters declined one yearafter fire on the burned CF and EB topsoils. These results suggest that short-term site productivity canbe stimulated immediately, but reduced subsequently by soil and water losses, especially in South China,where high-intensity precipitation, steep slopes and fragile soil can be expected. Therefore, the silviculturalmeasurements should be developed in plantation management.

  15. Pleiotropic phenotypes of the salt-tolerant and cytosine hypomethylated leafless inflorescence, evergreen dwarf and irregular leaf lamina mutants of Catharanthus roseus possessing Mendelian inheritance.

    Science.gov (United States)

    Kumari, Renu; Sharma, Vishakha; Sharma, Vinay; Kumar, Sushil

    2013-12-01

    In Catharanthus roseus, three morphological cum salt-tolerant chemically induced mutants of Mendelian inheritance and their wild-type parent cv Nirmal were characterized for overall cytosine methylation at DNA repeats, expression of 119 protein coding and seven miRNA-coding genes and 50 quantitative traits. The mutants, named after their principal morphological feature(s), were leafless inflorescence (lli), evergreen dwarf (egd) and irregular leaf lamina (ill). The Southern-blot analysis of MspI digested DNAs of mutants probed with centromeric and 5S and 18S rDNA probes indicated that, in comparison to wild type, the mutants were extensively demethylated at cytosine sites. Among the 126 genes investigated for transcriptional expression, 85 were upregulated and 41 were downregulated in mutants. All of the five genes known to be stress responsive had increased expression in mutants. Several miRNA genes showed either increased or decreased expression in mutants. The C. roseus counterparts of CMT3, DRM2 and RDR2 were downregulated in mutants. Among the cell, organ and plant size, photosynthesis and metabolism related traits studied, 28 traits were similarly affected in mutants as compared to wild type. Each of the mutants also expressed some traits distinctively. The egd mutant possessed superior photosynthesis and water retention abilities. Biomass was hyperaccumulated in roots, stems, leaves and seeds of the lli mutant. The ill mutant was richest in the pharmaceutical alkaloids catharanthine, vindoline, vincristine and vinblastine. The nature of mutations, origins of mutant phenotypes and evolutionary importance of these mutants are discussed. PMID:24371160

  16. Invasive species

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a summary of management activities and research related to invasive species on Neal Smith National Wildlife Refuge between 1992 and 2009. As part of the...

  17. Coarse Woody Debris Biomass in a Monsoon Evergreen Broad-leaved Forest in the Dinghushan Nature Reserve, China%鼎湖山粗死木质残体生物量特征

    Institute of Scientific and Technical Information of China (English)

    杨方方; 李跃林

    2011-01-01

    The biomass, types and decay classes of coarse woody debris (CWD) were analyzed in a monsoon evergreen broad-leaved forest (MEBF) in the Dinghushan Nature Reserve, Southeastern China based on long-term data from a I hm2 permanent sample plot. The results showed that: 1) The total CWD biomass was 42.09 t hm2, of which the fallen trees and standing dead trees were 32.81 t hm2 and 9.28 t hm2, respectively. Fallen trees were the main type and accounted for 77.9% of the total CWD biomass, while the percentage of standing dead trees was 22.1%. The average annual increment of CWD was 1.68 thm-2a1-from 1999 to 2010. 2) Castanopsis chinensis was the dominant species of CWD, accounting for 54.0% of the total CWD biomass, and followed by Engelhardtia roxburghiana and Schima superba, with the percentage of 15.1% and 13.9%, respectively. 3) DBH class of the CWD was mainly below 30 cm, though those with DBH more than 30 cm were the main contributor to CWD biomass. 4) The main decay class of CWD was intermediate decay, which accounted for 61.2% of the total CWD biomass. It was also found that the CWD biomass accumulated with time in the forest. Fig 2, Tab 3, Ref 17%对鼎湖山季风常绿阔叶林1 hm2永久性样地内粗死木质残体(Coarse woody debris,简称CWD)的生物量、存在形式及分解状态进行研究.结果表明:1)鼎湖山季风常绿阔叶林CWD的生物量为42.09 t hm-2,其中倒木和枯立木分别为32.81t hm-2、9.28t hm-2,所占比例分别为77.9%、22.1%.1999~2010年间CWD年均输入量为1.68 t hm-2a-1.2)CWD主要优势树种为锥栗(Castanopsis chinensis)、黄杞(Engelhardtia roxbueghiana)和荷木(Schima superba),所占比例分别为54.0%、15.1%和13.9%.3)CWD径级主要分布在30 cm以下,但对CWD生物量贡献最大的径级在30 cm以上.4)CWD 的分解状态主要为中度分解状态,占CWD总生物量的61.2%研究还表明,鼎湖山季风常绿阔叶林的CWD生物量呈逐年增加趋势.图2表3参17

  18. Ice and Snow Disasters to the Evergreen Broad-leaved Forest in the Jiulianshan Nature Reserve in Jiangxi, China%九连山自然保护区常绿阔叶林冰雪灾害研究

    Institute of Scientific and Technical Information of China (English)

    何俊; 赵秀海; 张春雨; 贾玉; 范娟; 毛双燕; 张自斌; 廖承开

    2011-01-01

    以九连山国家级自然保护区典型常绿阔叶林为对象,研究树木属性、地形因子与冰雪灾害受损程度的关系.结果表明:九连山常绿阔叶林(DBH≥10 cm)以栲属物种占据主要优势.断梢率、腰折率、翻蔸率和平均受损指数(MDI)最高的树种分别为马尾松、米槠、丝栗栲和米槠,最低的树种分别为红楠、丝栗栲、枫香和罗浮柿.断梢率与胸径(DBH)、树高(H)显著正相关(P0.05),坡度30°~ 40°生境中MDI值最高.%The ice and snow damages to the evergreen broad-leaved forest in the Jiulianshan National Nature Reserve in Jiangxi, China were studied, and the correlations between damage degrees with tree characteristics and topographical factors were analyzed.The results showed: The forest was dominated by Castanopsis species (DBH>10 cm), and Pinus massoniana (PM), C.carlesii (CC), C.fargesil (CF), and CC were found highest for top breakage ratio (TOB), trunk breakage ratio (TRB),uprooting ratio (UR) and mean damage index (MDI); while Machilus thunbergii (MT), CF, Liquidambarjormosana (LF),and Diospyros rnorrisiana (DM) were lowest.The TOB had extremely significantly positive correlation with DBH (P<0.01),H (P<0.01), and extremely significantly negative correlation with H/DBH (P<0.01); TRB had extremely significantly negative correlation with DBH (P<0.01); UP had extremely significantly negative correlation with DBH (P<0.01); and MDI was not significantly correlated with DBH, H, and H/DBH (P>0.05).The TOB was the highest under the conditions of DBH≥50 cm, 21≤H<23 m or 20≤H/DBH<40, and the lowest with 10≤DBH<12 cm, 5≤H<7 m or H/DBH≥120; the TRB was the highest under the conditions of 10≤DBH<12 cm, 13≤H<15 m or 100≤H/DBH<110, and the lowest with 42≤DBH<44 cm, 7≤H<9 m or H/DBH ≥120; the UR was the highest under the conditions of 20≤DBH<22 cm, 11≤H<13 m or 90≤H/DBH<100, and the lowest with 36≤DBH<38 cm, DBH≥40

  19. Seedling density according to structure, dominance and understory cover in old-growth forest stands of the evergreen forest type in the coastal range of Chile Densidad de plántulas de acuerdo a la estructura, dominancia y cobertura del sotobosque en bosques siempreverdes adultos en la cordillera de la Costa de Chile

    Directory of Open Access Journals (Sweden)

    Pablo J. Donoso

    2005-03-01

    Full Text Available Securing timely regeneration is essential in maintaining the long-term ecological or silvicultural functions and values of forests. Its establishment, in turn, depends on many factors, including the structure and composition of the forest itself. Available information shows that seedling density varies greatly across the evergreen forest type in Chile. Yet stand variables that may affect the establishment of advance regeneration have not been studied. To that end, we evaluated seven stands of the coastal range, within the northern part of the evergreen forest type (39°14'-40°16' S. We documented understory cover, tree density and dominance, and stand structure, and used the information to assess their effects over seedling density. Findings indicate that Laurelia philippiana was the dominant canopy and regenerating species in these stands. Also, seedling density was significantly greater in stands at lower elevations where shade-tolerant Aextoxicon punctatum was important. Chusquea spp. and Lophosoria quadripinnata, both understory species, had a significant negative effect on seedling density. Basal area and canopy cover, per se, showed little relationship with seedling density. Vertical structure, evaluated through a crown index, had a significant relationship with seedling density, but the direction depended on the species (e.g., L. philippiana and A. punctatum and the diameter structure within our plots. Fitted models that included these variables were highly significant, and in most cases their significance increased considerably (14 to 26 % when we accounted for the diameter structures of the plotsLa regeneración es esencial para mantener en el largo plazo las funciones y valores ecológicos o silviculturales de los bosques. Su establecimiento depende de varios factores, incluyendo la estructura y composición del bosque. La información disponible indica que existe una gran variabilidad en la densidad de plántulas a través de la

  20. Population Structure and Genetic Diversity of a Medicinal Plant Species Retama raetam in Southern Tunisia

    Directory of Open Access Journals (Sweden)

    Faouzia Yahyaoui

    2014-01-01

    Full Text Available Retama raetam is a stem-assimilating, C3, evergreen, medicinal plant species, desert legume common to arid ecosystems around the Mediterranean basin. This study addresses the genetic diversity and relationship among and within three populations collected from different habitats in southern Tunisia by Random Amplified Polymorphic DNA (RAPD. Estimates of the percentage of polymorphic bands, Shannon’s diversity information index and Nei’s gene diversity index were determined. Results showed that population from the Island Djerba has the lowest Nei’s gene diversity; this also was for Shannon diversity index. An analysis of molecular variance indicated that the majority of variation existed within populations (68% and that there was significant differentiation among populations (ΦPT = 0.316, pR. raetam in southern Tunisia and will be useful for conservation managers to work out an effective strategy to protect this important species.

  1. Exemplifying whole-plant ozone uptake in adult forest trees of contrasting species and site conditions

    International Nuclear Information System (INIS)

    Whole-tree O3 uptake was exemplified for Picea abies, Fagus sylvatica and Larix decidua in stands at high and low altitude and contrasting water availability through sap flow measurement in tree trunks, intrinsically accounting for drought and boundary layer effects on O3 flux. O3 uptake of evergreen spruce per unit foliage area was enhanced by 100% at high relative to low elevation, whereas deciduous beech and larch showed similar uptake regardless of altitude. The responsiveness of the canopy conductance to water vapor and, as a consequence, O3 uptake to soil moisture and air humidity did not differ between species. Unifying findings at the whole-tree level will promote cause-effect based O3 risk assessment and modeling. - Sap flow-based assessment of whole-tree O3 uptake reflects similar responsiveness of canopy conductance and O3 uptake across contrasting tree species and site conditions

  2. Nelumbonaceae: Systematic position and species diversification revealed by the complete chloroplast genome

    Institute of Scientific and Technical Information of China (English)

    Jian-Hua XUE; Wen-Pan DONG; Tao CHENG; Shi-Liang ZHOU

    2012-01-01

    Nelumbonaceae is a morphologically unique family of angiosperms and was traditionally placed in Nymphaeales; more recently,it was placed in Proteales based on molecular data,or in an order of its own,Nelumbonales.To determine the systematic position of the family and to date the divergence time of the family and the divergence time of its two intercontinentally disjunct species,we sequenced the entire chloroplast genome of Nelumbo lutea and most of the chloroplast genes of N.nucifera.We carried out phylogenetic and molecular dating analyses of the two species and representatives of 47 other plant families,representing the major lineages of angiosperms,using 83 plastid genes.The N.lutea genome was 163 510 bp long,with a total of 130 coding genes and an overall GC content of 38%.No significant structural differences among the genomes of N.lutea,Nymphaea alba,and Platanus occidentalis were observed.The phylogenetic relationships based on the 83 plastid genes revealed a close relationship between Nelumbonaceae and Platanaceae.The divergence times were estimated to be 109 Ma between the two families and 1.5 Ma between the two Nelumbo species.The estimated time was only slightly longer than the age of known Nelumbo fossils,suggesting morphological stasis within Nelumbonaceae.We conclude that Nelumbonaceae holds a position in or close to Proteales.We further conclude that the two species of Nelumbo diverged recently from a common ancestor and do not represent ancient relicts on different continents.

  3. Impacts of invading alien plant species on water flows at stand and catchment scales.

    Science.gov (United States)

    Le Maitre, D C; Gush, M B; Dzikiti, S

    2015-01-01

    There have been many studies of the diverse impacts of invasions by alien plants but few have assessed impacts on water resources. We reviewed the information on the impacts of invasions on surface runoff and groundwater resources at stand to catchment scales and covering a full annual cycle. Most of the research is South African so the emphasis is on South Africa's major invaders with data from commercial forest plantations where relevant. Catchment studies worldwide have shown that changes in vegetation structure and the physiology of the dominant plant species result in changes in surface runoff and groundwater discharge, whether they involve native or alien plant species. Where there is little change in vegetation structure [e.g. leaf area (index), height, rooting depth and seasonality] the effects of invasions generally are small or undetectable. In South Africa, the most important woody invaders typically are taller and deeper rooted than the native species. The impacts of changes in evaporation (and thus runoff) in dryland settings are constrained by water availability to the plants and, thus, by rainfall. Where the dryland invaders are evergreen and the native vegetation (grass) is seasonal, the increases can reach 300-400 mm/year. Where the native vegetation is evergreen (shrublands) the increases are ∼200-300 mm/year. Where water availability is greater (riparian settings or shallow water tables), invading tree water-use can reach 1.5-2.0 times that of the same species in a dryland setting. So, riparian invasions have a much greater impact per unit area invaded than dryland invasions. The available data are scattered and incomplete, and there are many gaps and issues that must be addressed before a thorough understanding of the impacts at the site scale can be gained and used in extrapolating to watershed scales, and in converting changes in flows to water supply system yields. PMID:25935861

  4. Plant nutrient acquisition strategies in tundra species: at which soil depth do species take up their nitrogen?

    Science.gov (United States)

    Limpens, Juul; Heijmans, Monique; Nauta, Ake; van Huissteden, Corine; van Rijssel, Sophie

    2016-04-01

    The Arctic is warming at unprecedented rates. Increased thawing of permafrost releases nutrients locked up in the previously frozen soils layers, which may initiate shifts in vegetation composition. The direction in which the vegetation shifts will co-determine whether Arctic warming is mitigated or accelerated, making understanding successional trajectories urgent. One of the key factors influencing the competitive relationships between plant species is their access to nutrients, in particularly nitrogen (N). We assessed the depth at which plant species took up N by performing a 15N tracer study, injecting 15(NH4)2SO4 at three depths (5, 15, 20 cm) into the soil in arctic tundra in north-eastern Siberia in July. In addition we explored plant nutrient acquisition strategy by analyzing natural abundances of 15N in leaves. We found that vascular plants took up 15N at all injection depths, irrespective of species, but also that species showed a clear preference for specific soil layers that coincided with their functional group (graminoids, dwarf shrubs, cryptogams). Graminoids took up most 15N at 20 cm depth nearest to the thaw front, with grasses showing a more pronounced preference than sedges. Dwarf shrubs took up most 15N at 5 cm depth, with deciduous shrubs displaying more preference than evergreens. Cryptogams did not take up any of the supplied 15N . The natural 15N abundances confirmed the pattern of nutrient acquisition from deeper soil layers in graminoids and from shallow soil layers in both deciduous and evergreen dwarf shrubs. Our results prove that graminoids and shrubs differ in their N uptake strategies, with graminoids profiting from nutrients released at the thaw front, whereas shrubs forage in the upper soil layers. The above implies that graminoids, grasses in particular, will have a competitive advantage over shrubs as the thaw front proceeds and/or superficial soil layers dry out. Our results suggest that the vertical distribution of nutrients

  5. Analysis of the hybrid proline-rich protein families from seven plant species suggests rapid diversification of their sequences and expression patterns

    Directory of Open Access Journals (Sweden)

    Fischer Lukáš

    2007-11-01

    Full Text Available Abstract Background Plant hybrid proline-rich proteins (HyPRPs are putative cell wall proteins consisting, usually, of a repetitive proline-rich (PR N-terminal domain and a conserved eight-cysteine motif (8 CM C-terminal domain. Understanding the evolutionary dynamics of HyPRPs might provide not only insight into their so far elusive function, but also a model for other large protein families in plants. Results We have performed a phylogenetic analysis of HyPRPs from seven plant species, including representatives of gymnosperms and both monocot and dicot angiosperms. Every species studied possesses a large family of 14–52 HyPRPs. Angiosperm HyPRPs exhibit signs of recent major diversification involving, at least in Arabidopsis and rice, several independent tandem gene multiplications. A distinct subfamily of relatively well-conserved C-type HyPRPs, often with long hydrophobic PR domains, has been identified. In most of gymnosperm (pine HyPRPs, diversity appears within the C-type group while angiosperms have only a few of well-conserved C-type representatives. Atypical (glycine-rich or extremely short N-terminal domains apparently evolved independently in multiple lineages of the HyPRP family, possibly via inversion or loss of sequences encoding proline-rich domains. Expression profiles of potato and Arabidopsis HyPRP genes exhibit instances of both overlapping and complementary organ distribution. The diversified non-C-type HyPRP genes from recently amplified chromosomal clusters in Arabidopsis often share their specialized expression profiles. C-type genes have broader expression patterns in both species (potato and Arabidopsis, although orthologous genes exhibit some differences. Conclusion HyPRPs represent a dynamically evolving protein family apparently unique to seed plants. We suggest that ancestral HyPRPs with long proline-rich domains produced the current diversity through ongoing gene duplications accompanied by shortening

  6. Phylogenetic and microscopic studies in the genus Lactifluus (Basidiomycota, Russulales) in West Africa, including the description of four new species.

    Science.gov (United States)

    Maba, Dao Lamèga; Guelly, Atsu K; Yorou, Nourou S; Verbeken, Annemieke; Agerer, Reinhard

    2015-06-01

    Despite the crucial ecological role of lactarioid taxa (Lactifluus, Lactarius) as common ectomycorrhiza formers in tropical African seasonal forests, their current diversity is not yet adequately assessed. During the last few years, numerous lactarioid specimens have been sampled in various ecosystems from Togo (West Africa). We generated 48 ITS sequences and aligned them against lactarioid taxa from other tropical African ecozones (Guineo-Congolean evergreen forests, Zambezian miombo). A Maximum Likelihood phylogenetic tree was inferred from a dataset of 109 sequences. The phylogenetic placement of the specimens, combined with morpho-anatomical data, supported the description of four new species from Togo within the monophyletic genus Lactifluus: within subgen. Lactifluus (L. flavellus), subgen. Russulopsis (L. longibasidius and L. pectinatus), and subgen. Edules (L. melleus). This demonstrates that the current species richness of the genus is considerably higher than hitherto estimated for African species and, in addition, a need to redefine the subgenera and sections within it. PMID:26203413

  7. Model-based assessment of ecological adaptations of three forest tree species growing in Italy and impact on carbon and water balance at national scale under current and future climate scenarios

    Directory of Open Access Journals (Sweden)

    Vitale M

    2012-10-01

    Full Text Available A semi-empirical model has been used to estimate total net primary productivity, canopy transpiration and the water use efficiency under actual and future climate projections (B1 and A2 IPCC Scenarios of two deciduous (Fagus sylvatica, Quercus cerris and one evergreen tree species (Quercus ilex growing in Italy. In response to changes in the air temperature, the two deciduous species showed a strong reduction of NPP values, whereas the evergreen one showed very limited reductions. Under future warmer conditions, Q. ilex proved to be the best adapted species, probably for its drought-tolerant water-saving strategy, while Q. cerris suffered a reduction of transpiration, due to stomatal closure which was sensitive to the change of evaporative demand. Water Use Efficiency (WUE values did not increase in the B1 and A2 scenarios, indicating a non-conservative water-saving strategy, which likely affected the distribution pattern of Q. cerris under these conditions. Similar functional behaviour have been noted for F. sylvatica, although this species adopted a water spending strategy, typical of species growing in mesic environments, that could represent a risk for survival of beech population under extreme air temperature change. In this respect, the reduced suitable area for this species under the A2 scenario could reduce the possibilities of an upward shift toward higher altitudes.

  8. Zeaxanthin-independent energy quenching and alternative electron sinks cause a decoupling of the relationship between the photochemical reflectance index (PRI) and photosynthesis in an evergreen conifer during spring.

    Science.gov (United States)

    Fréchette, Emmanuelle; Wong, Christopher Y S; Junker, Laura Verena; Chang, Christine Yao-Yun; Ensminger, Ingo

    2015-12-01

    In evergreen conifers, the winter down-regulation of photosynthesis and its recovery during spring are the result of a reorganization of the chloroplast and adjustments of energy-quenching mechanisms. These phenological changes may remain undetected by remote sensing, as conifers retain green foliage during periods of photosynthetic down-regulation. The aim was to assess if the timing of the spring recovery of photosynthesis and energy-quenching characteristics are accurately monitored by the photochemical reflectance index (PRI) in the evergreen conifer Pinus strobus. The recovery of photosynthesis was studied using chlorophyll fluorescence, leaf gas exchange, leaf spectral reflectance, and photosynthetic pigment measurements. To assess if climate change might affect the recovery of photosynthesis, seedlings were exposed to cold spring conditions or warm spring conditions with elevated temperature. An early spring decoupling of the relationship between photosynthesis and PRI in both treatments was observed. This was caused by differences between the timing of the recovery of photosynthesis and the timing of carotenoid and chlorophyll pool size adjustments which are the main factors controlling PRI during spring. It was also demonstrated that zeaxanthin-independent NPQ mechanisms undetected by PRI further contributed to the early spring decoupling of the PRI-LUE relationship. An important mechanism undetected by PRI seems to involve increased electron transport around photosystem I, which was a significant energy sink during the entire spring transition, particularly in needles exposed to a combination of high light and cold temperatures. PMID:26386258

  9. Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests.

    Science.gov (United States)

    Ishihara, Masae I; Utsugi, Hajime; Tanouchi, Hiroyuki; Aiba, Masahiro; Kurokawa, Hiroko; Onoda, Yusuke; Nagano, Masahiro; Umehara, Toru; Ando, Makoto; Miyata, Rie; Hiura, Tsutom

    2015-07-01

    Accurate estimation of tree and forest biomass is key to evaluating forest ecosystem functions and the global carbon cycle. Allometric equations that estimate tree biomass from a set of predictors, such as stem diameter and tree height, are commonly used. Most allometric equations are site specific, usually developed from a small number of trees harvested in a small area, and are either species specific or ignore interspecific differences in allometry. Due to lack of site-specific allometries, local equations are often applied to sites for which they were not originally developed (foreign sites), sometimes leading to large errors in biomass estimates. In this study, we developed generic allometric equations for aboveground biomass and component (stem, branch, leaf, and root) biomass using large, compiled data sets of 1203 harvested trees belonging to 102 species (60 deciduous angiosperm, 32 evergreen angiosperm, and 10 evergreen gymnosperm species) from 70 boreal, temperate, and subtropical natural forests in Japan. The best generic equations provided better biomass estimates than did local equations that were applied to foreign sites. The best generic equations included explanatory variables that represent interspecific differences in allometry in addition to stem diameter, reducing error by 4-12% compared to the generic equations that did not include the interspecific difference. Different explanatory variables were selected for different components. For aboveground and stem biomass, the best generic equations had species-specific wood specific gravity as an explanatory variable. For branch, leaf, and root biomass, the best equations had functional types (deciduous angiosperm, evergreen angiosperm, and evergreen gymnosperm) instead of functional traits (wood specific gravity or leaf mass per area), suggesting importance of other traits in addition to these traits, such as canopy and root architecture. Inclusion of tree height in addition to stem diameter improved

  10. ORNAMENTAL SPECIES USED IN WATER GARDENS FROM SOUTH KOREA

    Directory of Open Access Journals (Sweden)

    PARK SANG KUN

    2009-12-01

    Full Text Available Aquatic plants (hydrophytic plants or hydrophytes are plants that have adapted to live in or on aquatic environments. Because they are living under the water require numerous special adaptations, aquatic plants can only grow in water or permanently saturated soil. Aquatic vascular plants can be ferns or angiosperms (from a variety of families, including monocots and dicots. As opposed to plants types such as mesophytes and xerophytes, hydrophytes do not have a problem in retaining water due to the abundance of water in its environment. This means the plant has less need to regulate transpiration (indeed, the regulation of transpiration would require more energy than the possible benefits incurred.The Korean vascular flora contains 217 families, 1.045 genera, 3.034 species, and 406 infraspecific taxa [CHONG-WOOK PARK, 2007].In Mokp’o region (South Korea, in 1995, was identified hydrophytes species composed by 11 orders, 22 families, 23 genera, 38 species, 9 varieties, total 48 taxa. These were composed by 22 taxa emerged plants, 15 taxa floating-leaves plants, 8 taxa submerged plants and 3 taxa free-floating plants [JEONG WOO-GYU & al., 1995].The same research collective, in 1996, in Paksil, Yundang (South Korea swamp region was identified hydrophytes species composed by 11 orders, 22 families, 31 genera, 41 species, 10 varieties; it represents 12.1% of total plants. These is composed of 25 taxa emerged plants, 15 taxa floating-leaves plants, 9 taxa submerged plants and 3 taxa free-floating plants [JEONG WOO-GYU & al., 1996].This paper contains the classification of water plants and a brief description of some aquatic species used in Korean ancient and modern gardens in order to introduce in our country.

  11. Species abundance in a forest community in South China: A case of poisson lognormal distribution

    Science.gov (United States)

    Yin, Z.-Y.; Ren, H.; Zhang, Q.-M.; Peng, S.-L.; Guo, Q.-F.; Zhou, G.-Y.

    2005-01-01

    Case studies on Poisson lognormal distribution of species abundance have been rare, especially in forest communities. We propose a numerical method to fit the Poisson lognormal to the species abundance data at an evergreen mixed forest in the Dinghushan Biosphere Reserve, South China. Plants in the tree, shrub and herb layers in 25 quadrats of 20 m??20 m, 5 m??5 m, and 1 m??1 m were surveyed. Results indicated that: (i) for each layer, the observed species abundance with a similarly small median, mode, and a variance larger than the mean was reverse J-shaped and followed well the zero-truncated Poisson lognormal; (ii) the coefficient of variation, skewness and kurtosis of abundance, and two Poisson lognormal parameters (?? and ??) for shrub layer were closer to those for the herb layer than those for the tree layer; and (iii) from the tree to the shrub to the herb layer, the ?? and the coefficient of variation decreased, whereas diversity increased. We suggest that: (i) the species abundance distributions in the three layers reflects the overall community characteristics; (ii) the Poisson lognormal can describe the species abundance distribution in diverse communities with a few abundant species but many rare species; and (iii) 1/?? should be an alternative measure of diversity.

  12. Species Abundance in a Forest Community in South China: A Case of Poisson Lognormal Distribution

    Institute of Scientific and Technical Information of China (English)

    Zuo-Yun YIN; Hai REN; Qian-Mei ZHANG; Shao-Lin PENG; Qin-Feng GUO; Guo-Yi ZHOU

    2005-01-01

    Case studies on Poisson lognormal distribution of species abundance have been rare, especially in forest communities. We propose a numerical method to fit the Poisson lognormal to the species abundance data at an evergreen mixed forest in the Dinghushan Biosphere Reserve, South China. Plants in the tree, shrub and herb layers in 25 quadrats of 20 m×20 m, 5 m×5 m, and 1 m×1 m were surveyed. Results indicated that: (i) for each layer, the observed species abundance with a similarly small median, mode, and a variance larger than the mean was reverse J-shaped and followed well the zero-truncated Poisson lognormal;(ii) the coefficient of variation, skewness and kurtosis of abundance, and two Poisson lognormal parameters (σ andμ) for shrub layer were closer to those for the herb layer than those for the tree layer; and (iii) from the tree to the shrub to the herb layer, the σ and the coefficient of variation decreased, whereas diversity increased. We suggest that: (i) the species abundance distributions in the three layers reflects the overall community characteristics; (ii) the Poisson lognormal can describe the species abundance distribution in diverse communities with a few abundant species but many rare species; and (iii) 1/σ should be an alternative measure of diversity.

  13. Soil animal communities at five succession stages in the litter of the evergreen broad-leaved forest in Tiantong,China

    Institute of Scientific and Technical Information of China (English)

    Yi Lan; You Wenhui; Song Yongchang

    2006-01-01

    Soil animals are abundant in forest litter layer,but little attention has been Paid to the vertical distribution of community structure of soil animals in the layers at different plant community succession stages.The forest litter layer can be divided into fresh litter layer(L),fermentation layer(F)and humus layer(H),which may represent different litter decomposition stages.The aim of the study is to ascertain the vertical distribution features of soil animal communities among the three litter layers and the change in the succession process of the Evergreen Broad-Leaved Forest(EBLF)in Tiantong,Zhejiang Province,China.Soil animal communities in the five plant communities at different succession stages were investigated during the 2003 winter.Soil animals,which were collected by using Tullgren funnels,amounted to a total of 13381 individuals falling into 2 phyla,8 classes and 20 orders.The dominant groups were Acarina and Collembola,accounting for 94.24% of the total individuals,with the number of Acarina individuals 7.66 times than that of Collembola.The common group was Diptera.The results indicated that there was a distinctive vertical distribution of the soil animal communities in the forest litter laver,but it differed from that in soil below the litter layer.In contrast to those in the soil,the soil animals in the litter layer generally tended to increase in both group abundance and density from the top fresh litter layer to the bottom humus layer.Altogether 19 groups and 59.03% of total individuals were found in the bottom layer,while only 8 groups and 5.35% of the total individuals in the top.Moreover,there were some variations in the distribution of the soil animals at different plant succession stages.85.19% of Homoptera and 100% of Symphyla were found in the litter layer at the climax succession stage.while 75.61% of Thysanoptera at the intermediate succession stage.Therefore,these groups might be seen as indicative groups.The total numbers of soil animal

  14. Nitrogen species

    Science.gov (United States)

    Harries, J. E.; Brasseur, G.; Coffey, M. T.; Fischer, H.; Gille, J.; Jones, R.; Louisnard, N.; McCormick, M. P.; Noxon, J.; Owens, A. J.

    Total odd nitrogen, NO(y), may be defined as the sum of all active nitrogen species that interchange photochemically with one another on a time scale of the order of weeks or less. As noted, NO + NO2 reactions dominate the processes controlling the ozone balance in the contemporary stratosphere. The observational data from non-satellite platforms are reviewed. The growth in available satellite data in the past four years is considered. Some of the most important scientific issues are discussed, taking into account new results from atmospheric models (mainly 2-D). The model results are compared with the observational data.

  15. Whole Plastome Sequences from Five Ginger Species Facilitate Marker Development and Define Limits to Barcode Methodology

    Science.gov (United States)

    Vaughn, Justin N.; Chaluvadi, Srinivasa R.; Tushar; Rangan, Latha; Bennetzen, Jeffrey L.

    2014-01-01

    Plants from the Zingiberaceae family are a key source of spices and herbal medicines. Species identification within this group is critical in the search for known and possibly novel bioactive compounds. To facilitate precise characterization of this group, we have sequenced chloroplast genomes from species representing five major groups within Zingiberaceae. Generally, the structure of these genomes is similar to the basal angiosperm excepting an expansion of 3 kb associated with the inverted repeat A region. Portions of this expansion appear to be shared across the entire Zingiberales order, which includes gingers and bananas. We used whole plastome alignment information to develop DNA barcodes that would maximize the ability to differentiate species within the Zingiberaceae. Our computation pipeline identified regions of high variability that were flanked by highly conserved regions used for primer design. This approach yielded hitherto unexploited regions of variability. These theoretically optimal barcodes were tested on a range of species throughout the family and were found to amplify and differentiate genera and, in some cases, species. Still, though these barcodes were specifically optimized for the Zingiberaceae, our data support the emerging consensus that whole plastome sequences are needed for robust species identification and phylogenetics within this family. PMID:25333869

  16. Whole plastome sequences from five ginger species facilitate marker development and define limits to barcode methodology.

    Directory of Open Access Journals (Sweden)

    Justin N Vaughn

    Full Text Available Plants from the Zingiberaceae family are a key source of spices and herbal medicines. Species identification within this group is critical in the search for known and possibly novel bioactive compounds. To facilitate precise characterization of this group, we have sequenced chloroplast genomes from species representing five major groups within Zingiberaceae. Generally, the structure of these genomes is similar to the basal angiosperm excepting an expansion of 3 kb associated with the inverted repeat A region. Portions of this expansion appear to be shared across the entire Zingiberales order, which includes gingers and bananas. We used whole plastome alignment information to develop DNA barcodes that would maximize the ability to differentiate species within the Zingiberaceae. Our computation pipeline identified regions of high variability that were flanked by highly conserved regions used for primer design. This approach yielded hitherto unexploited regions of variability. These theoretically optimal barcodes were tested on a range of species throughout the family and were found to amplify and differentiate genera and, in some cases, species. Still, though these barcodes were specifically optimized for the Zingiberaceae, our data support the emerging consensus that whole plastome sequences are needed for robust species identification and phylogenetics within this family.

  17. Functional Diversity of Boreal Bog Plant Species Decreases Seasonal Variation of Ecosystem Carbon Sink Function

    Science.gov (United States)

    Korrensalo, A.

    2015-12-01

    Species diversity has been found to decrease the temporal variance of productivity of a plant community, and diversity in species responses to environmental factors seems to make a plant community more stable in changing conditions. Boreal bogs are nutrient poor peatland ecosystems where the number of plant species is low but the species differ greatly in their growth form. In here we aim to assess the role of the variation in photosynthesis between species for the temporal variation in ecosystem carbon sink function. To quantify the photosynthetic properties and their seasonal variation for different bog plant species we measured photosynthetic parameters and stress-inducing chlorophyll fluorescence of vascular plant and Sphagnum moss species in a boreal bog over a growing season. We estimated monthly gross photosynthesis (PG) of the whole study site based on species level light response curves and leaf area development. The estimated PG was further compared with a gross primary production (GPP) estimate measured by eddy covariance (EC) technique. The sum of upscaled PG estimates agreed well with the GPP estimate measured by the EC technique. The contributions of the species and species groups to the ecosystem level PG changed over the growing season. The sharp mid-summer peak in sedge PG was balanced by more stable PG of evergreen shrubs and Sphagna. Species abundance rather than differences in photosynthetic properties between species and growth forms determined the most productive plants on the ecosystem scale. Sphagna had lower photosynthesis and clorophyll fluorescence than vascular plants but were more productive on the ecosystem scale throughout the growing season due to their high areal coverage. These results show that the diversity of growth forms stabilizes the seasonal variation of the ecosystem level PG in an ombrotrophic bog ecosystem. This may increase the resilience of the ecosystem to changing environmental conditions.

  18. Adaptive strategies against drought stress of six plant species with different growth forms from karst habitats of southwestern China

    Science.gov (United States)

    Liu, C.; Guo, K.; Liu, Y.

    2012-04-01

    Frequent temporary drought in the rain season, as well as long-term drought in the dry season, is one of the most important factors limiting the survival and growth of plants in the harsh karst habitats of southwestern China. The morphological and physiological responses to drought stress of six native woody plant species were investigated under both temporary and prolonged drought stress. The six plant species included Pyracantha fortuneana (evergreen shrub), Rosa cymosa (deciduous shrub), Cinnamomum bodinieri (evergreen tree), and other three deciduous trees, Broussonetia papyrifera, Platycarya longipes and Pteroceltis tatarinowii. Under severe drought stress, the two shrubs with low leaf area ratio (LAR) maintained higher water status, higher photosynthetic capacity and larger percent biomass increase than the most of the trees, owing to their lower specific leaf area, higher intrinsic water use efficiency and thermal dissipation, and higher capacities of osmotic adjustment and antioxidant protection. The evergreen tree, C. bodinieri, exhibited small decrease of water potential and maintained higher leaf mass ratio (LMR) and LAR than the deciduous species under moderate drought stress, due to the high proline accumulation and high activities of antioxidant enzymes. However, it showed high levels of cellular damages, very low photosynthetic capacity, and sharp decreases of water potential and biomass under severe drought stress. After rewatering, C. bodinieri showed a lower ability to recover from severe drought with the successive repeats of severe drought event. The three deciduous trees developed high root mass ratio for maximizing water uptake, and showed higher LAR and biomass than the two shrubs under well-watered condition. However, drought stress resulted in sharp decreases of biomass in the three deciduous trees, which were attributed to the large drought-induced decreases of LMR, LAR and gas exchange. Under drought conditions, the deciduous trees

  19. Wood chemical composition in species of Cactaceae: the relationship between lignification and stem morphology.

    Science.gov (United States)

    Reyes-Rivera, Jorge; Canché-Escamilla, Gonzalo; Soto-Hernández, Marcos; Terrazas, Teresa

    2015-01-01

    In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level. PMID:25880223

  20. Wood chemical composition in species of Cactaceae: the relationship between lignification and stem morphology.

    Directory of Open Access Journals (Sweden)

    Jorge Reyes-Rivera

    Full Text Available In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35% of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level.

  1. Life-history traits predict perennial species response to fire in a desert ecosystem.

    Science.gov (United States)

    Shryock, Daniel F; DeFalco, Lesley A; Esque, Todd C

    2014-08-01

    The Mojave Desert of North America has become fire-prone in recent decades due to invasive annual grasses that fuel wildfires following years of high rainfall. Perennial species are poorly adapted to fire in this system, and post-fire shifts in species composition have been substantial but variable across community types. To generalize across a range of conditions, we investigated whether simple life-history traits could predict how species responded to fire. Further, we classified species into plant functional types (PFTs) based on combinations of life-history traits and evaluated whether these groups exhibited a consistent fire-response. Six life-history traits varied significantly between burned and unburned areas in short (up to 4 years) or long-term (up to 52 years) post-fire datasets, including growth form, lifespan, seed size, seed dispersal, height, and leaf longevity. Forbs and grasses consistently increased in abundance after fire, while cacti were reduced and woody species exhibited a variable response. Woody species were classified into three PFTs based on combinations of life-history traits. Species in Group 1 increased in abundance after fire and were characterized by short lifespans, small, wind-dispersed seeds, low height, and deciduous leaves. Species in Group 2 were reduced by fire and distinguished from Group 1 by longer lifespans and evergreen leaves. Group 3 species, which also decreased after fire, were characterized by long lifespans, large non-wind dispersed seeds, and taller heights. Our results show that PFTs based on life-history traits can reliably predict the responses of most species to fire in the Mojave Desert. Dominant, long-lived species of this region possess a combination of traits limiting their ability to recover, presenting a clear example of how a novel disturbance regime may shift selective environmental pressures to favor alternative life-history strategies. PMID:25247062

  2. Changes in nuclear, nucleolar and cytoplasmic RNA content during growth and differentiation of root parenchyma cells in plant species with different dynamics of DNA endoreplication.

    Science.gov (United States)

    Marciniak, K; Bilecka, A

    1985-01-01

    Using cytophotometric method, after staining preparations with gallocyanin RNA content was examined in nucleus, nucleolus and cytoplasm of six species of angiospermal plants in successive (1-7 mm) segments of root representing successive zones of differentiation. During the cell cycle, RNA content duplicates in the nucleus, nucleolus and cytoplasm of meristematic cells. On the other hand, during growth and differentiation of parenchyma cells in species with endoreplication the content of nucleolar RNA does not increase in proportion with DNA content. High level of endoreplication is connected with high nucleolar RNA content and low cytoplasmic RNA content. In species without endoreplication at low nucleolar RNA content, a considerable growth of cytoplasmic RNA content takes place. PMID:2417894

  3. Testing the 'rare pit' hypothesis for xylem cavitation resistance in three species of Acer.

    Science.gov (United States)

    Christman, Mairgareth A; Sperry, John S; Adler, Frederick R

    2009-01-01

    Eudicot angiosperms with greater vulnerability to xylem cavitation tend to have vessels with greater total area of inter-vessel pits, which inspired the 'rare pit' hypothesis: the more pits per vessel, by chance the leakier will be the vessel's single air-seeding pit and the lower the air-seeding threshold for cavitation to spread between vessels. Here, we demonstrate the feasibility of the hypothesis, using probability theory to model the axial propagation of air through air-injected stems. In the presence of rare, leaky pits, air-seeding pressures through short stems with few vessel ends in series should be low; pressures should increase in longer stems as more end-walls must be breached. Measurements on three Acer species conformed closely to model predictions, confirming the rare presence of leaky pits. The model indicated that pits air-seeding at or below the mean cavitation pressure (MCP) occurred at similarly low frequencies in all species. Average end-wall air-seeding pressures predicted by the model closely matched species' MCPs. Differences in species' vulnerability were primarily attributed to differences in frequency of the leakiest pits rather than pit number or area per vessel. Adjustments in membrane properties and extent of pitting per vessel apparently combine to influence cavitation resistance across species. PMID:19434805

  4. Influence of host species on ectomycorrhizal communities associated with two co-occurring oaks (Quercus spp.) in a tropical cloud forest.

    Science.gov (United States)

    Morris, Melissa H; Pérez-Pérez, Miguel A; Smith, Matthew E; Bledsoe, Caroline S

    2009-08-01

    Interactions between host tree species and ectomycorrhizal fungi are important in structuring ectomycorrhizal communities, but there are only a few studies on host influence of congeneric trees. We investigated ectomycorrhizal community assemblages on roots of deciduous Quercus crassifolia and evergreen Quercus laurina in a tropical montane cloud forest, one of the most endangered tropical forest ecosystems. Ectomycorrhizal fungi were identified by sequencing internal transcribed spacer and partial 28S rRNA gene. We sampled 80 soil cores and documented high ectomycorrhizal diversity with a total of 154 taxa. Canonical correspondence analysis indicated that oak host was significant in explaining some of the variation in ectomycorrhizal communities, despite the fact that the two Quercus species belong to the same red oak lineage (section Lobatae). A Tuber species, found in 23% of the soil cores, was the most frequent taxon. Similar to oak-dominated ectomycorrhizal communities in temperate forests, Thelephoraceae, Russulaceae and Sebacinales were diverse and dominant. PMID:19508503

  5. Growth synchrony between leaves and stems during twig development differs among plant functional types of subtropical rainforest woody species.

    Science.gov (United States)

    Meng, Fengqun; Zhang, Guangfu; Li, Xincheng; Niklas, Karl J; Sun, Shucun

    2015-06-01

    During the development of woody twigs, the growth in leaf may or may not be proportional to the growth in stem. The presence or absence of a synchronicity between these two phenologies may reflect differences in life history adaptive strategies concerning carbon gain. We hypothesized that sun-adapted species are more likely to be less synchronous between growths in total leaf area (TLA) and stem length compared with shade-adapted species, with a bias in growth in stem length, and that shade-adapted species are more likely to be more synchronous between increases in individual leaf area (ILA) (leaf size) and leaf number (LN) during twig development compared with sun-adapted species, giving priority to growth of leaf size. We tested these two hypotheses by recording the phenologies of leaf emergence, leaf expansion and stem elongation during twig development for 19 evergreen woody species (including five shade-adapted understory species, six sun-adapted understory species and eight sun-adapted canopy species) in a subtropical evergreen broad-leaved forest in eastern China. We constructed indices to characterize the synchronicity between TLA and stem length (αLS) and between leaf size and leaf number (αSN) and we derived the α values from logistic functions taking the general form of A = A(max)/[1 + exp(β - αB)] (where A is the TLA or average ILA, B is the corresponding stem length or LN at a specific time, and A(max) is the maximum TLA or the maximum ILA of a twig; the higher the numerical value of α, the less synchronous the corresponding phenologies). Consistent with our hypotheses, sun-adapted species were higher both in α(LS) and α(SN), showing less synchronous patterns in the growths of TLA vs stem length and leaf size vs LN during twig development. Moreover, α(LS) and α(SN) were significantly positively correlated with relative growth rates of LN and leaf size across species, as indicated by both analyses of ordinary regression and

  6. Conservation priorities in a biodiversity hotspot: analysis of narrow endemic plant species in New Caledonia.

    Directory of Open Access Journals (Sweden)

    Adrien S Wulff

    Full Text Available New Caledonia is a global biodiversity hotspot facing extreme environmental degradation. Given the urgent need for conservation prioritisation, we have made a first-pass quantitative assessment of the distribution of Narrow Endemic Species (NES in the flora to identify species and sites that are potentially important for conservation action. We assessed the distributional status of all angiosperm and gymnosperm species using data from taxonomic descriptions and herbarium samples. We characterised species as being NES if they occurred in 3 or fewer locations. In total, 635 of the 2930 assessed species were classed as NES, of which only 150 have been subjected to the IUCN conservation assessment. As the distributional patterns of un-assessed species from one or two locations correspond well with assessed species which have been classified as Critically Endangered or Endangered respectively, we suggest that our distributional data can be used to prioritise species for IUCN assessment. We also used the distributional data to produce a map of "Hotspots of Plant Narrow Endemism" (HPNE. Combined, we used these data to evaluate the coincidence of NES with mining activities (a major source of threat on New Caledonia and also areas of conservation protection. This is to identify species and locations in most urgent need of further conservation assessment and subsequent action. Finally, we grouped the NES based on the environments they occurred in and modelled the habitat distribution of these groups with a Maximum Entropy Species Distribution Model (MaxEnt. The NES were separable into three different groups based primarily on geological differences. The distribution of the habitat types for each group coincide partially with the HPNE described above and also indicates some areas which have high habitat suitability but few recorded NES. Some of these areas may represent under-sampled hotspots of narrow endemism and are priorities for further field work.

  7. 海南岛霸王岭热带山地常绿林和热带山顶矮林群落特征%Community characteristics of tropical montane evergreen forest and tropical montane dwarf forest in Bawangling National Nature Reserve on Hainan Island, South China

    Institute of Scientific and Technical Information of China (English)

    龙文兴; 臧润国; 丁易

    2011-01-01

    Both tropical montane evergreen forest (TMEF) and tropical montane dwarf forest (TMDF) are typical tropical cloud forests on Hainan Island. To compare community structure and species diversity between these two forest types, we established eight and ten plots (each with 2,500 m2 in area) in TMEF and TMDF, respectively, in Bawangling National Nature Reserve on Hainan Island, South China. We investigated each individual plant with diameter at breast height (DBH) ≥1 cm including trees, shrubs and lianas, and found that the mean density of saplings (1 cm≤DBH < 5 cm) and small trees (5 cm≤DBH < 10 cm) was lower in TMEF than TMDF, while there were no differences in density of adult trees (DBH≥10 cm) between the two forest types. TMEF had higher mean DBH of small trees and adult trees, but lower mean DBH of saplings than TMDF. Mean height of saplings, small trees and adult trees was higher in TMEF than TMDF. The dominant species differed between these two forest types, but dominant family, dominant genera and overall species compositions were similar, with a Serensen similarity index value of 0.71. Compared with the power and exponential curves, the logistic curve was the optimal model approximating the species-area relation within the two forest types. The observed species richness values, as well as the values predicted by 1st order Jackknife estimator, 2nd order Jackknife estimator and bootstrap estimator, were higher in TMEF than TMDF. Our results highlight the differences in community structure and species diversity between TMEF and TMDF, which likely resulting from differences in mechanisms maintaining the structure and diversity of these two types of forest communities.%热带山地常绿林和热带山顶矮林均属于热带云雾林.为了揭示其群落结构和物种多样性特征,在海南岛霸王岭热带山地常绿林和热带山顶矮林分别设置8个和10个2,500 m2样方,调查所有DBH≥1cm的乔木、灌木和藤本植株.结果显示:(1

  8. 南岭大顶山常绿阔叶林群落结构及其物种多样性%Community structure and species diversity of the evergreen broadleaf forest in Nanling Dadingshan Nature Reserve

    Institute of Scientific and Technical Information of China (English)

    毕肖峰; 彭华贵; 黄忠良; 曹洪麟

    2005-01-01

    南岭国家级自然保护区位于欧亚大陆东南部的亚热带和热带区域,是广东省天然的绿色屏障.根据在南岭大顶山建立的1 hm2生物多样性监测研究永久样地的调查,对样地所在的植物群落的结构、物种组成和植物物种多样性进行了分析研究.结果表明,该群落属于中亚热带常绿阔叶林,应称为华润楠(Machilus chinensis)、仁昌厚壳桂(Cryptocarya chingii)-山羡叶泡花树(Meliosma thorelii)群落.该群落结构复杂,各层次的代表种类明显.植物物种多样性丰富,特别是乔木层(DBH>1CM)的1 hm2物种数达163种,高于亚热带其它地区的森林群落.各个层次中,以层间植物的多样性指数最高,乔木层次之,草本层最低.究其原因是层间植物的均匀度指数较高.因此,该森林群落具有重要的保护价值,应该加强其物种维持机制的深入研究.

  9. Drivers of CO2 Emission Rates from Dead Wood Logs of 13 Tree Species in the Initial Decomposition Phase

    Directory of Open Access Journals (Sweden)

    Tiemo Kahl

    2015-07-01

    Full Text Available Large dead wood is an important structural component of forest ecosystems and a main component of forest carbon cycles. CO2 emissions from dead wood can be used as a proxy for actual decomposition rates. The main drivers of CO2 emission rates for dead wood of temperate European tree species are largely unknown. We applied a novel, closed chamber measurement technique to 360 dead wood logs of 13 important tree species in three regions in Germany. We found that tree species identity was with 71% independent contribution to the model (R2 = 0.62 the most important driver of volume-based CO2 emission rates, with angiosperms having on average higher rates than conifers. Wood temperature and fungal species richness had a positive effect on CO2 emission rates, whereas wood density had a negative effect. This is the first time that positive fungal species richness—wood decomposition relationship in temperate forests was shown. Certain fungal species were associated with high or low CO2 emission rates. In addition, as indicated by separate models for each tree species, forest management intensity, study region, and the water content as well as C and N concentration of dead wood influenced CO2 emission rates.

  10. Long-term experimental warming, shading and nutrient addition affect the concentration of phenolic compounds in arctic-alpine deciduous and evergreen dwarf shrubs

    DEFF Research Database (Denmark)

    Hansen, Anja Hoff; Jonasson, Sven Evert; Michelsen, Anders;

    2006-01-01

    of allocation. Most low molecular weight phenolics in the current year's leaves decreased in all treatments. Condensed tannins and the tannin-to-N ratio, however, either increased or decreased, and the strength and even direction of the responses varied among the species and leaf cohorts, supporting...

  11. Herbivory and habitat association of tree seedlings in lowland evergreen rainforest on white-sand and terra-firme in the upper Rio Negro

    NARCIS (Netherlands)

    Stropp, J.; van der Sleen, Peter; Quesada, C.A.; ter Steege, Hans

    2014-01-01

    Background: It has been proposed that the interaction between herbivory and soil nutrient availability drives habitat association of tree species in Peruvian Amazonia. Nevertheless, there is no empirical evidence that this interaction holds across other Amazonian regions. Aims: We address this knowl

  12. Multi-locus tree and species tree approaches toward resolving a complex clade of downy mildews (Straminipila, Oomycota), including pathogens of beet and spinach.

    Science.gov (United States)

    Choi, Young-Joon; Klosterman, Steven J; Kummer, Volker; Voglmayr, Hermann; Shin, Hyeon-Dong; Thines, Marco

    2015-05-01

    Accurate species determination of plant pathogens is a prerequisite for their control and quarantine, and further for assessing their potential threat to crops. The family Peronosporaceae (Straminipila; Oomycota) consists of obligate biotrophic pathogens that cause downy mildew disease on angiosperms, including a large number of cultivated plants. In the largest downy mildew genus Peronospora, a phylogenetically complex clade includes the economically important downy mildew pathogens of spinach and beet, as well as the type species of the genus Peronospora. To resolve this complex clade at the species level and to infer evolutionary relationships among them, we used multi-locus phylogenetic analysis and species tree estimation. Both approaches discriminated all nine currently accepted species and revealed four previously unrecognized lineages, which are specific to a host genus or species. This is in line with a narrow species concept, i.e. that a downy mildew species is associated with only a particular host plant genus or species. Instead of applying the dubious name Peronospora farinosa, which has been proposed for formal rejection, our results provide strong evidence that Peronospora schachtii is an independent species from lineages on Atriplex and apparently occurs exclusively on Beta vulgaris. The members of the clade investigated, the Peronospora rumicis clade, associate with three different host plant families, Amaranthaceae, Caryophyllaceae, and Polygonaceae, suggesting that they may have speciated following at least two recent inter-family host shifts, rather than contemporary cospeciation with the host plants. PMID:25772799

  13. Progress and gaps in understanding mechanisms of ash tree resistance to emerald ash borer, a model for wood-boring insects that kill angiosperms.

    Science.gov (United States)

    Villari, Caterina; Herms, Daniel A; Whitehill, Justin G A; Cipollini, Don; Bonello, Pierluigi

    2016-01-01

    We review the literature on host resistance of ash to emerald ash borer (EAB, Agrilus planipennis), an invasive species that causes widespread mortality of ash. Manchurian ash (Fraxinus mandshurica), which coevolved with EAB, is more resistant than evolutionarily naïve North American and European congeners. Manchurian ash was less preferred for adult feeding and oviposition than susceptible hosts, more resistant to larval feeding, had higher constitutive concentrations of bark lignans, coumarins, proline, tyramine and defensive proteins, and was characterized by faster oxidation of phenolics. Consistent with EAB being a secondary colonizer of coevolved hosts, drought stress decreased the resistance of Manchurian ash, but had no effect on constitutive bark phenolics, suggesting that they do not contribute to increased susceptibility in response to drought stress. The induced resistance of North American species to EAB in response to the exogenous application of methyl jasmonate was associated with increased bark concentrations of verbascoside, lignin and/or trypsin inhibitors, which decreased larval survival and/or growth in bioassays. This finding suggests that these inherently susceptible species possess latent defenses that are not induced naturally by larval colonization, perhaps because they fail to recognize larval cues or respond quickly enough. Finally, we propose future research directions that would address some critical knowledge gaps. PMID:26268949

  14. Plant DNA barcodes can accurately estimate species richness in poorly known floras.

    Directory of Open Access Journals (Sweden)

    Craig Costion

    Full Text Available BACKGROUND: Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70% and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. METHODOLOGY/PRINCIPAL FINDINGS: Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. CONCLUSIONS/SIGNIFICANCE: We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways.

  15. Species composition and diversity of epiphytes of several ecotones in Ailao Mountain National Nature Reserve, Yunnan

    Directory of Open Access Journals (Sweden)

    Yuanlin Yao

    2012-11-01

    Full Text Available Epiphytic bryophytes are sensitive to environmental factors and are important components of montane moist subtropical forests. The aim of this study was to investigate the biodiversity and distribution of bole epiphytic bryophytes in the ecotones among old growth forest (OGF and three other forest types (i.e., old growth dwarf mossy forest (ODMF, 50-yr-secondary Lithocarpus forest (SLF, and secondary Populus bonatii forest (SPF in the Xujiaba region of Ailao Mountains, Yunnan. We evaluated species composition, biodiversity, and life forms of epiphytic bryophytes on host trunks above the ground in these ecotones and adjacent communities. Species richness and Shannon-Wiener diversity were lower in the ecotone between OGF and ODMF (EOO than the adjacent forest communities (i.e., OGF and ODMF, whereas these indices were higher in ecotones between OGF and SLF (EOSl and between OGF and SPF (EOSp than the adjacent secondary forests. The distribution of some species was restricted to specific ecotones. Porella nitens and Wijkia surcularis only appeared in EOSp, and Gammiella tonkinensis was restricted to EOO. Ecotones in montane moist evergreen broad-leaved forests in Ailao Mountains exhibit an important influence on the patterns of epiphyte species composition and diversity.

  16. Critical zone co-evolution: evidence that weathering and consequent seasonal rock moisture storage leads to a mixed forest canopy of conifer and evergreen broadleaf trees

    Science.gov (United States)

    Oshun, J.; Dietrich, W. E.; Dawson, T. E.; Rempe, D. M.; Fung, I. Y.

    2014-12-01

    Despite recent studies demonstrating the importance of rock moisture as a source of water to vegetation, much remains unknown regarding species-specific and seasonal patterns of water uptake in a Mediterranean climate. Here, we use stable isotopes of water (d18O, dD) to define the isotope composition of water throughout the subsurface critical zone of Rivendell, within the Eel River Critical Zone Observatory. We find that a structured heterogeneity of water isotope composition exists in which bulk saprolite is chronically more negative than bulk soil, and tightly held moisture is more negative than the mobile water that recharges the saturated zone and generates runoff. These moisture reservoirs provide a blueprint from which to measure the seasonal uptake patterns of different species collocated on the site. Douglas-firs use unsaturated saprolite and weathered bedrock moisture (i. e. rock moisture) throughout the year. Contrastingly, hardwood species (madrone, live oak, tanoak) modify their source water depending on which moisture is energetically favorable. Hardwoods use freely mobile water in the wet season, and rely on unsaturated zone soil moisture in the dry season. When soil water tension decreases on the drier south-facing slope, hardwood species use saprolite moisture. Although adjacent hardwoods and Douglas-firs partition water based on matric pull on the north side, there is competition for saprolite moisture in late summer on the south side. These results reveal the eco-hydrological importance of moisture derived from weathered bedrock, and show that the hardwoods have a competitive advantage under the drier conditions predicted in many climate models. Finally, the data emphasize that isotope measurements of all subsurface reservoirs and potential water sources are necessary for a complete and accurate characterization of the eco-hydrological processes within the critical zone.

  17. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species.

    Science.gov (United States)

    Gleason, Sean M; Westoby, Mark; Jansen, Steven; Choat, Brendan; Hacke, Uwe G; Pratt, Robert B; Bhaskar, Radika; Brodribb, Tim J; Bucci, Sandra J; Cao, Kun-Fang; Cochard, Hervé; Delzon, Sylvain; Domec, Jean-Christophe; Fan, Ze-Xin; Feild, Taylor S; Jacobsen, Anna L; Johnson, Daniel M; Lens, Frederic; Maherali, Hafiz; Martínez-Vilalta, Jordi; Mayr, Stefan; McCulloh, Katherine A; Mencuccini, Maurizio; Mitchell, Patrick J; Morris, Hugh; Nardini, Andrea; Pittermann, Jarmila; Plavcová, Lenka; Schreiber, Stefan G; Sperry, John S; Wright, Ian J; Zanne, Amy E

    2016-01-01

    The evolution of lignified xylem allowed for the efficient transport of water under tension, but also exposed the vascular network to the risk of gas emboli and the spread of gas between xylem conduits, thus impeding sap transport to the leaves. A well-known hypothesis proposes that the safety of xylem (its ability to resist embolism formation and spread) should trade off against xylem efficiency (its capacity to transport water). We tested this safety-efficiency hypothesis in branch xylem across 335 angiosperm and 89 gymnosperm species. Safety was considered at three levels: the xylem water potentials where 12%, 50% and 88% of maximal conductivity are lost. Although correlations between safety and efficiency were weak (r(2)  < 0.086), no species had high efficiency and high safety, supporting the idea for a safety-efficiency tradeoff. However, many species had low efficiency and low safety. Species with low efficiency and low safety were weakly associated (r(2)  < 0.02 in most cases) with higher wood density, lower leaf- to sapwood-area and shorter stature. There appears to be no persuasive explanation for the considerable number of species with both low efficiency and low safety. These species represent a real challenge for understanding the evolution of xylem. PMID:26378984

  18. Specific duplication and dorsoventrally asymmetric expression patterns of Cycloidea-like genes in zygomorphic species of Ranunculaceae.

    Directory of Open Access Journals (Sweden)

    Florian Jabbour

    Full Text Available Floral bilateral symmetry (zygomorphy has evolved several times independently in angiosperms from radially symmetrical (actinomorphic ancestral states. Homologs of the Antirrhinum majus Cycloidea gene (Cyc have been shown to control floral symmetry in diverse groups in core eudicots. In the basal eudicot family Ranunculaceae, there is a single evolutionary transition from actinomorphy to zygomorphy in the stem lineage of the tribe Delphinieae. We characterized Cyc homologs in 18 genera of Ranunculaceae, including the four genera of Delphinieae, in a sampling that represents the floral morphological diversity of this tribe, and reconstructed the evolutionary history of this gene family in Ranunculaceae. Within each of the two RanaCyL (Ranunculaceae Cycloidea-like lineages previously identified, an additional duplication possibly predating the emergence of the Delphinieae was found, resulting in up to four gene copies in zygomorphic species. Expression analyses indicate that the RanaCyL paralogs are expressed early in floral buds and that the duration of their expression varies between species and paralog class. At most one RanaCyL paralog was expressed during the late stages of floral development in the actinomorphic species studied whereas all paralogs from the zygomorphic species were expressed, composing a species-specific identity code for perianth organs. The contrasted asymmetric patterns of expression observed in the two zygomorphic species is discussed in relation to their distinct perianth architecture.

  19. 浙江天童常绿阔叶林藤本植物的适应生态学 Ⅰ. 叶片解剖特征的比较%ADAPTIVE ECOLOGY OF LIANAS IN TIANTONG EVERGREEN BROAD-LEAVED FOREST, ZHEJIANG, CHINA I. LEAF ANATOMICAL CHARACTERS

    Institute of Scientific and Technical Information of China (English)

    蔡永立; 宋永昌

    2001-01-01

    The ecological adaptations and leaf characters of ten genera (including eleven species of liana) were studied in evergreen broad-leaved forest of Tiantong Forest Park, Zhejiang province, China. The results are as follows: 1) Despite the mesophyte leaf form of the eleven liana species there were significant differences in leaf anatomical characters among them and some differences among different plants of an individual. These differences are mainly controlled by genetic factors, but environmental factors (mainly light and water or humidity) also had an important influence on them and these may oppose forms required in climbing methods; 2) Based on leaf adaptive characters the 11 species may be divided into three adaptive kinds: sun-adapted taxa or xerophytes (Broussonetia kaempferi, Ficus pumila and F. sarmentosa var. henryi), shade-adapted taxa (Morinda umbellata, Millettia reticulata) and mesophytes (Ampelopsis cantoniensis, Hedera nepalensis var. sinensis, Smilax lanceiofolia var. opaca, Celastrus rosthonianus, Dioscorea cirrhosa, Dalbergia millettii); 3) Rates of variation of different anatomical characters adapting to light or humidity differed among species. The ability to vary these characters, which may be influenced by changing environmental factors during the growth of liana, may be important for liana to adapt to the different environmental conditions it experiences through its life.%利用解剖学方法对浙江天童森林公园常绿阔叶林的10属11种木质藤本叶片的解剖特征进行了比较和因子分析,结果表明:藤本植物叶片结构在不同种类之间具有明显的差异,同种藤本的不同植物体的叶片也存在一定的差异; 这些差异除受遗传因子控制外,环境因子(主要为光照和水分)也有重要作用; 攀援方式对藤本叶片特征有一定影响,但未表现出规律性。尽管叶片的基本结构仍属中生类型,但也表现出一定的趋异适应,根

  20. Net Primary Production and Carbon Stocks for Subarctic Mesic-Dry Tundras with Contrasting Microtopography, Altitude, and Dominant Species

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Demey, A; Vermeulen, Annemie; Samson, R; Lemeur, R

    2009-01-01

    production was obtained from average species growth rates, previously assessed at the sites. Results showed that aboveground vascular NPP (15-270 g m-2), annual NPP (214-282 g m-2 or 102-137 g C m-2) and vegetation biomass (330-2450 g m-2) varied greatly among communities. Vegetation dominated by Empetrum...... hermaphroditum is more productive than Cassiope tetragona vegetation. Although the large majority of the apical NPP occurred in early-mid season (85%), production of stems and evergreen leaves proceeded until about 2 weeks before senescence. Most of the vascular vegetation was belowground (80%), whereas most of......Mesic-dry tundras are widespread in the Arctic but detailed assessments of net primary production (NPP) and ecosystem carbon (C) stocks are lacking. We addressed this lack of knowledge by determining the seasonal dynamics of aboveground vascular NPP, annual NPP, and whole-ecosystem C stocks in five...

  1. Development of SSR markers for Psychotria homalosperma (Rubiaceae) and cross-amplification in four other species1

    Science.gov (United States)

    Sugai, Kyoko; Watanabe, Kenta; Kato, Hidetoshi; Sugawara, Takashi

    2016-01-01

    Premise of the study: Twenty-six microsatellite (simple sequence repeat [SSR]) markers were characterized in Psychotria homalosperma (Rubiaceae), an endemic evergreen tree in the Bonin Islands, Japan, to investigate the genetic structure and gene flow of the species. Methods and Results: Using next-generation sequencing, we developed 26 SSR markers for P. homalosperma with perfect motifs from di- to pentanucleotide repeats. Of these, the Chichijima and Hahajima island populations of P. homalosperma had mean allele numbers of 6.50 and 6.81, respectively. The mean expected heterozygosities were 0.578 and 0.606, respectively. In addition, 10 and eight of these markers were successfully amplified for P. boninensis and P. serpens, respectively, occurring in the same or adjacent areas. Conclusions: The SSR markers developed in this study will be useful for future studies concerning the population genetics of P. homalosperma and will facilitate the development of a conservation strategy. PMID:27213122

  2. 普洱季风常绿阔叶林次生演替中木本植物幼苗更新特征%Woody seedling regeneration in secondary succession of monsoon broad-leaved evergreen forest in Puer, Yunnan, Southwest China

    Institute of Scientific and Technical Information of China (English)

    李帅锋; 刘万德; 苏建荣; 张志钧; 刘庆云

    2012-01-01

    以时空替代的方法,将针阔混交林、季风常绿阔叶林的次生林与成熟林等3个处于同一空间下的群落作为次生演替进程中的3个阶段,研究云南普洱地区次生演替过程中的木本植物幼苗更新特征,分析了次生演替过程中木本植物幼苗的物种组成、密度、高度级及与环境因子的相关性.结果表明:在8个共144 m2的幼苗样地中调查木本植物幼苗101种2014株,其中乔木幼苗是主要组成.随着次生演替的进行,木本植物幼苗、乔木与藤本幼苗密度逐渐增加,灌木幼苗密度无显著变化;藤本植物幼苗的物种丰富度随着次生演替进行而增加,乔木与灌木幼苗则无显著变化,成熟季风常绿阔叶林中木本植物幼苗ShannonWiener指数要显著小于针阔混交林与次生季风常绿阔叶林.次生与成熟季风常绿阔叶林木本植物幼苗多度随高度级增加而减少,针阔混交林则呈现偏峰曲线,幼苗密度均集中分布在高度20 cm以内,3个群落演替阶段木本植物幼苗物种丰富度随高度级增加呈现偏锋曲线.相似性系数反映出乔木和藤本幼苗的更新来源与群落的物种组成存在着紧密的联系.乔木幼苗密度分布与样地坡度之间存在着显著的负相关,灌木幼苗密度与土壤pH值之间存在着显著正相关.%Seedling, made up of small individuals of woody plant species in the understorey, is an important component of many forests and considered as an important source for natural restoration in forest ecosystems. Simultaneously seedling plays an important role in the regeneration of numerous tree species. Based on space-for-time substitution method, we treated coniferous and broad-leaved mixed forest, secondary monsoon evergreen broad-leaved forest ( MEBF) , primary MEBF in the same area as three different stages of secondary succession of MEBF. Eight sampling plots representing the three different stages distribute in Caiyanghe nature

  3. Short-term population dynamics of tree species in tropical forests at Kodayar in the Western Ghats of Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    Somaiah Sundarapandian

    2013-09-01

    Full Text Available The population dynamics of tree species were studied in both deciduous and evergreen forests at Kodayar in the Western Ghats of Tamil Nadu. The mortality of trees was less than the number of new recruits, resulting in a net gain in population density and basal area. The increase in net population density and basal area of tree species could be because of their entry into the adult stage from the already existing sapling and seedling bank. Greater mortality of juveniles than that of adults could be due to intense competition for limited available resources at the juvenile stage. The present study concludes that to a larger extent, the forest ecosystems here are at building phase. Long-term studies are needed to understand the regeneration niche.

  4. CUTICULAR STRUCTURE OF TWO ANGIOSPERM FOSSILS IN NEOGENE FROM TENGCHONG, YUNNAN PROVINCE AND ITS PALAEOENVIRONMENTAL SIGNIFICANCE%云南腾冲新近纪两种被子植物化石的角质层构造及其古环境意义

    Institute of Scientific and Technical Information of China (English)

    孙柏年; 丛培允; 阎德飞; 解三平

    2003-01-01

    This paper emphatically describes the cuticular characteristics of two fossil angiosperm species Betula mioluminifera Hu et Chaney and Carpinus subcordata Nathorst collected from Neogene in Tengchong, Yunnan. The cuticular characteristics of their Nearest Living Relative species (NLR species), Betula luminifera Winkler and Carpinus cordata B1.var. mollis Cheng et Chen, are analysed. In this experiment, we have got the lower epidermis of C.subcordata, whose characteristics are described as follows: Only the middle and lower parts of leave preserved; length about 7.5 cm, width 5 cm. Midrib strong; angle between ventricumbent and midrib 40°-50°; nearer to the base, bigger the angle; venulose, more than 12 pairs. Upper epidermis a little thicker and net-veined, stomata not found; epidermic cells arrayed rotundly, polygonal, length and width 20-30 μm; length of the net about 350 μm, width about 200 μm; width of nervecourses 50 μm with 3-4 rows of parallel cells; cells in nervecourses oblong, length about 2-3 times of width. Lower epidermis thin with stomata; trichome found; arrangement of epidermic cells as the same of upper epidermis. Distribution of stomata ruleless; type of stomatal apparatus Anomocytic; stomata slightly sunken; guard cells kidney-shaped and slightly lower than surrounding cells; inner surface of guard cells thick; guard cell surrounded by several epidermic cells. The cuticle, with its stomatal pores, represents the interface between plants and atmosphere, and its features such as cuticle thickness, stomatal density (SD), stomatal index (SI) and stomatal ratio (SR) are well used as a palaeoenvironmental indicator. Therefore, we can analyse changes in palaeoenvironment by studying the stomatal parameter of fossil plants which are sensitive to the change in atmospheric CO2 concentration. In this experiment, we have got the stomatal parameter of C.subcordata which indicates that atmospheric CO2 concentration in Neogene was higher than that of

  5. NON-SYMBIOTIC NITROGEN FIXATION, NET NITROGEN MINERALIZATION AND DENITRIFICATION IN EVERGREEN FORESTS OF CHILOÉ ISLAND, CHILE: A COMPARISON WITH OTHER TEMPERATE FORESTS FIJACION NO-SIMBIOTICA, MINERALIZACION NETA DEL NITROGENO Y DESNITRIFICACION EN BOSQUES SIEMPREVERDES DE CHILOE, CHILE: UNA COMPARACION CON OTROS BOSQUES TEMPLADOS

    OpenAIRE

    C.A. Pérez; M.R. Carmona; Armesto, J. J.

    2003-01-01

    Temperate forests in southern Chile offer unique opportunities for studying biogeochemical cycles in the absence of industrial air pollution. Here we compare three important fluxes of the nitrogen (N) cycle in temperate forests of southern Chile, non-symbiotic N fixation, net N mineralization and denitrification, with data from northern temperate forests more affected by air pollution. We studied five evergreen, old-growth forests and one second-growth forest in Chiloé Island, southern Chile....

  6. A new species of ant-loving cricket from Mallorca, Balearic Islands, Spain (Orthoptera, Myrmecophilidae

    Directory of Open Access Journals (Sweden)

    Stalling, T.

    2013-12-01

    Full Text Available A new species of ant-loving cricket, Myrmecophilus fuscus sp. n., is described and illustrated, based on individuals collected on the Balearic island of Mallorca, Spain. Lasius lasioides (Emery, 1869 was the host ant species. The habitat was evergreen oak forest. The holotype specimen was deposited in the collection of the Muséum d’Histoire Naturelle de Genève. The species is closely related to Myrmecophilus acervorum (Panzer, [1799] and belongs to the subgenus Myrmecophilus Berthold, 1827.Se describe e ilustra una nueva especie de grillo mirmecófilo, Myrmecophilus fuscus sp. n., procedente de la isla de Mallorca (islas Baleares, España. Lasius lasioides (Emery, 1869 es la especie hospedadora y su hábitat es el bosque perenne de roble. El holotipo se ha depositado en la colección del Muséum d’Histoire Naturelle de Ginebra. La nueva especie está estrechamente relacionada con Myrmecophilus acervorum (Panzer, [1799] y pertenece al subgénero Myrmecophilus Berthold, 1827.

  7. Ecological Importance of Small-Diameter Trees to the Structure, Diversity and Biomass of a Tropical Evergreen Forest at Rabi, Gabon.

    Directory of Open Access Journals (Sweden)

    Hervé R Memiaghe

    Full Text Available Tropical forests have long been recognized for their biodiversity and ecosystem services. Despite their importance, tropical forests, and particularly those of central Africa, remain understudied. Until recently, most forest inventories in Central Africa have focused on trees ≥10 cm in diameter, even though several studies have shown that small-diameter tree population may be important to demographic rates and nutrient cycling. To determine the ecological importance of small-diameter trees in central African forests, we used data from a 25-ha permanent plot that we established in the rainforest of Gabon to study the diversity and dynamics of these forests. Within the plot, we censused 175,830 trees ≥1 cm dbh from 54 families, 192 genera, and 345 species. Average tree density was 7,026 trees/ha, basal area 31.64 m2/ha, and above-ground biomass 369.40 Mg/ha. Fabaceae, Ebenaceae and Euphorbiaceae were the most important families by basal area, density and above-ground biomass. Small-diameter trees (1 cm ≥ dbh <10 cm comprised 93.7% of the total tree population, 16.5% of basal area, and 4.8% of the above-ground biomass. They also had diversity 18% higher at family level, 34% higher at genus level, and 42% higher at species level than trees ≥10 cm dbh. Although the relative contribution of small-diameter trees to biomass was comparable to other forests globally, their contribution to forest density, and diversity was disproportionately higher. The high levels of diversity within small-diameter classes may give these forests high levels of structural resilience to anthropogenic/natural disturbance and a changing climate.

  8. The trait contribution to wood decomposition rates of 15 Neotropical tree species.

    Science.gov (United States)

    van Geffen, Koert G; Poorter, Lourens; Sass-Klaassen, Ute; van Logtestijn, Richard S P; Cornelissen, Johannes H C

    2010-12-01

    The decomposition of dead wood is a critical uncertainty in models of the global carbon cycle. Despite this, relatively few studies have focused on dead wood decomposition, with a strong bias to higher latitudes. Especially the effect of interspecific variation in species traits on differences in wood decomposition rates remains unknown. In order to fill these gaps, we applied a novel method to study long-term wood decomposition of 15 tree species in a Bolivian semi-evergreen tropical moist forest. We hypothesized that interspecific differences in species traits are important drivers of variation in wood decomposition rates. Wood decomposition rates (fractional mass loss) varied between 0.01 and 0.31 yr(-1). We measured 10 different chemical, anatomical, and morphological traits for all species. The species' average traits were useful predictors of wood decomposition rates, particularly the average diameter (dbh) of the tree species (R2 = 0.41). Lignin concentration further increased the proportion of explained inter-specific variation in wood decomposition (both negative relations, cumulative R2 = 0.55), although it did not significantly explain variation in wood decomposition rates if considered alone. When dbh values of the actual dead trees sampled for decomposition rate determination were used as a predictor variable, the final model (including dead tree dbh and lignin concentration) explained even more variation in wood decomposition rates (R2 = 0.71), underlining the importance of dbh in wood decomposition. Other traits, including wood density, wood anatomical traits, macronutrient concentrations, and the amount of phenolic extractives could not significantly explain the variation in wood decomposition rates. The surprising results of this multi-species study, in which for the first time a large set of traits is explicitly linked to wood decomposition rates, merits further testing in other forest ecosystems. PMID:21302839

  9. Species-specific reversal of stem xylem embolism after a prolonged drought correlates to endpoint concentration of soluble sugars.

    Science.gov (United States)

    Savi, Tadeja; Casolo, Valentino; Luglio, Jessica; Bertuzzi, Stefano; Trifilo', Patrizia; Lo Gullo, Maria A; Nardini, Andrea

    2016-09-01

    Recent reports on tree mortality associated with anomalous drought and heat have raised interest into processes underlying tree resistance/resilience to water stress. Hydraulic failure and carbon starvation have been proposed as main causes of tree decline, with recent theories treating water and carbon metabolism as interconnected processes. We subjected young plants of two native (Quercus pubescens [Qp] and Prunus mahaleb [Pm]) and two invasive (Robinia pseudoacacia [Rp] and Ailanthus altissima [Aa]) woody angiosperms to a prolonged drought leading to stomatal closure and xylem embolism, to induce carbon starvation and hydraulic failure. At the end of the treatment, plants were measured for embolism rates and NSC content, and re-irrigated to monitor recovery of xylem hydraulics. Data highlight different hydraulic strategies in native vs invasive species under water stress, and provide physiological explanations for species-specific impacts of recent severe droughts. Drought-sensitive species (Qp and Rp) suffered high embolism rates and were unable to completely refill xylem conduits upon restoration of water availability. Species that better survived recent droughts were able to limit embolism build-up (Pm) or efficiently restored hydraulic functionality after irrigation (Aa). Species-specific capacity to reverse xylem embolism correlated to stem-level concentration of soluble carbohydrates, but not to starch content. PMID:27174138

  10. Depositional Environment of Mio-Pliocene Siwalik Sedimentary Strata from the Darjeeling Himalayan Foothills, India: A Palynological Approach

    Science.gov (United States)

    More, Sandip; Paruya, Dipak Kumar; Taral, Suchana; Chakraborty, Tapan; Bera, Subir

    2016-01-01

    A rich and diverse palynoassemblage recovered from the Churanthi River section (26°53' 59.3" N, 88°34' 17.2" E), Darjeeling foothills Eastern Himalaya, has yielded 87 species assigned to 69 genera. The palynoassemblage is rich in angiosperm taxa (45.63%) followed by gymnosperms (0.45%), pteridophytes (18.49%) and fungal remains (23.88%). Based on their nearest living relatives, a wet evergreen to semi-evergreen forest under a humid tropical to sub-tropical environment during the Mio-Pliocene age has been suggested. A lot of angiosperms such as Palaeosantalaceaepites, Araliaceoipollenites, Malvacearampollis, Zonocostites, Neocouperipollis, Dicolpopollis, Palmidites, Palmaepollenites, isolated salt glands of mangrove plant leaves (Heliospermopsis) and Mediaverrunites type of fungal spores, along with ichnofossils like Planolites, Palaeophycus, Skolithos, Rosselia, Ophiomorpha and Teichichnus associated with rippled mudstone-siltstone suggest an environment strongly influenced by brackish water. Primary sedimentary structures in the associated strata indicate strong wave agitation common in shallow marine setting. Some high elevation components (5.14%) such as Alnipollenites, cf. Corylus (Betulaceae), Juglanspollenites, Engelhardtioipollenites (Juglandaceae), Quercoides, Cupuliferoidaepollenites, Lithocarpus, Castanopsis (Fagaceae), Abietineaepollenites (Pinaceae) represent hinterland vegetation possibly transported to the prograding deltaic coastline by the rivers. Reworked palynotaxa (Striatopodocarpites sp., Striatites sp., Faunipollenites sp., Circumstriatites sp., Crescentipollenites sp., Cuneatisporites sp., Parasaccites sp., Scheuringipollenites sp., Rhizomaspora sp., Marsupipollenites sp., Lophotriletes sp.) of Permian age have also been recorded in the palynoassemblage (11.55%) indicating the abundance of Permian Gondwana strata in the source area. PMID:26930664

  11. Depositional Environment of Mio-Pliocene Siwalik Sedimentary Strata from the Darjeeling Himalayan Foothills, India: A Palynological Approach.

    Science.gov (United States)

    More, Sandip; Paruya, Dipak Kumar; Taral, Suchana; Chakraborty, Tapan; Bera, Subir

    2016-01-01

    A rich and diverse palynoassemblage recovered from the Churanthi River section (26°53' 59.3" N, 88°34' 17.2" E), Darjeeling foothills Eastern Himalaya, has yielded 87 species assigned to 69 genera. The palynoassemblage is rich in angiosperm taxa (45.63%) followed by gymnosperms (0.45%), pteridophytes (18.49%) and fungal remains (23.88%). Based on their nearest living relatives, a wet evergreen to semi-evergreen forest under a humid tropical to sub-tropical environment during the Mio-Pliocene age has been suggested. A lot of angiosperms such as Palaeosantalaceaepites, Araliaceoipollenites, Malvacearampollis, Zonocostites, Neocouperipollis, Dicolpopollis, Palmidites, Palmaepollenites, isolated salt glands of mangrove plant leaves (Heliospermopsis) and Mediaverrunites type of fungal spores, along with ichnofossils like Planolites, Palaeophycus, Skolithos, Rosselia, Ophiomorpha and Teichichnus associated with rippled mudstone-siltstone suggest an environment strongly influenced by brackish water. Primary sedimentary structures in the associated strata indicate strong wave agitation common in shallow marine setting. Some high elevation components (5.14%) such as Alnipollenites, cf. Corylus (Betulaceae), Juglanspollenites, Engelhardtioipollenites (Juglandaceae), Quercoides, Cupuliferoidaepollenites, Lithocarpus, Castanopsis (Fagaceae), Abietineaepollenites (Pinaceae) represent hinterland vegetation possibly transported to the prograding deltaic coastline by the rivers. Reworked palynotaxa (Striatopodocarpites sp., Striatites sp., Faunipollenites sp., Circumstriatites sp., Crescentipollenites sp., Cuneatisporites sp., Parasaccites sp., Scheuringipollenites sp., Rhizomaspora sp., Marsupipollenites sp., Lophotriletes sp.) of Permian age have also been recorded in the palynoassemblage (11.55%) indicating the abundance of Permian Gondwana strata in the source area. PMID:26930664

  12. Biomarker and molecular isotope approaches to deconvolve the terrestrial carbon isotope record: modern and Eocene calibrations

    Science.gov (United States)

    Diefendorf, A. F.; Freeman, K. H.; Wing, S.; Currano, E. D.

    2010-12-01

    Climate, biome, and plant community are important predictors of carbon isotope patterns recorded in leaves and leaf waxes. However, signatures recorded by terrestrial organic carbon and lipids that have mixed floral sources (e.g., n-alkanes) potentially reflect both plant community changes and climate. More taxonomically specific proxies for plants (i.e., di- and tri-terpenoids for conifers and angiosperms, respectively), can help to resolve the relative influences of changing community and climate, provided differences in biomarker production and lipid biosynthetic fractionation among plants can be better constrained. We present biomarker abundance and carbon isotope values for lipids from leaves, branches and bark of 44 tree species, representing 21 families including deciduous and evergreen conifers and angiosperms. n-alkane production differs greatly between conifer and angiosperm leaves. Both deciduous and evergreen angiosperms make significantly more n-alkanes than conifers, with n-alkanes not detected in over half of the conifers in our study. Terpenoid abundances scale strongly with leaf habit: evergreen species have significantly higher abundances. We combine these relative differences in lipid production with published estimates of fluxes for leaf litter from conifer and angiosperm trees to develop a new proxy approach for estimating paleo plant community inputs to ancient soils and sediments. To test our modern calibration results, we have evaluated n-alkanes and terpenoids from laterally extensive (~18 km) carbonaceous shales and mudstones in Eocene sediments (52.6 Ma) at Fifteenmile Creek in the Bighorn Basin (WY, USA). Our terpenoid-based proxy predicts on average a 40% conifer community, which is remarkably close in agreement with a fossil-based estimate of 36%. n-alkane carbon isotope fractionation (leaf-lipid) differs among plant types, with conifer n-alkanes about 2-3‰ 13C enriched relative to those in angiosperms. Since conifer leaves are

  13. Ecological Importance of Small-Diameter Trees to the Structure, Diversity and Biomass of a Tropical Evergreen Forest at Rabi, Gabon

    Science.gov (United States)

    Memiaghe, Hervé R.; Lutz, James A.; Korte, Lisa; Alonso, Alfonso; Kenfack, David

    2016-01-01

    Tropical forests have long been recognized for their biodiversity and ecosystem services. Despite their importance, tropical forests, and particularly those of central Africa, remain understudied. Until recently, most forest inventories in Central Africa have focused on trees ≥10 cm in diameter, even though several studies have shown that small-diameter tree population may be important to demographic rates and nutrient cycling. To determine the ecological importance of small-diameter trees in central African forests, we used data from a 25-ha permanent plot that we established in the rainforest of Gabon to study the diversity and dynamics of these forests. Within the plot, we censused 175,830 trees ≥1 cm dbh from 54 families, 192 genera, and 345 species. Average tree density was 7,026 trees/ha, basal area 31.64 m2/ha, and above-ground biomass 369.40 Mg/ha. Fabaceae, Ebenaceae and Euphorbiaceae were the most important families by basal area, density and above-ground biomass. Small-diameter trees (1 cm ≥ dbh dbh. Although the relative contribution of small-diameter trees to biomass was comparable to other forests globally, their contribution to forest density, and diversity was disproportionately higher. The high levels of diversity within small-diameter classes may give these forests high levels of structural resilience to anthropogenic/natural disturbance and a changing climate. PMID:27186658

  14. Phytotoxicities of fluoranthene and phenanthrene deposited on needle surfaces of the evergreen conifer, Japanese red pine (Pinus densiflora Sieb. et Zucc.)

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAHs) have been widely studied with respect to their carcinogenic and mutagenic effects on animals and human cells. Phenanthrene (PHE) and fluoranthene (FLU) effects on the needle photosynthetic traits of 2-year-old Japanese red pine (Pinus densiflora Sieb. et. Zucc.) seedlings were investigated. Three months after fumigation of foliage with solutions containing these PAHs (10 μM each), FLU had negative effects on net photosynthesis at near-saturating irradiance, stomatal conductance, initial chlorophyll fluorescence, and the contents of total chlorophyll, magnesium, and ribulose 1,5-bisphosphate carboxylase (rubisco) of current-year needles. PHE had similar negative effects to FLU but in lesser magnitude. The effects of the PAHs were mitigated by the addition of an OH-radical scavenger (mannitol) into the PAH solutions. PAHs deposited on the surface of pine needles may induce the generation of reactive oxygen species in the photosynthetic apparatus, a manner closely resembling the action of the herbicide paraquat. - Fluoranthene and phenanthrene caused negative effects on the needles of Japanese red pine

  15. Ecological Importance of Small-Diameter Trees to the Structure, Diversity and Biomass of a Tropical Evergreen Forest at Rabi, Gabon.

    Science.gov (United States)

    Memiaghe, Hervé R; Lutz, James A; Korte, Lisa; Alonso, Alfonso; Kenfack, David

    2016-01-01

    Tropical forests have long been recognized for their biodiversity and ecosystem services. Despite their importance, tropical forests, and particularly those of central Africa, remain understudied. Until recently, most forest inventories in Central Africa have focused on trees ≥10 cm in diameter, even though several studies have shown that small-diameter tree population may be important to demographic rates and nutrient cycling. To determine the ecological importance of small-diameter trees in central African forests, we used data from a 25-ha permanent plot that we established in the rainforest of Gabon to study the diversity and dynamics of these forests. Within the plot, we censused 175,830 trees ≥1 cm dbh from 54 families, 192 genera, and 345 species. Average tree density was 7,026 trees/ha, basal area 31.64 m2/ha, and above-ground biomass 369.40 Mg/ha. Fabaceae, Ebenaceae and Euphorbiaceae were the most important families by basal area, density and above-ground biomass. Small-diameter trees (1 cm ≥ dbh dbh. Although the relative contribution of small-diameter trees to biomass was comparable to other forests globally, their contribution to forest density, and diversity was disproportionately higher. The high levels of diversity within small-diameter classes may give these forests high levels of structural resilience to anthropogenic/natural disturbance and a changing climate. PMID:27186658

  16. Species selection on variability.

    OpenAIRE

    Lloyd, E. A.; Gould, S J

    1993-01-01

    Most analyses of species selection require emergent, as opposed to aggregate, characters at the species level. This "emergent character" approach tends to focus on the search for adaptations at the species level. Such an approach seems to banish the most potent evolutionary property of populations--variability itself--from arguments about species selection (for variation is an aggregate character). We wish, instead, to extend the legitimate domain of species selection to aggregate characters....

  17. Attract them anyway: benefits of large, showy flowers in a highly autogamous, carnivorous plant species.

    Science.gov (United States)

    Salces-Castellano, A; Paniw, M; Casimiro-Soriguer, R; Ojeda, F

    2016-01-01

    Reproductive biology of carnivorous plants has largely been studied on species that rely on insects as pollinators and prey, creating potential conflicts. Autogamous pollination, although present in some carnivorous species, has received less attention. In angiosperms, autogamous self-fertilization is expected to lead to a reduction in flower size, thereby reducing resource allocation to structures that attract pollinators. A notable exception is the carnivorous pyrophyteDrosophyllum lusitanicum(Drosophyllaceae), which has been described as an autogamous selfing species but produces large, yellow flowers. Using a flower removal and a pollination experiment, we assessed, respectively, whether large flowers in this species may serve as an attracting device to prey insects or whether previously reported high selfing rates for this species in peripheral populations may be lower in more central, less isolated populations. We found no differences between flower-removed plants and intact, flowering plants in numbers of prey insects trapped. We also found no indication of reduced potential for autogamous reproduction, in terms of either seed set or seed size. However, our results showed significant increases in seed set of bagged, hand-pollinated flowers and unbagged flowers exposed to insect visitation compared with bagged, non-manipulated flowers that could only self-pollinate autonomously. Considering that the key life-history strategy of this pyrophytic species is to maintain a viable seed bank, any increase in seed set through insect pollinator activity would increase plant fitness. This in turn would explain the maintenance of large, conspicuous flowers in a highly autogamous, carnivorous plant. PMID:26977052

  18. Attract them anyway: benefits of large, showy flowers in a highly autogamous, carnivorous plant species

    Science.gov (United States)

    Salces-Castellano, A.; Paniw, M.; Casimiro-Soriguer, R.; Ojeda, F.

    2016-01-01

    Reproductive biology of carnivorous plants has largely been studied on species that rely on insects as pollinators and prey, creating potential conflicts. Autogamous pollination, although present in some carnivorous species, has received less attention. In angiosperms, autogamous self-fertilization is expected to lead to a reduction in flower size, thereby reducing resource allocation to structures that attract pollinators. A notable exception is the carnivorous pyrophyte Drosophyllum lusitanicum (Drosophyllaceae), which has been described as an autogamous selfing species but produces large, yellow flowers. Using a flower removal and a pollination experiment, we assessed, respectively, whether large flowers in this species may serve as an attracting device to prey insects or whether previously reported high selfing rates for this species in peripheral populations may be lower in more central, less isolated populations. We found no differences between flower-removed plants and intact, flowering plants in numbers of prey insects trapped. We also found no indication of reduced potential for autogamous reproduction, in terms of either seed set or seed size. However, our results showed significant increases in seed set of bagged, hand-pollinated flowers and unbagged flowers exposed to insect visitation compared with bagged, non-manipulated flowers that could only self-pollinate autonomously. Considering that the key life-history strategy of this pyrophytic species is to maintain a viable seed bank, any increase in seed set through insect pollinator activity would increase plant fitness. This in turn would explain the maintenance of large, conspicuous flowers in a highly autogamous, carnivorous plant. PMID:26977052

  19. Population dynamics of Panonychus osmanthi (Acari: Tetranychidae) on two Osmanthus species.

    Science.gov (United States)

    Kitashima, Yasuki; Gotoh, Tetsuo

    2003-01-01

    Panonychus osmanthi is a non-diapausing species of spider mite that superficially resembles P. citri. It infests Osmanthus species, which are evergreen roadside and garden trees. The population dynamics of P. osmanthi were studied on Osmanthus aurantiacus and O. x fortunei during a three-year period. Seasonal changes in P. osmanthi populations were fundamentally the same in each year, although their density differed greatly from year to year. The P. osmanthi population was bimodal, with one peak in spring (May-June) and another in winter (November-January). Populations abruptly declined after the spring peak. Predators showed a delayed density-dependent response to changes in spider mites from spring to summer, whereas in autumn and winter, predators were few because they had entered diapause. To determine the effect of predators on the rapid decline of spider mites just after the spring peak, the predators were removed by treating the trees with a synthetic pyrethroid. As a result, spider mite density did not decline after the spring peak and remained at a high level during the June-August period when spider mite density is usually very low. This suggests that predators play an important role in the drastic decline of P. osmanthi density just after the spring peak. PMID:14635810

  20. Endangered Species Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of the Endangered Species Act (ESA) is to protect and recover imperiled species and the ecosystems upon which they depend. The U.S. Fish and Wildlife...

  1. Study of Chemical Constituents and Medicinal Uses of Indicator Species of District Bannu

    Directory of Open Access Journals (Sweden)

    Rehman ullah khan

    2013-06-01

    Full Text Available The present study was carried out to assess record and report the chemical constituents and ethnobotanical knowledge of indicator species of District Bannu. Medicinal outlines of about 57 plants were recorded through interview local people i.e. farmers, herbalists, hakims and Medicinal plants user dealers. The present investigation comprises the indigenous uses of 57 species belonging to 36 families of Angiosperms based upon their utility. Out of this rich Medicinal germplasm, 66.15% plants are wild while 44.18%, species were found to be cultivated, 26.74% species are both wild and cultivated of the total flora of this area. The most important medicinal families are Solanaceae (7 spp, 12.28%, Asteraceae (5 spp, 8.77%, Mimosaceae (3 spp, 5.26%, Moraceae (3 spp, 5.26%, Malvaceae, Amaranthaceae, Chenopodiaceae, Euphorbiaceae, Papilionaceae, Plantaginaceae, and Rhamnaceae (2 spp, 3.51% While the remaining 25 families having 1 species each which is 1.75% of all families. The most common medicinal plants in the area are Abroma augusta (L. F., Acacia modesta wall., Achyranthes bidentata Blume , Albizia lebbeek L., Calotropis procera L., Capparis decidua Forsk Carthamus oxycantha M. B, Chenopodium album L., Citrus medica L., Citrullus colocynthis Schrad, Cuscuta reflexa Roxb, Cynodon dactylon L. Cyperus rotundrus L., Dodonia viscosa L., Eucalyptus globule L., Nerium oleander L., Papaver somniferum L., Trachy spermum ammi L. Typha orientallis J. Preslw., Vitex negundo L., Withania somnifera L., Xanthium strumarium L., Zizphus mauratiana Lam., Some plants have wild fruits i.e.., Solanum nigrum L., while Nerium oleander L. and Dodonaea viscosa (L. Jaeq are ornamental.

  2. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe.

    Science.gov (United States)

    Anderegg, William R L; Klein, Tamir; Bartlett, Megan; Sack, Lawren; Pellegrini, Adam F A; Choat, Brendan; Jansen, Steven

    2016-05-01

    Drought-induced tree mortality has been observed globally and is expected to increase under climate change scenarios, with large potential consequences for the terrestrial carbon sink. Predicting mortality across species is crucial for assessing the effects of climate extremes on forest community biodiversity, composition, and carbon sequestration. However, the physiological traits associated with elevated risk of mortality in diverse ecosystems remain unknown, although these traits could greatly improve understanding and prediction of tree mortality in forests. We performed a meta-analysis on species' mortality rates across 475 species from 33 studies around the globe to assess which traits determine a species' mortality risk. We found that species-specific mortality anomalies from community mortality rate in a given drought were associated with plant hydraulic traits. Across all species, mortality was best predicted by a low hydraulic safety margin-the difference between typical minimum xylem water potential and that causing xylem dysfunction-and xylem vulnerability to embolism. Angiosperms and gymnosperms experienced roughly equal mortality risks. Our results provide broad support for the hypothesis that hydraulic traits capture key mechanisms determining tree death and highlight that physiological traits can improve vegetation model prediction of tree mortality during climate extremes. PMID:27091965

  3. The Earth's Vanishing Species.

    Science.gov (United States)

    USA Today, 1981

    1981-01-01

    Elaborates on the problem of expanding human activity to the world's plant and animal species. Concludes that preserving an individual species is largely a waste of time and effort and that the best way to protect the most species of plants and animals is to save their environments over large tracts of land. (DB)

  4. Species diversity modulates predation

    NARCIS (Netherlands)

    Kratina, P.; Vos, M.; Anholt, B.R.

    2007-01-01

    Predation occurs in a context defined by both prey and non-prey species. At present it is largely unknown how species diversity in general, and species that are not included in a predator's diet in particular, modify predator–prey interactions.Therefore we studied how both the density and diversity

  5. Aquatic invasive species

    Science.gov (United States)

    Thorsteinson, Lyman

    2005-01-01

    Invasive species are plants or animals that are present in an ecosystem beyond their native range. They may have few natural controls in their new environment and proliferate. They can threaten native species and interfere with human activities. The Western Fisheries Research Center (WFRC) has been conducting research to understand how non-native species invade and affect ecosystems, thus aiding management efforts.

  6. Balancing detection and eradication for control of epidemics: sudden oak death in mixed-species stands.

    Directory of Open Access Journals (Sweden)

    Martial L Ndeffo Mbah

    Full Text Available Culling of infected individuals is a widely used measure for the control of several plant and animal pathogens but culling first requires detection of often cryptically-infected hosts. In this paper, we address the problem of how to allocate resources between detection and culling when the budget for disease management is limited. The results are generic but we motivate the problem for the control of a botanical epidemic in a natural ecosystem: sudden oak death in mixed evergreen forests in coastal California, in which species composition is generally dominated by a spreader species (bay laurel and a second host species (coast live oak that is an epidemiological dead-end in that it does not transmit infection but which is frequently a target for preservation. Using a combination of an epidemiological model for two host species with a common pathogen together with optimal control theory we address the problem of how to balance the allocation of resources for detection and epidemic control in order to preserve both host species in the ecosystem. Contrary to simple expectations our results show that an intermediate level of detection is optimal. Low levels of detection, characteristic of low effort expended on searching and detection of diseased trees, and high detection levels, exemplified by the deployment of large amounts of resources to identify diseased trees, fail to bring the epidemic under control. Importantly, we show that a slight change in the balance between the resources allocated to detection and those allocated to control may lead to drastic inefficiencies in control strategies. The results hold when quarantine is introduced to reduce the ingress of infected material into the region of interest.

  7. Testing the Framework Species Method for Forest Restoration in Chiang Mai, Northern Thailand

    Directory of Open Access Journals (Sweden)

    Prasit WANGPAKAPATTANAWONG

    2008-01-01

    Full Text Available The framework species method of reforestation, developed by FORRU (Forest Restoration Research Unit has been used successfully to restore evergreen forest on degraded former agricultural sites in Doi Suthep-Pui National Park, Chiang Mai province, Thailand. This paper reports 3 year results of an attempt to duplicate the FORRU reforestation techniques at Ban Toong Yah, Mae Chaem district, at a similar elevation as FORRU’s original plots at Ban Mae Sa Mai, Mae Rim district. Twenty species of framework tree seedlings were planted in June 2002. The 2 year results indicate that the seedlings achieved lower survival rates than at the FORRU’s original site. Height growth, root collar diameter, and crown width were also lower. Some seedlings died because they were trampled by cows, which also ate some of the seedlings. However, several sapling species, such as Ficus fistulosa and Phyllanthus emblica, were able to produce new shoots from their axillary buds, after having been browsed by cows. In 2004, 5 well-performed species: Castanopsis tribuloides, Ficus fistulosa, Hovenia dulcis, Ostodes paniculata and Prunus cerasoides, were selected along with 12 never-planted species to be planted in June. The results indicate that the seedlings achieved lower survival rates than at the FORRU’s original site. The seedlings achieved an average survival rate of about 50 % after the first growing season. The exposed, windy environment of the planting site might also account for lower than expected growth and survival rates. The FORRU’s recommended methods of site preparation using herbicide and weed suppression using cardboard mulch may be employed to improve seedling survival and growth on this site.

  8. Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex.

    Science.gov (United States)

    Niinemets, Ulo

    2015-01-01

    The leaf economics spectrum is a general concept describing coordinated variation in foliage structural, chemical and physiological traits across resource gradients. Yet, within this concept,the role of within-species variation, including ecotypic and plastic variation components, has been largely neglected. This study hypothesized that there is a within-species economics spectrum within the general spectrum in the evergreen sclerophyll Quercus ilex which dominates low resource ecosystems over an exceptionally wide range. An extensive database of foliage traits covering the full species range was constructed, and improved filtering algorithms were developed. Standardized data filtering was deemed absolutely essential as additional variation sources can result in trait variation of 10–300%,blurring the broad relationships. Strong trait variation, c. two-fold for most traits to up to almost an order of magnitude, was uncovered.Although the Q. ilex spectrum is part of the general spectrum, within-species trait and climatic relationships in this species partly differed from the overall spectrum. Contrary to world-wide trends, Q. ilex does not necessarily have a low nitrogen content per mass and can increase photosynthetic capacity with increasing foliage robustness. This study argues that the within-species economics spectrum needs to be considered in regional- to biome-level analyses. PMID:25580487

  9. Pre-Dispersal Seed Predation in a Species-Rich Forest Community: Patterns and the Interplay with Determinants.

    Directory of Open Access Journals (Sweden)

    Yue Xu

    Full Text Available Pre-dispersal seed predation (PDSP is commonly observed in woody plants, and recognized as a driver of seed production variability that is critical for successful regeneration. Earlier studies on PDSP and its determinants were mostly species specific, with community-level PDSP rarely estimated; and the interactions between the temporal variability of seed production and PDSP remain elusive. In this study, the community seed rain of woody plants in a mixed evergreen-deciduous broadleaf forest was monitored for seven years. We examined predation on collected seeds and analyzed the determinants of PDSP. PDSP was recorded in 17 out of 44 woody plant species, and three-quarters of PDSP was due to insect predators. Annual seed production varied substantially at community level, reversely linked with the temporal variation of PDSP rate. The PDSP rate was biased regarding fruit types, and being significantly correlated with seed mass when using phylogenetic independent contrasts (PICs or without taking into account phylogenetic relations, especially for nuts. PDSP rate was also negatively correlated with seed density, showing a threshold-related predator satiation effect. The community-level PDSP rate was primarily determined by tree height, fruit type, and interannual variation of seed production and seed mass. Our analysis revealed a causal link between seed production and the dynamics of PDSP rate at the community level. The predator satiation effect was primarily contributed by the dominant species, whereas the rare species seemed to apply a distinct "hide-and-seek" strategy to control the risk of PDSP. The mechanistic difference of seed production between the common and rare species can shed new light on species coexistence and community assembly. Long-term monitoring of both seed rain and seed predation is required for understanding the ecological and evolutionary implications of species regeneration strategies in a species-rich forest community.

  10. Pre-Dispersal Seed Predation in a Species-Rich Forest Community: Patterns and the Interplay with Determinants.

    Science.gov (United States)

    Xu, Yue; Shen, Zehao; Li, Daoxin; Guo, Qinfeng

    2015-01-01

    Pre-dispersal seed predation (PDSP) is commonly observed in woody plants, and recognized as a driver of seed production variability that is critical for successful regeneration. Earlier studies on PDSP and its determinants were mostly species specific, with community-level PDSP rarely estimated; and the interactions between the temporal variability of seed production and PDSP remain elusive. In this study, the community seed rain of woody plants in a mixed evergreen-deciduous broadleaf forest was monitored for seven years. We examined predation on collected seeds and analyzed the determinants of PDSP. PDSP was recorded in 17 out of 44 woody plant species, and three-quarters of PDSP was due to insect predators. Annual seed production varied substantially at community level, reversely linked with the temporal variation of PDSP rate. The PDSP rate was biased regarding fruit types, and being significantly correlated with seed mass when using phylogenetic independent contrasts (PICs) or without taking into account phylogenetic relations, especially for nuts. PDSP rate was also negatively correlated with seed density, showing a threshold-related predator satiation effect. The community-level PDSP rate was primarily determined by tree height, fruit type, and interannual variation of seed production and seed mass. Our analysis revealed a causal link between seed production and the dynamics of PDSP rate at the community level. The predator satiation effect was primarily contributed by the dominant species, whereas the rare species seemed to apply a distinct "hide-and-seek" strategy to control the risk of PDSP. The mechanistic difference of seed production between the common and rare species can shed new light on species coexistence and community assembly. Long-term monitoring of both seed rain and seed predation is required for understanding the ecological and evolutionary implications of species regeneration strategies in a species-rich forest community. PMID:26575270

  11. Transpiration and water use efficiency in native chilean and exotic species, a usefull tool for catchment management?

    Science.gov (United States)

    Hervé-Fernández, P.; Oyarzun, C. E.

    2012-04-01

    Land-use and forest cover change play important roles in socio-economic processes and have been linked with water supply and other ecosystem services in various regions of the world. Water yield from watersheds is a major ecosystem service for human activities but has been altered by landscape management superimposed on climatic variability and change. Sustaining ecosystem services important to humans, while providing a dependable water supply for agriculture and urban needs is a major challenge faced by managers of human-dominated or increased antropical effect over watersheds. Since water is mostly consumed by vegetation (i.e: transpiration), which strongly depends on trees physiological characteristics (i.e: foliar area, transpiration capacity) are very important. The quantity of water consumed by plantations is influenced mainly by forest characteristics (species physiology, age and management), catchment water retention capacity and meteorological characteristics. Eventhough in Chile, the forest sector accounts for 3.6% of the gross domestic product (GDP) and 12.5% of total exports (INFOR, 2003), afforestation with fast growing exotic species has ended up being socially and politically questionable because of the supposed impact on the environment and water resources. We present data of trees transpiration and water use efficiency from three headwater catchments: (a) second growth native evergreen forest (Aetoxicon punctatum, Drimys winterii, Gevuina avellana, Laureliopsis philippiana); (b) Eucalyptus globulus plantation, and (c) a mixed native deciduous (Nothofagus obliqua and some evergreen species) forest and Eucalyptus globulus and Acacia melanoxylon plantation located at the Coastal Mountain Range in southern Chile (40°S). Annual transpiration rates ranged from 1.24 ± 0.41 mol•m-2•s-1 (0.022 ± 0.009 L•m-2•s-1) for E. globulus, while the lowest observed was for L. philippiana 0.44 ± 0.31 mol•m-2•s-1 (0.008 ± 0.006 L•m-2•s-1). However

  12. Detection of cryptic species

    International Nuclear Information System (INIS)

    Morphologically similar cryptic species are common in insects. In Anopheles mosquitoes morphologically described species are complexes of cryptic species. Cryptic species are of great practical importance for two reasons: first, one or more species of the complex might not be a pest and control efforts directed at the complex as a whole would therefore be partly wasted; and second, genetic (and perhaps biological) control strategies directed against one species of the complex would not affect other species of the complex. At least one SIT effort has failed because the released sterile insect were of a different species and therefore did not mate with the wild insects being targeted. We use a multidisciplinary approach for detection of cryptic species complexes, focusing first on identifying variability in wild populations using RFLPs of mitochondrial and ribosomal RNA genes (mtDNA and rDNA); followed by confirmation using a variety of other techniques. For rapid identification of wild individuals of field collections, we use a DNA dot blot assay. DNA probes can be isolated by differential screening, however we are currently focusing on the sequencing of the rDNA extragenic spacers. These regions are repeated several hundred times per genome in mosquitoes and evolve rapidly. Molecular drive tends to keen the individual genes homogeneous within a species. (author)

  13. Evolution of Epiphytism and Fruit Traits Act Unevenly on the Diversification of the Species-Rich Genus Peperomia (Piperaceae).

    Science.gov (United States)

    Frenzke, Lena; Goetghebeur, Paul; Neinhuis, Christoph; Samain, Marie-Stéphanie; Wanke, Stefan

    2016-01-01

    The species-rich genus Peperomia (Black Pepper relatives) is the only genus among early diverging angiosperms where epiphytism evolved. The majority of fruits of Peperomia release sticky secretions or exhibit hook-shaped appendages indicative of epizoochorous dispersal, which is in contrast to other flowering plants, where epiphytes are generally characterized by fruit morphological adaptations for anemochory or endozoochory. We investigate fruit characters using Cryo-SEM. Comparative phylogenetic analyses are applied for the first time to include life form and fruit character information to study diversification in Peperomia. Likelihood ratio tests uncover correlated character evolution. We demonstrate that diversification within Peperomia is not homogenous across its phylogeny, and that net diversification rates increase by twofold within the most species-rich subgenus. In contrast to former land plant studies that provide general evidence for increased diversification in epiphytic lineages, we demonstrate that the evolution of epiphytism within Peperomia predates the diversification shift. An epiphytic-dependent diversification is only observed for the background phylogeny. An elevated frequency of life form transitions between epiphytes and terrestrials and thus evolutionary flexibility of life forms is uncovered to coincide with the diversification shift. The evolution of fruits showing dispersal related structures is key to diversification in the foreground region of the phylogeny and postdates the evolution of epiphytism. We conclude that the success of Peperomia, measured in species numbers, is likely the result of enhanced vertical and horizontal dispersal ability and life form flexibility but not the evolution of epiphytism itself. PMID:27555851

  14. Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species

    Indian Academy of Sciences (India)

    Qingpo Liu; Qingzhong Xue

    2005-04-01

    A detailed comparison was made of codon usage of chloroplast genes with their host (nuclear) genes in the four angiosperm species Oryza sativa, Zea mays, Triticum aestivum and Arabidopsis thaliana. The average GC content of the entire genes, and at the three codon positions individually, was higher in nuclear than in chloroplast genes, suggesting different genomic organization and mutation pressures in nuclear and chloroplast genes. The results of Nc-plots and neutrality plots suggested that nucleotide compositional constraint had a large contribution to codon usage bias of nuclear genes in O. sativa, Z. mays, and T. aestivum, whereas natural selection was likely to be playing a large role in codon usage bias in chloroplast genomes. Correspondence analysis and chi-test showed that regardless of the genomic environment (species) of the host, the codon usage pattern of chloroplast genes differed from nuclear genes of their host species by their AU-richness. All the chloroplast genomes have predominantly A- and/or U-ending codons, whereas nuclear genomes have G-, C- or U-ending codons as their optimal codons. These findings suggest that the chloroplast genome might display particular characteristics of codon usage that are different from its host nuclear genome. However, one feature common to both chloroplast and nuclear genomes in this study was that pyrimidines were found more frequently than purines at the synonymous codon position of optimal codons.

  15. Photosynthetic properties of boreal bog plant species and their contribution to ecosystem level carbon sink

    Science.gov (United States)

    Korrensalo, Aino; Hájek, Tomas; Alekseychik, Pavel; Rinne, Janne; Vesala, Timo; Mehtätalo, Lauri; Mammarella, Ivan; Tuittila, Eeva-Stiina

    2016-04-01

    Boreal bogs have a low number of plant species, but a large diversity of growth forms. This heterogeneity might explain the seasonally less varying photosynthetic productivity of these ecosystems compared to peatlands with vegetation consisting of fewer growth forms. The differences in photosynthetic properties within bog species and phases of growing season has not been comprehensively studied. Also the role of different plant species for the ecosystem level carbon (C) sink function is insufficiently known. We quantified the seasonal variation of photosynthetic properties in bog plant species and assessed how this variation accounts for the temporal variation in the ecosystem C sink. Photosynthetic light response of 11 vascular plant and 8 Sphagnum moss species was measured monthly over the growing season of 2013. Based on the species' light response parameters, leaf area development and areal coverage, we estimated the ecosystem level gross photosynthesis rate (PG) over the growing season. The level of upscaled PG was verified by comparing it to the ecosystem gross primary production (GPP) estimate calculated based on eddy covariance (EC) measurements. Although photosynthetic parameters differed within plant species and months, these differences were of less importance than expected for the variation in ecosystem level C sink. The most productive plant species at the ecosystem scale were not those with the highest maximum potential photosynthesis per unit of leaf area (Pmax), but those having the largest areal coverage. Sphagnum mosses had 35% smaller Pmax than vascular plants, but had higher photosynthesis at the ecosystem scale throughout the growing season. The contribution of the bog plant species to the ecosystem level PG differed over the growing season. The seasonal variation in ecosystem C sink was mainly controlled by phenology. Sedge PG had a sharp mid-summer peak, but the PG of evergreen shrubs and Sphagna remained rather stable over the growing season

  16. Comparison of the formation of nicotinic acid conjugates in leaves of different plant species.

    Science.gov (United States)

    Ashihara, Hiroshi; Yin, Yuling; Katahira, Riko; Watanabe, Shin; Mimura, Tetsuro; Sasamoto, Hamako

    2012-11-01

    There are three metabolic fates of nicotinic acid in plants: (1) nicotinic acid mononucleotide formation for NAD synthesis by the so-called salvage pathway of pyridine nucleotide biosynthesis; (2) nicotinic acid N-glucoside formation; and (3) trigonelline (N-methylnicotinic acid) formation. In the present study, the metabolism of [carbonyl-(14)C]nicotinamide was investigated in leaves of 23 wild plant species. All species readily converted nicotinamide to nicotinic acid, and only a fraction of nicotinic acid was utilised for NAD and NADP synthesis. The remaining nicotinic acid is converted to the nicotinic acid conjugates. Only one plant species, Cycas revoluta, produced both nicotinic acid N-glucoside and trigonelline; the other 22 species produced one or other of the conjugates. The nicotinic acid N-glucoside-forming plants are Cyathea lepifera, Arenga trewmula var. englri, Barringtonia racemosa, Ilex paraguariensis, Angelica japonica, Scaevola taccada and Farfugium japonicum. In contrast, trigonelline is formed in C. lepifera, Ginkgo biloba, Pinus luchuensis, Casuarina equisetifolia, Alocasia odora, Pandanus odoratissimus, Hylocereus undatus, Kalanchoe pinnata, Kalanchoe tubiflora, Populus alba, Garcinia subelliptica, Oxalis corymbosa, Leucaena leucocephala, Vigna marina, Hibiscus tiliaceus and Melicope triphylla. The diversity of nicotinic acid conjugate formation in plants is discussed using these results and our previous investigation involving a few model plants, various crops and ferns. Nicotinic acid N-glucoside formation was restricted mostly to ferns and selected orders of angiosperms, whereas other plants produce trigonelline. In most cases the formation of both nicotinic acid conjugates is incompatible, but some exceptions have been found. PMID:22983143

  17. Permafrost dynamics structure species compositions of oribatid mite (Acari: Oribatida communities in sub-Arctic palsa mires

    Directory of Open Access Journals (Sweden)

    Inkeri Markkula

    2014-10-01

    Full Text Available Palsa mires are sub-Arctic peatland complexes, vulnerable ecosystems with patches of permafrost. Permafrost thawing in palsa mires occurs throughout Fennoscandia, probably due to local climatic warming. In palsa mires, permafrost thaw alters hydrological conditions, vegetation structure and microhabitat composition with unknown consequences for invertebrate fauna. This study's objectives were to examine the role of microhabitat heterogeneity and the effects of permafrost dynamics and thaw on oribatid mite communities in palsa mires. Oribatid mites were sampled in two palsa mires in Finland and Norway. Three different types of microhabitats were examined: graminoid-dominated wet sites, herb-dominated small hummocks and evergreen shrub-dominated permafrost-underlain palsa hummocks. The results indicate that permafrost dynamics are an important factor structuring oribatid mite communities in palsa mires. The community composition of oribatid mites differed remarkably among microhabitats. Six species were significantly more abundant in permafrost-underlain microhabitats in relation to non-permafrost microhabitats. None of the species identified occurred exclusively in permafrost-underlain microhabitats. Findings suggest that permafrost thaw may not have an impact on species diversity but may alter community composition of oribatid mites in palsa mire ecosystems.

  18. 帽峰山森林气温与区域气温变化趋势分析%Analysis of Temperature Variation Trends in Maofengshan Mt Subtropical Evergreen Broad-leaves Forest and Guangzhou City

    Institute of Scientific and Technical Information of China (English)

    潘勇军; 王兵; 陈步峰; 史欣; 肖以华

    2011-01-01

    The responses and feedbacks of the forest climate ecosystem into the future global climate change have become very attractive issues. Analysis of historic climate data from 1952 to 2009 of Guangzhou and that from 2004 to 2009 in Maofengshan Mt forest ecosystem by using statistical method and seasonal decomposition additive model confirms that the climate in Guangzhou has recently been warming at a rate of 0.21 °C per decade; The results showed that the temperatures in Guangzhou and Maofengshan Mt were significantly positive correlated, the air temperature change in 2004-2009 had a decreasing trend at a rate of -0.008 ℃ · a-1 and -0.293 ℃ · a -1; The temperature change of Maofengshan Mt subtropical evergreen broad-leaves forest climate ecosystem positively responsed to regional climate change of Guangzhou. Occasionally, its responses appeared negative feedback before the abnormal weather, for example, before the winter-weather disaster in January and February 2008. Climate change is threatening the health of forests around the world. As temperature rises, the negative impacts of climate change are expected to far outweigh any benefits. The advanced fields need to be developed were discussed.%根据广州市1952-2009年和帽峰山2004-2009年气温观测数据,采用统计分析方法和季节分解加法模型,分析了帽峰山森林气温与区域气温变化趋势特征.结果表明:广州市近58年来气温增暖趋势显著,年平均气温的倾向率达0.21℃·a-1;2004-2009年间,广州市和帽峰山气温变化均呈下降趋势,气温倾向率分别为-0.008、-0.293℃·a-1,帽峰山气温下降幅度大于广州市;帽峰山林区气温变化趋势与广州市气温变化趋势基本一致;在区域极端异常天气出现前,森林气温变化趋势出现负反馈.

  19. Documenting biogeographical patterns of African timber species using herbarium records: a conservation perspective based on native trees from Angola.

    Directory of Open Access Journals (Sweden)

    Maria M Romeiras

    Full Text Available In many tropical regions the development of informed conservation strategies is hindered by a dearth of biodiversity information. Biological collections can help to overcome this problem, by providing baseline information to guide research and conservation efforts. This study focuses on the timber trees of Angola, combining herbarium (2670 records and bibliographic data to identify the main timber species, document biogeographic patterns and identify conservation priorities. The study recognized 18 key species, most of which are threatened or near-threatened globally, or lack formal conservation assessments. Biogeographical analysis reveals three groups of species associated with the enclave of Cabinda and northwest Angola, which occur primarily in Guineo-Congolian rainforests, and evergreen forests and woodlands. The fourth group is widespread across the country, and is mostly associated with dry forests. There is little correspondence between the spatial pattern of species groups and the ecoregions adopted by WWF, suggesting that these may not provide an adequate basis for conservation planning for Angolan timber trees. Eight of the species evaluated should be given high conservation priority since they are of global conservation concern, they have very restricted distributions in Angola, their historical collection localities are largely outside protected areas and they may be under increasing logging pressure. High conservation priority was also attributed to another three species that have a large proportion of their global range concentrated in Angola and that occur in dry forests where deforestation rates are high. Our results suggest that timber tree species in Angola may be under increasing risk, thus calling for efforts to promote their conservation and sustainable exploitation. The study also highlights the importance of studying historic herbarium collections in poorly explored regions of the tropics, though new field surveys remain

  20. Mesophyll conductance plays a central role in leaf functioning of Oleaceae species exposed to contrasting sunlight irradiance.

    Science.gov (United States)

    Fini, Alessio; Loreto, Francesco; Tattini, Massimiliano; Giordano, Cristiana; Ferrini, Francesco; Brunetti, Cecilia; Centritto, Mauro

    2016-05-01

    The ability to modify mesophyll conductance (gm ) in response to changes in irradiance may be a component of the acclimation of plants to shade-sun transitions, thus influencing species-specific distributions along light-gradients, and the ecological niches for the different species. To test this hypothesis we grew three woody species of the Oleaceae family, the evergreen Phillyrea latifolia (sun-requiring), the deciduous Fraxinus ornus (facultative sun-requiring) and the hemi-deciduous Ligustrum vulgare (shade tolerant) at 30 or 100% sunlight irradiance. We show that neither mesophyll conductance calculated with combined gas exchange and chlorophyll fluorescence techniques (gm ) nor CO2 assimilation significantly varied in F. ornus because of sunlight irradiance. This corroborates previous suggestions that species with high plasticity for light requirements, do not need to undertake extensive reorganization of leaf conductances to CO2 diffusion to adapt to different light environments. On the other hand, gm steeply declined in L. vulgare and increased in P. latifolia exposed to full-sun conditions. In these two species, leaf anatomical traits are in part responsible for light-driven changes in gm , as revealed by the correlation between gm and mesophyll conductance estimated by anatomical parameters (gmA ). Nonetheless, gm was greatly overestimated by gmA when leaf metabolism was impaired because of severe light stress. We show that gm is maximum at the light intensity at which plant species have evolved and we conclude that gm actually plays a key role in the sun and shade adaptation of Mediterranean species. The limits of gmA in predicting mesophyll conductance are also highlighted. PMID:26537749

  1. Soil microbial biomass under different management and tillage systems of permanent intercropped cover species in an orange orchard

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    2011-12-01

    Full Text Available To mitigate soil erosion and enhance soil fertility in orange plantations, the permanent protection of the inter-rows by cover species has been suggested. The objective of this study was to evaluate alterations in the microbial biomass, due to different soil tillage systems and intercropped cover species between rows of orange trees. The soil of the experimental area previously used as pasture (Brachiaria humidicola was an Ultisol (Typic Paleudult originating from Caiuá sandstone in the northwestern part of the State of Paraná, Brazil. Two soil tillage systems were evaluated: conventional tillage (CT in the entire area and strip tillage (ST (strip width 2 m, in combination with different ground cover management systems. The citrus cultivar 'Pera' orange (Citrus sinensis grafted onto 'Rangpur' lime rootstock was used. Soil samples were collected after five years of treatment from a depth of 0-15 cm, under the tree canopy and in the inter-row, in the following treatments: (1 CT and an annual cover crop with the leguminous species Calopogonium mucunoides; (2 CT and a perennial cover crop with the leguminous peanut Arachis pintoi; (3 CT and an evergreen cover crop with Bahiagrass Paspalum notatum; (4 CT and a cover crop with spontaneous Brachiaria humidicola grass vegetation; and (5 ST and maintenance of the remaining grass (pasture of Brachiaria humidicola. Soil tillage and the different cover species influenced the microbial biomass, both under the tree canopy and in the inter-row. The cultivation of brachiaria increased C and N in the microbial biomass, while bahiagrass increased P in the microbial biomass. The soil microbial biomass was enriched in N and P by the presence of ground cover species and according to the soil P content. The grass species increased C, N and P in the soil microbial biomass from the inter-row more than leguminous species.

  2. Impacts of climate warming on hybrid zone movement: Geographically diffuse and biologically porous "species borders"

    Institute of Scientific and Technical Information of China (English)

    J. Mark Scriber

    2011-01-01

    speciation? From ancient phytochemically defined angiosperm affiliations to recent and very local geographical mosaics, the Papilionidae (swallowtail butterflies) have provided a model for enhanced understanding of ecological patterns and evolutionary processes, including host-associated genetic divergence, genomic mosaics, genetic hitchhiking and sex-linked speciation genes. Apparent homoploid hybrid speciation in Papilio appears to have been catalyzed by climate warming-induced interspeeific introgression of some, but not all, species diagnostic traits, reflecting strong divergent selection (discordant), especially on the Z (= X) chromosome. Reproductive isolation of these novel recombinant hybrid genotypes appears to be accomplished via a delayed post-diapause emergence or temporal isolation, and is perhaps aided by the thermal landscape. Changing thermal landscapes appear to have created (and may destroy) novel recombinant hybrid genotypes and hybrid species.

  3. The Origin of Species

    NARCIS (Netherlands)

    Darwin, Charles

    2005-01-01

    In The Origin of Species Darwin outlined his theory of evolution, which proposed that species had been evolving and differentiating over time under the influence of natural selection. On its publication it became hugely influential, bringing about a seismic shift in the scientific view of humanitys

  4. Comparison of calculated and measured foliar O3 flux in crop and forest species

    International Nuclear Information System (INIS)

    We designed a new gas exchange system that concurrently measures foliar H2O, O3, and CO2 flux (HOC flux system) while delivering known O3 concentrations. Stomatal responses of three species were tested: snapbean, and seedlings of California black oak (deciduous broadleaf) and blue oak (evergreen broadleaf). Acute O3 exposure (120-250 ppb over an hour) was applied under moderate light and low vapor pressure deficits during near steady state conditions. The rate of stomatal closure was measured when the whole plant was placed in the dark. An adjacent leaf on each plant was also concurrently measured in an O3-free cuvette. Under some conditions, direct measurements and calculated foliar O3 flux were within the same order of magnitude; however, endogenously low gs or O3 exposure-induced depression of gs resulted in an overestimation of calculated O3 fluxes compared with measured O3 fluxes. Sluggish stomata in response to light extinction with concurrent O3 exposure, and incomplete stomatal closure likewise underestimated measured O3 flux. - Using a new system to concurrently measure H2O, O3, and CO2 flux, the conventional method of calculating O3 flux generally overestimated direct measures by 25-50%

  5. Comparison of calculated and measured foliar O{sub 3} flux in crop and forest species

    Energy Technology Data Exchange (ETDEWEB)

    Grulke, N.E. [USDA Forest Service, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States)]. E-mail: ngrulke@fs.fed.us; Paoletti, E. [IPP-CNR, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence (Italy); Heath, R.L. [Botany and Plant Sciences Department, University of California, Riverside, CA 92521 (United States)

    2007-04-15

    We designed a new gas exchange system that concurrently measures foliar H{sub 2}O, O{sub 3}, and CO{sub 2} flux (HOC flux system) while delivering known O{sub 3} concentrations. Stomatal responses of three species were tested: snapbean, and seedlings of California black oak (deciduous broadleaf) and blue oak (evergreen broadleaf). Acute O{sub 3} exposure (120-250 ppb over an hour) was applied under moderate light and low vapor pressure deficits during near steady state conditions. The rate of stomatal closure was measured when the whole plant was placed in the dark. An adjacent leaf on each plant was also concurrently measured in an O{sub 3}-free cuvette. Under some conditions, direct measurements and calculated foliar O{sub 3} flux were within the same order of magnitude; however, endogenously low gs or O{sub 3} exposure-induced depression of gs resulted in an overestimation of calculated O{sub 3} fluxes compared with measured O{sub 3} fluxes. Sluggish stomata in response to light extinction with concurrent O{sub 3} exposure, and incomplete stomatal closure likewise underestimated measured O{sub 3} flux. - Using a new system to concurrently measure H{sub 2}O, O{sub 3}, and CO{sub 2} flux, the conventional method of calculating O{sub 3} flux generally overestimated direct measures by 25-50%.

  6. Analysis of aliphatic waxes associated with root periderm or exodermis from eleven plant species.

    Science.gov (United States)

    Kosma, Dylan K; Rice, Adam; Pollard, Mike

    2015-09-01

    Aliphatic waxes can be found in association with suberized tissues, including roots. Non-polar lipids were isolated by rapid solvent extraction of mature regions of intact roots from eleven angiosperms, including both monocots and dicots. The majority of roots analyzed were taproots or tuberous taproots that had undergone secondary growth and thus were covered by a suberized periderm. The exceptions therein were maize (Zea mays L.) and rice (Oryza sativa L.), which present a suberized exodermis. The analysis herein focused on aliphatic waxes, with particular emphasis on alkyl hydroxycinnamates (AHCs). AHCs were widely distributed, absent from only one species, were found in both aerial and subterranean portions of tuberous taproots, and were associated with the fibrous roots of both maize and rice. Most species also contained monoacylglycerols, fatty alcohols and/or free fatty acids. Carrot (Daucus carrota L.) was the outlier, containing only free fatty acids, sterols, and polyacetylenes as identified components. Sterols were the only ubiquitous component across all roots analyzed. Monoacylglycerols of ω-hydroxy fatty acids were present in maize and rice root waxes. For species within the Brassiceae, wax compositions varied between subspecies or varieties and between aerial and subterranean portions of taproots. In addition, reduced forms of photo-oxidation products of ω-hydroxy oleate and its corresponding dicarboxylic acid (10,18-dihydroxy-octadec-8-enoate, 9,18-dihydroxy-octadec-10-enoate and 9-hydroxyoctadec-10-ene-1,18-dioate) were identified as naturally occurring suberin monomers in rutabaga (Brassica napus subsp. rapifera Metzg.) periderm tissues. PMID:26143051

  7. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms.

    Science.gov (United States)

    Anderegg, Leander D L; HilleRisLambers, Janneke

    2016-03-01

    Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by which drought stress controls dry range boundaries in trees, we quantified elevational variation in drought tolerance and in drought avoidance-related functional traits of a widespread gymnosperm (ponderosa pine - Pinus ponderosa) and angiosperm (trembling aspen - Populus tremuloides) tree species in the southwestern USA. Specifically, we quantified tree-to-tree variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits (branch conductivity, leaf/needle size, tree height, leaf area-to-sapwood area ratio), and drought tolerance traits (xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each species. Although water stress increased and growth declined strongly at lower range margins of both species, ponderosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in drought-related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure, such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions. Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms - a result that has important implications for process-based modeling approaches to tree biogeography. Further, we show that comparing intraspecific patterns of

  8. Subtle Ecological Gradient in the Tropics Triggers High Species-Turnover in a Local Geographical Scale.

    Science.gov (United States)

    Nguyen, Dinh T; Gómez-Zurita, Jesús

    2016-01-01

    Our perception of diversity, including both alpha- and beta-diversity components, depends on spatial scale. Studies of spatial variation of the latter are just starting, with a paucity of research on beta-diversity patterns at smaller scales. Understanding these patterns and the processes shaping the distribution of diversity is critical to describe this diversity, but it is paramount in conservation too. Here, we investigate the diversity and structure of a tropical community of herbivorous beetles at a reduced local scale of some 10 km2, evaluating the effect of a small, gradual ecological change on this structure. We sampled leaf beetles in the Núi Chúa National Park (S Vietnam), studying changes in alpha- and beta-diversity across an elevation gradient up to 500 m, encompassing the ecotone between critically endangered lowland dry deciduous forest and mixed evergreen forest at higher elevations. Leaf beetle diversity was assessed using several molecular tree-based species delimitation approaches (with mtDNA cox1 data), species richness using rarefaction and incidence-based diversity indexes, and beta-diversity was investigated decomposing the contribution of species turnover and nestedness. We documented 155 species in the area explored and species-richness estimates 1.5-2.0x higher. Species diversity was similar in both forest types and changes in alpha-diversity along the elevation gradient showed an expected local increase of diversity in the ecotone. Beta-diversity was high among forest paths (average Sørensen's dissimilarity = 0.694) and, tentatively fixing at 300 m the boundary between otherwise continuous biomes, demonstrated similarly high beta-diversity (Sørensen's dissimilarity = 0.581), with samples clustering according to biome/elevation. Highly relevant considering the local scale of the study, beta-diversity had a high contribution of species replacement among locales (54.8%) and between biomes (79.6%), suggesting environmental heterogeneity

  9. Subtle Ecological Gradient in the Tropics Triggers High Species-Turnover in a Local Geographical Scale

    Science.gov (United States)

    Nguyen, Dinh T.

    2016-01-01

    Our perception of diversity, including both alpha- and beta-diversity components, depends on spatial scale. Studies of spatial variation of the latter are just starting, with a paucity of research on beta-diversity patterns at smaller scales. Understanding these patterns and the processes shaping the distribution of diversity is critical to describe this diversity, but it is paramount in conservation too. Here, we investigate the diversity and structure of a tropical community of herbivorous beetles at a reduced local scale of some 10 km2, evaluating the effect of a small, gradual ecological change on this structure. We sampled leaf beetles in the Núi Chúa National Park (S Vietnam), studying changes in alpha- and beta-diversity across an elevation gradient up to 500 m, encompassing the ecotone between critically endangered lowland dry deciduous forest and mixed evergreen forest at higher elevations. Leaf beetle diversity was assessed using several molecular tree-based species delimitation approaches (with mtDNA cox1 data), species richness using rarefaction and incidence-based diversity indexes, and beta-diversity was investigated decomposing the contribution of species turnover and nestedness. We documented 155 species in the area explored and species-richness estimates 1.5–2.0x higher. Species diversity was similar in both forest types and changes in alpha-diversity along the elevation gradient showed an expected local increase of diversity in the ecotone. Beta-diversity was high among forest paths (average Sørensen's dissimilarity = 0.694) and, tentatively fixing at 300 m the boundary between otherwise continuous biomes, demonstrated similarly high beta-diversity (Sørensen's dissimilarity = 0.581), with samples clustering according to biome/elevation. Highly relevant considering the local scale of the study, beta-diversity had a high contribution of species replacement among locales (54.8%) and between biomes (79.6%), suggesting environmental heterogeneity

  10. Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor.

    Science.gov (United States)

    Rodriguez-Dominguez, Celia M; Buckley, Thomas N; Egea, Gregorio; de Cires, Alfonso; Hernandez-Santana, Virginia; Martorell, Sebastia; Diaz-Espejo, Antonio

    2016-09-01

    Reduced stomatal conductance (gs ) during soil drought in angiosperms may result from effects of leaf turgor on stomata and/or factors that do not directly depend on leaf turgor, including root-derived abscisic acid (ABA) signals. To quantify the roles of leaf turgor-mediated and leaf turgor-independent mechanisms in gs decline during drought, we measured drought responses of gs and water relations in three woody species (almond, grapevine and olive) under a range of conditions designed to generate independent variation in leaf and root turgor, including diurnal variation in evaporative demand and changes in plant hydraulic conductance and leaf osmotic pressure. We then applied these data to a process-based gs model and used a novel method to partition observed declines in gs during drought into contributions from each parameter in the model. Soil drought reduced gs by 63-84% across species, and the model reproduced these changes well (r(2)  = 0.91, P drought. PMID:27255698

  11. EVALUATING THE PHYSIOLOGICAL AND BIOCHEMICAL RESPONSE OF CERTAIN FOREST SPECIES IN THE CONDITION OF ANTHROPOGENIC POLLUTION IN CRUCEA, SUCEAVA COUNTY

    Directory of Open Access Journals (Sweden)

    Marius Viorel Oniciuc

    2013-02-01

    Full Text Available Most economic activities that constitute the progress generator of an unprecedented development ofthe human society had led to a multiple and sever impact on the ecosystems. The scale in which this anthropogenicimpact manifests itself can vary greatly, being conditioned by the general and local dynamics of the pollution generatingprocesses. For this reason, there had been made some necessary investigations in order to evaluate its dimensions.Considered to be polluting for the forest ecosystem and the surrounding area, the target of this study had been theuranium mine at Crucea, located in Suceava Country. Taking into account the fact that depending on the quantity of thepolluting material substances to which the species are exposed, different physiological and biochemical effects appearsuch as the reduction of the photosynthesis due to the degradation of the chlorophyll, an increase in the respiratoryfrequency, changes in the metabolism of the proteins and the enzymatic activity, the following physiological andbiochemical indices where measured: catalase, peroxidase and the assimilating pigments that are included in thephotoreceptors of the two photosystems integrated in the photosynthesis process, chlorophyll a and chlorophyll b.Moreover, the chlorophyll a/ chlorophyll b ratio, the caretonoid pigments and the relation between the chlorophyll and thecarotenes where taken into account while a determination was made on the activity of the Krebs cycle dehydrogenases.Researches had been made on foliar material sampled from different species of gymnosperms and angiosperms and onsoil samples taken in the contaminated area (Crucea as well as in the control area (Putna, Suceava County.

  12. Continuous morphological variation correlated with genome size indicates frequent introgressive hybridization among Diphasiastrum species (Lycopodiaceae in Central Europe.

    Directory of Open Access Journals (Sweden)

    Kristýna Hanušová

    Full Text Available Introgressive hybridization is an important evolutionary process frequently contributing to diversification and speciation of angiosperms. Its extent in other groups of land plants has only rarely been studied, however. We therefore examined the levels of introgression in the genus Diphasiastrum, a taxonomically challenging group of Lycopodiophytes, using flow cytometry and numerical and geometric morphometric analyses. Patterns of morphological and cytological variation were evaluated in an extensive dataset of 561 individuals from 57 populations of six taxa from Central Europe, the region with the largest known taxonomic complexity. In addition, genome size values of 63 individuals from Northern Europe were acquired for comparative purposes. Within Central European populations, we detected a continuous pattern in both morphological variation and genome size (strongly correlated together suggesting extensive levels of interspecific gene flow within this region, including several large hybrid swarm populations. The secondary character of habitats of Central European hybrid swarm populations suggests that man-made landscape changes might have enhanced unnatural contact of species, resulting in extensive hybridization within this area. On the contrary, a distinct pattern of genome size variation among individuals from other parts of Europe indicates that pure populations prevail outside Central Europe. All in all, introgressive hybridization among Diphasiastrum species in Central Europe represents a unique case of extensive interspecific gene flow among spore producing vascular plants that cause serious complications of taxa delimitation.

  13. Threatened & Endangered Species Occurrences

    Data.gov (United States)

    Kansas Data Access and Support Center — The database consists of a single statewide coverage of location records for 54 species contained in the Kansas Natural Heritage Inventory database of the Kansas...

  14. Species ID Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Up to 10 individuals of a fin fish, shark, and crustacean species are collected and morphologically identified by Southeast Fisheries Science Center. Water-soluble...

  15. How reticulated are species?

    Science.gov (United States)

    Mallet, James; Besansky, Nora; Hahn, Matthew W

    2016-02-01

    Many groups of closely related species have reticulate phylogenies. Recent genomic analyses are showing this in many insects and vertebrates, as well as in microbes and plants. In microbes, lateral gene transfer is the dominant process that spoils strictly tree-like phylogenies, but in multicellular eukaryotes hybridization and introgression among related species is probably more important. Because many species, including the ancestors of ancient major lineages, seem to evolve rapidly in adaptive radiations, some sexual compatibility may exist among them. Introgression and reticulation can thereby affect all parts of the tree of life, not just the recent species at the tips. Our understanding of adaptive evolution, speciation, phylogenetics, and comparative biology must adapt to these mostly recent findings. Introgression has important practical implications as well, not least for the management of genetically modified organisms in pest and disease control. PMID:26709836

  16. USGS invasive species solutions

    Science.gov (United States)

    Simpson, Annie

    2011-01-01

    Land managers must meet the invasive species challenge every day, starting with identification of problem species, then the collection of best practices for their control, and finally the implementation of a plan to remove the problem. At each step of the process, the availability of reliable information is essential to success. The U.S. Geological Survey (USGS) has developed a suite of resources for early detection and rapid response, along with data management and sharing.

  17. Communication on invasive species

    OpenAIRE

    2014-01-01

    Like any other environmental problem, control of invasive species needs to be based on awareness of the implications by the public and by private enterprise. Active, informed public support is a major factor for success in managing a pest crisis; regulations and coercive measures alone do not succeed. Which raises the question of what to communicate, and how. There may be conflicts of interest where alien species are concerned because some of them are a source of income, pleasure or even a st...

  18. Amphibians and reptiles of Guyana, South America: illustrated keys, annotated species accounts, and a biogeographic synopsis

    Science.gov (United States)

    Cole, Charles J.; Townsend, Carol R.; Reynolds, Robert P.; MacCulloch, Ross D.; Lathrop, Amy

    2013-01-01

    at seven lowland sites (in rainforest, savanna, and mixed habitats below 500 m elevation) and three isolated highland sites (in montane forest and evergreen high-tepui forest above 1400 m elevation). Comparisons of these sites are preliminary because sampling of the local faunas remains incomplete. Nevertheless, it is certain that areas of about 2.5 km2 of lowland rainforest can support more than 130 species of amphibians and reptiles (perhaps actually more than 150), while many fewer species (fewer than 30 documented so far) occur in a comparable area of isolated highlands, where low temperatures, frequent cloudiness, and poor soils are relatively unfavorable for amphibians and reptiles. Furthermore, insufficient study has been done in upland sites of intermediate elevations, where lowland and highland faunas overlap significantly, although considerable work is being accomplished in Kaieteur National Park by other investigators. Comparisons of the faunas of the lowland and isolated highland sites showed that very few species occur in common in both the lowlands and isolated highlands; that those few are widespread lowland species that tolerate highland environments; that many endemic species (mostly amphibians) occur in the isolated highlands of the Pakaraima Mountains; and that each of the isolated highlands, lowland savannas, and lowland rainforests at these 10 sites have distinctive faunal elements. No two sites were identical in species composition. Much more work is needed to compare a variety of sites, and especially to incorporate upland sites of intermediate elevations in such comparisons. Five species of sea turtles utilize the limited areas of Atlantic coastal beaches to the northwest of Georgetown. All of these are listed by the International Union for the Conservation of Nature as being of global concern for long-term survival, mostly owing to human predation. The categories of Critically Endangered or Endangered are applied to four of the local sea

  19. The importance of long-distance seed dispersal for the demography and distribution of a canopy tree species.

    Science.gov (United States)

    Caughlin, T Trevor; Ferguson, Jake M; Lichstein, Jeremy W; Bunyavejchewin, Sarayudh; Levey, Douglas J

    2014-04-01

    Long-distance seed dispersal (LDD) is considered a crucial determinant of tree distributions, but its effects depend on demographic processes that enable seeds to establish into adults and that remain poorly understood at large spatial scales. We estimated rates of seed arrival, germination, and survival and growth for a canopy tree species (Miliusa horsfieldii), in a landscape ranging from evergreen forest, where the species' abundance is high, to deciduous forest, where it is extremely low. We then used an individual-based model (IBM) to predict sapling establishment and to compare the relative importance of seed arrival and establishment in explaining the observed distribution of seedlings. Individuals in deciduous forest, far from the source population, experienced multiple benefits (e.g., increased germination rate and seedling survival and growth) from being in a habitat where conspecifics were almost absent. The net effect of these spatial differences in demographic processes was significantly higher estimated sapling establishment probabilities for seeds dispersed long distances into deciduous forest. Despite the high rate of establishment in this habitat, Miliusa is rare in the deciduous forest because the arrival of seeds at long distances from the source population is extremely low. Across the entire landscape, the spatial pattern of seed arrival is much more important than the spatial pattern of establishment for explaining observed seedling distributions. By using dynamic models to link demographic data to spatial patterns, we show that LDD plays a pivotal role in the distribution of this tree in its native habitat. PMID:24933814

  20. Characteristics of the production of underground fruits and seed dispersal of Crocus alatavicus, a geophytic-geocarpic species

    Directory of Open Access Journals (Sweden)

    Ziyan Fu

    2013-09-01

    Full Text Available Geophytic-geocarpy is a special type of fruit production in angiosperms, whereby flowers with a long tubular perianth arise from underground buds and bloom above ground with the ovary and subsequent fruit remaining below ground. Crocus alatavicus, a geophytic-geocarpic species, is a perennial early-spring ephemeral that grows in subalpine areas of the western Tianshan Mountains. Based on field observations and controlled experiments, development of the underground ovaries and young fruits and seed dispersal were investigated for C. alatavicus and their adaptive significance analyzed. The results showed that developmental time from flowering to emergence of the underground capsules above the soil was about 35 days, and emergence of the underground capsules results from elongation of the peduncles, and then capsules dehisce and seeds are dispersed. Seeds of C. alatavicus have an elaiosome, which is typical of myrmecochores. Ants make a significant contribution to seed dispersal, and three ant species, Formica pressilabris, F. gagates and F. fusca, were recorded near newly-dispersed seeds of C. alatavicus. The visiting frequency of F. pressilabris was the highest, but F. fusca removed seeds faster and to a greater distance than the other two species. The average dispersal distance of the three ant species was 62.4±1.7 cm. Formica pressilabris, the major ant species taking seeds, ate the elaiosome after it moved the seeds into its nest and then stored more than 50% of the transported seeds in the nest. Rodents and birds had no effect on seed dispersal of C. alatavicus, but hydrophily and anemophily played a minor role in short-distance dispersal. Formation of seeds underground and their dispersal by ants help ensure that seeds escape damage from herbivores and fire and that they are dispersed in a manner that reduces sib-competition and competition between mother plant and offspring, thereby ensuring seed germination and seedling establishment in

  1. Changes in radiocesium contamination from Fukushima in foliar parts of 10 common tree species in Japan between 2011 and 2013

    International Nuclear Information System (INIS)

    Yearly changes in radiocesium (137Cs) contamination, primarily due to the Fukushima accident of March 2011, were observed in the foliar parts of 10 common woody species in Japan (Chamaecyparis obtusa, Cedrus deodara, Pinus densiflora, Cryptomeria japonica, Phyllostachys pubescens, Cinnamomum camphora, Metasequoia glyptostroboides, Prunus × yedoensis, Acer buergerianum, and Aesculus hippocastanum). The samples were obtained from Abiko (approximately 200 km SSW of the Fukushima Dai-ichi Nuclear Power Plant) during each growing season between 2011 and 2013, and the foliar parts were examined based on their year of expansion and location in each trees. The radiocesium concentrations generally decreased with time; however, the concentrations and rates of decrease varied among species, age of foliar parts, and locations. The radiocesium concentrations in the 2012 current-year foliar parts were 29%–220% of those from 2011, while those from 2013 fell to between 14% and 42% of the 2011 values. The net decontamination in the foliage was higher in evergreen species than in deciduous species. The radiocesium concentrations in the upper foliar parts were higher than those in the lower parts particularly in C. japonica. In addition, the radiocesium concentrations were higher in the current-year foliar parts than in the 1-year-old foliar parts, particularly in 2013. Thus, the influence of the direct deposition of the fallout was reduced with time, and the translocation ability of radiocesium from old to new tissues became more influential. Similar to the behavior of potassium in trees, Cs redistribution probably occurred primarily due to internal nutrient translocation mechanisms. - Highlights: • 137Cs concentrations of foliar parts expanded in 2013 was 14–42% of those in 2011. • The rates of decrease varied with the species, sampling part, and position. • Newly expanded foliar parts contain higher 137Cs concentrations than older parts. • 137Cs translocation

  2. Apoplasmic barriers and oxygen transport properties of hypodermal cell walls in roots from four amazonian tree species.

    Science.gov (United States)

    De Simone, Oliviero; Haase, Karen; Müller, Ewald; Junk, Wolfgang J; Hartmann, Klaus; Schreiber, Lukas; Schmidt, Wolfgang

    2003-05-01

    The formation of suberized and lignified barriers in the exodermis is suggested to be part of a suite of adaptations to flooded or waterlogged conditions, adjusting transport of solutes and gases in and out of roots. In this study, the composition of apoplasmic barriers in hypodermal cell walls and oxygen profiles in roots and the surrounding medium of four Amazon tree species that are subjected to long-term flooding at their habitat was analyzed. In hypodermal cell walls of the deciduous tree Crateva benthami, suberization is very weak and dominated by monoacids, 2-hydroxy acids, and omega-hydroxycarboxylic acids. This species does not show any morphological adaptations to flooding and overcomes the aquatic period in a dormant state. Hypodermal cells of Tabernaemontana juruana, a tree which is able to maintain its leaf system during the aquatic phase, are characterized by extensively suberized walls, incrusted mainly by the unsaturated C(18) omega-hydroxycarboxylic acid and the alpha,omega-dicarboxylic acid analogon, known as typical suberin markers. Two other evergreen species, Laetia corymbulosa and Salix martiana, contained 3- to 4-fold less aliphatic suberin in the exodermis, but more than 85% of the aromatic moiety of suberin are composed of para-hydroxybenzoic acid, suggesting a function of suberin in pathogen defense. No major differences in the lignin content among the species were observed. Determination of oxygen distribution in the roots and rhizosphere of the four species revealed that radial loss of oxygen can be effectively restricted by the formation of suberized barriers but not by lignification of exodermal cell walls. PMID:12746526

  3. Theoretical ecology without species

    Science.gov (United States)

    Tikhonov, Mikhail

    The sequencing-driven revolution in microbial ecology demonstrated that discrete ``species'' are an inadequate description of the vast majority of life on our planet. Developing a novel theoretical language that, unlike classical ecology, would not require postulating the existence of species, is a challenge of tremendous medical and environmental significance, and an exciting direction for theoretical physics. Here, it is proposed that community dynamics can be described in a naturally hierarchical way in terms of population fluctuation eigenmodes. The approach is applied to a simple model of division of labor in a multi-species community. In one regime, effective species with a core and accessory genome are shown to naturally appear as emergent concepts. However, the same model allows a transition into a regime where the species formalism becomes inadequate, but the eigenmode description remains well-defined. Treating a community as a black box that expresses enzymes in response to resources reveals mathematically exact parallels between a community and a single coherent organism with its own fitness function. This coherence is a generic consequence of division of labor, requires no cooperative interactions, and can be expected to be widespread in microbial ecosystems. Harvard Center of Mathematical Sciences and Applications;John A. Paulson School of Engineering and Applied Sciences.

  4. Concepts of keystone species and species importance in ecology

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper discussed the keystone species concept and introduced the typical characteristics of keystone species and their identification in communities or ecosystems. Based on the research of the keystone species, the concept of species importance (SI) was first advanced in this paper. The species importance can be simply understood as the important value of species in the ecosystem, which consists of three indexes: species structural important value (SIV), functional important value (FIV) and dynamical important value (DIV). With the indexes, the evaluation was also made on species importance of arbor trees in the Three-Hardwood forests (Fraxinus mandshurica, Juglans mandshurica, and Phellodendron amurense) ecosystem.

  5. Genomic definition of species

    Energy Technology Data Exchange (ETDEWEB)

    Crkvenjakov, R.; Drmanac, R.

    1991-07-01

    The subject of this paper is the definition of species based on the assumption that genome is the fundamental level for the origin and maintenance of biological diversity. For this view to be logically consistent it is necessary to assume the existence and operation of the new law which we call genome law. For this reason the genome law is included in the explanation of species phenomenon presented here even if its precise formulation and elaboration are left for the future. The intellectual underpinnings of this definition can be traced to Goldschmidt. We wish to explore some philosophical aspects of the definition of species in terms of the genome. The point of proposing the definition on these grounds is that any real advance in evolutionary theory has to be correct in both its philosophy and its science.

  6. Lignans from Arnica species.

    Science.gov (United States)

    Schmidt, Thomas J; Stausberg, Sabine; Raison, Jeanette Von; Berner, Matthias; Willuhn, Günter

    2006-05-10

    From four Arnica species (A. angustifolia Vahl ssp. attenuata (Greene) Maguire, A. lonchophylla Greene ssp. lonchophylla Maguire (flowerheads), A. chamissonis Less. ssp. foliosa (Nutt.) Maguire, A. montana L. (roots and rhizomes)) a total of twelve lignans of the furofuran-, dibenzylbutyrolactone- and dibenzylbutyrolactol-type were isolated. No report on lignans as constituents of Arnica species exists so far. Besides the known pinoresinol, epipinoresinol, phillygenin, matairesinol, nortrachelogenin and nortracheloside, six dibenzylbutyrolactol derivatives with different stereochemistry and substitution at C-9 were isolated and their structures elucidated by NMR spectroscopic and mass spectral analysis. PMID:16644542

  7. The functional biogeography of species

    DEFF Research Database (Denmark)

    Carstensen, D.W.; Dalsgaard, B.; Svenning, J.-C.; Rahbek, C.; Fjeldså, J.; Sutherland, W.J.; Olesen, Jens M.

    2013-01-01

    between species traits and large-scale species distribution patterns in archipelagos, we use a network approach to classify birds as one of four biogeographical species roles: peripherals, connectors, module hubs, and network hubs. These roles are based upon the position of species within the modular...... distributions at the local community level. We finally discuss how our biogeographical species roles may correspond to the stages of the taxon cycle and other prominent theories of species assembly. © 2013 The Authors....

  8. Within-stand variability of leaf phenology in deciduous tree species: characterization and ecological implications

    Science.gov (United States)

    Delpierre, N.; Cecchini, S.; Dufrêne, E.; Guillemot, J.; Nicolas, M.

    2014-12-01

    The vast majority of phenological studies address questions relative to the spatial or temporal variability of phenological timings integrated at the forest stand (i.e. tree population) scale. Within a forest stand, the inter-individual variability of phenological timings is expected to affect a range of tree functions among which the access to light, the use of carbon and nitrogen reserves, the absorption of minerals and the sensitivity to pathogens. Hence the individual's phenological traits are likely to be strongly selected, resulting in an adaptation of the population to local conditions, as evidenced by latitudinal and altitudinal clines observed in common garden experiments. Studies dedicated to the within-stand variability of the timing of phenophases have to date been mostly designed for contrasting the behaviours of understory versus overstory species or seedlings compared to their adult conspecifics. The few published papers studying the phenological timings among adult conspecifics revealed unclear patterns. We aimed at clarifying the understanding of the within-stand variability of tree phenology of three of the main European deciduous species (Quercus petraea, Quercus robur and Fagus sylvatica) through the analysis of a unique phenological database collected over 44 (28 Oak sites, 16 Beech stands) forest stands at the tree level for 4 years over France. We show that within a forest stand, individual trees have a distinct "phenological identity" resulting in a year to year conservation of (a) the individuals' spring and autumn phenological rankings and (b) the individuals' critical temperature sums required for budburst and senescence. The individual's spring "phenological identity" affects its functioning and, ultimately, its competitive ability: big trees burst earlier. Acknowledging that Angiosperms show low genetic diversity between populations, we show that the between-site variability of critical temperature sums needed for budburst or senescence

  9. Population structure and genetic diversity of a medicinal plant species Retama raetam in southern Tunisia.

    Science.gov (United States)

    Abdellaoui, Raoudha; Yahyaoui, Faouzia; Neffati, Mohamed

    2014-01-15

    Retama raetam is a stem-assimilating, C3, evergreen, medicinal plant species, desert legume common to arid ecosystems around the Mediterranean basin. This study addresses the genetic diversity and relationship among and within three populations collected from different habitats in southern Tunisia by Random Amplified Polymorphic DNA (RAPD). Estimates of the percentage of polymorphic bands, Shannon's diversity information index and Nei's gene diversity index were determined. Results showed that population from the Island Djerba has the lowest Nei's gene diversity; this also was for Shannon diversity index. An analysis of molecular variance indicated that the majority of variation existed within populations (68%) and that there was significant differentiation among populations (phiPT = 0.316, p < 0.001). Genetic distance (phiPT based values) between pairwise populations ranged from 0.098 to 0.505 and the differentiation between pair-wise populations was significant when individual pairs of populations were compared. Based on the coefficient of gene differentiation (Gst), gene flow (Nm) was estimated and was found to vary from 0.490 to 4.609 between pair-wise populations and 1.42 among populations. The results of UPGMA cluster analysis and PCoA analysis indicated that most variation occurred within populations and that genetic differentiation had happened between populations. These findings are important for a better understanding of the adaptive strategy of R. raetam in southern Tunisia and will be useful for conservation managers to work out an effective strategy to protect this important species. PMID:24783800

  10. Coevolution of Symbiotic Species

    OpenAIRE

    Leok, Boon Tiong Melvin

    1996-01-01

    This paper will consider the coevolution of species which are symbiotic in their interaction. In particular, we shall analyse the interaction of squirrels and oak trees, and develop a mathematical framework for determining the coevolutionary equilibrium for consumption and production patterns.

  11. Prices and species diversity

    DEFF Research Database (Denmark)

    Sauer, Johannes

    . Based on a biologically defined species diver-sity index we incorporate biodiversity either as a desirable output or biodiversity loss as a detrimental input. Beside quantitative shadow price measures the main contribu-tion of the work is the evidence that parametric scores of environmental efficiency...

  12. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany

    Science.gov (United States)

    Otto, Angelika; Simoneit, Bernd R. T.

    2001-10-01

    The biomarker contents of three fossil conifer species ( Athrotaxis couttsiae, Taxodium balticum, Pinus palaeostrobus) and the clay sediment from the Eocene Zeitz formation, Germany, have been analyzed by gas chromatography-mass spectrometry. Triterpenoids of the oleanane, ursane and lupane series and aliphatic wax lipids are the major compounds in the total extracts of the sediment indicating a major angiosperm input. In contrast, diterpenoids (abietanes, phenolic abietanes, pimaranes, isopimaranes, kauranes, phyllocladanes, totaranes) and lignin degradation products are predominant in the conifer fossil extracts. Polar diterpenoids (ferruginol and derivatives, dehydroabietic acid) are preserved as major compounds in the conifers, accompained by saturated and aromatic diterpenoid products. The extracts of the fossil conifer species show characteristic biomarker patterns and contain terpenoids of chemosystematic value. The terpenoid composition of the fossil conifers is similar to that of related modern species. Phenolic abietanes (ferruginol, 6,7-dehydroferruginol, hydroxyferruginols, sugiol) which are known from modern species of the Cupressaceae and Podocarpaceae are the major terpenoids in shoots of Athrotaxis couttsiae and a cone of Taxodium balticum (both Cupressaceae). Sesquiterpenoids characteristic for Cupressaceae (cuparene, α-cedrene) are also present in Athrotaxis. Abietane-type acids (dehydroabietic acid, abietic acid) and saturated abietanes [fichtelite, 13α(H)-fichtelite] predominate in the extracts of a Pinus palaeostrobus cone and phenolic abietanes are not detectable. A diagenetic pathway for the degradation of abietic acid is proposed based on the presence of abietane-type acids and a series of their presumed degradation products in the Pinus cone. The formation of diagenetic products from the phenolic abietanes is also discussed.

  13. 中国企业品牌国际化升级路径研究--从品牌机制角度探究国际化品牌长青基因%Research on the Upgrading path of Chinese Enterprise Brand Internationalization---Explore the International Brand Evergreen Gene from Brand Mechanism Angle

    Institute of Scientific and Technical Information of China (English)

    杨光玉; 王海忠

    2014-01-01

    基于品牌国际化升级的多案例研究,利用路径依赖理论探究了我国企业品牌经营和国际品牌经营存在巨大差异的形成机制。通过对国际顶端品牌的对比研究,发现我国机遇型企业要摆脱弊端,创建国际化长青品牌,必须从经验主义升级到方法论,通过学习、超越国际上经典和领先的品牌原理及方法论,借助中国经济形态在国际上的独特竞争优势,打造与世界竞争同步的国际化大品牌,这样才能使得品牌成功从偶然性向必然性转变,成就国际化长青品牌。%Based on the brand internationalization upgrade case study ,using the theory of path dependence explores our country enterprise brand management and international brand management mechanism for the formation of huge differ-ences .Through the comparison study of international top brands ,find opportunities for enterprises to get rid of the disad-vantages in our country .To create international evergreen brand ,must from empiricism to upgrade to the methodology , through learning ,beyond classic and leading brand on the international principle and methodology .With the aid of the Chi-nese economy form unique competitive advantage in the world ,create synchronization with the world competition interna-tionalization big brand ,so as to make the brand successful transition from contingency to necessity ,achievement evergreen brand internationalization .

  14. Changes in radiocesium contamination from Fukushima in foliar parts of 10 common tree species in Japan between 2011 and 2013.

    Science.gov (United States)

    Yoshihara, Toshihiro; Matsumura, Hideyuki; Tsuzaki, Masaharu; Wakamatsu, Takashi; Kobayashi, Takuya; Hashida, Shin-Nosuke; Nagaoka, Toru; Goto, Fumiyuki

    2014-12-01

    Yearly changes in radiocesium ((137)Cs) contamination, primarily due to the Fukushima accident of March 2011, were observed in the foliar parts of 10 common woody species in Japan (Chamaecyparis obtusa, Cedrus deodara, Pinus densiflora, Cryptomeria japonica, Phyllostachys pubescens,